

Lecture Notes in Computer Science 6544
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alex Biryukov Guang Gong
Douglas R. Stinson (Eds.)

Selected Areas
in Cryptography

17th International Workshop, SAC 2010
Waterloo, Ontario, Canada, August 12-13, 2010
Revised Selected Papers

13

Volume Editors

Alex Biryukov
University of Luxembourg, FSTC
6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg-Kirchberg, Luxembourg
E-mail: alex.biryukov@uni.lu

Guang Gong
University of Waterloo, Department of Electrical and Computer Engineering
Waterloo, Ontario, Canada, N2L 3G1
E-mail: ggong@uwaterloo.ca

Douglas R. Stinson
University of Waterloo, David R. Cheriton School of Computer Science
Waterloo, Ontario, N2L 3G1, Canada
E-mail: dstinson@uwaterloo.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19573-0 e-ISBN 978-3-642-19574-7
DOI 10.1007/978-3-642-19574-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922161

CR Subject Classification (1998): E.3, D.4.6, K.6.5, F.2.1-2, C.2, H.4.3

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The book in front of you contains the proceedings of SAC 2010, the 17th An-
nual Workshop on Selected Areas in Cryptography. SAC 2010 took place on the
campus of the University of Waterloo, Ontario, Canada, during August 12–13.
There were 78 participants from 16 countries. Previous workshops in this series
were held at Queen’s University in Kingston (1994, 1996, 1998, 1999, and 2005),
Carleton University in Ottawa (1995, 1997, and 2003), the University of Water-
loo (2000, 2004), the Fields Institute in Toronto (2001), the Memorial University
of Newfoundland in St. John’s (2002), Concordia University in Montréal (2006),
the University of Ottawa (2007), Mount Allison University in Sackville (2008),
and the University of Calgary (2009).

The objective of the workshop is to present cutting-edge research in the desig-
nated areas of cryptography and to facilitate future research through an informal
and friendly workshop setting. Now in its 17th year, the SAC workshop series
has established itself as a premier international forum for information, discussion
and exchange of ideas in cryptographic research.

Starting in 2008, SAC has been organized in cooperation with the Interna-
tional Association for Cryptologic Research (IACR). The themes for SAC 2010
were:

– Design and analysis of symmetric key primitives and cryptosystems, includ-
ing block and stream ciphers, hash functions and MAC algorithms

– Efficient implementations of symmetric and public key algorithms
– Mathematical and algorithmic aspects of applied cryptology
– Applications of coding theory and combinatorics in cryptography

The workshop attracted 90 submissions and the paper review was double-blind.
Each paper was reviewed by three members of the Program Committee and
submissions that were co-authored by a member of Program Committee received
two additional reviews. In all, 24 papers were accepted for presentation at the
workshop. The accepted papers covered a wide range of topics in cryptography,
including hash functions, stream ciphers, efficient implementations, coding and
combinatorics, block ciphers, side channel attacks and mathematical aspects. In
addition to these 24 presentations, two invited talked completed the technical
program:

– Keith Martin gave the Stafford Tavares Lecture on “The Rise and Fall and
Rise of Combinatorial Key Predistribution.”

– Alexandra Boldyreva gave a lecture dealing with “Search on Encrypted Data
in the Symmetric-Key Setting.”

We are grateful to the authors of all the submitted papers. We also would like to
thank the Program Committee and the many external reviewers for their hard

VI Preface

work and expertise in selecting the high-quality research papers for presentation
at the conference. A list of all external referees appears here.

We would like to thank Philip Regier and Fernando Rivero Hernandez for
technical support, and Lisa Szepaniak for her constant support. Our special
thanks go to Chris Schroeder for her endless efforts that ensured the smooth
running of the workshop, to Xinxin Fan for his tremendous help in compil-
ing the proceedings, and to Qi Chai for the design and host of the website of
SAC 2010.

Finally, we gratefully acknowledge the Department of Electrical and Com-
puter Engineering and the David R. Cheriton School of Computer Science of the
University of Waterloo, and the Fields Institute for Research in Mathematical
Science (Toronto) for their enthusiastic and generous financial support.

December 2010 Alex Biryukov
Guang Gong

Douglas Stinson

Organization

The SAC workshop series is managed by the SAC Organizing Board, in cooper-
ation with the International Association for Cryptologic Research (IACR).

SAC Organizing Board

Carlisle Adams (Chair) University of Ottawa, Canada
Roberto Avanzi Ruhr University Bochum, Germany
Orr Dunkelman Weizmann Institute of Science, Israel
Francesco Sica Mount Allison University, Canada
Doug Stinson University of Waterloo, Canada
Nicolas Theriault Universidad de Talca, Chile
Mike Jacobson University of Calgary, Canada
Vincent Rijmen Graz University of Technology, Austria
Amr Youssef Concordia University, Canada

SAC 2010 Organizing Committee

Alex Biryukov University of Luxembourg, Luxembourg
Guang Gong University of Waterloo, Canada
Douglas Stinson University of Waterloo, Canada

Program Committee

Roberto Avanzi Ruhr University Bochum, Germany
Paulo Barreto University of Sao Paulo, Brazil
Simon Blackburn Royal Holloway, University of London, UK
Christophe De Cannière Katholieke Universiteit Leuven, Belgium
Anne Canteaut INRIA, France
Joan Daemen, ST Microelectronics, Belgium
Orr Dunkelman Weizmann Institute of Science, Israel
Henri Gilbert Orange Labs, France
Helena Handschuh Katholieke Universiteit Leuven, Belgium and

Intrinsic-ID Inc., USA
Martin Hell Lund University, Sweden
Howard Heys Memorial University, Canada
Tetsu Iwata Nagoya University, Japan
Mike Jacobson University of Calgary, Canada
David Jao University of Waterloo, Canada
Marc Joye Technicolor, France

VIII Organization

Tanja Lange Technische Universiteit Eindhoven,
The Netherlands

Barbara Masucci Università di Salerno, Italy
Ali Miri Ryerson University and University of Ottawa,

Canada
Ilya Mironov Microsoft Research, USA
David Naccache ENS, France
Kaisa Nyberg Helsinki University of Technology and NOKIA,

Finland
Carles Padró Universitat Politecnica de Catalunya, Spain
Maura Paterson Birkbeck University of London, UK
Svetla Petkova-Nikova K.U. Leuven Belgium and University of

Twente, The Netherlands
Bart Preneel Katholieke Universiteit Leuven, Belgium
Christian Rechberger Katholieke Universiteit Leuven, Belgium
Thomas Ristenpart UC San Diego, USA
Rei Safavi-Naini University of Calgary, Canada
Yu Sasaki NTT, Japan
Martijn Stam EPFL, Switzerland
François-Xavier Standaert Université Catholique de Louvain, Belgium
Tamir Tassa The Open University, Israel
Nicolas Theriault Universidad de Talca, Chile
Serge Vaudenay EPFL, Switzerland
Ruizhong Wei Lakehead University, Canada
Amr Youssef Concordia University, Canada
Gilles Zemor Université Bordeaux, France

External Reviewers

Martin Ågren
Hadi Ahmadi
Toru Akishita
Elena Andreeva
Paolo D’Arco
Gilles Van Assche
Jean-Philippe Aumasson
Balasingham Balamohan
Lejla Batina
Daniel J. Bernstein
Guido Bertoni
Olivier Billet
Joppe Bos
Julien Bringer
Billy Brumley
David Cash

Guilhem Castagnos
Hervé Chabanne
Chen-Mou Cheng
Sarah Chisholm
Stelvio Cimato
Baudoin Collard
Thomas Eisenbarth
Junfeng Fan
Anna Lisa Ferrara
Felix Fontein
Kris Gaj
Clemente Galdi
Nicolas Gama
Benedikt Gierlichs
Matthew Green
Risto M. Hakala

Organization IX

Jens Hermans
Miia Hermelin
Javier Herranz
Naofumi Homma
Sebastiaan Indesteege
Kimmo Järvinen
Jorge Nakahara Jr
Marcos Antonio Simplicio Junior
Dina Kamel
Shahram Khazaei
Chong Hee Kim
Aleksandar Kircanski
Thorsten Kleinjung
Miroslav Knezevic
Yang Li
Richard Lindner
Julio Lopez
Behzad Malek
Mark Manulis
Sarah Meiklejohn
Florian Mendel
Rafael Misoczki
Petros Mol
Nicky Mouha
Elke De Mulder
Yoni De Mulder
Kris Narayan
Maria Naya-Plasencia
Monica Nevins
Ventzislav Nikov
Dag Arne Osvik
Ayoub Otmani
Onur Özen
Francesco Palmieri
Goutam Paul
Chris Peikert
Thomas Peyrin
Hoi Ting Poon
Carla Rafols

Francesco Regazzoni
Oded Regev
Jean-René Reinhard
Mathieu Renauld
Vincent Rijmen
Andrea Röck
Markku-Juhani O. Saarinen
Juraj S̈arinay
Martin Schläffer Arthur Schmidt
Peter Schwabe
Michael Scott
Pouyan Sepehrdad
Francesco Sica
Jamshid Shokrollahi
Claudio Soriente
Paul Stankovski
John Steinberger
Hung-Min Sun
Petr Sušil
Robert Szerwinski
Adrian Tang
Jean-Pierre Tillich
Deniz Toz
Ashraful Tuhin
Antonino Tumeo
Vesselin Velichkov
Damien Vergnaud
Nicolas Veyrat-Charvillon
Marion Videau
Panagiotis Voulgaris
Lei Wang
Pengwei Wang
Ralf-Philipp Weinmann
Kjell Wooding
Kan Yasuda
Sung-Ming Yen
Hirotaka Yoshida
Gregory Zaverucha

Sponsoring Institutions

Department of Electrical and Computer Engineering, University of Waterloo
David R. Cheriton School of Computer Science, University of Waterloo
Fields Institute for Research in Mathematical Science, Toronto, Canada

Table of Contents

Hash Functions I

Zero-Sum Distinguishers for Iterated Permutations and Application to
Keccak-f and Hamsi-256 . 1

Christina Boura and Anne Canteaut

Attacks on Hash Functions Based on Generalized Feistel: Application
to Reduced-Round Lesamnta and SHAvite-3512 . 18

Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and
Pierre-Alain Fouque

The Differential Analysis of S-Functions . 36
Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and
Bart Preneel

Stream Ciphers

Hill Climbing Algorithms and Trivium . 57
Julia Borghoff, Lars R. Knudsen, and Krystian Matusiewicz

Discovery and Exploitation of New Biases in RC4 . 74
Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux

The Stafford Tavares Lecture

The Rise and Fall and Rise of Combinatorial Key Predistribution 92
Keith M. Martin

Efficient Implementations

A Low-Area Yet Performant FPGA Implementation of Shabal 99
Jérémie Detrey, Pierrick Gaudry, and Karim Khalfallah

Implementation of Symmetric Algorithms on a Synthesizable 8-Bit
Microcontroller Targeting Passive RFID Tags . 114

Thomas Plos, Hannes Groß, and Martin Feldhofer

Batch Computations Revisited: Combining Key Computations and
Batch Verifications . 130

René Struik

XII Table of Contents

Coding and Combinatorics

Wild McEliece . 143
Daniel J. Bernstein, Tanja Lange, and Christiane Peters

Parallel-CFS: Strengthening the CFS McEliece-Based Signature
Scheme . 159

Matthieu Finiasz

A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome
Decoding Problem . 171

Pierre-Louis Cayrel, Pascal Véron, and
Sidi Mohamed El Yousfi Alaoui

Optimal Covering Codes for Finding Near-Collisions 187
Mario Lamberger and Vincent Rijmen

Block Ciphers

Tweaking AES . 198
Ivica Nikolić

On the Diffusion of Generalized Feistel Structures Regarding
Differential and Linear Cryptanalysis . 211

Kyoji Shibutani

A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight
Block Cipher KTANTAN . 229

Andrey Bogdanov and Christian Rechberger

Side Channel Attacks

Improving DPA by Peak Distribution Analysis . 241
Jing Pan, Jasper G.J. van Woudenberg, Jerry I. den Hartog, and
Marc F. Witteman

Affine Masking against Higher-Order Side Channel Analysis 262
Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and
Matthieu Rivain

Invited Talk

Search on Encrypted Data in the Symmetric-Key Setting 281
Alexandra Boldyreva

Table of Contents XIII

Mathematical Aspects

Preimages for the Tillich-Zémor Hash Function . 282
Christophe Petit and Jean-Jacques Quisquater

One-Time Signatures and Chameleon Hash Functions 302
Payman Mohassel

On the Minimum Communication Effort for Secure Group Key
Exchange . 320

Frederik Armknecht and Jun Furukawa

Hash Functions II

Deterministic Differential Properties of the Compression Function of
BMW . 338

Jian Guo and Søren S. Thomsen

Security Analysis of SIMD . 351
Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash
Function . 369

Martin Schläffer

Cryptanalysis of Luffa v2 Components . 388
Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and
Martin Schläffer

Author Index . 411

Zero-Sum Distinguishers for Iterated
Permutations and Application to Keccak-f and

Hamsi-256�

Christina Boura1,2 and Anne Canteaut1

1 SECRET Project-Team - INRIA Paris-Rocquencourt - B.P. 105

78153 Le Chesnay Cedex - France
2 Gemalto - 6, rue de la Verrerie - 92447 Meudon sur Seine - France

{Christina.Boura,Anne.Canteaut}@inria.fr

Abstract. The zero-sum distinguishers introduced by Aumasson and

Meier are investigated. First, the minimal size of a zero-sum is estab-

lished. Then, we analyze the impacts of the linear and the nonlinear

layers in an iterated permutation on the construction of zero-sum parti-

tions. Finally, these techniques are applied to the Keccak-f permutation

and to Hamsi-256. We exhibit several zero-sum partitions for 20 rounds

(out of 24) of Keccak-f and some zero-sum partitions of size 219 and

210 for the finalization permutation in Hamsi-256.

Keywords: Hash functions, integral properties, zero-sums, SHA-3.

1 Introduction

The existence of zero-sum structures is a new distinguishing property which has
been recently investigated by Aumasson and Meier [2], and by Knudsen and
Rijmen [14]. For a given function F , a zero-sum is a set of inputs which sum to
zero, and whose images by F also sum to zero. Such zero-sum properties can be
seen as a generalization of multiset properties (a.k.a. integral properties) [10,15].
Classical integral attacks for block ciphers include higher-order differential at-
tacks and saturation attacks. Similarly, zero-sum structures may exploit either
the fact that the permutation or its inverse after a certain number of rounds has
a low degree, or some saturation properties due to a low diffusion. The keypoint
is that the first type of weakness arises from the nonlinear part of the function
whereas the second type arises from its linear part. The first direction has been
investigated in [2] for three SHA-3 candidates, Luffa, Hamsi and Keccak. Here,
we show that, when the nonlinear part of the round transformation consists of
several parallel applications of a smaller Sbox, an improved bound on the degree
of the iterated function can be deduced, leading to zero-sums with a smaller
size. Moreover, we investigate the impact of the linear part of the inner round
permutation on the construction of zero-sums. Then, combining both types of
� Partially supported by the French Agence Nationale de la Recherche through the

SAPHIR2 project under Contract ANR-08-VERS-014.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 1–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 C. Boura and A. Canteaut

properties enables us to find zero-sum partitions for the inner permutations of
two SHA-3 Round-2 candidates, Keccak [4] and Hamsi-256 [16]. More precisely,
we exhibit several zero-sum partitions up to 20 (out of 24) rounds of the inner
permutation in Keccak and we improve the zero-sum partitions found in [1]
for the finalization permutation of Hamsi-256. Even if our results do not seem
to affect the security of Keccak and Hamsi-256, they point out that the in-
volved inner permutation of Hamsi-256 and 20 rounds of the inner permutation
of Keccak do not have an ideal behavior.

The rest of the paper is organized as follows. Section 2 defines the notions
of zero-sum and of zero-sum partition, and it also establishes the minimal size
for a zero-sum. Section 3 analyzes how a low degree of the nonlinear part of the
round transformation and of its inverse can be exploited for constructing zero-
sum partitions. It also applies a result from [8], and shows that the size of the
previously obtained zero-sum partitions can be improved when the nonlinear
layer in the round transformation consists of several applications of a small
Sbox. The role of the linear layer in the construction of zero-sum partitions is
investigated in Section 4. Finally some applications to the inner permutation
of Keccak and to the finalization permutation of Hamsi-256 are presented in
Sections 5 and 6.

2 Zero-Sum Structures and Distinguishing Properties

In the whole paper, the addition in F
n
2 , i.e. the bitwise exclusive-or will be

denoted by +, while ⊕ will be used for denoting the direct sum of subspaces of
Fn

2 .
Zero-sum distinguishers were firstly introduced by J.-P. Aumasson and W.

Meier in [2].

Definition 1. Let F be a function from Fn
2 into Fm

2 . A zero-sum for F of size
K is a subset {x1, . . . , xK} ⊂ F

n
2 of elements which sum to zero and for which

the corresponding images by F also sum to zero, i.e.,

K∑
i=1

xi =
K∑

i=1

F (xi) = 0 .

2.1 Zero-Sums and Codewords in a Linear Code

We use standard notation of the algebraic coding theory (see [18]). A binary
linear code of length n and dimension k, denoted by [n, k], is a k-dimensional
subspace of Fn

2 . It can then be defined by a k × n binary matrix G, named
generator matrix for C: C = {xG, x ∈ Fk

2}. Any [n, k]-linear code C is associated
with its dual [n, n−k]-code, denoted by C⊥ and defined by C⊥ = {x ∈ Fn

2 , x·c =
0 for all c ∈ C}.

Zero-Sum Distinguishers for Iterated Permutations 3

Let (xi, 0 ≤ i < 2n) denote the set of all elements in Fn
2 . To any function

F : Fn
2 → Fm

2 , we associate the linear code CF of length 2n and dimension n+m
defined by the generator matrix

GF =
(

x0 x1 x2 x3 . . . x2n−1
F (x0) F (x1) F (x2) F (x3) . . . F (x2n−1)

)
,

where each entry is viewed as a binary column vector. Then, we get the following
result.

Proposition 1. Let F be a function from F
n
2 into F

m
2 .

The set of inputs {xi1 , . . . , xiK} ⊂ Fn
2 is a zero-sum for F if and only if the

codeword of Hamming weight K with support {i1, . . . , iK} belongs to the dual
code C⊥

F . Most notably, when m = n, we deduce that

– there exists at least one zero-sum of size 5 for F ;
– F has no zero-sum of size less than or equal to 4 if and only if F is an almost

perfect nonlinear permutation, i.e., if maxa,b�=0 #{x ∈ Fn
2 , F (x+a)+F (x) =

b} = 2.

Proof. Clearly, a binary vector (c0, . . . , c2n−1) belongs to C⊥
F if and only if

2n−1∑
i=0

cixi = 0 and
2n−1∑
i=0

ciF (xi) = 0 .

This equivalently means that the support of c, i.e., {i, ci = 1}, defines a zero-
sum for F . Moreover, the size of the zero-sum corresponds to the Hamming
weight of the codeword. For m = n, C⊥

F is a linear code of length 2n and dimen-
sion 2n − 2n. It is known that the minimum distance for such a linear code with
these parameters cannot exceed 5 [6,11], implying that F has some zero-sums of
size 5. The correspondence between the APN property and the fact that C⊥

F has
minimum distance 5 has been established in [9]. Since the smallest possible size
for a non-trivial zero-sum is 3, F has some zero-sums of size 3 or 4 if and only
if F is not APN. ��
When F is a randomly chosen function from Fn

2 into Fn
2 , it is clear that any subset

of size K is a zero-sum with probability 2−2n. Therefore, random functions have
many zero-sums of size K ≥ 5 and there exist efficient generic algorithms for
finding zero-sums. For instance, the generalized birthday algorithm [19] finds a
zero-sum of size 2κ with complexity

O
(
2

2n
κ+1+κ

)
,

which corresponds to the 2
2n

κ+1+κ evaluations of F required for building the
2κ initial lists of size 2

2n
κ+1 . When the size of the zero-sum, K, is larger than

2n, the previous generic algorithm can be improved by the XHASH attack [3],
as pointed out in [5,1]: the complexity of this improved algorithm essentially

4 C. Boura and A. Canteaut

corresponds to K evaluations of F , while the generalized birthday algorithm
behaves similarly only for K ≥ 2

√
2n. It is worth noticing that the information

set decoding algorithm (and its variants [7]) can also be used for solving this
problem and improve the previous algorithm when the size of the zero-sum is
very small [12], but all these methods take as input a generator matrix for the
code and then require a complete evaluation of F .

There is a trivial case where zero-sums can be easily found: any affine subspace
of dimension deg(F)+1 is a zero-sum for F , leading to a distinguishing property
when deg(F) ≤ n− 1 (resp. deg(F) ≤ n− 2 if F is a permutation)1. These zero-
sums exactly correspond to the minimum-weight codewords of R(n, n−deg(F)−
1) ⊂ C⊥

F , where R(n, r) denotes the Reed-Muller code of length 2n and order r,
i.e., the set of all Boolean functions of n variables and degree at most r. This is
because CF ⊂ R(n, deg(F)) and the dual of R(n, r) is R(n, n − r − 1).

2.2 Zero-Sum Partitions

However, in the case where F is a permutation over Fn
2 , the minimum-weight

codewords of R(n, n − deg(F) − 1) correspond to zero-sums with an additional
property: any coset of such a zero-sum is still a zero-sum. This leads to a much
stronger property, named zero-sum partition.

Definition 2. Let P be a permutation from Fn
2 into Fn

2 . A zero-sum parti-
tion for P of size K = 2k is a collection of 2n−k disjoint zero-sums Xi =
{xi,1, . . . , xi,2k} ⊂ Fn

2 , i.e.,

2n−k⋃
i=1

Xi = F
n
2 and

2k∑
j=1

xi,j =
2k∑

j=1

P (xi,j) = 0, ∀1 ≤ i ≤ 2n−k .

A generic algorithm for finding a zero-sum partition of size 2κ, with 2κ ≥ 2n,
consists in iteratively applying the XHASH attack as follows: we first apply this
method for finding a zero-sum of size 2n−1, which defines a zero-sum partition
of Fn

2 . Then, within both resulting sets of size 2n−1, the same technique is ap-
plied for finding a zero-sum of size 2n−2. And the algorithm is iterated until a
decomposition into zero-sums of size 2κ is found. With this algorithm, we need
to evaluate the permutation at all points except the last 2κ − 2n points. Besides
these evaluations of the permutation, the complexity of the algorithm can be
approximated by

(
(2n)3(2n−κ − 1)

)
, leading to an overall complexity of roughly(

2n + 2n−κ(2n)3 − 2κ
)
.

It clearly appears that, for a randomly chosen permutation, the description
of the zero-sums found by such a generic algorithm requires the evaluation of
the permutation at almost all points since the searching technique is not de-
terministic. This makes a huge difference with zero-sum partitions coming from

1 In this paper, the degree of a Boolean function corresponds to the degree of its

algebraic normal form. Moreover, the degree of a vectorial function F : F
n
2 → F

m
2 is

defined as the highest degree of its coordinates.

Zero-Sum Distinguishers for Iterated Permutations 5

a structural property of the permutation, which can be described by means of
some close formula. Note that, structural zero-sums like those described in this
paper can be used for proving that some given permutations do not satisfy the
expected property, and this may only require the evaluation of the permutation
on a few sets Xi.

3 Exploiting the Degree of the Nonlinear Part

In the rest of the paper we focus on the search for zero-sum partitions coming
from structural properties of the permutation P , when P is an iterated permu-
tation of the form

P = Rr ◦ . . . ◦ R1,

where all Ri are simpler permutations over Fn
2 , named the round permutations.

In most practical cases, all Ri are derived from a unique keyed permutation for
r different choices of the parameter. The first weakness which has been exploited
in [2] for constructing zero-sum partitions for some iterated permutations is the
low algebraic degrees of the round permutation and of its inverse.

3.1 Zero-Sum Partitions from Higher-Order Derivatives

As previously mentioned, the algebraic degree of a permutation F provides some
particular zero-sums, which correspond to all affine subspaces of Fn

2 with dimen-
sion (deg(F)+1). This result comes from the following property of higher-order
derivatives of a function.

Definition 3. [17] Let F be a function from Fn
2 into Fm

2 . For any a ∈ Fn
2 the

derivative of F with respect to a is the function DaF (x) = F (x+ a)+F (x). For
any k-dimensional subspace V of Fn

2 , the k-th order derivative of F with respect
to V is the function defined by

DV F (x) = Da1Da2 . . .Dak
F (x) =

∑
v∈V

F (x + v), ∀x ∈ F
n
2 .

It is well-known that the degree of any first-order derivative of a function is
strictly less than the degree of the function. This simple remark, which is also
exploited in higher-order differential attacks [13], implies that for every subspace
V of dimension (deg F + 1),

DV F (x) =
∑
v∈V

F (x + v) = 0, for every x ∈ F
n
2 .

The fact that the permutation used in a hash function does not depend on
any secret parameter allows to exploit the previous property starting from the
middle, i.e., from an intermediate internal state. This property was used by
Aumasson and Meier [2] and also by Knudsen and Rijmen in the case of a
known-key property of a block cipher [14]. The only information needed for

6 C. Boura and A. Canteaut

finding such zero-sums on the iterated permutation using this first approach is
an upper bound on the algebraic degrees of both the round transformation and
its inverse.

More precisely, we consider P = Rr ◦ . . . ◦ R1, and we choose some integer t,
1 ≤ t ≤ r. We define the following functions involved in the decomposition of P :
Fr−t consists of the last (r−t) round transformations, i.e., Fr−t = Rr ◦ . . .◦Rt+1
and Gt consists of the inverse of the first t round transformations, i.e., Gt =
R−1

1 ◦ . . . ◦ R−1
t . Then, we can find many zero-sum partitions for P by the

technique introduced in [2] and described in the following proposition.

Proposition 2. Let d1 and d2 be such that deg(Fr−t) ≤ d1 and deg(Gt) ≤ d2.
Let V be any subspace of Fn

2 of dimension d + 1 where d = max(d1, d2), and let
W denote the complement of V , i.e., V ⊕ W = Fn

2 . Then, the sets

Xa = {Gt(a + z), z ∈ V }, a ∈ W

form a zero-sum partition of F
n
2 of size 2d+1 for the r-round permutation P .

Proof. Let a be any element in W . First, we prove that all input states x ∈ Xa

sum to zero: ∑
x∈Xa

x =
∑
z∈V

Gt(a + z) = DV Gt(a)

which is the value of a derivative of order (d+1) of a function with degree d2 ≤ d
and thus it vanishes. Now, the images of these input states under P correspond
to the images of the intermediate states z under Fr−t. Similarly, we have∑

x∈Xa

P (x) =
∑
z∈V

Fr−t(a + z) = DV Fr−t(a)

which is the value of a derivative of order (d + 1) of a function of degree less
than d. Thus, this sum vanishes, implying that each Xa is a zero-sum. Since all
Xa are the images of disjoint sets by the permutation Gt, they are all disjoint
and then they form a partition of Fn

2 . ��
The permutations studied in [2] consist in iterating a low-degree round transfor-
mation. Then, the zero-sum partitions described in [2] are obtained by choosing
for V a subspace spanned by (d + 1) elements of the canonical basis, where
d = max(deg(Fr−t), deg(Gt)).

3.2 An Improved Bound on the Degree Based on the Walsh
Spectrum

It clearly appears from the description of the previous method that we are in-
terested in estimating the degree of a composed permutation and of its inverse.
If F and G are two mappings from Fn

2 into Fn
2 , we can bound the degree of the

composition G ◦ F by deg(G ◦ F) ≤ deg(G)deg(F). Though, this trivial bound
is often very little representative of the real degree of the permutation, in par-
ticular if we are trying to estimate the degree after a high number of rounds. In

Zero-Sum Distinguishers for Iterated Permutations 7

some special cases, exploring the spectral properties of the permutation can lead
to a better upper bound. In particular, it was shown by Canteaut and Videau [8]
that the trivial bound can be improved when the values occurring in the Walsh
spectrum of F are divisible by a high power of 2.

The Walsh spectrum of a vectorial function F : Fn
2 → Fn

2 consists of the Walsh
spectra of all nonzero linear combinations of its coordinates:{ ∑

x∈F
n
2

(−1)b·F (x)+a·x, b ∈ F
n
2 \ {0}, a ∈ F

n
2

}
,

where x ·y denotes the dot product between two vectors x and y. The divisibility
by a large power of 2 of all elements in the Walsh spectrum of F may provide
an upper bound on the degree of G ◦ F .

Theorem 1. [8] Let F be a function from Fn
2 into Fn

2 such that all values in its
Walsh spectrum are divisible by 2�, for some integer �. Then, for any G : Fn

2 →
Fn

2 , we have
deg(G ◦ F) ≤ n − � + deg(G).

From now on, we focus on a very common case where the Walsh spectrum of
the round permutation is divisible by a large power of 2 and when its nonlinear
part, denoted by χ, consists of n/n0 parallel applications of a small permutation
χ0 over F

n0
2 . In this situation, any n-bit vector is seen as a collection of nr =

n/n0 rows, where each row is an element in F
n0
2 . Then, χ applies on each row

separately. For implementation reasons, this situation occurs for many iterated
permutations used in cryptography. Then, since the Walsh spectrum is invariant
under composition with a linear transformation, for any α ∈ Fn

2 , there exists
some β such that

F(R + ϕα) = F(χ + ϕβ) =
nr∏
i=1

F(χ0 + ϕβi) . (1)

Then, if all elements in the Walsh spectrum of χ0 are divisible by 2�0 , we deduce
that the Walsh spectrum of the round transformation is divisible by 2nr�0 .

4 Exploiting the Structure of the Diffusion Part

Besides the degree of the round transformation, a second element can be ex-
ploited for constructing zero-sum partitions, similarly to the techniques used for
mounting saturation attacks. Indeed, the fact that χ consists of many paral-
lel applications of a smaller function can be used for extending the previously
described zero-sum partitions to one additional round. Moreover, we can also
exploit the fact that a few iterations of the round permutation R are not enough
for providing full diffusion. This leads to some multiset properties for a small
number of rounds.

8 C. Boura and A. Canteaut

In the following, we denote by Bi, 0 ≤ i < nr, the n0-dimensional subspaces
corresponding to the rows, i.e.,

Bi = 〈en0i, . . . , en0i+n0−1〉
where e0, . . . , en−1 denotes the canonical basis of Fn

2 and where the positions of
the n bits in the internal state are numbered such that the n0-bit rows correspond
to n0 consecutive bits.

4.1 One-Round Multiset Property

First, we show how to extend a number of zero-sum partitions that have been
found for t rounds, to t+1 rounds, without increasing the complexity. The idea is
the following: the zero-sum partition described in Proposition 2 is obtained from
a set of intermediate states after t rounds, which is a coset of a (d+1)-dimensional
subspace V . Moreover, such a zero-sum partition is obtained for any choice of V .
However, we now focus on those subspaces V which correspond to a collection
of any

⌈
(d + 1)/n0

⌉
rows: V =

⊕
i∈I Bi, for some set I ⊂ {0, . . . , nr} of size⌈

(d+1)/n0
⌉
. Since χ applies to the rows separately, variables from different rows

are not mixed after the application of χ. This implies that χ(a+V) = b+V , for
some b. Then, we can find some zero-sum partitions of size 2d+1 for the r-round
permutation P as follows.

Proposition 3. Let d1 and d2 be such that deg(Fr−t−1) ≤ d1 and deg(Gt) ≤ d2.
Let us decompose the round transformation after t rounds into Rt+1 = A2◦χ◦A1
where both A1 and A2 have degree 1. Let I be any subset of {0, . . . , nr − 1} of
size

⌈
(d + 1)/n0

⌉
,

V =
⊕
i∈I

Bi

and W be its complement. Then, the sets

Xa = {(Gt ◦ A−1
1)(a + z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2k, with k = n0

⌈
d+1
n0

⌉
, for the r-round

permutation P .

Proof. For any a, the sum of all input states in Xa is given by∑
x∈Xa

x =
∑
z∈V

Gt ◦ A−1
1 (a + z) = DV (Gt ◦ A−1

1)(a) = 0

since deg(Gt ◦ A−1
1) = deg(Gt) ≤ d. Using that χ(a + V) = b + V , we obtain

that the sum of the corresponding outputs satisfies∑
x∈Xa

P (x) =
∑
z∈V

Fr−t−1 ◦ A2 ◦ χ(a + z) =
∑
z∈V

Fr−t−1 ◦ A2(b + z)

= DV (Fr−t−1 ◦ A2)(b) = 0

since deg(Fr−t−1 ◦ A2) = deg(Fr−t−1) ≤ d. ��

Zero-Sum Distinguishers for Iterated Permutations 9

4.2 Multiset Property on Several Rounds

Now, we consider some multiset properties on several rounds which arise both
from the particular structure of the round transformation and from the linear
part, and we show how they can be exploited to further extend the already known
zero-sum partitions to more rounds. For the sake of clarity, we first describe a
2-round multiset property for Rounds (t + 1) and (t + 2). We decompose those
two rounds into

Rt+2 ◦ Rt+1 = A2 ◦ χ ◦ A ◦ χ ◦ A1

where A1, A2 and A have degree 1.

Theorem 2. Let d1 and d2 be such that deg(Fr−t−2) ≤ d1 and deg(Gt) ≤
d2. Let L denote the linear part of the affine permutation A. Let W be a k-
dimensional subspace of Fn

2 satisfying both following conditions

(i) there exists a set I ⊂ {0, . . . , nr − 1} such that

W ⊂
⊕
i∈I

Bi and |I| ≤ nr −
⌈d2 + 1

n0

⌉
.

(ii) there exists a set J ⊂ {0, . . . , nr − 1} such that

L(W) ⊂
⊕
j∈J

Bj and |J | ≤ nr −
⌈d1 + 1

n0

⌉
.

Let V denote the complement of W . Then, the sets

Xa = {(Gt ◦ A−1
1 ◦ χ−1)(a + z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2n−k for the r-round permutation P .

Proof. The definition of the sets Xa means that we choose the intermediate states
z after the nonlinear layer in Rt+1 in a coset of V . The required properties on
W imply that there exist two subspaces Bb and Bf such that

Bb =
⊕
i∈I

Bi ⊂ V and Bf =
⊕
j∈J

Bj ⊂ L(V)

with I = {0, . . . , nr − 1} \ I and J = {0, . . . , nr − 1} \J , where the last relation
comes from the fact that L(V) and L(W) are complementary. From the second
property, we deduce that A(V) can be seen as a union of cosets of Bf :

A(V) =
⋃
b∈E

(b + Bf) ,

where E is a subset of F
n
2 . Moreover, the same property holds for the image by

A of any coset of V . Then, since χ applies to the rows separately, variables from
different rows are not mixed after the application of χ. This implies that

χ(A(V)) =
⋃

b∈E′
(b + Bf) ,

10 C. Boura and A. Canteaut

where E ′ is another subset of Fn
2 . By definition, the images by P of all elements

in Xa correspond to the images of a+ z, z ∈ V , by Fr−t−2 ◦A2 ◦χ◦A. It follows
that their sum is given by∑

z∈V

Fr−t−2 ◦ A2 ◦ χ ◦ A(a + z) =
∑
b∈E′

∑
x∈Bf

(Fr−t−2 ◦ A2)(b + x)

=
∑
b∈E′

DBf
(Fr−t−2 ◦ A2)(b) = 0 .

Actually, this derivative vanishes since

dim Bf ≥ n − n0|J | > d1 .

Now, we compute backwards the images of a + V by Gt ◦ A−1
1 ◦ χ−1. Since V

satisfies Bb ⊂ V , it can be written as a union of cosets of Bb. As χ−1 does not
mix the rows, we deduce that

χ−1(a + V) =
⋃

b∈E′′
(b + Bb) ,

for some set E ′′ ⊂ Fn
2 . Then, the sum of the corresponding input states x ∈ Xa

is given by∑
x∈Xa

x =
∑
z∈V

(Gt ◦ A−1
1 ◦ χ−1)(a + z) =

∑
b∈E′′

∑
x∈Bb

(Gt ◦ A−1
1)(b + x)

=
∑
b∈E′′

DBb
(Gt ◦ A−1

1)(b) = 0 .

Actually, this derivative vanishes since

dim Bb ≥ n − n0|I| > d2 .

��

Figure 1 summarizes the steps of our method.

χ−1 A F r−t ◦ A2

Bb ⊂ V
⋃

(b + Bf)
⋃

(b′ + Bf)
⋃

(b + Bb)

χGt ◦ A−1
1

Fig. 1. General method with a 2-round multiset property

Zero-Sum Distinguishers for Iterated Permutations 11

Remark 1. There is a simple necessary condition on the existence of some W as
in the previous theorem. We define the weight of any x ∈ Fn

2 with respect to
the decomposition into rows, Hw(x), as the number of rows on which x does not
vanish. Then, a subspace W defined as in the previous theorem satisfies

∀x ∈ W, Hw(x) ≤ nr −
⌈d2 + 1

n0

⌉
and Hw(L(x)) ≤ nr −

⌈d1 + 1
n0

⌉
. (2)

Obviously, this condition is also sufficient when dim W = 1. In particular, the
search for zero-sum partitions by the method described in Theorem 2 can be
avoided by choosing for the linear part of the round transformation a function
L such that

min
x �=0

(Hw(x) + Hw(L(x))) > 2nr −
⌈d1 + 1

n0

⌉
−
⌈d2 + 1

n0

⌉
.

Now, we can obviously use a similar property of the diffusion not only for
2 rounds of the round transformation, but for a higher number of rounds.

Theorem 3. Let d1 and d2 be such that deg(Fr−t−2) ≤ d1 and deg(Gt) ≤
d2. Let L denote the linear part of the affine permutation A. Let W be a k-
dimensional subspace of F

n
2 satisfying all following conditions for two nonzero

integers sb and sf :

(i) there exists a set I1 ⊂ {0, . . . , nr − 1} such that

W ⊂
⊕
i∈I1

Bi and |I1| ≤ nr −
⌈d2 + 1

n0

⌉
.

(ii) there exists a set J1 ⊂ {0, . . . , nr − 1} such that

L(W) ⊂
⊕
j∈J1

Bj and |J1| ≤ nr −
⌈d1 + 1

n0

⌉
.

(iii) for all s, 1 ≤ s < sf , there exists a set Js+1 ⊂ {0, . . . , nr − 1} such that

L

⎛
⎝⊕

j∈Js

Bj

⎞
⎠ ⊂

⊕
j∈Js+1

Bj and |Jsf
| ≤ nr −

⌈d1 + 1
n0

⌉
.

(iv) for all s, 1 ≤ s < sb, there exists a set Is+1 ⊂ {0, . . . , nr − 1} such that

L−1

⎛
⎝⊕

j∈Is

Bj

⎞
⎠ ⊂

⊕
j∈Is+1

Bj and |Isb
| ≤ nr −

⌈d2 + 1
n0

⌉
.

Let V denote the complement of W . Then, the sets

Xa = {(Gt ◦ A−1
1 ◦ (χ−1 ◦ A−1)sb−1 ◦ χ−1)(a + z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2n−k for the (r + sb + sf − 2)-round

permutation P .

12 C. Boura and A. Canteaut

It is worth noticing that there is no requirement on the sizes of the intermedi-
ate states I2, . . . , Isb−1 and J2, . . . ,Jfb−1. However, by definition, the conditions
on the sizes of Isb

and Isf
obviously imply that the same bounds hold for the

corresponding intermediate sets.

5 Application to the Keccak-f Permutation
5.1 The Keccak-f Permutation

Keccak [4] is one of the fourteen hash functions selected for the second round
of the SHA-3 competition. Its mode of operation is the sponge construction.
The inner primitive in Keccak is a permutation, composed of several iterations
of very similar round transformations. Within the Keccak-family, the SHA-3
candidate operates on a 1600-bit state, which is represented by a 3-dimensional
binary matrix of size 5 × 5 × 64. Then, the state can be seen as 64 parallel
slices, each one containing 5 rows and 5 columns. The permutation in Keccak
is denoted by Keccak-f [b], where b is the size of the state. So, for the SHA-3
candidate, b = 1600.

The number of rounds in Keccak-f [1600] was 18 in the original submission,
and it has been updated to 24 for the second round. Every round R consists of
a sequence of 5 permutations modifying the state:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

The functions θ, ρ, π, ι are transformations of degree 1 providing diffusion in all
directions of the 3-dimensional state. Then, keeping the same notation as in the
previous section, we have A1 = π ◦ ρ ◦ θ, which is linear and A2 = ι, which
corresponds to the addition of a constant value. Therefore, the linear part of
A = A1 ◦A2 corresponds to L = π ◦ ρ ◦ θ. The nonlinear layer, χ, is a quadratic
permutation which is applied to each row of the 1600-bit state. In other words,
320 parallel applications of χ0 are implemented in order to provide confusion.
The inverse permutation, denoted by χ−1, is a permutation of degree 3.

We need to define a numbering for the n = 1600 bits of the internal state of
Keccak-f . We associate to the bit of the state positioned at the intersection of
the i-th row and the j-th column of the k-th slice, i.e., to the element (i, j, k),
0 ≤ i ≤ 4, 0 ≤ j ≤ 4, 0 ≤ k ≤ 63, the number 25k + 5j + i. We recall that the
elements of the form (0, 0, z) are found in the center of each slice. Then, the 5-
dimensional subspace corresponding to the j-th row in the k-th slice, 0 ≤ j ≤ 4,
0 ≤ k ≤ 63, is defined by

B5k+j = 〈e25k+5j , e25k+5j+1, e25k+5j+2, e25k+5j+3, e25k+5j+4〉.
Aumasson and Meier [2] used the trivial bound on the degree of a composed
function in order to find many zero-sum partitions for 16 rounds of the Keccak-
f permutation. Actually, the degree of the permutation after 10 rounds is at most
210 = 1024 and the degree of the inverse after 6 rounds is at most 36 = 729.
Thus, they choose the intermediate states after t = 6 rounds in a coset of a
subspace V of dimension 1025 and compute 6 rounds backwards. This method
leads to many zero-sum partitions of size 21025.

Zero-Sum Distinguishers for Iterated Permutations 13

5.2 Zero-Sum Partitions for 18 Rounds of Keccak-f

We first show that the degree of 7 rounds of the inverse Keccak-f permutation
cannot exceed 1369 and thus is much lower than the estimation given by the
trivial bound min(37 = 2187, 1599). Actually, all elements in the Walsh spectrum
of the nonlinear permutation χ0 are divisible by 23. Since the Walsh spectra
of a permutation and of its inverse are the same, we deduce that the Walsh
spectrum of χ−1

0 is also divisible by 23. It is worth noticing that 2
n+1
2 is the

lowest possible divisibility for the Walsh spectrum of a quadratic permutation
of Fn

2 , n odd. Then, the fact that the Walsh spectrum of χ−1
0 is divisible by 23

holds for any other choice for the quadratic permutation χ0 over F
5
2. There

are nr = 320 parallel applications of χ0. Then, we deduce from (1) that the
Walsh spectra of R and R−1 applied on the whole 1600-bit state are divisible
by 23×320 = 2960. Using that 6 rounds of the inverse of the round permutation
have degree at most 36 = 729, Theorem 1 leads to

deg(R−7) = deg(R−6 ◦ R−1) ≤ 1600 − 960 + deg(R−6) ≤ 1369 .

This new bound allows us to find zero-sum partitions for 17 rounds of the per-
mutation, by choosing the intermediate states after t = 7 rounds in the cosets of
a subspace V of dimension 1370 and by computing 7 rounds backwards. More-
over, we can apply Proposition 3 with t = 7: by choosing V =

⊕
i∈I Bi where I

is any collection of 274 rows, we can find some zero-sum partitions of size 21370

for 18 rounds of Keccak-f .

5.3 Zero-Sum Partitions for 19 Rounds of Keccak-f

Now, we apply Theorem 2 with t = 7 to 19 rounds of Keccak-f . As previously
explained, Fr−t−2 = F10 has degree at most 1024 and Gt = G7 has degree at
most 1369. We then need to find a subspace W such that there exist two sets of
rows, I,J ⊂ {0, . . . , nr − 1} satisfying

W ⊂
⊕
i∈I

Bi with |I| ≤ 46 and L(W) ⊂
⊕
j∈J

Bj with |J | ≤ 115 .

Here, we take for W the subspace spanned by the first 4 slices, i.e., W =⊕19
i=0 Bi. Then, we can check that there exists a subset J of size 114 such

that L(W) ⊂ ⊕
j∈J Bj , implying that the second condition is satisfied. The

first condition obviously holds by definition of W . Since dim W = 5× 20 = 100,
we deduce from Theorem 2 that we have found a zero-sum partition of size 21500

for 19 rounds of Keccak-f . It is worth noticing that the previous situation oc-
curs when W is the subspace spanned by any 4 consecutive slices. Actually, all
the step-mappings in the Keccak-f round permutation except ι are translation
invariant in the z axis direction. Therefore, we obtain 64 zero-sum partitions of
this type for the 19-round Keccak-f .

Though, we can further improve the complexity of the 19-round distinguisher
by increasing the dimension of W , without at the same time increasing the

14 C. Boura and A. Canteaut

cardinality of J , where L(W) ⊂ ⊕
j∈J Bj . In order to achieve this, we add to

W a number of linearly independent vectors whose images by L lie in
⊕

j∈J Bj

for the set J as before. The new considered subspace W is generated by the
rows 0, . . . , 19 and by the following 39 linearly independent vectors.

e450 ⊕ e460, e450 ⊕ e465, e451 ⊕ e461, e451 ⊕ e466, e464 ⊕ e469,
e475 ⊕ e485, e475 ⊕ e490, e476 ⊕ e486, e476 ⊕ e491, e478 ⊕ e498,
e489 ⊕ e494, e650 ⊕ e660, e650 ⊕ e665, e651 ⊕ e666, e652 ⊕ e662,
e659 ⊕ e664, e662 ⊕ e672, e667 ⊕ e672, e668 ⊕ e673, e1100 ⊕ e1110,
e1102 ⊕ e1112, e1102 ⊕ e1117, e1103 ⊕ e1113, e1103 ⊕ e1118, e1105 ⊕ e1110,
e1106 ⊕ e1116, e1125 ⊕ e1135, e1127 ⊕ e1137, e1127 ⊕ e1142, e1138 ⊕ e1143,
e1150 ⊕ e1160, e1152 ⊕ e1162, e1162 ⊕ e1167, e1163 ⊕ e1168, e1175 ⊕ e1180,
e1175 ⊕ e1185, e1175 ⊕ e1190, e1177 ⊕ e1187, e1188 ⊕ e1193.

These 39 elements correspond to words whose support belongs to a single column
and that have a Hamming weight of 2. Actually, any word X with support
belonging to a single column and having even weight satisfies θ(X) = X . Then,
if X is a word of this type, the weight of L(X), with respect to our definition in
Remark 1, is exactly 2. One can easily check that W ⊂ ⊕

i∈I Bi, with |I| = 46
and L(W) ⊂ ⊕

j∈J Bj , with |J | = 115. Since dim W = 5 × 20 + 39 = 139,
Theorem 2 leads to 64 new zero-sum partitions of size 21461 for 19 rounds of
Keccak-f .

5.4 Zero-Sum Partitions for 20 Rounds of Keccak-f

For finding a zero-sum partition for 20 rounds of Keccak-f , we now apply
Theorem 3 with sf = 2, i.e., we compute one additional step forwards. Then,
we need to find a subspace W such that there exist some sets of rows, I, J1 and
J2 with |I| ≤ 46 and |J2| ≤ 115 satisfying

W ⊂
⊕
i∈I

Bi, L(W) ⊂
⊕
j∈J1

Bj and L

⎛
⎝⊕

j∈J1

Bj

⎞
⎠ ⊂

⊕
j∈J2

Bj .

As previously mentioned, the image by L of 4 consecutive slices involves 114 rows
only. Then, we only have to find a subspace W such that the first condition holds
and that L(W) belongs to the union of 4 consecutive slices, namely slices s
to s + 3. For this search, we concentrate as before on the words with Hamming
weight 2 whose support belongs to a single column. We want to find all words
X of this form such that the two rows that are affected by L(X) are positioned
in at most two out of the four consecutive slices s to s+3, for a fixed s. For this,
we need to look at the translation offsets of ρ, which is the function translating
the bits in the z-direction. These offsets are given in Table 1(a). Let (x, y, z) and
(x, y′, z) be the coordinates of the two bits in the support of X . Let c1 and c2
be the offsets corresponding to the positions (x, y) and (x, y′). Then the image
of X by L will affect two slices at distance |c1 − c2|.

Zero-Sum Distinguishers for Iterated Permutations 15

Suppose that we can find two translation offsets in the same column of Ta-
ble 1(a) having a difference smaller than or equal to 3, namely c1 = Offset(x0, y1),
and c2 = Offset(x0, y2) with 0 ≤ (c2 − c1) ≤ 3. Then, the word in the slice
z0 = s − c1 mod 64 with support {(x0, y1, z0), (x0, y2, z0)} will have an image
belonging to the slices s and s + (c2 − c1). The appropriate pairs of translation
constants derived from Table 1(a) are given in Table 1(b).

Table 1. Finding appropriate pairs of translation constants

(a) The translation offsets of ρ for the

SHA-3 candidates.

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 43

y = 1 55 20 36 44 6

y = 0 28 27 0 1 62

y = 4 56 14 18 2 61

y = 3 21 8 41 45 15

(b) Appropriate pairs of off-

sets.

(y1, y2) (c1, c2) c2 − c1

x = 0 (0, 2) (0, 3) 3

x = 1 (0, 4) (1, 2) 1

(1, 3) (44, 45) 1

x = 2 (0, 4) (62, 61) 1

x = 3 (1, 4) (55, 56) 1

(0, 2) (28, 25) 3

By using this technique, we find the following subspace W of dimension 14:

W = 〈 e1 ⊕ e21, e25 ⊕ e35, e26 ⊕ e46, e51 ⊕ e71, e102 ⊕ e122,
e127 ⊕ e147, e152 ⊕ e172, e258 ⊕ e273, e283 ⊕ e298, e308 ⊕ e323,
e531 ⊕ e541, e556 ⊕ e566, e581 ⊕ e591, e1003 ⊕ e1013〉.

Clearly W ⊂ ⊕
i∈I Bi with |I| < 114 and we have computed that L(W) be-

longs to the union of the slices 1, 2, 3 and 4. Since dim W = 14 we deduce from
Theorem 2 that we have found a zero-sum partition of size 21586 for 20 rounds
of Keccak-f . As previously explained, there are 64 such zero-sum partitions,
obtained by translating the previous W in the z-direction.

6 Application to the Hamsi-256 Finalization Permutation

Hamsi [16] is another candidate among the fourteen functions selected for the
second round of the SHA-3 competition. It is based on a Davies-Meyer construc-
tion. It uses a finalization permutation Pf which operates on a 512-bit internal
state corresponding to the concatenation of the 256-bit chaining value and of a
256-bit codeword resulting from the expansion of the last 32-bit message block.
In Hamsi-256, Pf consists of 6 rounds of a round transformation R = L◦S, where
S corresponds to 128 parallel applications of a 4×4 Sbox of degree 3. Using that
three iterations of the round transformation have degree at most 33 = 27, Propo-
sition 2 leads to zero-sum partitions of size 228, as reported in [1]. However, our
techniques can be used for exhibiting zero-sum partitions of smaller size.

First, we define a numbering for the bits of the internal state. The j-th bit in
the word which lies in the k-th column and i-th row is numbered by 128k+4j+i,

16 C. Boura and A. Canteaut

where 0 ≤ j ≤ 31, 0 ≤ i ≤ 3 and 0 ≤ k ≤ 3. We also define the subspace Bi, 0 ≤
i < 128 spanned by a column of the internal state: Bi = 〈e4i, e4i+1, e4i+2, e4i+3〉
(the columns of the internal state play the same role as the rows in Keccak).

Here, we choose the intermediate state after t = 3 rounds of Pf into the
19-dimensional subspace

V =
16⊕

i=14

Bi ⊕ 〈e68, e237, e241, e245, e249, e507, e511〉 .

Then, we consider the sets Xa = {((R−1)2 ◦ S−1)(a + z), z ∈ V }. Actually, we
apply the same technique as in Theorem 2. Both V and S−1(V) can be seen as the
union of some cosets of B14⊕B15⊕B16. Since two iterations of R−1 have degree
at most 9, all elements in Xa sum to zero because dim(

⊕16
i=14 Bi) > 9. Moreover,

〈e0, e4, e8, e12〉 ⊂ L(V) and it has been observed in [1] that 3 rounds of R have
degree 3 with respect to the first four lsbs of the first word of the internal state.
Therefore, since L(V) can be seen as a union of cosets of Bf = 〈e0, e4, e8, e12〉,
and DBf

R3(x) = 0 for all x, we deduce that the images of all elements in Xa

under six rounds of R sum to zero. Many zero-sum partitions of size 219 can be
constructed by this method, since we only need that L(V) contains the subspace
spanned by the first four consecutive bits of any word in the internal state.

Also, zero-sum partitions of size 210 can be easily found for Pf . Consider any
10 elements in a 32-bit word of the state matrix after 3 rounds of the permutation
and fix the other bits of the state to an arbitrary value. Then 3 rounds of the
permutation applied to this state have degree at most 9. This is because there is
only one variable per active Sbox, so every bit after the first round will be a linear
function in the variables considered. But 3 rounds of the inverse permutation
applied to the state have also degree at most 9, as after the application of L−1

there will be variables only in one word per column, implying again at most one
active bit per Sbox.

7 Conclusions

We have found zero-sum distinguishers for the finalization permutation of Hamsi-
256 and for 20 rounds of Keccak-f , pointing out that these permutations do not
behave like random permutations. For Hamsi-256, this property does not seem
to lead to an attack on the hash function since the finalization permutation
only applies to the 2288 internal states, which can be obtained from the message
expansion. For Keccak reduced to 20 rounds (out of 24), even if the security
of the hash function is not affected, our results contradict the so-called hermetic
sponge strategy.

Acknowledgments. We would like to thank Christophe De Cannière for his valu-
able comments and especially for the indication of a better bound on the degree
of iterated permutations. This new bound improves in part the results on the
Keccak hash function, presented in this paper.

Zero-Sum Distinguishers for Iterated Permutations 17

References

1. Aumasson, J.-P., Käsper, E., Knudsen, L.R., Matusiewicz, K., Ødeg̊ard, R.,

Peyrin, T., Schläffer, M.: Distinguishers for the compression function and output

transformation of Hamsi-256. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.

LNCS, vol. 6168, pp. 87–103. Springer, Heidelberg (2010)

2. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and

for the core functions of Luffa and Hamsi. Presented at the rump session of

Cryptographic Hardware and Embedded Systems - CHES 2009 (2009)

3. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing:

Incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,

vol. 1233, pp. 163–192. Springer, Heidelberg (1997)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function

family main document. Submission to NIST (Round 2) (2009)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Note on zero-sum

distinguishers of Keccak-f . Public comment on the NIST Hash competition

(2010), http://keccak.noekeon.org/NoteZeroSum.pdf
6. Brouwer, A.E., Tolhuizen, L.M.G.M.: A sharpening of the Johnsson bound for

binary linear codes and the nonexistence of linear codes with Preparata parameters.

Designs, Codes and Cryptography 3(2), 95–98 (1993)

7. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words

in a linear code: application to primitive narrow-sense BCH codes of length 511.

IEEE Transactions on Information Theory 44(1), 367–378 (1998)

8. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions

and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.)

EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002)

9. Carlet,C.,Charpin,P.,Zinoviev,V.:Codes, bent functionsandpermutations suitable

for DES-like cryptosystems.Designs, Codes andCryptography 15(2), 125–156 (1998)

10. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.

(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. Dodunekov, S.M., Zinoviev,V.: Anote on Preparata codes. In: Proceedings of the 6th

Intern. Symp. on Information Theory, Moscow-Tashkent Part 2, pp. 78–80 (1984)

12. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based

cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.

88–105. Springer, Heidelberg (2009)

13. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE

1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

14. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:

Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,

Heidelberg (2007)

15. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.

(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

16. Küçük, O.: The Hash Function Hamsi. Submission to NIST (Round 2) (2009)

17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proc.

Symposium on Communication, Coding and Cryptography, in honor of J. L.

Massey on the occasion of his 60’th birthday, Kluwer Academic Publishers, Dor-

drecht (1994)

18. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes.

North-Holland, Amsterdam (1977)

19. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.

LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

http://keccak.noekeon.org/NoteZeroSum.pdf

Attacks on Hash Functions Based on Generalized
Feistel: Application to Reduced-Round

Lesamnta and SHAvite-3 512
�

Charles Bouillaguet1, Orr Dunkelman2,
Gaëan Leurent1, and Pierre-Alain Fouque1

1 École normale supérieure

{charles.bouillaguet,gaetan.leurent,pierre-alain.fouque}@ens.fr
2 Weizmann Institute of Science

orr.dunkelman@weizmann.ac.il

Abstract. In this paper we study the strength of two hash functions

which are based on Generalized Feistels. We describe a new kind of at-

tack based on a cancellation property in the round function. This new

technique allows to efficiently use the degrees of freedom available to at-

tack a hash function. Using the cancellation property, we can avoid the

non-linear parts of the round function, at the expense of some freedom

degrees.

Our attacks are mostly independent of the round function in use, and

can be applied to similar hash functions which share the same structure

but have different round functions. We start with a 22-round generic

attack on the structure of Lesamnta , and adapt it to the actual round

function to attack 24-round Lesamnta (the full function has 32 rounds).

We follow with an attack on 9-round SHAvite-3 512 which also works for

the tweaked version of SHAvite-3 512 .

1 Introduction

Many block ciphers and hash functions are based on generalized Feistel construc-
tions. In this paper we treat such generalized Feistel constructions and especially
concentrate on the case where an n-bit round function is used in a 4n-bit struc-
ture. Two of these constructions, shown at Figure 1,1 used in the Lesamnta and
the SHAvite-3 512 hash functions, are the main focus of this paper.

While in the ideal Luby-Rackoff case, the round functions are independent
random functions, in practice, most round functions F (k, x) are usually defined
as P (k ⊕ x), where P is a fixed permutation (or function). Hence, we introduce
several attacks which are based on cancellation property: if the fixed function
P accepts twice the same input, it produces twice the same output. In a hash

� The full version of this paper appears as IACR ePrint report 2009/634 [3].
1 Note that the direction of the rotation in the Feistel structure is not really important:

changing the rotation is equivalent to considering decryption instead of encryption.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 18–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Attacks on Hash Functions Based on Generalized Feistel 19

S T U V

S T U V
Ki

F

Lesamnta structure

VUTS

VUTS
Ki

K′
i

F ′ F

SHAvite-3 512 structure

Fig. 1. The Generalized Feistel Constructions Studied in this paper

function setting, as there is no secret key, the adversary may actually make sure
that the inputs are the same.

For Lesamnta we start with generic attacks that work independent of the ac-
tual P in use, but then use the specific properties of Lesamnta’s round functions
to offer better attacks. The attack on SHAvite-3 512 is a more complicated one, fol-
lowing the more complex round functions (and the structure which uses two func-
tions in each round), but at the same time, is of more interest as SHAvite-3 512
is still a SHA3 candidate.

1.1 Overview of the Attacks

Our attacks are based on a partial preimage attack, i.e. we can construct specific
inputs where part of the output H is equal to a target value H . To achieve
such a partial preimage attack, we use truncated differentials built with the
cancellation property, and we express the constraints needed on the state of
the Feistel network in order to have the cancellation with probability one. We
use degrees of freedom in the inputs of the compression function to satisfy those
constraints. Then, we can compute some part of the output as a function of some
of the remaining degrees of freedom, and try to invert the equation. The main
idea is to obtain a simple equation that can be easily inverted using cancellations
to limit the diffusion.

A partial preimage attack on the compression function allows to choose k bits
of the output for a cost of 2t (with t < k), while the remaining n − k bits are
random. We can use such an attack on the compression function to target the
hash function itself, in several scenarios.

Preimage Attacks. By repeating such an attack 2n−k times, we can obtain a
full preimage attack on the compression function, with complexity 2n+t−k. This
preimage attack on the compression function can be used for a second preim-
age attack on the hash function with complexity 2n+(t−k)/2 using a standard
unbalanced meet-in-the middle [8]. Note that 2n+(t−k)/2 < 2n if t < k.

Moreover, we point out that Lesamnta is built following the Matyas-Meyer-
Oseas construction, i.e. the chaining value is used as a key, and the message
enters the Feistel rounds. Since our partial preimage attack does not use degrees

20 C. Bouillaguet et al.

of freedom in the key (we only need the key to be known, not chosen), we can use
a chaining value reached from the IV as the key. We have to repeat the partial
preimage attack with many different keys in order to build a full preimage, but
we can use a first message block to randomize the key. This gives a second
preimage attack on the hash function with complexity 2t+n−k.

Collision Attacks. The partial preimage attack can also be used to find col-
lisions in the compression function. By generating 2(n−k)/2 inputs where k bits
of the output are fixed to a common value, we expect a collision thanks to
the birthday paradox. This collision attack on the compression function costs
2t+(n−k)/2. If t < k/2, this is more efficient than a generic birthday attack on
the compression function.

If the compression function is built with the Matyas-Meyer-Oseas mode, like
Lesamnta, this attack translates to a collision attack on the hash function with
the same complexity. However, if the compression function follows the Davies-
Meyer mode, like SHAvite-3 , this does not translate to an attack on the hash
function.

1.2 Our Results

The first candidate for the technique is the Lesamnta hash function. The best
known generic attack against this structure is a 16-round attack by Mendel
described in the submission document of Lesamnta [6]. Using a cancellation
property, we extend this attack to a generic attacks on 22-round Lesamnta. The
attack allows to fix one of the output words for an amortized cost of 1, which
gives collisions in time 23n/8 and second preimages in time 23n/4 for Lesamnta-n.
Moreover, the preimage attack can be extended to 24 rounds using 2n/4 mem-
ory. We follow with adaptations of the 24-round attacks without memory using
specific properties of Lesamnta’s round function.

The second target for our technique is the hash function SHAvite-3 512. We
show a 9-round attack using a cancellation property on the generalized Feistel
structure of SHAvite-3 512. The attack also works for the tweaked version of
SHAvite-3 512, and allows fixing one out of the four output words. This allows
a second preimage attack on 9-round SHAvite-3 512 that takes about 2448 time.
Note that this attack has recently been improved in a follow-up work [5]. First
a new technique was used to add one extra round at the beginning, leading
to attacks on 10 rounds of the compression function. Second, a pseudo-attack
against the full SHAvite-3 512 is described, using additional degrees of freedom in
the salt input. The follow-up work has been published first because of calendar
issues, but it is heavily based on this work which was available as a preprint to
the authors of [5]. Moreover, in this paper, we describe a more efficient way to
find a suitable key for the attack, which improves the 10-round attack of [5].

In the full version of this paper, we also show some applications to block ci-
phers, with an integral attack on 21 rounds of the inner block cipher of Lesamnta,
and a new truncated differential for SMS4 .

Attacks on Hash Functions Based on Generalized Feistel 21

Table 1. Cancellation property on Lesamnta
On the left side, we have full diffusion after 9 rounds. On the right side, we use the

cancellation property to control the diffusion of the differences.

i Si Ti Ui Vi Si Ti Ui Vi

0 x - - - x - - -

1 - x - - - x - -

2 - - x - - - x -

3 y1 - - x x → y1 y - - x x → y
4 x y1 - - x y - -

5 - x y1 - - x y -

6 z - x y1 y1 → z z - x y y → z
7 y′ z - x x → y2, y′ = y1 ⊕ y2 - z - x x → y
8 x y′ z - x - z -

9 w x y′ z z → w w x - z z → w

The paper is organized as follows. Section 2 explains the basic idea of our
cancellation attacks. Our results on Lesamnta are presented in Section 3, while
application to SHAvite-3 512 is discussed in Section 4. These results are summa-
rized in Tables 9 and 10.

2 The Cancellation Property

In this paper we apply cancellation cryptanalysis to generalized Feistel schemes.
The main idea of this technique is to impose constraints on the values of the state
in order to limit the diffusion in the Feistel structure. When attacking a hash
function, we have many degrees of freedom from the message and the chaining
value, and it is important to find efficient ways to use those degrees of freedom.

Table 1 shows the diffusion of a single difference in Lesamnta. After 9 rounds,
all the state words are active. However, we note that if the transitions x → y1
at rounds 3 and x → y2 at round 7 actually go to the same y, i.e. y1 = y2, this
limits the diffusion. In the ideal case, the round functions are all independent,
and the probability of getting the same output difference is very small. However,
in practice, the round functions are usually all derived from a single fixed per-
mutation (or function). Therefore, if we add some constraints so that the input
values of the fixed permutation at round 3 and 7 are the same, then we have
the same output values, and therefore the same output difference with proba-
bility one. This is the cancellation property. A similar property can be used in
SHAvite-3 512.

Our attacks use an important property of the Feistel schemes of Lesamnta and
SHAvite-3 512: the diffusion is relatively slow. When a difference is introduced in
the state, it takes several rounds to affect the full state and two different round
functions can receive the same input difference x. Note that the slow diffusion
of Lesamnta is the basis of a 16-round attack in [6] (recalled in Section 3.1), and

22 C. Bouillaguet et al.

the slow diffusion of SHAvite-3 512 gives a similar 8-round attack [4]. Our new
attacks can be seen as extensions of those.

We now describe how to enforce conditions of the state so as to have this
cancellation with probability 1. Our attacks are independent of the round func-
tion, as long as all the round functions are derived from a single function as
Fi(Xi) � F (Ki ⊕ Xi).

2.1 Generic Properties of Fi(Xi) = F (Ki ⊕ Xi)

We assume that the round functions Fi are built by applying a fixed permutation
(or function) F to Ki⊕Xi, where Ki is a round key and Xi is the state input. This
practice is common in many primitives like DES, SMS4 , GOST, or Lesamnta.

This implies the followings, for all i, j, k:

(i) ∃ci,j : ∀x, Fi(x ⊕ ci,j) = Fj(x).
(ii) ∀α, #

{
x : Fi(x) ⊕ Fj(x) = α

}
is even.

(iii)
⊕

x Fk

(
Fi(x) ⊕ Fj(x)

)
= 0.

Property (i) is the basis of our cancellation attack. We refer to it as the can-
cellation property. It states that if the inputs of two round functions are related
by a specific fixed difference, then the outputs of both rounds are equal. The
reminder of the paper is exploring this property.

Properties (ii) and (iii) can be used in an integral attack, as shown in the
full version [3]. Note that Property (ii) is a well known fact from differential
cryptanalysis.

Proof. (i) Set cij = Ki ⊕ Kj .
(ii) If Ki = Kj, then ∀x, Fi(x) ⊕ Fj(x) = 0. Otherwise, let x be such that

Fi(x)⊕Fj(x) = α. Then Fi(x⊕Ki⊕Kj)⊕Fj(x⊕Ki⊕Kj) = Fj(x)⊕Fi(x) =
α. Therefore x is in the set if and only if x ⊕ Ki ⊕ Kj is in the set, and all
the elements can be grouped in pairs.

(iii) Each term Fk(α) in the sum appears an even number of times, by (ii). ��

2.2 Using the Cancellation Property

To better explain the cancellation property, we describe how to use it with the
truncated differential of Table 1. In Table 2, we show the values of the registers
during the computation of the truncated differential, starting at round 2 with
(S2, T2, U2, V2) = (a, b, c, d). To use the cancellation property, we want to make
S7 independent of c. Since we have S7 = F6(F3(b) ⊕ c)⊕F2(c)⊕d, we can cancel
the highlighted terms using property (i). The dependency of S7 on c disappears
if F3(b) = K2 ⊕ K6, i.e. if b = F−1

3 (K2 ⊕ K6):

S7 = F6(F3(b) ⊕ c) ⊕ F2(c) ⊕ d = F (K6 ⊕ K2 ⊕ K6 ⊕ c) ⊕ F (K2 ⊕ c) ⊕ d = d.

Therefore, we can put any value c in U2, and it does not affect S7 as long as we
fix the value of T2 to be F−1(K2 ⊕ K6) ⊕ K3. Note that in a hash function, we

Attacks on Hash Functions Based on Generalized Feistel 23

Table 2. Values of the Registers for Five Rounds of Lesamnta

i Si Ti Ui Vi

2 a b c d
3 F2(c) ⊕ d a b c
4 F3(b) ⊕ c F2(c) ⊕ d a b
5 F4(a) ⊕ b F3(b) ⊕ c F2(c) ⊕ d a
6 F5(F2(c) ⊕ d) ⊕ a F4(a) ⊕ b F3(b) ⊕ c F2(c) ⊕ d
7 F6(F3(b) ⊕ c) ⊕ F2(c) ⊕ d F5(F2(c) ⊕ d) ⊕ a F4(a) ⊕ b F3(b) ⊕ c

can compute F−1(K2 ⊕K6)⊕K3 since the keys are known to the adversary (or
controlled by him), and we can choose to have this value in T2.

This shows the three main requirements of our cancellation attacks:

– The generalized Feistel structures we study have a relatively slow diffusion.
Therefore, the same difference can be used as the input difference of two
different round functions.

– The round functions are built from a fixed permutation (or a fixed function),
using a small round key. This differs from the ideal Luby-Rackoff case where
all round functions are chosen independently at random.

– In a hash function setting the key is known to the adversary, and he can
control some of the inner values.

Note that some of these requirements are not strictly necessary. For example, we
show a 21-round integral attack on Lesamnta, without knowing the keys in the
full version. Moreover, in Section 4 we show attacks on 9-round SHAvite-3 512,
where the round functions use more keying material.

3 Application to Lesamnta

Lesamnta is a hash function proposal by Hirose, Kuwakado, and Yoshida as a
candidate in the SHA-3 competition [6]. It is based on a 32-round unbalanced
Feistel scheme with four registers used in MMO mode. The key schedule is also
based on a similar Feistel scheme. The round function can be written as:

Si+1 = Vi ⊕ F (Ui ⊕ Ki) Ti+1 = Si Ui+1 = Ti Vi+1 = Ui

3.1 Previous Results on Lesamnta

The best known attack on Lesamnta is the self-similarity attack of [2]. Following
this attack, the designers have tweaked Lesamnta by changing the round con-
stants [10]. In this paper we consider attacks that work with any round constants,
and thus are applicable to the tweaked version as well.

24 C. Bouillaguet et al.

Several attacks on reduced-round Lesamnta are presented in the submission
document [6]. A series of 16-round attacks for collisions and (second) preimage
attacks are presented, all of which are based on a 16-round truncated differential
with probability 1.

In the next sections we show new attacks using the cancellation property. We
first show some attacks that are generic in F , as long as the round functions
are defined as Fi(Xi) = F (Ki ⊕ Xi), and then improved attacks using specific
properties of the round functions of Lesamnta.

3.2 Generic Attacks

Our attacks are based on the differential of Table 3, which is an extension of the
differential of Table 1. In this differential we use the cancellation property three
times to control the diffusion. Note that we do not have to specify the values of y,
z, w, r and t. This specifies a truncated differential for Lesamnta: starting from a
difference (x,−,−,−), we reach a difference (?, ?, ?, x1) after 22 rounds. In order
to use this truncated differential in our cancellation attack, we use two important
properties: first, by adding constraints on the state, the truncated differential is
followed with probability 1; second, the transition x → x1 is known because the
key and values are known. Therefore, we can actually adjust the value of the
last output word.

Table 3. Cancellation Property on 22 Rounds of Lesamnta

i Si Ti Ui Vi

0 x - - -

1 - x - -

2 - - x -

3 y - - x x → y
4 x y - -

5 - x y -

6 z - x y y → z
7 - z - x x → y
8 x - z -

9 w x - z z → w
10 z w x -

11 x1 z w x x → x1

12 r x1 z w w → x ⊕ r
13 - r x1 z z → w
14 ? - r x1

15 x1 + t ? - r r → t
16 r x1 + t ? -

17 ? r x1 + t ?

18 ? ? r x1 + t
19 x1 ? ? r r → t
20 ? x1 ? ?

21 ? ? x1 ?

22 ? ? ? x1

FF ? ? ? x1

In order to express the constraints that we need for the cancellation properties,
we look at the values of the registers for this truncated differential. In Table 4,
we begin at round 2 with (S2, T2, U2, V2) = (a, b, c, d), and we compute the state
values up to round 19. This is an extension of the values computed in Table 2.

We can see that we have S19 = F (c ⊕ α) ⊕ β, where α = K10 ⊕ F7(F4(a) ⊕
b) ⊕ F3(b) and β = d provided that (a, b, d) is the unique triplet satisfying the
following cancellation conditions:

Attacks on Hash Functions Based on Generalized Feistel 25

Round 7: we have F6(F3(b) ⊕ c) ⊕ F2(c). They cancel if:
F3(b) = c2,6 = K2 ⊕ K6 i.e. b = F−1

3 (K2 ⊕ K6)
Round 13: we have F12(F9(d) ⊕ F5(F2(c) ⊕ d) ⊕ a) ⊕ F8(F5(F2(c) ⊕ d) ⊕ a).

They cancel if:
F9(d) = c8,12 = K8 ⊕ K12 i.e. d = F−1

9 (K8 ⊕ K12)
Round 19: we have F18(F15(F4(a) ⊕ b) ⊕ S12) ⊕ F14(S12). They cancel if:

F15(F4(a) ⊕ b) = c14,18 = K14 ⊕ K18 i.e. a = F−1
4 (F−1

15 (K14 ⊕ K18) ⊕ b)

Note that a, b, d and α, β are uniquely determined from the subkeys. Hence, one
can set S19 to any desired value S∗

19 by setting c = F−1(S∗
19 ⊕ β) ⊕ α.

Table 4. Values of the Register for the 22-round Cancellation Property of Lesamnta .

Steps −5 to −2 will be used for the 24-round attacks.

i Si

−5 d ⊕ F0(c ⊕ F1(b ⊕ F2(a ⊕ F3(d))))

−4 c ⊕ F1(b ⊕ F2(a ⊕ F3(d)))

−3 b ⊕ F2(a ⊕ F3(d))

−2 a ⊕ F3(d)

−1 d
0 c
1 b
2 a
3 F2(c) ⊕ d
4 F3(b) ⊕ c
5 F4(a) ⊕ b
6 F5(F2(c) ⊕ d) ⊕ a
7 F6(F3(b) ⊕ c) ⊕ F2(c) ⊕ d
8 F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c
9 F8(F5(F2(c) ⊕ d) ⊕ a) ⊕ F4(a) ⊕ b
10 F9(d) ⊕ F5(F2(c) ⊕ d) ⊕ a
11 F10(F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c) ⊕ d
12 F11(F8(F5(F2(c) ⊕ d) ⊕ a) ⊕ F4(a) ⊕ b) ⊕ F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c
13 F12(F9(d) ⊕ F5(F2(c) ⊕ d) ⊕ a) ⊕ F8(F5(F2(c) ⊕ d) ⊕ a) ⊕ F4(a) ⊕ b
15 F14(S12) ⊕ F10(F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c) ⊕ d
16 F15(F4(a) ⊕ b) ⊕ S12

19 F18(F15(F4(a) ⊕ b) ⊕ S12) ⊕ F14(S12) ⊕ F10(F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c) ⊕ d

22-Round Attacks. The truncated differential of Table 3 can be used to at-
tack 22-round Lesamnta. We start with the state at round 2 (S2, T2, U2, V2) =
(a, b, c, d) satisfying the cancellation properties, and we can compute how the
various states depend on c, as shown in Table 5. A dash (-) is used to denote a
value that is independent of c. We know exactly how c affects the last output
word, and we can select c in order to get a specific value at the output. Suppose
we are given a set of subkeys, and a target value H for the fourth output word.
Then the attack proceeds as follows:

26 C. Bouillaguet et al.

Table 5. Collision and Preimage Characteristic for the 22-Round Attack

i Si Ti Ui Vi

0 c - - η
1 - c - -

2 - - c -

2–19 Repeated Cancellation Property: Table 4

19 F (c ⊕ α) ⊕ β ? ? ?

20 ? F (c ⊕ α) ⊕ β ? ?

21 ? ? F (c ⊕ α) ⊕ β ?

22 ? ? ? F (c ⊕ α) ⊕ β

FF ? ? ? η ⊕ F (c ⊕ α) ⊕ β

η, α and β can be computed from a, b, d and the key:

η = b ⊕ F0(a ⊕ F3(d)), α = K11 ⊕ F8(F5(a) ⊕ b) ⊕ F4(b), β = d.

1. Set a, b, and d to the values that allow the cancellation property.
Then we have V0 ⊕ V22 = η ⊕ F (c ⊕ α) ⊕ β, as shown in Table 5.

2. Compute c as F−1(H ⊕ η ⊕ β) ⊕ α.
3. This sets the state at round 2: (S2, T2, U2, V2) � (a, b, c, d).

With this state, we have V0 ⊕ V22 = H .
4. Compute the round function backwards up to round 0, to get the input.

This costs less than one compression function call, and does not require any
memory.

For a given chaining value (i.e. a set of subkeys), this algorithm can only
output one message. To build a full preimage attack or a collision attack on the
compression function, this has to be repeated with random chaining values. Since
the attack works for any chaining value, we can build attacks on the hash function
using a prefix block to randomize the chaining value. This gives a collision attack
with complexity 296 (2192 for Lesamnta-512), and a second-preimage attack with
complexity 2192 (2384 for Lesamnta-512).

24-Round Attacks. We can add two rounds at the beginning of the truncated
differential at the cost of some memory. The resulting 24-round differential is
given in Table 6. The output word we try to control is equal to F (c⊕γ)⊕F (c⊕α),
for some constants α, and γ that depend on the chaining value (note that β = λ
in Table 6). We define a family of functions hμ(x) = F (x) ⊕ F (x ⊕ μ), and for
a given target value H , we tabulate ϕH(μ) = h−1

μ (H). For each μ, ϕH(μ) is a
possibly empty set, but the average size is one (the non-empty values form a
partition of the input space). In the special case where H = 0, ϕ0(μ) is empty
for all μ �= 0, and ϕ0(0) is the full space.

Attacks on Hash Functions Based on Generalized Feistel 27

Table 6. Collision and Preimage Path for the 24-round Attack

i Si Ti Ui Vi

0 - - c ⊕ γ F (c ⊕ γ) ⊕ λ
1 - - - c ⊕ γ
2 c - - -

3 - c - -

4 - - c -

4–21 Repeated Cancellation Property: Table 4

21 F (c ⊕ α) ⊕ β ? ? ?

22 ? F (c ⊕ α) ⊕ β ? ?

23 ? ? F (c ⊕ α) ⊕ β ?

24 ? ? ? F (c ⊕ α) ⊕ β

α, β, γ and λ can be computed from a, b, d and the key by:

α = K13 ⊕ F10(F7(a) ⊕ b) ⊕ F6(b), β = d and

γ = F1(b ⊕ F2(a ⊕ F3(d))), λ = d

We store ϕH in a table of size 2n/4, and we can compute it in time 2n/4 by
looking for values such that F (x)⊕F (y) = H (this gives ϕH(x⊕ y) = x). Using
this table, we are able to choose one output word just like in the 22-round attack.

We start with a state (S4, T4, U4, V4) = (a, b, c, d) such that a, b, d satisfy the
cancellation conditions, and we compute α, β, γ, λ. If we use c = u ⊕ α, where
u ∈ ϕH(α ⊕ γ) = h−1

α⊕γ(H), we have:

V0 ⊕ V24 = F (c ⊕ γ) ⊕ F (c ⊕ α) = F (u ⊕ α ⊕ γ) ⊕ F (u) = hα⊕γ(u) = H

On average this costs one compression function evaluation to find a n/4-bit
partial preimage. If the target value is 0, this only succeeds if α ⊕ γ = 0, but in
this case it gives 2n/4 solutions. This gives a preimage attack with complexity
23n/4 using 2n/4 memory.

Note that it is possible to make a time-memory trade-off with complexity
2n−k using 2k memory for k < n/4.

3.3 Dedicated 24-Round Attacks on Lesamnta

We now describe how to use specific properties of the round functions of Lesamnta
to remove the memory requirement of our 24-round attacks.

Slow Diffusion in F256. The AES-like round function of Lesamnta-256 achieves
full diffusion of the values after its four rounds, but some linear combinations
of the output are not affected. Starting from a single active diagonal, we have:

SB
SR

MC SB
SR

MC SB
SR

MC SB
SR

MC

All the output bytes are active, but there are some linear relations between them.
More precisely, the inverse MixColumns operation leads to a difference with two
inactive bytes.

28 C. Bouillaguet et al.

This gives two linear subspaces Γ and Λ for which x⊕x′ ∈ Γ ⇒ F (x)⊕F (x′) ∈
Λ. The subspaces Γ and Λ have dimensions of 16 and 48, respectively.

Collision and Second Preimage Attacks on Lesamnta-256. Using this property,
we can choose 16 linear relations of the output of the family of function hμ, or
equivalently, choose 16 linear relations of the output of the compression function.

Let Λ̄ be a supplementary subspace of Λ. Any 64-bit value x can be written
as x = xΛ + xΛ̄, where xΛ ∈ Λ and xΛ̄ ∈ Λ̄. We can find values x such that
hμ(x)Λ̄ = H Λ̄ for an amortized cost of one, without memory:

1. Compute hμ(u) for random u’s until hμ(u)Λ̄ = H Λ̄

2. Far all v in Γ , we have hμ(u + v)Λ̄ = H Λ̄

This gives 216 messages with 16 chosen relations for a cost of 216. It allows a
second-preimage attack on 24-round Lesamnta-256 with complexity 2240, and a
collision attack with complexity 2120, both memoryless.

Symmetries in F256 and F512. The AES round function has strong symmetry
properties, as studied in [9]. The round function F of Lesamnta is heavily inspired
by the AES round, and has similar symmetry properties. More specifically, if
an AES state is such that the left half is equal to the right half, then this
property still holds after any number of SubBytes, ShiftRows, and MixColumns
operations.

When we consider the F functions of Lesamnta, we have that: if x ⊕ Ki is
symmetric, then Fi(x) = F (x ⊕ Ki) is also symmetric.

Collision Attacks on Lesamnta-256 and Lesamnta-512. This property can be
used for an improved collision attack. As seen earlier we have V0 ⊕ V24 = F (c⊕
γ) ⊕ F (c ⊕ α). In order to use the symmetry property, we first select random
chaining values, and we compute the value of α and γ until α ⊕ γ is symmetric.
Then, if we select c such that c ⊕ γ is symmetric, we have that V0 ⊕ V24 is
symmetric.

This leads to a collision attack with complexity 2112 for Lesamnta-256, and
2224 for Lesamnta-512.

4 Application to SHAvite-3 512

SHAvite-3 is a hash function designed by Biham and Dunkelman for the SHA-3
competition [1]. It is based on a generalized Feistel construction with an AES-
based round function, used in Davies-Meyer mode. In this section we study
SHAvite-3 512, the version of SHAvite-3 designed for output size of 257 to 512
bits. The cancellation property can not be used on SHAvite-3 256 because the
Feistel structure is different and has a faster diffusion. We describe an attack on
the SHAvite-3 512 hash function reduced to 9 rounds out of 14. An earlier variant
of our attack was later extended in [5] to a 10-round attack. We note that our
improved 9-round attack can be used to offer an improved 10-round attack.

Attacks on Hash Functions Based on Generalized Feistel 29

4.1 A Short Description of SHAvite-3512

The compression function of SHAvite-3 512 accepts a chaining value of 512 bits,
a message block of 1024 bits, a salt of 512 bits, and a bit counter of 128 bits.
As this is a Davies-Meyer construction, the message block, the salt, and the bit
counter enter the key schedule algorithm of the underlying block cipher. The
key schedule algorithm transforms them into 112 subkeys of 128 bits each. The
chaining value is then divided into four 128-bit words, and at each round two
words enter the nonlinear round functions and affect the other two:

Si+1 = Vi Ti+1 = Si ⊕ F ′
i (Ti) Ui+1 = Ti Vi+1 = Ui ⊕ Fi(Vi)

The nonlinear function F and F ′ are composed of four full rounds of AES, with
4 subkeys from the message expansion:

Fi(x) = P (k3
0,i ⊕ P (k2

0,i ⊕ P (k1
0,i ⊕ P (k0

0,i ⊕ x))))

F ′
i (x) = P (k3

1,i ⊕ P (k2
1,i ⊕ P (k1

1,i ⊕ P (k0
1,i ⊕ x))))

where P is one AES round (without the AddRoundKey operation).
In this section we use an alternative description of SHAvite-3 512 with only

two variables per round. We have

Si = Yi−1 Ti = Xi Ui = Xi−1 Vi = Yi

The message expansion generates an array rk[·] of 448 32-bit words by alternating
linear steps and AES rounds:

Using the counter: the counter is used at 4 specific positions.
In order to simplify the description, we define a new table holding the
preprocessed counter:
ck[32] = cnt[0], ck[33] = cnt[1], ck[34] = cnt[2], ck[35] = cnt[3]
ck[164] = cnt[3], ck[165] = cnt[2], ck[166] = cnt[1], ck[167] = cnt[0]
ck[440] = cnt[1], ck[441] = cnt[0], ck[442] = cnt[3], ck[443] = cnt[2]
ck[316] = cnt[2], ck[317] = cnt[3], ck[318] = cnt[0], ck[319] = cnt[1]
For all the other values, ck[i] = 0.

AES rounds: for i ∈ {0, 64, 128, 192, 256, 320, 384}+ {0, 4, 8, 12, 16, 20, 24, 28}:
tk[(i, i + 1, i + 2, i + 3)] = AESR(rk[(i + 1, i + 2, i + 3, i)] ⊕ salt[(i, i + 1, i +
2, i + 3) mod 16])

Linear Step 1: for i ∈ {32, 96, 160, 224, 288, 352, 416}+ {0, . . . , 31}:
rk[i] = tk[i − 32] ⊕ rk[i − 4] ⊕ ck[i]

Linear Step 2: for i ∈ {64, 128, 192, 256, 320, 384}+ {0, . . . , 31}:
rk[i] = rk[i − 32]⊕ rk[i − 7]

30 C. Bouillaguet et al.

Table 7. Cancellation Property on 9 Rounds of SHAvite-3 512

i Si Ti Ui Vi

0 ? x2 ? x
1 x - x2 x1

2 x1 x - - x1 → x2

3 - - x - x → x1

4 - - - x
5 x - - y x → y
6 y x - z y → z
7 z - x w x → y, z → w
8 w z - ?

9 ? - z ? z → w

FF ? x2 ? ?

Table 8. Values of the Registers for the 9-round Cancellation Property of SHAvite-3 512

i Xi Yi

0 b ⊕ F3(c) ⊕ F ′
1(c ⊕ F2(d ⊕ F ′

3(a))) d ⊕ F ′
3(a) ⊕ F1(a ⊕ F ′

2(b ⊕ F3(c)))
1 a ⊕ F ′

2(b ⊕ F3(c)) c ⊕ F2(d ⊕ F ′
3(a))

2 d ⊕ F ′
3(a) b ⊕ F3(c)

3 c a
4 b d
5 a ⊕ F4(b) c ⊕ F ′

4(d)

6 d ⊕ F5(a ⊕ F4(b)) b ⊕ F ′
5(c ⊕ F ′

4(d))

7 c ⊕ F ′
4(d) ⊕ F6(d ⊕ F5(a ⊕ F4(b))) a ⊕ F4(b) ⊕ F ′

6(b ⊕ F ′
5(c ⊕ F ′

4(d)))

8 b ⊕ F ′
5(c ⊕ F ′

4(d)) ⊕ F7(c) ?

9 a ⊕ F4(b) ⊕ F ′
6(b ⊕ F ′

5(c ⊕ F ′
4(d))) ⊕ F8(b ⊕ F ′

5(c ⊕ F ′
4(d)) ⊕ F7(c))

4.2 Cancellation Attacks on SHAvite-3512

The cancellation path is described in Table 7. We use the cancellation property
twice to control the diffusion. Note that we do not have to specify the values of
y, z, and w. Like in the Lesamnta attack, this path is a truncated differential,
and we use constraints on the state to enforce that it is followed. Moreover, the
transitions x → x1 and x1 → x2 are known because the key is known.

Note that the round functions of SHAvite-3 512 are not defined as F (k, x) =
P (k ⊕ x) for a fixed permutation P . Instead, each function takes 4 keys and it
is defined as:

F (k0
i , k1

i , k2
i , k3

i , x) = P (k3
i ⊕ P (k2

i ⊕ P (k1
i ⊕ P (k0

i ⊕ x))))

where P is one AES round. In order to apply the cancellation property to
SHAvite-3 512, we need that the subkeys k1, k2, k3 of two functions be equal,

Attacks on Hash Functions Based on Generalized Feistel 31

so that Fi(x) collapses to P ′(k0
i ⊕ x) and Fj to P ′(k0

j ⊕ x), where P ′(x) �
P (k3

i ⊕ P (k2
i ⊕ P (k1

i ⊕ P (x)))) = P (k3
j ⊕ P (k2

j ⊕ P (k1
j ⊕ P (x)))).

In order to express the constraints needed for the cancellation properties, we
look at the values of the registers for this truncated differential. In Table 8, we
begin at round 4 with (S4, T4, U4, V4) = (Y3, X4, X3, Y4) = (a, b, c, d), and we
compute up to round 9.

We have a cancellation property on 9 rounds under the following conditions:

Round 7. We have F ′
4(d) ⊕ F6(d ⊕ F5(a ⊕ F4(b))). They cancel if:

F5(a ⊕ F4(b)) = k0
1,4 ⊕ k0

0,6 and (k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6).

Round 9. We have F ′
6(b ⊕ F ′

5(c ⊕ F ′
4(d)))⊕F8(b ⊕ F ′

5(c ⊕ F ′
4(d)) ⊕ F7(c)). They

cancel if:
F7(c) = k0

1,6 ⊕ k0
0,8 and (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8).

Therefore, the truncated differential is followed if:

F5(a ⊕ F4(b)) = k0
1,4 ⊕ k0

0,6 F7(c) = k0
1,6 ⊕ k0

0,8 (C0)

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8) (C1)

The constraints for the cancellation at round 7 are easy to satisfy and allow a
7-round attack on SHAvite-3 512. However, for a 9-round attack we have more
constraints on the subkeys, and this requires special attention.

4.3 Dealing with the Key Expansion

Let us outline an algorithm to find a suitable message (recall that SHAvite-3 512
is used in a Davies-Meyer mode) for a given salt and counter value. We have to
solve a system involving linear and non-linear equations, and we use the fact that
the system is almost triangular. We note that it might be possible to improve
our results using the technique of Khovratovich, Biryukov and Nikolic [7] to find
a good message efficiently.

For the cancellation attack on 9-round SHAvite-3 512, we need to satisfy a
768-bit condition on the subkeys, i.e.:

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8) (C1)

Or in rk[·] terms:

rk[148, . . . , 159] = rk[196, . . . , 207] rk[212, . . . , 223] = rk[260, . . . , 271]

We are actually trying to solve a system of equation with:

– 224 variables: tk[128..159], tk[192..223] and rk[128..287]
– 192 equations from the key schedule (64 non-linear and 128 linear)
– 24 constraints

Therefore we have 8 degrees of freedom. The relations between the variables are
shown in Figure 2, while the full key expansion of SHAvite-3 512 is described in
Appendix.

32 C. Bouillaguet et al.

rk[256 ... 259,260 ... 263,264 ... 267,268 ... 271,272 ... 275,276 ... 279,280 ... 283,284 ... 287]

LFSR2: rk[i]=rk[i−32]⊕rk[i−7]

rk[224 ... 227,228 ... 231,232 ... 235,236 ... 239,240 ... 243,244 ... 247,248 ... 251,252 ... 255]

LFSR1: rk[i]=tk[i−32]⊕rk[i−4]

tk[192 ... 195,196 ... 199,200 ... 203,204 ... 207,208 ... 211,212 ... 215,216 ... 219,220 ... 223]

AES AES AES AES AES AES AES AES

rk[192 ... 195,196 ... 199,200 ... 203,204 ... 207,208 ... 211,212 ... 215,216 ... 219,220 ... 223]

LFSR2: rk[i]=rk[i−32]⊕rk[i−7]

rk[160 ... 163,164 ... 167,168 ... 171,172 ... 175,176 ... 179,180 ... 183,184 ... 187,188 ... 191]

LFSR1: rk[i]=tk[i−32]⊕rk[i−4]

tk[128 ... 131,132 ... 135,136 ... 139,140 ... 143,144 ... 147,148 ... 151,152 ... 155,156 ... 159]

AES AES AES AES AES AES AES AES

rk[128 ... 131,132 ... 135,136 ... 139,140 ... 143,144 ... 147,148 ... 151,152 ... 155,156 ... 159]

c

Fig. 2. Constraints in the Key Expansion of SHAvite-3 512

Initial constraints in pink, constraints from steps 1 to 3 in yellow, constraints from step

4 in green

Propagation of the Constraints. First, we propagate the constraints and de-
duce new equalities between the variables. Figure 2 shows the initial constraints
and the propagated constraints.

1. The non-linear equations of the key-schedule give:

tk[156..159] = AESR
(
(rk[157, 158, 159, 156])⊕ (salt[12..15])

)
tk[204..207] = AESR

(
(rk[205, 206, 207, 204])⊕ (salt[12..15])

)
since rk[156..159] = rk[204..207], we know that tk[156..159] = tk[204..207].
Similarly, we get tk[148..159] = tk[196..207]

2. From the key expansion, we have rk[191] = rk[223]⊕ rk[216], and rk[239] =
rk[271] ⊕ rk[264]. Since we have the constraints rk[223] = rk[271] and
rk[216] = rk[264], we can deduce that rk[191] = rk[239] Similarly, we get
rk[187..191] = rk[235..239].

3. From the linear part of the expansion, we have rk[186] = rk[190] ⊕ tk[158]
and rk[234] = rk[238] ⊕ tk[206]. We have seen that rk[190] = rk[238] at
step 2 and tk[158] = tk[206] at step 1, therefore rk[186] = rk[234] Similarly,
we get rk[176..186] = rk[224..234].

4. Again, from the linear part of the key expansion, we have rk[211] = rk[218]⊕
rk[186] and rk[259] = rk[266]⊕rk[234]. We have seen that rk[186] = rk[234]
at step 3 and we have rk[218] = rk[266] as a constraint, thus rk[211] =
rk[259] Similarly, we obtain rk[201..211] = rk[249..259] Note that we have
rk[201..207] = rk[153..159] as a constraint, so we must have rk[249..255] =
rk[153..159].

Attacks on Hash Functions Based on Generalized Feistel 33

Finding a Solution. To find a solution to the system, we use a guess and
determine technique. We guess 11 state variables, and we show how to compute
the rest of the state and check for consistency. Since we have only 8 degrees of
freedom, we expect the random initial choice to be valid once out of 232×3 = 296

times. This gives a complexity of 296 to find a good message.

– Choose random values for rk[200], rk[204..207], rk[215..216], rk[220..223]
– Compute tk[220..223] from rk[220..223]
– Compute rk[248..251] from tk[220..223] and rk[252..255] (= rk[204..207])
– Deduce rk[201..203] = rk[249..251], so rk[200..207] is known
– Compute tk[152..159] from rk[152..159] (= rk[200..207])
– Compute rk[190..191] from rk[215..216] and rk[222..223]
– Compute rk[186..187] from rk[190..191] and rk[158..159]
– Compute rk[182..183] from rk[186..187] and rk[154..155]
– Compute rk[214] from rk[207] and rk[182]
– Compute rk[189] from rk[214] and rk[219]; then rk[185] and rk[181]
– Compute rk[213] from rk[206] and rk[181]
– Compute rk[188] from rk[213] and rk[220], then rk[184] and rk[180]
– Compute rk[212] from rk[205] and rk[180]
– Compute rk[219] from rk[212] and rk[187]
– Compute rk[208, 209] from rk[215, 216] and rk[183, 184]

– We have tk[216..219] = AESR
(
(rk[216..219])

)
with a known key. Since

rk[216] and rk[219] are known, we know that tk[216..219] is a linear subspace
of dimension 64 over F2.

– Similarly, tk[208..211] is in a linear subspace of dimension 64 (rk[208] and
rk[209] are known).

– Moreover, there are linear relations between tk[216..219] and tk[208..211]: we
can compute rk[240..243] from tk[208..211]and rk[236..239]; rk[244..247] from
rk[240..243] and tk[212..215]; tk[216..219] from rk[244..247] and rk[248..251].

– On average, we expect one solution for tk[216..219] and tk[208..211].
– At this point we have computed the values of rk[200..223]. We can compute

tk[200.223] and rk[228..255].
– Compute rk[176..179] from rk[201..204] and rk[208..211]
– Since rk[224..227] = rk[176..179], we have a full state rk[224..255]. We can

check consistency of the initial guess.

4.4 9-Round Attacks

The cancellation property allows to find a key/message pair with a given value
on the last 128 bits. The attack is the following: first find a message that fulfills
the conditions on the subkeys, and set a, b and c at round 4 satisfying the
cancellation conditions (C0). Then the second output word is:

T9 ⊕ T0 = X9 ⊕ X0 = a ⊕ F4(b) ⊕ b ⊕ F3(c) ⊕ F ′
1
(
c ⊕ F2(d ⊕ F ′

3(a))
)

34 C. Bouillaguet et al.

Table 9. Summary of the Attacks on the Lesamnta Hash Function

Lesamnta-256 Lesamnta-512

Attack Rnds Time Mem. Time Mem.

Generic Collision [6] 16 297 - 2193 -

2nd Preimage [6] 16 2193 - 2385 -

Collision (Sect. 3.2) 22 296 - 2192 -

2nd Preimage (Sect. 3.2) 22 2192 - 2384 -

Collision (Sect. 3.2) 24 296 264 2192 2128

2nd Preimage (Sect. 3.2) 24 2192 264 2384 2128

Specific Collision (Sect. 3.3) 24 2112 - 2224 -

2nd Preimage (Sect. 3.3) 24 2240 - N/A

If we set

d = F−1
2

(
F ′−1

1

(
H ⊕ a ⊕ F4(b) ⊕ b ⊕ F3(c)

)⊕ c
)
⊕ F ′

3(a)

we have X9 ⊕X0 = H . Each key (message) can be used with 2128 different a,b,c,
and the cost of finding a suitable key is 296. Hence, the amortized cost for finding
a 128-bit partial preimage is one compression function evaluation. The cost of
finding a full preimage for the compression function is 2384.

Second Preimage Attack on the Hash Function. We can use the preimage
attack on the compression function to build a second preimage attack on the hash
function reduced to 9 rounds. Using a generic unbalanced meet-in-the-middle
attack the complexity is about 2448 compression function evaluations and 264

memory. Note that we cannot find preimages for the hash function because we
cannot find correctly padded message blocks.

Table 10. Summary of the Attacks on SHAvite-3 512

Comp. Fun. Hash Fun.

Attack Rnds Time Mem. Time Mem.

2nd Preimage [4] 8 2384 - 2448 264

2nd Preimage (Sect. 4.4) 9 2384 - 2448 264

2nd Preimage (extension of this work) [5] 10 2480 - 2496 216

2nd Preimage (improving [5] w/ Sect. 4.3) 10 2448 - 2480 232

2nd Preimage (improving [5] w/ Sect. 4.3) 10 2416 264 2464 264

2nd Preimage (improving [5] w/ Sect. 4.3) 10 2384 2128 2448 2128

Collision1 (extension of this work) [5] 14 2192 2128 N/A

Preimage1 (extension of this work) [5] 14 2384 2128 N/A

Preimage1 (extension of this work) [5] 14 2448 - N/A

1 Chosen salt attacks

Attacks on Hash Functions Based on Generalized Feistel 35

Acknowledgements

We would like to thank the members of the Graz ECRYPT meeting. Especially,
we would like to express our gratitude to Emilia Käsper, Christian Rechberger,
Søren S. Thomsen, and Ralf-Philipp Weinmann for the inspiring discussions.
We are grateful to the Lesamnta team, and especially to Hirotaka Yoshida, for
helping us with this research. We would also like to thank the anonymous referees
for their comments.

References

1. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST

(2008)

2. Bouillaguet, C., Dunkelman, O., Fouque, P.A., Leurent, G.: Another Look at Com-

plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,

pp. 347–364. Springer, Heidelberg (2010)

3. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Attacks on

Hash Functions based on Generalized Feistel - Application to Reduced-Round

Lesamnta and SHAvite-3512. Cryptology ePrint Archive, Report 2009/634 (2009),

http://eprint.iacr.org/

4. Mendel, F., et al.: A preimage attack on 8-round SHAvite-3-512. Graz ECRYPT

meeting (May 2009)

5. Gauravaram, P., Leurent, G., Mendel, F., Naya-Plasencia, M., Peyrin, T.,

Rechberger, C., Schläffer, M.: Cryptanalysis of the 10-Round Hash and Full

Compression Function of SHAvite-3-512. In: Bernstein, D.J., Lange, T. (eds.)

AFRICACRYPT 2010. LNCS, vol. 6055, pp. 419–436. Springer, Heidelberg (2010)

6. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 Proposal: Lesamnta. Submission to

NIST (2008)

7. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for Byte-

Oriented Hash Functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,

pp. 164–181. Springer, Heidelberg (2009)

8. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.

(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

9. Van Le, T., Sparr, R., Wernsdorf, R., Desmedt, Y.: Complementation-Like and

Cyclic Properties of AES Round Functions. In: Dobbertin, H., Rijmen, V., Sowa,

A. (eds.) AES 2005. LNCS, vol. 3373, pp. 128–141. Springer, Heidelberg (2005)

10. Hirose, S., Kuwakado, H., Yoshida, H.: Security Analysis of the Compression

Function of Lesamnta and its Impact (2009) (available online)

http://eprint.iacr.org/

The Differential Analysis of S-Functions�,��

Nicky Mouha1,2,� � �, Vesselin Velichkov1,2,†,
Christophe De Cannière1,2,‡, and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,

Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

{Nicky.Mouha,Vesselin.Velichkov,Christophe.DeCanniere}@esat.kuleuven.be

Abstract. An increasing number of cryptographic primitives use

operations such as addition modulo 2n, multiplication by a constant

and bitwise Boolean functions as a source of non-linearity. In NIST’s

SHA-3 competition, this applies to 6 out of the 14 second-round candi-

dates. In this paper, we generalize such constructions by introducing the

concept of S-functions. An S-function is a function that calculates the

i-th output bit using only the inputs of the i-th bit position and a finite

state S[i]. Although S-functions have been analyzed before, this paper is

the first to present a fully general and efficient framework to determine

their differential properties. A precursor of this framework was used in

the cryptanalysis of SHA-1. We show how to calculate the probability

that given input differences lead to given output differences, as well as

how to count the number of output differences with non-zero probabil-

ity. Our methods are rooted in graph theory, and the calculations can be

efficiently performed using matrix multiplications.

Keywords: Differential cryptanalysis, S-function, xdp+, xdp×C , adp⊕,

counting possible output differences, ARX.

1 Introduction

Since their introduction to cryptography, differential cryptanalysis [7] and linear
cryptanalysis [26] have shown to be two of the most important techniques in
both the design and cryptanalysis of symmetric-key cryptographic primitives.

Differential cryptanalysis was introduced by Biham and Shamir in [7]. For
block ciphers, it is used to analyze how input differences in the plaintext lead to

� The framework proposed in this paper is accompanied by a software toolkit, avail-

able at http://www.ecrypt.eu.org/tools/s-function-toolkit
�� This work was supported in part by the IAP Program P6/26 BCRYPT of the

Belgian State (Belgian Science Policy), and in part by the European Commission

through the ICT program under contract ICT-2007-216676 ECRYPT II.
� � � This author is funded by a research grant of the Institute for the Promotion of

Innovation through Science and Technology in Flanders (IWT-Vlaanderen).
† DBOF Doctoral Fellow, K.U. Leuven, Belgium.
‡ Postdoctoral Fellow of the Research Foundation – Flanders (FWO).

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 36–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Differential Analysis of S-Functions 37

output differences in the ciphertext. If this happens in a non-random way, this
can be used to build a distinguisher or even a key-recovery attack.

The analysis of how differences propagate through elementary components
of cryptographic designs is therefore essential to differential cryptanalysis. As
typical S-boxes are no larger than 8× 8, this analysis can be done by building a
difference distribution table. Such a difference distribution table lists the number
of occurrences of every combination of input and output differences.

The combination of S-box layers and permutation layers with good crypto-
graphic properties, are at the basis of the wide-trail design. The wide-trail design
technique is used in AES [10] to provide provable resistance against both linear
and differential cryptanalysis attacks.

However, not all cryptographic primitives are based on S-boxes. Another op-
tion is to use only operations such as addition modulo 2n, exclusive or (xor),
Boolean functions, bit shifts and bit rotations. For Boolean functions, we assume
that the same Boolean function is used for each bit position i of the n-bit input
words.

Each of these operations is very well suited for implementation in software,
but building a difference distribution table becomes impractical for commonly
used primitives where n = 32 or n = 64. Examples using such constructions
include the XTEA block cipher [32], the Salsa20 stream cipher family [5], as well
as the hash functions MD5, SHA-1, and 6 out of 14 second-round candidates1

of NIST’s SHA-3 hash function competition [31].
In this paper, we present the first known fully general framework to analyze

these constructions efficiently. It is inspired by the cryptanalysis techniques for
SHA-1 by De Cannière and Rechberger [12] (clarified in [30]), and by methods
introduced by Lipmaa, Wallén and Dumas [23]. The framework is used to calcu-
late the probability that given input differences lead to given output differences,
as well as to count the number of output differences with non-zero probability.
Our methods are based on graph theory, and the calculations can be efficiently
performed using matrix multiplications. We show how the framework can be
used to analyze several commonly used constructions.

Notation is defined in Table 1. Section 2 defines the concept of an S-function.
This type of function can be analyzed using the framework of this paper. The
differential probability xdp+ of addition modulo 2n, when differences are ex-
pressed using xor, is analyzed in Sect. 3. We show how to calculate xdp+ with
an arbitrary number of inputs. In Sect 4, we study the differential probability
adp⊕ of xor when differences are expressed using addition modulo 2n. Count-
ing the number of output differences with non-zero probability is the subject of
Sect. 5. We conclude in Sect. 6. The matrices obtained for xdp+ are listed in
Appendix A. We show all possible subgraphs for xdp+ in Appendix B. In Ap-
pendix C, we extend xdp+ to an arbitrary number of inputs. The computation
of xdp×C is explained in Appendix D.

1 The hash functions BLAKE [4], Blue Midnight Wish [14], CubeHash [6], Shabal [8],

SIMD [20] and Skein [13] can be analyzed using the general framework that is intro-

duced in this paper.

38 N. Mouha et al.

Table 1. Notation

Notation Description

x ‖ y concatenation of the strings x and y
|A| number of elements of set A

x � s shift of x to the left by s positions

x � s shift of x to the right by s positions

x ≪ s rotation of x to the left by s positions

x ≫ s rotation of x to the right by s positions

x + y addition of x and y modulo 2n (in text)

x � y addition of x and y modulo 2n (in figures)

x[i] selection: bit (or element) at position i of word x,

where i = 0 is the least significant bit (element)

2 S-Functions

In this section, we define S-functions, the type of functions that can be ana-
lyzed using our framework. In order to show the broad range of applicability of
the proposed technique, we give several examples of functions that follow our
definition.

An S-function (short for “state function”) accepts n-bit words a1, a2, . . . , ak

and a list of states S[i] (for 0 ≤ i < n) as input, and produces an n-bit output
word b in the following way:

(b[i], S[i + 1]) = f(a1[i], a2[i], . . . , ak[i], S[i]), 0 ≤ i < n . (1)

Initially, we set S[0] = 0. Note that f can be any arbitrary function that can be
computed using only input bits a1[i], a2[i], . . . , ak[i] and state S[i]. For concise-
ness, the same function f is used for every bit 0 ≤ i < n. Our analysis, however,
does not require functions f to be the same, and not even to have the same
number of inputs. A schematic representation of an S-function is given in Fig. 1.

f

. . .

a1[0] a2[0] ak[0]

b[0]

S[0]
f

. . .

a1[1] a2[1] ak[1]

b[1]

S[1]
f

. . .

a1[n − 1] a2[n − 1] ak[n − 1]

b[n − 1]

S[n − 1] S[2]S[n]
. . .

Fig. 1. Representation of an S-function

The Differential Analysis of S-Functions 39

Examples of S-functions include addition, subtraction and multiplication by a
constant (all modulo 2n), exclusive-or (xor) and bitwise Boolean functions. Al-
though this paper only analyzes constructions with one output b, the extension to
multiple outputs is straightforward. Our technique therefore also applies to larger
constructions, such as the Pseudo-Hadamard Transform used in SAFER [1] and
Twofish [34], and first analyzed in [21].

With a minor modification, the concept of S-functions allows the inputs a1, a2,
. . . , ak and the output b to be rotated (or reordered) as well. This corresponds
to rotating (or reordering) the bits of the input and output of f . This results in
exactly the same S-function, but the input and output variables are relabeled
accordingly. An entire step of SHA-1 as well as the MIX primitive of the block
cipher RC2 can therefore be seen as an S-function. If the extension to multiple
output bits is made, this applies as well to an entire step of SHA-2: for every
step of SHA-2, two 32-bit registers are updated.

Every S-function is also a T-function, but the reverse is not always true.
Proposed by Klimov and Shamir [19], a T-function is a mapping in which the
i-th bit of the output depends only on bits 0, 1, . . . , i of the input. Unlike a
T-function, the definition of an S-function requires that the dependence on bits
0, 1, . . . , i−1 of the input can be described by a finite number of states. Therefore,
squaring modulo 2n is a T-function, but not an S-function.

In [11], Daum introduced the concept of a narrow T-function. A w-narrow
T-function computes the i-th output bit based on some information of length
w bits computed from all previous input bits. An S-function, however, requires
only the i-th input bit and a state S[i] to calculate the i-th output bit and the
next state S[i + 1]. There is a subtle difference between narrow T-functions and
S-functions. If the number of states is finite and not dependent on the word
length n, it may not always be possible for a narrow T-function to compute
S[i + 1] from the previous state S[i] and the i-th input bit.

It is possible to simulate every S-function using a finite-state machine (FSM),
also known as a finite-state automaton (FSA). This finite-state machine has k
inputs a1[i], a2[i], . . . , ak[i], and one state for every value of S[i]. The output is
b[i]. The FSM is clocked n times, for 0 ≤ i < n. From (1), we see that the output
depends on both the current state and the input. The type of FSM we use is
therefore a Mealy machine [27].

The straightforward hardware implementation of an S-function corresponds
to a bit-serial design. Introduced by Lyon in [24,25], a bit-serial hardware archi-
tecture treats all n bits in sequence on a single hardware unit. Every bit requires
one clock cycle to be processed.

The S-function framework can also be used in differential cryptanalysis, when
the inputs and outputs are xor- or additive differences. Assume that every input
pair (x1, x2) satisfies a difference Δ•x, using some group operator •. Then, if
both x1 and Δ•x are given, we can calculate x2 = x1 • Δ•x. It is then straight-
forward to define a function to calculate the output values and the output

40 N. Mouha et al.

difference as well.This approach will become clear in the following sections, when
we calculate the differential probabilities xdp+ and adp⊕ of modular addition
and xor respectively.

3 Computation of xdp+

3.1 Introduction

In this section, we study the differential probability xdp+ of addition modulo 2n,
when differences are expressed using xor. Until [22], no algorithm was published
to compute xdp+ faster than exhaustive search over all inputs. In [22], the
first algorithm with a linear time in the word length n was proposed. If n-bit
computations can be performed, the time complexity of this algorithm becomes
sublinear in n.

In [23], xdp+ is expressed using the mathematical concept of rational series.
It is shown that this technique is more general, and can also be used to calculate
the differential probability adp⊕ of xor, when differences are expressed using
addition modulo 2n.

In this paper, we present a new technique for the computation of xdp+, using
graph theory. The main advantage of the proposed method over existing tech-
niques, is that it is not only more general, but also allows results to be obtained
in a fully automated way. The only requirement is that both the operations and
the input and output differences of the cryptographic component can be written
as the S-function of Sect. 2. In the next section, we introduce this technique to
calculate the probability xdp+.

3.2 Defining the Probability xdp+

Given n-bit words x1, y1, Δ
⊕x, Δ⊕y, we calculate Δ⊕z using

x2 ← x1 ⊕ Δ⊕x , (2)

y2 ← y1 ⊕ Δ⊕y , (3)
z1 ← x1 + y1 , (4)
z2 ← x2 + y2 , (5)

Δ⊕z ← z2 ⊕ z1 . (6)

We then define xdp+(α, β → γ) as

xdp+(α, β → γ) =
|{(x1, y1) : Δ⊕x = α, Δ⊕y = β, Δ⊕z = γ}|

|{(x1, y1) : Δ⊕x = α, Δ⊕y = β}| , (7)

= 4−n|{(x1, y1) : Δ⊕x = α, Δ⊕y = β, Δ⊕z = γ}| , (8)

as there are 2n · 2n = 4n combinations for the two n-bit words (x1, y1).

The Differential Analysis of S-Functions 41

3.3 Constructing the S-Function for xdp+

We rewrite (2)-(6) on a bit level, using the formulas for multiple-precision
addition in radix 2 [28, §14.2.2]:

x2[i] ← x1[i] ⊕ Δ⊕x[i] , (9)

y2[i] ← y1[i] ⊕ Δ⊕y[i] , (10)
z1[i] ← x1[i] ⊕ y1[i] ⊕ c1[i] , (11)

c1[i + 1] ← (x1[i] + y1[i] + c1[i]) � 1 , (12)
z2[i] ← x2[i] ⊕ y2[i] ⊕ c2[i] , (13)

c2[i + 1] ← (x2[i] + y2[i] + c2[i]) � 1 , (14)

Δ⊕z[i] ← z2[i] ⊕ z1[i] , (15)

where carries c1[0] = c2[0] = 0. Let us define

S[i] ← (c1[i], c2[i]) , (16)
S[i + 1] ← (c1[i + 1], c2[i + 1]) . (17)

Then, (9)-(15) correspond to the S-function

(Δ⊕z[i], S[i + 1]) = f(x1[i], y1[i], Δ⊕x[i], Δ⊕y[i], S[i]), 0 ≤ i < n . (18)

Because we are adding two words in binary, both carries c1[i] and c2[i] can be
either 0 or 1.

3.4 Computing the Probability xdp+

In this section, we use the S-function (18), defined by (9)-(15), to compute xdp+.
We explain how this probability can be derived from the number of paths in a
graph, and then show how to calculate xdp+ using matrix multiplications.

Graph Representation. For 0 ≤ i ≤ n, we will represent every state S[i] as a
vertex in a graph (Fig. 2). This graph consists of several subgraphs, containing
only vertices S[i] and S[i + 1] for some bit position i. We repeat the following
for all combinations of (α[i], β[i], γ[i]):

Set α[i] ← Δ⊕x[i] and β[i] ← Δ⊕y[i]. Then, we loop over all values of
(x1[i], y1[i], S[i]). For each combination, Δ⊕z[i] and S[i] are uniquely determined
by (18). We draw an edge between S[i] and S[i+ 1] in the subgraph, if and only
if Δ⊕z[i] = γ[i]. Note that several edges may have the same set of endpoints.

For completeness, all subgraphs for xdp+ are given in Appendix B. Let α, β, γ
be given. As shown in Fig. 2, we construct a full graph containing all vertices
S[i] for 0 ≤ i ≤ n, where the edges between these vertices correspond to those
of the subgraphs for α[i], β[i], γ[i].

Theorem 1. Let P be the set of all paths from (c1[0], c2[0]) = (0, 0) to any of
the four vertices (c1[n], c2[n]) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} (see Fig. 2). Then,
there is exactly one path in P for every pair (x1, y1) of the set in the definition
of xdp+, given by (8).

42 N. Mouha et al.

Proof. Given x1[i], y1[i], Δ⊕x[i], Δ⊕y[i], c1[i] and c2[i], the values of Δ⊕z[i],
c1[i + 1] and c2[i + 1] are uniquely determined by (9)-(15). All paths in P start
at (c1[0], c2[0]) = (0, 0), and only consist of vertices (c1[i], c2[i]) for 0 ≤ i ≤ n
that satisfy (9)-(15). Furthermore, edges for which Δ⊕z[i] �= γ[i] are not in the
graph, and therefore not part of any path P . Thus by construction, P contains
every pair (x1, y1) of the set in (8) exactly once. ��

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

(0, 0)

(0, 1)

(1, 0)

(1
, 1

)

(0, 0)(0, 1)
(1, 0)

(1, 1)

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

(0, 1)

(0, 0)

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(1
, 1

)

(1, 0)

0, 0

0, 1

1, 0

1, 1

0, 0

0, 1

1, 0

1, 1

0, 0 0, 0

0, 1 0, 1

1, 0 1, 0

1, 1 1, 1

(0, 0)
(1, 0)
(0, 1)

(1, 0)
(0, 1)
(1, 1)

(0, 0)

(1
, 1

) . . .

Fig. 2. An example of a full graph for xdp+. Vertices (c1[i], c2[i]) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} correspond to states S[i]. There is one edge for every in-

put pair (x1, y1). All paths that satisfy input differences α, β and output difference γ
are shown in bold. They define the set of paths P of Theorem 1.

Multiplication of Matrices. The differential (α[i], β[i] → γ[i]) at bit position
i is written as a bit string w[i] ← α[i] ‖ β[i] ‖ γ[i]. Each w[i] corresponds
to a subgraph of Appendix B. As this subgraph is a bipartite graph, we can
construct its biadjacency matrix Aw[i] = [xkj], where xkj is the number of edges
that connect vertices j = S[i] and k = S[i + 1]. These matrices are given in
Appendix A.

Let the number of states S[i] be N . Define 1 ×N matrix L = [1 1 · · · 1] and
N × 1 matrix C = [1 0 · · · 0]T . For any directed acyclic graph, the number of
paths between two vertices can be calculated as a matrix multiplication [9]. We
can therefore calculate the number of paths P as

|P | = LAw[n−1] · · ·Aw[1]Aw[0]C . (19)

Using (8), we find that xdp+(α, β → γ) = 4−n|P |. Therefore, we can define
A∗

w[i] = Aw[i]/4, and obtain

xdp+(α, β → γ) = LA∗
w[n−1] · · ·A∗

w[1]A
∗
w[0]C . (20)

As such, we obtain a similar expression as in [23], where the xdp+ was calculated
using the concept of rational series. Our matrices A∗

w[i] are of size 4 × 4 instead
of 2 × 2, however. We now give a simple algorithm to reduce the size of our
matrices.

The Differential Analysis of S-Functions 43

3.5 Minimizing the Size of the Matrices for xdp+

Corresponding to (20), we can define a non-deterministic finite-state automaton
(NFA) with states S[i] and inputs w[i]. Compared to a deterministic finite-state
automaton, the transition function is replaced by a transition relation. There
are several choices for the next state, each with a certain probability. This NFA
can be minimized as follows.

First, we remove non-accessible states. A state is said to be non-accessible, if
it can never be reached from the initial state S[0] = 0. This can be done using a
simple algorithm to check for connectivity, with a time complexity that is linear
in the number of edges.

Secondly, we merge indistinguishable states. The method we propose, is sim-
ilar to the FSM reduction algorithms found independently by [17] and [29].
Initially, we assign all states S[i] to one equivalence class T [i] = 0. We try to
partition this equivalence class into smaller classes, by repeating the following
steps:

– We iterate over all states S[i].
– For every input w[i] and every equivalence class T [i], we sum the transition

probabilities to every state S[i] of this equivalence class.
– If these sums are different for two particular states S[i], we partition them

into different equivalence classes T [i].

The algorithm stops when the equivalence classes T [i] cannot be partitioned
further.

In the case of xdp+, we find that all states are accessible. However, there are
only two indistinguishable states: T [i] = 0 and T [i] = 1 when (c1[i], c2[i]) are
elements of the sets {(0, 0), (1, 1)} and {(0, 1), (1, 0)} respectively. Our algorithm
shows how matrices A∗

w[i] of (20) can be reduced to matrices A′
w[i] of size 2 × 2.

These matrices are the same as in [23], but they have now been obtained in
an automated way. For completeness, they are given again in Appendix A. Our
approach also allows a new interpretation of matrices A′

w[i] in the context of
S-functions (18): every matrix entry defines the transition probability between
two sets of states, where all states of one set were shown to be equivalent by the
minimization algorithm.

3.6 Extensions of xdp+

In this section, we show how S-functions not only lead to expressions to calculate
xdp+(α, β → γ), but can be applied to related constructions as well.

Multiple Inputs xdp+(α, β, . . . → γ). Using the framework of this paper,
we can easily calculate xdp+ for more than two (independent) inputs. This cal-
culation can be used, for example, in the differential cryptanalysis of XTEA [32]
using xor differences. In [15], a 3-round iterative characteristic (α, 0) → (α, 0)
is used, where α = 0x80402010. In the third round of the characteristic, there
are two consecutive applications of addition modulo 2n. Separately, these result

44 N. Mouha et al.

in probabilities xdp+(α, 0 → α) = 2−3 and xdp+(α, α → 0) = 2−3. It is shown
in [15] that the joint probability xdp+(α, 0, α → 0) is higher than the prod-
uct of the probabilities 2−3 · 2−3 = 2−6, and is estimated to be 2−4.755. Using
the techniques presented in this paper, we evaluate the exact joint probability
to be 2−3. We also verified this experimentally. The calculations are detailed
in Appendix C. This result can be trivially confirmed using the commutativity
property of addition: xdp+(α, α → 0) · xdp+(0, 0 → 0) = xdp+(α, α → 0) =
2−3. Nevertheless, our method is more general and can be used for any input
difference.

Multiplication by a Constant xdp×C. A problem related to xdp+, is the
differential probability of multiplication by a constant C where differences are
expressed by xor. We denote this probability by xdp×C . In the hash function
Shabal [8], multiplications by 3 and 5 occur. EnRUPT [33] uses a multiplication
by 9. In the cryptanalysis of EnRUPT [18], a technique is described to calculate
xdp×9. This technique is based on a precursor of the framework in this paper. In
Appendix D, we show how each of these probabilities can be calculated efficiently,
using the framework of this paper. The example of xdp×3 is fully worked out.

Pseudo-Hadamard Transform xdpPHT. The Pseudo-Hadamard Transform
(PHT) is defined as PHT(x1, x2) = (2x1+x2, x1+x2). It is a reversible operation,
used to provide diffusion in several cryptographic primitives, including block
ciphers SAFER [1] and Twofish [34]. Its differential properties were first studied
in [21]. If we allow an S-function to be constructed with two outputs b1 and b2,
the analysis of this construction becomes straightforward using the techniques
of this paper.

Step Functions of the MD4 Family. The MD4 family consists of several
hash functions, including MD4, MD5, SHA-1, SHA-2 and HAS-160. Currently,
the most commonly used hash functions worldwide are MD5 and SHA-1. The
step functions of MD4, HAS-160 and SHA-1 can each be represented as an S-
function. This applies as well to the MIX primitive of the block cipher RC2.
They can therefore also be analyzed using our framework. The calculation of
the uncontrolled probability Pu(i) in the cryptanalysis of SHA-1 [12,30] uses a
precursor of the techniques in this paper. By making the extension to multiple
outputs, the same analysis can be made as well for the step function of SHA-2.

4 Computation of adp⊕

4.1 Introduction

In this section, we study the differential probability adp⊕ of xor when differences
are expressed using addition modulo 2n. The best known algorithm to compute
adp⊕ was exhaustive search over all inputs, until an algorithm with a linear time
in n was proposed in [23].

We show how the technique introduced in Sect. 3 for xdp+ can also be applied
to adp⊕. Using this, we confirm the results of [23]. The approach we introduced

The Differential Analysis of S-Functions 45

in this section is conceptually much easier than [23], and can easily be generalized
to other constructions with additive differences.

4.2 Defining the Probability adp⊕

Given n-bit words x1, y1, Δ
+x, Δ+y, we calculate Δ+z using

x2 ← x1 + Δ+x , (21)

y2 ← y1 + Δ+y , (22)
z1 ← x1 ⊕ y1 , (23)
z2 ← x2 ⊕ y2 , (24)

Δ+z ← z2 − z1 . (25)

Similar to (8), we define adp⊕(α, β → γ) as

adp⊕(α, β → γ) =
|{(x1, y1) : Δ+x = α, Δ+y = β, Δ+z = γ}|

|{(x1, y1) : Δ+x = α, Δ+y = β}| , (26)

= 4−n|{(x1, y1) : Δ+x = α, Δ+y = β, Δ+z = γ}| , (27)

as there are 2n · 2n = 4n combinations for the two n-bit words (x1, y1).

4.3 Constructing the S-Function for adp⊕

We rewrite (21)-(25) on a bit level, again using the formulas for multiple-precision
addition and subtraction in radix 2 [28, §14.2.2]:

x2[i] ← x1[i] ⊕ Δ+x[i] ⊕ c1[i] , (28)

c1[i + 1] ← (x1[i] + Δ+x[i] + c1[i]) � 1 , (29)

y2[i] ← y1[i] ⊕ Δ+y[i] ⊕ c2[i] , (30)

c2[i + 1] ← (y1[i] + Δ+y[i] + c2[i]) � 1 , (31)
z1[i] ← x1[i] ⊕ y1[i] , (32)
z2[i] ← x2[i] ⊕ y2[i] , (33)

Δ+z[i] ← (z2[i] ⊕ z1[i] ⊕ c3[i])[0] , (34)
c3[i + 1] ← (z2[i] − z1[i] + c3[i]) � 1 , (35)

where carries c1[0] = c2[0] = 0 and borrow c3[0] = 0. We assume all variables
to be integers in two’s complement notation, all shifts are signed shifts. Let us
define

S[i] ← (c1[i], c2[i], c3[i]) , (36)
S[i + 1] ← (c1[i + 1], c2[i + 1], c3[i + 1]) . (37)

Then (28)-(35) correspond to the S-function

(Δ+z[i], S[i + 1]) = f(x1[i], y1[i], Δ+x[i], Δ+y[i], S[i]), 0 ≤ i < n . (38)

Both carries c1[i] and c2[i] can be either 0 or 1; borrow c3[i] can be either 0 or −1.

46 N. Mouha et al.

4.4 Computing the Probability adp⊕

Using the description of the S-function (38), the calculation of adp⊕ follows di-
rectly from Sect. 3.4. We obtain eightmatrices Aw[i] of size 8×8. After applying the
minimization algorithm of Sect. 3.5, the size of the matrices remains unchanged.
Here, we use the expression −4 · c3[i] + 2 · c2[i] + c1[i] as an index to order the
states S[i]. The matrices we obtain are then permutation similar to those of [23];
their states S′[i] can be related to our states S[i] by permutation σ:

σ =
(

0 1 2 3 4 5 6 7
0 4 2 6 1 5 3 7

)
. (39)

We calculate the number of paths using (19). From (27), we get adp⊕(α, β →
γ) = 4−n|P |. Therefore, we can define A∗

w[i] = Aw[i]/4, and obtain

adp⊕(α, β → γ) = LA∗
w[n−1] · · ·A∗

w[1]A
∗
w[0]C . (40)

5 Counting Possible Output Differences

5.1 Introduction

In the previous sections, we showed for several constructions how to calculate
the probability that given input differences lead to a given output difference. A
related problem is to calculate the number of possible output differences, when
the input differences are given. We say that an output difference is possible, if
it occurs with a non-zero probability.

First, we describe a naive algorithm to count the number of output differences.
It has a time complexity that is exponential in the word length n. We investigate
both improvements in existing literature, as well as cryptanalysis results where
such a calculation is necessary.

Then, we introduce a new algorithm. We found it to be the first in existing
literature with a time complexity that is linear in n. We show that our algorithm
can be used for all constructions based on S-functions.

5.2 Algorithm with a Exponential Time in n

Generic Exponential-in-n Time Algorithm. A naive, but straightforward
algorithm works as follows. All output differences with non-zero probability can
be represented in a search tree. Every level in this tree contains nodes of one
particular bit position, with the least significant bit at the top level. This tree
is traversed using depth-first search. For each output difference with non-zero
probability that is found, we increment a counter for the number of output
differences by one. When all nodes are traversed, this counter contains the total
number of possible output differences. The time complexity of this algorithm is
exponential in n, the memory complexity is linear in n.

The Differential Analysis of S-Functions 47

Improvement for xdc+(α, β). We introduce the notation xdc+(α, β) for
the number of output xor-differences of addition modulo 2n, given input xor-
differences α and β. In [3], xdc+ was used to build a key-recovery attack on top
of a boomerang distinguisher for 32-round Threefish-512 [13]. They introduced
a new algorithm to calculate xdc+. The correctness of this algorithm is proven
in the full version of [3], i.e. [2]. The algorithm, however, only works if one of the
inputs contains either no difference, or a difference only in the most significant
bit. Also, it does not generalize to other types of differences. The time complexity
of this algorithm is exponential in the number of non-zero input bits, and the
memory complexity is linear in the number of non-zero input bits. As a result,
it is only usable in practice for sparse input differences. We were unable to find
any other work on this problem in existing literature.

5.3 Algorithm with a Linear Time in n

In Sect. 3 and 4, we showed how to calculate the probability of an output dif-
ference using both graph theory and matrix multiplications. We now present a
similar method to calculate the number of possible output differences. First, the
general algorithm is explained. It is applicable to any type of construction based
on S-functions. Then, we illustrate how the matrices for xdp+ can be turned
into matrices for xdc+. This paper is the first to present an algorithm for this
problem with a linear-in-n time complexity. We also extend the results to adp⊕.
Our strategy is similar to the calculation of the controlled probability Pc(i), used
in the cryptanalysis of SHA-1 [12,30].

Graph Representation. As in Sect. 3.4, we will again construct a graph. Let
N be the number of states |T [i]| that we obtained in Sect. 3.5. For xdp+, we found
N = 2. We will now construct larger subgraphs, where the nodes do not represent
states T [i], but elements of its power set P(T [i]). This power set P(T [i]) contains
2N elements, ranging from the empty set ∅ to set of all states {0, 1, . . . , N−1}. In
automata theory, this technique is known as the subset construction [16, §2.3.5].
It converts the non-deterministic finite-state automaton (NFA) of Sect. 3.5 into
a deterministic finite-state automaton (DFA).

For every subgraph, the input difference bits α[i] and β[i] are fixed. We then
define exactly one edge for every output bit γ[i] from every set in P(T [i]) to the
corresponding set of next states in P(T [i + 1]). The example in the next section
will clarify this step.

Theorem 2. Let P be the set of all paths that start in {0} at position i = 0
and end in a non-empty set at position i = n. Then, the number of paths |P |
corresponds to the number of possible output differences.

Proof. All paths P start in {0} at i = 0, and end in a non-empty set at i = n. For
a given output difference bit, there is exactly one edge leaving from a non-empty
set of states to another non-empty set of states. Therefore by construction, every
possible output difference corresponds to exactly one path in P . ��

48 N. Mouha et al.

Multiplication of Matrices. The differential (α[i], β[i]) at bit position i is
written as a bit string w[i] ← α[i] ‖ β[i]. As in Sect. 3.4, we construct the
biadjacency matrices of these subgraphs. They will be of size 2N × 2N . As we
are only interested in possible output differences, these matrices can be reduced
to matrices Bw[i] of size (2N − 1) × (2N − 1) by removing the empty set ∅.

Define 1×(2N−1) matrix L=[11 · · · 1] and (2N−1)×1 matrix C = [1 0 · · · 0]T .
Similar to (19), we obtain the number of possible output differences as

|P | = LBw[n−1] · · ·Bw[1]Bw[0]C . (41)

The time complexity of (41) is linear in the word length n.
We note that these matrices can have large dimensions. However, this is often

not a problem in practice, as they are typically very sparse. If we keep track of
only non-zero elements, there is little memory required to store vectors, and fast
algorithms exist for sparse matrix-vector multiplications. Also, the size of the
matrices can be minimized using Sect. 3.5.

5.4 Computing the Number of Output Differences xdc+

In the minimized matrices for xdp+ (given in [23] and again in Appendix A), we
refer to the states corresponding to the first and the second column as S[i] = 0
and S[i] = 1 respectively. Then, the subgraphs for xdc+ can be constructed as in
Fig. 3. Regardless of the value of the output bit, edges leaving from the empty
set ∅ at i will always arrive at the empty set at i + 1. Assume that the input
differences are α[i] = β[i] = 0, and that we are in state S[i] = 1, represented in
Fig. 3 as {1}. Recall that the matrices for xdp+ are

A′
000 =

[
1 0
0 0

]
, A′

001 =
1
2

[
0 1
0 1

]
, (42)

for output differences γ[i] = 0 and γ[i] = 1 respectively. To find out which states
can be reached from state S[i] = 1, we multiply both matrices to the right by[
0 1

]T . We obtain

A′
000

[
0
1

]
=
[

0
0

]
, A′

001

[
0
1

]
=

1
2

[
1
1

]
. (43)

We see that we cannot reach a valid next state if γ[i] = 0, so there is an edge
between {1} at i and ∅ at i + 1 for γ[i] = 0. If γ[i] = 1, both states can be
reached. Therefore, we draw an edge between {1} at i and {0, 1} at i + 1 for
γ[i] = 1. The other edges of Fig. 3 can be derived in a similar way.

Matrices B00, B01, B10, B11 of (41) can be derived from Fig. 3 as

B00 =

⎡
⎣1 0 1

0 0 0
0 1 1

⎤
⎦ , B01 = B10 =

⎡
⎣0 0 0

0 0 0
1 1 2

⎤
⎦ , B11 =

⎡
⎣0 0 0

0 1 1
1 0 1

⎤
⎦ . (44)

The Differential Analysis of S-Functions 49

(1,1)

∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
1

0

0

1

1

0

(0,1) and (1,0)

∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
0

1

1

0
0

1

(0,0)

∅ ∅

{0} {0}

{1} {1}

{0, 1} {0, 1}

0

1
1

0
0

1

0

1

Fig. 3. All possible subgraphs for xdc+. Vertices correspond to valid sets of states S[i].
There is one edge for every output difference bit γ[i]. Above each subgraph, the value

of (α[i], β[i]) is given in bold.

If the input differences are very sparse or very dense, (41) can be sped up by
using the following expressions for the powers of matrices:

Bk
00 =

⎡
⎣1 k − 1 k

0 0 0
0 1 1

⎤
⎦ , Bk

01 = Bk
10 =

⎡
⎣ 0 0 0

0 0 0
2k−1 2k−1 2k

⎤
⎦ , Bk

11 =

⎡
⎣ 0 0 0

k − 1 1 k
1 0 1

⎤
⎦ .

(45)

This way, we obtain an algorithm with a time complexity that is linear in the
number of non-zero input bits. As such, our algorithm always outperforms the
naive exponential time algorithm, as well as the exponential time algorithm of [3]
that only works for some input differences.

Let L = [1 1] and C = [1 0]T . We illustrate our method by recalculating the
example given in [3]:

xdc+(0x1000010402000000, 0x0000000000000000) (46)

= L · B3
00 · B10 · B19

00 · B10 · B5
00 · B10 · B8

00 · B10 · B25
00 · C (47)

= 5880 (48)

5.5 Calculation of adc⊕

We can also calculate adc⊕, which is the number of output differences for xor,
when all differences are expressed using addition modulo 2n. As the matrices
A∗

w[i] for adp⊕ are of dimension 8 × 8, the matrices Bw[i] of adc⊕ would be of
dimension (28 − 1)× (28 − 1) = 255× 255. However, we find that only 24 out of
255 states are accessible. Furthermore, we find that all 24 accessible states are
equivalent to 2 states. In the end, we obtain the following 2 × 2 matrices:

B00 =
[

1 0
0 2

]
, B01 = B10 = B11 =

[
0 0
1 2

]
. (49)

50 N. Mouha et al.

These matrices Bw[i] are consistent with Theorem 2 of [23]. Although the end
result is simple, this example encompasses many of the techniques presented in
this paper.

6 Conclusion

In Sect. 2, we introduced the concept of an S-function, for which we build a
framework in this paper. In Sect. 3, we analyzed the differential probability xdp+

of addition modulo 2n, when differences are expressed using xor. This probability
was derived using graph theory, and calculated using matrix multiplications. We
showed not only how to derive the matrices in an automated way, but also give
an algorithm to minimize their size. The results are consistent with [23]. This
technique was extended to an arbitrary number of inputs and to several related
constructions, including an entire step of SHA-1. A precursor of the methods
in this section was already used for the cryptanalysis of SHA-1 [12,30]. We are
unaware of any other fully systematic and efficient framework for the differential
cryptanalysis of S-functions using xor differences.

Using the proposed framework, we studied the differential probability adp⊕

of xor when differences are expressed using addition modulo 2n in Sect 4. To the
best of our knowledge, this paper is the first to obtain this result in a construc-
tive way. We verified that our matrices correspond to those obtained in [23]. As
these techniques can easily be generalized, this paper provides the first known
systematic treatment of the differential cryptanalysis of S-functions using addi-
tive differences.

Finally, in Sect. 5, we showed how the number of output differences with non-
zero probability can be calculated. An exponential-in-n algorithm was already
used for this problem in the cryptanalysis of Threefish [3]. As far as we know,
this paper is the first to present an algorithm for this with a time complexity
that is linear in the number of non-zero bits.

Acknowledgments. The authors would like to thank their colleagues at COSIC,
and Vincent Rijmen in particular, for the fruitful discussions, as well as the
anonymous reviewers for their detailed comments and suggestions. Thanks to
James Quah for pointing out an error in one of the matrices of Appendix A, and
for several suggestions on how to improve the text.

References

1. Anderson, R.J. (ed.): FSE 1993. LNCS, vol. 809. Springer, Heidelberg (1994)

2. Aumasson, J.-P., Calik, C., Meier, W., Ozen, O., Phan, R.C.-W., Varıcı, K.:

Improved Cryptanalysis of Skein. Cryptology ePrint Archive, Report 2009/438

(2009), http://eprint.iacr.org/

3. Aumasson, J.-P., Calik, C., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.:

Improved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,

vol. 5912, pp. 542–559. Springer, Heidelberg (2009)

http://eprint.iacr.org/

The Differential Analysis of S-Functions 51

4. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE.

Submission to the NIST SHA-3 Competition (Round 2) (2008)

5. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M.J.B.,

Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97.

Springer, Heidelberg (2008)

6. Bernstein, D.J.: CubeHash specification (2.B.1). Submission to the NIST SHA-3

Competition (Round 2) (2009)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.

Cryptology 4(1), 3–72 (1991)

8. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,

A., Icart, T., Misarsky, J.-F., Naya-Plasencia, M., Paillier, P., Pornin, T.,

Reinhard, J.-R., Thuillet, C., Videau, M.: Shabal, a Submission to NIST’s Cryp-

tographic Hash Algorithm Competition. Submission to the NIST SHA-3 Compe-

tition (Round 2) (2008)

9. Chittenden, E.W.: On the number of paths in a finite partially ordered set. The

American Mathematical Monthly 54(7), 404–405 (1947)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, Heidelberg (2002)

11. Daum, M.: Narrow T-Functions. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.

LNCS, vol. 3557, pp. 50–67. Springer, Heidelberg (2005)

12. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results

and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,

pp. 1–20. Springer, Heidelberg (2006)

13. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,

J., Walker, J.: The Skein Hash Function Family. Submission to the NIST SHA-3

Competition (Round 2) (2009)

14. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J.,

Mjølsnes, S.F.: Cryptographic Hash Function BLUE MIDNIGHT WISH.

Submission to the NIST SHA-3 Competition (Round 2) (2009)

15. Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential Cryptanalysis

of TEA and XTEA. In: Lim, J.I., Lee, D.H. (eds.) ICISC 2003. LNCS, vol. 2971,

pp. 402–417. Springer, Heidelberg (2004)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 3rd edn. Addison-Wesley, Reading (2006)

17. Huffman, D.: The synthesis of sequential switching circuits. Journal of the

Franklin Institute 257(3), 161–190 (1954)

18. Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. Journal of

Cryptology 23(3) (2010) (to appear)

19. Klimov, A., Shamir, A.: Cryptographic Applications of T-Functions. In: Matsui,

M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer,

Heidelberg (2004)

20. Leurent, G., Bouillaguet, C., Fouque, P.-A.: SIMD Is a Message Digest.

Submission to the NIST SHA-3 Competition (Round 2) (2009)

21. Lipmaa, H.: On Differential Properties of Pseudo-Hadamard Transform and

Related Mappings. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS,

vol. 2551, pp. 48–61. Springer, Heidelberg (2002)

22. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential

Properties of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp.

336–350. Springer, Heidelberg (2002)

52 N. Mouha et al.

23. Lipmaa, H., Wallén, J., Dumas, P.: On the Additive Differential Probability of

Exclusive-Or. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.

317–331. Springer, Heidelberg (2004)

24. Lyon, R.F.: Two’s Complement Pipeline Multipliers. IEEE Transactions

on Communications 24(4), 418–425 (1976)

25. Lyon, R.F.: A bit-serial architectural methodology for signal processing. In: Gray,

J.P. (ed.) VLSI 1981, pp. 131–140. Academic Press, London (1981)

26. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL

Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.

Springer, Heidelberg (1993)

27. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Systems Technical

Journal 34, 1045–1079 (1955)

28. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton (1996)

29. Moore, E.F.: Gedanken experiments on sequential machines. Automata Studies,

129–153 (1956)

30. Mouha, N., De Cannière, C., Indesteege, S., Preneel, B.: Finding Collisions for a

45-Step Simplified HAS-V. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS,

vol. 5932, pp. 206–225. Springer, Heidelberg (2009)

31. National Institute of Standards and Technology. Announcing Request

for Candidate Algorithm Nominations for a New Cryptographic Hash

Algorithm (SHA-3) Family. Federal Register 27(212), 62212–62220 (2007),

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(October 17, 2008)

32. Needham, R.M., Wheeler, D.J.: Tea extensions. Computer Laboratory, Cambridge

University, England (1997),

http://www.movable-type.co.uk/scripts/xtea.pdf

33. O’Neil, S., Nohl, K., Henzen, L.: EnRUPT Hash Function Specification. Submis-

sion to the NIST SHA-3 Competition (Round 1) (2008)

34. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The

Twofish encryption algorithm: a 128-bit block cipher. John Wiley & Sons, Inc.,

New York (1999)

A Matrices for xdp+

The four distinct matrices Aw[i] obtained for xdp+ in Sect. 3.4 are given in (50).
The remaining matrices can be derived using A001 = A010 = A100 and A011 =
A101 = A110.

A000 =

⎡
⎢⎢⎣
3 0 0 1
0 0 0 0
0 0 0 0
1 0 0 3

⎤
⎥⎥⎦ , A001 =

⎡
⎢⎢⎣
0 1 1 0
0 2 0 0
0 0 2 0
0 1 1 0

⎤
⎥⎥⎦ , A011 =

⎡
⎢⎢⎣
2 0 0 0
1 0 0 1
1 0 0 1
0 0 0 2

⎤
⎥⎥⎦ , A111 =

⎡
⎢⎢⎣
0 0 0 0
0 1 3 0
0 3 1 0
0 0 0 0

⎤
⎥⎥⎦ .

(50)
Similarly, we give the four distinct matrices A′

w[i] of Sect. 3.4 in (51). The re-
maining matrices satisfy A′

001 = A′
010 = A′

100 and A′
011 = A′

101 = A′
110.

A′
000 =

[
1 0
0 0

]
, A′

001 =
1
2

[
0 1
0 1

]
, A′

011 =
1
2

[
1 0
1 0

]
, A′

111 =
[
0 0
0 1

]
. (51)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.movable-type.co.uk/scripts/xtea.pdf

The Differential Analysis of S-Functions 53

B All Possible Subgraphs for xdp+

All possible subgraphs for xdp+ are given in Fig. 4.

C Computation of xdp+ with Multiple Inputs

In Sect. 3, we showed how to compute the probability xdp+(α, β → γ), by
introducing S-functions and using techniques based on graph theory and ma-
trix multiplications. In the same way, we can also evaluate the probability
xdp+(α[i], β[i], ζ[i], . . . → γ[i]) for multiple inputs. We illustrate this for the
simplest case of three inputs. We follow the same basic steps from Sect. 3 and
Sect. 4: construct the S-function, construct the graph and derive the matrices,
minimize the matrices, and multiply them to compute the probability.

Let us define

S[i] ← (c1[i], c2[i]) , (52)
S[i + 1] ← (c1[i + 1], c2[i + 1]) . (53)

Then, the S-function corresponding to the case of three inputs x, y, q and output
z is:

(Δ⊕z[i], S[i+1]) = f(x1[i], y1[i], q1[i], Δ⊕x[i], Δ⊕y[i], Δ⊕q[i], S[i]). 0 ≤ i < n .
(54)

Because we are adding three words in binary, the values for the carries c1[i] and
c2[i] are both in the set {0, 1, 2}. The differential (α[i], β[i], ζ[i] → γ[i]) at bit
position i is written as a bit string w[i] ← α[i] ‖ β[i] ‖ ζ[i] ‖ γ[i]. Using this
S-function and the corresponding graph, we build the matrices Aw[i]. After we
apply the minimization algorithm (removing inaccessible states and combining
equivalent states) we obtain the following minimized matrices. The remaining
matrices satisfy A0001 = A0010 = A0100 = A1000, A0011 = A0101 = A0110 =
A1001 = A1010 = A1100 and A0111 = A1011 = A1101 = A1110.

A0000 =

⎡
⎢⎢⎣
4 0 0 2
0 0 8 0
0 0 0 0
4 0 0 6

⎤
⎥⎥⎦ , A0001 =

⎡
⎢⎢⎣
0 1 0 0
0 4 0 0
0 0 0 0
0 3 0 0

⎤
⎥⎥⎦ , A0011 =

⎡
⎢⎢⎣
2 0 0 0
4 0 4 4
0 0 2 0
2 0 2 4

⎤
⎥⎥⎦ ,

A0111 =

⎡
⎢⎢⎣
0 0 0 0
0 4 0 0
0 1 0 0
0 3 0 0

⎤
⎥⎥⎦ , A1111 =

⎡
⎢⎢⎣
0 0 0 0
8 0 0 0
0 0 4 2
0 0 4 6

⎤
⎥⎥⎦ .

54 N. Mouha et al.

D Computation of xdp×3

Given n-bit words x1, Δ
⊕x, we can calculate Δ⊕z using

x2 ← x1 ⊕ Δ⊕x , (55)
z1 ← x1 · 3 = (x1 � 1) + x1 , (56)
z2 ← x2 · 3 = (x2 � 1) + x2 , (57)

Δ⊕z ← z2 ⊕ z1 . (58)

We then define xdp×3(α → γ) as

xdp×3(α → γ) =
|{x1 : Δ⊕x = α, Δ⊕z = γ}|

|{x1 : Δ⊕x = α}| , (59)

= 2−n|{x1 : Δ⊕x = α, Δ⊕z = γ}| , (60)

as there are 2n values for the n-bit word x1.
The left shift by one requires one bit of both x1[i] and x2[i] to be stored for

the calculation of the next output bit. For this, we will use d1[i] and d2[i]. In
general, shifting to the left by i positions requires the i previous inputs to be
stored. Therefore, (55)-(58) correspond to the following bit level expressions:

x2[i] ← x1[i] ⊕ Δ⊕x[i] , (61)
z1[i] ← x1[i] ⊕ d1[i] ⊕ c1[i] , (62)

c1[i + 1] ← (x1[i] + d1[i] + c1[i]) � 1 , (63)
d1[i + 1] ← x1[i] , (64)

z2[i] ← x2[i] ⊕ d2[i] ⊕ c2[i] , (65)
c2[i + 1] ← (x2[i] + d2[i] + c2[i]) � 1 , (66)
d2[i + 1] ← x2[i] , (67)

Δ⊕z[i] ← z2[i] ⊕ z1[i] , (68)

where c1[0] = c2[0] = d1[0] = d2[0] = 0. Let us define

S[i] ← (c1[i], c2[i], d1[i], d2[i]) , (69)
S[i + 1] ← (c1[i + 1], c2[i + 1], d1[i + 1], d2[i + 1]) . (70)

Then (61)-(68) correspond to the S-function

(Δ⊕z[i], S[i + 1]) = f(x1[i], Δ⊕x[i], S[i]), 0 ≤ i < n . (71)

Each of c1[i], c2[i], d1[i], d2[i] can be either 0 or 1. After minimizing the 16
states S[i], we obtain only 4 indistinguishable states. Define again 1 × 4 matrix
L = [1 1 1 1] and 4 × 1 matrix C = [1 0 0 0]T . The differential (α[i] → γ[i]) at
bit position i is written as a bit string w[i] ← α[i] ‖ γ[i]. Then xdp×3 is equal to

xdp×3(α → γ) = LA∗
w[n−1] · · ·A∗

w[1]A
∗
w[0]C , (72)

The Differential Analysis of S-Functions 55

where

A∗
00 =

1
2

⎡
⎢⎢⎣

1 0 2 0
0 0 0 2
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A∗

01 =
1
2

⎡
⎢⎢⎣

0 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A∗

10 =
1
2

⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , A∗

11 =
1
2

⎡
⎢⎢⎣
0 0 0 0
2 0 0 0
0 0 0 1
0 0 2 1

⎤
⎥⎥⎦ .

We now illustrate this calculation by example. Let α = 0x12492489 and γ =
0x3AEBAEAB. Then xdp×3(α → γ) = 2−15, whereas xdp+(α, α � 1 → γ) = 2−25.
From this example, we see that approximating the probability calculation of
multiplication by a constant using xdp+, can give a result that is completely
different from the actual probability. This motivates the need for the technique
that we present in this section. We note there is no loss in generality when we
analyze xdp×3: the same technique can be automatically applied for xdp×C,
where C is an arbitrary constant.

56 N. Mouha et al.

(0
,0
,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0
)

(1
,
0
)

(0
,
1
)

(1
,
0
)

(0
,
1
)

(1
,
1
)

(0
, 0
)

(1
,1
)

(0
,0
,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0
)

(0
, 0
)

(0
,
1
)

(1
,
0
)

(1
,
0
)

(0
,
1
)

(1
,1
)

(1
,
1
)

(0
,1
,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
1
)

(0
, 0
)

(0
,
0
)

(1
,
0
)

(0
,
1
)

(1
,
1
)

(1
,1
)

(1
,
0
)

(0
,1
,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0
)

(0
,
1
)

(1
,
0
)

(1
,1
) (0
, 0
)

(0
,
1
)

(1
,
0
)

(1
,
1
)

(1
,0
,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(1
,
0
)

(0
, 0
)

(0
,
0
)

(0
,
1
)

(1
,
0
)

(1
,
1
)

(1
,1
)

(0
,
1
)

(1
,0
,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(0
,
0
)

(1
,
0
)

(0
,
1
)

(1
,1
) (0
, 0
)

(1
,
0
)

(0
,
1
)

(1
,
1
)

(1
,1
,0
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(1
,
0
)

(0
,
1
)

(0
,
0
)

(1
,1
) (0
, 0
)

(1
,
1
)

(1
,
0
)

(0
,
1
)

(1
,1
,1
)

0
,
0

0
,
0

0
,
1

0
,
1

1
,
0

1
,
0

1
,
1

1
,
1

(1
,
0
)

(0
,
1
)

(0
,
0
)

(1
,
1
)

(0
,
0
)

(1
,
0
)

(0
,
1
)

(1
,
1
)

F
ig

.
4
.

A
ll

p
o
ss

ib
le

su
b
g
ra

p
h
s

fo
r

x
d
p
+
.
V

e
rt

ic
e
s

(c
1
[i
],

c 2
[i
])

c
o
rr

e
sp

o
n
d

to
st

a
te

s
S
[i
].

T
h
e
re

is
o
n
e

e
d
g
e

fo
r

e
v
e
ry

in
p
u
t

p
a
ir

(x
1
,y

1
).

A
b
o
v
e

e
a
ch

su
b
g
ra

p
h
,
th

e
v
a
lu

e
o
f
(α

[i
],

β
[i
],

γ
[i
])

is
g
iv

e
n

in
b
o
ld

.

Hill Climbing Algorithms and Trivium

Julia Borghoff1, Lars R. Knudsen1, and Krystian Matusiewicz2

1 Department of Mathematics, Technical University of Denmark

{J.Borghoff,Lars.R.Knudsen}@mat.dtu.dk
2 Institute of Mathematics and Computer Science, Wroclaw University of Technology

Krystian.Matusiewicz@pwr.wroc.pl

Abstract. This paper proposes a new method to solve certain classes

of systems of multivariate equations over the binary field and its crypt-

analytical applications. We show how heuristic optimization methods

such as hill climbing algorithms can be relevant to solving systems of

multivariate equations. A characteristic of equation systems that may

be efficiently solvable by the means of such algorithms is provided. As

an example, we investigate equation systems induced by the problem of

recovering the internal state of the stream cipher Trivium. We propose

an improved variant of the simulated annealing method that seems to

be well-suited for this type of system and provide some experimental

results.

Keywords: simulated annealing, cryptanalysis, Trivium.

1 Introduction

Cryptanalysis focuses on efficient ways of exploiting, perhaps unexpected, struc-
ture of cryptographic problems. It could be a difference which propagates with
a high probability through the cipher as used in differential cryptanalysis [6,2]
or a linear approximation of the non-linear parts of a cipher that holds for many
of the possible inputs as is the case in linear cryptanalysis [20]. More recently,
the so-called algebraic attacks have received much attention. They exploit the
fact that many cryptographic primitives can be described by sparse multivariate
non-linear equations over the binary field in such a way that solving these equa-
tions recovers the secret key or the initial state in the case of stream ciphers. In
general, solving random systems of multivariate non-linear Boolean equations is
an NP-hard problem [12]. However, when the system has a specific structure, we
can hope that more efficient methods may exist.

One technique to tackle such equation systems is linearisation, where each
non-linear term is replaced by an independent linear variable. It works only if
there are enough linear independent equations in the resulting system. The XL
algorithm [7] increases the number of equations by multiplying them with all
monomials of a certain degree. It has been refined to the XSL algorithm [9],
which, when applied to the AES, exploits the special structure of the equation

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 57–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

58 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

system. Neither the XL nor the XSL algorithm have been able to break AES
but algebraic attacks were successful in breaking a number of stream cipher
designs [1,8].

In this paper we also investigate systems of sparse multivariate equations. The
important additional requirement we make is that each variable appears only
in a very limited number of equations. The equation system generated by the
keystream generation algorithm of the stream cipher Trivium [10] satisfies those
properties and will be examined in this paper as our main example. The fully
determined Trivium system consists of 954 equations in 954 variables. Solving
this system allows us to recover the 288-bit initial state.

Our approach considers the problem of finding a solution for the system as an
optimization problem and then applies an improved variant of simulated anneal-
ing to it. As opposed to the XL and XSL algorithms, the simulated annealing
algorithm does not increase the size of the problem, it does not generate more nor
change the existing equations. The only additional requirement is an objective
function, called the cost function, that should be minimized.

Simulated annealing has been studied in the context of cryptography before.
An attack on an identification scheme based on the permuted perceptron problem
(PPP) [19] was presented. An appropriate cost function was found which made
it possible to solve the simpler perceptron problem as well as the PPP using a
simulated annealing search. The attack showed that the recommended smallest
parameters for the identification scheme are not secure. The same identification
scheme was later a subject to an improved attack [5]. Simulated annealing was
used to solve a related problem that had solutions highly correlated with the
solution of the actual problem. Furthermore, timing analysis was applied where
the search process is monitored and one can observe that some variables are
stuck at correct values at an early state and never change again.

With the current experiments, we are not able to break Trivium in the cryp-
tographic sense which means with a complexity equivalent to less than 280 key
setups and the true complexity of our method against Trivium is unknown.
However, if one considers the Trivium system purely as a multivariate quadratic
Boolean system in 954 variables this system can be solved significantly faster
than exhaustive search, namely by around 2210 bit flips which is roughly equiva-
lent to 2203 evaluations of the system. This shows that this variant of simulated
annealing seems to be a promising tool for solving non-linear Boolean equation
systems with certain properties.

2 Hill Climbing Algorithms

Hill climbing algorithms are a general class of heuristic optimization algorithms
that deal with the following optimization problem. There is a finite set X of
possible configurations. Each configuration is assigned a non-negative, real num-
ber called cost, or, in other words, a cost function is defined as f : X → R.
For each configuration x ∈ X a set of neighbours η(x) ⊂ X is defined. The
aim of the search is to find xmin ∈ X minimizing the cost function f(x),

Hill Climbing Algorithms and Trivium 59

f(xmin) = min{f(x) : x ∈ X}, by moving from neighbour to neighbour de-
pending on the cost difference between the neighbouring configurations.

Johnson and Jacobsen [15] presented a unified view of many hill climbing
algorithms by describing conditions on accepting a move from one configuration
to another. The transition probability pk(x, y) of accepting a move from x to
y ∈ η(x) is defined as the product of a configuration generation probability
gi(x, y) and a configuration acceptance probability Pr[Rk(x, y) ≥ f(y) − f(x)],
where Rk(x, y) is a random variable and k is an iteration index that is increased
by one after a fixed number of moves. Algorithm 1 presents a general form of a
hill climbing algorithm.

Algorithm 1. General formulation of hill climbing algorithms
xbest ← x
while stopping criterion not met do

k ← 0 � set the outer loop counter

while k < K do
for m = 0, . . . , M − 1 do

generate a neighbour y ∈ η(x) with probability gk(x, y)

compute the cost function f(y) of the candidate

if Rk(x, y) ≥ f(y) − f(x) then
x ← y � accept the move

if f(x) < f(xbest) then
xbest ← x � store the best configuration

end if
end if

end for
k ← k + 1

end while
end while

Note that when Rk(x, y) = 0, we obtain a local search algorithm as only
moves that decrease the cost are accepted.

Simulated Annealing. The classical simulated annealing algorithm [18] is
a special case of the general hill climbing algorithm presented above with a
particular definition of the transition probability.

The simulated annealing algorithm uses a key parameter called the tempera-
ture t. The configuration generation probability is taken to be uniform, i.e., each
neighbour is equally likely to be picked from each state. The acceptance prob-
ability depends on the difference f(y) − f(x) in the cost function between the
current state x and the selected neighbour y and the current temperature tk.
The move is always accepted when it decreases the cost and with probability
e−(f(y)−f(x))/tk when the cost increases. In terms of the general formulation pre-
sented above, we get this behaviour when we define Rk(x, y) = −tk ln(U), where
U is a uniform random variable on [0, 1].

60 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

Note that when the temperature tk is high, many cost-increasing moves are
accepted. When the temperature is lower, worsening moves are less and less
likely to be accepted.

The way the “temperature” tk of the system decreases over time (k) is called
the cooling schedule. The condition necessary for the global convergence of the
method is that tk ≥ 0 and limk→∞ tk = 0. In practice, two most commonly
used cooling schedules are the exponential cooling schedule tk = α · βk for some
parameter 0 < β < 1 and the logarithmic cooling schedule tk = α/ log2(k + 1)
proposed in [13], where α is a constant corresponding to the starting tempera-
ture.

3 Trivium System as an Optimization Problem

Trivium [10] is an extremely simple and elegant stream cipher that was sub-
mitted to the ECRYPT eStream project. It successfully withstood significant
cryptanalytical attention [21,22,23,24,3] and became part of the portfolio of the
eStream finalists.

To our knowledge, there is no attack on Trivium faster than the exhaustive
key search so far. However, several attacks have been proposed which are faster
than the naive guess-and-determine attack with complexity 2195 which was con-
sidered by the designers [10]. A more intelligent guess-and-determine attack with
complexity 2135 using a reformulation of Trivium has been sketched in [17]. Fur-
thermore, Maximov and Biryukov [21] described an attack with complexity 285.5

and Raddum proposed a new algorithm for solving non-linear Boolean equations
and applied it to Trivium in [23]. The attack complexity was 2164. McDonald at
al [22] considered Trivium as a Boolean satisfiability problem and used the SAT-
solver MiniSAT in order to solve it. This approach was faster than exhaustive
key search for small scale variants of Trivium called Bivium. However, for the
full Trivium the estimated complexity is about 2159.9 seconds and is therefore
worse than exhaustive search.

Trivium has an 80-bit key, an 80-bit IV and 288 bits of the internal state
(s1, . . . , s288). At each clock cycle it updates only three bits of the state and
produces one bit of the keystream using the following procedure.

for i = 1, 2, . . . do
zi ← s66 + s93 + s162 + s177 + s243 + s288 � Generate output bit zi

ti,1 ← s66 + s93 + s91 · s92 + s171
ti,2 ← s162 + s177 + s175 · s176 + s264
ti,3 ← s243 + s288 + s286 · s287 + s69
(s1, s2, . . . , s93) ← (ti,3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (ti,1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (ti,2, s178, . . . , s287)

end for

During the key setup phase, the key is loaded into the first 80 bits of the state,
followed by 13 zero bits, then the IV is loaded into the next 80 bits of the state

Hill Climbing Algorithms and Trivium 61

and the remaining bits are filled with constant values. Then 4 · 288 clockings are
computed without producing any keystream bits. Our results do not depend on
this procedure.

The initial state which is the state of the registers at the time when the
key generation starts can be expressed as system of sparse linear and quadratic
Boolean equations [23]. We consider the initial state bits as variables and label
them with s1 . . . , s288. In each clocking of the Trivium algorithm three state bits
are updated. The update function is a quadratic Boolean function of the state
bits. In order to keep the degree low and the equations sparse we introduce new
variables for each updated state bit ti,1, ti,2, ti,3. We get the following equations
from the first clocking

s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 = s289

s162 ⊕ s177 ⊕ s175 · s176 ⊕ s264 = s290

s243 ⊕ s288 ⊕ s286 · s287 ⊕ s69 = s291

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = z

(1)

where the last equation is the keystream equation with z being the known
keystream bit.

After observing 288 keystream bits we can set up a fully determined system of
954 Boolean equations in 954 unknowns [23]. We only need to consider 954 equa-
tions and unknowns instead of 4 · 288 since we do not care about the last 66 state
updates for each register. These variables will not be used in the keystream equa-
tion because the new bits are not used for the keystream generation before 66 fur-
ther clockings of the cipher. By clocking the algorithm more than 288 times we can
easily obtain an overdetermined system. We know that the initial state together
with the corresponding updated state bits satisfies all the generated equations (1).
On the other hand, for a random point each equation is satisfied with probability
1
2 . It is obvious that a random point satisfies the linear equation with probabil-
ity 1

2 . A quadratic equation is satisfied if the quadratic term and the linear part
have the same value. In the Trivium system each variable appears at most once
per equation. Therefore the probabilities for the quadratic term and the linear
part of the equation are independent. Hence the probability that a random point
fulfills a quadratic equation of the Trivium system is Pr[quadratic term = 0] ·
Pr[linear part = 0]+Pr[quadratic term = 1]·Pr[linear part = 1] = 1

2 · 34+ 1
2 · 14 = 1

2 .
If we consider the problem of solving the Trivium equation system as an op-

timization problem which is suitable for hill climbing algorithms (cf. Section 2)
X = {0, 1}954 is the set of possible configurations. As a cost function f : X → R

we count the number of not satisfied equations in the system. We know that
the minimum of the cost function is 0 and that the initial state of the Triv-
ium system is a configuration for which the cost function is minimal. There
might be other optimal solutions, however, it is easy to check if the solution
we found is the desired one. If a configuration is an optimal solution for the

62 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

discrete optimization problem, it generates the same first 288 bits of keystream
as the initial state we are looking for. But it is unlikely that the keystream will be
the same for the following keystream bits. Therefore we can check if a solution is
the desired one by observing a few more keystream bits and comparing them to
the keystream generated by the solution. In our experiments it is unlikely that
multiple solutions occur because we set some of the variables to their correct
values and therefore consider a highly overdetermined equation system.

4 Properties of Trivium Landscapes

Hill climbing algorithms are sensitive to the way in which the cost function
changes when moving between configurations. The best results are obtained
when a move from a configuration x ∈ X to one of the neighbours η(x) does not
change the value of the cost function too much.

In our case we move from one configuration to another by flipping the value of
a single variable. Each variable appears in at most 8 equations and in 6 equations
on average, so when moving to a neighbour of the current configuration the cost
function will change by at most 8. Furthermore, each variable appears only once
in an equation. Therefore changing the value of a single variable will change the
value of the equation with probability 1 if the variable appears in a linear term
and with probability 1

2 if the variable appears in a quadratic term. In the latter
case flipping the value of a variable will just change the outcome of the equation
if the other variable in the quadratic term is assigned to ’1’. If a variable appears
in the maximum of eight equations it appears in two equations in the quadratic
term only. The expected number of equations which change their outcome is
7. Additionally it is unlikely that flipping the value of a variable changes the
outcome of all equations which contain this variable in the same direction or
respectively it is unlikely that all equations which contain the variable have the
same outcome for the configuration before the flip. (The case that a lot or even
all equations have the same outcome will appear with higher probability the
closer we are to the minimum.)

From these observations we infer that even if we move from a configuration
x to one of its neighbours by flipping the value of a variable which appears in 8
equations we do not expect that the value of the cost function changes by 8 in
almost all of the cases.

We confirmed this by the following experiment. We generated a Trivium sys-
tem for a random key and calculated the cost function for a random start-
ing point. Then we chose a neighbour configuration of our starting point and
recorded the absolute value of the change in the cost function. To simulate be-
ing close to the minimum we set a number of bits to the correct solution but we
allowed those bits to be flipped to move to a neighbouring configuration. The
results are summarized in Table 5.

These properties of Trivium cost landscapes can be captured more formally
using the notion of NK-landscapes and landscape auto-correlation as follows.

Hill Climbing Algorithms and Trivium 63

4.1 Trivium Systems and NK-Landscapes

NK-landscapes were introduced by Kaufmann [16] to model fitness landscapes
with tunable “ruggedness”. An NK-landscape is a set of configurations X =
{0, 1}n together with the cost function defined as

f(x) =
n∑

i=1

fi(xi; xπi,1 , . . . , xπi,k
) ,

where each πi is a tuple of k distinct elements from the set {1, . . . , n} \ {i}.
In other words, the cost function of an NK-landscape is a sum of n local cost
functions fi, each one of them depending on the main variable xi and a set of
k other variables. In a random neighbourhood model, the k indices are selected
randomly and uniformly for each fi. Depending on the value of k, we get either
smooth landscapes with relatively few local minima when k is small and rugged
landscapes for large values of k.

The Trivium optimization problem can be seen as a particular instance of such
a combinatorial landscape. Consider the basic system of equations. We define
each fi as the contribution of i-th equation (either 0 or 1 depending on whether
it is satisfied). Each equation depends on six distinct variables, we verified by
a computer program that indeed we can always pick one of them as the main
variable leaving exactly five other ones for each equation. Trivium optimization
problem can thus be seen as an instance of NK-landscape with n = 954 and
k = 5, a rather small value hinting at a certain smoothness of this landscape.

4.2 Landscape Auto-correlation

Another measure of landscape ruggedness is the notion of landscape correlation
introduced by Weinberger [25]. We will follow the exposition by Hordijk [14].
The main idea is to perform a random walk on the landscape via neighbouring
points. At each step, the cost function yt is recorded. In this way a sequence
(yt)t=1...T is obtained and we compute its auto-correlation coefficients.

The auto-correlation of a sequence (yt) for the time lag i is defined as ρi =
Corr(yt, yt+i) = E[yt·yt+i]−E[yt]E[yt+i]

V ar[yt]
where E means the expected value and

V ar variance of a random variable. Estimates ri of these auto-correlations ρi are
ri =

∑T−i
t=1 (yt−ȳ)(yt+i−ȳ)∑T

t=1(yt−ȳ)2 where ȳ means the mean value of the sample y1, . . . , yt.
Here a large auto-correlation coefficient corresponds to a smooth landscape. An
important assumption that has to be made for such analysis to be meaningful is
that the landscape is statistically isotropic. This means that the statistics of the
time series generated by a random walk are the same, regardless of the starting
point. Only then a random walk is “representative” of the entire landscape. By
computing correlation coefficients for many random walks starting at different
points we experimentally verified that the Trivium landscape can be seen as
isotropic.

Selected correlation coefficients computed for a basic version of Trivium sys-
tem and overdefined versions are presented in Table 1. We used sequences of

64 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

length 1000000 and averaged results over 100 runs with different keys, IVs and
starting points of the walks. Clearly, generating the overdefined system makes
the landscape smoother.

Table 1. Correlation coefficients for landscapes generated by Trivium systems of

different sizes. n denotes the number of variables in the system.

keystream length n r(1) r(10) r(20) r(30) r(40) r(50)

288 954 0.987 0.892 0.798 0.713 0.638 0.570

576 1818 0.993 0.942 0.889 0.839 0.791 0.747

1152 3546 0.997 0.970 0.942 0.914 0.886 0.862

5 Solving Trivium Systems with Modified Simulated
Annealing

The properties of landscapes generated by the Trivium system of equations sug-
gest that it might be possible to employ stochastic search methods such as
simulated annealing to try to find a global optimum and thus recover the secret
state of the cipher. In this section we report the results of our experiments in
this direction.

Initial experiments with standard simulated annealing were not very encour-
aging. To be able to solve the Trivium system in reasonable time, we needed to
simplify the initial system by setting around 600 out of 954 variables to their
correct values throughout the search.

We experimented with the algorithm and its various modifications and found
one that yielded a significant improvements over the standard algorithm. The
algorithm works as follows. As with standard simulated annealing, we randomly
generate a neighbour. If the cost decreases, we accept this move. If not, instead of
accepting with probability related to the current temperature, we pick another
neighbour and test that one. If after testing a certain number of neighbours
we cannot find any cost decreasing move, we accept the increasing move with
some probability, just as in the plain simulated annealing. The parameter of this
procedure is the number of additional candidates to test before accepting cost
increase.

If the parameter is zero, we get plain simulated annealing. On the other end
of the spectrum, if we test all possible neighbours, it is easy to see that we get an
algorithm that is equivalent to local search, we look for any possible decreasing
move and we follow it. When we are in a local minimum, we enter a loop, we
finally accept one of the cost increasing candidates but in the next move we
always go back to the local optimum we found. Setting the parameter between
those extremes yields an intermediate algorithm.

In practice, we used a probabilistic variant of this approach that randomly se-
lects neighbours until it finds one with smaller cost or it exceeds the number of
tests defined as a parameter nochangebound. This algorithm is presented in Alg. 2.

Hill Climbing Algorithms and Trivium 65

Algorithm 2. Modified version of simulated annealing
xbest ← x
T ← α � initial temperature parameter is α
k ← 0 � set the outer loop counter

while T > 1 do
for m = 0, . . . , M − 1 do � parameter M is the number of inner runs

generate a neighbour y ∈ η(x) uniformly

if f(y) < f(x) then � if cost decreased

x ← y � accept the move

if f(x) < f(xbest) then � found a new best value

xbest ← x � store the best configuration

nc ← 0 � reset the neighbor counter

if f(xbest) = 0 then � if we found a solution

return xbest � finish and return it

end if
end if

else � the candidate cost is higher

nc ← nc + 1

if (nc > nochangebound) ∧ (exp((f(y) − f(x))/T > rnd[0, 1]) then
x ← y � accept the move

nc ← 0 � reset the counter of tested neighbours

end if
end if

end for
k ← k + 1

T = α/ log2(k · M) � Logarithmic cooling schedule

end while

The relationship between the number of neighbours tested and the time it took
to find a solution (measured in the number of neighbours tested) is presented
in Fig 1. Values of nochangebound below 25 result in running times exceeding
240 flips. It suggests that the proper choice of nochangebound is critical for the
efficiency of the simulated annealing, in particular, it cannot be too small.

6 Experimental Results

In this section we report results of our computational experiments with the
basic equation system generated by the problem of recovering internal state of
Trivium. We took the fully determined system with 954 equations and variables
obtained after observing 288 bits of the keystream.

We made some comparisons between exponential and logarithmic cooling
schedules and from our limited experience the logarithmic cooling schedule per-
formed better in more cases, so we decided to pick that one for our further
tests.

The values of α were picked based on empirical observations. Too large α
resulted in prolonged periods of almost-random walks where there was no clear
sign that any optimization might occur. Too small values gave the behavior

66 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

lo
g
2
(b
it

fl
ip
s)

25

26

27

28

29

30

31

32

0 50 100 150 200 250 300 350 400

nochangebound

α = 31

��

��

��

��

��

��

��

��

��

��

��

α = 33
+

+

+

+

+

+

+

+

+

+

+

+

α = 35

��

��

��

��

��

��

��

��

��

��

��

��

lo
g
2
(b
it

fl
ip
s)

32

33

34

35

36

37

38

39

40

50 100 150 200 250 300 350 400

nochangebound

α = 31
��

��

��

��

��

��

��

��

��

��

��

��

α = 33

+

+

+

+

+

+

+

+
+

+

+

α = 35

��

��

��

��

��

��

��

��

��

��

��

��

Fig. 1. Influence of nochangebound parameter on the efficiency of simulated annealing

applied to basic Trivium system for three values of initial temperature α. Other pa-

rameters are M = 1024 (cf. Alg. 2), averages are over 10 tests. In the top figure we

guessed 200 first bits of the state, in the bottom one 180 bits.

similar to a simple local search when the process was getting stuck in some
shallow local optima. After a few trials we decided to use the initial temperature
parameter α = 35.

For each number of bits of the state fixed to their correct values (preassigned)
we ran ten identical tests with different random seeds testing various values
of nochangebound parameter (from the set 100, 150, 175, 200, 250, 300). After
the test batch finished, we picked that value of nochangebound that yielded
lowest search time. We managed to obtain optimal values for nochangebound for
200, 195, 190, 185, 180, 175 and 170 preassigned bits where we set the values
of the first bits of the internal state. We use this optimal nochangebound to
estimate the total complexity of the attack. The graph is presented in Fig. 2.

Hill Climbing Algorithms and Trivium 67

The total complexity is the product of the number of guesses we would need to
make (2preassigned) multiplied by the experimentally obtained running time of
the search for the solution. We take the complexity for the correct guess. For a
wrong guess the algorithm will not find a solution with costs 0 and terminate.

200

205

210

215

220

225

230

160165170175180185190195200

to
ta
l
a
tt
a
ck

co
m
p
le
x
it
y
(2

b
it

fl
ip

s
)

number of guessed bits

+

+

+

+

+

+
+

+

+

+
+

+
+

+

+

+
+

+ +

+
+

+

+

+
+

+

+
+

+
+

+

+

+ +

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+
+

+

+
+

+
+

+

+
+

+
+

+
+

+

+
+

+
+

+
+

+

+

+

+

+

+

+

Fig. 2. Running times of the attack based on modified simulated annealing depending

on the number of guessed bits. The numbers on the vertical axis are base two logarithms

of the total number of moves necessary to find the solution. Crosses represent results

of single experiments, the line connects averages.

The results show that the running time of the attack decreases with the smaller
number of guessed bits since the increase in time of the search procedure is
smaller than the decrease due to the smaller number of bits we have to guess. If
the curve goes down below the complexity level corresponding to 280 key setups
of Trivium, it would constitute a state-recovery attack. However, the problem
is that due to limited computational power we were not able to gather enough
results for values of preassigned smaller than 170. Our program running on
1.1GHz AMD Opteron 2354 was able to compute 235 bit flips per hour and tests
with preassigned = 170 required around 238 ∼ 239 bit flips.

It seems that trying to extrapolate the running times is rather risky, since we
do not have any analytical explanation of the complexities we get as often is the
case with heuristic search methods. Therefore we do not claim anything about
the feasibility of such an attack on full Trivium. We can only conjecture that
there might be a set of parameters for which such attack may become possible.

Due to the computational complexity, our experimental results are so far
based on only rather small samples of runs for the fixed set of parameters.
Therefore, they cannot be taken as a rigorous statisticial analysis but rather as
a reconnaissance of the feasibility of this approach. However, we have noticed
that for overwhelming fraction of all the experiments, the running times for
different runs with the same set of parameters do not deviate from the average

68 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

exponent of the bit flips by more than ±2, i.e. most of the experiments have
the number of flips between 2avg−2 and 2avg+2. Therefore, we believe that the
results give some reasonable impression of the actual situation.

7 Some Variations

The previous section presented the set of our basic experiments. However, there
is a multitude of possible variations of the basic setup which could possibly
lead to better results. We report on some variations of the search problem we
considered while looking for possible optimizations in the Appendix.

8 Conclusions and Future Directions

We presented a new way of approaching the problem of solving systems of sparse,
multivariate equations over the binary field. We represent them as combinatorial
optimization problems with the cost function being the number of not satisfied
equations and then we apply some heuristic search methods, such as simulated
annealing to solve them.

We showed that such systems may be relevant in cryptography by giving an
example of the system generated by the problem of recovering the internal state
of the stream cipher Trivium.

Our experimental results were focused on the Trivium system and they seem
to be promising but for now they do not seem to pose any real threat to the
security of this algorithm.

We hope that this paper will serve as a starting point for further research in
this direction. There are many open problems in this area, the most obvious ones
are the selection of better parameters of the search procedures and analytically
estimating the possible complexity of such algorithms.

The other interesting direction seems to be the investigation of alternative
cost functions. In all our experiments we use the simplest measure counting the
number of not satisfied equations. However, many results in heuristic search
literature suggest that the selection of a suitable cost function may dramatically
change the efficiency of a search. The question of determining whether in our
case there exist measures better than the ones we used is still open.

Acknowledgements. We would like to thank the anonymous reviewers of SAC
2010 and Tools for Cryptanalysis 2010 for their comments that helped to improve
this paper.

References

1. Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory.

In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer,

Heidelberg (2003)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.

Springer, Heidelberg (1993)

Hill Climbing Algorithms and Trivium 69

3. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a mixed-integer linear

programming problem. In: Parker, M.G. (ed.) Cryptography and Coding 2009.

LNCS, vol. 5921, pp. 133–152. Springer, Heidelberg (2009)

4. Chardaire, P., Lutton, J.L., Sutter, A.: Thermostatistical persistency: A power-

ful improving concept for simulated annealing algorithms. European Journal of

Operational Research 86(3), 565–579 (1995)

5. Clark, J.A., Jacob, J.L.: Fault injection and a timing channel on an analysis

technique. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 181–

196. Springer, Heidelberg (2002)

6. Coppersmith, D.: The data encryption standard (DES) and its strength against

attacks. IBM Journal of Research and Development 38(3), 243–250 (1994)

7. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving

overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)

EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

8. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.

In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 644–644. Springer,

Heidelberg (2003)

9. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined

systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,

pp. 267–287. Springer, Heidelberg (2002)

10. De Cannière, C., Preneel, B.: Trivium – a stream cipher construction inspired

by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/030 (2005), http://www.ecrypt.eu.org/stream/papers.html (April

29, 2005)

11. Eibach, T., Pilz, E., Steck, S.: Comparing and optismising two generic attacks on

Bivium. In: Preproceedings of SASC 2008, pp. 57–68 (2008)

12. Fraenkel, A.S., Yesha, Y.: Complexity of solving algebraic equations. Information

Processing Letters 10(4/5), 178–179 (1980)

13. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence 6(6), 721–741 (1984)

14. Hordijk, W.: A measure of landscapes. Evolutionary Computation 4(4), 335–360

(1996)

15. Johnson, A.W., Jacobson, S.H.: A class of convergent generalized hill climbing

algorithms. Applied Mathematics and Computation 125(2-3), 359–373 (2002)

16. Kauffmann, S.A.: The Origins of Order: Self-Organization and Selection in Evolu-

tion. Oxford University Press, Oxford (1993)

17. Khazaei, S.: Re: A reformuation of TRIVIUM. Posted on the eSTREAM Forum

(2006), http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

18. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Anneal-

ing. Science 220(4598), 671–680 (1983)

19. Knudsen, L.R., Meier, W.: Cryptanalysis of an identification scheme based on

the permuted perceptron problem. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,

vol. 1592, pp. 363–374. Springer, Heidelberg (1999)

20. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)

EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

21. Maximov, A., Biryukov, A.: Two trivial attacks on trivium. In: Adams, C., Miri,

A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 36–55. Springer, Heidelberg

(2007)

http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

70 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

22. McDonald, C., Charnes, C., Pieprzyk, J.: An algebraic analysis of trivium ciphers

based on the boolean satisfiability problem. Cryptology ePrint Archive, Report

2007/129 (2007), http://eprint.iacr.org/2007/129

23. Raddum, H.: Cryptanalytic results on Trivium. eStream (March 2006),

http://www.ecrypt.eu.org/stream/papersdir/2006/039.ps

24. Turan, M.S., Kara, O.: Linear approximations for 2-round Trivium. In: Security of

Information and Networks – SIN 2007, pp. 96–105. Trafford Publishing (2007)

25. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the

difference. Biological Cybernetics 63(5), 325–336 (1990)

A Variants of the Optimization Problem

In this appendix we present results of our experiments with different variations
of the basic search problem.

A.1 Guessing Strategy

In order to lower the complexity of solving the equation system we set some of
the variables to their correct values. However, the search complexity depends on
which variables we choose.

We used different guessing strategies for pre-assigning variables and compared
the influence on the running time of our algorithm. We used the following strate-
gies to guess subsets of the state bits:

1. Select the first variables of the initial state.
2. Select the first variables of each register of the initial state.
3. Select the last variables of the initial state.
4. Select the last variables of the each register of the initial state.
5. Select the most frequent variables. These are the variables which are intro-

duced by the update function at the beginning of the keystream generation.
We guess values for variable s289 and the consecutive ones in this case.

6. An adaptive pre-assignment strategy which is similar to the ThreeFour strat-
egy in [11] (see Subsection A.1).

7. Select the variables in such a way that the equation interdependence measure
is minimal. (see Subsection A.1).

It turns out that the best guessing strategy of the ones we tested is to guess the
first bits of the initial state. In addition to a pre-assignment of variables we can
determine the value of further variables by considering the linear and quadratic
equations (see below). We use this technique in the adaptive pre-assignment
strategy.

Table 2. Running time for different pre-assignment strategies. nochangebound=110,

190 bits are preassigned, average taken over ten runs.

first bits of the

initial state

most frequent

bits

first bit of

every register

last bit of the

initial state

last bit of

each register

average 29.5 33.0 34.5 31.2 36.4

http://eprint.iacr.org/2007/129
http://www.ecrypt.eu.org/stream/papersdir/2006/039.ps

Hill Climbing Algorithms and Trivium 71

Adaptive Pre-Assignment Strategy. In this pre-assignment strategy we
use the fact that assigning 5 of the variables in a linear equation will uniquely
determine the 6th variable. Starting with an arbitrary linear equation we guess
and pre-assign 5 of the 6 variables, determine the value of the remaining variable
and assign this to its value. We know that a large fraction of the variables
appear in two linear equations. So in the next round of pre-assignment we pick
an equation in which at least one variable is already assigned. That means we
only have to guess at most 4 variable to get one for free. We continue until we
have made the maximum number of guesses or we cannot find an equation in
which one variable is already assigned. In the latter case we just have to pick
an equation without preassigned variables and run the algorithm again until we
made the maximum number of guesses.

Additionally we also use the quadratic equations to determine the value of
variables.

The advantage of this pre-assignment strategy is that we can assign many
more variables than we actually have to guess. Table 3 gives us an impression of
this advantage.

Table 3. The table shows how many bits additional to the guessed bits can be assigned

using the adaptive pre-assignment strategy

guessed bits # assigned bits additional assigned bits in %

5 6 20%

50 66 32%

100 135 35%

200 281 40.5%

The disadvantage is that we instead of making the equations sparser we fix
some equations to be zero. That means that there are less equations left which
contain free variables but the maximum number of equations in which a variables
appears is still 8. Therefore a variable influences a higher percentage of equations.

Minimizing Equation Interdependency. If all the equations used different
sets of variables, it would be trivial to solve the system by a simple local search.
However, variables appear in many equations and changing the value of one
of them influences other equations at the same time. This suggests the idea of

Table 4. Running times and landscape auto-correlation coefficients ξ for bit pre-

assignment strategies minimizing equation interdependence. Experiments used α = 33,

M = 1024, nochangebound = 110.

strategy: reference Case 1 Case 2

avg: 29.34 38.9 28.72

ξ 90.1 97.4 96.1

72 J. Borghoff, L.R. Knudsen, and K. Matusiewicz

guessing (pre-assigning) bits to minimize the number of variables shared by many
equations and thus reduce the degree of mutual relationships between equations.

Capturing this intuition more formally, let Ei be an equation and let V(Ei)
denote the set of not preassigned variables that appear in the equation. We can
define the measure of interdependence of two equations Ei, Ej as IntrDep(Ei, Ej)
= |V(Ei) ∩ V(Ej)|. If the measure is zero, equations use different variables and
we can call them separated. Note that pre-assigning any bit that is used by both
equations decreases the value of interdependence.

To capture the notion of equations interdependence in the whole system of
Trivium equations E, the following measure could be used∑

e,g∈E,e�=g

|V(e) ∩ V(g)|2 . (2)

We used the sum of squares to prefer systems with more equations with only
few active (non-preassigned) variables over less equations that have more active
variables, but it is possible to use an alternative measure without the squares,∑

e,g∈E,e�=g

|V(e) ∩ V(g)| . (3)

The algorithm for pre-assigning bits to minimize the above measure is rather sim-
ple. We start with computing the initial interdependence of the system. Then,
we temporarily pick a free variable and assign it to compute the new inter-
dependence of the system. If this value is smaller than the current record, we
remember it as a new record. After we test all possible candidates, we pick the
record one and assign it for good. We repeat this procedure until we get the
required number of preassigned bits.

We performed an experiment that compared the results of the reference pre-
assignment strategy fixing the first 190 bits of the state with two variants min-
imizing (2) and (3). Results presented in Table 4 are interesting. It seems that
in spite of significant smoothening of the landscape indicated by higher values
of the coefficient ξ the first strategy minimizing (2) significantly worsens the
running time. A possible explanation may be that the landscape became more
like “golf-course” with large areas without any direction and only very small
attraction basins leading to global solution(s). Another possibility is that for
such systems, different parameter of nochangebound is preferred. The second
variant minimizing (3) seems to be only slightly better than setting the first
bits, but more tests would be needed for more parameters to decide any definite
advantage.

A.2 Using Overdefined Systems

Results on landscape auto-correlation suggest that using overdefined systems
may yield landscape with better structural properties. However, this happens at
the expense of a larger set of variables and equations we have to deal with. Our
experimental results on overdefined systems suggest that the gain we get from a
better landscape is offset by the larger system size so search times are actually
not better.

Hill Climbing Algorithms and Trivium 73

A.3 Variable Persistence

According to [4,5] while using simulated annealing to some optimization prob-
lems, one can observe a bias in the frequency of assigning values to variables
during the simulated annealing procedure. This bias is related to the solution of
the system and observing it can give some information on the solution we are
looking for.

We made some experiments that investigated if configurations of local minima
(states we run into after a long cooling run) have variables correlated with the
global minimum state. In our limited experiments with the basic Trivium system
we did not observe any such correlations.

Furthermore, we could see from our preliminary experiments that for a local
minimum with a cost value around 40 the current solution still had a large
hamming distance to the known optimal solution.

B Cost Change Statistics

Table 5. Change of the cost function when moving to a neighbour configuration:

The first row denotes the number of preassigned bits we use to simulate different

distances from the minimum. We count how often out of 10000 trials the cost function

changes by 0 to 8 units. The last row gives us the average change of the cost function.

i 0 100 200 300 400 500 600 700 800 900 954

0 1714 1702 1685 1560 1309 1052 944 767 601 264 0

1 3253 3246 3297 3158 2641 2143 1856 1550 1120 389 34

2 2248 2235 2240 2241 1930 1720 1385 1172 937 1001 1062

3 1557 1571 1550 1659 1821 1757 1488 1278 1258 1515 1537

4 675 665 668 754 1024 1020 911 810 741 596 648

5 386 400 380 409 691 940 1088 1078 1024 1068 1160

6 127 128 130 164 409 916 1372 1630 1866 2002 2049

7 32 44 41 46 165 439 837 1352 1854 2297 2534

8 8 9 9 9 10 13 119 363 599 868 976

average change 1.81 1.824 1.814 1.9 2.32 2.83 3.32 3.85 4.38 4.97 5.3

Discovery and Exploitation of
New Biases in RC4

Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux

EPFL
CH–1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

Abstract. In this paper, we present several weaknesses in the stream cipher RC4.
First, we present a technique to automatically reveal linear correlations in the
PRGA of RC4. With this method, 48 new exploitable correlations have been
discovered. Then we bind these new biases in the PRGA with known KSA
weaknesses to provide practical key recovery attacks. Henceforth, we apply a
similar technique on RC4 as a black box, i.e. the secret key words as input
and the keystream words as output. Our objective is to exhaustively find linear
correlations between these elements. Thanks to this technique, 9 new exploitable
correlations have been revealed. Finally, we exploit these weaknesses on RC4 to
some practical examples, such as the WEP protocol. We show that these corre-
lations lead to a key recovery attack on WEP with only 9800 encrypted packets
(less than 20 seconds), instead of 24200 for the best previous attack.

1 Introduction

RC4 is a stream cipher designed by Ronald Rivest in 1987. It had initially been a trade
secret until the algorithm was anonymously posted to the Cypherpunks mailing list
in September 1994. Nowadays, RC4 is still widely used: it is the default cipher of
the SSL/TLS protocol and a cryptographic primitive of the WEP (Wired Equivalent
Privacy) and WPA (Wi-Fi Protected Access) protocols. Its popularity probably comes
from its simplicity and the low computational cost of the encryption and decryption
operations. Due to its straightforwardness, RC4 sparked extensive research, revealing
weaknesses in case of misuse. The most famous example is the attack on the WEP
protocol used in IEEE 802.11.

WEP was designed to provide confidentiality on wireless communications by using
RC4. In order to simplify the key set up, WEP uses fixed keys. In wireless communi-
cations, packets may be easily lost. Because of the lack of transport control at the link
level, IEEE 802.11 designers chose to encrypt each packet independently. However,
RC4 is a stream cipher: the same secret key must never be used twice. To prevent any
key repetition, WEP concatenates an initialization vector (IV) to the key, where the IV
is a 24-bit value which is publicly disclosed in the header of the protocol. This particu-
lar use of RC4 is subject to many weaknesses. However, RC4 is not generally used with
an IV and almost all the attacks concerning WEP cannot be applied to the plain RC4.
Thus, RC4 is still believed to be secure, even if many weaknesses have been explored.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 74–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://lasecwww.epfl.ch

Discovery and Exploitation of New Biases in RC4 75

1.1 Description of RC4

The stream cipher RC4 consists of two algorithms: the Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The KSA generates an
initial state from a random key K of � words of n bits as described in Algorithm 1. It
starts with an array {0,1, . . . ,N − 1}, where N = 2n and swaps N pairs, depending on
the value of the secret key K. At the end, we obtain the initial state SN−1.

Algorithm 1. RC4 Key Scheduling Algorithm (KSA)

1: for i = 0 to N −1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N −1 do
6: j ← j +S[i]+K[i mod �] mod N
7: swap(S[i],S[j])
8: end for

Algorithm 2. RC4 Pseudo Random Generator Algorithm (PRGA)

1: i ← 0
2: j ← 0
3: loop
4: i ← i+1 mod N
5: j ← j +S[i] mod N
6: swap(S[i],S[j])
7: keystream word zi = S[S[i]+S[j] mod N]
8: end loop

Once the initial state SN−1 is created, it is used by the second algorithm of RC4, the
PRGA. Its role is to generate a keystream of words of n bits, which will be XORed with
the plaintext to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each
time a new keystream word zi is needed, according to Algorithm 2. Note that each time
a word of the keystream is generated the internal state of RC4 is updated.

Notation. In this paper, we define all the operators such as addition, subtraction and
multiplication in the group Z/NZ. Thus, x + y should be read as (x + y) mod N. The
indices of the table respect the C-style programming reference. This means that the first
entry of the table has the index 0. Let Si[k] denote the value of the array S at index k,
after round i in KSA. S−1 denotes the array where S[i] = i, where i = 0,1, . . . ,N − 1.
Let S−1

i [p] be the index of the value p in the array S after round i in KSA. For example,
S−1

i [Si[k]] = k and Si[S−1
i [p]] = p. Let ji (resp. j′i) be the value of j during the round i

of KSA (resp. PRGA) where the rounds are indexed with respect to i. Thus, the KSA
has rounds 0,1, . . . ,N − 1 and the PRGA has rounds 1,2, Let S′i denote the array S
after the ith round of the PRGA (i.e. S′1 is equal to SN−1 with SN−1[1] and SN−1[SN−1[1]]
swapped). We also denote SN−1 = S′0. In this paper, RC4 is always used with N = 256.

76 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

Thus, instead of words we may use bytes, which are equivalent. The keystream zi is
defined by

zi = S′i[S
′
i[i]+ S′i[j′i] mod N] = S′i[S

′
i−1[j′i]+ S′i−1[i] mod N] (1)

Let p be an integer and θ = e
2iπ
p . Unless otherwise mentioned, G denotes the Zp group.

The Discrete Fourier transform (DFT) of a function f over Gs is defined as

f̂ (c) = ∑
x∈Gs

f (x)θ−c•x

where • is the dot product.

Previous Work. There are two approaches in the study of cryptanalysis of RC4: at-
tacks based on the weaknesses of the KSA and attacks based on the weaknesses of the
PRGA. Concerning the KSA, one of the first weakness published on RC4 was discovered
by Roos [28] in 1995. This correlation binds the secret key bytes to the initial state S′0.
Roos [28] and Wagner [34] identified classes of weak keys which reveal the secret key
if the first key bytes are known. This property has been largely exploited against WEP
(see [5,9,2,15,16,32,30,29]). Another study of cryptanalysis of the KSA is the secret
key recovery when the initial state S′0 is known [25,1]. On the PRGA, The analysis has
been largely motivated by distinguishing attacks [7,6,19,21] or initial state reconstruc-
tion from the keystream bytes [8,31,14,22] with complexity of 2241 for the best state re-
covery attack. Relevant studies of the PRGA reveal biases in the keystream output bytes
in [20,27]. Mironov in [23] recommends that the first 512 initial keystream bytes must
be discarded to avoid these weaknesses. Jenkins published in 1996 on his website [11]
two biases in the PRGA of RC4. These biases have been generalized by Mantin in his
Master Thesis [18] as useful states. Paul, Rathi and Maitra [26] discovered in 2008 a
biased output index of the first keystream word generated by the PRGA. Ultimately, the
last bias on the PRGA has been experimentally discovered by Maitra and Paul [17]. In
practice, key recovery attacks on RC4 must bind KSA and PRGA weaknesses to corre-
late secret key words to keystream words. Some biases on the PRGA [13,26,17] have
been successfully bound to the Roos correlation [28] to provide known plaintext attacks.

Our Contributions. Since, almost all known PRGA correlations have been experimen-
tally found, we propose a method to exhaustively reveal new weaknesses in the PRGA.
From 4 known biases in the PRGA, we have found 48 additional new exploitable cor-
relations thanks to this technique. To provide key recovery attacks on RC4, we must
bind KSA and PRGA weaknesses, we show that some of these new correlations can
be bound to KSA vulnerabilities and lead to new key recovery attacks. Subsequently,
we present another technique which does not consider the KSA and the PRGA, but
only RC4 as a black box with the secret key words as input and the keystream words
as output. Similar to the previous technique, we exhaustively search for correlations to
rediscover the 3 known biases. Thanks to this technique, we have discovered 9 addi-
tional exploitable correlations between the secret key and the keystream words. Then,
we exploit the known and new weaknesses against plain RC4 (with 48 first keystream
words known by the attacker) and we obtain a key recovery attack with a complexity of
2122.06 instead of 2128 for RC4 with N = 256 and a key length of 16 bytes.

Discovery and Exploitation of New Biases in RC4 77

We also show that some of these correlations can be applied to WEP, decreasing the
number of required encrypted packets to 9800. The best previous key recovery attacks
on WEP needed 24200 encrypted packets [32,29] for the same success probability. This
permits to recover a WEP key of 104 bits with a passive ciphertext only attack in less
than 20 seconds in practice. This new attack is the best key recovery on WEP to our
knowledge.

Structure of the Paper. In Section 2 we briefly explore known correlations in the
PRGA of RC4. Section 3 details the technique used to visually represent correlations
in the PRGA. Then, we describe the new biases discovered with our technique. In Sec-
tion 4 we bind some of these new PRGA correlations with known KSA weaknesses
to provide practical attacks on RC4. In Section 5 we detail another kind of exhaustive
search where RC4 is a black box with the secret key words as input and the keystream
words as output. Then, we present the new correlations found with this technique. Sec-
tion 6 briefly describes a practical application of these biases to RC4 and RC4 with an
IV such as used by WEP and WPA. Finally, we conclude.

2 Known Correlations in the PRGA of RC4

Jenkins Correlation. In 1996, Robert Jenkins described in his website [11] two biased
correlations experimentally found on the PRGA of RC4. The first correlation considers
the case where S′i[i] + S′i[j′i] = j′i . Thus, the ith keystream byte given by Equation (1)
becomes

zi = S′i[S
′
i[i]+ S′i[j′i]] = S′i[j′i] = j′i −S′i[i] (2)

which holds with probability of 2/N instead of 1/N with i = 1,2, The second corre-
lation appears when S′i[i]+ S′i[j′i] = i. In this case, the ith byte of the keystream is given
by

zi = S′i[S
′
i[i]+ S′i[j′i]] = S′i[i] = i−S′i[j′i] (3)

which holds with probability of 2/N.

Mantin and Shamir Correlation. Mantin and Shamir [20] discovered a biased distri-
bution for the second keystream word.

Theorem 1. Assume an initial state S′0 is chosen randomly. The probability that the
second keystream word z2 of RC4 is 0 is approximately 2/N instead of 1/N.

Paul, Rathi and Maitra Correlation. In 2008, Paul, Rathi and Maitra [26] described a
biased correlation between the three first words of the secret key and the first keystream
word z1 of RC4.

Theorem 2. Assume that the initial state S′0 is chosen uniformly at random from the set
of all possible permutations of the set {0,1, . . . ,N−1}. Then the probability distribution

78 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

of the output index S′1[1]+S′1[S
′
0[1]] = S′−1

1 [z1] that selects the first byte of the keystream
output is given by

P
(
S′1[1]+ S′1[j′i] = x

)
=

⎧⎪⎨
⎪⎩

1
N for odd x
1
N − 2

N(N−1) for even x �= 2
2
N − 1

N(N−1) for even x = 2

3 Visual Representation of Correlations in the PRGA

In general, the methods used to find correlations in RC4 are either opportunistic or not
given. Papers tend to describe the characteristics of the biases without revealing the
techniques used to discover them. We propose to describe some simple but efficient
techniques to highlight weaknesses in the PRGA through exhaustive search on a subset
of elements.

We define a set of linear equations which contains all the known biased correlations
of the PRGA described in the previous section. Our objective is to highlight linear
correlations between the internal values of a round of the PRGA and the keystream word
generated by this round i.e. the subset of elements {i, j′i,S′i[i],S′i[j′i],zi}. The correlations
previously discovered by Jenkins, Mantin and Shamir and Paul, Rathi and Maitra must
be rediscovered with this method. Surprisingly, some new biases are found as well. We
define the linear equations as

(a0 · i+ a1 · j′i + a2 ·S′i[i]+ a3 ·S′i[j′i]+ a4 · zi) mod N = b (4)

where the ai’s are elements of Z/256Z and b is a fixed value in Z/256Z. This defines
248 linear equations. To reduce this number, we decompose these equations into 256
subgroups. Each of them corresponds to a specific round (i.e. i is fixed). Thus, both
a0 · i and b can be merged into one value and Equation (4) becomes

(c0 · j′i + c1 ·S′i[i]+ c2 ·S′i[j′i]+ c3 · zi) mod N = C (5)

where C = (b−a0 · i) mod 256 and ci’s are elements of Z/256Z. Since the number of
linear equations is still too large, we limit the coefficients set of the ci’s to {−1,0,1}.
Indeed, this set is enough to include all the previously known biased correlation in the
PRGA. We obtain 256 graphs of 81 linear equations. We compute 256 first rounds of
the PRGA with 109 randomly chosen RC4 secret keys of 16 bytes and we verify all the
linear equations described by Equation 5. For every equation, a counter is incremented
when it holds. Subsequently, we represent these counters as a graph to visually illustrate
potential biases. Human brains are very efficient to visually detect anomalies in uniform
distributions (see Figure 1). Below we give the biased correlations found for the 256
first keystream bytes (from z1 to z256) generated by the PRGA. Every coefficient ci has
been replaced by the corresponding element to provide an easier reading of the table
(i.e. j′i must be read as c0, S′i[i] as c1, etc.). Correlations with zi (i.e. c3 �= 0) are called
New XXX and biases without zi (i.e. c3 = 0) are named New noz XXX.

In Figure 2, we confirm the presence of known biases such as the Jenkins correla-
tions. More interestingly, new biases in the PRGA appear. Some of them have a proba-
bility of success which depends on the value of i.

Discovery and Exploitation of New Biases in RC4 79

EquationsC

Counters

Fig. 1. 3D representation of the equations of the second round of the PRGA according to C and
the counters of the equations. The objective of this graph is to visually detect biased.

Some rounds of the PRGA provide additional biased correlations. In Figure 3, we give
extrabiaseswhich appear in round1.Figure4depicts theadditionalcorrelations in thesec-
ond round of the PRGA. Finally, Figure 5 describes further biased correlations in rounds
0 mod 16 of the PRGA.The probability of the biased correlations New 001 and New 002
depends on the round of the PRGA and the value C. In Figure 6 we show the success
probability of New 001 according to C and the rounds 1, 16, 32, 64, 128, 192 and 256
of the PRGA. Similarly, we compute the evolution of the success probability of the bi-
ased correlations New 002 in Figure 8. Figure 7 gives the 3D representation of the same
bias. Figure 9 depicts the same bias for all the first 256 rounds of the PRGA using a 3D
representation.

3.1 Spectral Approach to Derive New Biases

Another systematic method to derive linear relations is to use Fourier transform of the
type f of the distribution that some state bits of RC4 is following. We can use exactly the
same approach to derive a linear relation between the main key bits and the key stream.
Deploying this method over Zs

256, we can derive some good linear relations. We call a
linear relation good if the probability of Equation (4) occurring is much higher than ex-
pected (� 1

N). We use the 4-tuple defined above as an example. In fact, we can use exactly
the same method to derive biases for linear relations in Section 5.2 between the secret key
and keystream. To deal with this problem, we assume G = Z256 and we query RC4 for
N vectors Vt ∈ (j′i,S′i[i],S′i[j′i],zi)t ∈ G4 for 1 ≤ t ≤ N and we define a function f as
follows.

f (x) = counter(x) =
1

N

N

∑
t=1

1Vt=x

where x ∈ G4. In fact, f is the type of the distribution the 4-tuples are following. De-
ploying DFT on f , we have

f̂ (c) = ∑
x

θ−c.x f (x) = ∑
C

∑
x:c.x=C

θ−C f (x) = ∑
C

θ−C. Pr[c . v = C]

Then, we follow this approach: we compute | f̂ (c)|2 for c’s such that this norm is high.
Filtering those c’s yields ”good” c’s.

80 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

j′i S′i[i] S′i[j′i] zi C Probability Remark
1 -1 0 -1 0 2/N Jenkins Equation (2)
0 0 1 1 i 2/N Jenkins Equation (3)
0 1 1 -1 0 1.9/N New 000
0 1 1 -1 1 0.89/N New 001
...

...
...

...
...

...
...

0 1 1 -1 255 1.25/N New 001
0 1 1 1 0 0.95/N New 002
...

...
...

...
...

...
...

0 1 1 1 255 0.95/N New 002
1 1 0 0 0 0.95/N New noz 000
...

...
...

...
...

...
...

1 1 0 0 255 0.95/N New noz 000
1 1 -1 0 i 2/N New noz 001
1 -1 1 0 i 2/N New noz 002
1 -1 0 0 1 0.9/N New noz 003
...

...
...

...
...

...
...

1 -1 0 0 255 1.25/N New noz 003
1 -1 0 0 0 1.9/N New noz 004
0 0 1 0 i+1 1.36/N New noz 005
...

...
...

...
...

...
...

0 0 1 0 255 0.9/N New noz 005
0 0 1 0 i 2.34/N New noz 006

Fig. 2. Correlations experimentally observed for rounds 1,2,3, . . . ,256 of the PRGA. Note that
probability of biases New 000, New noz 005 and New noz 006 decrease according to i. The
probabilities given in this table correspond to round 3 (i.e. i = 3). New noz 004 and New noz 006
are not biased when i = 1.

j′i S′i[i] S′i[j′i] zi C Probability Remark
0 1 0 -1 0 0.95/N New 003
0 1 1 0 2 1.95/N Paul, Rathi and Maitra
1 1 0 0 2 1.94/N New noz 014

Fig. 3. Additional biased correlations experimentally observed using Equation (5) in the first
round of the PRGA (i.e. i = 1)

We construct the table | f̂ (c)|2 of all linear masks and filter out c’s that leads to small
value for | f̂ (c)|2. This remains us some c’s. Then, we can exhaustively search in the c’s
left and find the good c′s. This method is much faster than exhaustive search. Assume
we consider the linear relation between the elements of the vector (j′i,S

′
i[j′i],zi) instead

of (j′i,S′i[i],S′i[j′i],zi). This already gives us all biases quite fast. This method can be
easily generalized to the case when S′i[i] is also involved and it is dramatically faster
than exhaustive search.

Discovery and Exploitation of New Biases in RC4 81

j′i S′i[i] S′i[j′i] zi C Probability Remark
0 0 0 1 0 2/N Mantin and Shamir [20]
1 -1 1 -1 0 2/N New 004
1 1 0 -1 even 1.0183/N New 005
1 1 0 -1 odd 1.0316/N New 006
1 0 1 0 6 2.37/N New noz 007
1 0 -1 0 255 0.75/N New noz 008
1 -1 1 0 0 2/N New noz 009
0 -1 1 0 0 0.95/N New noz 010

Fig. 4. Additional biased correlations experimentally observed using Equation (5) in the second
round of the PRGA (i = 2). Note that the probability of success of correlations New 005 and
New 006 decreases according to the value C.

j′i S′i[i] S′i[j′i] zi C Probability Remark
0 0 0 1 -i 1.0411/N New 007
0 0 1 -1 i 1.0500/N New 008
0 0 1 1 -i 1.0338/N New 009
0 1 1 0 -i 1.1107/N New noz 011
0 1 0 0 -i 1.1276/N New noz 012
0 1 -1 0 -i 1.1067/N New noz 013

Fig. 5. Additional biased correlations experimentally observed using Equation (5) in rounds
0 mod 16 of the PRGA. Note that the probability of success of these correlations decreases ac-
cording to the value i and become barely exploitable when i > 48. Probabilities given in this table
come from round 16.

 0.0034

 0.0036

 0.0038

 0.004

 0.0042

 0.0044

 0.0046

 0.0048

 0.005

 0 50 100 150 200 250 300

P
ro

ba
bi

li
ty

 o
f S

uc
ce

ss

C

Round 001
Round 016
Round 032
Round 064
Round 128
Round 192
Round 256

Fig. 6. Probability of success of biased correlation New 001, according the value C for some
rounds of the PRGA

The complexity of this method for the triplet case is 3.232, while for exhaustive search
the complexity reaches to 247 if N = 107, which is a reasonable number of samples we
found out experimentally. This will gain us all the biases for the triplet over Z3

256. Using
this method, we found out some new biases. We only list those which are not artifact of
known biases and which can be bound with biases of KSA. They are listed in Fig10. Any
time the coefficient of S′i[j′i] is one in the table, we can use that equation to bind it like
what would be explained in the next section for binding New 008 and New 009 biases.

82 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

C

Prob

Round C

Pr obR
unr d

Fig. 7. Probability of biased correlation New 001, according the value C for the first 256 rounds
of the PRGA, using a 3D representation

 0.00365

 0.0037

 0.00375

 0.0038

 0.00385

 0.0039

 0.00395

 0.004

 0.00405

 0.0041

 0 50 100 150 200 250 300

P
ro

ba
bi

li
ty

 o
f S

uc
ce

ss

C

Round 001
Round 016
Round 032
Round 064

Fig. 8. Probability of success of biased correlation New 002, according the value C for some
rounds of the PRGA

CPr o

br Run

d

CPr o

b

Rr und

Fig. 9. Probability of biased correlation New 002, according the value C for the first 256 rounds
of the PRGA, using a 3D representation

This method removes the restriction on coefficients to be only in the set {−1,0,1}. Using
these technique, we can recover all biases in Z4

256 in a reasonable time.
After investigation, it seems that all the listed biases are artifact of a new conditional

bias which is
Pr[S′16[j′16] = 0|z16 = −16] = 0.038488

So far, we have no explanation about this new bias.

Discovery and Exploitation of New Biases in RC4 83

j′i S′i[i] S′i[j′i] zi C i Probability Remark
0 0 1 1 240 16 1.04/N New 010
0 0 1 50 224 16 1.04/N New 011
0 0 1 68 192 16 1.05/N New 012
0 0 1 98 224 16 1.04/N New 013
0 0 1 148 192 16 1.05/N New 014
0 0 1 162 224 16 1.05/N New 015
0 0 1 186 96 16 1.03/N New 016
0 0 1 187 80 16 1.04/N New 017
0 0 1 251 80 16 1.04/N New 018
0 0 2 19 208 16 1.04/N New 019
0 0 2 127 16 16 1.04/N New 020
0 0 2 147 208 16 1.04/N New 021
0 0 2 255 16 16 1.04/N New 022
0 0 4 59 80 16 1.04/N New 023
0 0 4 123 80 16 1.04/N New 024
0 0 8 19 208 16 1.04/N New 025
0 0 8 55 144 16 1.03/N New 026
0 0 8 81 240 16 1.03/N New 027
0 0 8 215 144 16 1.03/N New 028
0 0 8 241 48 16 1.03/N New 029
0 0 8 243 208 16 1.04/N New 030
0 0 32 39 144 16 1.04/N New 031
0 0 32 191 16 16 1.04/N New 032

Fig. 10. Correlations in PRGA derived using DFT. If coefficient of S′i[j′i] is one, that equation can
be bound with KSA biases

4 Binding PRGA and KSA Weaknesses

Since we have new PRGA biased correlations, we have to bind them with KSA weak-
nesses to provide key recovery attacks.

4.1 Known Binding between KSA and PRGA Weaknesses

Already known bindings between KSA and PRGA have been exploited. In 2006, Klein
[12,13] demonstrated that the Jenkins correlation of the PRGA and some weaknesses
in the KSA can be combined.

S′i[j′i]
Pj= i− zi from Equation (3) with Pj = 2/N (6)

S′i[j′i] = S′i−1[i] step 6 of the PRGA (7)

S′i−1[i]
P′
= Si[i] P′ = ((N −1)/N)N−2 (8)

Si[i] = Si−1[ji] KSA (9)

ji = Si−1[i]+ ji−1 + K[i] step 6 of the KSA (10)

84 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

From (6) with respectively (7), (8), (9) and (10) we have

K[i]
PKlein= S−1

i−1 [i− zi mod N]−Si−1[i]− ji−1 mod N (11)

which holds with probability

PKlein =
2
N
·
(

N −1
N

)N−2

+
N −2

N(N −1)
·
(

1−
(

N −1
N

)N−2
)

≈ 1.36
N

(12)

In 2007, Vaudenay and Vuagnoux [32] improved this attack by using the Roos correla-
tion and the repetition of the secret key modulo �. Thus, the sum of the secret key bytes
can be recovered with

i

∑
y=0

K[y]
PKleinImproved= i− zi− i · (i+ 1)

2
mod N (13)

with success probability of PKleinImproved(i) defined by

PC(i) =
(

N−1
N

)i ·∏i
k=1

(
N−k

N

) · (N−1
N

)N−2

PKleinImproved(i) = 2
N ·PC(i)+ N−2

N(N−1) · (1−PC(i))
(14)

for any i− zi mod N �= {0,1, . . . , i−1}.

4.2 Binding New PRGA Bias Where S′i[j′i] Is Involved

Interestingly, from the Jenkins correlation described by S′i[j′i] = i− zi and Equation (13)
we have

S′i[j′i]
PKleinImproved=

i · (i+ 1)
2

+
i

∑
y=0

K[y] mod N (15)

for the same success probability. Hence, every new biased equation containing S′i[j′i]
and public values such as i and zi can be exploited as key recovery attack.

New 009 (−i− Si[j′i] = zi). This biased correlation concerns rounds 0 mod 16 of the
PRGA. The success probability is 1.0338/N for round 16. Using the same technique
described above, we can exploit this bias to recover the secret key sum

i

∑
y=0

K[y] P0= −i− zi − i · (i+ 1)
2

mod N

with a success probability equal to

P0(i) =
1.0338

N
·PC(i)+

N −1.0338
N(N −1)

· (1−PC(i))

for any −i− zi mod N �= {0,1, . . . , i−1} and i = 16.

Discovery and Exploitation of New Biases in RC4 85

New 008 (−i + Si[j′i] = zi). Similarly, we can exploit this biased equation using the
same technique

i

∑
y=0

K[y] P1= −i+ zi − i · (i+ 1)
2

mod N

with a success probability equal to

P1(i) =
1.05

N
·PC(i)+

N −1.05
N(N −1)

· (1−PC(i))

for any −i+ zi mod N �= {0,1, . . . , i−1} and i = 16.

4.3 Exploiting Additional Biased Linear Correlations in the PRGA

The binding between KSA weakness and PRGA biases presented above is an example
of a practical application of the correlations discovered in the previous section. We did
not find a way to exploit biases where S′i[i] or j′i are involved. However, these correla-
tions could be exploited in future work.

5 RC4 as a Black Box

In Section 4 we have seen that secret key words and keystream words may be corre-
lated if weaknesses in the KSA and PRGA can be bound. However, from an attacker’s
point of view there is no reason to determine weaknesses in the KSA or the PRGA. The
objective is to find correlations between known values and the secret key words. More-
over, the biased correlations previously found concern only elements inside a round of
the PRGA. Correlations between elements from different rounds cannot be highlighted.

In this section, we present another way to attack RC4. We consider RC4 as a black
box. The objective is to discover linear correlations between the input (the secret key
words) and the output (the keystream words), since we consider known keystream at-
tacks. First, we study known RC4 correlations between the keystream words and the
secret key words. Then, we propose a method to highlight new biases. Finally, we list
new discovered biases in RC4.

5.1 Maitra and Paul Correlation

In 2008, Maitra and Paul [17] discovered a new experimental observation on RC4 which
holds with probability of ≈ 1.10/N for i = 0.

zi+1
PMaitra=

i · (i+ 1)
2

+
i

∑
y=0

K[y] (16)

Maitra and Paul did not find any practical application for this bias in protocols using or
based on RC4. However, from Equation 15 we can rewrite Equation (16) as

zi+1
PMaitra= S′i[j′i]

This bias has not been found with our previous technique, since these elements are not
in the same round of the PRGA. However, with the black box technique we are able to
rediscover this bias and new ones.

86 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

5.2 Discovering New Linear Correlations in RC4

We define a linear equation containing input and output elements.

(a0 ·K[0]+ . . .+ a�−1 ·K[�−1]+ a� · z1 + . . .+ aN+�−1 · zN) mod N = b (17)

This kind of exhaustive search is identical to those presented in Section 3. First, we
consider the subset of all ai’s defined by A = {−1,0,1} and b ∈ Z/NZ. The number of
equation is N ·3�+N = 2439.11 for N = 256 and � = 16, which is obviously too large for
an exhaustive search.

Based on the pseudo T-function’s behavior of the KSA (i.e. SN−1[i] depends only on
K[i− 1],K[i− 2], . . . ,K[0] with a non negligible probability) and the Roos correlation,
we can reduce the size of the equation by considering only the first � keystream words.
Equation (17) becomes

(a0 ·K[0]+ . . .+ a�−1 ·K[�−1]+ a� · z1 + . . .+ a2�−1 · z�) mod N = b (18)

Thus, we obtain a number of equations equals to N ·32� = 258.7 which is still too large
for an exhaustive search. Thus, we reduced the secret keys length to �= 5 bytes to obtain
223.8496 equations. Indeed, based on the pseudo T-function behavior’s of the KSA, we
suppose that the correlations found with a RC4 key length of 5 bytes can be generalized
to RC4 with a secret key of 16 bytes. Then, the supposed biased correlation are tested
experimentally. After a few computation, we remarked that the constant value repre-
sented by b can be reduced to the subset generated by i · (i+1)/2 with i = 0,1,2 . . . ,22,

Equation Probability Remarks
z1 +K[0]+K[1] = 0 1.35779/N Klein Improved
z1 −K[0] = 0 1.11784/N Maitra and Paul
z2 = 0 2.01825/N Mantin and Shamir
z2 +K[0]+K[1]+K[2] = −1 1.36095/N Klein Improved
z1−K[0]−K[1] = 1 1.04237/N New bb 000
z1 −K[0]+K[1] = −1 1.04969/N New bb 001
z3 +K[0]+K[1]+K[2]+K[3] = −3 1.35362/N Klein Improved
z3 −K[0]+K[3] = −3 1.04620/N New bb 002
z1−K[0]−K[1]−K[2] = 3 1.33474/N Roos/Paul et al.
z2 −K[0]−K[1]−K[2] = 3 0.64300/N New bb 003
z3−K[0]−K[1]−K[2] = 3 1.13555/N Maitra and Paul
z2 +K[1]+K[2] = −3 1.36897/N New bb 004
z2−K[1]−K[2] = 3 1.36733/N New bb 005
z1 −K[2] = 3 1.14193/N New bb 006
z1 +K[0]+K[1]−K[2] = 3 1.14116/N New bb 007
z4 −K[0]+K[4] = 4 1.04463/N New bb 008
z4 +K[0]+K[1]+K[2]+K[3]+K[4] = −6 1.35275/N Klein Improved
z4 −K[0]−K[1]−K[2]−K[3] = 10 1.11432/N Maitra and Paul

Fig. 11. Biased correlations experimentally observed with the black box technique with � = 5 in
Equation 18. Note that these biases are exploitable in RC4 with a secret key of 16 bytes as well.

Discovery and Exploitation of New Biases in RC4 87

since only the Roos correlation seems to be exploited in the KSA. Thus, the number of
equations decreases to 23 ·310 = 220.373. Figure 11 gives the correlations found in RC4
with a secret key of 5 bytes which are experimentally confirmed on RC4 with a key
length of 16 bytes.

For every index i corresponding to the index of a key byte, let di the number of
biased equations we have for K̄[i] = K[0]+ · · ·+ K[i]. Let pi, j be the probability of the
jth equation for this byte. The list of biases we use is depicted in Fig 12.

If the key has size �, indices i = k.�− 1 correspond to the same byte, so we can
merge the associated list of biases. Similarly, if K̄[�− 1] is known, indices which are
equal modulo � correspond to the same byte, so we can merge these lists as well. Let
p′i, j be the table of merged lists and d′

i be the length of list p′i, j.

Equation Probability Remarks
K̄[0]− z1 = 0 1.10873/N Maitra and Paul
K̄[1]+ z1 = 0 1.36467/N Klein Improved
K̄[1]− z1 = 255 1.04237/N New bb 000
K̄[2]− z2 = 253 0.64300/N New bb 003
K̄[2]+ z2 = 255 1.36036/N Klein Improved
K̄[2]− z3 = 253 1.12742/N Maitra and Paul
...

...
...

K̄[14]+ z14 = 165 1.22758/N Klein Improved
K̄[14]− z15 = 151 1.06444/N Maitra and Paul
K̄[15]+ z15 = 151 1.21317/N Klein Improved
K̄[15]− z16 = 136 1.07519/N Maitra and Paul
K̄[15]+ K̄[0]− z16 = 104 1.01838/N New 008
K̄[15]+ K̄[0]+ z16 = 104 1.01242/N New 009
K̄[15]+ K̄[0]+ z16 = 136 1.19880/N Klein Improved
K̄[15]+ K̄[0]− z17 = 136 1.05983/N Maitra and Paul
...

...
...

K̄[15]+ K̄[14]+ z30 = 77 1.04582/N Klein Improved
K̄[15]+ K̄[14]− z31 = 47 1.02118/N Maitra and Paul
2K̄[15]+ z31 = 47 1.03963/N Klein Improved
2K̄[15]− z32 = 16 1.03833/N Maitra and Paul
2K̄[15]+ K̄[0]− z32 = 208 1.009/N New 008
2K̄[15]+ K̄[0]+ z32 = 208 1.0062/N New 009
2K̄[15]+ K̄[0]+ z32 = 16 1.03403/N Klein Improved
...

...
...

2K̄[15]+ K̄[14]+ z46 = 57 1.00027/N Klein Improved
3K̄[15]+ z47 = 199 0.99951/N Klein Improved

Fig. 12. Useful biases in key recovery attack on RC4 for � = 16

88 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

6 Key Recovery Attacks

6.1 Theoretical Key Recovery Attack on Plain RC4

We consider RC4 with N = 256 and a secret key length � = 16 bytes. Thus, the ex-
haustive search has complexity of 2128. Using all the exploitable biased correlations
presented in this paper and the previously known biases in RC4 and considering that
they are independent, we are able to recover the RC4 secret key words from the 48 first
keystream words (known keystream attack) with a complexity of 2122.06. In fact, the
probability that all key bytes are expressed by at least one bias is

p ≈
�−1

∏
i=0

⎛
⎝1−

d′i
∏
j=1

(1− p′i, j)

⎞
⎠

and the number of combination of biases is k = ∏�−1
i=0 d′

i . So the average complexity is
k
2 with success probability p. The average complexity by iterating is k

p . With our table,

we compute p ≈ 2−87.90 and k ≈ 238.09. Thus, the complexity of attacking plain RC4
would be 2125.99.

Note that p is optimized this way, but not k
p . By taking only the largest bias for each

byte, we obtain k
p = 2122.06 with k = 1.

6.2 Practical Key Recovery Attack on WEP

To provide a practical use of these attacks, we tried to deploy them on RC4 with an IV
such as used by the protocol WEP or WPA. For some people, attacking WEP is like
beating a dead horse, since it has been already badly broken [5,9,2,15,16,32,30,29].
First, the new biases presented in this paper are related to the stream cipher RC4. WEP
is an example of a practical exploitation of these biases. Moreover, the cryptanalysis
of WEP is one of the most applied cryptographic attack in practice. Indeed, tools such
as Aircrack [4] are massively downloaded to provide a good example of weaknesses in
cryptography.

In the case of WEP and WPA, the first 3 bytes are known and the key is a repetition
of � = 16 bytes. So, we can remove the P0, j,P1, j,P2, j lists, redo the merge operation,
then merge the lists for i′ = 3,4, . . . ,15. In practice, this gives k ≈ 231.77 biases and
results in p = 2−70.57. So, we have a complexity of k

p ≈ 2102.34 to recover the full key
K with a single packet.

We picked the same key recovery algorithm described in [32], but we added known
and new correlation presented in this paper. We also include all conditional biases from
the Korek attacks [15,16,3] with the improvement described in [32,33]. The complexity
of the key recovery attacks on WEP depends on the number of encrypted packets cap-
tured. For every captured packet, we sort the list of potential secret keys given by the key
recovery attacks and we test the first 106 keys according to this list. See [32] for more
details. The previous best key recovery attack described in [32] and better implemented
in [29] needs 24200 packets to recover a secret key of 104 bits with a success probability

Discovery and Exploitation of New Biases in RC4 89

> 1/2. With the new key recovery described in this paper, we are able to recover the
secret key with an average of 9800 encrypted packets for the same success probability.
This complexity of 9800 packets was measured experimentally by running the attacks
on 106 random secret keys. This represents the best key recovery attack on WEP to our
knowledge.

6.3 Theoretical Key Recovery Attacks on WPA

In order to correct the weaknesses on WEP discovered before 2004, the Wi-Fi Alliance
proposed a WEP improved protocol called WPA [10]. It has been established that WPA
must be hardware compatible with existing WEP capable devices to be deployed as a
software patch. Basically, WPA is a WEP wrapper which contains anti-replay protec-
tions and a key management scheme to avoid key reuse. In 2004, Moen, Raddum and
Hole [24] discovered that the recovery of at least two RC4 packet keys in WPA leads to
a full recovery of the temporal key and the message integrity check key. The complexity
of this attack is defined by the exhaustive search of two 104-bit long keys, i.e. 2104.

Almost all known and new key recovery attacks on WEP can be applied to WPA.
Only the Fluhrer, Mantin and Shamir attack [5] is filtered. Indeed, WPA encryption
is similar to WEP, using RC4 with an IV. But, WPA uses a different secret key for
every encrypted packet. Once from the same segment of 216 consequetive packets, two
keys are successfully recovered, the Moen, Raddum and Hole attack can be applied.
However, the attack in Section 6.2 has a success probability p too low to recover two
keys. The actual application to attacking WPA is left for future work.

7 Conclusion

In this paper, we have seen some techniques to exhaustively highlight linear correlations
in RC4. First, we have considered only the elements inside a round of the PRGA. Then,
we have generalized this method to the whole RC4 as a black box with the secret key
words as input and the keystream words as output. These techniques led to the discovery
of 57 new correlations in RC4. Some of them can be directly applied to existing key
recovery attacks on RC4, WEP and WPA. For example, a WEP secret key of 128 bits
(104 unknown bits) can be recovered in less than 20 seconds, the time to eavesdrop at
least 9800 encrypted packets. This is the best attack on WEP to our knowledge.

However, the main interest of this paper is the application of an automated discovery
of weaknesses in ciphers. Similar to fuzzing techniques used to highlight security vul-
nerabilities in computer systems, these methods, although relatively simple, reveal an
impressive number of new weaknesses in a intensively analyzed stream cipher such as
RC4. This may suggest a new kind of automated tools for cryptanalysts. Indeed, weak-
nesses in network protocol or computer systems are largely found by automated tools
such as fuzzers, negative testers or black box analyzers. With the results presented in
this paper, it may be interesting to adapt these tools for cryptanalysis.

90 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

References

1. Biham, E., Carmeli, Y.: Efficient Reconstruction of RC4 Keys from Internal States. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg (2008)

2. Bittau, A.: Additional Weak IV Classes for the FMS Attack (2003),
http://www.cs.ucl.ac.uk/staff/a.bittau/sorwep.txt

3. Chaabouni, R.: Breaking WEP Faster with Statistical Analysis. Ecole Polytechnique Fédérale
de Lausanne, LASEC, Semester Project (2006)

4. Devine, C., Otreppe, T.: Aircrack, http://www.aircrack-ng.org/
5. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm of RC4.

In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24. Springer,
Heidelberg (2001)

6. Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream Generator.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer, Heidelberg (2001)

7. Golic, J.D.: Linear statistical weakness of alleged RC4 keystream generator. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer, Heidelberg (1997)

8. Golic, J.D.: Iterative Probabilistic Cryptanalysis of RC4 Keystream Generator. In: Dawson,
E., Clark, A., Boyd, C. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 220–233. Springer, Heidel-
berg (2000)

9. Hulton, D.: Practical Exploitation of RC4 Weaknesses in WEP Environments (2001),
http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt

10. IEEE. ANSI/IEEE standard 802.11i: Amendment 6 Wireless LAN Medium Access Control
(MAC) and Physical Layer (phy) Specifications, Draft 3 (2003)

11. Jenkins, R.: ISAAC and RC4, http://burtleburtle.net/bob/rand/isaac.html
12. Klein, A.: Attacks on the RC4 Stream Cipher. Personal Andreas Klein website (2006),

http://cage.ugent.be/˜klein/RC4/RC4-en.ps
13. Klein, A.: Attacks on the RC4 Stream Cipher. Des. Codes Cryptography 48(3), 269–286

(2008)
14. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Methods for

(Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 327–
341. Springer, Heidelberg (1998)

15. KoreK. Need Security Pointers (2004),
http://www.netstumbler.org/showthread.php?postid=89036#post89036

16. KoreK. Next Generation of WEP Attacks? (2004),
http://www.netstumbler.org/showpost.php?p=93942&postcount=35

17. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in Keystream
Bytes of RC4. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 253–269. Springer,
Heidelberg (2008)

18. Mantin, I.: Analysis of the Stream Cipher RC4,
http://www.wisdom.weizmann.ac.il/˜itsik/RC4/rc4.html

19. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer, Heidelberg (2005)

20. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

21. Maximov, A.: Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness of
RC4 Family of Stream Ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS,
vol. 3557, pp. 342–358. Springer, Heidelberg (2005)

22. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

http://www.cs.ucl.ac.uk/staff/a.bittau/sorwep.txt
http://www.aircrack-ng.org/
http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt
http://burtleburtle.net/bob/rand/isaac.html
http://cage.ugent.be/~klein/RC4/RC4-en.ps
http://www.netstumbler.org/showthread.php?postid=89036#post89036
http://www.netstumbler.org/showpost.php?p=93942&postcount=35
http://www.wisdom.weizmann.ac.il/~itsik/RC4/rc4.html

Discovery and Exploitation of New Biases in RC4 91

23. Mironov, I.: (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

24. Moen, V., Raddum, H., Hole, K.J.: Weaknesses in the Temporal Key Hash of WPA. Mobile
Computing and Communications Review 8(2), 76–83 (2004)

25. Paul, G., Maitra, S.: Permutation After RC4 Key Scheduling Reveals the Secret Key. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 360–377. Springer,
Heidelberg (2007)

26. Paul, G., Rathi, S., Maitra, S.: On Non-negligible Bias of the First Output Bytes of RC4
towards the First Three Bytes of the Secret Key. In: WCC 2007 - International Workshop on
Coding and Cryptography, pp. 285–294 (2007)

27. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an Approach to
Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 245–259. Springer, Heidelberg (2004)

28. Roos, A.: A Class of Weak Keys in RC4 Stream Cipher (sci.crypt) (1995),
http://groups.google.com/group/sci.crypt.research/
msg/078aa9249d76eacc?dmode=source

29. Tews, E., Beck, M.: Practical attacks against WEP and WPA. In: Basin, D.A., Capkun, S.,
Lee, W. (eds.) WISEC, pp. 79–86. ACM, New York (2009)

30. Tews, E., Weinmann, R.-P., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60 Seconds. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 188–202. Springer,
Heidelberg (2008)

31. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4 stream cipher.
Finding an internal state of RC4 stream cipher 177(7), 1715–1727 (2007)

32. Vaudenay, S., Vuagnoux, M.: Passive–Only Key Recovery Attacks on RC4. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344–359. Springer, Heidelberg
(2007)

33. Vuagnoux, M.: Computer Aided Cryptanalysis from Ciphers to Side channels. PhD thesis,
Ecole Polytechnique Fédérale de Lausanne — EPFL (2010)

34. Wagner, D.: Weak Keys in RC4 (sci.crypt) (1995),
http://www.cs.berkeley.edu/˜daw/my-posts/my-rc4-weak-keys

http://groups.google.com/group/sci.crypt.research/msg/078aa9249d76eacc?dmode=source
http://groups.google.com/group/sci.crypt.research/msg/078aa9249d76eacc?dmode=source
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys

The Rise and Fall and Rise of Combinatorial
Key Predistribution

Keith M. Martin

Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, U.K.

keith.martin@rhul.ac.uk

Abstract. There are many applications of symmetric cryptography

where the only realistic option is to predistribute key material in ad-

vance of deployment, rather than provide online key distribution. The

problem of how most effectively to predistribute keys is inherently combi-

natorial. We revisit some early combinatorial key predistribution shemes

and discuss their limitations. We then explain why this problem is back

“in fashion” after a period of limited attention by the research commu-

nity. We consider the appropriateness of combinatorial techniques for key

distribution and identify potential areas of further research.

Keywords: Key predistribution, combinatorial designs, sensor networks.

1 Introduction

Key management is a vital, and often overlooked, component of any cryptosys-
tem. One of the most challenging phases of the cryptographic key life cycle is
key establishment. This is particularly so in symmetric cryptosystems, where
keys need to be established using some form of secure channel prior to use. In
the following discussion we will only consider fully symmetric cryptosystems.

One of the main options for conducting symmetric key establishment is for
one entity, which could be a trusted third party, to generate a key and then dis-
tribute it to those entities that require it. This process is often referred to as key
distribution. Many application environments in which symmetric cryptography
is deployed cannot rely on a key distribution service being regularly available
whenever keys are required. Indeed in many applications such a service is im-
possible to provide after the network entities (which we will refer to as nodes)
have been deployed. In such cases the only realistic option is for a trusted third
party (which we will subsequently refer to as a key centre) to predistribute keys
prior to deployment as part of a secure initialisation process. After deployment
of the network, the key centre plays no further role in key establishment. Two
nodes who require a common key must now try to derive one from the keys that
they were each equipped with by the key centre prior to deployment. For this ap-
proach to be effective, the precise allocation of keys to nodes during initialisation
is critical. This allocation is often termed a key predistribution scheme.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 92–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Rise and Fall and Rise of Combinatorial Key Predistribution 93

A potential advantage of key predistribution is that the establishment of keys
must happen at the key centre, which should be a controlled environment. How-
ever a significant disadvantage is that later stages of the key life cycle become
more challenging to manage. Nonetheless, key predistribution is a popular ap-
proach to key establishment in real applications, especially those whose network
topology is essentially “star-shaped”, in the sense that communication only takes
place between node and a central authority (hub) of some sort. In such cases it
generally suffices to predistribute a unique key to each node, which its shares
with the hub.

2 The Rise and Fall of Combinatorial Key Predistribution

A more interesting question is how to design a predistribution scheme for more
general network topologies. Early research on key predistribution schemes fo-
cussed on the case where the network topology is the complete graph. The goal
of such a key predistribution scheme is thus to enable any pair of nodes to share
a predistributed key. One trivial solution is to predistribute a single key to all
nodes, which results in minimal storage requirements for each node but has
severe consequences if any node is compromised. At the other extreme, predis-
tributing a unique key to every pair of nodes results in optimal resilience against
node compromise but results in excessive storage requirements (n − 1 keys for
each node in a network of size n).

An interesting compromise between these two trivial solutions is the idea of
a w-key distribution pattern (KDP) [12]. A w-KDP is an allocation of keys to
nodes with the property that:

1. any pair of nodes (N1, N2) have some keys in common;
2. any w nodes other than N1 and N2 do not collectively have all the keys that

are shared by N1 and N2.

Thus if a w-KDP is used as the basis for a key predistribution scheme, any pair
of nodes have at least one predistributed key that is not known by an adversary
who has compromised up to w other nodes in the network. Some (or all) of
these keys than then be used to derive a key that N1 and N2 can use to secure
their communication. We describe the resulting key predistribution schemes as
combinatorial because most of the known techniques for constructing w-KDPs
rely on combinatorial mathematics. Various generalisations of the idea of a w-
KDP are possible and have been studied.

An alternative approach to designing a key predistribution scheme for net-
works based on the complete graph is to use symmetric polynomials. In Blom’s
key predistribution scheme [2] a polynomial P (x, y) ∈ GF(q)[x, y] with the prop-
erty that P (i, j) = P (j, i) for all i, j ∈ GF(q). The elegantly simple idea is that:

– Node Ni stores the univariate polynomial fi(y) = P (Ni, y);
– In order to establish a common key with Nj , node Ni computes Kij =

fi(Nj) = fj(Ni).

94 K.M. Martin

Similarly to a w-KDP, this scheme is secure against an adversary who can com-
promise at most w nodes. A significant advantage is that each node is only
required to store w + 1 polynomial coefficients, which is less information than
most w-KDPs. The main related cost is that each node is not actually storing
predistributed keys, but rather information that can be used to derive them. For
many applications this tradeoff is likely to favour the Blom scheme.

The Blom key predistribution scheme easily generalises to key predistribution
applications where groups of t nodes require common keys [3]. It was further
shown that this approach is optimal with respect to node key storage. These
observations lie behind my assertion that research combinatorial key predistri-
bution underwent a rise and fall. The “rise” was the discovery of some very
elegant key predistribution schemes based on combinatorial mathematics. The
“fall” was a period of inactivity in this area, perhaps due to an impression that
that the interesting questions had all been answered.

3 Evolving Network Security

There has been a significant increase in interest in key predistribution schemes
in recent years. The main motivation is evolution of networking technology, with
a trend towards distributed, dynamic, wireless networks consisting of lightweight
devices of limited capability. These can manifest themselves in various different
guises, including examples of mobile ad-hoc networks, tactical networks, ambient
networks, vehicular networks and sensor networks. What is of most interest for
a key management perspective is the following two common properties of such
networks:

1. a lack of centralised post-deployment infrastructure;
2. the reliance on hop-based communication between nodes, where nodes are

expected to act both as end points and routers of communication.

The first of these properties favours the use of key predistribution for key estab-
lishment. The second of these implies that it is not necessary for every pair of
nodes to share a predistributed key, thus motivating the study of key predistri-
bution schemes for more “relaxed” network topologies than the complete graph.
Indeed, in many cases it suffices that nodes share keys with a small number of
immediate neighbour nodes.

The lightweight nature of nodes in such networks has additional implications
for key predistribution scheme design:

– limited memory may constrain the number of key that a node can store;
– limited power may constrain the computations and communications that a

node can perform;
– fragility of nodes increase the risk of node compromise.

Thus the requirements for a particular application will almost always necessitate
a tradeoff between contradictory requirements. For example it may be desirable

The Rise and Fall and Rise of Combinatorial Key Predistribution 95

to predistribute a large number of keys to each node from a connectivity per-
spective, since it increases the chances of two nodes sharing a key. However, it
may also be desirable to limit the number of keys that each node stores due to
memory constraints and a desire to reduce the impact of node compromise.

4 A Key Establishment Framework

In order to capture the different requirements placed on a key predistribution
scheme by a potential application, a basic framework was proposed in [9]. The
significant factors that influence the design of a key predistribution scheme are:

– Homogeneity of nodes. This determines whether all the nodes in the net-
work have the same capabilities. The most common assumptions are that
a network is either homogeneous (all nodes have the same capabilities) or
hierarchical (there exists a hierarchy of capabilities, with nodes at higher
levels having increased capabilities).

– Deployment location control. This categorises the extent to which the loca-
tion of a node within the network is known prior to deployment, at the time
that the key centre initalises it with predistributed keys. Clearly, location in-
formation is likely to help in the design of a suitable key distribution scheme.
One extreme is full location control, where the precise location is known prior
to deployment. In particular this means that the network neighbours of a
node are predetermined. At the other extreme is no location control, where
there is no information about the node location prior to deployment. Inter-
estingly, there is potential for partial location control, where some location
information may be known, for example that a certain group of nodes will
be deployed in close proximity. Also of relevance is whether nodes are static
or mobile.

– Communication structure. This determines what the desired communication
structure of the network is. For example, are all nodes expected to directly
communicate with one another, if possible, or are they only expected to com-
municate with near neighbours? Are group keys required as well as pairwise
keys?

A particular key distribution scheme designed for a specific set of requirements
within this framework can then be assessed in terms of the relevant metrics,
for example storage requirements, energy requirements, efficiency of secure path
establishment, etc.

5 The Second Rise of Combinatorial Key Predistribution

There has been a resurgence of interest in key predistribution schemes since
Eschenauer and Gligor proposed the random key predistribution scheme [5], in
which the key centre allocates keys to a node uniformly without replacement
from a finite pool of keys. Schemes with different properties can be designed

96 K.M. Martin

based on the size of the key pool and the number of keys allocated to each node,
but they are all probabilistic, since it can no longer be guaranteed that a specific
pair of nodes share a key.

This idea has been the basis for a large number of key predistribution scheme
proposals, not all of which have been well motivated or analysed. While a
substantial number of these proposals have been extensions of the random key
predistribution scheme, one interesting avenue of research has focussed on the
design of deterministic key predistribution schemes. These have certain potential
advantages:

– by being deterministic, certain properties are guaranteed;
– analysis of deterministic key predistribution schemes is often simpler;
– an amount of established research has already been conducted on determin-

istic key predistribution schemes (the “first rise”);
– some deterministic key predistribution schemes have useful algebraic struc-

ture (for example, they allow efficient shared key discovery).

A natural place to look for ideas for constructing deterministic key predistribu-
tion schemes is combinatorial mathematics. The focus of the earliest research
in this “second rise” was to look at classical combinatorial structures, such as
projective planes, most of which still provided full connectivity, in the sense
that they were designed to facilitate a shared key between any pair of nodes.
While some of these schemes offer interesting tradeoffs between the important
parameters, they tend to be too restrictive and have high storage and resilience
costs. More flexibility can be obtained by basing key predistribution schemes on
combinatorial structures that are not fully connected. Indeed, several entirely
new combinatorial structures of this type, for example common intersection de-
signs [7], have been proposed and investigated specifically for adoption as key
predistribution schemes for evolving networks.

However, given that design requirements of a key predistribution scheme often
involve tradeoffs between competing parameters, a more natural role for com-
binatorial structures is to provide components from which more complex key
predistribution scheme scan be built (for example [6]). A range of techniques
for building key predistribution schemes in this way has been explored. Some of
these build deterministic key predistribution schemes from deterministic com-
ponents, while others use both deterministic and probabilistic components (for
example. There would seem potential for further development of these combina-
torial engineering approaches.

6 Research Directions

There have been a large number of recent proposals for key predistribution
schemes, mostly explicitly targeted at wireless sensor network applications ([4]
provides a good survey from 2005, but much has happened since). A substan-
tial number of these consider the case of homogeneous, static nodes which are
deployed with no location control. Many proposals seem rather ad hoc and are

The Rise and Fall and Rise of Combinatorial Key Predistribution 97

only compared against a limited number of previous proposals, largely using
simulations to support claims about their worth. It is far from clear that such
ad hoc proposals necessarily add much to the knowledge base concerning the
design of key predistribution schemes. That said, there has also been some very
interesting research conducted in this area and there is plenty more to do. We
suggest the following guidance on future research direction:

1. Deeper exploration of construction techniques. It is relatively easy to pro-
pose a new construction technique for a key predistribution scheme. What
is sometime harder, but is equally important, is to explore why the resulting
properties arise. Simply showing that something works can suffice in some
engineering disciplines, but we should be aiming higher in the study of key
predistribution schemes.

2. Better understanding of tradeoffs. The tradeoffs between the desirable prop-
erties of a key predistribution scheme mean that, in theory, there are many
different notions of “desirable tradeoff” amongst the potential properties of
a key predistribution scheme. While this does suggest that there is a need for
different design approaches, it is important to also develop a better general
understanding of how different properties trade off against one another. In
particular, the tradeoff between notions of connectivity and resilience seems
deep and intriguing.

3. Meaningful and well-motivated scenarios. The diversity of potential evolv-
ing network application scenarios have the potential to motivate a number
of quite distinct types of key predistribution scheme. In particular, consid-
eration of degrees of location control present interesting variations of the
more established problem (existing work on this includes our own treatment
of linear networks [10], grids [1] and group-based deployment [11]). What
is important is that particular application models are well-motivated and
assessed in a meaningful way.

4. Greater consideration of the key lifecycle. Key establishment is just one phase
of the wider key lifecycle. The use of key predistribution is mainly due to an
assumption that the key centre is not generally available to maintain keys
after deployment. However, this does not prevent the nodes in the network
from jointly conducting some key management activities, such as network
optimisation, key refreshment and key change, perhaps with occasional exter-
nal assistance. Further research on post-deployment key management issues
is merited.

The supporting theory behind combinatorial techniques has already played a
significant role in helping to form the basis for a deeper understanding of how to
build desirable key predistribution schemes for a wide range of different types of
application (a survey of the role of combinatorics in key predistribution scheme
design can be found in [8]). While not all of the above research will rely entirely
on combinatorial approaches to key predistribution, there is no doubt that such
approaches have a significant role to play.

98 K.M. Martin

References

1. Blackburn, S.R., Etzion, T., Martin, K.M., Paterson, M.B.: Distinct-Difference

Configurations: Multihop Paths and Key Predistribution in Sensor Networks. IEEE

Transactions in Information Theory 56(8), 3961–3972 (2010)

2. Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T.,

Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.

Springer, Heidelberg (1985)

3. Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.:

Perfectly-secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)

4. Çamtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor

networks: a survey. Rensselaer Polytechnic Institute, Computer Science Depart-

ment, Technical Report TR-05-07 (March 2005)

5. Eschenauer, L., Gligor, V.: A key management scheme for distributed sensor

networks. In: Proceedings of 9th ACM Conference on Computer and Communica-

tion Security (November 2002)

6. Lee, J., Stinson, D.R.: Deterministic key predistribution schemes for distributed

sensor networks. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,

vol. 3357, pp. 294–307. Springer, Heidelberg (2004)

7. Lee, J., Stinson, D.R.: Common intersection designs. Journal of Combinatorial

Designs 14(4), 251–269 (2009)

8. Martin, K.M.: On the applicability of combinatorial designs to key predistribution

for wireless sensor networks. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C.

(eds.) IWCC 2009. LNCS, vol. 5557, pp. 124–145. Springer, Heidelberg (2009)

9. Martin, K.M., Paterson, M.B.: An application-oriented framework for wireless

sensor network key establishment. Electron. Notes Theor. Comput. Sci. 192(2),

31–41 (2008)

10. Martin, K.M., Paterson, M.B.: Ultra-lightweight key predistribution in wireless

sensor networks for monitoring linear infrastructure. In: Markowitch, O., Bilas,

A., Hoepman, J.-H., Mitchell, C.J., Quisquater, J.-J. (eds.) Information Security

Theory and Practice. LNCS, vol. 5746, pp. 143–152. Springer, Heidelberg (2009)

11. Martin, K.M., Paterson, M.B., Stinson, D.R.: Key predistribution for homogeneous

wireless sensor networks with group deployment of nodes. ACM Transactions in

Sensor Networks, 7(2), article No. 11 (2010)

12. Mitchell, C.J., Piper, F.C.: Key storage in secure networks. Discrete Applied

Mathematics 21, 215–228 (1988)

A Low-Area Yet Performant
FPGA Implementation of Shabal

Jérémie Detrey1, Pierrick Gaudry1, and Karim Khalfallah2

1 CARAMEL project-team, LORIA, INRIA / CNRS / Nancy Université,

Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France
2 Laboratoire de cryptographie et composants, SGDSN / ANSSI,

51 boulevard de la Tour-Maubourg, 75700 Paris 07 SP, France

Abstract. In this paper, we present an efficient FPGA implementation

of the SHA-3 hash function candidate Shabal [7]. Targeted at the re-

cent Xilinx Virtex-5 FPGA family, our design achieves a relatively high

throughput of 2 Gbit/s at a cost of only 153 slices, yielding a throughput-

vs.-area ratio of 13.4 Mbit/s per slice. Our work can also be ported to Xil-

inx Spartan-3 FPGAs, on which it supports a throughput of 800 Mbit/s

for only 499 slices, or equivalently 1.6 Mbit/s per slice.

According to the SHA-3 Zoo website [1], this work is among the small-

est reported FPGA implementations of SHA-3 candidates, and ranks first

in terms of throughput per area.

Keywords: SHA-3, Shabal, low area, FPGA implementation.

1 Introduction

Following the completion of the first round of the NIST SHA-3 hash algorithm
competition in September 2009, fourteen candidates [16] have been selected to
participate in the second round [18]. As such, developing and benchmarking
software and hardware implementations of these remaining hash functions is key
to assess their practicality on various platforms and environments.

Building toward that objective, this paper presents an area-efficient imple-
mentation of the SHA-3 candidate Shabal, submitted by Bresson et al. [7], on
Xilinx Virtex-5 and Spartan-3 FPGAs [20,23]. Even though the core contribution
of this work is to demonstrate that Shabal can be brought to area-constrained
devices such as smart cards or RFID tags, it also appears from the benchmark
results that our design also performs extremely well in terms of throughput per
area, ranking first among the other published implementations of SHA-3 candi-
dates.

Roadmap. After a brief description of the Shabal hash function, we explain in
Section 2 how this algorithm can be adapted to make full use of the shift register
primitives embedded in some FPGA families. A detailed description of our design
is given in Section 3, along with implementation results and comparisons in
Section 4.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 99–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

100 J. Detrey, P. Gaudry, and K. Khalfallah

Notations. In the following, unless specified otherwise, all words are 32 bits
long and are to be interpreted as unsigned integers. Given two such words X
and Y along with an integer k, we write the rotation of X by k bits to the left
as X ≪ k; the bitwise exclusive disjunction (XOR) of X and Y as X ⊕ Y ; the
bitwise conjunction (AND) of X and Y as X ∧ Y ; the bitwise negation (NOT)
of X as X; the sum and difference of X and Y modulo 232 as X �Y and X �Y ,
respectively; and the product of X by k modulo 232 as X � k. We also denote
by X ← Y the assignment of the value of Y to the variable X .

Furthermore, given an n-stage-long shift register R, we denote its elements
by R[0], R[1], and so on up to R[n− 1]. Inserting a word X into R[n − 1] while
shifting the other elements by one position to the left (i.e., R[i] ← R[i + 1] for
0 � i < n − 1) is denoted by R � X , whereas X � R indicates the insertion of
X into R[0] while the rest of the register is shifted by one step to the right (i.e.,
R[i] ← R[i − 1] for n − 1 	 i > 0).

2 Shabal and Shift Registers

2.1 The Shabal Hash Algorithm

For a complete description of the Shabal hash function, please refer to [7, Ch. 2].
The internal state of Shabal consists of three 32-bit-wide shift registers, A,

B, and C, of length 12, 16, and 16, respectively, along with a 64-bit counter
W . Shabal splits a message in 512-bit blocks, which are stored into another
16-stage-long and 32-bit-wide shift register called M .

Processing a block M in Shabal involves the following sequence of operations:

1. XOR the counter into the first two words of A: A[i] ← A[i]⊕W [i], i = 0, 1.
2. Add the message to B: B[i] ← B[i] � M [i], for 0 � i < 16.
3. Rotate each word of B by 17 bits: B[i] ← B[i] ≪ 17, for 0 � i < 16.
4. Apply the keyed permutation, as depicted in Fig. 1, for 48 iterations:

– compute the two 32-bit words P and Q as

V ← (A[11] ≪ 15) � 5, U ← (V ⊕ A[0] ⊕ C[8]) � 3,
P ← U ⊕ M [0] ⊕ (B[6] ∧ B[9]) ⊕ B[13], Q ← P ⊕ (B[0] ≪ 1);

– shift the four registers: A � P , B � Q, C[15] � C, and M � M [0].
5. Add three words of C to each word of A: for 0 � i < 12,

A[i] ← A[i] � C[(i + 3) mod 16] � C[(i + 15) mod 16] � C[(i + 11) mod 16].

6. Subtract the message from C: C[i] ← C[i] � M [i], for 0 � i < 16.
7. Swap the contents of shift registers B and C: (B, C) ← (C, B).
8. Increment the counter: W ← (W + 1) mod 264.

A Low-Area FPGA Implementation of Shabal 101

QB

P

M

C

U

AV

≪ 1

0 156 9 13

0 15

0 158� 3

0 11

≪ 15� 5

Fig. 1. Main structure of the keyed permutation [7, Fig. 2.4]

2.2 The Xilinx SRL16 Shift Register Primitive

As described in Section 2.1, the internal state of Shabal involves 46 32-bit words of
storage and the message block M requires another 16 words. A naive implemen-
tation, using one FPGA flip-flop resource for each of these 1 984 bits of storage,
would then result in a relatively large circuit.

However, it is important to note here that only a small fraction of the internal
state is actually used at any step of the execution of Shabal. For instance, only
A[0], A[11], B[0], B[6], B[9], B[13], C[8], and M [0] are required to compute P
and Q when applying the keyed permutation (see Fig. 1), the other words simply
being stepped through their respective shift registers. We can therefore exploit
this fact and take advantage of the dedicated shift register resources offered by
some FPGA families in order to minimize the overall area of the circuit.

This is the case in the recent Xilinx FPGAs—such as the high-end Virtex-5
and -6 families, or the low-cost Spartan-3’s and -6’s—which all support the SRL16
primitive [20,21,23,24]. As depicted in Fig. 2, this primitive implements a 16-stage-
long and 1-bit-wide addressable shift register in a single 4-to-1-bit look-up table
(LUT), as it is in fact nothing but a 16-bit memory. A dedicated input DIN is used
to shift the data in, whereas the regular 4-bit input A addresses which bit is driven
to the LUT output D [20, Ch. 7]. It is therefore possible to implement variable-
size shift registers with this primitive. For instance, fixing the address A to 0000,
0011, or 1111 results in 1-, 4-, and 16-stage-long shift registers, respectively. Note
that this idea has already been successfully exploited for linear- and non-linear-
feedback-shift-register-based stream ciphers such as Grain or Trivium [8].

Furthermore, since the most recent Virtex-5, -6, and Spartan-6 FPGA families
are based on 64-bit LUTs—supporting either 6-to-1-bit or 5-to-2-bit modes of
operation—it is possible to pack two SRL16 instances in a single LUT, thus
implementing a 16-stage-long and 2-bit-wide addressable shift register (see for
instance [23, Fig. 5-17]).

102 J. Detrey, P. Gaudry, and K. Khalfallah

A
4

D

LUT

16-bit ROM

A
4

D

DIN

CLK
CE

LUT

Fig. 2. Xilinx LUT as a look-up table (left) and as an SRL16 shift register (right)

2.3 Adapting Shabal to Use Shift Registers

Since we want to benefit as much as possible from the low area requirements of
the SRL16 primitive, we need to implement the full Shabal algorithm using only
shift registers. In other words, all the parallel register-wide operations—such as
the B ← B � M affectation in step 2—should be serialized in a word-by-word
fashion.

From the algorithm given in Section 2.1, all steps but steps 4 and 8 should
therefore be serialized in such a way. This is a rather simple task for steps 2, 3,
6, and 7, but special care needs to be paid to the other two.

Accumulating C into A. The first non-trivial serialization to address is that
of step 5, which requires the accumulation of three words of the shift register C
into each word of A. From the original specification of Shabal [7], we can remark
that the indices of the three words of C are actually separated by exactly 12
positions each:

C[(i + 3) mod 16] = C[(i + 3 + 0 × 12) mod 16],
C[(i + 15) mod 16] = C[(i + 3 + 1 × 12) mod 16], and
C[(i + 11) mod 16] = C[(i + 3 + 2 × 12) mod 16].

We therefore choose to accumulate those words of C in a disctinct shift register
of length 12, denoted by D, by executing the iteration D � D[0]�C[3] and C �
C[0] for 36 consecutive cycles (assuming that every word of D was initialized to
0 beforehand).

Once each word D[i] contains C[(i+3) mod 16]�C[(i+15) mod 16]�C[(i+
11) mod 16], the contents of D are accumulated into A in 12 cycles, both 12-
stage-long shift registers A and D stepping simultaneously.

Shifting C both left and right. Note that, in the previous situation, the shift
register C is rotated by one position to the left at each step (i.e., C � C[0]),
whereas the keyed permutation (step 4 of the algorithm) requires C to rotate
to the right (i.e., C[15] � C). In order to solve this issue, we duplicate the
shift register C into two separate shift registers C and C′, both stepping to the
left—so as to match the direction of the other shift registers A, B, D, and M .

– The first shift register, C, is then responsible for delivering the words C[3]
in the proper order to accumulate them into D.

A Low-Area FPGA Implementation of Shabal 103

– The second one, C′, is loaded simultaneously with C—and therefore contains
the same data—and is addressed by a 4-bit counter k fed to the A port of the
SRL16s. So as to constantly point to the word C[8] required by the keyed
permutation, k has to be decremented by 2 at each cycle to compensate for
C′ stepping to the left.

The 64-bit counter W . Looking at step 1 of the Shabal algorithm, it seems
natural to consider the 64-bit counter W as a 2-word shift register, synchronized
with A, so that we can execute step 1 in two consecutive cycles.

Additionally, this has the interesting side-effect of splitting in half the 64-bit-
long carry propagation required for incrementing W in step 8 and which might
have been on the critical path. The incrementation of W is then performed
word by word, storing the carry output in a separate 1-bit register Wcy before
reinjecting it as carry-in for the next word of W .

Finally, since implementing 2- or 16-stage-long shift registers requires exactly
the same amount of SRL16 primitives—it consists only in changing the A input
from 0001 to 1111—we choose to use also a 16-word shift register for W , words
W [2] to W [15] set to 0, so as to match the 16-cycle period of registers B, C, C′,
and M , and thus simplifying the control.

2.4 Scheduling of a Shabal Message Round

From the Shabal algorithm in Section 2.1, it appears that several steps can be
merged or performed in parallel. We first present the justification and valid-
ity of such merges before giving the resulting scheduling of the algorithm, as
implemented in our circuit.

Merging and parallelizing steps in the algorithm. First of all, assuming
that the shift register D contains the sums C[(i+3) mod 16]�C[(i+15) mod 16]�
C[(i + 11) mod 16] from the step 5 of the previous round, we can postpone the
12-cycle accumulation of D into A of that previous round to the beginning of the
current round, effectively combining it with the XORing of W into A (step 1).
During that time, since only the shifted-out value D[0] is required, we can also
reset D to 0 by shifting-in 12 successive 0 words.

Additionally, we can merge the 16-cycle steps 2 and 3 by directly rotating
B[i] � M [i] by 17 bits to the left. This can further be combined with the word-
by-word loading of the current message block into the shift register M , along with
the swapping of B and C (step 7) from the previous round—thus postponed to
the current stage—by shifting B[0] into C and C′ while simultaneously shifting
the newly received message word Min into M and (C[0] � Min) ≪ 17 into B.
Finally, as all the registers involved are independent of A and D, this can be
performed in parallel with their previously discussed initialization.

We can also accumulate the words of C into D—which takes 36 iterations—
while executing the 48 iterations of the keyed permutation in parallel. Further-
more, during the last 16 cycles of those 48, notice that only the shifted-out value
M [0] is necessary to the permutation. We can then use the shift register M to

104 J. Detrey, P. Gaudry, and K. Khalfallah

temporarily store the difference C � M before shifting it again to B in the next
round. To that intent, C[0] � M [0] is then shifted into M during those last 16
cycles. Finally, the incrementation of W can also be performed in parallel during
those 16 cycles.

All in all, we end up with a 64-cycle round comprising two main steps:

– a 16-cycle step, during which the shift registers A, B, C, C′, D, and M are
initialized before performing the keyed permutation; followed by

– a 48-cycle step, actually computing the permutation, while preparing the
shift registers D, M , and W for the next round.

Detailed scheduling. As discussed in the previous paragraphs, postponing
steps of the Shabal algorithm from one round to the next changed the precondi-
tions on the internal state of Shabal at the beginning of the round, with respect
to what was presented as a round in Section 2.1. Therefore, for the scheduling
detailed here, we assume (a) that each word D[i] contains C[(i + 3) mod 16] �
C[(i + 15) mod 16] � C[(i + 11) mod 16], (b) that these sums have not yet been
accumulated into A, (c) that the shift register M contains C � M , and (d) that
the shift registers B and C have not yet been swapped.

The scheduling of the 64-cycle round then breaks down as follows (where
the current cycle is denoted by c, and where all the shifts and assignments are
performed synchronously):

c = 0, . . . , 11 12, . . . , 15 16, . . . , 47 48, . . . , 51 52, . . . , 63
A � Ain —— P
B � Bin Q
C � B[0] C[0]
C′ � B[0] ——————
D � 0 D[0] � C[3] ——
M � Min M [0] C[0] � M [0]
W � W [0] � Wcy

Wcy ← Output carry of W [0] + Wcy

k ← (k + 14) mod 16

In this scheduling, at each cycle, the two words P and Q are computed as

V ← (A[11] ≪ 15) � 5, U ← (V ⊕ A[0] ⊕ C′[k]) � 3,
P ← U ⊕ M [0] ⊕ (B[6] ∧ B[9]) ⊕ B[13], and Q ← P ⊕ (B[0] ≪ 1).

Furthermore, Ain designates (A[0] � D[0]) ⊕ W [0], Bin is (M [0] � Min) ≪ 17,
and the input carry Wcy is forced to 1 at cycle c = 48.

3 FPGA Implementation

3.1 Overall Architecture

The main architecture of our FPGA implementation of Shabal is given in Fig. 3,
where the control logic is omitted for clarity’s sake. The small rounded boxes

A Low-Area FPGA Implementation of Shabal 105

indicate control bits such as the clock enable signals for the various shift regis-
ters, whereas the light-gray rounded boxes identify how this circuit is mapped
onto basic Virtex-5 primitives. Further details about this mapping are given in
Section 3.3.

A

M

B

W

D

0

0

C ′

C

0

32 FFs

ceA

32 SRL16s

11

32 FFs

c3:0

init load

≪ 15

1

32 FFs

15

32 SRL16s

1

32 SRL16s 32 SRL16s 32 SRL16s

15

32 FFs32 SRL16s
c3:0

≪ 1

addM initload

subM loadM

c3:0

load

load

1

32 FFs

15

32 SRL16s

init

incW

1

1

32 LUTs

0

1

1

0

32 SRL16s

ceD

11

32 FFs

�3

32 LUTs16 LUTs
U

�5

30 LUTs

0

1
1

0

0

1

32 LUTs

+

32 LUTs

32 LUTs

≪ 17

≪ 17

S

T

1

0

−

1

0

32 LUTs

H

Min

V
1

0

1

0 +

32 LUTs

0

1

32 LUTs

+1

32 LUTs

1

0

1

0 +

32 LUTs
1

F
F

Wcy

32 SRL16s

32 FFs

32 FFs

15

32 SRL16s32 SRL16s

3 FFs 2 LUTs

k +2

101

IV
C

32
R

O
M

16
s

0 14

50 86 129 13 14

IV
B

32
R

O
M

16
s

0 14

100

IV
A

32
R

O
M

16
s

0 15

3 1420

Fig. 3. Main architecture of our Shabal design mapped onto Virtex-5 primitives

Up to now, we have not discussed the initialization of Shabal. According
to [7], this can be achieved by setting the registers A, B, and C to specific
initialization vectors, denoted here by IVA, IVB, and IVC , respectively. In our
architecture, these initialization vectors are stored into small 12- and 16-word

106 J. Detrey, P. Gaudry, and K. Khalfallah

ROMs, addressed by the four least significant bits of c and implemented by
means of 16-by-1-bit ROM16 primitives. During the first 16 cycles of the first
round of Shabal, the initialization words are then shifted into the corresponding
registers. In the meantime, the register W is initialized to 0, except for W [0]
which is set to 1.

When addressing an SRL16 primitive such as C′, using the address 0000 gives
the contents of the first stage of the register (i.e., C′[15]) whereas 1111 addresses
the last stage (i.e., C′[0]). Consequently, as we want to retrieve C′[k] at each
clock cycle, we need to address the corresponding shift register with k = 15 − k
instead of k. We therefore directly store and update k by means of a 4-bit up
counter. Additionally, since k is always incremented by 2, its least significant bit
is constant and need not be stored.

So as to shorten the critical path of the circuit, we also use the associativity
of the XOR operation to extract some parallelism out of the main feedback loop
which computes P and Q. Indeed, while computing V then U as before, we also
compute in parallel the two words S and T as

S ← M [0] ⊕ (B[6] ∧ B[9]) ⊕ B[13] and T ← S ⊕ (B[0] ≪ 1).

We then immediately have P as U ⊕ S and Q as U ⊕ T .

3.2 Control Logic

Although not depicted in Fig. 3, we claim that the logic required to generate the
control bits of our architecture entails but a small overhead. This is achieved by
restricting the number of control bits to a bare minimum:

– First of all, since the shift registers B, C, C′, M , and W are always stepping,
according to our scheduling, we fix their clock enable signal to 1. Only A and
D have distinct signals—ceA and ceD, respectively—as they sometimes have
to be stalled for a few cycles due to their shorter length.

– The load signal, which identifies the first 16 cycles of each round, is also
shared by most shift registers. Only M is controlled by loadM , as no message
block Min should be loaded during the three final rounds of Shabal [7].

– An init signal also controls whether we are in the first round and therefore
should load the initialization values for registers A, B, C, C′, and W .

– Finally, the signals subM , addM , and incW indicate when to subtract or add
the message to C and B, or when to increment W , respectively. Note that
these three signals are disabled during the three final rounds of Shabal.

A waveform of those signals during a message round of Shabal is given Fig. 4.
Not represented on this waveform, the init signal is high only during the first
16 cycles of the first round, and the loadM signal is identical to the load signal
during message rounds. As for the three final rounds, the control bits are the
same, except for loadM , subM , addM , and incW which are driven low.

The reader should note at this point that we opted for keeping the I/O in-
terface of our circuit as simple as possible, since the choice of which interface

A Low-Area FPGA Implementation of Shabal 107

47 48 49 50 51 52 62 63530 1c

ceD

load

ceA

addM

incW

subM

10 11 12 13 14 15 16 17 46

Fig. 4. Waveform of the control signals during a message round

to actually use heavily depends on the usage of the hash function and on the
environment in which it will run. Therefore, no message padding mechanism was
implemented here, and our circuit assumes that the message blocks are always
available and fed to the hash function during the 16 first cycles of each message
round. However, disabling the clock signal for the shift registers and the control
logic via a circuit-wide clock enable signal would allow the hash function to be
interrupted in order to wait for message words, for but a moderate overhead.

3.3 Technology Mapping

As previously mentioned, the light-gray rounded boxes in Fig. 3 refer to the
mapping of our Shabal circuit onto basic Virtex-5 primitives.1 In the figure,
next to the boxes, we also indicate the count and type of required primitives,
where LUT refers to a Virtex-5 look-up table—in either 6-to-1-bit or 5-to-2-
bit mode of operation—FF to a 1-bit flip-flop, SRL16 to an addressable shift
register as described in Section 2.2, and ROM16 to a 16-by-1-bit ROM. Note
that the fixed-length rotations (≪) involve only wires and do not require any
logic resource.

In order to reduce the critical path of the circuit, we choose to implement
the first stage of each shift register—except for C′—using flip-flops instead of
merging them into the SRL16 primitives. Indeed, this saves the routing delay
between the LUT-based multiplexers feeding the registers and the SRL16 prim-
itives, and entails no resource overhead as each Virtex-5 LUT is natively paired
with a matching flip-flop on the FPGA.

Furthermore, the clock-to-ouput delay of the SRL16 primitives being quite
high [22, Tab. 67], we also use flip-flops to implement the last stage of shift
register A which lies on the critical path.

Finally, it is worth noting that, on Virtex-5 FPGAs, two SRL16 or two ROM16
primitives can fit on a single LUT. Since a large part of our implementation is
1 A similar mapping was made for the Spartan-3 technology, but is not included in this

paper for the sake of concision.

108 J. Detrey, P. Gaudry, and K. Khalfallah

Table 1. Resource count of the main architecture as mapped on Virtex-5 (excluding

the control logic)

Component
High-level mapping Actual mapping

LUTs FFs SRL16s ROM16s LUTs FFs

Register A 64 64 32 32 96 64

Register B 64 32 128 32 144 32

Registers C and C ′ 34 67 96 32 98 67

Register D 32 32 32 0 48 32

Register M 32 32 32 0 48 32

Register W 32 33 32 0 48 33

Feedback loop 110 0 0 0 110 0

Total 368 260 352 96 592 260

based on these primitives, this reduces ever further the overall area of the design.
To illustrate this, we present in Table 1 a complete breakdown of the resource
requirements of our circuit, both in terms of high-level primitives—i.e., LUTs,
FFs, SRL16s, and ROM16s—and in terms of actually mapped primitives—i.e.,
LUTs and FFs only.

4 Benchmarks and Comparisons

4.1 Place-and-Route Results

We have implemented the fully autonomous Shabal circuit presented in this pa-
per in VHDL.2 We have placed-and-routed it using the Xilinx ISE 10.1 toolchain,
targeting a Xilinx Virtex-5 LX 30 FPGA with average speed grade (xc5vlx30-
2ff324), along with a low-cost Xilinx Spartan-3 200 with highest speed grade
(xc3s200-5ft256).

On the Virtex-5, the whole circuit occupies only 153 slices, that is, more
precisely, 605 LUTs and 274 flip-flops. Interestingly enough, these figures are
very close to the technology mapping estimations from Table 1: the control logic
overhead, totaling to 13 LUTs and 14 flip-flops, is quite small, as expected. This
design supports a clock period of 3.9 ns—i.e., a frequency of 256 MHz—and
since it processes a 512-bit message block in 64 clock cycles, it delivers a total
throughput of 2.05 Gbit/s and thus a throughput-vs.-area ratio of 13.41 Mbit/s
per slice.

On the Spartan-3 target, our Shabal architecture uses 499 slices and can be
clocked at 100 MHz. This yields a throughput of 800 Mbit/s, which corresponds
to 1.6 Mbit/s per slice.

Note that these results are given for the Shabal-512 flavor, even though chang-
ing the digest length does not affect the circuit performance in any way.
2 This VHDL code is available at http://hwshabal.gforge.inria.fr/ under the terms

of the GNU Lesser General Public License.

http://hwshabal.gforge.inria.fr/

A Low-Area FPGA Implementation of Shabal 109

4.2 Against Other Shabal Implementations

A comparison between our circuit and previously published implementations is
given in Table 2. Since all state-of-the-art papers present benchmarks on Virtex-
5 or Spartan-3, we believe this comparison to be quite fair. It is to be noted
that, if our Shabal circuit does not deliver the highest throughput, it is by far
the smallest implementation in the literature, and also the most efficient in terms
of throughput per area.

Table 2. FPGA implementations of Shabal on Virtex-5 and Spartan-3

FPGA Implementation
Area Freq. Cycles / TP TP / area

[slices] [MHz] round [Mbps] [kbps/slice]

Baldwin et al. [3]*
2 307 222 85 1 330 577

2 768 139 49 1 450 524

Virtex-5
Kobayashi et al. [13] 1 251 214 63 1 739 1 390

Feron and Francq [9]
1 171 126 25 2 588 2 210

596† 109 49 1 142 1 916

This work 153 256 64 2 051 13 407

Baldwin et al. [3]*
1 933 90 85 540 279

Spartan-3 2 223 71 49 740 333

This work 499 100 64 800 1 603
*Only the core functionality was implemented. †This design requires 40 additional DSP blocks.

Also note that Namin and Hasan published another FPGA implementation
of Shabal [17]. However, not only do they present benchmarks on Altera Stratix-
III FPGAs—against which it becomes difficult to compare Virtex-5 or Spartan-3
results in a fair way—but it also seems from their paper that they only implement
part of the Shabal compression function. We therefore deliberately choose not
to compare our work to theirs.

4.3 Against Implementations of the Other SHA-3 Candidates

Since Shabal is but one hash function among the fourteen remaining SHA-3
candidates, we also provide the reader with a compilation of the Virtex-5 and
Spartan-3 implementation results for the other hash functions as gathered on
the SHA-3 Zoo website [1] in Tables 3 and 4, respectively.

Comparing our Shabal circuit with these other designs, it is clear that, in terms
of raw speed, we cannot compete against the high-throughput implementations
of ECHO [15] or Grøstl [10] which all exceed the 10 Gbit/s mark on Virtex-5.
However, it appears that our implementation ranks among the smallest SHA-3
designs, third only to the low-area implementations of BLAKE and ECHO by
Beuchat et al. [6,5]. Therefore, if a high throughput is the objective, one can
replicate our circuit several times in order to increase the overall throughput
by the same factor: for instance, eight instances of our implementation running
in parallel would yield a total of 16.4 Gbit/s for a mere 1 224 slices on Virtex-
5, thus more than four times smaller than the 5 419 slices of the 15.4-Gbit/s

110 J. Detrey, P. Gaudry, and K. Khalfallah

Table 3. FPGA implementations of SHA-3 candidates on Virtex-5

Hash Digest
Implementation

Area Freq. TP TP / area
function length [slices] [MHz] [Mbps] [kbps/slice]

1 694 67 3 103 1 832

Submission doc. [2]* 1 217 100 2 438 2 003

256 390 91 575 1 474

Kobayashi et al. [13] 1 660 115 2 676 1 612

BLAKE Beuchat et al. [6] 56 372 225 4 018

4 329 35 2 389 552

512
Submission doc. [2]* 2 389 50 1 766 739

939 59 533 568

Beuchat et al. [6] 108 358 314 2 907

Baldwin et al. [3]*
1 178 167 160 136

CubeHash all 1 440 55 110 76

Kobayashi et al. [13] 590 185 2 960 5 017

Lu et al. [15] 9 333 87 14 860 1 592

ECHO
224/256 Kobayashi et al. [13] 3 556 104 1 614 454

Beuchat et al. [5] 127 352 72 567

384/512 Lu et al. [15] 9 097 84 7 810 859

Submission doc. [10] 1 722 201 10 276 5 967

3 184† 250 6 410 2 013

224/256 Baldwin et al. [3]*
4 516† 143 7 310 1 619

5 878 128 3 280 558

Grøstl
8 196 102 5 210 636

Kobayashi et al. [13] 4 057 101 5 171 1 275

Submission doc. [10] 5 419 211 15 395 2 841

384/512
6 368† 144 5 260 826

Baldwin et al. [3]* 10 848 111 4 060 374

19 161 83 6 090 318

Hamsi 256 Kobayashi et al. [13] 718 210 1 680 2 340

Keccak all Updated submission [4]
1 412 122 6 900 4 887

444¶ 265 70 158

Luffa 256 Kobayashi et al. [13] 1 048 223 6 343 6 052

Baldwin et al. [3]*
2 307 222 1 330 577

2 768 139 1 450 524

Shabal all
Kobayashi et al. [13] 1 251 214 1 739 1 390

Feron and Francq [9]
1 171 126 2 588 2 210

596‡ 109 1 142 1 916

This work 153 256 2 051 13 407

Long [14]* 1 001 115 409 409

256 Tillich [19] 937 68 1 751 1 869

Skein Kobayashi et al. [13] 854 115 1 482 1 735

512
Long [14]* 1 877 115 817 435

Tillich [19] 1 632 69 3 535 2 166
*Only the core functionality was implemented.
†This design uses several additional RAM blocks.

‡This design requires 40 additional DSP blocks.
¶This design uses an additional external memory.

A Low-Area FPGA Implementation of Shabal 111

Table 4. FPGA implementations of SHA-3 candidates on Spartan-3

Hash Digest
Implementation

Area Freq. TP TP / area
function length [slices] [MHz] [Mbps] [kbps/slice]

BLAKE
256 Beuchat et al. [6] 124 190 115 927

512 Beuchat et al. [6] 229 158 138 603

CubeHash all Baldwin et al. [3]*
2 883 59 50 17

3 268 38 70 21

Submission doc. [10] 6 582 87 4 439 674

Jungk et al. [12]
6 136 88 4 520 737

2 486 63 404 163

3 183† 91 2 330 732

Baldwin et al. [3]*
4 827† 72 3 660 758

224/256 5 508 60 1 540 280

8 470 50 2 560 302

1 276 60 192 150

Grøstl Jungk et al. [11]
1 672 38 243 145

4 491† 100 2 560 570

5 693† 54 2 764 486

Submission doc. [10] 20 233 81 5 901 292

6 313† 80 2 910 461

Baldwin et al. [3]* 10 293 50 1 830 178

384/512 17 452 43 3 180 182

2 110 63 144 68

Jungk et al. [11] 2 463 36 164 66

8 308† 95 3 474 418

Baldwin et al. [3]*
1 933 90 540 279

Shabal all 2 223 71 740 333

This work 499 100 800 1 603

Skein
256 Tillich [19] 2 421 26 669 276

512 Tillich [19] 4 273 27 1 365 319
*Only the core functionality was implemented. †This design uses several additional RAM blocks.

implementation of Grøstl-512 [10]. Of course, this reasoning solely applies when
hashing distinct messages in parallel, and not one single large message—in which
case only the raw throughput matters.

Consequently, we also detail this throughput per area ratio in the last column
of Tables 3 and 4. Reaching 13.4 Mbit/s per slice on Virtex-5, and 1.6 Mbit/s/slice
on Spartan-3, our design is the best of the literature according to this metric.

5 Conclusion

We have described an FPGA implementation of the SHA-3 candidate Shabal that
provides a decent 2 Gbit/s throughput using as few as 153 slices of a Virtex-5.
Obtaining this tiny size was made possible by taking advantage of the specificity
of the design of Shabal where only a small percentage of the large internal
state of the compression function is active at a given time, thus allowing us to

112 J. Detrey, P. Gaudry, and K. Khalfallah

use the builtin SRL16 shift registers of Xilinx FPGAs. This very good tradeoff
between size and speed yields the best throughput per area ratio of all SHA-3
implementations published so far. It demonstrates that Shabal is very well suited
for hardware implementations, even in constrained environments.

These results should nevertheless be taken with some caution, as our imple-
mentation strongly depends on the underlying FPGA technology and architec-
ture, which in our case allows us to benefit from the cheap shift register primi-
tives. However, Altera FPGAs for instance do not support SRL16-like primitives,
but shift-register-capable memory blocks. Porting our circuit to such targets
might have an important impact on the overall performance. Similarly, an ASIC
implementation of our Shabal circuit might not perform as well against other
candidates as our Xilinx implementations do. However, the control simplification
and scheduling tricks described in this paper are still applicable independently
of the considered targets, and should Shabal be selected for the final round of
the SHA-3 contest, we plan to investigate these issues further.

Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful
and encouraging comments.

We would also like to express our gratitude to the whole Shabal team for
coming up with such a nice hash function to implement in hardware, and more
especially Marion Videau who came to us with this funny challenge in the first
place!

References

1. The SHA-3 zoo, http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE

(October 2008), http://131002.net/blake/

3. Baldwin, B., Byrne, A., Mark, H., Hanley, N., McEvoy, R.P., Pan, W., Marnane,

W.P.: FPGA implementations of SHA-3 candidates: CubeHash, Grøstl, LANE,

Shabal and Spectral Hash. In: 12th Euromicro Conference on Digital Systems

Design, Architectures, Methods and Tools (DSD 2009), pp. 783–790. IEEE Com-

puter Society, Patras (August 2009)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak sponge function

family (April 2009), http://keccak.noekeon.org/

5. Beuchat, J.L., Okamoto, E., Yamazaki, T.: A compact FPGA implementation of

the SHA-3 candidate ECHO. Report 2010/364, Cryptology ePrint Archive (June

2010), http://eprint.iacr.org/2010/364

6. Beuchat, J.L., Okamoto, E., Yamazaki, T.: Compact implementations of BLAKE-

32 and BLAKE-64 on FPGA. Report 2010/173, Cryptology ePrint Archive (April

2010), http://eprint.iacr.org/2010/173

7. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,

A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,

J.R., Thuillet, C., Videau, M.: Shabal, a submission to NIST’s cryptographic hash

algorithm competition (October 2008), http://www.shabal.com/?page_id=38

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://131002.net/blake/
http://keccak.noekeon.org/
http://eprint.iacr.org/2010/364
http://eprint.iacr.org/2010/173
http://www.shabal.com/?page_id=38

A Low-Area FPGA Implementation of Shabal 113

8. Bulens, P., Kalach, K., Standaert, F.X., Quisquater, J.J.: FPGA implemen-

tations of eSTREAM phase-2 focus candidates with hardware profile. Re-

port 2007/024, eSTREAM, ECRYPT Stream Cipher Project (January 2007),

http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf

9. Feron, R., Francq, J.: FPGA implementation of Shabal: Our first results (February

2010), http://www.shabal.com/?page_id=38

10. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger,

C., Schläffer, M., Thomsen, S.S.: Grøstl: A SHA-3 candidate (October 2008),

http://www.groestl.info/

11. Jungk, B., Reith, S.: On FPGA-based implementations of Grøstl. Report 2010/260,

Cryptology ePrint Archive (May 2010), http://eprint.iacr.org/2010/260

12. Jungk, B., Reith, S., Apfelbeck, J.: On optimized FPGA implementations of the

SHA-3 candidate Grøstl. Report 2009/206, Cryptology ePrint Archive (May 2009),

http://eprint.iacr.org/2009/206

13. Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of hard-

ware performance for the SHA-3 candidates using SASEBO-GII. Report 2010/010,

Cryptology ePrint Archive (January 2010), http://eprint.iacr.org/2010/010

14. Long, M.: Implementing Skein hash function on Xilinx Virtex-5 FPGA platform

(February 2009), http://www.skein-hash.info/downloads/

15. Lu, L., O’Neill, M., Swartzlander, E.: Hardware evaluation of SHA-3 hash function

candidate ECHO (May 2009),

http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/

TheClaudeShannonWorkshoponCodingCryptograpy2009/

16. Naehrig, M., Peters, C., Schwabe, P.: SHA-2 will soon retire: The SHA-3 song.

Journal of Craptology 7 (February 2010)

17. Namin, A.H., Hasan, M.A.: Hardware implementation of the com-

pression function for selected SHA-3 candidates. Tech. Rep. 2009-28,

Centre for Applied Cryptographic Research, University of Waterloo

(July 2009), http://www.cacr.math.uwaterloo.ca/techreports/2009/

tech reports2009.html

18. Regenscheid, A., Perlner, R., Chang, S., Kelsey, J., Nandi, M., Paulu, S.: Status

report on the first round of the SHA-3 cryptographic hash algorithm competition.

Report NISTIR 7620, National Institute of Standards and Technology (Septem-

ber 2009), http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/

sha3 NISTIR7620.pdf

19. Tillich, S.: Hardware implementation of the SHA-3 candidate Skein. Report

2009/159, Cryptology ePrint Archive (April 2009),

http://eprint.iacr.org/2009/159

20. Xilinx: Spartan-3 generation FPGA user guide,

http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

21. Xilinx: Spartan-6 FPGA Configurable Logic Block user guide,

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

22. Xilinx: Virtex-5 FPGA data sheet: DC and switching characteristics,

http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf

23. Xilinx: Virtex-5 FPGA user guide,

http://www.xilinx.com/support/documentation/user_guides/ug190.pdf

24. Xilinx: Virtex-6 FPGA Configurable Logic Block user guide,

http://www.xilinx.com/support/documentation/user_guides/ug364.pdf

http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
http://www.shabal.com/?page_id=38
http://www.groestl.info/
http://eprint.iacr.org/2010/260
http://eprint.iacr.org/2009/206
http://eprint.iacr.org/2010/010
http://www.skein-hash.info/downloads/
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonWorkshoponCodingCryptograpy2009/
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonWorkshoponCodingCryptograpy2009/
http://www.cacr.math.uwaterloo.ca/techreports/2009/tech_reports2009.html
http://www.cacr.math.uwaterloo.ca/techreports/2009/tech_reports2009.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/sha3_NISTIR7620.pdf
http://eprint.iacr.org/2009/159
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds202.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf

Implementation of Symmetric Algorithms on a
Synthesizable 8-Bit Microcontroller Targeting

Passive RFID Tags

Thomas Plos, Hannes Groß, and Martin Feldhofer

Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{Thomas.Plos,Martin.Feldhofer}@iaik.tugraz.at,
Hannes.Gross@student.tugraz.at

Abstract. The vision of the secure Internet-of-Things is based on the

use of security-enhanced RFID technology. In this paper, we describe the

implementation of symmetric-key primitives on passive RFID tags. Our

approach uses a fully synthesizable 8-bit microcontroller that executes,

in addition to the communication protocol, also various cryptographic

algorithms. The microcontroller was designed to fulfill the fierce con-

straints concerning chip area and power consumption in passive RFID

tags. The architecture is flexible in terms of used program size and the

number of used registers which allows an evaluation of various algorithms

concerning their required resources. We analyzed the block ciphers AES,

SEA, Present and XTEA as well as the stream cipher Trivium. The

achieved results show that our approach is more efficient than other ded-

icated microcontrollers and even better as optimized hardware modules

when considering the combination of controlling tasks on the tag and

executing cryptographic algorithms.

Keywords: passive RFID tags, 8-bit microcontroller, symmetric-key al-

gorithms, low-resource hardware implementation.

1 Introduction

Radio frequency identification (RFID) is the enabler technology for the future
Internet-of-Things (IoT), which allows objects to communicate with each other.
The ability to uniquely identify objects opens the door for a variety of new
applications. Some of these applications like proof-of-origin of goods or privacy
protection require the use of cryptographic algorithms for authentication or con-
fidentiality.

An RFID system typically comprises three components: an RFID reader, a
back-end database, and one or more RFID tags. The reader is connected to the
back-end database and communicates with the tag contactless by means of an
RF field. The so-called tag is a small microchip attached to an antenna that
receives the data and probably the clock signal from the RF field. Passive tags
also receive their power supply from the RF field. Supplying the tag from the RF

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 114–129, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 115

field strongly limits the power consumption of the tag (typically, around 30�W
are available). Moreover, passive RFID tags are produced in high volume and
need to be cheap in price. In order to keep the price of the tag low, its microchip
must not exceed a certain size in terms of silicon area (typically, a whole tag has
a size of 20000 gate equivalents). These two constraints make it a challenging
task to implement cryptographic security on passive RFID tags.

For a secure system, not only the reader and the back-end database need to
provide cryptographic security, but also the tags have to perform cryptographic
operations. During the last years, a lot of effort was made by the research commu-
nity to bring cryptographic security to RFID tags. The most prominent attempts
among others are for example symmetric schemes like the Advanced Encryption
Standard (AES) [11, 15], or asymmetric schemes like Elliptic Curve Cryptogra-
phy (ECC) [2, 27]. All these attempts use dedicated hardware modules that are
highly optimized for a specific cryptographic algorithm. Moreover, they do not
consider the increased controlling effort that comes along with adding security
to RFID tags. Even without adding security, a substantial part of the chip size
is consumed by the controlling unit of the tag that handles the communication
protocol. The work of Yu et al. [29] states that about 7500 gate equivalents
(GEs) (one GE is the silicon area required by a NAND gate) are consumed for
only handling the protocol.

Several tasks have to be accomplished by the control unit of a tag when using
a simple challenge-response protocol to verify the authenticity of the tag. First,
the control unit of the tag needs to generate random data and combine it with
the challenge from the RFID reader. Second, random data and challenge need to
be provided to the cryptographic hardware module and processing of data has
to be started. Finally, the processed data needs to be transferred to the RFID
reader. Other security services like mutual authentication or secure key update
are even more demanding in terms of controlling effort.

Today’s RFID tags have their control unit implemented as a finite-state ma-
chine (FSM) in hardware. However, increased controlling effort is easier to handle
with a simple microcontroller. Particularly, microcontrollers are more flexible
and allow faster integration of new functionalities, which reduces the time to
market. Moreover, when using the microcontroller for control tasks, it seems
reasonable to reuse it also for computing cryptographic algorithms. This reuse
enables a better utilization of resources like the memory, which can help to
reduce the chip size of the tag and in turn also the costs.

In this work, we present a synthesizable hardware implementation of a simple
8-bit microcontroller that is suitable to handle complex control tasks. The micro-
controller fulfills the fierce requirements of passive RFID tags regarding power
consumption and chip size. Five symmetric-key algorithms are implemented on
this microcontroller, which are: the Advanced Encryption Standard (AES), the
Scalable Encryption Algorithm (SEA), Present, the Extended Tiny Encryption
Algorithm (XTEA), and Trivium. The performance of our implementations is
evaluated and compared with results from implementations on other dedicated
microcontroller platforms. Finally, the hardware costs that are added due to the

116 T. Plos, H. Groß, and M. Feldhofer

implementation of the cryptographic algorithms are compared with the costs
of stand-alone hardware modules. The results clearly show that the implemen-
tations on our microcontroller have lower costs than the dedicated hardware
modules. For example, AES encryption and decryption comes at cost of less
than 3000GEs on our microcontroller.

The remainder of this paper is organized as follows. Section 2 describes the
synthesizable 8-bit microcontroller that is used for implementing the crypto-
graphic algorithms. In Section 3, a short overview of the selected algorithms is
given, followed by the implementation results of the algorithms in Section 4.
Discussion of the results with respect to passive RFID tags is done in Section 5.
Conclusions are drawn in Section 6.

2 Description of the Synthesizable 8-Bit Microcontroller

The overhead that comes along with adding security to RFID tags in terms of
controlling effort is often underestimated. Increased controlling effort is easier to
accomplish with a simple microcontroller than with dedicated finite-state ma-
chines. In the following, we present a simple 8-bit microcontroller that is suitable
to handle such complex control tasks. Moreover, it is a fully synthesizable micro-
controller (available in VHDL) and it fulfills the fierce requirements of passive
RFID tags.

Our 8-bit microcontroller uses a Harvard architecture with separated program
memory and data memory. Such an architecture has the advantage that the
program memory can have a different word size (16-bit) than the data memory
(8-bit). The microcontroller supports 36 instructions and is a so-called Reduced
Instruction Set Computer (RISC). The instructions have a width of 16 bits and
can mainly be divided into three groups: logical operations like AND or XOR,
arithmetic operations like addition (ADD) and subtraction (SUB), and control-
flow operations like GOTO, CALL, and branching.

The main components of the microcontroller are the read-only memory (ROM),
the register file, the program counter, the instruction decode unit, and the
arithmetic-logic unit (ALU). An overview of the microcontroller is presented in
Figure 1. The ROM contains the program of up to 4096 instructions and is realized
as look-up table in hardware. It gets mapped to an unstructured mass of standard
cells by the synthesis tool. Unused program space reduces the chip size of the mi-
crocontroller which makes our approach flexible and efficient. The register file is
the data memory of the microcontroller and consists of at most 64 8-bit registers.
If not all registers are needed by an application (during protocol execution and
cryptographic calculations), unused registers can be omitted reducing the over-
all size of the microcontroller. This flexibility is only possible with a customizable
processor architecture. Instructions are executed within a two-stage pipeline that
consists of a fetch and a decode/execute step. In the first stage, the instruction
that is addressed by the 12-bit program counter is loaded from the ROM into the
instruction decode unit. In the second stage, the instruction is decoded by the in-
struction decode unit and executed by the ALU. Afterwards, the program counter

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 117

Program counter

Instruction
decode unit

ACC
STATUS

PCH

Register file
64 x 8-bit

Data
memory

ROM
 4096 x 16-bit

Program
memory

ALU

16

888

84

12

2

8

I/O

…...

Mux

16

ALU out

Instruction

Address

PCH

reg_out2

reg_out1

ROM

Status

ROM reg_in

Fig. 1. Overview of the 8-bit microcontroller

is updated. The program counter contains a call stack that allows up to three
recursive subroutine calls. All instructions are executed within a single clock cycle,
except control-flow operations which require two clock cycles.

There are two types of registers in the register file of the microcontroller:
special-purpose registers and general-purpose registers. The special-purpose reg-
isters involve an accumulator register (ACC) for advanced data manipulation, a
status register (STATUS) that gives information about the status of the ALU
(e.g. carry bit after addition), a program-counter register (PCH) for addressing
the higher 4 bits of the program counter, and input/output (I/O) registers. The
I/O registers are used for accessing external devices. In case of RFID tags, exter-
nal devices can be the digital front-end for sending and receiving byte streams
or the EEPROM. The I/O registers are also used for reacting on external events
via busy waiting, since interrupts are not supported by the microcontroller.
General-purpose registers are used for arbitrary data manipulations and tem-
porarily storing data.

We have developed a self-written instruction-set simulator and an assembler
for implementing the microcontroller program that is stored in the ROM. Both
programs are written in JAVA and allow a fast and easy way of program de-
velopment. The simulator supports a single-step mode and gives access to the
internal state of the microcontroller. This makes debugging and testing of the
program very convenient. After simulation, the assembler is used to generate a
file with the content of the ROM. Figure 2 presents a code snippet of a micro-
controller program written in JAVA with resulting ROM content after applying
the assembler. The file with the ROM content is directly integrated into the
hardware-description language (HDL) model of the microcontroller. This HDL

118 T. Plos, H. Groß, and M. Feldhofer

Microcontroller program
(JAVA file)

ROM content
(HDL file)

Assembler

MovFF(TEMP_REG[0], STATE_REG[0][0]);
MovFF(TEMP_REG[1], STATE_REG[1][0]);
MovFF(TEMP_REG[2], STATE_REG[2][0]);
MovFF(TEMP_REG[3], STATE_REG[3][0]);

rom_data_type'("1000100110000011"); -- 22 8983 MovFF 0x26, 0x3
rom_data_type'("1000100111000111"); -- 23 89c7 MovFF 0x27, 0x7
rom_data_type'("1000101000001011"); -- 24 8a0b MovFF 0x28, 0xb
rom_data_type'("1000101001010000"); -- 25 8a50 MovFF 0x29, 0x10

Fig. 2. Code snippet of a microcontroller program written in JAVA with resulting

ROM content after applying the assembler

model is then synthesized with Cadence RTL Compiler for a 0.35�m CMOS
technology using a semi-custom design flow. The synthesis results in Table 1
show that the microcontroller can be implemented within less than 5600 gate
equivalents (GEs), excluding the ROM. The by far largest part is the register
file (for 64 x 8-bit) with 4582GEs. As already mentioned, our approach allows
to flexibly reduce the instantiated number of registers. Moreover, we performed
power simulations with Synopsys Nanosim. The simulations show a mean power
consumption of 10.3�A for the microcontroller when operating at 100 kHz clock
frequency and 3V supply voltage. The power consumption can be further re-
duced by switching to a more recent CMOS technology or by reducing the supply
voltage.

Both chip area and power consumption of the microcontroller fulfill the re-
quirements of passive RFID tags. Hence, when using the microcontroller for
handling the control tasks of the tag, it seems reasonable to reuse it also for
computing the cryptographic algorithms. In order to address this issue, different
cryptographic algorithms are implemented on the microcontroller. The following
sections contain a short description of the selected cryptographic algorithms and
evaluate their implementations with respect to execution time and code size.

Table 1. Synthesis results of the microcontroller excluding the ROM

Component Chip area
[GEs] [%]

Program counter with call stack 463 8.3

ALU 265 4.7

Register file (64 x 8 bit) 4582 81.9

Instruction decode unit 284 5.1

Total 5594 100.0

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 119

3 Overview of the Selected Cryptographic Algorithms

Several cryptographic algorithms that could be interesting for RFID applica-
tions were selected for implementation on the microcontroller. Main selection
criteria were adequate security of the algorithm and moderate resource usage.
We selected four block ciphers and one stream cipher for evaluation. The block
ciphers are: AES, XTEA, Present, and SEA. The stream cipher is Trivium. Ta-
ble 2 provides an overview of the selected algorithms and compares some of their
properties like key size, block size, and number of rounds.

Table 2. Comparison of the selected cryptographic algorithms

Algorithm Key size Block size Number of rounds
[bits] [bits] per block

Block ciphers

AES-128 128 128 10

SEA96,8 96 96 93

Present-80 80 64 31

XTEA 128 64 64

Stream ciphers /128 bits

Trivium 80 - 128

The Advanced Encryption Standard (AES) is the successor of the Data
Encryption Standard (DES) and was introduced by the National Institute of
Standards and Technology (NIST) in 2001 [21]. AES uses a so-called substitution-
permutation network (SPN) and works on a fixed block size of 128 bits. We
selected AES-128 for our implementations, which has a key length of 128 bits
and uses 10 rounds. AES-128 is treated as very secure since it is widely deployed
and well researched. The best known attack on AES-128 applies on 8 out of 10
rounds and was published in 2009 [14].

SEA stands for Scalable Encryption Algorithm and was developed by Stan-
daert et al. in 2006 [25]. The algorithm is a so-called Feistel block cipher and
was designed for resource-constrained devices such as microcontrollers that have
only a limited instruction set and little memory available. As the name implies,
SEA is scalable. This means that parameters like the word size b, the width n
of the key and the plaintext, and the number of rounds nr can be adjusted for
the requirements of the target device. As suggested by the designers, we selected
for implementation on our 8-bit microcontroller (word size b=8) n=96 bits and
nr=93 rounds (SEA96,8). SEA is a rather new algorithm and not as well re-
searched as other block ciphers. Hence, further analysis of its security is still
necessary.

Present is another lightweight block cipher suitable for implementation on con-
strained devices. It uses a substitution-permutation network (SPN) like AES and
was introduced by Bogdanov et al. in 2007 [3]. Present operates on 64-bit data
blocks and supports key lengths of 80 bits (Present-80) and 128 bits (Present-
128). In our implementations we selected Present-80 since it is most interesting

120 T. Plos, H. Groß, and M. Feldhofer

for low-resource implementations. Present-80 uses 31 rounds. The best known at-
tack on Present-80 applies on 26 out of the 31 rounds and was recently published
by Cho in [6].

The Extended Tiny Encryption Algorithm (XTEA) was published in 1997 [22]
and is the successor of the Tiny Encryption Algorithm (TEA). XTEA is a 64-bit
block cipher with a Feistel structure that iterates a simple round function over a
number of 64 rounds. The key used by XTEA has a length of 128 bits. Encryp-
tion and decryption operation of XTEA have a similar structure allowing a rather
compact implementation of the block cipher. The best known attack on XTEA is
a so-called related-key rectangle attack that addresses 36 rounds out of the 64
rounds [16].

Trivium is a hardware-oriented stream cipher developed by De Cannière et al.
[4]. Although the stream cipher is optimized for hardware designs, it provides also
low-resource usage in software implementations. Trivium follows a very simple de-
sign strategy and allows to generate up to 264 bits of key stream from an 80-bit
initial value (IV) and an 80-bit secret key. Trivium operates on a 288-bit inter-
nal state, which needs to be initialized first before generation of the key stream is
started. There exist several attacks on reduced variants of Trivium as described
in [8] and [28]. However, there is no successful attack against the full version of
Trivium.

Implementation results of the five selected algorithms are presented in the next
section, followed by comparing the results with implementations on other micro-
controller platforms.

4 Implementation Results

This section presents the implementation results of the cryptographic algorithms
on our microcontroller. All implementations were done in our own assembler envi-
ronment and optimized towards three targets: execution time, code size, and effi-
ciency. In order to determine the efficiency of an implementation, a scaling factor
s = 108 is divided by the product of execution time in clock cycles and code size in
bytes (s is used to obtain easier-manageable values). As mentioned in the previous
section, we selected four block ciphers and one stream cipher for implementation.
For the block ciphers both encryption and decryption were implemented. When
the block ciphers need to compute round keys this is done on-the-fly during the
encryption or the decryption routine. Moreover, we compare our results with im-
plementations on other platforms like AVR microcontrollers from Atmel, PIC mi-
crocontrollers from Microchip, 68HC08 microcontrollers from Motorola, or 8051
microcontrollers from various manufacturers. The latter are based on a so-called
Complex Instruction-Set Computer (CISC) architecture where the execution of
a single instruction (a machine cycle) typically requires several clock cycles. This
makes a comparison with 8051 microcontrollers difficult, since depending on the
manufacturer, the number of clock cycles per instruction can vary. An overview
of our implementation results is given in Table 3, which contains also results from
implementations on the other microcontroller platforms.

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 121

4.1 AES-128

AES-128 was the first cryptographic algorithm implemented on our microcon-
troller. Round keys are computed on-the-fly. Encryption and decryption opera-
tion were implemented. Decryption consumes significantly more execution time
than encryption, since the last round key need to be computed at the begin-
ning. S-box operation and inverse S-box operation are realized as look-up tables
with 256 entries each. The AES implementation with the best efficiency requires
only 3304 clock cycles for encryption and only 5037 clock cycles for decryption
(both values already include the key schedule). Code size of this version is 1940
bytes. A more compact implementation that extensively uses function calls saves
200 bytes of code, which comes at the prize of a significantly longer execution
time, 5064 clock cycles for encryption and 8226 clock cycles for decryption. The
speed-optimized version of AES uses code duplication and requires only 3084
clock cycles for encrypting a data block and 4505 clock cycles for decrypting
a data block. This moderate speed up causes the code-size to increase to 2158
bytes. Regardless of the optimization target, 39 registers are used by our imple-
mentations.

AES-128 is widely deployed and many implementations of this algorithm for
various microcontroller platforms are available. In Table 3 we list some of them,
and compare them with our results. We also added two encryption-only versions
of our implementations, one optimized for speed and one optimized for code
size, to provide better comparability with related work where the decryption
operation is omitted. When comparing with implementations on AVR or PIC
microcontrollers, our versions are not only faster but also more compact in code
size, leading to a much better efficiency. At first glance, the situation looks
different for our encryption-only versions. There, the AES implementations on
the 8051 microcontrollers seem to provide better efficiency. However, it has to
be noted that the performance numbers of the 8051 microcontrollers are related
to machine cycles (a machine cycle requires typically several clock cycles).

4.2 SEA

The simple structure of SEA allows a rather straight-forward implementation
on the microcontroller. Encryption and decryption operation of SEA are quite
similar and can efficiently be combined in a single function. In that way, a very
compact implementation of SEA is obtained that requires only 332 bytes of
code. Encryption or decryption of a 96-bit data block lasts 14723 clock cycles
each with this version. When optimizing the implementation towards efficiency,
execution time is reduced to 8597 clock cycles, by using 488 bytes of code. The
speed-optimized implementation of SEA is only about 500 clock cycles faster
and uses separate functions for encryption and decryption. However, this minor
speed up increases the code size by nearly 300 bytes. All implementations of
SEA utilize 12 registers each.

Table 3 gives an overview of the results and compares them with imple-
mentations on other microcontroller platforms. Our implementations have a

122 T. Plos, H. Groß, and M. Feldhofer

Table 3. Implementation results of the cryptographic algorithms and comparison with

related work

Algorithm Platform Target Code Encryption Decryption
size

[bytes]
clock effi- clock effi-

cycles ciency cycles ciency

Block ciphers

AES-128

This work size 1704 5064 11.6 8226 7.1
This work eff. 1940 3304 15.6 5037 10.2
This work speed 2158 3084 15.0 4505 10.3
AVR [24] - 3410 3766 7.8 4558 6.4

AVR [10] - 2606 6637 5.8 7429 5.2

PIC [19] - 2478 5273 7.7 7041 5.7

This work size 918 4192 26.0 - -

This work speed 1110 3004 30.0 - -

AES-128 8051 [7] - 1016 31681 31.11 - -

(encr. only) 8051 [7] - 826 37441 32.31 - -

8051 [7] - 768 40651 32.01 - -

68HC98 [7] - 919 8390 13.0 - -

SEA96,8

This work size 332 14723 20.5 14723 20.5
This work eff. 488 8597 23.8 8597 23.8
This work speed 786 8053 15.8 8053 15.8
AVR [24] - 2132 9654 4.9 9654 4.9

AVR [25] - 386 17745 14.6 17745 14.6

AVR [9] - 834 9658 12.4 9658 12.4

8051 [9] - 604 82501 20.11 82501 20.11

Present-80

This work size 920 28062 3.9 60427 1.8
This work eff. 1148 15042 5.8 17677 4.9
This work speed 2146 8958 5.2 11592 4.0
AVR [23] - 2398 9595 4.3 9820 4.2

AVR [23] - 1474 646166 0.1 634614 0.1

AVR [10] - 936 10723 10.0 11239 9.5

XTEA

This work size 504 17514 11.3 19936 10.0
This work eff. 820 7786 15.7 8928 13.7
This work speed 1246 7595 10.6 8735 9.2
AVR [24] - 1160 6718 12.8 6718 12.8

8051 [18] - 542 69541 26.51 70531 26.21

PIC [20] - 962 7408 14.0 7408 14.0

Stream ciphers Initialization /128 bits

Trivium

This work size 332 85697 3.5 9488 31.7
This work eff. 726 40337 3.4 4448 31.0
This work speed 1226 39833 2.0 4112 19.8

AVR [1] - 424 775726 0.3 85120 2.8

good efficiency, which is even better than on the 8051 microcontroller, whose
execution time is indicated in machine cycles.
1 The values for the 8051 microcontrollers refer to machine cycles. Typically, a machine

cycle requires several clock cycles.

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 123

4.3 Present-80

Both encryption and decryption operation of Present-80 were implemented.
Round keys are computed on-the-fly. As in case of AES-128, decryption opera-
tion requires significantly longer than encryption operation since the last round
key needs to be computed at the beginning. The most compact implementation
of Present-80 uses two look-up tables with 16 entries each, one for the S-box
operation and one for the inverse S-box operation. This results in a code size of
920 bytes, allowing encryption of data within 28062 clock cycles, and decryption
of data within 60427 clock cycles. A more efficient implementation uses two ad-
ditional look-up tables with 16 entries each to speed-up the S-box and inverse
S-box operation. This implementation requires 15042 clock cycles for encryption
and 17677 clock cycles for decryption. Code size increases to 1148 bytes. The
fastest version of Present-80 uses two big look-up tables with 256 entries each,
performing the S-box operation on a whole byte. In that way, execution time
reduces to 8958 clock cycles for encryption and 11592 clock cycles for decryption.
Code size significantly increases to 2146 bytes. All versions of Present-80 require
a total number of 30 registers each.

An overview of the implementation results of Present-80 is provided in Table 3.
A comparison with implementation results on AVR devices shows that our speed-
optimized version allows encryption within less clock cycles and that our code-
size optimized version is even more compact. However, the implementation of
[10] provides better efficiency.

4.4 XTEA

XTEA has a Feistel structure just like SEA. Thus, similar optimization strate-
gies can be applied. Again, we implemented both encryption and decryption
operation of the cipher. The most compact version needs 504 bytes of code and
requires 17514 clock cycles for encryption and 19936 clock cycles for decryption.
The efficiency-optimized version reduces the execution time to 7786 clock cycles
for encryption and 8928 clock cycles for decryption. Code size is nearly doubled
and increases to 820 bytes. The fastest version of XTEA uses code duplication
and provides only a minor speed-up of about 200 clock cycles, while spending
more than 400 bytes of additional code. The register usage of the XTEA imple-
mentations is between 23 registers for the most compact version, and 27 registers
for the fastest version. This low values result from the simple structure of the
key schedule.

Table 3 compares our results of XTEA with implementations on other 8-bit
microcontroller platforms. The implementations on the AVR microcontroller and
on the PIC microcontroller are a bit faster than our speed-optimized version.
This is a consequence of the limited instruction set of our microcontroller, which
prevents from efficiently adding 32-bit words. Nevertheless, our microcontroller
achieves compact code size with slightly better efficiency for encryption.

124 T. Plos, H. Groß, and M. Feldhofer

4.5 Trivium

Trivium is the last algorithm that was implemented on the microcontroller. Al-
though Trivium is a hardware-oriented design, it can be implemented in a very
compact way in software. The code-size optimized version of Trivium generates
on key-stream bit per iteration and requires only 332 bytes of code. Execution
time results in 85697 clock cycles for initialization and 9488 clock cycles for
generating 128 bits of key stream. The efficiency-optimized version generates 8
key-stream bits per iteration. This noticeably reduces execution time by doubling
the code size. The speed-optimized version of Trivium generates 16 key-stream
bits per iteration. Such an approach only slightly improves execution time by
significantly increasing code size. All our versions of Trivium require 39 registers.

The results of Trivium are listed in Table 3 together with an implementation
on an AVR microcontroller. The implementation of Trivium on the AVR mi-
crocontroller is done in C, leading to poor performance values compared to our
versions.

4.6 Summary of Implementation Results

The results above clarify that our microcontroller allows implementing the se-
lected cryptographic algorithms in a very compact and efficient way. Our imple-
mentations of AES-128, SEA, Present-80, and Trivium are faster than on the
other compared 8-bit microcontroller platforms. Except in the case of AES, our
implementations are also the most compact ones.

Comparing the performance numbers of the cryptographic algorithms shows
that AES has by far the shortest execution time, but also requires most code
size. When looking at code size, SEA and Trivium are the algorithms that can be
implemented with minimum number of bytes. However, the initialization phase
of Trivium takes exceptionally long. All these results are used in the next section
to give actual values for the hardware costs that arise from implementing the
algorithms on the microcontroller.

5 Discussing the Costs of Integrating the Implemented
Algorithms on Passive RFID Tags

Two important constraints need to be considered when implementing
cryptographic algorithms on passive RFID tags: power consumption and chip
size. Power consumption affects the read range of the tag while chip size af-
fects the costs of the tag. First, the power consumption of our microcontroller
is more or less independent of the number of instructions present in the syn-
thesized ROM. Thus, increasing the number of instructions by implementing
cryptographic algorithms will not increase the power consumption. Second, the
chip size of our microcontroller is not fixed, rather it is mainly defined by the size
of the register file and by the size of the synthesized ROM. Depending on the
application, the register file can contain up to 64 8-bit registers. These registers

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 125

are already used by the microcontroller for handling the control tasks. Reusing
them for computing cryptographic algorithms introduces no additional hardware
costs. Hence, the only factor that influences the chip size of the microcontroller
when implementing cryptographic algorithms is the code size. For this reason,
we only consider the code size of the implemented algorithms as cost factor. Less
attention is drawn on the execution speed of the algorithms, since RFID tags
typically have enough time for the computations and only need to handle little
data.

Actual values for chip-size increase were determined by implementing the
cryptographic algorithms on our microcontroller platform. These values are ob-
tained by synthesizing the program code of the implementations described in
the previous section. Synthesis was done for a 0.35�m CMOS technology us-
ing a semi-custom design flow with Cadence RTL Compiler. Table 4 presents
the synthesis results, by bringing code size of each implementation in relation
with chip area. Code size is given in terms of bytes and chip area is given in
terms of gate equivalents (GEs). The chip area of the implementations ranges
from 745GEs for the code-size optimized version of Trivium to 3273GEs for the
speed-optimized version of AES.

Looking at the synthesis results brings up an interesting observation that con-
cerns the area efficiency of the implemented algorithms. The area efficiency in
terms of bits per GE is not constant but strongly varies and mainly depends on
two factors. First, the area efficiency is improved when the code size of an imple-
mentation increases. For example, the speed-optimized version of AES with 2158
bytes of code has an area efficiency of 5.3 bits/GE, but the code-size optimized
version of Trivium with 332 bytes of code has only 3.6 bits/GE. This varying
area efficiency is caused by the synthesis tool, which can better optimize larger
look-up tables. However, it is not intended that the algorithm implementations
are used on their own, but together with the implementation of the communica-
tion protocol. This leads to a larger overall code size, which finally improves the
area efficiency. Second, implementations with a lot of redundancy in the code
reach even a much better area efficiency. An example for such an implementa-
tion is the speed-optimized version of Present which reaches 8.0 bits/GE. In this
version, the 4-bit S-box is replicated 16 times to achieve faster execution of the
algorithm (code duplication). Although this replication significantly increases
code size, the chip area is only moderately increased since the synthesis tool
removes redundancies in the resulting look-up table.

Table 4 gives not only an overview of the synthesis results, but also compares
them with the area requirements of stand-alone hardware modules. In almost all
cases, the hardware modules require more chip area than the implementations
on our microcontroller (only code size is treated as cost factor since the register
file is reused). Even the speed-optimized versions, which have the highest area
requirements are smaller. The hardware implementation of Present-80 is the only
exception. It consumes about 300GEs less than the most compact version on the
microcontroller. Looking at the results of AES shows that an implementation on
the microcontroller supporting encryption and decryption can be realized within

126 T. Plos, H. Groß, and M. Feldhofer

Table 4. Synthesis results of the algorithm implementations on the microcontroller

and comparison with dedicated hardware modules

Algorithm Platform Target Code size Area Area
efficiency

[bytes] [GEs] [bits/GE]

Block ciphers

AES-128

This work size 1704 2911 4.7
This work efficiency 1940 3130 5.0
This work speed 2158 3273 5.3

Feldhofer [13] - - 3400 -

This work size 918 1755 4.2
AES-128 This work speed 1110 1871 4.7
(encr. only) Hämäläinen [15] - - 3100 -

SEA96,8

This work size 332 786 3.4
This work efficiency 488 1083 3.6
This work speed 786 1619 3.9
Mace [17] - - 3758 -

Present-80

This work size 920 1399 5.3
This work efficiency 1148 1763 5.2
This work speed 2146 2139 8.0

Poschmann [23] - - 1075 -

XTEA

This work size 504 1230 3.3
This work efficiency 820 1718 3.8
This work speed 1246 2507 4.0

Feldhofer [12] - - 2636 -

Stream ciphers

Trivium

This work size 332 745 3.6
This work efficiency 726 1476 3.9
This work speed 1226 2228 4.4

Feldhofer [12] - - 2390 -

less than 3000GEs. This is even less area than the smallest encryption-only AES
hardware module consumes.

Particularly for AES there exist several other approaches that try to mini-
mize the costs of implementing the algorithm on a microcontroller. For example,
microcontrollers with AES-specific design like the AESMPU [5] or microcon-
trollers with instruction-set extensions (ISE) [26]. Although both examples only
need about half the code size of our AES implementations they are less flexi-
ble. The lack of flexibility comes from the AES-specific hardware parts that are
used by both approaches. These parts need to be removed (redesign of the mi-
crocontroller on HDL level necessary) when implementing other cryptographic
algorithms. Otherwise, the AES-specific parts will unnecessarily increase the
chips size of the microcontroller. Moreover, the AESMPU is not designed for
low-resource usage since it precomputes all round keys and stores them in its
internal memory (176 8-bit registers required). This enormous memory usage

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 127

makes the AESMPU inapplicable for passive RFID tags. ISE are more attrac-
tive than the AESMPU in terms of resource usage.

The ISE consume about 1100GEs for the AES-specific hardware parts and
require 840 bytes of code for implementing encryption and decryption. When
assuming an area efficiency of 3.7 bits/GE (realistic for 840 bytes), the ISE will
end up with roughly the same hardware costs as our most compact AES imple-
mentation. When using a more optimistic value of 4.8 bits/GE, the size of the
ISE approach will be about 400GEs smaller. This is not that much compared
to the overall size of the AES implementation, but comes at cost of less flexibil-
ity. Moreover, the AES-specific hardware parts will slightly increase the overall
power consumption of the microcontroller. Nevertheless, ISE are much faster.
They allow to encrypt or decrypt a block of data within less than 1500 clock
cycles. Thus, when the execution time is an important factor for an application,
using ISE is beneficial. Due to the flexibility of our synthesizable microcon-
troller, it should not be too much effort to integrate also ISE if required in order
to achieve an additional speed up.

The results of our algorithm implementations let us come to two important
conclusions. First, our microcontroller platform that is mainly intended for sim-
ple control tasks on RFID tags, allows also to efficiently implement cryptographic
algorithms like AES, Present, or XTEA. Second, the additional hardware costs
that are introduced by implementing cryptographic algorithms on our synthe-
sizable microcontroller are in almost all cases lower (except in case of Present)
than by using stand-alone hardware modules. The additional hardware costs are
only affected by the code size of the algorithm. The data memory in the register
file is already used by the microcontroller for handling control tasks and will not
result in additional hardware costs (Note that this statement is only correct in
an environment where the microcontroller is used anyway and the question how
much does security cost arises). This makes our synthesizable microcontroller a
resource saving and flexible concept to bring cryptographic security to passive
RFID tags.

6 Conclusion

In our work, we showed a very efficient concept of reusing a dedicated 8-bit
microcontroller for the implementation of symmetric-key algorithms. The mi-
crocontroller, which is highly optimized for controlling tasks like protocol exe-
cution, is synthesizable and optimized concerning low chip area and low power
consumption. It is also flexible concerning the program-memory size and the
number of used registers. We evaluated the block ciphers AES, SEA, Present
and XTEA as well as the stream cipher Trivium with respect to program size
and required number of clock cycles. Our findings clearly show that the imple-
mented microcontroller is more efficient than other dedicated microcontrollers
and outperforms even optimized hardware modules when considering the reuse
of the microcontroller for protocol execution tasks.

128 T. Plos, H. Groß, and M. Feldhofer

Acknowledgements

This work has been supported by the Austrian Government through the research
program FIT-IT Trust in IT Systems under the Project Number 820843 (Project
CRYPTA) and by the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy).

References

[1] AVR-Crypto-Lib, http://www.das-labor.org/wiki/AVR-Crypto-Lib/en

[2] Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.:

Public-Key Cryptography for RFID-Tags. In: Workshop on RFID Security 2006

(RFIDSec 2006), July 12-14, Graz, Austria (2006)

[3] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,

M.J.B., Seurinand, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block

Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.

450–466. Springer, Heidelberg (2007) ISBN 978-3-540-74734-5

[4] Canniére, C.D., Preneel, B.: TRIVIUM Specifications. eSTREAM, ECRYPT

Stream Cipher Project, Report 2005/030 (April 2005),

http://www.ecrypt.eu.org/stream

[5] Chia, C.-C., Wang, S.-S.: Efficient Design of an Embedded Microcontroller

for Advanced Encryption Standard. In: Proceedings of the 2005, Work-

shop on Consumer Electronics and Signal Processing, WCEsp 2005 (2005),

http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf

[6] Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J.

(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

[7] Daemen, J., Rijmen, V.: AES proposal: Rijndael. First AES Conference (August

1998)

[8] Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,

A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg

(2009)

[9] EFTON s.r.o. Implementing SEA on x51 and AVR,

http://www.efton.sk/crypt/sea.htm

[10] Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey of

Lightweight-Cryptography Implementations. IEEE Design & Test of Computers

- Design and Test of ICs for Secure Embedded Computing 24(6), 522–533 (2007)

ISSN 0740-7475

[11] Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID

Systems using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES

2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

[12] Feldhofer, M., Wolkerstorfer, J.: Hardware Implementation of Symmetric Algo-

rithms for RFID Security. In: RFID Security: Techniques, Protocols and System-

On-Chip Design, pp. 373–415. Springer, Heidelberg (2008)

[13] Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of

Sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)

[14] Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for

aes-like permutations. Cryptology ePrint Archive, Report 2009/531 (2009),

http://eprint.iacr.org/

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.ecrypt.eu.org/stream
http://www.mee.chu.edu.tw/labweb/WCEsp2005/96.pdf
http://www.efton.sk/crypt/sea.htm
http://eprint.iacr.org/

Implementation of Symmetric Algorithms on a 8-Bit Microcontroller 129

[15] Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Im-

plementation of Low-Area and Low-Power AES Encryption Hardware Core. In:

9th EUROMICRO Conference on Digital System Design: Architectures, Methods

and Tools (DSD 2006), Dubrovnik, Croatia, August 30-September 1, pp. 577–583.

IEEE Computer Society, Los Alamitos (2006)

[16] Lu, J.: Related-key rectangle attack on 36 rounds of the XTEA block cipher.

International Journal of Information Security 8, 1–11 (2009)

[17] Mace, F., Standaert, F.-X., Quisquater, J.-J.: ASIC Implementations of the Block

Cipher SEA for Constrained Applications. In: Munilla, J., Peinado, A., Rijmen,

V. (eds.) Workshop on RFID Security 2007 (RFIDSec 2007), Malaga, Spain, July

11-13, 2007, pp. 103–114 (2007)

[18] Pavlin, M.: Encription Using Low Cost Microcontrollers,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5755/

&rep=rep1&type=pdf

[19] Microchip Technology Inc. AN821: Advanced Encryption Standard Using the

PIC16XXX (June 2002),

http://ww1.microchip.com/downloads/en/AppNotes/00821a.pdf

[20] Microchip Technology Inc. AN953: Data Encryption Routines for PIC18 Micro-

controllers (January 2005),

http://ww1.microchip.com/downloads/en/AppNotes/00953a.pdf

[21] National Institute of Standards and Technology (NIST). FIPS-197: Advanced

Encryption Standard (November 2001), http://www.itl.nist.gov/fipspubs/

[22] Needham, R.M., Wheeler, D.J.: Tea extensions. Technical report, Computer Lab-

oratory, University of Cambridge (October 1997)

[23] Poschmann, A.Y.: Lightweight Cryptography - Cryptographic Engineering for a

Pervasive World. PhD thesis, Faculty of Electrical Engineering and Information

Technology, Ruhr-University Bochum,Germany (Februrary 2009)

[24] Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Con-

temporary Light-Weight Block Ciphers on 8-bit Microcontrollers (June

2007), http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/

publications/conferences/lw speed2007.pdf

[25] Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a Scalable

Encryption Algorithm for Small Embedded Applications. In: Domingo-Ferrer, J.,

Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.

Springer, Heidelberg (2006)

[26] Tillich, S., Herbst, C.: Boosting AES Performance on a Tiny Processor Core. In:

Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 170–186. Springer, Heidel-

berg (2008)

[27] Tuyls, P., Batina, L.: RFID-Tags for Anti-counterfeiting. In: Pointcheval, D. (ed.)

CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

[28] Vielhaber, M.: Breaking one.fivium by aida an algebraic iv differential attack.

Cryptology ePrint Archive, Report 2007/413 (2007), http://eprint.iacr.org/,

http://eprint.iacr.org/

[29] Yu, Y., Yang, Y., Yan, N., Min, H.: A Novel Design of Secure RFID Tag Baseband.

In: RFID Convocation, Brussels, Belgium (March 14, 2007)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5755&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5755&rep=rep1&type=pdf
http://ww1.microchip.com/downloads/en/AppNotes/00821a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00953a.pdf
http://www.itl.nist.gov/fipspubs/
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/lw_speed2007.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

Batch Computations Revisited: Combining Key
Computations and Batch Verifications

René Struik

723 Carlaw Ave, Toronto ON M4K 3K8, Canada

rstruik.ext@gmail.com

Abstract. We consider the effect of combining the key computation

step in particular key agreement protocols, such as ECMQV and static-

DH, with verifying particular elliptic curve equations, such as those re-

lated to ECDSA signature verification. In particular, we show that one

can securely combine ECDSA signature verification and ECMQV and

static-ECDH key computations, resulting in significant performance im-

provements, due to saving on doubling operations and exploiting multiple

point multiplication strategies. Rough estimates (for non-Koblitz curves)

suggest that the incremental cost of ECDSA signature verification, when

combined with ECDH key agreement, improves by a factor 2.3× com-

pared to performing the ECDSA signature verification separately and by

a factor 1.7×, when the latter is computed using the accelerated ECDSA

signature verification technique described in [3]. Moreover, the total cost

of combined ECDSA signature verification and ECDH key agreement

improves by 1.4×, when compared to performing these computations

separately (and by 1.2×, if accelerated ECDSA signature verification

techniques are used). This challenges the conventional wisdom that with

ECC-based signature schemes, signature verification is always consider-

ably slower than signature generation and slower than RSA signature

verification. These results suggest that the efficiency advantage one once

enjoyed using RSA-based certificates with ECC-based key agreement

schemes may be no more: one might as well use an ECC-only scheme

using ECDSA-based certificates. Results apply to all prime curves stan-

dardized by NIST, the NSA ‘Suite B’ curves, and the so-called Brainpool

curves.

Keywords: elliptic curve, authenticated key agreement, key

computation, certificate verification, ECDSA, efficient computations.

1 Introduction

Discrete logarithm based authenticated public-key key agreement protocols typ-
ically include the following steps:

– Key contributions. Each party randomly generates a short-term (ephemeral)
public key pair and communicates the ephemeral public key to the other
party (but not the private key). In addition, it may communicate its long-
term static public key.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 130–142, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Batch Computations Revisited 131

– Key establishment. Each party computes the shared key based on the static
and ephemeral public keys it obtained from the other party and based on the
static and ephemeral private keys it generated itself. The key computation
is such that either party indeed arrives at the same shared key.

– Key authentication. Each party verifies the authenticity of the long-term
static key of the other party, to obtain evidence that the only party that
may have been capable of computing the shared key is, indeed, its perceived
communicating party.

– Key confirmation. Each party evidences possession of the shared key to the
other party, usually by communicating a message authentication check value
over the strings corresponding to the key contributions communicated by ei-
ther party using a key derived from the shared key. This confirms to each
party the true identity of the other party and proves that that party suc-
cessfully computed the shared key.

The key authentication step is typically carried out separately from the other
protocol steps described above and usually involves checking the validity of a
certificate that vouches for the authenticity of the binding between a party and
its private key (by means of the corresponding public key). While separating the
key authentication step from the remaining protocol steps allows more flexibility
(e.g., in use of certificates), it may present a significant computational burden,
since the online computational cost of the key agreement protocol – and thereby
its running time – is dominated by the cost of the key authentication step and
that of the key computation performed during the key establishment step. Here,
we assume key authentication has to be performed at each instantiation of the
protocol.

In this paper, we consider a method for securely combining the key authenti-
cation and the key computation steps, rather than carrying these out separately,
thus realizing a significant reduction of the online computational cost of the
resulting protocol and, thereby, of its running time. While this approach leads
to some loss of flexibility (since one has to carry out computations on similar
mathematical objects), quite remarkable efficiency gains seem possible.

The remainder of the paper is organized as follows. In §2, we provide some
preliminaries that facilitate the main exposition of the paper, while §3 gives
applications that illustrate the performance advantages that can be reaped when
applying joint computations in the context of some well-known authenticated key
agreement schemes. Summary conclusions appear in §4.

2 Preliminaries

In this section, we introduce some simple notions that facilitate the exposition
in the remainder of the paper. §2.1 introduces some probability results, which
we apply in §2.2 to key establishment schemes. §2.3 summarizes some properties
of ECDSA and the related signature scheme ECDSA∗.

The exposition below is relative to a group IE with (cyclic) subgroup G of
prime order n generated by some point G and with identity element O.

132 R. Struik

2.1 Probabilities

Let f be a function defined on IE. For each z ∈ Im(f), define f−1(z) := {X ∈
IE | f(X) = z} and define d∞(f−1) := max{|f−1(z)| | z ∈ Im(f)}.
Lemma 1. Let KA ∈ IE, let Δ ∈ G, and let λ ∈R Ω, where Ω ⊂ Zn

∗. Let
K ′

A := KA + λ · Δ. Then

max
K∈IE

Pr{K ′
A = K} =

{
1 if Δ = O;
|Ω|−1 otherwise.

Proof. Trivial. �	
Lemma 2. Let KA ∈ IE, let Δ ∈ G, and let λ ∈R Ω, where Ω ⊂ Zn

∗. Let
K ′

A := KA + λ · Δ. Then

max
τ∈Im(f)

Pr{f(K ′
A) = τ} =

{
1 if Δ = O;
≤ d∞(f−1) · |Ω|−1 otherwise.

Proof. This follows from Lemma 1 and the observation that for Δ �= O and for
any z ∈ Im(f), the maximum in Lemma 1 may not be realized for all K ∈ f−1(z)
simultaneously (hence, the inequality for Δ �= O). �	
Note 3. Lemma 2 reduces to Lemma 1 if one takes f to be the identity function.

2.2 Key Establishment Schemes

In this section, we apply the results of the previous subsection (§2.1) towards
scenarios where a party executes a key agreement scheme resulting in a key in
group IE and where it also may verify a set of equations in G (such as those
arising from checking ECDSA∗certificate verification equations – to be discussed
in §2.3). We also consider the scenario where the shared key is mapped from IE
towards another group (such as is the case when mapping a computed ellip-
tic curve point to its x-coordinate, which then forms the real shared key (cf.,
e.g., [2,15])).

Lemma 4. Consider a key agreement scheme C between two parties A and B
resulting in the establishment of a shared key in group IE. Let KA be the shared
key computed by A by executing this key agreement scheme. Let Δ1, . . . , Δt ∈ G.
Let Ω1, . . . , Ωt be non-empty subsets of Zn

∗, each with cardinality M . Consider
the modified key agreement scheme C′ that differs from C solely in that A gen-
erates random secret values λi ∈R Ωi for all 1 ≤ i ≤ t and uses the value
K ′

A := KA + λ1Δ1 + · · · + λtΔt (rather than KA) as the shared key in protocol
C instead. We assume these random values are kept secret and are not reused.
Then the following holds:

1. If Δ1 = · · · = Δt = O, then protocols C and C′ have the same outcome.
2. Otherwise, the probability that A and B establish a shared key K is at most

1/M .

Batch Computations Revisited 133

Proof. This follows directly from Lemma 1. �	
Lemma 5. Consider a key agreement scheme C between two parties A and B
resulting in the establishment of a shared key in group IE, which is mapped to
a derived key using a fixed function f defined on IE. Let KA be the shared key
computed by A by executing this key agreement scheme. Let Δ1, . . . , Δt ∈ G. Let
Ω1, . . . , Ωt be non-empty subsets of Zn

∗, each with cardinality M . Consider the
modified key agreement scheme C′ that differs from C solely in that A generates
random secret values λi ∈R Ωi for all 1 ≤ i ≤ t and uses the value K ′

A :=
KA +λ1Δ1 + · · ·+λtΔt (rather than KA) as the shared key in protocol C instead.
We assume these random values are kept secret and are not reused. Then the
following holds:

1. If Δ1 = · · · = Δt = O, then protocols C and C′ have the same outcome.
2. Otherwise, the probability that A and B establish the same derived key k is

at most d∞(f−1)/M .

Proof. This follows directly from Lemma 4, using Lemma 2. �	

2.3 ECDSA and the Modified Signature Scheme ECDSA∗

In this section, we briefly summarize those properties of the signature scheme
ECDSA [1,9,11] and the modified signature scheme ECDSA∗presented in [3] that
are relevant to the remainder of the exposition of this paper. For all other details,
we refer to the referenced papers themselves.

The ECDSA and ECDSA∗signature schemes
With the ECDSA signature scheme, the signature is a pair (r, s) of integers
in Zn

∗, where the value r is derived from an ephemeral public key R gener-
ated by the signer during signature generation via a fixed public function. The
ECDSA∗signature scheme is the same as ECDSA, except that it outputs the
signature (R, s), rather than (r, s).

With the ECDSA∗signature scheme, the signature (R, s) over some message m
produced by some entity with signature verification key Q may only be valid if
R ∈ G and if Δ := O, where

Δ := s−1(eG + rQ) − R, (1)

and where e and r are derived from message m and from elliptic curve point R,
respectively, via some fixed public functions. For future reference, we mention
that the mapping from R to r is such that both R and −R map to the same
value. Valid signatures also require the check that r, s ∈ Zn

∗.
One can show that a valid ECDSA∗signature (R, s) gives rise to a valid

ECDSA signature (r, s) and that, conversely, any valid ECDSA signature (r, s)
corresponds to some ECDSA∗signature (R, s) with the property that the elliptic
curve point R ∈ G maps to r via the fixed public function referred to above.

134 R. Struik

Conversion between ECDSA and ECDSA∗signatures
ECDSA has the well-known property that (r, s) is a valid ECDSA signature only
if (r,−s) is, i.e., the validity of some ECDSA signature (r, s) does not depend on
the ‘sign’ of signature component s. Similarly, (R, s) is a valid ECDSA∗signature
only if (−R,−s) is. Both results follow from the observation that the elliptic
curve point R and its inverse −R map to the same integer r. Another consequence
of this observation is that, while an ECDSA∗signature corresponds to a unique
ECDSA signature, the converse process generally yields two candidate solutions,
viz. (R, s) and (−R, s), and uniqueness can only be established by ruling out
one of these candidate solutions based on some side information available to the
verifier. For a detailed discussion of explicit and implicit side information that
realizes this 1-1 mapping, we refer to §4.2 of [3].

3 Accelerated Authenticated Key Agreement

In this section, we introduce a method for securely combining the key authenti-
cation step and the key computation step of particular public-key key agreement
schemes, rather than carrying these out separately, as is heretofore typically the
case. Since the online computational cost of a key agreement protocol - and
thereby its running time - are dominated by the computational burden of these
two steps, one may anticipate that carrying out these steps in one single com-
putation, rather than carrying these out separately, would result in significant
efficiency gains. We show that this is indeed the case. Although the main idea
applies more broadly, we are mainly interested in scenarios involving elliptic
curves.

In what follows, the exposition is relative to a fixed elliptic curve IE, with
(cyclic) subgroup G of prime order n generated by some base point G and with
identity element O. In particular, we assume that key computations involve
operations on this elliptic curve.

We consider a scenario where two parties execute an elliptic curve key agree-
ment scheme that involves computing a shared key K ∈ IE and mapping this to
a derived key k. Depending on the details of the scheme in question, this derived
key is further processed (e.g., passed through a key derivation function) or used
in a subsequent key confirmation step. Examples of such protocols include the
elliptic curve variant of the original Diffie-Hellman scheme [8], ECMQV [14], and
all elliptic curve key agreement schemes specified by NIST [15] and ANSI [2].
With all these schemes, the mapping f from a shared key K ∈ IE to a derived
key k is the projective map, which maps an elliptic curve point that is repre-
sented in affine coordinates to its x-coordinate. So, in the notation of §2.1, one
has d∞(f−1) = 2 (since an elliptic curve point and its inverse have the same
x-coordinate).

Execution of an authenticated key agreement protocol typically involves
checking a public key certificate, to vouch for the binding between the long-
term key of the communicating party and its private key (via the corresponding
public key). In our exposition, we restrict ourselves to ECDSA∗certificates (al-
though our techniques may also be used with, e.g., ephemeral Diffie-Hellman with

Batch Computations Revisited 135

signed exponents). Verification of such an ECDSA∗certificate involves checking
the equation Δ = O, where the signature verification expression Δ is defined by
Equation (1) in §2.3. Notice that Δ ∈ G (since one checks that R ∈ G).

It now follows from Lemma 4 that one can securely combine the computation
of a shared key KA with verifying a number of ECDSA∗signature verification
equations Δ1 = O, . . . , Δt = O (e.g., those arising from checking a certificate
chain) by computing

K ′
A := KA + λ1Δ1 + · · · + λtΔt,

since any non-verifying equation would result in a very small probability that a
shared key is indeed established (with proper setting of the size M of the ran-
domness source for integers λ1, . . . , λt). The same result holds if the shared key
is subsequently mapped to a derived key (cf. Lemma 5), where the probability
increases by at most a factor d∞(f−1) = 2, and if the derived key k is subse-
quently used in a key confirmation step between both communicating parties.
(The latter relies on scheme-specific cryptographic details regarding the public
functions gA : k → gA(k), resp. gB : k → gB(k) that implement the key con-
firmation mechanisms – generally, second-preimage resistance of these functions
should suffice to carry forward the properties of Lemma 5.)

3.1 Static-ECDH with ECDSA∗Signatures

In this section, we illustrate how combining the key computation step in the el-
liptic curve authenticated public-key key agreement protocol Static-ECDH with
the ECDSA∗signature verification step may result in significant overall efficiency
improvements.

Static-ECDH is an authenticated elliptic curve version of the basic Diffie-
Hellman protocol [8], where two parties A and B exchange certified long-term
public keys and verify these upon receipt prior to computing a shared Diffie-
Hellman key. We assume that the public keys are certified by a CA via an
ECDSA∗certificate and that these public keys and the CA’s public signature
verification key are on the same elliptic curve.

In what follows, we analyze the cost of carrying out the ECDH key compu-
tation step and the ECDSA∗certificate verification step separately and compare
this with the cost of combining both steps in one single computation.

A precise analysis is difficult to give, due to the large number of methods avail-
able and implementation-specific trade-offs that favor one method over another.
We use multiple-point multiplication and use the Non-Adjacent Form (NAF)
and Joint Sparse Form (JSF) representations; for details, see [18], [10, Chapter
3, §3.3.3].

We adopt the following notation: By A and D, we denote the cost of a single
point addition and point doubling operation, respectively. By m, we denote the
bit-length of finite field elements in Fq, i.e., m := log2 q�. We assume the elliptic
curve IE := E(Fq) to have a small co-factor h, so that m ≈ log2 n�.

136 R. Struik

With static-DH, the key computation for A involves computing the shared key

KA := aQB, (2)

where QB is B’s long-term public key extracted from its public key certificate
(and checked to be on the curve IE) and where a is A’s private key. Key authen-
tication for A involves verifying B’s ECDSA∗certificate with signature (R, s) and
includes checking that R ∈ G, evaluating the expression

Δ := s−1(eG + rQ) − R, (3)

where e is derived from the to-be-signed certificate information (including B’s
public key QB and B’s unique name), where r is derived from signature com-
ponent R via some fixed public function, and where Q is CA’s public key, and
checking that Δ = O (and that r, s ∈ Zn

∗).
With static-DH, A can combine the key computation (2) and the evaluation

of expression (3) and instead compute the expression

K ′
A := KA + λΔ = (aQB − λR) + ((λes−1)G + (λrs−1)Q), (4)

where λ is a suitably chosen random element of Zn
∗, after first having checked

that R ∈ G and QB ∈ IE.
We now compare the cost of computing expressions (2) and (3) and compare

this with the cost of computing expression (4) instead.
When representing scalar a in (2) in NAF format, the expected running time

of computing the key KA is approximately (m/3)A+ mD operations. Similarly,
when representing the scalars es−1 and rs−1 in (3) in JSF, the expected running
time of evaluating the ECDSA∗signature verification equation is approximately
(m/2+2)A+mD operations. (Here, 2 point additions account for pre-computing
G±Q, which is necessary for using JSF.) As a result, computing the key KA and
checking the signature verification equation Δ = O separately has total running
time of approximately (5m/6 + 2)A + 2 · mD operations.

When computing the key K ′
A in Equation (4) via multiple-point multiplica-

tion and representing both the rightmost two scalars λ · es−1 and λ · rs−1 and
the leftmost two scalars a and −λ in JSF, one obtains a total running time of
approximately 2 · (m/2 + 2)A + mD = (m + 4)A + mD operations. Thus, com-
bining the key computation step and the signature verification step in one single
computation results in a reduction of half of the point doubling operations (at
the expense of a small increase of approximately m/6 + 2 point addition oper-
ations). In fact, one can show that one can do even better and avoid this small
increase of point additions altogether, by computing aQB − λR differently, by
choosing λ suitably, as follows. Recall that λ should be picked at random from a
set Ω ⊂ Zn

∗ of size |Ω| ≈ √
n. Let I be the set of non-zero coordinates of scalar

a, when represented in NAF format. Now, let Ω be the set of all integers in Zn
∗

with a representation in NAF format that is zero outside this set I. Since all
integers in NAF format are unique and since one can expect the NAF weight of a
to be approximately m/3 ([10, Theorem 3.29]), one has |Ω| = 3|I| ≈ 3m/3 >

√
n.

As a result, for λ ∈R Ω, one might write

Batch Computations Revisited 137

aQB − λR = (a − λ+ + λ−)QB − λ+(R − QB) − λ−(R + QB), (5)

where λ = λ+ + λ− and where λ+ and λ− denote those components of λ with
the same, respectively different, sign as the corresponding components of a. Since
for any coordinate, at most one of the scalars in NAF format on the right-hand
side of Equation (5) is nonzero, one can compute this expression using the same
number of point additions involved in computing just aQB with a in NAF format
(after pre-computing R± QB). With this modification, the total running time of
computing K ′

A becomes (m/2 + 2)A + (m/3 + 2)A + mD = (5m/6 + 4)A + mD
operations, i.e., using only half of the point doubling operations required with the
separate computations (and just 2 additional point additions).

This result could be interpreted as reducing the incremental running time of
ECDSA∗signature verification to approximately (m/2+4)A operations, from the
approximately (m/2 + 2)A + mD operations that would have been required if
ECDSA∗signature verification would have been carried out separately using the
traditional approach (or roughly (m/2+4)A+(m/2)D operations using the accel-
erated verification technique of [3]). In other words: the new method effectively re-
moves all point doubling operations from the incremental cost of ECDSA∗signature
verification compared to previously known techniques (in all contexts where this
can be combined with key computations).

Rough analysis for P-384 curve
We provide a rough analysis of the relative efficiency of combining the key compu-
tation step of the elliptic curve based authenticated key agreement schemes static-
DH and ECMQV with the verification of ECDSA∗signatures, as proposed in this
paper, compared to the traditional method of carrying out both steps separately.
Our analysis is based on the elliptic curve curve P-384 defined over a 384-bit prime
field, as specified by NIST [9]. All NIST prime curves have co-factor h = 1, so by
Hasse’s theorem, the bit-size of the order of the cyclic group G is approximately
m = 384. We consider the cost of public-key operations only (and ignore, e.g.,
hash function evaluations). Moreover, we ignore the cost of converting the com-
puted shared key to a representation using affine coordinates, as required by most
standards (cf., eg., [2,15]).

We assume points to be represented using Jacobian coordinates and that the
cost S of a squaring in Zq is slightly less than the cost M of a multiplication (we
take S ≈ 0.8M). With Jacobian coordinates, one has A ≈ 8M + 3S and D ≈
4M + 4S (see [10, Table 3.3]). Substitution of S ≈ 0.8M now yields A ≈ 10.4M
and D ≈ 7.2M and, hence, D/A ≈ 0.69.

With Static-ECDH, the running time of the key computation is roughly 128A+
384D ≈ 393A operations. With ECDSA∗signature verification, the running time
using the traditional method is roughly 194A + 384D ≈ 459A operations and
roughly 196A + 192D ≈ 328A operations with the accelerated method described
in [3]. However, if the key computation step of Static-ECDH and the step of check-
ing the ECDSA∗signature verification equation are combined, the incremental
running time of signature verification becomes roughly only 196A operations. As
a result, the new method yields a speed-up of the incremental cost of signature
verification of roughly 2.3× compared to the separate method (and roughly 1.7×

138 R. Struik

P-384 curve ECDSA∗(incremental cost)

ECDH Separately Combined

ECC operations key Ordinary Fast with ECDH

– Add 128 194 196 196

– Double 384 384 192 –

– Total (normalized) 393 459 328 196

Fig. 1. Comparison of incremental signature verification cost of ECDSA∗, when carried

out separately from, resp. combined with, the key computation step of Static-ECDH.

Total cost is normalized, using Double/Add cost ratio D/A = 0.69.

when compared with the accelerated method of [3]). These results are summarized
in Figure 1.

One can perform a similar analysis for the authenticated key agreement scheme
ECMQV. With ECMQV, the running time of the key computation is roughly
194A+384D ≈ 459A operations. If the key computation step of ECMQV and the
step of checking the ECDSA∗signature verification equation are combined, the
incremental running time of signature verification becomes roughly only 196A
operations, as was also the case with Static-ECDH. As a result, the new method
again yields a speed-up of the incremental cost of signature verification of roughly
2.3× compared to the separate method (and roughly 1.7× when compared with
the accelerated method of [3]). These results are summarized in Figure 2.

P-384 curve ECDSA∗(incremental cost)

ECMQV Separately Combined

ECC operations key Ordinary Fast with ECMQV

– Add 194 194 196 196

– Double 384 384 192 –

– Total (normalized) 459 459 328 196

Fig. 2. Comparison of incremental signature verification cost of ECDSA∗, when carried

out separately from, resp. combined with, the key computation step of ECMQV. Total

cost is normalized, using Double/Add cost ratio D/A = 0.69.

A summary of the total normalized cost of various methods is shown in
Figure 3.

P-384 curve Key computation + ECDSA∗(total cost)

Total ECC Key ECDSA∗separately ECDSA∗

operations computation Ordinary Fast combined

ECDH 393 852 721 588

ECMQV 459 918 787 655

Fig. 3. Comparison of total normalized combined cost of the key computation step

of Static-ECDH and ECMQV and that of ECDSA∗signature verification. Normalized

cost uses Double/Add cost ratio D/A = 0.69.

Batch Computations Revisited 139

Experimental results on HP iPAQ 3950 platform
The rough analysis above suggests a significant improvement of the incremental
cost of ECDSA∗signature verification, when combined with the key computa-
tion step of elliptic curve based key agreements schemes over the same curve.
This begs the question as to whether the perceived efficiency advantage of using
RSA certificates with elliptic curve based key agreement schemes still holds, or
whether one might as well use elliptic curve based certificates instead, using our
new method. To test this hypothesis, we implemented the various incremental
methods of verifying ECDSA∗signatures discussed in this paper on an HP iPAQ
3950, Intel PXA250 processor running at a 400MHz clock rate and compared the
computational cost hereof with that of RSA signature verification. We compared
implementation cost for various cryptographic bit strengths, using the guidance
for cryptographic algorithm and key size selection provided by NIST [16]. Our
analysis was based on the elliptic curves defined over a prime field for these bit
strengths, as specified by NIST [9]. Since these NIST curves all have co-factor
h = 1, the bit-size of the order of the cyclic group G and that of the elliptic
curve IE are the same. The obtained data is shown in Figure 4.

Crypto Certificate size1 Ratio Verify – incremental cost (ms) Ratio

strength (bytes) ECC/RSA RSA2 ECDSA∗ ECDSA∗verify

(bits) ECDSA∗ RSA certificates ordinary2 combined3 vs. RSA verify

80 72 256 4x smaller 1.4 4.0 1.7 0.8x faster

112 84 512 6x smaller 5.2 7.7 3.2 1.6x faster

128 96 768 8x smaller 11.0 11.8 4.9 2.2x faster

192 144 1920 13x smaller 65.8 32.9 13.7 4.8x faster

256 198 3840 19x smaller 285.0 73.2 30.5 9.3x faster

Fig. 4. Comparison of (incremental) cost of verifying ECDSA∗and RSA certificates,

when carried out during the execution of an elliptic curve based authenticated key

agreement scheme, for various cryptographic bit strengths and using NIST curves over a

prime field. Computational cost considers public-key operations only (and ignores, e.g.,

hash function evaluation). 1Excludes non-cryptographic overhead (e.g., identification

data) 2Benchmark Certicom Security BuilderTM 3Estimate.

The implementation benchmarks of Figure 4 suggest a shift of the cross-
over point where verification of ECDSA∗certificates becomes more efficient than
that of RSA certificates, from 128-bit cryptographic bit strength (without the
new method) towards roughly 80-bit cryptographic bit-strength (with the new
method). Thus, the efficiency advantage one once enjoyed using RSA-based cer-
tificates with discrete logarithm based key agreement schemes is no more: one
might as well use an ‘elliptic curve only’ scheme using ECDSA-based certificates
instead.

While we did not conduct experiments with ordinary discrete logarithm based
key agreement schemes and DSA-based certificates, we speculate one can draw
similar conclusions here.

140 R. Struik

3.2 Extension of Results to ECDSA

The acceleration techniques in this paper depend on signature schemes for which
verification can be described as verifying an algebraic equation. An example
hereof is ECDSA∗, for which verification requires checking Equation (1). The
results do not directly apply to ECDSA – a much more widely used signature
scheme. To make our efficiency improvements applicable to ECDSA as well,
one could map an ECDSA signature (r, s) to an ECDSA∗signature (R, s). As
explained in §2.3, this mapping is generally a 2-to-1 mapping (since R and −R
map to the same integer r). However, there are techniques to eliminate all but
one candidate points R that map to the integer r, thus realizing the required 1-1
mapping. Below, we describe various techniques for doing so.

This side information may be appended explicitly to the communicated sig-
nature or may be established implicitly, e.g., by generating ECDSA signatures
so as to allow unique recovery of the ephemeral point R corresponding to signa-
ture component r and used during signing (in particular, it may be realized by
changing the sign of signature component s based on inspection of the ephemeral
point R used during signing). Since any party can change the sign of signature
component s of the ECDSA signature without impacting the validity hereof, this
procedure can be implemented as post-processing operation by any party and
does not necessarily have to be part of the signing process (in particular, this can
be done to all legacy ECDSA signatures, to ensure unique conversion hereof into
ECDSA∗signatures, so as to make the efficiency improvements discussed in this
paper and in [3] directly applicable). More specifically, any party who wishes to
engage in an authenticated key agreement protocol can bring his public-key cer-
tificate into the required format first (as a one-time pre-processing step). While
explicitly added side information changes the format of ECDSA, use of implicit
side information does not and, therefore, can be used without requiring changes
to standardized specifications of ECDSA.

4 Conclusions

We presented a simple technique for combining the key computation step of el-
liptic curve based key agreement schemes, such as static-ECDH, with the step
of verifying particular digital signatures, such as ECDSA∗. We demonstrated
that the technique easily extends to most standardized elliptic curve based
schemes [2,15] using ECDSA, a much more widely used scheme. We demon-
strated that this extremely simple technique may result in spectacular compu-
tational improvements of overall protocols in which both key computations and,
e.g., signature verifications play a role.

We illustrated that the combined key computation and key authentication
technique, while exemplified in terms of a single elliptic curve key computation
and a single ECDSA signature verification, can be easily generalized towards
combined key computations and batch verifications: rather than computing a key
K and verifying each of a set of t elliptic curve equations Δ1 = O, . . . , Δt = O
separately, simply compute the quantity K ′ := K + λ1Δ1 + · · ·λtΔt instead,

Batch Computations Revisited 141

where each of λ1, . . . , λt is drawn at random from a suitably chosen subset of
Zn

∗ of size roughly M ≈ √
n. This generalizes the batch verification technique

discussed in, e.g., [4,6,7] and covers, e.g., scenarios where one wishes to verify
multiple ECDSA signatures (as with certificate chains) or, more generally, any
set of elliptic curve equations (batch verification). Moreover, the technique obvi-
ously generalizes to settings where one wishes to combine verifications with the
computation of a non-secret value (rather than a key), as long as the correctness
hereof can be checked.

The approach is not restricted to combining key authentication and key es-
tablishment steps during the execution of a key agreement protocol; it can be
applied to any setting where one has to compute some keys and verify some ellip-
tic curve equations (provided computations take place on the same curve). This
being said, the approach is most useful in settings where one can verify whether
the computed key is correct (since this would yield a verdict on whether the
homogeneous elliptic curve equation Δ = O holds). Thus, the approach works
effectively in all settings where one indeed evidences knowledge of the computed
key.

As a final note, we would like to emphasize that the presented efficiency
improvements do depend on the Double/Add cost ratio D/A of the underlying
curve in question. Our analysis in §3.1 used NIST curves defined over a prime
field and Jacobian coordinates. Careful analysis is needed before one were to
apply results directly to, e.g., binary non-Koblitz curves, curves using different
coordinate systems, or, e.g, (twisted) Edwards curves [5]. As an example, for
twisted curves, Table 1 of [13] suggests one has A ≈ 7M and D ≈ 4M + 3S.
Substitution of S ≈ 0.8M now yields A ≈ 7M and D ≈ 6.4M and, hence, D/A ≈
0.91. If so, the new method of this paper become more pronounced and would
yield a 2.85× efficiency improvement of the incremental ECDSA∗verification cost
compared to the traditional ECDSA signature verification approach, whereas the
acceleration technique in [3] yields a 1.75× efficiency improvement hereto. Since,
to our knowledge, this is still very much a nascent research area, this seems to
be a promising area of future research.

References

1. ANSI X9.62-1998. Public Key Cryptography for the Financial Services Industry:

The Elliptic Curve Digital Signature Algorithm (ECDSA). American National

Standard for Financial Services. American Bankers Association (January 7, 1999)

2. ANSI X9.63-2001. Public Key Cryptography for the Financial Services Industry:

Key Agreement and Key Transport Using Elliptic Curve Cryptography. American

National Standard for Financial Services. American Bankers Association (Novem-

ber 20, 2001)

3. Antipa, A., Brown, D.R., Gallant, R., Lambert, R., Struik, R., Vanstone, S.A.:

Accelerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.)

SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

4. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponen-

tiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,

vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

142 R. Struik

5. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Twisted Edwards Curves. In-

ternational Association for Cryptologic Research, IACR e/Print 2008-013

6. Cao, T., Lin, D., Xue, R.: Security Analysis of Some Batch Verifying Signatures

from Pairings. International Journal of Network Security 3(2), 138–143 (2006)

7. Cheon, J.H., Lee, D.H.: Use of Sparse and/or Complex Exponents in Batch Ver-

ification of Exponentiations. International Association for Cryptologic Research,

ePrint 2005/276 (2005)

8. Diffie, W., Hellmann, M.E.: New Directions in Cryptography. IEEE. Trans. Inform.

Theory IT-22, 644–654 (1976)

9. FIPS Pub 186-3. Digital Signature Standard (DSS). Federal Information Process-

ing Standards Publication 186-3. US Department of Commerce/National Institute

of Standards and Technology, Gaithersburg, Maryland, USA (February 2009), In-

cludes change notice (October 5, 2001)

10. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-

raphy. Springer, New York (2003)

11. Johnson, D.J., Menezes, A.J., Vanstone, S.A.: The Elliptic Curve Digital Signature

Algorithm (ECDSA). International Journal of Information Security 1, 36–63 (2001)

12. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security for Authenticated Key

Exchange. International Association for Cryptologic Research, ePrint 2006/073

(2006)

13. Longa, P., Gebotys, C.: Efficient Techniques for High-Speed Elliptic Curve Cryp-

tography. International Association for Cryptologic Research, IACR e/Print 2010-

315

14. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol for

Authenticated Key Agreement. Centre for Applied Cryptographic Research, Corr

1998-05, University of Waterloo, Ontario, Canada (1998)

15. NIST Pub 800-56a. Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography (Revised). NIST Special Publication 800-

56A. US Department of Commerce/National Institute of Standards and Technol-

ogy, Springfield, Virginia (March 8, 2007)

16. NIST Pub 800-57. Recommendation for Key Management – Part 1: General (Re-

vised), NIST Special Publication 800-57. US Department of Commerce/National

Institute of Standards and Technology, Springfield, Virginia (March 8, 2007)

17. Proos, J.: Joint Sparse Forms and Generating Zero Columns when Combing. Cen-

tre for Applied Cryptographic Research, Corr 2003-23, University of Waterloo,

Ontario, Canada (2003)

18. Solinas, J.: Low-Weight Binary Representations for Pairs of Integers. Centre for

Applied Cryptographic Research, Corr 2001-41, University of Waterloo, Ontario,

Canada (2001)

Wild McEliece

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Computer Science

University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. The original McEliece cryptosystem uses length-n codes over

F2 with dimension ≥ n−mt efficiently correcting t errors where 2m ≥ n.

This paper presents a generalized cryptosystem that uses length-n codes

over small finite fields Fq with dimension ≥ n−m(q−1)t efficiently cor-

recting �qt/2� errors where qm ≥ n. Previously proposed cryptosystems

with the same length and dimension corrected only �(q − 1)t/2� errors for

q ≥ 3. This paper also presents list-decoding algorithms that efficiently

correct even more errors for the same codes over Fq. Finally, this paper

shows that the increase from �(q − 1)t/2� errors to more than �qt/2� er-

rors allows considerably smaller keys to achieve the same security level

against all known attacks.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, Goppa

codes, wild Goppa codes, list decoding.

1 Introduction

Code-based cryptography was proposed in 1978 by McEliece [28] and is one of the
oldest public-key cryptosystems. Code-based cryptography has lately received
a lot of attention because it is a good candidate for public-key cryptography
that remains secure against attacks by a quantum computer. See Overbeck and
Sendrier [32] for a detailed overview of the state of the art; see also Bernstein [3]
for the fastest known quantum attack.

Encryption in McEliece’s system is very efficient (a matrix-vector multipli-
cation) and thanks to Patterson’s algorithm [33] decryption is also efficient.
However, this system is rarely used in implementations. The main complaint is
that the public key is too large.

Obviously, in the post-quantum setting, some secure public-key cryptosys-
tem is better than none, and so one can tolerate the large key sizes. However,

* This work was supported in part by the Cisco University Research Program,

in part by the Fields Institute, and in part by the European Commission

under Contract ICT-2007-216646 ECRYPT II. Permanent ID of this document:

69b9a7e1df30d1cd1aaade333b873601. Date: 2010.10.06.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 143–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 D.J. Bernstein, T. Lange, and C. Peters

convincing users to already now switch over to code-based systems requires
shorter keys.

McEliece’s original system uses binary Goppa codes. Several smaller-key vari-
ants have been proposed using other codes, such as Reed–Solomon codes [31],
generalized Reed–Solomon codes [38], quasi-dyadic codes [30] or geometric Goppa
codes [22]. Unfortunately, many specific proposals turned out to be breakable.

The most confidence-inspiring proposal is still McEliece’s original proposal to
use binary Goppa codes. For these only information-set-decoding attacks apply;
these are generic attacks that work against any code-based cryptosystem. In
2008, Bernstein, Lange, and Peters [7] ran a highly optimized information-set-
decoding attack to break the specific parameters proposed by McEliece in 1978.
After 30 years the system had lost little of its strength; the break would not
have been possible with the computation power available in 1978.

The best defense against this attack is to use codes with a larger error-
correcting capability. Slightly larger binary Goppa codes are still unbreakable
by any algorithm known today.

The disadvantage of binary Goppa codes is that they have a comparably large
key size. The construction of the code is over F2m but then only codewords with
entries in F2 are considered. Doing a similar construction with Fq, for a prime
power q > 2, as base field decreases the key size at the same security level against
information-set decoding, as shown by Peters [34]. However, this effect appears
only with sufficiently big base fields such as F31; codes over F3 and F4 look
worse than those over F2. The main reason making F2 better is that for binary
Goppa codes it is well known that the subfield construction almost doubles the
error-correcting capability of the code (more precisely, of known fast decoding
algorithms), improving the security of the resulting scheme. For codes over other
fields no increase in the error-correcting capability was used in the estimates.

In this paper we propose using “wild Goppa codes”. These are subfield codes
over small Fq that have an increase in error-correcting capability by a factor of
about q/(q−1). McEliece’s construction using binary Goppa codes is the special
case q = 2 of our construction.

These codes were analyzed in 1976 by Sugiyama, Kasahara, Hirasawa, and
Namekawa [41] but have not been used in code-based cryptography so far. We
explain how to use these codes in the McEliece cryptosystem and how to correct
�qt/2� errors where previous proposals corrected only �(q − 1)t/2� errors. We
also present a list-decoding algorithm that allows even more errors.

In the following sections we give the mathematical background of our pro-
posal and explain where the increase in error-correcting capability comes from.
After reviewing structural attacks and their applicability to our proposal we
present parameters for different base fields that achieve 128-bit security against
information-set-decoding attacks. These show that base fields Fq with q ≤ 32
are interesting alternatives to F2. For F32 the increase factor q/(q − 1) is close
to 1 and so our results are close to the results of Peters; but for q = 3, 4, or 5
the change is significant. Using list decoding further decreases the size of the key
and leads to the smallest public keys proposed for subfield Goppa codes.

Wild McEliece 145

2 The McEliece Cryptosystem

This section gives background on the McEliece cryptosystem in two variants:
the classical setup by McEliece as in [28] and Niederreiter’s variant [31].

Codes. A linear code of length n and dimension k over Fq is a k-dimensional
subspace of Fn

q . Such a code C can be represented (usually in many ways) by
a generator matrix, a k × n matrix G such that C =

{
mG : m ∈ Fk

q

}
; or by a

parity-check matrix, an (n−k)×n matrix H such that C =
{
c ∈ Fn

q : Hct = 0
}
.

Given a generator matrix G for a linear code C one can easily determine
a parity-check matrix H for C by linear transformations. In particular, if G
has systematic form, i.e., G = (Ik|Q) where Q is a k × (n − k) matrix, then
H = (−Qt|In−k) is a parity-check matrix for the code Fk

qG.
The Hamming distance between two words in Fn

q is the number of coordinates
where they differ. The Hamming weight of a word is the number of nonzero
coordinates in the word. The minimum distance of a nonzero linear code C is
the smallest Hamming weight of a nonzero codeword in C.

A decoding algorithm for C receives a vector y in Fn
q and a positive integer

w as inputs. The output is a codeword c in C at distance at most w from y if
such c exists. The linear codes that are interesting candidates for the McEliece
cryptosystem are codes allowing fast error correction, i.e. fast computation of an
error vector e of weight ≤ w such that y − e lies in C.

The McEliece public-key cryptosystem. Choose a linear code C over Fq of
length n and dimension k which can correct w errors. Take a generator matrix
G for C. Also choose uniformly at random an n× n permutation matrix P and
an invertible k × k matrix S. Compute the matrix Ĝ = SGP and publish Ĝ
together with the parameters n, k, and w. Make sure to keep G, P , and S as
well as C secret.

Messages suitable for encryption are messages m ∈ Fk
q . Encryption works

as follows: Compute mĜ. Compute a random error vector e of weight w. Send
y = mĜ + e.

Decryption: Compute yP−1 = mSG + eP−1. Apply C’s decoding algorithm to
find mSG which is a codeword in C from which one obtains the originalmessage m.

The Niederreiter public-key cryptosystem. Choose C as above. Take a
parity-check matrix H of C. Choose a random n×n permutation matrix P and
a random invertible (n− k)× (n− k) matrix M . Publish the matrix Ĥ = MHP
and the error weight w. Again keep the code and the matrices H , P , and M
secret.

Messages suitable for encryption are vectors u ∈ Fn
q of Hamming weight w.

Encryption works as follows: Encrypt u by multiplication with Ĥ. Send y = Ĥut.
Decryption: Compute v in Fn

q with M−1y = Hvt by linear algebra. Note that
vt−Put lies in the kernel of H , i.e. is a codeword in C. Use the decoding algorithm
to retrieve vt − Put, and since v is known get Put. Inverting P yields u.

Choice of codes. Niederreiter proposed his system using generalized Reed–
Solomon codes (GRS codes) whereas McEliece proposed to use classical binary

146 D.J. Bernstein, T. Lange, and C. Peters

Goppa codes. The use of GRS codes was proven to be insecure in [38]. However,
Niederreiter’s system with binary Goppa codes has the same security as the
McEliece cryptosystem as shown in [26].

3 Goppa Codes

This section gives an introduction to classical Goppa codes over Fq.
Fix a prime power q; a positive integer m; a positive integer n ≤ qm; an

integer t < n/m; distinct elements a1, . . . , an in Fqm ; and a polynomial g(x) in
Fqm [x] of degree t such that g(ai) �= 0 for all i.

The words c = (c1, . . . , cn) in Fn
qm with

n∑
i=1

ci

x − ai
≡ 0 (mod g(x)) (3.1)

form a linear code Γqm(a1, . . . , an, g) of length n and dimension n − t over
Fqm . The Goppa code Γq(a1, . . . , an, g) with Goppa polynomial g(x) and sup-
port a1, . . . , an is the restriction of Γqm(a1, . . . , an, g) to the field Fq, i.e., the
set of elements (c1, . . . , cn) in Fn

q that satisfy (3.1). As a subfield subcode of
Γqm(a1, . . . , an, g) the code Γq(a1, . . . , an, g) has dimension ≥ n − mt. Beware
that there is a conflicting definition of “support” elsewhere in coding theory.

Let Γq(a1, . . . , an, g) be a Goppa code of length n, support a1, . . . , an, and
Goppa polynomial g of degree t. Assume that Γq(a1, . . . , an, g) has dimension
exactly n − mt. Fix a basis of Fqm over Fq and write each element of Fqm with
respect to that basis. Then a parity-check matrix for Γq(a1, . . . , an, g) is given
by the mt × n matrix

H =

⎛
⎜⎜⎜⎜⎝

1
g(a1)

1
g(a2) · · · 1

g(an)
a1

g(a1)
a2

g(a2) · · · an

g(an)
...

...
. . .

...
at−1
1

g(a1)
at−1
2

g(a2) · · · at−1
n

g(an)

⎞
⎟⎟⎟⎟⎠ ,

over Fq where each entry is actually a column vector written in the chosen
Fq-basis of Fqm .

The code Γq(a1, . . . , an, g) is often referred to as a “classical” Goppa code since
it is the basic construction of a genus-0 geometric Goppa code which Goppa later
generalized for higher-genus varieties.

For the decoding algorithm in Section 5 it is useful to recall that the code-
words in Γqm(a1, . . . , an, g) can be constructed by evaluating certain functions
at a1, . . . , an. Specifically: Define h(x) =

∏
i(x − ai). Note that g(x) and h(x)

are coprime. For each f ∈ gFqm [x] define

ev(f) =
(

f(a1)
h′(a1)

,
f(a2)
h′(a2)

, . . . ,
f(an)
h′(an)

)
,

where h′ denotes the derivative of h.

Wild McEliece 147

If f has degree less than n then one can recover it from the the entries of
ev(f) by Lagrange interpolation: namely, f/h =

∑
i(f(ai)/h′(ai))/(x−ai). Con-

sequently
∑

i(ev(f))i/(x − ai) is 0 in Fqm [x]/g, where (ev(f))i denotes the i-th
entry of ev(f).

Let (c1, . . . , cn) in Fn
qm be such that

∑
i ci/(x − ai) ≡ 0 (mod g(x)). De-

fine f =
∑

i cih/(x − ai) in Fqm [x]. Then f ∈ gFqm [x]. Since the polynomial∑
i cih/(x− ai) has degree less than n, also f has degree less than n. Moreover,

cj = f(aj)/h′(aj) = ev(f)j .
Therefore Γqm(a1, . . . , an, g) = {ev(f) : f ∈ gFqm [x], deg(f) < n} =

{(f(a1)/h′(a1), . . . , f(an)/h′(an)) : f ∈ gFqm [x], deg(f) < n}.

4 Wild McEliece

We propose using the McEliece cryptosystem, the Niederreiter cryptosystem,
etc. with Goppa codes of the form Γq(a1, . . . , an, gq−1) where g is an irreducible
monic polynomial in Fqm [x] of degree t. Note the exponent q − 1 in gq−1. We
refer to these codes as “wild Goppa codes” for reasons explained later in this
section.

We further propose to use error vectors of weight �qt/2�. The advantage of
wild Goppa codes is that they allow us to efficiently correct �qt/2� errors (or
slightly more with the help of list decoding). For q ∈ {3, 4, . . .} this is strikingly
better than the performance of an irreducible polynomial of the same degree
(q − 1)t, namely correcting �(q − 1)t/2� errors. This change does not hurt the
code dimension: polynomials of the form gq−1 produce codes of dimension at
least n − m(q − 1)t (and usually exactly n − m(q − 1)t), just like irreducible
polynomials of degree (q − 1)t.

Comparison to previous proposals. For q = 2 this proposal is not new: it is
exactly McEliece’s original proposal to use a binary Goppa code Γ2(a1, . . . , an, g),
where g is an irreducible polynomial of degree t, and to use error vectors of weight
t. McEliece used Patterson’s algorithm to efficiently decode t errors.

We also do not claim credit for considering Goppa codes over slightly larger
fields F3, F4, etc. Peters in [34, Section 8] pointed out that switching from binary
Goppa codes to codes of the form Γ31(a1, . . . , an, g), with t/2 errors, reduces the
key size by a factor of more than 2 while preserving security against all known
attacks.

What is new in our cryptosystem is the use of Goppa polynomials of the form
gq−1 for q ≥ 3, allowing us to correct more errors for the same field size, the
same code length, and the same code dimension.

Minimum distance of wild Goppa codes. The following theorem is the
main theorem of the 1976 paper [41] by Sugiyama, Kasahara, Hirasawa, and
Namekawa. What the theorem states is that, for any monic squarefree polynomial
g in Fqm [x], the code Γq(a1, . . . , an, gq−1) is the same as Γq(a1, . . . , an, gq). The
code therefore has minimum distance at least qt+1. Efficient decoding of �qt/2�
errors requires more effort and is discussed in the next section.

148 D.J. Bernstein, T. Lange, and C. Peters

The case q = 2 of this theorem is due to Goppa, using a different proof that
can be found in many textbooks. The case q ≥ 3 has received less attention. We
include a streamlined proof to keep this paper self-contained.

Theproof immediatelygeneralizes fromthepair (gq−1, gq) to thepair (grq−1,grq),
and to coprime products of such pairs. These generalizations also appear in [41].
Wirtz in [44], and independently Katsman and Tsfasman in [23], further general-
ized the results of [41] to geometric Goppa codes. See Janwa and Moreno [22] for
discussion of the possibility of using geometric Goppa codes in the McEliece cryp-
tosystem but also Minder’s thesis [29] and the paper by Faure and Minder [15] for
attacks on the elliptic-curve version and the genus-2 version. We do not consider
this possibility further in this paper.

Theorem 4.1 Let q be a prime power. Let m be a positive integer. Let n be an
integer with 1 ≤ n ≤ qm. Let a1, a2, . . . , an be distinct elements of Fqm . Let g be
a monic squarefree polynomial in Fqm [x] coprime to (x − a1) · · · (x − an). Then
Γq(a1, a2, . . . , an, gq−1) = Γq(a1, a2, . . . , an, gq).

Proof. If
∑

i ci/(x − ai) = 0 in Fqm [x]/gq then certainly
∑

i ci/(x − ai) = 0 in
Fqm [x]/gq−1.

Conversely, consider any (c1, c2, . . . , cn) ∈ Fn
q such that

∑
i ci/(x− ai) = 0 in

Fqm [x]/gq−1. Find an extension k of Fqm so that g splits into linear factors in
k[x]. Then

∑
i ci/(x−ai) = 0 in k[x]/gq−1, so

∑
i ci/(x−ai) = 0 in k[x]/(x−r)q−1

for each factor x − r of g. The elementary series expansion

1
x − ai

= − 1
ai − r

− x − r

(ai − r)2
− (x − r)2

(ai − r)3
− · · ·

then implies∑
i

ci

ai − r
+ (x − r)

∑
i

ci

(ai − r)2
+ (x − r)2

∑
i

ci

(ai − r)3
+ · · · = 0

in k[x]/(x− r)q−1; i.e.,
∑

i ci/(ai − r) = 0,
∑

i ci/(ai − r)2 = 0, . . . ,
∑

i ci/(ai −
r)q−1 = 0. Now take the qth power of the equation

∑
i ci/(ai − r) = 0, and use

the fact that ci ∈ Fq, to obtain
∑

i ci/(ai − r)q = 0. Work backwards to see that∑
i ci/(x − ai) = 0 in k[x]/(x − r)q .
By hypothesis g is the product of its distinct linear factors x − r. Therefore

gq is the product of the coprime polynomials (x − r)q , and
∑

i ci/(x − ai) = 0
in k[x]/gq; i.e.,

∑
i ci/(x − ai) = 0 in Fqm [x]/gq. �	

The “wild” terminology. To explain the name “wild Goppa codes” we briefly
review the standard concept of wild ramification.

A prime p “ramifies” in a number field L if the unique factorization pOL =
Qe1

1 Qe2
2 · · · has an exponent ei larger than 1, where OL is the ring of integers

of L and Q1, Q2, . . . are distinct maximal ideals of OL. Each Qi with ei > 1 is
“ramified over p”; this ramification is “wild” if ei is divisible by p.

If OL/p has the form Fp[x]/f , where f is a monic polynomial in Fp[x], then
the maximal ideals Q1, Q2, . . . correspond naturally to the irreducible factors

Wild McEliece 149

of f , and the exponents e1, e2, . . . correspond naturally to the exponents in the
factorization of f . In particular, the ramification corresponding to an irreducible
factor of f is wild if and only if the exponent is divisible by p.

Similar comments apply to more general extensions of global fields. Ramifica-
tion corresponding to an irreducible factor ϕ of a monic polynomial f in Fpm [x]
is wild if and only if the exponent is divisible by p, i.e., the local component of f
is a power of ϕp. We take the small step of referring to ϕp as being “wild”, and
referring to the corresponding Goppa codes as “wild Goppa codes”. Of course,
if the Goppa code for ϕp is wild, then the Goppa code for ϕp−1 must also be
wild, since (by Theorem 4.1) it is the same code.

The traditional concept of wild ramification is defined by the characteristic of
the base field. We find it more useful to allow a change of base from Fp to Fq,
generalizing the definition of wildness to use the size of Fq rather than just the
characteristic of Fq.

5 Decrypting Wild-McEliece Ciphertexts

The main problem faced by a wild-McEliece receiver is to decode �qt/2� errors in
the code Γ = Γq(a1, . . . , an, gq−1): i.e., to find a codeword c = (c1, . . . , cn) ∈ Γ ,
given a received word y = (y1, . . . , yn) ∈ Fn

q at Hamming distance �qt/2� from
c. This section presents an asymptotically fast algorithm that decodes �qt/2�
errors, and then a “list decoding” algorithm that decodes even more errors.

Classical decoding. Recall from Theorem 4.1 that

Γ = Γq(a1, . . . , an, gq)
⊆ Γqm(a1, . . . , an, gq)

=
{(

f(a1)
h′(a1)

, . . . ,
f(an)
h′(an)

)
: f ∈ gqFqm [x], deg f < n

}
where h = (x−a1) · · · (x−an). We thus view the target codeword c = (c1, . . . , cn) ∈
Γ as a sequence (f(a1)/h′(a1), . . . , f(an)/h′(an)) of function values, where f is a
multiple of gq of degree below n. We are given y, the same sequence with �qt/2�
errors, or more generally with ≤ �qt/2� errors. We reconstruct c from y as follows:

– Interpolate y1h
′(a1)/g(a1)q, . . . , ynh′(an)/g(an)q into a polynomial ϕ: i.e.,

construct the unique ϕ ∈ Fqm [x] such that ϕ(ai) = yih
′(ai)/g(ai)q and

deg ϕ < n.
– Compute the continued fraction of ϕ/h to degree �qt/2�: i.e., apply the

Euclidean algorithm to h and ϕ, stopping with the first remainder v0h−v1ϕ
of degree < n − �qt/2�.

– Compute f = (ϕ − v0h/v1)gq.
– Compute c = (f(a1)/h′(a1), . . . , f(an)/h′(an)).

This algorithm uses n1+o(1) operations in Fqm if multiplication, evaluation, in-
terpolation, and continued-fraction computation are carried out by standard
FFT-based subroutines; see [5] for a survey of those subroutines.

150 D.J. Bernstein, T. Lange, and C. Peters

To see that this algorithm works, observe that ϕ has many values in com-
mon with the target polynomial f/gq: specifically, ϕ(ai)=f(ai)/g(ai)q for all
but �qt/2� values of i. In other words, the error-locator polynomial

ε =
∏

i: f(ai)
g(ai)

q �=ϕ(ai)

(x − ai)

has degree at most �qt/2�. The difference ϕ−f/gq is a multiple of h/ε, say δh/ε.
Now the difference δ/ε − ϕ/h = −(f/gq)/h is smaller than 1/xqt and therefore
smaller than 1/ε2, so δ/ε is a “best approximation” to ϕ/h, so δ/ε must appear
as a convergent to the continued fraction of ϕ/h, specifically the convergent at
degree �qt/2�. Consequently δ/ε = v0/v1; i.e., f/gq = ϕ − v0h/v1.

More generally, one can use any Reed–Solomon decoder to reconstruct f/gq

from the values f(a1)/g(a1)q, . . . , f(an)/g(an)q with �qt/2� errors. This is an
illustration of the following sequence of standard transformations:

Reed–Solomon decoder ⇒ generalized Reed–Solomon decoder
⇒ alternant decoder ⇒ Goppa decoder.

Theresultingdecoder corrects �(deg g)/2�errors for generalGoppacodesΓq(a1,. . . ,
an, g); in particular, �q(deg g)/2� errors for Γq(a1, . . . , an, gq); and so �q(deg g)/2�
errors for Γq(a1, . . . , an, gq−1), by Theorem 4.1.

We do not claim that the particular algorithm stated above is the fastest
possible decoder, and in particular we do not claim that it is quite as fast as
Patterson’s algorithm [33] for q = 2. However, it has essentially the same scal-
ability in n as Patterson’s algorithm, works for general q, and is obviously fast
enough to be usable.

An example implementation of a wild-Goppa-code decoder in the Sage
computer-algebra system [39] can be found at http://pqcrypto.org/users/
christiane/wild.html.

List decoding. By switching from a classical Reed–Solomon decoding algorithm
to the Guruswami–Sudan list-decoding algorithm [19] we can efficiently correct
n −√

n(n − qt) > �qt/2� errors in the function values f(a1)/g(a1)q, . . . , f(an)
/g(an)q. This algorithm is not as fast as a classical decoder but still takes poly-
nomial time. Consequently we can handle n − √

n(n − qt) errors in the wild
Goppa code Γq(a1, . . . , an, gq−1).

This algorithm can, at least in theory, produce several possible codewords
c. This does not pose a problem for the CCA2-secure variants of the McEliece
cryptosystem introduced by Kobara and Imai in [25]: those variants automat-
ically reject all codewords that do not include proper labels cryptographically
protected by an “all-or-nothing transform”.

As above, we do not claim that this algorithm is the fastest possible decoder.
In particular, for q = 2 the same error-correcting capacity was obtained by
Bernstein in [4] using a more complicated algorithm, analogous to Patterson’s
algorithm; we do not claim that the Γ (a1, . . . , an, g2) approach is as fast as that
algorithm.

http://pqcrypto.org/users/christiane/wild.html
http://pqcrypto.org/users/christiane/wild.html

Wild McEliece 151

With more decoding effort we can handle a few additional errors by the stan-
dard idea of combinatorially guessing those errors. Each additional error pro-
duces a noticeable reduction of key size, as shown later in this paper. In many
applications, the McEliece decoding time is unnoticeable while the McEliece key
size is a problem, so allowing extra errors at the expense of decoding time is a
good tradeoff.

6 Attacks

This section discusses several attacks against the wild McEliece cryptosystem.
All of the attacks scale poorly to large key sizes; Section 7 presents parameters
that are safe against all of these attacks. We do not claim novelty for any of the
attack ideas.

We emphasize that the wild McEliece cryptosystem includes, as a special
case, the original McEliece cryptosystem. A complete break of the wild McEliece
cryptosystem would therefore imply a complete break of the original McEliece
cryptosystem, a system that has survived scrutiny for 32 years. It is of course
possible that there is a magical dividing line between q = 2 and q = 3, an
attack that breaks every new case of our proposal while leaving the original
cryptosystem untouched, but we have not found any such line.

We focus on inversion attacks, i.e., attacks against the one-wayness of wild
McEliece encryption. There are several well-known chosen-ciphertext attacks
that break semantic security without breaking one-wayness, but all of those
attacks are stopped by standard conversions; see [25].

Information-set decoding. The top threat against the original McEliece cryp-
tosystem, the attack algorithm that has always dictated key-size recommenda-
tions, is information-set decoding, which as mentioned in the introduction is a
generic decoding method that does not rely on any particular code structure.
The same attack also appears to be the top threat against the wild McEliece
cryptosystem for F3, F4, etc.

The exact complexity of information-set decoding is not easy to state con-
cisely. We rely on, and refer the reader to, the recent analysis of state-of-the-art
Fq information-set decoding by Peters in [34], combining various improvements
from [40], [11], [7], and [16]. To find the parameters in Section 7 we searched
various (n, k, t) and applied the complexity formulas from [34] to evaluate the
security level of each (n, k, t).

Generalized birthday attacks. Wagner’s “generalized birthday attacks” [43]
can also be used as a generic decoding method. The Courtois–Finiasz–Sendrier
signature system [13] was attacked by Bleichenbacher using this method. How-
ever, information-set decoding is always more efficient than generalized birthday
attacks as an attack against code-based encryption. See [16] for further discus-
sion; the analysis is essentially independent of q.

Polynomial-searching attacks. There are approximately qmt/t monic irre-
ducible polynomials g of degree t in Fqm [x], and therefore approximately qmt/t

152 D.J. Bernstein, T. Lange, and C. Peters

choices of gq−1. One can marginally expand the space of polynomials by consid-
ering more general squarefree polynomials g, but we focus on irreducible poly-
nomials to avoid any unnecessary security questions.

An attacker can try to guess the Goppa polynomial gq−1 and then apply
Sendrier’s “support-splitting algorithm” [37] to compute the support (a1, . . . , an).
We combine two defenses against this attack:

– We keep qmt/t extremely large, so that guessing gq−1 has negligible chance
of success. Parameters with qmt/t smaller than 2128 are marked with the
international biohazard symbol h in Section 7.

– We keep n noticeably lower than qm, so that there are many possible subsets
{a1, . . . , an} of Fqm . The support-splitting algorithm takes {a1, . . . , an} as
an input along with g.

The second defense is unusual: it is traditional, although not universal, to take
n = 2m and q = 2, so that the only possible set {a1, . . . , an} is F2m . The
strength of the second defense is unclear: we might be the first to ask whether
the support-splitting idea can be generalized to handle many sets {a1, . . . , an}
simultaneously, and we would not be surprised if the answer turns out to be yes.
However, the first defense is well known for q = 2 and appears to be strong.

Algebraic attacks. In a recent paper [14], Faugère, Otmani, Perret, and Tillich
broke many (but not all) of the “quasi-cyclic” and “quasi-dyadic” variants of
the McEliece cryptosystem that had been proposed in the papers [2] and [30]
in 2009. Gauthier Umana and Leander in [17] independently broke some of the
same systems.

These variants have highly regular support structures allowing very short
public keys. The attacks set up systems of low-degree algebraic equations for the
code support, taking advantage of the fact that there are not many variables in
the support.

The paper [14] indicates that the same attack strategy is of no use against
the original McEliece cryptosystem because there are “much more unknowns”
than in the broken proposals: for example, 1024 variables in F1024, totalling
10240 bits. Our recommended parameters also have very large supports, with no
particular structure, so algebraic attacks do not appear to pose any threat.

7 Parameters

The public key in Kobara and Imai’s CCA2-secure variant [25] of the McEliece
cryptosystem can be stored in systematic form as (n−k)k entries in Fq. The same
is true for the Niederreiter variant; see, e.g., [32, Algorithm 2.3]. The simplest
representation of an element of Fq takes log2 q� bits (e.g., 3 bits for q = 5), but a
sequence of elements can be compressed: one stores a batch of b elements of Fq in⌈
log2 qb

⌉
bits, at the expense of some easy computation to recover the individual

elements. As b grows the storage per field element drops to approximately log2 q
bits, so (n − k)k elements can be stored using about (n − k)k log2 q� bits.

Wild McEliece 153

 0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29 31 32

ke
y

bi
ts

q

(q-1)t/2
qt/2

qt/2+1
qt/2+2

Fig. 7.1. Decrease in key sizes when correcting more errors (128-bit security). See

Table 7.1.

Table 7.1 gives parameters (n, k, t) for the McEliece cryptosystem using a
code Γ = Γq(a1, . . . , an, gq−1) that provides 128-bit security against the attack
in [34]. We chose the code length n, the degree t of g and the dimension k =
n − ⌈

logq n
⌉
t(q − 1) of Γ to minimize the key size (n − k)k log2 q� for 128-bit

security when w errors are added. We compare four cases:

– w = �(q − 1)t/2� added errors using classical decoding techniques,
– w = �qt/2� added errors using Theorem 4.1,
– w = �qt/2� + 1 added errors, and
– w = �qt/2� + 2 added errors,

where the last two cases use Theorem 4.1 together with list decoding as in
Section 5. See Figure 7.1 for a graph of the resulting key sizes.

In [7] a Goppa code Γ2(a1, . . . , an, g) with length 2960, dimension 2288, and
g of degree t = 56 is proposed for 128-bit security when 57 errors are added by
the sender. A key in this setting has 1537536 bits. This is consistent with our
table entry for q = 2 with w = �qt/2� + 1 added errors.

Small q’s larger than 2 provide astonishingly good results. For larger q’s one
has to be careful: parameters optimized against information-set decoding have
qmt/t dropping as q grows, reducing the number of suitable polynomials g in

154 D.J. Bernstein, T. Lange, and C. Peters

Fqm [x] significantly. For example, there are only about 228 monic irreducible
polynomials g of degree 3 over F312 [x], while there are about 2227 monic irre-
ducible polynomials g of degree 20 in F55 [x]. The smallest q for which the g
possibilities can be enumerated in less time than information-set decoding is
q = 11: the parameters (n, k, t) = (1199, 899, 10) satisfy qlogq n�t/t ≈ 2100, so
there are about 2100 monic irreducible polynomials g in F113 [x] of degree t = 10.
This is one of the cases marked by h in Table 7.1. The security of these cases
depends on the strength of the second defense discussed in Section 6.

Theh symbol is omitted from the �(q − 1)t/2� column because that relatively
low error-correcting capability, and relatively high key size, can be achieved by
non-wild codes with many more choices of g.

Table 7.1. Decrease in key sizes when correcting more errors (128-bit security). Each

entry in the first column states q. Each entry in the subsequent columns states key

size, (n, k, t) and the number of errors.

q �(q − 1)t/2� �qt/2� �qt/2� + 1 �qt/2� + 2

2 —
1590300 bits: 1533840 bits: 1477008 bits:

(3009, 2325, 57) (2984, 2324, 55) (2991, 2367, 52)
57 errors 56 errors 54 errors

3
4331386 bits: 1493796 bits: 1439876 bits: 1385511 bits:

(3946, 3050, 56) (2146, 1530, 44) (2133, 1545, 42) (2121, 1561, 40)
56 errors 66 errors 64 errors 62 errors

4
3012336 bits: 1691424 bits: 1630044 bits: 1568700 bits:

(2886, 2202, 38) (2182, 1678, 28) (2163, 1677, 27) (2193, 1743, 25)
errors 57 errors 56 55 errors 52 errors

5
2386014 bits: 1523278 bits: 1468109 bits: 1410804 bits:

(2395, 1835, 28) (1931, 1491, 22) (1877, 1437, 22) (1919, 1519, 20)
56 errors 55 errors 56 errors 52 errors

7
1806298 bits: 1319502 bits: 1273147 bits: 1223423 bits:

(1867, 1411, 19) (1608, 1224, 16) (1565, 1181, 16) (1633, 1297, 14)
57 errors 56 errors 57 errors 51 errors

8
1924608 bits: 1467648 bits: 1414140 bits: 1359540 bits:

(1880, 1432, 16) (1640, 1248, 14) (1659, 1295, 13) (1609, 1245, 13)
56 errors 56 errors 53 errors 54 errors

9
2027941 bits: 1597034 bits: 1537389 bits: 1481395 bits:

(1876, 1428, 14) (1696, 1312, 12) (1647, 1263, 12) (1601, 1217, 12)
56 errors 54 errors 55 errors 56 errors

11
1258265 bits: 1004619 bits: 968295 bits: 933009 bits:

(1286, 866, 14) (1268, 968, 10)h (1233, 933, 10)h (1199, 899, 10)h
70 errors 55 errors 56 errors 57 errors

13
1300853 bits: 1104093 bits: 1060399 bits: 1018835 bits:

(1409, 1085, 9) (1324, 1036, 8)h (1283, 995, 8)h (1244, 956, 8)h
54 errors 52 errors 53 errors 54 errors

Wild McEliece 155

Table 7.1. (continued)

q �(q − 1)t/2� �qt/2� �qt/2� + 1 �qt/2� + 2

16
1404000 bits: 1223460 bits: 1179360 bits: 1129680 bits:
(1335, 975, 8) (1286, 971, 7)h (1251, 936, 7)h (1316, 1046, 6)h

60 errors 56 errors 57 errors 50 errors

17
1424203 bits: 1260770 bits: 1208974 bits: 1160709 bits:

(1373, 1037, 7) (1359, 1071, 6)h (1315, 1027, 6)h (1274, 986, 6)h
56 errors 51 errors 52 errors 53 errors

19
1472672 bits: 1318523 bits: 1274481 bits: 1231815 bits:

(1394, 1070, 6) (1282, 958, 6)h (1250, 926, 6)h (1219, 895, 6)h
54 errors 57 errors 58 errors 59 errors

23
1553980 bits: 1442619 bits: 1373354 bits: 1310060 bits:

(1371, 1041, 5) (1472, 1208, 4)h (1414, 1150, 4)h (1361, 1097, 4)h
55 errors 46 errors 47 errors 48 errors

25
1599902 bits: 1465824 bits: 1405640 bits: 1349468 bits:
(1317, 957, 5) (1384, 1096, 4)h (1339, 1051, 4)h (1297, 1009, 4)h

60 errors 50 errors 51 errors 52 errors

27
1624460 bits: 1502811 bits: 1446437 bits: 1395997 bits:

(1407, 1095, 4) (1325, 1013, 4)h (1287, 975, 4)h (1253, 941, 4)h
52 errors 54 errors 55 errors 56 errors

29
1656766 bits: 699161 bits: 681478 bits: 617003 bits:

(1351, 1015, 4) (794, 514, 5)h (781, 501, 5)h (791, 567, 4)h
56 errors 72 errors 73 errors 60 errors

31
726484 bits: 681302 bits: 659899 bits: 634930 bits:
(851, 611, 4) (813, 573, 4)h (795, 555, 4)h (892, 712, 3)h

60 errors 62 errors 63 errors 48 errors

32
735320 bits: 685410 bits: 654720 bits: 624960 bits:
(841, 593, 4) (923, 737, 3)h (890, 704, 3)h (858, 672, 3)h

62 errors 48 errors 49 errors 50 errors

References

[1] —- (No Editor), Eleventh International Workshop on Algebraic and

Combinatorial Coding Theory, Pamporovo, Bulgaria, June 16–22 (2008),

http://www.moi.math.bas.bg/acct2008/acct2008.html , See [15]

[2] Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of

the McEliece Cryptosystem. In: AFRICACRYPT 2009 [35], pp. 77–97 (2009),

Citations in This Document: §6
[3] Bernstein, D.J.: Grover vs. McEliece. In: PQCrypto 2010 [36], pp. 73–80 (2010),

http://cr.yp.to/papers.html#grovercode, Citations in This Document: §1
[4] Bernstein, D.J.: List Decoding for Binary Goppa Codes (2008),

http://cr.yp.to/papers.html#goppalist, Citations in This Document: §5

http://www.moi.math.bas.bg/acct2008/acct2008.html
http://cr.yp.to/papers.html#grovercode
http://cr.yp.to/papers.html#goppalist

156 D.J. Bernstein, T. Lange, and C. Peters

[5] Bernstein, D.J.: Fast Multiplication and Its Applications. In: Algorithmic Num-

ber Theory [10], pp. 325–384 (2008), http://cr.yp.to/papers.html#multapps,

Citations in This Document: §5
[6] Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.

Springer, Heidelberg (2009) ISBN 978-3-540-88701-0, See [32]

[7] Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece

Cryptosystem. In: PQCrypto 2008 [9], pp. 31–46 (2008), http://eprint.iacr.

org/2008/318, Citations in This Document: §1, §6, §7
[8] Boyd, C. (ed.): Advances in Cryptology — ASIACRYPT 2001, Proceedings of

the 7th International Conference on the Theory and Application of Cryptology

and Information Security Held on the Gold Coast, December 9-13, 2001. LNCS,

vol. 2248. Springer, Heidelberg (2001) ISBN 3-540-42987-5, See [13]

[9] Buchmann, J., Ding, J. (eds.): Proceedings of Post-Quantum Cryptography,

Second International Workshop, PQCrypto 2008, Cincinnati, OH, USA, October

17-19, 2008. LNCS, vol. 5299. Springer, Heidelberg (2008), See [7]

[10] Buhler, J., Stevenhagen, P. (eds.): Algorithmic Number Theory: Lattices,

Number Fields, Curves and Cryptography. Cambridge University Press, Cam-

bridge (2008) ISBN 978-0521808545, See [5]

[11] Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight

Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-

Sense BCH Codes of Length 511. IEEE Transactions on Information Theory 44,

367–378 (1998), http://hal.inria.fr/inria-00074006/en/ , MR 98m:94043, Ci-

tations in This Document: §6
[12] Cohen, G.D., Wolfmann, J. (eds.): Coding Theory and Applications. LNCS,

vol. 388. Springer, Heidelberg (1989), See [40]

[13] Courtois, N., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based

Digital Signature Scheme. In: ASIACRYPT 2001 [8], pp. 157–174 (2001),

http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.pdf , MR 2003h:94028,

Citations in This Document: §6
[14] Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of

McEliece Variants with Compact Keys. In: EUROCRYPT 2010 [18], pp. 279–298

(2010), Citations in This Document: §6, §6
[15] Faure, C., Minder, L.: Cryptanalysis of the McEliece Cryptosystem over Hyperel-

liptic Codes. In: ACCT 2008 [1], pp. 99–107 (2008), http://www.moi.math.bas.

bg/acct2008/b17.pdf , Citations in This Document: §4
[16] Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based

Cryptosystems. In: ASIACRYPT 2009 [27], pp. 88–105 (2009), http://eprint.

iacr.org/2009/414 , Citations in This Document: §6, §6
[17] Gauthier Umana, V., Leander, G.: Practical Key Recovery Attacks on Two

McEliece Variants (2009), http://eprint.iacr.org/2009/509, Citations in This

Document: §6
[18] Gilbert, H. (ed.): Proceedings of Advances in Cryptology — EUROCRYPT

2010, 29th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, French Riviera, May 30-June 3, 2010. LNCS, vol. 6110.

Springer, Heidelberg (2010), See [14]

[19] Guruswami, V., Sudan, M.: Improved Decoding of Reed-Solomon and Algebraic-

Geometry Codes. IEEE Transactions on Information Theory 45, 1757–1767

(1999), http://theory.lcs.mit.edu/~madhu/bib.html, ISSN 0018–9448, MR

2000j:94033, Citations in This Document: §5

http://cr.yp.to/papers.html#multapps
http://eprint.iacr.org/2008/318
http://eprint.iacr.org/2008/318
http://hal.inria.fr/inria-00074006/en/
http://hal.inria.fr/docs/00/07/25/11/PDF/RR-4118.pdf
http://www.moi.math.bas.bg/acct2008/b17.pdf
http://www.moi.math.bas.bg/acct2008/b17.pdf
http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2009/509
http://theory.lcs.mit.edu/~madhu/bib.html

Wild McEliece 157

[20] Isaacs, I.M., Lichtman, A.I., Passman, D.S., Sehgal, S.K., Sloane, N.J.A.,

Zassenhaus, H.J. (eds.): Representation Theory, Group Rings, and Coding The-

ory: Papers in Honor of S. D. Berman. Contemporary Mathematics, vol. 93. Amer-

ican Mathematical Society, Providence (1989), See [23]

[21] Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.): Selected Areas in

Cryptography, 16th Annual International Workshop, SAC 2009, Calgary,

Alberta, Canada, August 13-14, 2009. LNCS, vol. 5867. Springer, Heidelberg

(2009), See [30]

[22] Janwa, H., Moreno, O.: McEliece Public Key Cryptosystems Using Algebraic-

Geometric Codes. Designs, Codes and Cryptography 3, 293–307 (1996), Citations

in This Document: §1, §4
[23] Katsman, G.L., Tsfasman, M.A.: A Remark on Algebraic Geometric Codes. In:

Representation Theory, Group Rings, and Coding Theory [20], pp. 197–199, Ci-

tations in This Document: §4
[24] Kim, K. (ed.): Public Key Cryptography: Proceedings of the 4th Interna-

tional Workshop on Practice and Theory in Public Key Cryptosystems (PKC

2001) Held on Cheju Island, February 13-15, 2001. LNCS, vol. 1992. Springer,

Heidelberg (2001), See [25]

[25] Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystems

— Conversions for McEliece PKC. In: PKC 2001 [24], pp. 19–35 (2001), MR

2003c:94027, Citations in This Document: §5, §6, §7
[26] Li, Y.X., Deng, R.H., Wang, X.M.: On the Equivalence of McEliece’s and

Niederreiter’s Public-Key Cryptosystems. IEEE Transactions on Information The-

ory 40, 271–273 (1994), Citations in This Document: §2
[27] Matsui, M. (ed.): Proceedings of Advances in Cryptology — ASIACRYPT 2009,

15th International Conference on the Theory and Application of Cryptology

and Information Security, Tokyo, Japan, December 6-10, 2009. LNCS, vol. 5912.

Springer, Heidelberg (2009), See [16]

[28] McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding

Theory, JPL DSN Progress Report, pp. 114–116 (1978), http://ipnpr.

jpl.nasa.gov/progress report2/42-44/44N.PDF, Citations in This Document:

§1, §2
[29] Minder, L.: Cryptography Based on Error-Correcting Codes, Ph.D. Thesis, EPFL,

PhD thesis 3846 (2007), Citations in This Document: §4
[30] Misoczki, R., Barreto, P.S.L.M.: Compact McEliece Keys from Goppa Codes. In:

SAC 2009 [21], pp. 376–392 (2009), Citations in This Document: §1, §6
[31] Niederreiter, H.: Knapsack-Type Cryptosystems and Algebraic Coding Theory.

Problems of Control and Information Theory 15, 159–166 (1986), Citations in

This Document: §1, §2
[32] Overbeck, R., Sendrier, N.: Code-Based Cryptography. In: Post-Quantum

Cryptography [6], pp. 95–145 (2009), Citations in This Document: §1, §7
[33] Patterson, N.J.: The Algebraic Decoding of Goppa Codes. IEEE Transactions on

Information Theory 21, 203–207 (1975), Citations in This Document: §1, §5
[34] Peters, C.: Information-Set Decoding for Linear Codes over Fq. In: PQCrypto

2010 [36], pp. 81–94 (2010), http://eprint.iacr.org/2009/589, Citations in

This Document: §1, §4, §6, §6, §7
[35] Preneel, B. (ed.): Progress in Cryptology —- AFRICACRYPT 2009, Second In-

ternational Conference on Cryptology in Africa, Gammarth, Tunisia, June 21-25,

2009. LNCS, vol. 5580. Springer, Heidelberg (2009), See [2]

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://eprint.iacr.org/2009/589

158 D.J. Bernstein, T. Lange, and C. Peters

[36] Sendrier, N. (ed.): Post-Quantum Cryptography, Third International Workshop,

PQCrypto, Darmstadt, Germany, May 25-28, 2010. LNCS, vol. 6061. Springer,

Heidelberg (2010), See [3], [34]

[37] Sendrier, N.: Finding the Permutation between Equivalent Linear Codes: The

Support Splitting Algorithm. IEEE Transactions on Information Theory 46, 1193–

1203 (2000), http://hal.inria.fr/docs/00/07/30/37/PDF/ RR-3637.pdf , MR

2001e:94017, Citations in This Document: §6
[38] Sidelnikov, V.M., Shestakov, S.O.: On an Encoding System Constructed on the

Basis of Generalized Reed-Solomon Codes. Discrete Mathematics and Applica-

tions 2, 439–444 (1992), MR 94f:94009, Citations in This Document: §1, §2
[39] Stein, W. (ed.): Sage Mathematics Software (Version 4.4.3). The Sage Group

(2010), http://www.sagemath.org, Citations in This Document: §5
[40] Stern, J.: A Method for Finding Codewords of Small Weight. In: [12], pp. 106–113

(1989), Citations in This Document: §6
[41] Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: Further Results on

Goppa Codes and Their Applications to Constructing Effcient Binary Codes.

IEEE Transactions on Information Theory 22, 518–526 (1976), Citations in This

Document: §1, §4, §4, §4
[42] Wagner, D.: A Generalized Birthday Problem (Extended Abstract). In: [45], pp.

288–303 (2002); See Also Newer Version [43], http://www.cs.berkeley.edu/

daw/papers/genbday.html

[43] Wagner, D.: A Generalized Birthday Problem (Extended Abstract) (Long Ver-

sion) (2002); See Also Older Version [42], http://www.cs.berkeley.edu/∼daw/

papers/genbday.html, Citations in This Document: §6
[44] Wirtz, M.: On the Parameters of Goppa Codes. IEEE Transactions on

Information Theory 34, 1341–1343 (1988), Citations in This Document: §4
[45] Yung, M. (ed.): Proceedings of Advances in Cryptology — CRYPTO 2002: 22nd

Annual International Cryptology Conference, Santa Barbara, California, USA,

August 2002. LNCS, vol. 2442. Springer, Heidelberg (2002) ISBN 3-540-44050-X,

See [42]

http://hal.inria.fr/docs/00/07/30/37/PDF/RR-3637.pdf
http://hal.inria.fr/docs/00/07/30/37/PDF/RR-3637.pdf
http://www.sagemath.org
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html
http://www.cs.berkeley.edu/~daw/papers/genbday.html

Parallel-CFS
Strengthening the CFS McEliece-Based Signature Scheme

Matthieu Finiasz

ENSTA

Abstract. This article presents a modification of the CFS code based

signature scheme. By producing two (or more generally i) signatures in

parallel, we show that it is possible to protect this scheme from “one out

of many” decoding attacks. With this modification, and at the cost of

slightly larger signatures, it is possible to use smaller parameters for the

CFS signature, thus making this new Parallel-CFS construction more

practical than standard CFS signatures.

Keywords: CFS digital signature scheme, code based cryptography,

Syndrome Decoding problem.

Introduction

Published in 2001, the Courtois-Finiasz-Sendrier (CFS) code based signature
scheme [4] was the first practical digital signature scheme with a security reduc-
tion to the Syndrome Decoding problem. Though practical, this scheme requires
much more resources than traditional number theory signatures: both the public
key size and the signature time are relatively large. However, it offers the shortest
known digital signatures, with sizes down to 81 bits for the original parameters.

Some time after the publication of this construction, D. Bleichenbacher imag-
ined a new attack based on the Generalized Birthday Algorithm [13] which made
the original CFS parameters insecure. This unpublished attack is described in [7].
For a given security level, resisting Bleichenbacher’s attack only requires a small
parameter increase, but this small increase can have a heavy impact on the
signature time or the public key size.

This article introduces the concept of parallel signature, that is, producing
two CFS signatures (or more) in parallel for a same document. The aim of this
construction is simple: make the application of Bleichenbacher’s attack impossi-
ble, or at least, as expensive as standard decoding attacks. A similar idea was
proposed by Naccache, Pointcheval and Stern in [10] under the name Twin-
signature, but with a completely different purpose. Their construction allows to
sign short messages without having to hash them, and thus, can be proven se-
cure without the need for a random oracle. The main focus of the present article
is practical security and we will thus use hash functions and consider them as
random oracles.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 159–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

160 M. Finiasz

We start this article by recalling the original CFS signature construction and
the existing attacks against it. In Section 2 we introduce Parallel-CFS and detail
the gains it offers in terms of security. Finally, in Section 3, we explain how to
select secure parameters for Parallel-CFS.

1 The Original CFS Signature Scheme

The hash-and-sign paradigm makes it possible to convert any public key encryp-
tion scheme into a digital signature scheme. Producing a signature consists in
hashing the document to sign into a ciphertext and then decrypting this “ran-
dom” ciphertext using a secret key. Verification of the signature simply consists
in comparing the hash of the document with the encryption of the signature
(as encryption only requires the knowledge of the public key associated to the
signer’s private key, anyone can verify the signature).

In order for this construction to apply (and be secure), it is necessary to have
access to a public cryptographic hash function which outputs ciphertexts uni-
formly distributed among all the possible ciphertexts. In the case of code based
cryptosystems like the McEliece [9] or Niederreiter [11] encryption schemes, de-
signing such a hash function is however impossible: the set of possible ciphertexts
is a subset of known size of binary vectors of a given length r, but no simple
description of this subset exists. One can thus use a hash function with uniform
output among the binary vectors of length r, but then, only a small part of the
hashes can be decrypted. The CFS signature scheme proposes two workarounds
for this problem.

1.1 The Niederreiter Encryption Scheme

The CFS signature is built upon the Niederreiter encryption scheme which is
described by the three following algorithms.

Key Generation. Choose parameters m and t and let n = 2m. Let Γ (g, S) be
a binary Goppa code defined by its polynomial g of degree t in F2m [x] and its
support S, a permutation of the n elements of F2m . This code can correct up to
t errors. Let H be a systematic mt×n binary parity check matrix of Γ (g, S). H
is the public encryption key, g and S form the private decryption key.

Encryption. To encrypt a plaintext p, first convert it into an error pattern ep

of length n and Hamming weight at most t (using an invertible mapping ϕt).
Compute s = H × eT

p , the syndrome associated to the error pattern ep with
respect to the public parity check matrix H . The syndrome s is the ciphertext.

Decryption. To decrypt the ciphertext s, one simply applies the decoding algo-
rithm associated to g and S to the received syndrome s and obtains ep. The
plaintext p is recovered by applying ϕ−1

t .

Parallel-CFS - Strengthening the CFS Signature Scheme 161

Remark: The classical description of the Niederreiter cryptosystem uses two
scrambling matrices to “hide” the structure of the parity check matrix H . In prac-
tice, these matrices are not necessary (see [2] for more details): the n× n permu-
tation matrix simply corresponds to the order of the elements of the support S,
and the mt×mt invertible matrix is not necessary when H is given in systematic
form.

1.2 The CFS Signature Scheme

The CFS signature scheme uses the hash-and-sign paradigm. The hash function
used should have an output size of r = mt bits. The document hash is then
viewed as a ciphertext which has to be decrypted. However, only ciphertexts
corresponding to syndromes of error patterns of weight t or less can be decrypted
as the decoding algorithm only corrects up to t errors. This means than only(2m

t

) � 2mt

t! out of the 2mt possible syndromes can be decoded. Thus, only one
document out of t! can be signed, which makes its direct application impractical.
There are two methods to get round this problem, however, both require to
perform t! decryption attempts in average. For this reason, only very small values
of t are acceptable.

Appending a Counter to the Message. The first method which was pro-
posed consists in appending a counter to the document to sign. We denote by D
the document to sign and h the hash function. Instead of computing s = h(D),
one computes a sequence of hashes si = h(D || i) where || represents the concate-
nation. Starting with s0 and incrementing i each time, the signer tries to decrypt
the syndrome si, until a decodable syndrome is found. Let i0 be the first index
for which si0 can be decrypted. The signature is then (pi0 || i0) where pi0 is the
plaintext corresponding to si0 , that is H ×ϕt(pi0)T = si0 . In order to verify this
signature, one has to verify the equality H × ϕt(pi0)T ?= h(D || i0).

Note that by bounding the space in which the counters are selected, L. Dallot
was able to formally prove the security of this construction in the random oracle
model [5].

Performing Complete Decoding. The idea of this second method is to be
able to decode/decrypt any syndrome given by the hash function. For this, one
needs to modify the decoding algorithm in order to be able to decode more than
t errors. A first step towards complete decoding could be the use of Bernstein’s
list decoding algorithm [1], however, for code rates close to 1 (which is the case
here for very small values of t), this algorithm becomes less efficient than simple
exhaustive search. The idea is thus to use exhaustive search for the additional
errors we want to decode. Let δ be the smallest integer such that

(2m

t+δ

)
> 2mt,

then, any syndrome can (with a good probability) be decoded into an error
pattern of weight t + δ or less.

With this method, the signer will go through all error patterns ϕδ(i) of weight
δ and try to decode the resulting syndrome si = h(D) + H × ϕδ(i)T . Once a

162 M. Finiasz

decodable syndrome is found for a given index i0, as in the previous method,
we have found a p′i0 such that H × ϕt(p′i0)

T = si0 = h(D) + H × ϕδ(i0)T . The
signature is then pi0 = ϕ−1

t+δ(ϕt(p′i0)+ϕδ(i0)), that is, the message corresponding
to the error pattern of weight t + δ.

In order to verify the signature, one simply verifies the equality:

H × ϕt+δ(pi0)T ?= h(D).

1.3 Existing Attacks - One Out of Many Syndrome Decoding

Two kind of attacks exist against a signature scheme: key recovery attacks, which
aim at recovering the private key from the public key, and signature forgeries,
which try to produce a valid signature for a message without the knowledge of
the private key. Key recovery attacks against McEliece type cryptosystems are
traditionally less efficient than decoding attacks, however, recent developments
in Goppa code distinguishing [6] could bring new attacks into consideration. For
the moment no such attack has been found and we therefore focus on decoding
attacks which, in the context of signatures, are signature forgeries.

When forging a CFS signature, one has to find a valid signature/document
pair, and therefore has to solve an instance of the Syndrome Decoding problem:
find a low weight error pattern corresponding to a given syndrome. However, as
opposed to the standard Syndrome Decoding problem, one only has to solve one
instance out of many.

Problem 1 (One out of Many Syndrome Decoding (OMSD)). Given parameters
n, r, t, and N , a binary r × n matrix H and a set of N binary vectors Si of r
bits, find a binary error pattern e of Hamming weight t or less such that:

∃i ∈ [1, N] s.t. H × eT = Si.

In order to solve this problem, one can use the same methods as for the standard
single Syndrome Decoding (SD) problem and see how they can be improved
when several instances (for the same matrix) are available. As described in [7],
when designing a code based cryptosystem the two main attacks to consider
are Information Set Decoding (ISD) and the Generalized Birthday Algorithm
(GBA) [13].

Information Set Decoding. ISD algorithms are particularly efficient for solv-
ing instances of the SD problem which have a single (or a few) solutions. The
application of ISD to instances of OMSD has been studied by Johansson and
Jönsson in [8]. They modify the Canteaut-Chabaud algorithm [3] so as to take
into account the number of target syndromes and study the efficiency of their
new algorithm against various code based cryptosystems including the CFS sig-
nature scheme. However, the authors do not give any asymptotic analysis of the
gain when targeting N syndromes instead of 1. Applying their technique to the
“idealized” algorithm described in [7] cannot gain more than an order

√
N , which

is exactly what the Generalized Birthday Algorithm described in the following

Parallel-CFS - Strengthening the CFS Signature Scheme 163

section offers. Both algorithms should thus have a similar asymptotic behavior,
but the complexity of the next algorithm is well known and easier to study. The
reader should thus keep in mind that the attack complexities given in Section 3.2
might be slightly improved using an idealized version of Johansson and Jönsson’s
algorithm, but the gain cannot be more than a small constant factor.

In the rest of this article, we will denote by ISD the Information Set Decoding
attack targeting a single syndrome. This attack is an exact replacement for the
secret decoding algorithm, so any signature the legitimate signer can produce
can be forged using this algorithm. Its complexity which is close to 2

mt
2 will thus

serve as a reference security level.

Generalized Birthday Algorithm. As opposed to ISD, the GBA algorithm
can only work when there are many solutions. When attacking a single instance
of SD with the CFS parameters, there is less than a solution in average so GBA
cannot be applied directly. However, when attacking OMSD, if enough instances
are considered simultaneously, the number of solutions can become very large.
This idea came from Daniel Bleichenbacher who proposed to build a list of target
syndromes and use this list as one of the starting lists of GBA. Compared to
ISD, this allows to significantly decrease the cost of a signature forgery. The
complexity of this attack against CFS with a counter is given by the formulas:

CGBA = L log(L), with L = min

(
2r(
n

t−�t/3
) ,√ 2r(

n
�t/3

)) .

The size L of the largest list used in the algorithm is roughly 2
mt
3 (which is what

one would expect using GBA with 4 lists). In practice, it is a little larger than
this because

(
n
t

)
< 2mt in the counter version of CFS, so lists formed by XORs

of columns of H are too small and this has to be compensated by using a larger
list of target syndromes.

In the case of CFS using complete decoding, the target is a word of weight
t+δ and, as

(
n

t+δ

)
> 2mt, lists formed of XORs of columns of H are large enough

and the size L of the largest list is very close to 2
mt
3 .

2 Parallel-CFS: Cost and Gain

The possibilities offered by OMSD against the original CFS signature are not
devastating: asymptotically, the security can be decreased from 2

mt
2 to 2

mt
3 .

However, this is enough to require a slight increase in the parameters m or t,
which translates into a significant increase in public key size (which is exponential
in m) or signature cost (which is exponential in t). For this reason, keeping the
parameters as small as possible is critical. The aim of Parallel-CFS is to make
the application of OMSD improvements impossible.

2.1 Description of Parallel-CFS

The idea in Parallel-CFS is very simple: instead of producing one hash (using
a function h) from a document D and signing it, one can produce two hashes

164 M. Finiasz

(using two functions h1 and h2) and sign both h1(D) and h2(D) in parallel. This
way, if one wants to use OMSD, he will have to produce two forgeries, one for
h1 and one for h2, but these forgeries also have to be for the same document
D. More generally, one can also use i different hash functions and produce i
signatures in parallel. We will denote the construction using i hash functions as
order i Parallel-CFS.

Using CFS with a Counter is Impossible. The first thing to note when
using Parallel-CFS is that the version of CFS using a counter is not suitable.
If we simply compute two CFS signatures for D using both h1 and h2, we will
obtain two signatures (pi1 || i1) and (pi2 || i2). The problem here is that these
two signatures are not linked through the hash function: they are signatures for
h1(D || i1) and h2(D || i2), and using enough different counter values one simply
has to solve two independent instances of OMSD. In order to link the signatures
together, they have to be signatures for the exact same message: a single counter
has to be used for both signatures. One has to find an index i0 such that both
h1(D || i0) and h2(D || i0) can be decoded. The problem now is that instead of
having t! attempts to perform, one needs t!× t! decodings in average! Of course
this is not acceptable, and we therefore propose to use the other version of CFS.

Using CFS with Complete Decoding. When using this second version of
CFS, we no longer have any counter problems. Parallel-CFS can thus be de-
scribed by the following algorithms.

Key Generation. This step is similar to the Niederreiter cryptosystem. Choose
parameters m, t and let n = 2m. Select δ such that

(
n

t+δ

)
> 2mt. Choose a

Goppa polynomial g of degree t in F2m [x] and a support S (a permutation of
the n elements of F2m). Let H be a mt×n systematic parity check matrix of the
Goppa code Γ (g, S). H is the public verification key, g and S form the private
signature key. The parameters m, t, and δ as well as two cryptographic hash
function h1 and h2 are also made public.

Signature. When signing a document D, compute h1(D) and h2(D). Then, as
in the original CFS, using the Goppa code decoding algorithm, compute two
error patterns e1 and e2 of weight at most t + δ such that H × eT

1 = h1(D) and
H × eT

2 = h2(D). The signature is
(
ϕ−1

t+δ(e1) ||ϕ−1
t+δ(e2)

)
.

Verification. When verifying a signature (p1 || p2) for a document D. One verifies
if H × ϕt+δ(p1)T ?= h1(D) and H × ϕt+δ(p2)T ?= h2(D). If both equalities are
verified, the signature is valid.

2.2 Cost of Parallel-CFS

The computational cost of Parallel-CFS is easy to evaluate: instead of producing
one CFS signature, the signer has to produce two (or more generally i) signatures.

Parallel-CFS - Strengthening the CFS Signature Scheme 165

Compared to the original CFS, the signature time is doubled (or multiplied by
i) and the signature size is also doubled (or multiplied by i), the key sizes remain
the same, and the verification time is doubled (or multiplied by i).

Signature Failure Probability. One of the main issues with the complete
decoding version of CFS (as opposed to the version using a counter) is that
some documents might not be signable: some syndromes might not correspond
to error patterns of weight t + δ. Complete decoding is only possible if t + δ is
equal (or larger) to the covering radius of the Goppa code we use. Unfortunately,
computing the covering radius of a Goppa code is difficult. When selecting δ we
thus consider that the words in the balls or radius t+δ centered on the codewords
are randomly distributed in the space. This way, we can compute an estimate of
the probability PnoCFS of not being able to perform one CFS signature, and the
probability Pfail of not being able to sign with order i Parallel-CFS.

PnoCFS �
(

1 − 1
2mt

)(n
t+δ)

Pfail = 1 − (1 − PnoCFS)i
.

Even if this probability is negligible for the proposed parameters (see Section 3.2,
Table 1), the protocol has to be ready to handle this kind of problem, typically
by modifying (or expanding) the document to sign.

2.3 Gain of Parallel-CFS

The only gain compared to the original CFS is on the security side. Security
against ISD attacks is the same as before and is easy to evaluate: you need to
forge two CFS signatures, so the cost is twice the cost of attacking CFS. Security
against GBA and attacks like that of Bleichenbacher is a little more complicated
to evaluate. There are two strategies to exploit OMSD in Parallel-CFS: either
consider it as one big signature scheme, or try to chain two attacks on the first
and second signatures (or, in general, chain i attacks).

Parallel-CFS as One Big Signature. This first strategy considers Parallel-
CFS as a single OMSD problem and tries to solve a problem of the form:(

H 0
0 H

)
× (

e1 e2
)T =

(
h1(D)
h2(D)

)

In this case, Bleichenbacher’s attack applies directly, but on a problem where all
parameters are doubled. The size L of the lists used in the attack is roughly 2

2mt
3

which, as intended, is larger than the complexity of 2
mt
2 offered by ISD attacks.

This strategy is thus less efficient than applying 2 ISD attacks independently.

166 M. Finiasz

Chaining Attacks against Parallel-CFS. This second strategy considers the
two signatures sequentially. Bleichenbacher’s attack was originally described to
produce a single solution, however, GBA can also be used to produce several
solutions quite efficiently. The idea is thus to use this attack to produce a large
number of valid signatures for the first hash function h1, and use all these solu-
tions as possible targets of the second hash function. It is then possible to benefit
from OMSD also for the second signature. However, the attack against the first
signature will cost more than for a single solution.

In order to simplify computations, we will make the following assumptions
(similar to those used in [7]):

– it is possible to XOR non-integer numbers of vectors, thus XORs of t+δ
3

columns of H are always possible,
– the number

(
n

t+δ

)
of syndromes we can build is larger than 2mt, but is not

much larger. We consider that we can build 3 lists L0, L1, and L2, respec-
tively of XORs of w0, w1, and w2 columns of H , with w0 + w1 + w2 = t + δ
such that |L0| × |L1| × |L2| = 2mt. In practice these lists can even be a little
larger than 2mt, but we ignore this small factor as the improvement it can
yield is negligible.

With these assumptions, the cost of Bleichenbacher’s attack against a single CFS
signature is exactly L logL with L = 2

mt
3 .

Now, suppose one has forged 2c signatures for 2c different hashes h1(Di).
Then there are 2c target hashes h2(Di) for the second function. One then builds
three lists L0, L1, and L2 of XORs of columns of H such that |L0| = |L1| =
2

mt+c
4 and |L2| = 2

mt−c
2 . In accord with our assumption, this choice satisfies

|L0| × |L1| × |L2| = 2mt and is thus possible. Then, if we merge lists L0 and L1
together and list L2 with our 2c hashes, by zeroing c bits in the first step of a
GBA it is possible to find a valid signature with a cost of 2

mt−c
2 .

In order to determine the optimal value of c, we need to know the cost of the
forgery of 2c signatures for the first hash function. Thanks to our assumptions
this is quite easy: we can find one solution with GBA and a complexity of
2

mt
3 by using 2

mt
3 target syndromes h1(Di). If we want more solutions we have

to take more syndromes: the number giving the smallest complexity is 2
mt+2c

3

syndromes. Then one can choose |L0| = |L1| = 2
mt+c/2

3 and |L2| = 2
mt−c

3 and,
by zeroing mt−c

3 bits in the first merge, obtain exactly 2c solutions in average.
The complexity of this step is 2

mt+2c
3 .

The optimal choice of c is when both steps of the forgery have the same cost,
that is: mt−c

2 = mt+2c
3 and c = 1

7mt. Chaining two OMSD attacks to forge a
Parallel-CFS signature thus costs 2L logL with L = 2

3
7mt.

Security of Order i Parallel-CFS. Using two CFS signatures in parallel
increases the cost of GBA-based attacks from 2

1
3mt to 2

3
7mt. If one uses i signa-

tures in parallel an attacker has to chain i GBA algorithms and the security of
the construction should be even closer to 2

1
2 mt. In order to evaluate this more

Parallel-CFS - Strengthening the CFS Signature Scheme 167

precisely we need to determine the exact cost of a signature forgery starting from
2cj syndromes and producing 2cj+1 signatures.

Similarly to the second step of the attack against order 2 Parallel-CFS, one
chooses starting lists such that |L0| = |L1| = 2

mt+cj
4 and |L2| = 2

mt−cj
2 , but

instead of zeroing cj bits during the first merge operations, one can only zero

cj − cj+1 bits. The complexity of the attack is thus 2
mt−(cj−2cj+1)

2 .
When forging an order i Parallel-CFS signature one has to select indices

(c1, ..., ci) such that each step has the same complexity 2K , that is:

– for the first signature forgeries K = mt+2c1
3 ,

– for each of the following steps ∀j ∈ [1, i − 1], K = mt−(cj−2cj+1)
2 ,

– at the end one wants one valid signature, so ci = 0.

Simple computations lead to the solution cj − 2cj+1 = mt
2i+1−1 and the global

complexity of an attack chaining i OMSD attacks is of order iL logL with L =

2
2i−1

2i+1−1
mt.

As one can see, order i Parallel-CFS cannot achieve an asymptotic security of
2

mt
2 , but comes very close to it. In practice, order 2 or 3 Parallel-CFS will be the

best choice for most parameters. The security gain using 4 parallel signatures
can never compensate the cost in signature time and size of a fourth signature.

3 Parameter Selection

3.1 Signature Size

It is always possible to reduce the size of a signature at the cost of an increase in
the verification time. As signature verification is exceptionally fast for CFS (one
only has to XOR t + δ columns of H) it is not necessarily a problem to increase
its cost. The signature shortening techniques presented in [4] can still be applied
for Parallel-CFS. Compared to the original proposition, the replacement of the
counter by δ additional positions does not change much and the two following
reduction methods can still be applied:

– omit the w first positions of the t + δ positions of a signature: the verifier
has to exhaustively search for w − 1 of these positions,

– split the length n in n
s intervals of size s (typically s will be close to m) and

only include the interval containing the error in the signature (not the exact
position): the verifier has to perform a Gaussian elimination on H (the cost
of which is not negligible if less than 3 positions were omitted).

If one wants very fast signature verification (t + δ column operations on H),
omitting a single column is the right choice and the size of the signature of order
i Parallel-CFS is i× log2

(
n

t+δ−1

)
. For the original t = 9 and m = 16 parameters

this is 139 × i bits. If one aims for short signatures with a longer verification
(3
(

n
w

)
/
(
t+δ
2

)
column operations on H), omitting 3 columns and using intervals

of size m, the size of the signature of order i Parallel-CFS is i× log2
(

n/m
t+δ−3

)
. For

the original parameters this is 81 × i bits.

168 M. Finiasz

3.2 Parameter Examples

Table 1 presents a few sets of parameters that can be used for Parallel-CFS.
These parameters are not all intended to be optimal choices but simply serve as
examples to illustrate the flexibility of this new construction. If one aims for a
security of 280, four sets of parameters (m, t, δ) stand out:

– Parameters (20, 8, 2): if one wants fast signature, signature time will be 10
times smaller than for other parameters with a same security level. In order
to have a sufficient security level 3 signatures have to be produced in parallel
leading to a signature size of 294 bits, which is acceptable. The downside of
this set of parameters is the public key size: 20Mbytes is a lot.

Table 1. Some parameter examples for Parallel-CFS. Using i = 1 corresponds to the

orginal CFS signature scheme and can serve for comparison

parameters ISD orig. CFS security against sign. failure public sign. sign.

m t δ ia securityb securityc (chained) GBA probability key size costd sizee

20 8 2 1 281.0 266.4 259.1 ∼ 0 20.0 MB 215.3 98

– – – 2 – – 275.7 ∼ 0 – 216.3 196

– – – 3 – – 282.5 ∼ 0 – 216.9 294

16 9 2 1 276.5 263.3 253.6 2−155 1.1 MB 218.5 81

– – – 2 – – 268.7 2−154 – 219.5 162

– – – 3 – – 274.9 2−153 – 220.0 243

18 9 2 1 284.5 269.5 259.8 2−1700 5.0 MB 218.5 96

– – – 2 – – 276.5 2−1700 – 219.5 192

– – – 3 – – 283.4 2−1700 – 220.0 288

19 9 2 1 288.5 272.5 262.8 ∼ 0 10.7 MB 218.5 103

– – – 2 – – 280.5 ∼ 0 – 219.5 206

– – – 3 – – 287.7 ∼ 0 – 220.0 309

15 10 3 1 276.2 263.1 255.6 ∼ 0 0.6 MB 221.8 90

– – – 2 – – 271.3 ∼ 0 – 222.8 180

– – – 3 – – 277.7 ∼ 0 – 223.4 270

16 10 2 1 286.2 266.2 259.1 2−13 1.2 MB 221.8 90

– – – 2 – – 275.7 2−12 – 222.8 180

– – – 3 – – 282.5 2−11.3 – 223.4 270

17 10 2 1 290.7 269.3 262.5 2−52 2.7 MB 221.8 98

– – – 2 – – 280.0 2−51 – 222.8 196

– – – 3 – – 287.2 2−50 – 223.4 294

a Number of parallel signatures to perform.
b Cost of an ISD attack on the associated SD instance. This is an upper bound on the

security we can obtain from parallel signatures.
c Security against GBA of the original CFS signature (using a counter with no parallel

signatures) with the same parameters.
d Average number of decoding attempts required to sign a document.
e Size in bits of a signature with all size reductions applied (omitting 3 columns and

using intervals).

Parallel-CFS - Strengthening the CFS Signature Scheme 169

– Parameters (18, 9, 2): these are what we would call parameters for “every-
day’s use.” A key of 5Mbytes is not negligible, but can be accepted for certain
applications and signature time is still reasonable. Order 3 Parallel-CFS still
has to be used, leading to signatures of 288 bits.

– Parameters (19, 9, 2): these parameters offer short 206 bits signatures as 2
parallel signatures are enough for 80 bits of security. While the signature
time is still reasonable, the key size can already be problematic.

– Parameters (16, 10, 2)/(17, 10, 2): choosing t = 10 allows for much smaller
keys but significantly increases the cost of the signature. These parame-
ters are similar to the two previous sets, but with a smaller key and larger
signature time.

3.3 Hiding the Structure in Parallel-CFS?

A natural idea to improve Parallel-CFS would be to combine the two indepen-
dent signature problems into one large signature: this way, an attacker would
have to solve an instance of OMSD with doubled parameters. Unfortunately, the
structure in the combined matrix is too strong and cannot be efficiently hidden
(while preserving the legitimate signature algorithm).

The best that can be done in terms of structure hiding is to select a 2n × 2n
permutation matrix P , a 2mt × 2mt invertible matrix S, and a random mt × n
binary matrix Y and build the matrix:

H ′ = S ×
(

H1 0
Y H2

)
× P.

Where H1 and H2 are two distinct Goppa code parity check matrices. Signing
in that case requires to sign the first hash h1(D), and then sign the second hash
XORed to the product of the first signature by Y .

As we said before, this is unfortunately not sufficient to hide the structure
in matrix H ′. Raphael Overbeck already studied this structure under the name
“permuted reducible codes” and showed in [12] that separating H1 and H2 was
an easy problem. We leave it as an exercise to the reader to find out how this
can be done.

4 Conclusion

With Parallel-CFS we propose to add some flexibility in the parameter choices of
the CFS signature scheme. In order to resist OMSD attacks like that of Bleichen-
bacher, it is possible to increase the number of signatures to produce instead of
increasing the signature parameters. In addition to the two previous tradeoffs
where security could be gained at the cost of a larger public key or of a much
longer signature time, we now have a third tradeoff where increasing security
mostly increases the signature size. Thanks to this, parameter sets which had
become insecure can be used again, making Parallel-CFS much more practical
than standard CFS.

170 M. Finiasz

References

1. Bernstein, D.J.: List decoding for binary goppa codes. Preprint (2008),

http://cr.yp.to/codes/goppalist-20081107.pdf

2. Biswas, B., Sendrier, N.: McEliece cryptosystem implementation: Theory and prac-

tice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62.

Springer, Heidelberg (2008)

3. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in

a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH

codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378

(1998)

4. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a mcEliece-based digital

signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.

157–174. Springer, Heidelberg (2001)

5. Dallot, L.: Towards a concrete security proof of courtois, finiasz and sendrier signa-

ture scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS,

vol. 4945, pp. 65–77. Springer, Heidelberg (2008)

6. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of

mcEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.

LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

7. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-

tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.

Springer, Heidelberg (2009)

8. Johansson, T., Jönsson, F.: On the complexity of some cryptographic problems

based on the general decoding problem. IEEE Transactions on Information The-

ory 48(10), 2669–2678 (2002)

9. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN

Progress Report, Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pp. 114–

116 (January 1978)

10. Naccache, D., Pointcheval, D., Stern, J.: Twin signatures: an alternative to the

hash-and-sign paradigm. In: ACM Conference on Computer and Communications

Security, ACMCCS 2001, pp. 20–27. ACM, New York (2001)

11. Niederreiter, H.: Knapsack-type crytosystems and algebraic coding theory. Prob.

Contr. Inform. Theory 15(2), 157–166 (1986)

12. Overbeck, R.: Recognizing the structure of permuted reducible codes. In: Augot,

D., Sendrier, N. (eds.) International Workshop on Coding and Cryptography, WCC

2007, pp. 269–276 (2007)

13. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.

LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

http://cr.yp.to/codes/goppalist-20081107.pdf

A Zero-Knowledge Identification Scheme Based
on the q-ary Syndrome Decoding Problem

Pierre-Louis Cayrel1, Pascal Véron2, and Sidi Mohamed El Yousfi Alaoui1

1 CASED – Center for Advanced Security Research Darmstadt,
Mornewegstrasse 32, 64293 Darmstadt, Germany

{pierre-louis.cayrel,elyousfi}@cased.de
2 IMATH

Université du Sud Toulon-Var.
B.P. 20132, F-83957 La Garde Cedex, France

veron@univ-tln.fr

Abstract. At CRYPTO’93, Stern proposed a 3-pass code-based iden-
tification scheme with a cheating probability of 2/3. In this paper, we
propose a 5-pass code-based protocol with a lower communication com-
plexity, allowing an impersonator to succeed with only a probability of
1/2. Furthermore, we propose to use double-circulant construction in
order to dramatically reduce the size of the public key.

The proposed scheme is zero-knowledge and relies on an NP-complete
coding theory problem (namely the q-ary Syndrome Decoding problem).
The parameters we suggest for the instantiation of this scheme take into
account a recent study of (a generalization of) Stern’s information set
decoding algorithm, applicable to linear codes over arbitrary fields Fq;
the public data of our construction is then 4 Kbytes, whereas that of
Stern’s scheme is 15 Kbytes for the same level of security. This provides
a very practical identification scheme which is especially attractive for
light-weight cryptography.

Keywords: post-quantum cryptography, code-based cryptography,
Stern’s scheme, identification, zero-knowledge.

1 Introduction

Shor’s quantum algorithm for integer factorization, which was published in 1994,
poses a serious threat to most cryptographic systems in use today. In particular,
all constructions whose security relies on number theory (such as variants of
the discrete logarithm problem or integer factorization) are vulnerable to this
algorithm. If quantum computers will at one point exist, such schemes can be
broken in polynomial time, whereas no quantum attacks are known for lattice-
based, code-based, and multivariate cryptographic systems. On the other hand,
even should such number-theoretic assumptions remain hard, it is not wise to
rely on a single type of hard problems. Furthermore, as the capacity of current
adversaries increases, so does the key size for classical constructions; it is possible

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 171–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

172 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

that alternative post-quantum constructions may provide a better alternative in
that sense.

In this paper, we consider a particular type of alternative cryptography, based
on error-correcting code theory. Code-based cryptography was initiated a long
time ago with the celebrated McEliece encryption algorithm.

We consider the question of public key identification (ID) protocols in this
context. Such schemes allow a party holding a secret key to prove its identity to
any other entity holding the corresponding public key. The minimum security of
such protocols should be that a passive observer who sees the interaction should
not then be able to perform his own interaction and successfully impersonate
the prover.

Stern’s code-based identification scheme, proposed at CRYPTO’93, is still the
reference in this area [26]. Stern’s scheme is a multiple round zero-knowledge
protocol, where each round is a three-pass interaction between the prover and
the verifier. This construction has two major drawbacks:

1. Since the probability of a successful impersonation is 2/3 for Stern’s con-
struction instead of 1/2 as in the case of Fiat-Shamir’s protocol based on
integer factorization [11], Stern’s scheme uses more rounds to achieve the
same security, typically 28 rounds for an impersonation resistance of 2−16.

2. There is a common data shared by all users (from which the public identi-
fication is derived) which is very large, typically 66 Kbits. In Fiat Shamir’s
scheme, this common data is 1024 bits long.

The second issue was addressed by Gaborit and Girault in [12] and by Véron
in [29]. In this paper, we focus on the first drawback. Using q-ary codes instead
of binary ones, we define a 5-pass identification scheme for which the success
probability of a cheater is 1/2. We then propose to use quasi-cyclic construction
to address the second drawback.

Organization of the Paper

In Section 2, we give basic facts about code-based cryptography and describe the
original scheme due to Stern; in Section 3 we show a new identification scheme
which allows us to reduce the number of identification rounds. In Section 4, we
describe the properties of our proposal and study its security. Section 5 presents
some concluding remarks to our contribution.

2 Code-Based Cryptography

In this section we recall basic facts about code-based cryptography. We refer to
[4], for a general introduction to these issues.

2.1 Definitions

Linear codes are k-dimensional subspaces of an n-dimensional vector space over
a finite field Fq, where k and n are positive integers with k < n, and q a prime

A Zero-Knowledge Identification Scheme 173

power. The error-correcting capability of such a code is the maximum number
t of errors that the code is able to decode. In short, linear codes with these
parameters are denoted (n, k, t)-codes.

Definition 1 (Hamming weight). The (Hamming) weight of a vector x is
the number of non-zero entries. We use wt(x) to represent the Hamming weight
of x.

Definition 2 (Generator and Parity Check Matrix). Let C be a linear
code over Fq. A generator matrix G of C is a matrix whose rows form a basis
of C :

C = {xG : x ∈ F
k
q}

A parity check matrix H of C is is an (n − k) × n matrix whose rows form a
basis of the orthogonal complement of the vector subspace C , i.e. it holds that,

C = {x ∈ F
n
q : HxT = 0}

Let n and r be two integers such that n ≥ r,Binary(n, r) (resp. q− ary(n, r)) be
the set of binary (resp. q-ary) matrices with n columns and r rows of rank r.
Moreover, denote by x $←− A, the random choosing of x amongst the elements of
a set A.

We describe here the main hard problems on which the security of code-based
cryptosystems mostly relies.

Definition 3 (Binary Syndrome Decoding (SD) problem)
Input : H $←− Binary(n, r), y $←− Fr2, and an integer ω > 0.
Output : A word s ∈ Fn2 such that wt(s) ≤ ω, HsT = y.

This problem was proven to be NP-complete in 1978 [3]. An equivalent dual
version of the SD problem can be presented as follows:

Definition 4 (General Binary Decoding (G-SD) problem)
Input : G $←− Binary(n, n− r), y $←− Fn2 , and an integer ω > 0.
Output : A word x ∈ F

n−r
2 , e ∈ Fn2 such that wt(e) ≤ ω and xG+ e = y.

Finally, this problem can be considered over an arbitrary finite field.

Definition 5 (q-ary Syndrome Decoding (qSD) problem)
Input : H $←− q− ary(n, r), y $←− Frq, and an integer ω > 0.
Output : A word s ∈ Fnq such that wt(s) ≤ ω and HsT = y.

In 1994, A. Barg proved that this last problem remains NP-complete [1, in
russian].

The problems which cryptographic applications rely upon can have different
numbers of solutions. For example, public key encryption schemes usually have
exactly one solution, while digital signatures often have more than one possi-
ble solution. For code-based cryptosystems, the uniqueness of solutions can be
expressed by the Gilbert-Varshamov (GV) bound:

174 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

Definition 6 (q-ary Gilbert-Varshamov bound)
Let Hq(x) be the q-ary entropy function, given by:

Hq(x) = x logq(q − 1)− x logq(x) − (1− x) logq(1− x)

Suppose 0 ≤ ξ ≤ (q − 1)/q. Then there exists an infinite sequence of (n, k, d)
q-ary linear codes with d/n = ξ and rate R = k/n satisfying the inequality:

R ≥ 1−Hq(ξ) ∀n.

2.2 SD and G-SD Identification Schemes

Stern’s scheme is the first practical zero-knowledge identification scheme based
on the Syndrome Decoding problem [26]. The scheme uses a binary (n− k)× n
matrix H common to all users. If H is chosen randomly, it will provide a parity
check matrix for a code with asymptotically good minimum distance given by
the (binary) Gilbert-Varshamov (GV) bound. The private key for a user will thus
be a word s of small weight wt(s) = ω (e.g. ω ≈ GV bound), which corresponds
to the syndrome HsT = y, the public key. By Stern’s 3-pass zero-knowledge
protocol, the secret key holder can prove his knowledge of s by using two blending
factors: a permutation and a random vector. However, a dishonest prover not
knowing s can cheat the verifier in the protocol with probability 2/3. Thus, the
protocol has to be run several times to detect cheating provers. The security of
the scheme relies on the hardness of the general decoding problem, that is on
the difficulty of determining the preimage s of y = HsT .

As mentioned in [3], the SD problem stated in terms of generator matrices is
also NP-complete since one can go from the parity-check matrix to the generator
matrix (or vice-versa) in polynomial time. In [29], the author uses a generator
matrix of a random linear binary code as the public key and defines this way
a dual version of Stern’s scheme in order to obtain, among other things, an
improvement of the transmission rate : the G-SD identification scheme.

Fig. 1 sums up the performances of the two 3-pass SD identification schemes
for a probability of cheating bounded by 10−6. The prover’s complexity is the
number of bit operations involved for the prover in the protocol run, while the
communication complexity is measured in the number of exchanged bits. We
considered that hash values are 160 bits long and seeds used to generate permu-
tations 128 bits long.

2.3 Attacks

For SD identification schemes, since the matrix used is a random one, the crypt-
analyst is faced with the problem of decoding a random binary linear code. There
are two main families of algorithms to solve this problem: Information Set De-
coding (ISD) and (Generalized) Birthday Algorithm (GBA). The Information
Set Decoding algorithm has the lowest complexity of the two; the strategy to
recover the k information symbols is as follows: the first step is to pick k of the

A Zero-Knowledge Identification Scheme 175

SD G-SD
Rounds 35 35
Public data (bits) 65792 66048
Prover’s complexity 222.14 222.13

Communication complexity 43750 37777

Fig. 1. Performances of SD schemes,security level 270, probability of cheating 10−6

n coordinates randomly in the hope that all of them are error-free. Then try to
recover the message by solving a k × k linear system (binary or over Fq).

In [19], the author describes and analyzes the complexity of a generalization of
Stern’s information set decoding algorithm from [25] which permit the decoding
of linear codes over arbitrary finite fields Fq. We will choose our parameters with
regards to the complexity of this attack.

3 An Identification Scheme Based on qSD

To our knowledge, amongst all the identification schemes whose security does
not depend upon some number theoretic assumptions, only three of them involve
5-pass, have a probability of cheating bounded by 1/2, and deal with values over
a finite field Fq (q > 2) : PKP, Chen’s scheme and CLE ([24],[8], [27]). Stern’s
5-pass variant of SD is on a binary field, PPP [22] 5-pass variant has a proba-
bility of cheating bounded by 2/3 andMQ∗-IP is a 2-pass protocol [30].

PKP, Chen’s scheme and CLE have one thing in common : once the commit-
ments sent, the verifier sends a random challenge which is an element α ∈ Fq.
Then the prover sends back his secret vector scrambled by : a random vector, a
random permutation and the value α. We proposed in this paper to show how
to adapt this common step in the context of the qSD problem. Notice that while
it is known since Barg’s paper in 1994, that the qSD problem is NP-complete,
it’s only from the recent works developed in [18,19] that it was possible to set
up realistic parameters for the security of an identification scheme based on the
qSD problem. To end this remark, we just mention that Chen’s scheme based
on rank metric codes is not secured [7].

In what follows, we write elements of Fnq as n blocks of size �log2(q)	 = N .
We represent each element of Fq as N bits. We first introduce a special trans-
formation that we will use in our protocol.

Definition 7. Let Σ be a permutation of {1, . . . , n} and γ = (γ1, . . . , γn) ∈ Fnq

such that ∀i, γi
= 0. We define the transformation Πγ,Σ as :

Πγ,Σ : Fnq −→ Fnq

v �→ (γΣ(1)vΣ(1), . . . , γΣ(n)vΣ(n))

Notice that ∀α ∈ Fq, ∀v ∈ F
n
q , Πγ,Σ(αv) = αΠγ,Σ(v), and wt(Πγ,Σ(v)) = wt(v).

176 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

Our identification scheme consists of two parts: a key generation algorithm
(Fig. 2) and an identification protocol (Fig. 3); in the following we will describe
these parts.

3.1 Key Generation

For r = n − k, the scheme uses a random (r × n) q-ary matrix H common to
all users which can be considered to be the parity check matrix of a random
linear (n, k) q-ary code. We can assume that H is described as (Ir |M) where
M is a random r × r matrix; as Gaussian elimination does not change the code
generated by H , there is no loss of generality. Let κ be the security parameter.
Fig. 2 describes the key generation process (WFISD denotes the workfactor of
the Information Set Decoding algorithm).

KeyGen:
Choose n, k, ω, and q such that WFISD(n, r, ω, q) ≥ 2κ

H
$←− F

r×n
q

s
$←− F

n
q , s.t. wt(s) = ω.

y ← HsT
Output (sk,pk) = (s, (y,H,ω))

Fig. 2. Key generation algorithm: parameters n, k, w, q are public

3.2 Identification Protocol

The secret key holder can prove his knowledge of s by using two blending factors:
the transformation by means of a permutation and a random vector. In the next
section we will show how a dishonest prover not knowing s can cheat the verifier
in the protocol with probability of q/2(q − 1). Thus, the protocol has to be run
several times to detect cheating provers. The security of the scheme relies on the
hardness of the general decoding problem, that is on the difficulty of determining
the preimage s of y = HsT . In Fig. 3, h denotes a hash function and Sn the
symmetric group of degree n.

4 Properties and Security of the Scheme
4.1 Zero-Knowledge-Proof

Let I = (H, y, ω) be the public data shared by the prover and the verifier in our
construction, and let P (I, s) be the predicate:
P (I, s) = “s is a vector which satisfies HsT = y,wt(s) = ω”. We show in this

section that the protocol presented in Fig. 3 corresponds to a zero-knowledge
interactive proof. To this end, we provide in the following proofs for the com-
pleteness, soundness, and zero-knowledge properties of our identification scheme.

A Zero-Knowledge Identification Scheme 177

Prover P Verifier V
(sk, pk) = (s, (y, H, ω)) ←− KeyGen pk = y, H, ω

u
$←− F

n
q , Σ

$←− Sn

γ
$←− F

n∗
q

c1 ← h
(
Σ, γ, HuT

)
c2 ← h (Πγ,Σ(u), Πγ,Σ(s)) c1, c2−−−−−−−−−−−−−−→

α←−−−−−−−−−−−−−− α
$←− F

∗
q

β ←− Πγ,Σ(u + αs) β−−−−−−−−−−−−−−→
Challenge b←−−−−−−−−−−−−−− b

$←− {0, 1}
If b = 0: Σ, γ−−−−−−−−−−−−−−→ Check c1

?= h(Σ, γ, HΠ−1
γ,Σ(β)T − αy)

Else:
Πγ,Σ(s)−−−−−−−−−−−−−−→ Check c2

?= h(β − αΠγ,Σ(s), Πγ,Σ(s)),
wt(Πγ,Σ(s)) ?= ω

Fig. 3. Identification protocol

Completeness. Clearly, each honest prover which has the knowledge of a valid
secret s, the blending mask u, and the permutation Πγ,Σ for the public data can
answer correctly any of the honest verifier’s queries in any given round, thus the
completeness property of the scheme is satisfied.

Zero-Knowledge. The zero-knowledge property for our identification protocol
(Fig. 3) is proved in the random oracle model assuming that the hash function
h has statistical independence properties.

Theorem 1. The construction in Fig. 3 is a zero-knowledge interactive proof
for P (I, s) in the random oracle model.

Proof. The proof uses the classical idea of resettable simulation [13]. Let M be
a polynomial-time probabilistic Turing machine (simulator) using a dishonest
verifier. Because of the two interaction with the prover, we have to assume that
the dishonest verifier could contrive two strategies : St1(c1, c2) taking as input
the prover’s commitments and generating a value α ∈ F∗q , St2(c1, c2, β) taking
as input the prover’s commitments, the answer β and generating as output a
challenge in the set {0, 1}. M will generate a communication tape representing
the interaction between prover and verifier. The goal is to produce a communi-
cation tape whose distribution is indistinguishable from a real tape by an honest
interaction. The simulator M is constructed as follows :

Step 1. M randomly picks a query b from {0, 1}.
– If b = 0,M randomly chooses: u, γ, andΣ, and solves the equation:Hs′T = y

for some s′ not necessarily satisfying the condition wt(s′) = ω. The commit-
ments are taken as c1 = h(Σ, γ,HuT), and c2 as a random string. By simu-
lating the verifier, M applies St1(c1, c2) to get α ∈ F

∗
q , and then computes

178 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

β = Πγ,Σ(u+ αs′), and has the information needed to derive the simulated
communication data between prover and verifier. Therefore the candidates
to be written in the communication tape consist of elements A = c1||c2, β
and ans = γ||Σ. Taking into account the uniform distribution of the ran-
dom variables used in the computation of A, ans and β, it follows that the
distribution of these elements is indistinguishable from those resulting from
a fair interaction.

– If b = 1 the machine also chooses u, γ, and Σ at random. This time it picks
s as random from the set Fnq with weight ω. The commitment c1 will be
given uniformly at random value and c2 = h(Πγ,Σ(u), Πγ,Σ(s)). Again, from
St1(c1, c2), the machine computes β = Πγ,Σ(u+αs), and has the information
needed to derive the simulated communication data. The communication set
features elements A = c1||c2, β and ans = Πγ,Σ(s). The uniformly random
character of the choices made will render these elements indistinguishable
from those resulting from a fair interaction.

Step 2. M applies the verifier’s strategy St2(c1, c2, β) obtaining b′ as result.
Step 3. When b = b′, the machineM writes on its communication tape the values
of A, α, β, b and ans. If the values differ, however, nothing is written and the
machine returns to step 1.

Therefore, in 2δ rounds on average,M produces a communication tape indistin-
guishable from another that corresponds to a fair identification process execution
that takes δ rounds. This concludes the proof. �

Soundness: We now show that at each round, a dishonest prover is able to
cheat a verifier to accept his identity with a probability limited by q/(2(q− 1)).

Let us suppose that a dishonest prover has devised the following strategies to
cope with the challenges that the verifier is expected to send. The first strategy
(st0) corresponds to the actions the prover takes when hoping to receive 0 as
challenge. He chooses u, γ, and Σ at random and solves the equation Hs′T = y
without satisfying the condition wt(s′) = ω. Then he computes c1 according to
these values and randomly generates c2. Thus, he will be able to answer the
challenge b = 0, regardless of the value of α chosen by the verifier. The second
strategy (st1) is successful in case a value 1 is received as challenge. He chooses
u, γ and Σ at random and picks an s′ with Hamming weight w. With this choice,
the commitment c2 can be correctly reconstructed, and the Hamming weight of
the fake private key validated. The commitment c1 is randomly generated.

Now, these two strategies can be improved. Indeed a dishonest prover can try
to make a guess on the value α sent by the verifier. Let αc be the guessed value,
so that β would be Πγ,Σ(u+ αcs′).

In st0, instead of randomly generating c2, he computes c2 = h(β − αcs̃, s̃)
where s̃ is a random word of Hamming weight w which will be sent as answer
(if b = 1) instead of Πγ,Σ(s′). With such a strategy, the cheater can answer to
b = 0 regardless the value of α chosen by the verifier and to b = 1 if α = αc.

A Zero-Knowledge Identification Scheme 179

In st1, instead of randomly generating c1, he computes c1 = h(Σ, γ,HuT +
αc(Hs′T − y)). With such a strategy, the cheater can answer to b = 1 regardless
the value of α chosen by the verifier and to b = 0 if α = αc.

Therefore, when we consider the probability space represented by the random
variables b and α, the success probability of a strategy st for one round is given
by:

P [successful impersonation] =∑1
i=0 P (st = sti)P (b = i) + P (st = sti)P (b = 1− i)P (α = αc) = q

2(q−1) .

Though it was calculated for the particular strategies above, this value also cor-
responds to the upper limit for generic cheating strategies as shown below. The
security assumptions that we make are as follows: we require that the commit-
ment scheme be computationally binding and that the qSD problem be hard. We
now show that if a cheating prover manages to answer more than (q

2(q−1))δ of
the queries made by a verifier after δ rounds, either of the security assumptions
above was broken, as stated in the theorem below.

Let us denote by B an honest verifier and by Ã a cheating prover.

Theorem 2. If B accepts Ã proof with probability 	 (q
2(q−1))δ + ε, then there

exists a polynomial time probabilistic machineM which, with overwhelming prob-
ability, either computes a valid secret s or finds a collision for the hash function.

Proof. Let T be the execution tree of (Ã, B) corresponding to all possible ques-
tions of the verifier when the adversary has a random tape RA. B may ask
2(q − 1) possible questions at each stage. Each question is a couple (α, b) where
α ∈ F∗q and b ∈ {0, 1}. First we are going to show that, unless a hash-collision
has been found, a secret key s can be computed from a vertex with q + 1 sons.
Then we will show that a polynomial time M can find such a vertex in T with
overwhelming probability.

Let V be a vertex with q+ 1 sons. This corresponds to a situation where 2 com-
mitments c1, c2 have been made and where the cheater has been able to answer to
q+1 queries. That is to say that there existsα
= α′ such that the cheater answered
correctly to the queries (α, 0), (α, 1), (α′, 0) and (α′, 1). Now let :

– (β,Σ, γ) the answer sent for the query (α, 0),
– (β, z) the answer sent for the query (α, 1),
– (β′, Σ′, γ′) the answer sent for the query (α′, 0),
– (β′, z′) the answer sent for the query (α′, 1),

the value z (resp. z′) represents the expected value Πγ,Σ(s), (resp. Πγ′,Σ′(s)),
hence wt(z) = ω. Notice also that the same value β (resp. β′) is used for (α, 0)
and (α, 1) (resp. (α′, 0) and (α′, 1)) since it is sent before the bit challenge b.
Then, because commitment c1 (resp. c2) is consistent with both queries (α, 0)
and (α′, 0) (resp. (α, 1) and (α′, 1)), we have:

h(Σ, γ,HΠ−1
γ,Σ(β)T − αy) = c1 = h(Σ′, γ′, HΠ−1

γ′,Σ′(β
′)T − α′y) ,

180 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

and
h(β − αz, z) = c2 = h(β′ − α′z′, z′) .

The equations are satisfied by finding collisions on the hash function or having
the following equalities:

Σ = Σ′

γ = γ′

z = z′

HΠ−1
γ,Σ(β)T − αy = HΠ−1

γ′,Σ′(β
′)T − α′y

β − αz = β′ − α′z′ .

Hence:

HΠ−1
γ,Σ(β − β′)T (α− α′)−1 = y

(β − β′)T (α− α′)−1 = z .

Then:
HΠ−1

γ,Σ(z) = y .

Therefore, the value s = Π−1
γ,Σ(z) with wt(Π−1

γ,Σ(z)) = wt(z) = ω, obtained from
the equalities above, constitutes a secret key that can be used to impersonate
the real prover.

Now, the assumption implies that the probability for T to have a vertex with
q + 1 sons is at least ε. Indeed, let us consider RA the random tape where Ã
randomly picks its values, and let Q bet the set F∗q × {0, 1}. These two sets are
considered as probability spaces both of them with the uniform distribution.

A triple (c, α, b) ∈ (RA×Q)δ represents the commitments, answers and queries
exchanged between Ã and B̄ during an identification process (c represents com-
mitments and answers). We will say that (c, α, b) is “valid”, if the execution of
(Ã, B̄) leads to the success state.

Let V be the subset of (RA × Q)δ composed of all the valid triples. The
hypothesis of the lemma means that:

card(V)
card((RA×Q)δ)

≥
(

q

2(q − 1)

)δ
+ ε.

Let Ωδ be a subset of RAδ such that:

– If c ∈ Ωδ, then qδ + 1 ≤ card{(α, b), (c, α, b) be valid } ≤ (2(q − 1))δ,
– If c ∈ RAδ \Ωδ, then 0 ≤ card{(α, b), (c, α, b) be valid } ≤ qδ.

Then, V = {valid (c, α, b), c ∈ Ωδ} ∪ {valid (c, α, b), c ∈ RAδ \Ωδ}, therefore:

card(V) � card(Ωδ)(2(q − 1))δ + (card(RAδ)− card(Ωδ))qδ.

A Zero-Knowledge Identification Scheme 181

Thus
card(V)

card((RA×Q)δ)
� card(Ωδ)

card(RAδ)
+ qδ

(
(2(q − 1))−δ − card(Ωδ)

card((RA×Q)δ)

)

≤ card(Ωδ)
card(RAδ) +

(
q

2(q − 1)

)δ
.

It follows that:
card(Ωδ)

card(RAδ)
≥ ε.

This shows that the probability that an intruder might answer to (at least) qδ+1
of the verifier’s queries, by choosing random values, is greater than ε. Now, if
more than qδ + 1 queries are bypassed by an intruder then T (RA) has at least
qδ + 1 leaves, i.e. T (RA) has at least a vertex with q + 1 sons.

So, by resetting Ã 1
ε times, and by repeating again, it is possible to find an

execution tree with a vertex with q + 1 sons with probability arbitrary close to
one. This theorem implies that either the hash function h is not collision free,
or the qSD problem is not intractable. Therefore, the soundness property was
demonstrated, given that one must have the probability negligibly close to 1/2.

4.2 Security and Parameters

As for binary SD identification schemes, the security of our scheme relies on
three properties of random linear q-ary codes:

1. Random linear codes satisfy the q-ary Gilbert-Varshamov lower bound [15];
2. For large n almost all linear codes lie over the Gilbert-Varshamov bound

[20];
3. Solving the q-ary syndrome decoding problem for random codes is NP-

complete [1].

We now have to choose parameters for an instantiation of the construction in
Fig. 3. We take into account the bounds corresponding to the Information Set
Decoding algorithm over Fq in [18] and propose parameters for a security level
of at least 280. The number of rounds must then be chosen in order to minimize
the success probability of a cheater.

Since we deal with random codes, we have to select parameters with re-
spect to the Gilbert-Varshamov bound (see Definition 6), which is optimal for
k = r = n/2. We assume this to be true in the remainder of the paper.

Let N be the number of bits needed to encode an element of Fq, h the output
size of the hash function h, Σ (resp. γ) the size of the seed used to generate
the permutation Σ (resp. the permutation γ), and δ the number of rounds. We
have the following properties for our scheme:

Size of the matrix in bits:

k × k ×N(we use the systematic form of H)

182 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

Size of the public identification:
kN

Size of the secret key:
nN

Total number of bits exchanged:

δ(2h +N + nN + 1 + (Σ + γ + nN)/2)

Prover’s computation complexity over Fq:

δ((k2 + wt(s)) multiplications + (k2 + wt(s)) additions)

To obtain a precise complexity on the workfactor of ISD algorithms over Fq

we’ve used the code developed by C. Peters, which estimates the number of
iterations needed for an attack using a Markov chain implementation [19]. ISD
algorithms depend on a set of parameters and this code allows to test which ones
can minimize the complexity of the attack.

For our scheme, we suggest the following parameters:

q = 256, n = 128, k = 64,wt(s) = 49.

The complexity of an attack using ISD algorithms is then at least 287. For the
same security level in SD schemes, we need to take n = 700, k = 350,wt(s) = 75.

In [26], Stern has proposed two 5-pass variants of his scheme. The first one to
lower the computing load. However, this variant slightly increases the probabil-
ity of cheating rather than lowering it, and thus increases the communication
complexity. The other one minimizes the number of rounds and lower the prob-
ability of cheating to (1/2)δ. The following table shows the advantage regarding
the communication cost and the size of the matrix of our scheme in comparison
with Stern’s initial proposal and his second variant, for the same security level of
287 and an impersonation resistance of 2−16. We considered that all seeds used
are 128 bits long and that hash values are 160 bits long.

SD G-SD Stern 5-pass Our scheme
Rounds 28 28 16 16
Matrix size (bits) 122500 122500 122500 32768
Public Id (bits) 350 700 2450 512
Secret key (bits) 700 1050 4900 1024
Communication (bits) 42019 35486 62272 31888
Prover’s Computation 222.7op. over F2 222.7op. over F2 221.92op. over F2 216mult + 216add op. over F256

Fig. 4. SD schemes vs. q-ary SD scheme, security level 287, probability of cheating 2−16

To obtain a security level of 2128 the indicated parameters are,

q = 256, n = 208, k = 104,wt(s) = 78,

A Zero-Knowledge Identification Scheme 183

which gives a scheme with the following properties:

Number of Rounds : 16
Matrix size (bits) : 86528
Public Id (bits) : 832
Secret key (bits) : 1664
Communication (bits) : 47248
Prover’s Computation : 217.4mult. and 217.4add. over F256

4.3 Comparison with Other Schemes

We compare our scheme to some other zero-knowledge schemes whose security
does not depend upon number theoretic assumptions, and where the whole prob-
ability of cheating is bounded by (1/2)δ (except for PPP). We use some results
given in [21], [22], [23] and [14] and try to adapt parameters such that the secu-
rity level be as near as possible than 287 for a fair comparison. Notice that for
CLE, the result given in our table does not fit with what is given in [22] and
[23]. Indeed, as mentioned in [27], the zero-knowledge property of the scheme
can only be stated if two quantities (Sσ and Tτ) are public in addition to the
public identification. For PPP, we considered the 3 pass version instead of the
five one because, as stated by the authors in [22], it is more efficient from a
computational point of view and furthermore easier to implement. As for our
scheme, only a part of the matrix can be stored in PKP. All these schemes uses
a random matrix shared by all users. In Fig. 5, we considered that all seeds used
are 128 bits long and that hash values are 160 bits long. We have not considered
for the prover’s complexity the cost of the computation of hash values but the
number of hash values to compute is mentioned in Fig. 5.

Notice that for a level of security near from 280 we could have used smaller
parameters. This would improve the general performances of our scheme, but
we think that the suggested parameters fit well for practical implementation.

PKP CLE PPP Our scheme
Rounds 16 16 39 16
Matrix size 24 × 24 24 × 24 161 × 177 64 × 64
over the field F251 F257 F2 F256
Public Id (bits) 384 288 245 512
Secret key (bits) 128 192 177 1024
Communication (bits) 13456 16528 51441 31888
Prover’s Computation 213.28add., 213.28 mul. 213.28add., 213.34 mul. 221.1 add., 221.1 mul. 216 add. +, 216 mul.
over the field F251 F257 F127 F256
Number of hash values 2 2 8 2
Security level 285 � 284 > 274 287

Fig. 5. qSD scheme vs. other schemes, probability of cheating 2−16

184 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

To see how the performances are modified with a lower probability of cheating,
interested readers can consult [9].

4.4 Reducing Public Key Size

Double-circulant construction. The authors of [12] propose a variation of the
Stern identification scheme by using double-circulant codes. The circulant struc-
ture of the matrix used as a public key requires very little storage and greatly
simplifies the computation, as the binary matrix needs never to be wholly gen-
erated. Still in this context, the authors show that all random double-circulant
[2k, k] codes such that k be prime and 2 be a primitive root of Z/kZ lie on the
Gilbert-Varshamov bound. They propose a scheme with a public key of size 347
bits and a private key of size 694 bits.

We can use this construction in our context by replacing the random q-ary
matrix H by a random q-ary double-circulant matrix. In this case, the parame-
ters using this construction are q = 256, n = 134, k = 67,wt(s) = 49; this gives
a size for the public data of 1072 bits (536 for the matrix and 536 for the public
identification) and a private key of size 1072 bits for almost the same complexity
for an ISD attack.

We can also imagine a construction based on double-dyadic codes or embed-
ding the syndrome in the matrix as proposed in [17] and [12].

Against these aforementioned constructions, there are recently several new
structural attacks appeared in [28] and [10]; these attacks extract the private
key of some parameters of the variants presented in [2] and [17]. Since in our
context we deal with random codes, we are not addressed by this kind of attacks.

Furthermore in [6] the authors describe a secure implementation of the Stern
scheme using quasi-circulant codes. Our proposal inherits the advantages of the
original Stern scheme against leakage of information, such as SPA and DPA
attacks.

5 Conclusion

We have defined an identification scheme which among all the schemes based
on the SD problem has the best parameters for the size of the public data as
well as for the communication complexity. Moreover, we propose a variant with
a reduced public key size.

The improvement proposed here to the Stern scheme can be applied to all the
Stern-based identification and signature schemes (such as identity-based iden-
tification and signature scheme [5] or threshold ring signature scheme [16] for
example).

We believe that this type of scheme is a realistic alternative to the usual
number theory identification schemes in the case of constrained environments
such as, for smart cards and for applications like Pay-TV or vending machines.

A Zero-Knowledge Identification Scheme 185

References

1. Barg, S.: Some new NP-complete coding problems. Probl. Peredachi Inf. 30, 23–28
(1994)

2. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the mcEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

3. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3), 384–
386 (1978)

4. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Heidelberg (2008)

5. Cayrel, P.-L., Gaborit, P., Girault, M.: Identity-based identification and signature
schemes using correcting codes. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.)
International Workshop on Coding and Cryptography, WCC 2007, pp. 69–78 (2007)

6. Cayrel, P.-L., Gaborit, P., Prouff, E.: Secure implementation of the stern authenti-
cation and signature schemes for low-resource devices. In: Grimaud, G., Standaert,
F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 191–205. Springer, Heidelberg
(2008)

7. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding prob-
lem for rank distance codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT
1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996)

8. Chen, K.: Improved girault identification scheme. Electronics Letters 30(19), 1590–
1591 (1994)

9. Interactive comparison of some zero knowledge identification schemes,
http://tinyurl.com/32gxn8w

10. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
mcEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

12. Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In:
IEEE International Symposium on Information Theory – ISIT 2007, Nice, France,
pp. 191–195. IEEE, Los Alamitos (2007)

13. Goldreich, O.: Zero-knowledge twenty years after its invention (2002),
http://eprint.iacr.org/

14. Jaulmes, É., Joux, A.: Cryptanalysis of pkp: a new approach. In: Kim, K.-c. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 165–172. Springer, Heidelberg (2001)

15. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-
Holland, Amsterdam (1977)

16. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring sig-
nature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)

17. Misoczki, R., Barreto, P.S.L.M.: Compact mcEliece keys from goppa codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

18. Niebuhr, R., Cayrel, P.-L., Bulygin, S., Buchmann, J.: On lower bounds for infor-
mation set decoding over Fq. In: SCC 2010 (2010) (preprint)

http://tinyurl.com/32gxn8w
http://eprint.iacr.org/

186 P.-L. Cayrel, P. Véron, and S.M. El Yousfi Alaoui

19. Peters, C.: Information-set decoding for linear codes over Fq (2009),
http://eprint.iacr.org/

20. Pierce, J.N.: Limit distributions of the minimum distance of random linear codes.
IEEE Trans. Inf. theory 13, 595–599 (1967)

21. Pointcheval, D.: A new identification scheme based on the perceptrons problem.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 319–328. Springer,
Heidelberg (1995)

22. Pointcheval, D., Poupard, G.: A new NP-complete problem and public-key identi-
fication. Des. Codes Cryptography 28(1), 5–31 (2003)

23. Poupard, G.: A realistic security analysis of identification schemes based on com-
binatorial problems. European Transactions on Telecommunications 8(5), 471–480
(1997)

24. Shamir, A.: An efficient identification scheme based on permuted kernels. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg
(1990)

25. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen,
G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg
(1989)

26. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

27. Stern, J.: Designing identification schemes with keys of short size. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg
(1994)

28. Gauthier Umana, V., Leander, G.: Practical key recovery attacks on two McEliece
variants (2009), http://eprint.iacr.org/2009/509.pdf

29. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

30. Wolf, C., Preneel, B.: MQ∗-ip: An identity-based identification scheme without
number-theoric assumptions (2010), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/2009/509.pdf
http://eprint.iacr.org/

Optimal Covering Codes for Finding
Near-Collisions

Mario Lamberger1 and Vincent Rijmen1,2

1 Institute for Applied Information Processing and Communications

Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria
2 Dept. of Electrical Engineering ESAT/COSIC, K.U. Leuven and Interdisciplinary

Institute for BroadBand Technology (IBBT), Kasteelpark Arenberg 10,

B–3001 Heverlee, Belgium

mario.lamberger@iaik.tugraz.at

Abstract. Recently, a new generic method to find near-collisions for

cryptographic hash functions in a memoryless way has been proposed.

This method is based on classical cycle-finding techniques and covering

codes. This paper contributes to the coding theory aspect of this method

by giving the optimal solution to a problem which arises when construct-

ing a suitable code as the direct sum of Hamming and trivial codes.

Keywords: Hash functions, memoryless near-collisions, covering codes,

direct sum construction, digital expansions.

1 Introduction

The field of hash function research has developed significantly in the light of
the attacks on some of the most frequently used hash functions like MD4, MD5
and SHA-1 (cf. [5,6,7,22,23]). As a consequence, academia and industry started
to evaluate alternative hash functions, e.g. in the SHA-3 initiative organized
by NIST [16]. During this ongoing evaluation, not only the three classical secu-
rity requirements collision resistance, preimage resistance and second preimage
resistance are considered. Researchers look at (semi-)free-start collisions, near-
collisions, etc. Whenever a ‘behavior different from that expected of a random
oracle’ could be demonstrated, the hash function is considered suspect, and so
are weaknesses that are demonstrated only for the compression function and not
for the full hash function.

Coding theory has entered the stage of hash function cryptanalysis quite early
where an integral part in the attack strategies is based on the search for low-
weight code words in a linear code (cf. [1,3,18] among others). In this paper,
we want to elaborate on a newly proposed application of coding theory to hash
function cryptanalysis. In [13], it is demonstrated how to use covering codes to
find near-collisions for hash functions in a memoryless way. We also want to refer
to the recent paper [10] which look at similar concepts from the viewpoint of
locality sensitive hashing.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 187–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

188 M. Lamberger and V. Rijmen

The rest of the paper is organized as follows: In Section 2 we review some basic
definitions and well known generic algorithms. Section 3 gives the main idea on
how to use covering codes to find near-collisions for hash functions. Section 4
shows how to construct suitable codes for the method of Section 3. Section 5
finally presents the optimal solution to a problem that arises in Section 4 which
asks how to construct a code of given length and covering radius that can be
used to find near-collisions. Finally, we conclude in Section 6.

2 Collisions and Near-Collisions of Hash Functions

In all of the following, we will work with binary values, where we identify {0, 1}n

with Zn
2 . Let “+” denote the n-bit exclusive-or operation. The Hamming weight

of a vector v ∈ Zn
2 is denoted by w(v) = #{i | vi = 1} and the Hamming distance

of two vectors by d(u, v) = w(u + v). The Handbook of Applied Cryptography
defines near-collision resistance as follows:

Definition 1 (Near-Collision Resistance [15, page 331]). It should be hard
to find any two inputs m, m∗ with m �= m∗ such that H(m) and H(m∗) differ
in only a small number of bits:

d(H(m), H(m∗)) ≤ ε. (1)

For ease of later use we also give the following definition:

Definition 2. A message pair m, m∗ with m �= m∗ is called an ε-near-collision
for H if (1) holds.

The definitions suggest that a hash function for which an efficient algorithm
is known that allows an attacker to construct near-collisions, can no longer
be considered to be ideal. Above that, for several designs, near-collisions for
the compression function can be converted to collisions for the hash function
(e.g. [14,23]).

Collisions are of course a special case of near-collisions where the parameter
ε = 0. The generic method for finding collisions for a given hash function is based
on the birthday paradox and attributed to Yuval [24]. This birthday attack re-
quires approximately 2n/2 hash function computations and a table of the same
size. In practice, memory is expensive relative to computation, and memoryless
algorithms are given the preference over algorithms with large memory require-
ments. There are well established cycle-finding techniques (due to Floyd, Brent,
Nivasch, cf. [2,12,17]) that remove the memory requirements from an attack
based on the birthday paradox (see also [20]). These methods work by repeated
iteration of the underlying hash function where in all of these applications the
function is considered to behave like a random function.

Let Sε be the set {x ∈ Zn
2 |w(x) ≤ ε}. An approach analogous to the classical

birthday attack to find ε-near-collisions is to start with an empty table and
randomly select messages mj , compute H(mj) and check whether or not the
entry (H(mj)+ δ, m∗) is present in the table, ∀δ ∈ Sε and an arbitrary m∗ If no

Optimal Covering Codes for Finding Near-Collisions 189

match is found, then we add (H(mj), mj) to the table and select a new message.
Proceeding in this manner, the expected number of messages that we need to
hash and store before we find an ε-near-collision is about:

2n/2√∑ε
i=0

(
n
i

) . (2)

We see that, depending on ε, finding ε-near-collisions is clearly easier than finding
collisions.

3 Memoryless Near-Collisions Based on Coding Theory

In [13], the question is raised whether or not the above mentioned cycle-finding
techniques are also applicable to the problem of finding near-collisions. We now
give a short account of the ideas of [13].

Since Definition 2 includes collisions as well, the task of finding near-collisions
is easier than finding collisions. The goal is now to find a generic method to con-
struct near-collisions more efficiently than the generic methods to find collisions.

The first straight forward approach is to apply the cycle-finding algorithms
to the problem of finding near-collisions is a projection based approach. The
basic idea is to fix ε bit positions in Z

n
2 and define the map π to set the bits

of an x ∈ Zn
2 to zero at these ε positions. Then, we can apply a cycle-finding

algorithm to the map π ◦ H which can find an ε-near-collision in a memoryless
way with a complexity of about 2(n−ε)/2. This can be even improved by setting
2ε + 1 bits to zero, since the probability is still 1

2 that a collision for π ◦H is an
ε-near-collision, thus improving the complexity to about

2(n−1)/2−ε. (3)

A drawback to this solution is of course that we can only find ε-near-collisions
of a limited shape (depending on the fixed bit positions), so only a fraction of
all possible ε-near-collisions can be detected, namely

2ε∑ε
i=0

(
n
i

) . (4)

To circumvent this drawback, there is the following nice solution. The idea is
to replace the projection π by a more complicated function g. The choice for g
is to be the decoding operation of a certain covering code C. These codes are
concerned with the so called covering radius

R(C) = max
x∈Z

n
2

min
c∈C

d(x, c) , (5)

that is, R is the smallest radius such that the union of Hamming spheres BR(c)
around the codewords of C cover the whole space Z

n
2 . If the minimum distance

190 M. Lamberger and V. Rijmen

between codewords is the parameter of importance, then we speak of error-
correcting codes. Covering codes are a well researched topic in coding theory,
see for example the monograph [4] for a thorough introduction.

The decoding function g of a covering code with covering radius R groups
possible outputs of the hash function H into classes where for every two elements
x, y in such a class we have d(x, y) ≤ 2R. Now instead of iterating the function
on the output space of the hash function, one does so on the function over classes
represented by their canonical members. If two different inputs are mapped into
the same class, it corresponds to an ε-near-collision with ε = 2R. In other words,
we apply the cycle-finding algorithms mentioned in Section 2 to the function
g ◦ H under the assumption that H acts as a random function. The main idea
can thus be summarized as follows:

Theorem 1 ([13]). Let H be a hash function of output size n. Let C be a
covering code of the same length n, size K and covering radius R(C) and assume
there exists an efficiently computable map g satisfying

g : Z
n
2 → C
x �→ c with

d(x, c) ≤ R(C).
(6)

Then, we can find 2R(C)-near-collisions for H with a complexity of about
√

K
and with virtually no memory requirements.

In order to be efficient, the task is thus to find a code C with K as small as
possible. However, also the computability of the function g defined in (6) plays
a crucial role. An evaluation of g should be efficient when compared to a hash
function call. The actual task is thus to find a code C with given length n and
covering radius R, such that the size of C is as small as possible and decoding
can be done efficiently.

A general bound for the size of a covering code is the so called Sphere Covering
Bound, which states that if a code C of length n and covering radius R = R(C)
exists, the size K(n, R) must be

K(n, R) ≥ 2n∑R
i=0

(
n
i

) . (7)

An extensive amount of work in the theory of covering codes is devoted to derive
better bounds and to construct codes achieving these bounds (cf. [4,19,21]).

4 Direct Sum Constructions of Covering Codes

In the rest of this paper, we will restrict ourselves to linear covering codes in Zn
2 .

We will use the notation C = [n, k]R for a code of length n, dimension k (that is,
the size K = 2k) and covering radius R. It is well known that perfect codes are
good covering codes, non-trivial examples in the binary case are the Hamming

Optimal Covering Codes for Finding Near-Collisions 191

codes Hi for i ≥ 1 which are [2i − 1, 2i − 1 − i]1 codes and the [23, 12]3 Golay
code. For other lengths n, no non-trivial perfect codes exist.

Fortunately, the bitlength of a hash value is very often of the form n = 2i. For
these lengths, explicit and almost explicit results in the case when the covering
radius is R = 1 and R = 2 are known:

Proposition 1. Let n = 2i for i ≥ 1 and let k(n, R) be the minimum dimension
k such that an [n, k]R code exists. Then,

k(2i, 1) = 2i − i (8)

k(2i, 2) ∈ {2i − 2i, 2i − 2i + 1, 2i − 2i + 2}. (9)

For a proof of (8) we refer to [21], (9) is shown in [11]. One basic construction
principle when deriving such bounds is the so called direct sum of linear codes
(cf. [11]):

Lemma 1. For linear codes C1 = [n1, k1]R1 and C2 = [n2, k2]R2, the direct sum
of C1 and C2 is defined as

C1 ⊕ C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}.
Then, C1 ⊕ C2 is a linear code with parameters [n1 + n2, k1 + k2]R1 + R2.

For (linear) codes of length n ≤ 33 and for relatively small covering radii R we
can find extensive tables of the values of k(n, R) (see e.g. [4] or [9]). However,
since the length of the code is determined by the output size of the hash function,
we will deal with lengths n that are significantly larger than 33.

In [13], a direct sum construction was proposed that would be applicable for all
lengths n and covering radii R and only combines Hamming codes and the trivial
codes Z

q
2. This construction looks as follows. Let the numbers Ni = 2i−1 denote

the lengths of the Hamming codes Hi for i = 1, 2, Let D = {0, 1, . . . , R} be
the set of digits. We denote by

X :=
{
x =

∑
i≥1

diNi | di ∈ D, di �= 0 for finitely many i
}

(10)

the set of possible expansions in the base (Ni)i≥1 and with digits in D. Further-
more, we also introduce

Xn := {x ∈ X |x ≤ n}. (11)

For ease of notation, we will denote by d · Hi the direct sum of d copies of Hi.
Then, the following optimization problem can be formulated:

Problem 1. Let n and R < �n
4 � be given. Find an expansion

x =
∑

i≥1
diNi ∈ Xn (12)

that additionally satisfies the following properties:

σ(x) :=
∑

i≥1
di = R, (13)

e(x) :=
∑

i≥1
di · i → max. (14)

192 M. Lamberger and V. Rijmen

Then, the code
C =

⊕
i≥1

di · Hi ⊕ Z
n−x
2 (15)

has length n, covering radius R and the dimension of the code is

k = n −
∑
i≥1

di · i .

From Lemma 1 it follows that the code (15) has length x + (n − x) = n, and
that the covering radius is exactly R. For the dimension of the code we get

k =
∑

i≥1
di(Ni − i) + n −

∑
i≥1

diNi

= n −
∑

i≥1
di · i.

Clearly, the dimension is minimal if
∑

i≥1 di · i is maximal.

5 The Optimal Solution for Problem 1

We now give a complete solution of the optimization question formulated in
Problem 1. We start by stating the main theorem.

Theorem 2. Let n, R be given as in Problem 1. Define

� :=
⌊
log2

(n

R
+ 1

)⌋
and r :=

⌊
n − R(2� − 1)

2�

⌋
. (16)

Then, the expansion

x = (R − r)(2� − 1) + r(2�+1 − 1) (17)

satisfies all conditions (12), (13) and (14). The resulting code

C = (R − r) · H� ⊕ r · H�+1 ⊕ Z
n−x
2 (18)

has dimension k = n − R · � − r and is an optimal solution subject to this
construction.

The proof of Theorem 2 is split into two auxiliary results for the expansions
x ∈ Xn which satisfy (13) and (14) which will be shown in Proposition 2 and
Proposition 3. Remember that for a given expansion x ∈ Xn we denote by
e(x) =

∑
i≥1 di · i the value of the expansion, which has to be maximized.

Proposition 2. Assume x∗ ∈ Xn is an optimal expansion satisfying (13) and
(14). Then we have

R � ≤ e(x∗) < R(� + 1). (19)

Optimal Covering Codes for Finding Near-Collisions 193

Proof. The left hand side of the inequality is easy to see, since from (16) we
know that � is chosen in such a way that

R(2� − 1) ≤ n < R(2�+1 − 1).

So x = R(2� − 1) ∈ Xn is a valid expansion and e(x) = R �.
For the right hand side, we assume there is an expansion x∗ ∈ Xn with

e(x∗) ≥ R(� + 1), that is, we have∑
i≥1

di(2i − 1) ≤ n, (20)

∑
i≥1

di = R, (21)

∑
i≥1

di · i ≥ R(� + 1). (22)

Since di ≥ 0 and because of (21) we can interpret the sequence(
d1

R
,
d2

R
, . . .

)
as a discrete probability distribution for a random variable X . In other words,
we consider X with P (X = i) = di

R for i ≥ 1. In this light, we can read (22)
as an inequality for the expected value E(X) ≥ � + 1. Now Jensen’s inequality
(cf. [8]) states, that for a convex function φ we have

E(φ(X)) ≥ φ (E(X)) . (23)

Applying this to the random variable X from above and the convex function
φ(x) = 2x − 1 we can derive∑

i≥1
di

R (2i − 1) = E(φ(X)) ≥ φ(E(X)) ≥ φ(� + 1) = 2�+1 − 1.

After multiplying this inequality by R, we end up with

x∗ ≥ R(2�+1 − 1) > n,

by the definition of �. This contradiction proves the proposition. �

The last proposition specifies the interval in which e(x∗) must lie for an optimal
solution x∗. The next proposition will give the explicit solution.

Proposition 3. For given n and R, the expansion

x∗ = (R − r)(2� − 1) + r(2�+1 − 1)

with � and r as in (16) is optimal, that is, it reaches the maximal value e(x∗) =
R � + r. Depending on n and R, this optimum can also be attained by other
expansions than x∗.

194 M. Lamberger and V. Rijmen

Proof. We want to address first, that in general there is not a unique optimal
expansion. This is easy to see since for certain values of n and R it might occur,
that

x∗∗ = (2�−1 − 1) + (R − r − 2)(2� − 1) + (r + 1)(2�+1 − 1) ≤ n

holds. This expansion also has

e(x∗∗) = � − 1 + (R − r − 2)� + (r + 1)(� + 1) = R � + r.

For example in the case n = 160 and R = 2 we would have x∗ = 2(26− 1) = 126
and x∗∗ = (25 − 1) + (27 − 1) = 158 which both are ≤ 160 and have e(x∗) =
e(x∗∗) = 12.

By definition in (16), we see that r ∈ {0, . . . , R − 1}. Actually, r is chosen in
such a way that

(R− r)(2� − 1)+ r(2�+1 − 1) ≤ n < (R− r− 1)(2� − 1)+ (r +1)(2�+1− 1). (24)

Thus, Proposition 2 states that R � + r would be a possible optimal value for
e(x∗). Let us now assume that there exists an expansion x′ ∈ Xn such that
e(x′) > R � + r. Let e(x′) = R � + r + δ with 0 < δ < R − r. Then, another
expansion x′′ having e(x′′) = e(x′) is

x′′ = (R − r − δ)(2� − 1) + (r + δ)(2�+1 − 1). (25)

Now we will show that any x′ with e(x′) = e(x′′) = R � + r + δ satisfies x′ ≥ x′′.
Let us consider the digits of the expansion (25) as units, that is, we have a

total of R digits (because of (21)) and these digits are distributed at positions
� and � + 1. Any other x′ satisfying e(x′) = e(x′′) can be seen to result from x′′

by moving the digits of the expansion of x′′ to other positions.
To be even more specific we can describe a “unit move” by Si

j which denotes
the process of moving one digit of x′′ at position i to i + 1 and simultanously
moving one digit from position j to j − 1 (see also Fig. 1). Any such step has
the property of maintaining the value e(x′′). Starting from x′′, i and j can only
be � or � + 1. In this case only the moves S�

� , S�+1
� and S�+1

�+1 make sense, since
S�

�+1 would be redundant by leaving x′′ unchanged. In general, we only have to
consider moves Si

j with i ≥ j since any move with i < j results in a previous
configuration of digits. (This can be shown by induction over the number of
non-zero digits of a given expansion in X .) When applying a unit move Si

j with
i ≥ j to x′′, the digit going from i to i + 1 increases the value of the resulting
expansion x′ by 2i+1 − 1 − 2i + 1 = 2i whereas the digit going from j to j − 1
decreases the value of x′ by 2j. Therfore, the overall change of one unit move is
2i − 2j which is always non-negative, since we assumed i ≥ j. Since any x′ with
e(x′) = e(x′′) results from x′′ by a series of unit moves Si

j with i ≥ j, we can
therefore deduce that we have x′ ≥ x′′. But x′ ≥ x′′ also implies x′ > n because

x′′ ≥ (R − r − 1)(2� − 1) + (r + 1)(2�+1 − 1) > n

by (24) and since δ > 0. This proves the proposition. �

Optimal Covering Codes for Finding Near-Collisions 195

Fig. 1. Example of the unit move S�+1
� with R = 8

Table 1. For given ε ∈ {2, 4, 6, 8}, the table compares the base-2 logarithms of the

complexity of the standard table-based approach (2), the projection based approach

(3) and our construction (15) for n = 128, 160 and 512

n = 128 n = 160 n = 512

ε (2) (3) (15) (2) (3) (15) (2) (3) (15)

2 57.5 61.5 60.5 73.2 77.5 76.5 247.5 253.5 251.5

4 52.3 59.5 58.0 67.7 75.5 74.0 240.3 251.5 248.0

6 47.8 57.5 56.0 62.8 73.5 71.5 233.8 249.5 245.0

8 43.8 55.5 54.0 58.5 71.5 69.5 227.7 247.5 242.0

We conclude this section by giving a table which compares the dimension of the
codes (18) with the projection based approach and the complexity of a table-
based near-collision search for several values of ε and n.

Remark 1. It is of course natural to compare the codes resulting from Theorem 2
with other well known codes. Binary BCH codes with parameters e, m (see [4,
Sect. 10.1]) are algebraic codes of length n = 2m − 1, dimension k ≥ n − m · e
and minimum distance d ≥ 2e + 1. For e ∈ {2, 3} the exact covering radius of
BCH(e, m) is known, namely R(BCH(2, m)) = 3 and R(BCH(3, m)) = 5. If
we now consider for example B1 = BCH(2, 7) ⊕ Z2 and B2 = BCH(2, 9) ⊕ Z2,
we see that B1 is a [128, 114] R = 3 code and B2 has parameters [512, 494] R = 5,
so their dimension is higher than that of (15).

One possible way to achieve an improvement is to move from the direct sum
construction of Section 4 to blockwise or amalgamated direct sum constructions
(cf. [4]).

6 Conclusion

In this paper, we have solved a problem concerning the direct sum of Hamming
codes and trivial codes Z

q
2. This problem arose in the context of a newly proposed

method that allows us to find near-collisions for a cryptographic hash function

196 M. Lamberger and V. Rijmen

H in a memoryless way by applying the standard cycle-finding algorithms to
the composition of the decoding operation of a covering code and the hash
function H . This method is then able to find ε-near-collisions for H with ε =
2R where R is the covering radius of the underlying code. The efficiency of
the method is determined by the size of this code. The question of finding the
right combination of Hamming and trivial Z

q
2 codes has been translated into

an optimization problem for digital expansions and this has been solved by
Theorem 2.

Acknowledgements

The authors wish to thank the anonymous referees, Florian Mendel and René
Struik for valuable comments and discussions. The work in this paper has been
supported in part by the European Commission under contract ICT-2007-216646
(ECRYPT II), in part by the Austrian Science Fund (FWF), project P21936 and
in part by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy).

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO

2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT 20(2), 176–184

(1980)

3. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

4. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering codes. North-Holland

Mathematical Library, vol. 54. North-Holland Publishing Co., Amsterdam (1997)

5. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the

Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.

LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

6. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results

and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,

pp. 1–20. Springer, Heidelberg (2006)

7. Dobbertin, H.: Cryptanalysis of MD4. J. Cryptology 11(4), 253–271 (1998)

8. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,

vol. I. John Wiley & Sons Inc., New York (1968)

9. Kéri, G.: Tables for bounds on covering codes,

http://www.sztaki.hu/~keri/codes/ (accessed May 17, 2010)

10. Gordon, D., Miller, V., Ostapenko, P.: Optimal hash functions for approximate

matches on the n-cube. IEEE Trans. Inform. Theory 56(3), 984–991 (2010)

11. Graham, R.L., Sloane, N.J.A.: On the covering radius of codes. IEEE Trans. In-

form. Theory 31(3), 385–401 (1985)

12. Knuth, D.E.: The art of computer programming. Seminumerical algorithms,

Addison-Wesley Series in Computer Science and Information Processing, vol. 2.

Addison-Wesley Publishing Co., Reading (1997)

http://www.sztaki.hu/~keri/codes/

Optimal Covering Codes for Finding Near-Collisions 197

13. Lamberger, M., Mendel, F., Rijmen, V., Simoens, K.: Memoryless Near-

Collisions via Coding Theory (December 2009), http://asiacrypt2009.

cipher.risk.tsukuba.ac.jp/rump/slides/13 NC-talk.pdf, (short talk) pre-

sented at the ASIACRYPT 2009 rump session

14. Mendel, F., Schläffer, M.: On Free-Start Collisions and Collisions for TIB3. In:

Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS,

vol. 5735, pp. 95–106. Springer, Heidelberg (2009)

15. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton (1996)

16. National Institute of Standards and Technology (NIST). Cryptographic Hash

Project (2007), http://www.nist.gov/hash-competition

17. Nivasch, G.: Cycle detection using a stack. Inf. Process. Lett. 90(3), 135–140 (2004)

18. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-

lision Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005.

LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

19. Struik, R.: An improvement of the Van Wee bound for binary linear covering codes.

IEEE Transactions on Information Theory 40(4), 1280–1284 (1994)

20. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic

Applications. J. Cryptology 12(1), 1–28 (1999)

21. van Wee, G.J.M.: Improved sphere bounds on the covering radius of codes. IEEE

Transactions on Information Theory 34(2), 237–245 (1988)

22. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.

(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

23. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.

(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

24. Yuval, G.: How to swindle Rabin? Cryptologia 3(3), 187–191 (1979)

http://asiacrypt2009.cipher.risk.tsukuba.ac.jp/rump/slides/13_NC-talk.pdf
http://asiacrypt2009.cipher.risk.tsukuba.ac.jp/rump/slides/13_NC-talk.pdf
http://www.nist.gov/hash-competition

Tweaking AES

Ivica Nikolić

University of Luxembourg

Abstract. In this paper we present a tweak for the key schedule of AES

in a form of a few additional basic operations such as rotations and S-

boxes. This leads to a new cipher, which we call xAES, and which is

resistant against the latest related-key differential attacks found in AES.

xAES has a speed benchmark close to the one of AES even in the appli-

cations which use a frequent change of the master key.

Keywords: AES, tweak, key schedule.

1 Introduction

The Advanced Encryption Standard (AES) [6] is a block cipher adopted by
NIST [15]. Eight years after the adoption, AES is widely used for commercial and
governmental purposes while being implemented in both software and hardware.
It is an elegant design and a very efficient cipher.

Recently, a few cryptanalytical results were obtained regarding the security
resistance of AES [4,3]. It was shown that AES-192 and AES-256, i.e. the versions
of AES with 192 and 256 key bits, do not have the ideal security level in the
framework where related-key attacks are permitted. Despite the fact that so far
these attacks are only theoretical and require a computational power beyond our
reach, finding an efficient fix for AES that will produce a cipher that is ideal by
the cryptographic standards, seems a good open problem.

In this paper we propose such fix. Since the recent attacks are mostly based on
the property of the key schedule of AES, we tweak only this part of the cipher,
while keeping intact the round function. We introduce only a few additional
operations in the key schedule which result in a cipher that is: 1)resistant against
related-key differential attacks, 2)has a speed close to the speed of AES.

The rest of the paper is structured as follows. In section 2 we give a brief
facts on efficiency and security of AES. In section 3, we present our tweak for
the key schedule. First, we focus on choosing a tweak that will produce a secure
and efficient key schedule, then we prove the resistance of the new cipher against
related-key differential attacks and finally we give theoretical and empirical es-
timates of its efficiency. In section 4 we conclude.

2 Efficiency and Security of AES

The block cipher AES has 128-bit state and supports three key sizes: 128, 192,
and 256 bits. It is a byte oriented cipher and depending on the key size it has

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 198–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Tweaking AES 199

10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit
keys. In each round of AES the state, which can be seen as 4x4 matrix of bytes,
undergoes four basic transformations:

1. SubBytes - bytewise application of S-boxes,
2. ShiftRows - cyclic shift of each row of the state matrix on some amount,
3. MixColumns - columnwise matrix multiplication,
4. AddRoundKey – xor of the subkey to the state.

The choice of these transformations permits to implement a round of AES as
a combination of simple table lookups and xors (See [6]) leading to significant
performance benefits. Moreover, Intel has announced that a new AES instruction
set[11], called AES-NI, will be introduced in the new processors. Among other,
the new instructions will significantly increase the efficiency of the round function
of AES. Yet, no special instructions will be available to perform the key schedule
routine.

Security analysis of AES has been the target of many cryptographic pa-
pers. The initial analysis was done by the submitters of Rijndael [6]. Using the
property of the MixColumns transform, which is based on maximum distance
separable code, the designers proved that in the fixed-key model, differential char-
acteristics exist only for a reduced number of rounds. Hence the further analysis
of AES was mainly focused either on other (non-differential) fixed-key attacks,
or on related-key differential attacks.

In the fixed-key model, square attacks on 6 rounds of AES [6], boomerang
attack on 6 rounds [2], collisions attacks on 7-8 rounds of AES [10,7], impossible
differentials on 7-8 rounds of AES [13] and partial sum attacks [8] on 7,8,9 rounds
of AES-128,-192,-256 respectively, were obtained.

In the related-key model, until recently, the best attacks were the boomerang
and rectangle attacks found up to 10 rounds of AES-192 and 10 rounds of AES-
256 [1,12,9]. The first attack on full-round AES-256 was given in [4]. In the paper,
the authors present a related-key differential characteristic on all 14 rounds of
AES-256, which leads to a key-recovery attack. Since some of the differences
of the characteristic are in the subkey bytes which afterwards go through S-
boxes, the attack works only for a class of keys. The second attack, in a form of
related-key boomerang attack, on full-round AES [3] focuses on both AES-192
and AES-256. The attack leads to a key-recovery and works for all keys.

3 xAES – A New and Improved AES

In this section we present our proposal xAES. Although the security of the new
version is our main concern, we would like to obtain an efficient primitive as
well.

AES is widely implemented in both software and hardware. The round func-
tion is elegant with good security properties and it allows a fast implementation
through a low number of table lookups and xors. The implementation is made
even faster in software on the upcoming new Intel processors. Therefore, to gain

200 I. Nikolić

the necessary level of security for our proposal, we will focus on improving the
current key schedule of AES while keeping unchanged the round function.

Let us define our main objectives. First, it is creating a new key schedule for
AES such that no related-key differential characteristics exist on the full-round
version of 128, 192, and 256 key sizes. We take a conservative approach and
require that no such characteristics exist in any weak key class. Second, the
new key schedule should be efficient – the speed of the new proposal should be
comparable with the speed of AES. Note that when talking about the speed of a
cipher, regarding the key agility we can go into two directions. One is to measure
the efficiency of a cipher in the encryption mode, where the master key is fixed
and the subkeys are computed once and used in all of the iterations. In this
case, the efficiency of the key schedule is irrelevant1 and the designer can spend
a lot of computational power to produce the subkeys from the master key since
the key setup is done only once. The second is when the cipher is used as an
underlying primitive for other cryptographic constructions, e.g. hash functions.
Then the master key is changed on every iteration, and sequentially, the subkeys
have to be recomputed. In this case, the efficiency of the key schedule comes to
a forefront and it has a significant impact on the efficiency of the whole cipher
(the whole cryptographic construction). To measure the efficiency of a cipher,
we take into account the second, more conservative direction, i.e. we measure
the speed with the assumption that the master key is frequently changed – a
hash mode.

Further, we present some ideas on possible approaches to build a secure and
fast key schedule for AES. Then we present our proposal xAES, and give a
security and efficiency analysis of the new cipher.

3.1 Methods to Improve the Key Schedule of AES

There are a few approaches to raise the security level of AES against related-key
differential attacks. Further we present each approach and give an evaluation of
its efficiency.

1. Increase the number of rounds. One can simply add a few more rounds at the
top of the regular number of rounds of AES and obtain a cipher that is secure
against related-key differential attacks. Note that the current key schedule
of AES can easily produce a few more subkeys without the necessity of any
substantial change. This approach has many positive sides, one of which is
that the new cipher does not have to be reevaluated against the rest of the
related-key non-differential attacks because the key schedule has not been
changed. Yet, our second objective, efficiency, seems to suffer. Obviously each
added round reduces the speed (in both the encryption and hash modes) by
a factor of 1

10 , 1
12 , 1

14 for AES-128, AES-192, and AES-256 respectively.
2. Create a key-schedule provably secure against differential attacks. One can

design a key schedule full of S-box transformations and then prove the any
related-key differential characteristic on the full number of rounds of the

1 It is important only for encryption of short messages.

Tweaking AES 201

cipher, alone in the key schedule has a low probability because it has a
high number of active S-boxes in the characteristic of the key schedule. This
way, the related-key differential attacks on full rounds become impossible. A
similar approach was used in [14] although the resistance of the key schedule
was not formally proven. Again, with this approach, the designer meets our
security objective, but might suffer a strong efficiency drawback in the hash
mode due to the high number of S-boxes in the key schedule which may
reduce the speed significantly.

3. Slightly change the current key schedule of AES, but keep unchanged the
number of rounds. One can alter the key schedule by introducing additional
(but small) number of S-boxes and/or other simple operations. These can
be any operations that are sufficiently fast in software and hardware, e.g.
ANDs, ORs, rotations, XORs, etc. This way the efficiency will not change
significantly. Yet, in this approach, the proof of security against differential
attacks is not trivial.

Further, we will use the third approach, i.e. we will introduce a small change in
the current AES key schedule. This way we can easily meet our second objective
– efficiency. To fulfill the security objective, we will analyze the resistance of the
new cipher against related-key differential attacks using the tool for search of
differential characteristics proposed in [5].

3.2 Specification of xAES

Now we can give a complete specification of our proposal xAES. Similarly to
AES, xAES supports three key sizes: 128,192,256, denoted as xAES-128, xAES-
192, and xAES-256 respectively. Although in [5] it was proven that no differential
characteristic exist on the full round AES-128, we introduce xAES-128 to have a
complete family of ciphers supporting the standard key sizes of 128,192, and 256
bits. The number of internal rounds in xAES for different key sizes is the same
as the number of rounds in AES, i.e. 10 rounds for xAES-128, 12 rounds for
xAES-192, and 14 rounds for xAES-256. Each internal round is defined same as
in AES – through the four transformations SubBytes, ShiftRows, MixColumns
and AddRoundKey. The only difference between AES and xAES is in the key
schedule. Yet, the difference is small. In short, for obtaining each next column of
the new subkey, xAES always uses rotation by one byte up of the previous subkey
column, while AES uses a rotation only when obtaining the subkey column with
an index multiple of Nk (Nk = 4, 6, 8 for AES-128,-192,-256). Let us give a
formal definition of the new key schedules. We assume that the master key K
is given as an array K[4][Nk] and the key schedule produces a subkey array
W [4][4(Nr + 1)]. The s-th subkey is given by the columns 4 · s to 4 · (s + 1) − 1
of W . The round constant RC[i][j] is the same as in AES.

The key schedule of xAES-128 is defined as follows. Let K[4][4] be the master
key. Then the subkey array W [4][44] is defined as:

202 I. Nikolić

W [i][j] =

⎧⎪⎨
⎪⎩

K[i][j], if j < 4

S(W [i − 1 mod 4][j − 1]) ⊕ W [i][j − 4] ⊕ RC[i][j/4], if j mod 4 == 0

W [i − 1 mod 4][j − 1] ⊕ W [i][j − 4], otherwise

The key schedule of xAES-192 is defined as follows. Let K[4][6] be the master
key. Then the subkey array W [4][52] is defined as:

W [i][j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K[i][j], if j < 6

S(W [i − 1 mod 4][j − 1]) ⊕ W [i][j − 6] ⊕ RC[i][j/4], if j mod 6 == 0

S(W [i − 1 mod 4][j − 1]) ⊕ W [i][j − 6], if j mod 6 == 3

W [i − 1 mod 4][j − 1] ⊕ W [i][j − 6], otherwise

The key schedule of xAES-256 is defined as follows. Let K[4][8] be the master
key. Then the subkey array W [4][60] is defined as:

W [i][j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K[i][j], if j < 8

S(W [i − 1 mod 4][j − 1]) ⊕ W [i][j − 8] ⊕ RC[i][j/4], if j mod 8 == 0

S(W [i − 1 mod 4][j − 1]) ⊕ W [i][j − 8], if j mod 8 == 4

W [i − 1 mod 4][j − 1] ⊕ W [i][j − 8], otherwise

To clearly understand the idea of the additional operations, in Fig. 1 we give
a pictorial representation of how the s + 1-th subkey is obtained from the s-th
subkey, for all three key schedules of xAES as well as for the key schedule of
AES-256 so the reader can compare the changes.

Besides the additional rotations, the difference between AES and xAES is in
the 192-bit key version. We introduce additional layer of S-boxes to meet our
security level.

3.3 Security Analysis of xAES

For a security analysis of xAES first we will focus on proving the resistance of
xAES against related-key differential attacks. Then we will provide an evaluation
of the security against other attacks.

Related-key Differential Attacks in xAES. Let us give a formal definition
of an r-round related-key differential characteristic for a cipher. Let EK(P) be
an R-round block cipher, where P is the plaintext and K is the master key. The
key schedule function KS(K) of the cipher EK(P) given key K, produces a set
of (round) subkeys K0, . . . , KR, i.e. KS(K) = (K0, . . . , KR). Let Si be the value
of state of EK(P) at the beginning of round i and S0 = P and let E1

Ki
(Si) be

one round of the cipher. Let p
ΔK ,ΔK

i

K be probability that a given difference ΔK

in the master key K produces a set of differences ΔK
i , i = 0, . . . , R in the subkeys

Ki, i.e.
p

ΔK ,ΔK
i

K = P(KS(K) ⊕ KS(K ⊕ ΔK) = (ΔK
0 , . . . , ΔK

R)) (1)

Tweaking AES 203

S, Rcon, <<<

<<<

<<<

<<<

S, Rcon, <<<

<<<

<<<

<<<,S

<<<

<<<

S, Rcon, <<<

<<<

<<<

<<<

<<<

<<<,S

<<<

<<<

ks
0 ks

1 ks
2 ks

3

ks+1
0 ks+1

1 ks+1
2 ks+1

3

ks
0 ks

1 ks
2 ks

3 ks
4 ks

5

ks+1
0 ks+1

1 ks+1
2 ks+1

3 ks+1
4 ks+1

5

ks
0 ks

1 ks
2 ks

3 ks
4 ks

5 ks
6 ks

7

ks+1
7ks+1

6ks+1
5ks+1

4ks+1
3ks+1

2ks+1
1ks+1

0

S, Rcon, >>>

S

ks
0 ks

1 ks
2 ks

3 ks
4 ks

5 ks
6 ks

7

ks+1
7ks+1

6ks+1
5ks+1

4ks+1
3ks+1

2ks+1
1ks+1

0

Fig. 1. One subkey round for xAES-128 (top left), xAES-192 (top right), xAES-256

(bottom-left), and AES-256 (bottom-right). Each kj
i is a subkey column – 4 bytes.

≪ (≫) stand for a word rotation on 8 bits to the left(right), S for S-box, and Rcon

for xor of the round constant.

Let p
ΔK

i ,ΔS
i ,ΔS

i+1
i be the probability that a difference ΔS

i in the state Si and ΔK
i

in the subkey Ki produces difference ΔS
i+1 in the state Si+1, i.e.

p
ΔK

i ,ΔS
i ,ΔS

i+1
i = P(E1

Ki⊕ΔK
i

(Si ⊕ ΔS
i) ⊕ E1

Ki
(Si) = ΔS

i+1), i = 0, . . . , R − 1 (2)

For a cipher EK(P) an r-round related-key differential characteristic is defined

as a set (ΔS
i , ΔK

i , p
ΔK

i ,ΔS
i ,ΔS

i+1
i , p

ΔK ,ΔK
i

K), i = 0, . . . , r where (1),(2) are satisfied.
The probability of this characteristic is given as:

p = p
ΔK ,ΔK

i

K ·
∏

0≤i<r

p
ΔK

i ,ΔS
i ,ΔS

i+1
i (3)

To prove the resistance of xAES against related-key differential attacks, we will
use the technique provided in [5]. In the paper, the authors specify a tool for

204 I. Nikolić

Algorithm 1. Search for RK differential characteristic
FirstRound()

{
for all ΔP do

for all ΔS1 do
ΔK0 = ΔP ⊕ ΔS1

Call NextRound(ΔS1, ΔK0, W (ΔS1) + W (ΔK0), 2)

end for
end for
}

NextRound(ΔSold,ΔKold, w, r)
{
S̃ ← StateRound(ΔSold)

for all Snew|W (Snew) + w + Wn−r ≤ W̃n do
ΔKnew ← ΔS̃ ⊕ ΔSnew

if ΔKnew == SubkeyRound(ΔKold) then
if r == n then

W̃n ← w + W (ΔSnew) + W (ΔKnew)

else
Call NextRound(ΔSnew, ΔKnew , w + W (ΔSnew) + W (ΔKnew), r + 1)

end if
end if

end for
}

search of the best related-key differential characteristics in byte-oriented block
ciphers. Depending on the key schedule of the analyzed cipher, the authors give
three versions of the tool. Since, the key schedule of xAES is almost the same as
the one in AES, we will use the same version as did the authors when analyzing
AES. That is the version 2 of the tool. On Alg. 1 we give a short description of
the tool in pseudo code. Given the weights Wi (which are actually the number
of active S-boxes) of the best differential characteristics (the best is considered
the characteristic that holds with highest probability) for the first n− 1 rounds,
and some weight W̃n of the n-round characteristic, the tool produces the best
characteristic for n rounds. It starts with the procedure FirstRound, which fixes
a certain difference ΔS1 in the state at the begining of round 1, and a differ-
ence ΔK0 in the whitening key. For each pair (ΔS1, ΔK0) NextRound is called.
This procedure, under certain weight conditions, extends the characteristic for
an additional round as follows. First, from ΔSold produces the difference ΔS̃
in the state at the end of the round (just before the subkey addition). Then
it takes all possible differences ΔSnew at the begining of the next round, and
produces the difference ΔKnew in the subkey as an xor of ΔS̃ and ΔSnew (re-
call the subkey addition defined in AES). Finally, it checks if ΔKnew can be
obtained from ΔKold, that is it checks if the difference in the following subkey
can be produced from the difference in the previous subkey. The conditions on

Tweaking AES 205

the weights (W (Snew) + w + Wn−r ≤ W̃n) are introduced to stop extending
unnecessarily some characteristics – the number of active Sboxes in the first r
rounds (W (Snew) + w) plus the minimal number of active Sboxes in the rest
n− r rounds (Wn−r) should not exceed the number of active Sboxes of the best
known characteristic (W̃n)2.

Since the only difference between AES and xAES is in the key schedule, to
implement the tool for xAES, we have to find method that checks ΔKnew ==
SubkeyRound(ΔKold), i.e. if the difference in the next subkey can be obtained
from the difference of the previous subkey. Taking into consideration that the
subkeys columns are produced one by one (see Fig. 1), this problem is reduced to
the problem of checking if the differences in three subkey columns ki

j , k
i
j+1, k

i−1
j+1

(where ki
j , k

i
j+1 are the j and j + 1-th columns of the i-th subkey, and ki−1

j+1 is
the j + 1-th column of the i − 1-th subkey) are related as:

(Δki
j) ≪ 8 ⊕ Δki

j+1 = Δki−1
j+1. (4)

The authors of the tool proposed a so-called compact representation of a dif-
ference in the subkey column. This difference is described with an 8-bit vector
c̃ = (ã, b̃) = (a1, . . . , a4, b1, . . . , b4), ai, bi ∈ {0, 1}. The compact c̃ describes (is
a set of) all subkey column differences Δd̃ = (Δd1, Δd1, Δd2, Δd3), Δdi ∈ Z28 ,
such that:

Δd̃T = MC · (x1, x2, x3, x4)T ⊕ (y1, y2, y3, y4)T = MC · x̃T ⊕ ỹT , (5)

where MC is the matrix of the MixColumns transform, xi, yi ∈ Z28 and xi > 0
iff ai > 0, yi > 0 iff bi > 0. Note that for example the vector (0̃, b̃) is a simple
truncated representation of a difference. In our implementation we will use the
same compact representation for the differences in the subkey columns. To check
(4) we have to deal with the rotation of the key Δki

j since in the key schedule
of AES there is no such rotation. Let us see how this rotation influences the
compact representation. If the difference Δki

j in the subkey is Δd̃ (see (5)), then
the rotation of this difference is:

Δd̃T ≪ 8 = (MC · x̃T ⊕ ỹT) ≪ 8 = (MC · x̃T) ≪ 8 ⊕ ỹT ≪ 8 (6)

The matrix MC has the property (MC · X) ≪ 8 = MC · (X ≪ 8). Hence (6)
can be rewritten as:

Δd̃T ≪ 8 = MC · (x̃T ≪ 8) ⊕ ỹT ≪ 8 (7)

Therefore, if the initial difference Δki
j had a compact representation c̃1 =

(a1, a2, a3, a4, b1, b2, b3, b4) then the rotation of this difference Δki
j ≪ 8 has

2 If it exceeds than this r round characteristic cannot be extend to n rounds because

the next n − r rounds will have at least Wn−r active S-boxes, so the total weight

will be more than W̃n.

206 I. Nikolić

a compact representation c̃1 = (a2, a3, a4, a1, b2, b3, b4, b1). Hence, all the dif-
ferences in (4) have a compact representation and this condition can easily be
checked3.

We have implemented the tool in practice and we searched for the best round-
reduced related-key differential characteristics. To prove the resistance of r-round
xAES against related-key differential attacks, these characteristics have to have
certain properties:

1. No two characteristics exist with probability 2−p1 , 2−p2 on r1 and r2 rounds
such that r1 + r2 ≥ r − 2 and 2p1 + 2p2 ≤ k, where k is the key size.
This restriction was introduced to stop the boomerang attacks on the full
r rounds. We assume that two rounds can be obtained for free by various
techniques, but the rest r1 + r2 rounds are part of the boomerang.

2. No characteristics exist on r/2 rounds with probability higher than 2−k/2.
Obviously, this was introduced to stop the related-key differential attacks on
the full r-round cipher which always can be seen as a concatenation of two
r/2-round ciphers.

Each characteristic found by the tool is presented in a compact form. To find
the probability of a characteristic one has to count the number of active bytes,
i.e. the position of the bytes with 1 that go through the S-boxes. For example,
a characteristics with s active bytes has a probability at most 2−6·s because the
maximal differential propagation of an S-box in AES is 2−6. In table Tbl. 1 we
give the probabilities (in terms of active bytes) of the best related-key differential
characteristics for xAES-128, xAES-192, and xAES-2564. Using these results we
can prove the differential resistance of xAES.

In case of xAES-128, to have a valid differential characteristic5, the number
of active bytes in the differential attack should not exceed � 128

6 � = 21 (because
the key size is 128 bits and the maximal differential propagation of the S-box

Table 1. The number of active S-boxes in the best round-reduced related-key differ-

ential characteristics in xAES-128, xAES-192, and xAES-256

rounds xAES − 128 xAES − 192 xAES − 256

2 1 0 0

3 5 1 1

4 10 4 3

5 > 11 9 7

6 > 11 > 16 13

7 > 11 > 16 18

8 > 11 > 16 > 21

3 Note that now checking (4) is reduced to checking for the case where all three subkey

columns have a compact representation, which was solved for AES.
4 For example, the best differential characteristic for xAES-192 on 5 rounds has 9

active S-boxes – in Tbl. 1 the intersection of row 5 and column xAES-192 is 9.
5 A valid characteristic has a probability higher than 2−128.

Tweaking AES 207

is 2−6). In a boomerang attack (recall that since xAES-128 has 10 rounds, we
try to build a boomerang on 10 − 2 = 8 rounds), at least one of characteristics
(upper or lower) has to be on 4 rounds, for which the attacker has to pay at
least 2 · 10 = 20 active S-boxes. Hence, he has only 21 − 20 = 1 active S-box
left which is insufficient for a boomerang on 8 rounds and therefore xAES-128 is
resistant against boomerang-type attacks. Now let us try to build a differential
characteristic on all 10 rounds. Note that the characteristic on 5 rounds has more
than 11 active S-boxes, hence the characteristic on 10 rounds would have more
than 2 · 11 = 22, and therefore no related-key differential characteristic exist on
all 10 rounds of xAES-128.

In xAES-192, the number of active S-boxes in a valid differential characteristic
is bounded by � 192

6 � = 32. For a boomerang attack, in case one of the character-
istics has 6 or more rounds, the number of active S-boxes becomes greater than
32, hence the attack does not work. When both characteristics have 5 rounds,
then this number is 2 · 9+2 · 9 = 36 which is again higher than 32, and therefore
the boomerang with 10 rounds has lower probability than 2−192. Similarly, any
differential characteristic on 12 rounds (which can be seen as 6 + 6 rounds), has
more than 16 + 16 = 32 active S-boxes, hence its probability is less than 2−192.

In xAES-256, the number of active S-boxes is bounded by � 256
6 � = 42. Re-

garding the boomerang attack, when one of the characteristics is on at least 8
rounds, the attacker only for this characteristic has to pay more then 2 · 21 = 42
active S-boxes. When the characteristics are on 7 and 5 rounds, then the attacker
pays 2 ·18+2 ·7 = 50, while when both are on 6 rounds, he pays 2 ·13+2 ·13 = 52
active S-boxes. In each of these cases, the total probability of the boomerang is
less than 2−256. The best characteristic on 7 rounds has only 18 active S-boxes.
Hence, we cannot trivially prove that it does not exist a characteristic on 14
rounds (because 18 + 18 = 36 which is less than 42). That is why we have to
take a different approach. Any characteristic on 14 rounds, is composed of two
7-round characteristics, one of which has to have no more than 21 S-boxes (oth-
erwise the total sum will be more than 42). First, we build all characteristics on
7 rounds that have no more than 21 active S-box. Then, we try to extend upward
and downward each such characteristic for 7 additional rounds. Our search did
not find any good candidate, i.e. no characteristic on 7 rounds with at most 21
active S-box can be extended to a characteristic on 14 rounds (with no more
that 42 active S-boxes) and therefore no related-key differential characteristic
exists on 14 rounds in xAES-256. This concludes our proof for the related-key
differential resistance of full-round xAES.

The search for the best related-key differential characteristics for different ver-
sion of xAES, i.e. running the tool in practice and obtaining the results of Tbl. 1,
required different amount of computational effort. While finding the probabil-
ities and the actual values for the round-reduced characteristics in xAES-128
and xAES-192 was performed in a few hours, in xAES-256 the search required a
few days on a single core. The search for all good characteristics on 7 rounds of
xAES-256 with no more than 21 active S-boxes produced around 215 candidates
and required two weeks on 8 cores. Extending these 7-round characteristics to

208 I. Nikolić

14 rounds, as mentioned before, did not give any good candidate, and required
a few days on a single core.

Resistance of xAES Against Other Attacks. The round function of xAES
is the same as the one of AES. Therefore all fixed-key attacks on xAES, which are
based on vulnerabilities of the round function and do not exploit any properties
of the key schedule, have the same security margin as in AES, that is the number
of attacked rounds cannot be increased in xAES. This includes all of the fixed-key
attacks mentioned in section 2.

3.4 Efficiency of xAES

Let us compare the speed of xAES with the speed of AES in software. We assume
that both use optimal implementation with table lookups and xors. First let
us give a theoretical comparison of the efficiency. Recall that since the round
functions of AES and xAES are identical, in an environment where the master
key is fixed and the encrypted message is longer (encryption mode), their speed
is the same. Now let assume that the master key is frequently changed (hash
mode). One round of AES (and therefore of xAES) has 16 table lookups and 16
xors.

One out of 10 subkey rounds of AES-128 has 4 table lookups and 8 xors. In
xAES one such round has 4 table lookups, 8 xors and 3 rotations. If we assume
that rotations have the same cost as xors, then for encrypting 16 bytes, AES
uses 10 · 16 + 10 · 4 = 200 lookups and 10 · 16 + 10 · 8 = 240 operations. In xAES
these numbers are 10 · 16+ 10 · 4 = 200 lookups and 10 · 16+ 10 · 4+ 10 · 3 = 270
operations.

In AES-192, one subkey round (out of 8) has 4 table lookups and 10 xors
while in xAES-192 one subkey round has 8 table lookups, 10 xors and 5 rotations.
Hence, for 16 bytes, AES-192 spends 12·16+8·4 = 224 lookups and 12·16+8·10 =
272 operations, while xAES-192 spends 12 · 16 + 8 · 8 = 256 lookups and 312
operations.

Finally, AES-256 has 7 subkey rounds and in each it has 8 table lookups and 16
xors. xAES-256 has the same number of subkey rounds and in each uses 8 table
lookups , 16 xors and 7 rotations. For 16 bytes, AES-256 uses 14 ·16+7 ·8 = 280
lookups and 14·16+7·16 = 336 operations, while xAES-256 uses 14·16+7·8 = 280
lookups and 14 · 16 + 7 · 16 + 7 · 7 = 385 operations.

These numbers indicate that one can expect that xAES-128 is around 6%,
xAES-192 is around 12.5%, and xAES-256 is 7% slower than AES-128, AES-192,
and AES-256 respectively. The actual implementation results obtained based
on optimal implementation on C, together with the theoretical estimates, are
given in Tbl. 2. In the table, the ”Hash mode” entries indicate the speed of
xAES compared to the speed of AES where the master key is changed on every
iteration (16 bytes of plaintext), while the ”Encryption mode” entries compare
the speed when the master key is fixed6. The difference between the theoretical
estimate and the actual implementation comes from the fact that the modern
6 For short messages in the encryption mode, refer to the speed of ”Hash mode”.

Tweaking AES 209

Table 2. Comparison of the speed of xAES with the speed of AES. The abbreviations

”tb” and ”op” stand for table lookups and operations, respectively.

xAES/AES

128 192 256

Hash mode

Theoretical
200tl+240op
200tl+270op

≈ 224tl+272op
256tl+312op

≈ 280tl+336op
280tl+385op

≈
≈ 94% ≈ 87% ≈ 93%

Implementation 96% 83% 97%

Encryption mode

Theoretical, Implementation 100% 100% 100%

processors in one clock cycle can perform several xor operations but only one
table lookup.

4 Conclusion

We have presented a tweak in the key schedule of AES that leads to a cipher that
is resistant against the latest related-key differential attacks found in AES and
it has the same security level against the other published attacks on AES. The
resistance of xAES against the related-key attacks comes from the additional
rotations of the columns in the key schedule which stop potential local collisions
found in AES.

The low number of operations introduced by the tweak, keeps the speed of
the new cipher on a level that is close to the speed of AES. More precisely, xAES
is efficient as AES in the encryption mode, and slightly less efficient than AES
in the hash mode.

Acknowledgements. The author would like to thank the anonymous reviewers
of SAC 2010 for their valuable comments and Aleksandar and Antonio Nikolić
for providing additional computational power. Ivica Nikolić is supported by the
Fonds National de la Recherche Luxembourg grant TR-PHD-BFR07-031.

References

1. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-

tacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.

Springer, Heidelberg (2005)

2. Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-

bertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15.

Springer, Heidelberg (2005)

210 I. Nikolić

3. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and

AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.

Springer, Heidelberg (2009)

4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack

on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.

231–249. Springer, Heidelberg (2009)

5. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-

istics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and

others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.

Springer, Heidelberg (2010)

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, Heidelberg (2002)

7. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Ny-

berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)

8. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,

D.: Improved cryptanalysis of rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,

vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

9. Fleischmann, E., Gorski, M., Lucks, S.: Attacking 9 and 10 rounds of AES-256.

In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 60–72.

Springer, Heidelberg (2009)

10. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Can-

didate Conference, pp. 230–241 (2000)

11. Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In:

Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer, Heidelberg

(2009)

12. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192

and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.

Springer, Heidelberg (2007)

13. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on

AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,

vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

14. May, L., Henricksen, M., Millan, W., Carter, G., Dawson, E.: Strengthening the

key schedule of the AES. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS,

vol. 2384, pp. 226–240. Springer, Heidelberg (2002)

15. National Institute of Standards and Technology. Advanced encryption standard

(AES). FIPS 197 (November 2001)

On the Diffusion of Generalized Feistel
Structures Regarding Differential and Linear

Cryptanalysis

Kyoji Shibutani�

Sony Corporation

1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

Kyoji.Shibutani@jp.sony.com

Abstract. This paper studies the security of blockciphers with gener-

alized Feistel structures (GFS) consisting of SP-type F-functions. While

GFS leads to compact implementations, the security is not well under-

stood, in particular for larger values of the partitioning number which

indicates the number of subblocks. For both differential and linear crypt-

analysis, we first prove tighter lower bounds on the minimum number of

active S-boxes for four and six rounds of the GFS utilizing word-based

rotation as a round permutation. These bounds are almost twice as large

as the previous results in literature. Then we present a new approach to

derive the first tight lower bounds for the minimum number of active S-

boxes in several types of GFS with large parameters. The proposed algo-

rithm exploits word-based truncated differential search and three-round

relations of Feistel connections. By applying our results, the number of

rounds required to be secure against differential and linear attacks can

be reduced significantly. Thus the results enable us to design a more ef-

ficient symmetric key primitive. Moreover, we show that the improved

GFS proposed by Suzaki and Minematsu at FSE 2010 have more active

S-boxes than the standard GFS.

Keywords: blockcipher, generalized Feistel structure, diffusion,

lightweight cryptography.

1 Introduction

It is well known that Type-II generalized Feistel structures (GFS) [18] have
several desirable implementation properties, notably compactness. For instance,
the GFS has smaller F-functions compared to the Feistel structure for the same
block size. Also GFS do not need inverse F-functions for decryption, in contrast
to Substitution Permutation Networks (SPNs). Recently, lightweight cryptog-
raphy has become a hot topic. Thus the GFS is an attractive structure for a
lightweight symmetric key primitive such as a blockcipher or a hash function.

� This work was done while the author stayed at ESAT/COSIC, Katholieke Univer-

siteit Leuven, Belgium.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 211–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 K. Shibutani

This might be one of the reasons why recent blockciphers such as CLEFIA [16]
and HIGHT [6] utilize the GFS.

The GFS divides a plaintext into d subblocks, where d > 2, instead of d = 2 as
used in Feistel structures. The size of the F-functions used in the GFS depends
on the partitioning number d and the block size. If the partitioning number d of
the GFS is larger, then smaller F-functions will be used. However, a large value
of d generally requires a large number of rounds due to its slow diffusion. Hence
there is a trade-off between the partitioning number and the required number of
rounds. However, this relation has not been clear so far.

Recently, Suzaki and Minematsu introduced a GFS with the optimal round
permutation with respect to full diffusion property, which is a property that all
outputs are affected by all inputs [17]. Their paper showed that the improved
GFS can be more secure against impossible differential and saturation attacks
than the standard GFS. However, they expect that the minimum number of
active S-boxes remains about the same. Thus their structures still require at least
same number of rounds as the standard GFS to be secure against differential
and linear attacks [3,10].

It is well understood how to practically evaluate the security against differen-
tial and linear attacks by determining the maximum differential and linear char-
acteristic probabilities [4,7]. For instance, counting the number of active S-boxes
is a well used technique to evaluate the immunity against those attacks [16]. This
approach was used to design many blockciphers and hash functions, including
AES [5] and Whirlpool [1]. In SPN structures, it is relatively easy to evaluate
the minimum number of active S-boxes by evaluating the permutation layers
as discussed in [4]. However, in Feistel structures, this is more complicated due
to differential cancellations caused by the XOR operation after the F-function.
Kanda showed that the minimum number of active S-boxes of certain consecu-
tive rounds of Feistel structures with SP-type F-function can be represented as
the branch number of the matrices used in the structure [7]. Shirai and Araki
extended his result to three types of generalized Feistel structures [14], which
are known as Type-I, Type-II and Nyberg’s constructions [13,18]. They showed
that any six consecutive rounds of Type-II GFS with any partitioning number
have at least the same number of active S-boxes as the Feistel structure. They
also introduced an efficient weight-based active S-box search algorithm. How-
ever, their algorithm only works for small parameter sets of the GFS and the
bound shown in the paper is not tight. Therefore, to design a secure symmetric
key primitive, a large number of rounds is still required.

In this paper, we show the first tight bounds on the minimum number of differ-
ential and linear active S-boxes of GFS with large parameter sets. We first prove
tight lower bounds for four and six rounds of the standard GFS manually. The
obtained bound of six rounds of the standard GFS is almost twice as large as the
previous bound. This enables the required number of rounds to be almost halved.
Then we show a novel approach to efficiently derive tight lower bounds on the
minimum number of active S-boxes of several types of GFS with large parame-
ters including recently proposed GFS utilizing optimal round permutations [17].

On the Diffusion of Generalized Feistel Structures 213

Table 1. Summary of our results, where B is the differential or the linear branch

number of the matrices used in GFS

rounds Feistel GFSstd
d GFSstd

4 GFSstd
8 GFS

imp
6 GFS

imp
8

[7,15] [14] (this paper) (this paper) (this paper) (this paper)

4 B - B + 1 B + 1 B + 1 B + 1

5 B + 1 - B + 3 B + 3 B + 3 B + 3

6 B + 2 B + 2 2B + 2 2B + 2 2B + 2 2B + 2

7 - - 2B + 2 2B + 4 2B + 4 2B + 4

8 2B + 1 - 2B + 3 3B + 3 4B + 2 4B + 3

9 2B + 2 - 2B + 4 3B + 6 4B + 4 4B + 6

10 - - 3B + 3 4B + 5 4B + 6 5B + 4

11 - - 3B + 5 4B + 8 4B + 8 5B + 7

12 3B + 1 2B + 4 4B + 4 6B + 6 6B + 2 7B + 4
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

18 4B + 4 3B + 6 6B + 6 8B + 8 8B + 10 10B + 6

The proposed algorithm exploits word-based truncated differential search and
three-round relations of Feistel connections. By using our results, the required
number of rounds to be secure against differential and linear attacks can be re-
duced significantly. Therefore, our results are useful not only for a deeper under-
standing the security of GFS, but also for designing an efficient symmetric prim-
itive. Our results are summarized in Table 1. More detailed results are listed in
Appendix A.

This paper is organized as follows. In Sect. 2, definitions and some properties
are introduced. In Sect. 3, related work on GFS is explained. Section 4 and
5 describe the lower bounds on the number of differential and linear active S-
boxes in GFS, respectively. In Sect. 6, we discuss the result obtained in this
paper. Finally, we conclude in Sect. 7.

2 Preliminaries

2.1 Target Structures

In this paper, we focus on GFS with SP-type F-functions [7] and an even-odd
shuffle [17] as shown in Fig. 1. Let d be an even integer. A dmn-bit plaintext P

is divided into d subblocks as P = (x(1)
0 , x

(1)
1 , ..., x

(1)
d−1), where x

(i)
j ∈ {0, 1}mn.

Then the i-th round output is calculated as follows:

(x(i+1)
0 , x

(i+1)
1 , ..., x

(i+1)
d−1) ← π(x(i)

0 , F
(i)
0 (x(i)

1) ⊕ x
(i)
0 , ..., F

(i)
d/2−1(x

(i)
d−2) ⊕ x

(i)
d−1),

where F
(i)
j : {0, 1}mn → {0, 1}mn is a j-th round function in the i-th round, and

π : ({0, 1}mn)d → ({0, 1}mn)d is a deterministic permutation. We assume that
each round function is the SP-type F-function which consists of an mn-bit round

214 K. Shibutani

F (i)
0

x (i)
0 x (i)

2

F (i)
1

x (i)
1 x (i)

3

F (i+1)
0

x (i+1)
0 x (i+1)

d-2

F (i+1)
1 F (i+1)

d/2-1

x (i+1)
1 x (i+1)

2 x (i+1)
3 x (i+1)

d-1

...

...

x (i)
d-2

F (i)
d/2-1

x (i)
d-1

...
S
S

S

...

.
.
.

.
.
.

.
.
.n

n
n y (i)

d-2

k (i)
d/2-1 z (i)

d-2

M(i)
d/2-1

Fig. 1. GFSd with SP-type F-function and even-odd shuffle, where dotted lines show

possible connections, each set of outputs and inputs is connected by exactly one line.

The sub-diagram on the right is a zoom in on an F-function.

F (i+1)
0

x (i+1)
0 x (i+1)

1 x (i+1)
2 x (i+1)

3 x (i+1)
4 x (i+1)

5 x (i+1)
6 x (i+1)

7

F (i+1)
1 F (i+1)

2 F (i+1)
3

F (i)
0

x (i)
0 x (i)

1 x (i)
2 x (i)

3 x (i)
4 x (i)

5 x (i)
6

F (i)
1 F (i)

2 F (i)
3

x (i)
7

F (i+2)
0

x (i+2)
0 x (i+2)

1 x (i+2)
2 x (i+2)

3 x (i+2)
4 x (i+2)

5 x (i+2)
6 x (i+2)

7

F (i+2)
1 F (i+2)

2 F (i+2)
3

Fig. 2. GFSstd
8

F (i)
0

x (i)
0 x (i)

1 x (i)
2 x (i)

3 x (i)
4 x (i)

5 x (i)
6

F (i)
1 F (i)

2 F (i)
3

x (i)
7

F (i+1)
0

x (i+1)
0 x (i+1)

1 x (i+1)
2 x (i+1)

3 x (i+1)
4 x (i+1)

5 x (i+1)
6 x (i+1)

7

F (i+1)
1 F (i+1)

2 F (i+1)
3

F (i+2)
0

x (i+2)
0 x (i+2)

1 x (i+2)
2 x (i+2)

3 x (i+2)
4 x (i+2)

5 x (i+2)
6 x (i+2)

7

F (i+2)
1 F (i+2)

2 F (i+2)
3

Fig. 3. GFS
imp
8 [17]

key addition, m n-bit bijective S-boxes and an mn-bit linear Boolean function [7].
S(·) denotes an n-bit bijective S-box and M

(i)
j denotes a non-singular m × m

matrix over a chosen field GF(2n). z
(i)
2j and y

(i)
2j denote an output of the S-

boxes and the linear function M
(i)
j in F

(i)
j , respectively. We also restrict π to

be a word-based permutation. For instance, π of GFS with the partitioning
number eight and the word-based rotation shown in Fig. 2 is represented as
π(x0, x1, ..., x7) = (x1, x2, ..., x7, x0). We treat several types of π in this paper.
Hereafter mn denotes the bit length of subblock, GFSd denotes the GFS with the
partitioning number d, GFSstd

d denotes the GFSd with the word-based rotation,
i.e., standard Type-II GFS, and GFSimp

d denotes the GFSd with the optimal
round permutation proposed by Suzaki and Minematsu [17]1.

2.2 Definitions

In this section, we give some definitions used in the following sections. We first
give the definitions of bundle weight and branch number [5].

1 We treat GFSd with the round permutations No.1 given in Appendix A of [17] as

GFS
imp
d .

On the Diffusion of Generalized Feistel Structures 215

Definition 1 (Bundle Weight). Let x ∈ {0, 1}pn be represented as x=(x0, x1,
..., xp−1), where xi ∈ {0, 1}n, then the bundle weight wn(x) is defined as

wn(x) = �{i|0 ≤ i ≤ p − 1, xi �= 0}. (1)

Definition 2 (Branch Number). Let P : {0, 1}pn → {0, 1}qn. The branch
number of P is defined as

Bn(P) = min
a�=0

{wn(a) + wn(P (a))}. (2)

We give the definitions of BD and BL in r-round GFS to show the minimum
number of differential and linear active S-boxes, respectively.

Definition 3 (Differential Branch Number)

BD = min
1≤i≤r,0≤j≤d/2−1

Bn(M (i)
j). (3)

Definition 4 (Linear Branch Number)

BL = min
1≤i≤r,0≤j≤d/2−1

Bn(tM
(i)
j), (4)

where tM is the transpose matrix of M .

Since each active S-box reduces the differential and linear characteristic prob-
abilities, the maximum differential and linear characteristic probabilities are
bounded by the minimum number of differential and linear active S-boxes, re-
spectively. On the other hand, the minimum number of active S-boxes is relevant
to the branch number of the linear function. Thus the motivation of this paper
is to clarify the minimum number of differential and linear active S-boxes for
GFS by using BD and BL, respectively.

It is well known that the upper bounds on the security against linear attacks
are derived from the upper bounds on the security against differential attacks
because of its duality [2,11,7]. Thus, in this paper, we mainly discuss the security
against differential attacks. We discuss the security against linear attacks in
Sect. 5.

2.3 Properties of Generalized Feistel Structures

In this section, we present several properties of GFS. Hereafter we refer to an
F-function which has non-zero input difference or non-zero output mask value
as a differential or a linear active F-function, respectively. From the bijectivity
of F-functions, the following property holds:

Property 1. Any two consecutive rounds of GFS have at least one differential
active F-function if a non-zero input difference is given.

216 K. Shibutani

M (i)
j

x (i)
2j

S

M (i-1)
j+1

x (i-1)
2(j+1) S

S

S

S

S

S

x (i-2)
2j

x (i+2)
2j

M (i-2)
j

M (i+2)
j

z (i)
2j

x (i+1)
2(j+1) M (i+1)

j+1

M (i-1)
j-1

M (i+1)
j-1

x (i-1)
2(j-1)

x (i+1)
2(j-1)

F (i)
j

z (i-1)
2(j+1)

z (i+1)
2(j+1)

z (i-1)
2(j-1)

z (i+1)
2(j-1)

z (i+2)
2j

z (i-2)
2j

Fig. 4. Five Rounds of GFSstd
d (Untwisted Form)

We consider the five-round structure of GFSstd
d shown in Fig. 4, and focus on the

value x
(i)
2j in the center of the structure, where x

(i)
2j and z

(i)
2j denote an input of

F
(i)
j and an output of S-boxes in F

(i)
j , respectively. Let D

(i)
j denote the number

of differential active S-boxes in F
(i)
j . Since all S-boxes are bijective, we have the

following relations.

Property 2
D

(i)
j = wn(Δx

(i)
2j) = wn(Δz

(i)
2j). (5)

Then the following property is derived [14].

Property 3 (Three-round relation of Feistel connection). If D
(i)
j �= 0, then D

(i)
j +

D
(i−1)
j+1 + D

(i+1)
j+1 ≥ BD.

Proof
M

(i)
j (Δz

(i)
2j) = Δx

(i−1)
2(j+1) ⊕ Δx

(i+1)
2(j+1). (6)

From the definition of BD, wn(Δz
(i)
2j) + wn(M (i)

j (Δz
(i)
2j)) ≥ BD if Δz

(i)
2j �= 0.

Also, wn(a) + wn(b) ≥ wn(a ⊕ b) holds, then we have

wn(Δz
(i)
2j) �= 0 ⇒ wn(Δz

(i)
2j) + wn(Δx

(i−1)
2(j+1)) + wn(Δx

(i+1)
2(j+1)) ≥ BD. (7)

�	
In this paper, we refer to this relation of three values Δx

(i)
2j , Δx

(i−1)
2(j+1) and

Δx
(i+1)
2(j+1) as the three-round relation of the Feistel connection. The following

properties are also obtained.

Property 4. If D
(i)
j �= 0, then D

(i−1)
j−1 + D

(i−2)
j ≥ 1, D

(i+1)
j−1 + D

(i+2)
j ≥ 1, and

D
(i−1)
j+1 + D

(i+1)
j+1 ≥ 1.

Proof

M
(i−1)
j−1 (Δz

(i−1)
2(j−1)) ⊕ Δx

(i−2)
2j = Δx

(i)
2j �= 0, (8)

M
(i−1)
j−1 (Δz

(i−1)
2(j−1)) �= Δx

(i−2)
2j . (9)

On the Diffusion of Generalized Feistel Structures 217

Then M
(i−1)
j−1 (Δz

(i−1)
2(j−1)) and Δx

(i−2)
2j cannot be 0 simultaneously. Thus, D

(i−1)
j−1 +

D
(i−2)
j ≥ 1. The other properties can be proved in a similar way. �	

We give some definitions of round permutations to use three-round relation of
the Feistel connections in GFS. Let πE , πO be index mappings. πE is the index
mapping of π from even numbered blocks to odd-number blocks and all indexes
are divided by two. For example, πE of GFSstd

8 shown in Fig. 2 is represented
as πE [0] = 3, πE [1] = 0, πE [2] = 1 and πE [3] = 2. Similarly, πO is the index
mapping of π from odd numbered blocks to even-number blocks and all indexes
are divided by two. For example, πO of GFSstd

8 is the identity mapping, and πO

of GFSimp
8 is represented as πO[0] = 0, πO[1] = 2, πO[2] = 1 and πO[3] = 3.

By using these mappings πE and πO, the three-round relations of the Feistel
connections in GFS can easily be represented. For instance, the three F-functions
input differences Δx

(i)
2π−1

E [j/2]
, Δx

(i+1)
j and Δx

(i+2)
2πO [j/2] in Figs. 2 and 3 satisfy the

three-round relation shown in Property 3 independently, where j = {0, 2, 4, 6}
and π−1

E is an inverse mapping of πE .
Let Δx(i) = (Δx

(i)
0 , Δx

(i)
2 , ..., Δx

(i)
d−2). Then the following property is derived.

Property 5. Any three consecutive rounds of (i − 1) to (i + 1)-round of GFSd

have at least wmn(Δx(i)) · BD differential active S-boxes, specifically,

d/2−1∑
s=0

i+1∑
t=i−1

D(t)
s ≥ wmn(Δx(i)) · BD. (10)

Proof. From the definition of the even-odd shuffle, each i-th round output after
the XOR operation is mapped to the corresponding F-function of (i−1)-th round
and (i+1)-th round respectively. In other words, there exist d independent three-
round relations shown in Property 3. Thus the number of active S-boxes in three
consecutive rounds is bounded by the bundle weight of the differentials in the
center. �	

The mappings πE , πO, and the Property 5 are useful to evaluate the minimum
number of active S-boxes of GFS.

3 Related Work

In this section, we discuss previous results related to GFS. The formal definition
of GFS was given by Zheng et al. [18]. Several cryptographic properties of these
structures were analyzed in [8,12]. Provable security of GFSstd

4 against differential
and linear attacks was discussed by Lee et al. [9]. In their results, more than five
rounds of GFSstd

4 have the maximum differential probability p4 + 2p5 and the
maximum linear probability q4 + 2q5, where p and q are the maximum average

218 K. Shibutani

differential probability and the maximum average linear probability of the F-
functions used in the structure, respectively.

The practical security of GFSstd
d against differential and linear attacks was

discussed by Shirai and Araki [14]. They showed the lower bounds on the num-
ber of active S-boxes in three types of generalized Feistel structures, Type-I,
Type-II and Nyberg’s constructions [13,18]. In their results, any six consecutive
rounds of GFSstd

d have at least BD + 2 active S-boxes2. Moreover, they intro-
duced efficient weight-based active S-box search algorithms that can derive the
minimum number of active S-boxes of GFS. Though their algorithm is efficient,
still a large computation is required to evaluate large parameter sets of GFS,
namely, it requires to search at most (m + 1)d(r+1)/2 values to evaluate r-round
GFSstd

d . Thus the algorithm does not work for GFSstd
d with large parameters.

We use this algorithm to verify the tightness of our results in Sect. 4.4.
Suzaki and Minematsu discussed round permutations of GFS [17]. They mainly

focused on full diffusion property, which is a property that all outputs are affected
by all inputs. They showed that the diffusion property of the GFSd (d > 4) could
be better than GFSstd

d by replacing its round permutation from the word-based
rotation used in GFSstd

d . In their paper, although the improved GFS has better
properties with respect to full diffusion, they have about the same number of
active S-boxes3 as GFSstd

d .

4 Differential Active S-Boxes in GFS

In this section, we present the minimum number of differential active S-boxes in
several types of GFS. First, we show better lower bounds for four and six rounds
of GFSstd

d . Then, we introduce an exhaustive search algorithm that determines
the minimum number of differential active S-boxes for all types of GFS efficiently.
By using this algorithm, we present several lower bounds on GFS. Finally, we
compare the results obtained from the new algorithm with the results obtained
from weight-based exhaustive active S-box search to verify the tightness of the
new bounds.

4.1 The Lower Bounds for Four and Six Rounds of GFSstd
d

Theorem 1. Let d ≥ 4. Any four consecutive rounds of GFSstd
d have at least

BD + 1 differential active S-boxes.

Proof. We consider four consecutive rounds that start from the i-th round as
described in Fig. 5. From Property 1, there is at least one active F-function in any
two consecutive rounds, i.e., there is at least one active F-function in the (i+1)-
th round or the (i+2)-th round. As shown on the left side of Fig. 5, suppose that
2 Their results were given by BD, and BD

2 which is a branch number of two consecutive

matrices. If matrices used in each F-function are different, BD
2 can be more than two.

However, in our model, BD
2 = 2.

3 Note that, they evaluated the number of active S-boxes by counting the number of

active F-functions as active S-boxes.

On the Diffusion of Generalized Feistel Structures 219

F (i)
j

F (i+2)
j

F (i+3)
j+1

F (i+1)
j+1

F (i+3)
j+2

F (i)
j+2

F (i+3)
j-1

F (i+1)
j-1

F (i)
j

F (i+2)
j

F (i+3)
j+1

F (i+1)
j+1

F (i+3)
j+2

F (i)
j+2

F (i+3)
j-1

F (i+1)
j-1

Fig. 5. Four Rounds of GFSstd
d (Untwisted Form)

the j-th F-function in the (i + 1)-th round is active, namely, D
(i+1)
j �= 0. In that

case, D
(i+1)
j+1 + D

(i)
j+2 + D

(i+3)
j+2 ≥ BD from Property 3, and D

(i+2)
j + D

(i+3)
j+1 ≥ 1

from Property 4. Thus these four rounds have at least BD + 1 differential active
S-boxes. Similarly, in the case of an active F-function in the (i+2)-th round, we
have the same bound as shown in the right side of Fig. 5. Therefore, we obtain
Σ

d/2−1
s=0 Σi+3

t=i D
(t)
s ≥ BD + 1. �	

Theorem 2. Let d ≥ 4. Any six consecutive rounds of GFSstd
d have at least

2BD + 2 differential active S-boxes.

See Appendix B for a proof. The bound given by this theorem is almost twice as
large as the previous result. Thus, the required number of rounds of GFSstd

d to
be secure against differential attacks can be almost halved by using this bound.

While it might be possible to prove the minimum number of active S-boxes of
a large number of rounds of GFSstd

d in a similar way, such proofs would be quite
complex when the number of rounds is large. In other words, the number of cases
to be considered would be increased drastically. Also, using the approaches so
far, the relation between the partitioning number d and the minimum number
of active S-boxes is still unclear. If all possible cases are checked efficiently, the
minimum number of active S-boxes of the structures can be derived easily. There-
fore, we propose another approach to efficiently derive the minimum number of
active S-boxes of GFS with large parameter sets in the following section.

4.2 The Search for the Minimum Number of Differential Active
S-Boxes

In this section, we introduce the search algorithm of the minimum number of
differential active S-boxes for GFS. This algorithm consists of the following two
steps: (a) searching active F-function paths of GFS exhaustively by word-based
truncated differential search, (b) determining the minimum number of differen-
tial active S-boxes from a given path.

Let X(i) ∈ {0, 1}d/2 be the input differences of the mn-bit truncated dif-
ferentials of the i-th F-function, i.e., X(i) = (wmn(Δx

(i)
0), wmn(Δx

(i)
2), ...,

wmn(Δx
(i)
d−2)), where X(0) is the first input differences to XOR operation side,

namely, X(0) = (wmn(Δx
(1)
1), wmn(Δx

(1)
3), ..., wmn(Δx

(1)
d−1)). Let BD(R) be the

minimum number of differential active S-boxes in R-round GFS, then BD(R) is
calculated as follows:

220 K. Shibutani

Step 1. Initialize BD(R) to a sufficiently large value, such as the total number
of S-boxes.

Step 2. Choose a possible active F-function path by searching mn-bit truncated
differential paths of GFS. First, X(0) and X(1) are chosen exhaustively. Then,
i-th round truncated differential path X(i) (i ≥ 3) can be determined by
X(i−2) and X(i−1) as follows:

X
(i)
j =

{
X

(i−1)
π−1

O [j]
⊕ X

(i−2)
π−1

E [π−1
O [j]]

, if X
(i−1)
π−1

O [j]
∧ X

(i−2)
π−1

E [π−1
O [j]]

= 0,

0, 1 , otherwise,

where X
(i)
j is a j-th bit of X(i) and X

(i)
0 is the most significant bit of X(i).

In the case of i = 2, X
(i−2)
π−1

E [π−1
O [j]]

is replaced by X
(i−2)
π−1

O [j]
. Thus R-round path

of X(i)(0 ≤ i ≤ R) is calculated by using the previous algorithm repeatedly.
Step 3. Determine the minimum number of active S-boxes from a given trun-

cated differential path. This step is described in Fig. 6. If the bound obtained
from the algorithm Fig. 6 is less than BD(R), then BD(R) is updated. The
detailed explanation of this step is presented in the following section.

Step 4. If all possible truncated differential paths have been checked, terminate
the program. Otherwise, go to Step 2.

We give an improvement of Step 2. From Property 5, it is easy to derive a
rough bound on the number of BD in the structure by checking some Hamming
weights of X(i). Then if the obtained rough bound is more than the current bound
BD(R), we can simply skip this path. For example, in the case of R = 6, we
check max(Hw(X(2))+ Hw(X(5)), Hw(X(3)), Hw(X(4))), where Hw(X) denotes
a Hamming weight of X . This improvement results in a speed-up in practice.

4.3 Detailed Explanation of the Algorithm

We explain the algorithm presented in the previous section in detail. The most
important part of this algorithm is Step 3. In this step, we focus on three-round
relations in GFS. As discussed in Sect. 2.3, we find three-round relations in any
three consecutive rounds by using π−1

E and πO. Then we count the number of BD

in GFS greedily from top to bottom. Finally, we count the remaining constants
in the structure. We exploit fact that there exist d/2 independent three-round
relations in any three consecutive rounds of GFSd and these relations can be
obtained by using the mappings π−1

E and πO. Once d/2 independent three-round
relations are obtained, the number of BD in three consecutive rounds is easily
derived from Property 3 and 5. However, in this algorithm, there should be some
overlapping values. To avoid this problem, we use a flag for each bit of truncated
differentials. Once a value is used for counting the number of BD in the certain
three consecutive rounds, then the flag is set. Then this value cannot be used
twice, and the algorithm works correctly.

Note that the comparison phase in Step 3 depends on the value of BD. Suppose
that the current BD(R) = 2BD, and a new value of BD + 3 is obtained. In that

On the Diffusion of Generalized Feistel Structures 221

Algorithm CountBD(r, X(1), ..., X(r)) :

Clear flags of X
(i)
j , (1 ≤ i ≤ r, 0 ≤ j ≤ d/2 − 1)

S = 0

for i ← 2 to (r − 1) do

for j ← 0 to (d/2 − 1) do

if (X
(i)
j = 1) ∧ (flags of X

(i−1)

π−1
E

[j]
and X

(i)
j are not set) then

S ← S + 1

Set flags of X
(i)
j , X

(i−1)

π−1
E

[j]
(if X

(i−1)

π−1
E

[j]
= 1), and X

(i+1)
πO [j] (if X

(i+1)
πO [j] = 1)

T = 0

for i ← 1 to r do

for j ← 0 to (d/2 − 1) do

if X
(i)
j = 1 ∧ (flag of X

(i)
j is not set) then

T ← T + 1

return S · BD + T

Fig. 6. Algorithm CountBD(r, X(0), ..., X(r))

case, the BD(R) is updated when BD > 2, because 2BD ≤ BD + 3. However,
when BD = 2, it should not be updated. This paper contains results for BD > 2.

We now show that this algorithm does not always give the best bound in
the structure from a given path. The path in the left of Fig. 7 is the case,
where an F-function indicated by bold line is determined to be active and an
F-function indicated by dotted line is determined to be non-active. In this case,
the algorithm (Fig. 6) outputs BD + 4 instead of 2BD + 2 as the path in the
center of Fig. 7, where there is at least BD active S-boxes in the area encircled
by chain line. However, because the purpose of this algorithm is to find a lower
bound on the number of differential active S-boxes, the best bound in this step
is not necessary. We can avoid this problem by adding search patterns to the
algorithm. For example, if we compute the bound both way, i.e., from top to
bottom and from bottom to top, the algorithm outputs the best bound from
the path at the right of Fig. 7. However, from our calculations, it seems that
this change does not provide an improvement in practice. In other words, the
obtained lower bound is the same even if we add some search patterns to the
algorithm, e.g., the path in Fig. 7 is not the minimum path for GFSstd

4 .

4.4 Comparison of Results

We verified the tightness of the obtained lower bounds by comparing with the
results obtained by the weight-based exhaustive active S-box search [14] for
as many parameters as possible. Consequently, the actual number of active S-
boxes from the obtained bounds completely corresponded to the results from the
exhaustive search with the following parameters: GFSstd

4 with m = 2, 3, ..., 8,4

4 The case of GFSstd
4 with m = 4 is in Table 4 of [14].

222 K. Shibutani

F (i)
0

F (i+1)
0

F (i+2)
0

F (i)
1

F (i+1)
1

F (i+2)
1

F (i+3)
0 F (i+3)

1

F (i)
0

F (i+1)
0

F (i+2)
0

F (i)
1

F (i+1)
1

F (i+2)
1

F (i+3)
0 F (i+3)

1

F (i)
0

F (i+1)
0

F (i+2)
0

F (i)
1

F (i+1)
1

F (i+2)
1

F (i+3)
0 F (i+3)

1

Fig. 7. An Example Path of GFSstd
4

GFSstd
6 with m = 2, 3, 4, GFSstd

8 with m = 2, GFSimp
6 with m = 2, 3, 4, and

GFSimp
8 with m = 2 and r = 1 up to 20, where BD = m + 1. While we have not

confirmed the tightness of the other bounds due to computational restrictions of
the weight-based exhaustive search, it seems that the obtained bounds are tight
as well.

5 Linear Active S-Boxes in GFS

It was shown by Kanda [7] that the lower bounds on the minimum number of lin-
ear active S-boxes of Feistel structure with SP-type F-functions can be obtained
by simply replacing differential branch number BD by linear branch number BL.
In his work, Feistel structures with SP-type F-functions can be represented as
Feistel structures with PS-type F-functions by using an equivalent transforma-
tion. Then the minimum number of active S-boxes is derived by evaluating the
transformed cipher using the concatenation rules [2,11].

GFS with SP-type F-functions can be represented as GFS with PS-type F-
functions in a similar way. Note that, in contrast to Feistel structures, depending
on the original round permutation used in GFS, the transformed round permu-
tation can be different. However, we can use the same algorithm to determine
the lower bounds on the minimum number of linear active S-boxes by replac-
ing the original round permutation by the transformed round permutation. This
is not the case for the structures in the tables shown in this paper: the trans-
formed round permutation is the same as the original round permutation. Thus,
the minimum number of linear active S-boxes is obtained by simply replacing
differential branch numbers BD by linear branch numbers BL.

6 Discussion

In this section, we discuss the obtained results. We first give an example of
the parameter m = 4 and n = 8 of GFSstd

8 , i.e., 256-bit blockcipher, to show

On the Diffusion of Generalized Feistel Structures 223

applicability of our results. We assume that this example cipher consists of the
MDS matrices and the inversion S-boxes over GF(28) , specifically, BD = BL = 5
and the maximum differential and linear probability of the S-box is 2−6. In this
case, at least 22 active S-boxes are required to be secure against differential and
linear attacks, as (2−6)22 = 2−132 < 2−128 when the key size is 128-bit. Though
the previous result shows that 24 rounds are required to have more than 22
active S-boxes, our results show that only 10 rounds are required to be secure
against differential and linear attacks. Thus, our results are useful to design an
efficient symmetric primitive, since the required number of rounds with respect
to differential and linear cryptanalysis is reduced. While many types of attacks
must be considered when constructing a secure symmetric primitive, actually,
differential, linear, impossible differential and saturation attacks tend to be the
bottleneck in GFS. Therefore, it can be said that at least two of them can be
improved by using the new bounds. If the parameters (the dimension of the
matrices m and the partitioning number d) are larger, the effects of our results
become even more noticeable.

Moreover, according to our results, most of the bounds on a sufficiently large
number of rounds can be derived from bounds on a smaller number of rounds.
For example, most of rounds of the minimum number of active S-boxes for more
than seven rounds of GFSstd

4 can be derived from the bounds on one to the
bounds on six consecutive rounds, e.g. the minimum number of active S-boxes
in ten rounds of GFSstd

4 can be represented as active S-boxes in four rounds and
six rounds of GFSstd

4 . Thus it seems that determining tight bounds for a small of
rounds is important. Therefore, our algorithm works well even if the number of
rounds is large, whereas it needs a lot of computation to derive bounds of GFS
with large number of rounds, e.g., more than 30 rounds.

Furthermore, the results show that the number of active S-boxes increases
about 1.5 times when the partitioning number is doubled, assuming the number
of S-boxes used in each F-function remains the same and the number of rounds
is sufficiently large.

7 Conclusion

In this paper, we have shown the first tight bounds on the minimum number
of active S-boxes of GFS with large parameter sets. We first proved tight lower
bounds for four and six rounds of the standard GFS manually. Then, we intro-
duced a novel approach to evaluate the minimum number of active S-boxes of
GFS by using the branch number of the matrices used in the structure. The
proposed algorithm uses three-round relations of the Feistel connection and well
known truncated differential search. By using our algorithm, all types of the GFS
can be evaluated precisely, including recently proposed GFS that utilize optimal
round permutations instead of the word-based rotation used in the standard
GFS. Moreover, we confirmed the tightness of the obtained bounds by compar-
ing with the results obtained by the weight-based exhaustive active S-box search
algorithm.

224 K. Shibutani

By applying our results, the required number of rounds to be secure against
differential and linear attacks can be reduced significantly. Moreover, all bounds
obtained in this paper depend only on the branch number of the matrices used in
GFS. The results can therefore be widely used to design an efficient symmetric
primitive. In other words, our results are useful not only for more thoroughly un-
derstanding the security of the GFS, but also for designing an efficient symmetric
key primitive, because the GFS can be implemented compactly and evaluating
its security against differential attacks is essential to both blockcipher and hash
function design.

Acknowledgments. The author would like to thank Bart Preneel, Nicky Mouha
and the anonymous reviewers for their helpful comments.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function. Primitive submit-

ted to NESSIE (September 2000),

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (revised May 2003)

2. Biham, E.: On Matsui’s linear cryptanalysis. In: De Santis, A. (ed.)

EUROCRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.

Springer, Heidelberg (1993)

4. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-

tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg

(2001)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard (Information Security and Cryptography). Springer, Heidelberg (2002)

6. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,

Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for low-

resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,

pp. 46–59. Springer, Heidelberg (2006)

7. Kanda, M.: Practical security evaluation against differential and linear cryptanal-

yses for Feistel ciphers with SPN round function. In: Stinson, D.R., Tavares, S.

(eds.) SAC 2000. LNCS, vol. 2012, pp. 324–338. Springer, Heidelberg (2001)

8. Kim, J., Hong, S., Sung, J., Lee, S., Lim, J., Sung, S.: Impossible differential

cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) IN-

DOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

9. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Provable security for an RC6-like

structure and a MISTY-FO-like structure against differential cryptanalysis. In:

Gavrilova, M., et al. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 446–455. Springer,

Heidelberg (2006)

10. Matsui, M.: Linear cryptanalysis of Data Encryption Standard. In: Helleseth,

T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg

(1994)

11. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.

In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,

Heidelberg (1995)

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

On the Diffusion of Generalized Feistel Structures 225

12. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block

ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.

Springer, Heidelberg (2000)

13. Nyberg, K.: Generalized Feistel network. In: Kim, K., Matsumoto, T. (eds.)

ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

14. Shirai, T., Araki, K.: On generalized Feistel structures using the diffusion switching

mechanism. IEICE Trans. Fundamentals E91-A(8), 2120–2129 (2008)

15. Shirai, T., Shibutani, K.: On Feistel structures using a diffusion switching mecha-

nism. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer,

Heidelberg (2006)

16. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-

cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195.

Springer, Heidelberg (2007)

17. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,

T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

18. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-

ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Lower Bounds on the Number of Active S-Boxes

Several lower bounds obtained in this paper are shown in Table 2 and 3. In
these tables, B denotes either the differential or the linear branch number of the
matrices used in the GFS.

B A Proof of Theorem 2

Proof. We consider six consecutive rounds that start from the i-th round. From
Property 1, there is at least one active F-function in any two consecutive rounds,
i.e., there is at least one active F-function in the (i+2)-th round or the (i+3)-th
round. Suppose that the j-th F-function in the (i + 2)-th round is active, i.e.,
D

(i+2)
j �= 0 as shown in Fig. 8. Then we consider the following cases.

Case 1. If D
(i+3)
j+1 = 0, then D

(i+1)
j+1 �= 0 from Property 4 , also D

(i)
j +D

(i+1)
j−1 ≥ 1

and D
(i+3)
j−1 + D

(i+4)
j ≥ 1. Then D

(i+1)
j+1 + D

(i)
j+2 + D

(i+2)
j+2 ≥ BD from the fact

D
(i+1)
j+1 �= 0 and Property 3. We then consider the following two cases.

Case 1-1. If D
(i+4)
j �= 0, then D

(i+4)
j + D

(i+5)
j+1 ≥ BD from Property 3. Thus we

have Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Case 1-2. If D
(i+3)
j−1 �= 0, then D

(i+3)
j−1 + D

(i+2)
j + D

(i+4)
j ≥ BD from Property 3

and D
(i+4)
j−2 +D

(i+5)
j−1 ≥ 1 from Property 4. Thus we obtain Σ

d/2−1
s=0 Σi+5

t=i D
(t)
s ≥

2BD + 2.
Case 2. D

(i+3)
j+1 �= 0, then D

(i+2)
j+2 + D

(i+4)
j+2 ≥ 1. Then we consider the following

cases.

226 K. Shibutani

Table 2. The Minimum Number of Active S-boxes in GFSstd
d , assuming B > 2

rounds Feistel GFSstd
4 GFSstd

6 GFSstd
8 GFSstd

10 GFSstd
12 GFSstd

14 GFSstd
16

1 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2

4 B B + 1 B + 1 B + 1 B + 1 B + 1 B + 1 B + 1

5 B + 1 B + 3 B + 3 B + 3 B + 3 B + 3 B + 3 B + 3

6 B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2

7 B + 3 2B + 2 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4

8 2B + 1 2B + 3 3B + 3 3B + 3 3B + 3 3B + 3 3B + 3 3B + 3

9 2B + 2 2B + 4 3B + 6 3B + 6 3B + 6 3B + 6 3B + 6 3B + 6

10 2B + 3 3B + 3 4B + 5 4B + 5 4B + 5 4B + 5 4B + 5 4B + 5

11 2B + 4 3B + 5 4B + 7 4B + 8 4B + 8 4B + 8 4B + 8 4B + 8

12 3B + 2 4B + 4 5B + 5 6B + 6 6B + 6 6B + 6 6B + 6 6B + 6

13 3B + 3 4B + 4 5B + 6 6B + 6 6B + 9 6B + 9 6B + 9 6B + 9

14 3B + 4 4B + 5 6B + 5 6B + 7 7B + 8 7B + 8 7B + 8 7B + 8

15 3B + 5 4B + 6 6B + 7 6B + 8 7B + 12 7B + 12 7B + 12 7B + 12

16 4B + 3 5B + 5 7B + 6 7B + 7 9B + 9 9B + 9 9B + 9 9B + 9

17 4B + 4 5B + 7 7B + 8 7B + 9 9B + 13 9B + 13 9B + 13 9B + 13

18 4B + 5 6B + 6 8B + 7 8B + 8 10B + 8 10B + 12 10B + 12 10B + 12

Table 3. The Minimum Number of Active S-boxes in GFS
imp
d , assuming B > 2

rounds GFS
imp
6 GFS

imp
8 GFS

imp
10 GFS

imp
12 GFS

imp
14 GFS

imp
16

1 0 0 0 0 0 0

2 1 1 1 1 1 1

3 2 2 2 2 2 2

4 B + 1 B + 1 B + 1 B + 1 B + 1 B + 1

5 B + 3 B + 3 B + 3 B + 3 B + 3 B + 3

6 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2

7 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4

8 4B + 2 4B + 3 4B + 3 3B + 3 4B + 3 4B + 3

9 4B + 4 4B + 6 5B + 4 3B + 6 5B + 4 5B + 6

10 4B + 6 5B + 4 6B + 4 5B + 4 7B + 2 7B + 5

11 4B + 8 5B + 7 6B + 6 5B + 7 7B + 5 8B + 8

12 6B + 2 7B + 4 7B + 10 7B + 4 9B + 4 10B + 4

13 6B + 3 7B + 5 8B + 4 8B + 5 10B + 4 11B + 5

14 6B + 8 8B + 4 9B + 3 9B + 8 11B + 5 12B + 3

15 6B + 10 8B + 6 9B + 5 9B + 12 11B + 8 12B + 10

16 8B + 6 9B + 5 10B + 4 10B + 10 13B + 6 15B + 1

17 8B + 8 9B + 7 10B + 6 10B + 14 14B + 6 15B + 3

18 8B + 10 10B + 6 12B + 5 12B + 8 16B + 3 17B + 2

On the Diffusion of Generalized Feistel Structures 227

Case 2-1. If D
(i+2)
j+2 �= 0, then D

(i+1)
j+3 + D

(i+3)
j+3 ≥ 1. We consider the following

two cases.
Case 2-1-1. If D

(i+1)
j+3 �= 0, then D

(i+1)
j+3 + D

(i)
j+4 + D

(i+2)
j+4 ≥ BD. Also, D

(i+3)
j+1 +

D
(i+2)
j+2 +D

(i+4)
j+2 ≥ BD, D

(i+1)
j+1 +D

(i)
j+2 ≥ 1, and D

(i+4)
j +D

(i+5)
j+1 ≥ 1. Therefore,

we have Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Case 2-1-2. If D
(i+3)
j+3 �= 0, then D

(i+4)
j+2 + D

(i+5)
j+3 ≥ 1. Also, D

(i+2)
j + D

(i+1)
j+1 +

D
(i+3)
j+1 ≥ BD, D

(i+2)
j+2 + D

(i+1)
j+3 + D

(i+3)
j+3 ≥ BD, and D

(i+4)
j + D

(i+5)
j+1 ≥ 1.

Thus, we obtain Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Case 2-2. If D
(i+4)
j+2 �= 0, then D

(i+4)
j+2 + D

(i+3)
j+3 + D

(i+5)
j+3 ≥ BD. Also, D

(i+2)
j +

D
(i+1)
j+1 +D

(i+3)
j+1 ≥ BD, D

(i+1)
j−1 +D

(i)
j ≥ 1, and D

(i+4)
j +D

(i+5)
j+1 ≥ 1. Therefore,

we have Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Considering all cases, we conclude that any six consecutive rounds in GFSstd
d

have at least 2BD +2 differential active S-boxes when there is at least one active
F-function in the (i+2)-th round. Similarly, in the case that there exists at least
one active F-function in the (i + 3)-th round, we have the same bound. Finally,
we conclude that any six consecutive rounds in GFSstd

d have at least 2BD + 2
differential active S-boxes. �	
All cases used for this proof of the minimum number of active S-boxes in six
rounds of GFSstd

4 are shown in Figs. 9-13. In these figures, the F-function indi-
cated by the bold line is determined to be active and the F-function indicated
by the dotted line is determined to be non-active. Also, there is at least one ac-
tive S-box in the area encircled by dotted line, and there are at least BD active
S-boxes in the area encircled by chain line.

228 K. Shibutani

F (i+3)
j-1

F (i+1)
j-1

F (i+5)
j-1

F (i+2)
j-2

F (i)
j-2

F (i+4)
j-2

F (i+3)
j+1

F (i+1)
j+1

F (i+5)
j+1

F (i+2)
j

F (i)
j

F (i+4)
j

F (i+3)
j+3

F (i+1)
j+3

F (i+5)
j+3

F (i+2)
j+2

F (i)
j+2

F (i+4)
j+2

Fig. 8. Six Rounds of GFSstd
d (Untwisted Form)

F (i)
0

F (i+3)
1

F (i+1)
1

F (i+2)
2

F (i)
2

F (i+5)
1

F (i+4)
2

F (i+3)
3

F (i+1)
3

F (i+5)
3

F (i+2)
0

F (i+4)
0

Fig. 9. Case 1-1

F (i)
0

F (i+3)
1

F (i+1)
1

F (i+2)
2

F (i)
2

F (i+5)
1

F (i+4)
2

F (i+3)
3

F (i+1)
3

F (i+5)
3

F (i+2)
0

F (i+4)
0

Fig. 10. Case 1-2

F (i)
0

F (i+3)
1

F (i+1)
1

F (i+2)
2

F (i)
2

F (i+5)
1

F (i+4)
2

F (i+3)
3

F (i+1)
3

F (i+5)
3

F (i+2)
0

F (i+4)
0

Fig. 11. Case 2-1-1

F (i)
0

F (i+3)
1

F (i+1)
1

F (i+2)
2

F (i)
2

F (i+5)
1

F (i+4)
2

F (i+3)
3

F (i+1)
3

F (i+5)
3

F (i+2)
0

F (i+4)
0

Fig. 12. Case 2-1-2

F (i)
0

F (i+3)
1

F (i+1)
1

F (i+2)
2

F (i)
2

F (i+5)
1

F (i+4)
2

F (i+3)
3

F (i+1)
3

F (i+5)
3

F (i+2)
0

F (i+4)
0

Fig. 13. Case 2-2

A 3-Subset Meet-in-the-Middle Attack:
Cryptanalysis of the Lightweight Block Cipher

KTANTAN

Andrey Bogdanov and Christian Rechberger

Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium

{andrey.bogdanov,christian.rechberber}@esat.kuleuven.be

Abstract. In this paper we describe a variant of existing meet-in-the-

middle attacks on block ciphers. As an application, we propose meet-

in-the-middle attacks that are applicable to the KTANTAN family of

block ciphers accepting a key of 80 bits. The attacks are due to some

weaknesses in its bitwise key schedule1. We report an attack of time

complexity 275.170 encryptions on the full KTANTAN32 cipher with only

3 plaintext/ciphertext pairs and well as 275.044 encryptions on the full

KTANTAN48 and 275.584 encryptions on the full KTANTAN64 with 2

plaintext/ciphertext pairs. All these attacks work in the classical attack

model without any related keys.

In the differential related-key model, we demonstrate 218- and 174-

round differentials holding with probability 1. This shows that a strong

related-key property can translate to a successful attack in the non-

related-key setting. Having extremely low data requirements, these at-

tacks are valid even in RFID-like environments where only a very limited

amount of text material may be available to an attacker.

Keywords: cryptanalysis, meet-in-the-middle attacks, block cipher, key

schedule, lightweight cipher, key-recovery, RFID.

1 Introduction

A number of new cipher designs have been proposed recently, targeting use cases
with severe implementation constraints imposed. Block cipher design methods
have advanced to a stage where strong arguments for the resistance of the design
against large classes of attacks such as differential and linear cryptanalysis are
possible. However, if aggressive design decisions have been made forced by a
restrictive application scenario, some other, more dedicated analysis techniques
may turn out useful for attacking the cipher.

Cryptographic techniques move into applications like sensor nodes, RFID tags,
or the “the Internet of things” at large. The ever increasing demand for security

1 The SAC 2010 pre-proceedings version of this paper [6] was based on a key-schedule

from a previous version of the reference code which contained errors. This paper is

based on the corrected reference code available under [1].

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 229–240, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

230 A. Bogdanov and C. Rechberger

and privacy in these very constrained environments requires new cryptographic
primitives, like tiny yet efficient ciphers. A number of designs and implementa-
tion techniques have been proposed recently to address this need. Stream ciphers
like Trivium [10,8], Grain [17,18], or Mickey [3], or block ciphers like DESL [22],
PRESENT [4], HIGHT [19], mCrypton [23], KATAN and KTANTAN [9], or the
hash functions based on PRESENT [5] are among the important ones.

Motivation. The economical and physical constraints force designers to make
design decisions which are often considered to be “on the edge”. In this con-
text it is often argued that block ciphers are better understood than stream
ciphers and are hence more trustworthy. Some recent designs like PRESENT
and KATAN/KTANTAN have come with strong arguments that large classes
of attacks shown powerful in the past are not applicable. The technique used is
to provide bounds on various non-random properties, like differential or linear
characteristics. Indeed, whereas in the eStream project a number of lightweight
stream ciphers were broken, sometimes even with practical attack complexities,
none of the recently proposed block ciphers have been broken so far.

KTANTAN [9] accepts a key of 80 bits. It was designed to resist differential
and linear attacks, and exhibits strong bounds in the non-related-key model,
an upper bound 2−b on the probability of every differential/linear characteristic
over 128 rounds being an essential design criterion (b ∈ {32, 48, 64} is the block
size of the cipher). Even if related keys are considered, a much less realistic
setting, designers report no differential characteristic with a higher probability
than 2−b for 150 out of the 254 rounds. In [2], Albrecht et al. study algebraic
approaches to amplify differential attacks on this family of ciphers.

Contributions and Outline. Section 2 considers a framework for MITM at-
tacks. In Section 4, based on this framework, we propose a key-recovery attack
on the KTANTAN block cipher family (briefly described in Section 3), requiring
only very few known plaintext/ciphertext pairs. Hence this kind of attacks is
even valid in very restrictive RFID-like environments and protocols where only
a very limited number of transactions are foreseen in the lifetime of a tag. The
parameters and complexities of our attacks are provided in Table 1. Some prop-
erties we use translate to probability-1 related-key differentials over many rounds
which are outlined in Table 4. Note that the data complexity of our attacks is

Table 1. Results on MITM cryptanalysis for KTANTAN

attack/bound cipher #rounds time data compl.

b ∈ {32, 48, 64} (of 254) [encryptions] [PT/CT pars]

[9], RK diff. bound KTANTANb 150 O(2b) O(2b)

[9], DC and LC bound KTANTANb 128 O(2b) O(2b)

this paper, MITM attack KTANTAN32 254 275.170 3

this paper, MITM attack KTANTAN48 254 275.044 2

this paper, MITM attack KTANTAN64 254 275.584 2

Generalized Meet-in-the-Middle Attacks 231

the lowest possible and exactly corresponds to that of a brute-force attack. We
conclude with a discussion on links to other works, high-level design choices for
low-resource ciphers, and future work in Section 5.

2 Framework for MITM Attacks

2.1 Basic MITM Attack

The basic meet-in-the-middle (MITM) approach will be a starting point for our
attack. MITM techniques are arguably much less common than differential or
linear attacks on ciphers. There are some applications of MITM principles to
block ciphers like DES or AES, see e.g. [7,11,12,14,15,20] for dedicated attacks,
and e.g. [24,25] for meet-in-the-middle attacks on a higher level.

The basic MITM technique is due to Diffie and Hellman [13]. Let ϕi,j denote
the partial transform of an R-round block cipher beginning in round i and ending
directly after round j under some fixed key, 1 ≤ i ≤ j ≤ R, see Figure 1. Then
if ϕ1,α and ϕα+1,R use subkeys with distinct key bits, the key can be as a
rule recovered much more efficiently than by brute force over two subkeys. The
central idea here, as also applied to reduced DES in [15], is that the subkeys
in both parts of the cipher can be guessed independently. Each guess of the
first subkey allows the adversary to compute ϕ1,α(p) and of the second subkey
to obtain ϕ−1

α+1,R(c). The right key will be among those fulfilling the equation
ϕ1,α(p) = ϕ−1

α+1,R(c).

2.2 The 3-Subset MITM Approach

Here we consider a variant of the basic MITM attack. The idea is to remove
restrictions on the choice of key bits, thereby potentially allowing attacks where
an attack is not possible with the basic MITM approach. Instead of considering
two subsets of key bits, we consider three subsets. The attack consists of two
parts. In the MITM stage, we filter out some wrong key candidates and reduce
the key space. In the key testing stage, we look for the right key in the reduced
key space.

Let K = k�−1k�−2 . . . k1k0 be the �-bit key. Then if K1 = {ki : ki used by ϕ1,α}
and K2 = {ki : ki used by ϕR−β+1,R}, then A0 = K1 ∩ K2 is the set of key

K1 K2
plaintext

x
ciphertext

y

ϕ1,α ϕ−1
R−β+1,R

matching

m

1 Rα R − β + 1

Fig. 1. MITM

232 A. Bogdanov and C. Rechberger

bits used both by the first α and last β rounds, see Figure 1. Moreover, A1 =
K1\K1∩K2 and A2 = K2\K1∩K2 are the sets of key bits used by K1 only and
by K2 only, respectively. We further assume that K1 ∪ K2 = K.

For the attack we need n plaintext/ciphertext pairs {(xi, yi)}, i = 1, . . . , n.
Let xi be plaintext and yi ciphertext.

MITM Stage. The meet-in-the-middle part of the attack on R rounds of the
cipher can be performed as follows:

– For each guess of key bits in A0:
• For each guess of key bits in A1:

∗ Compute v = ϕ1,α(x)
• For each guess of key bits in A2:

∗ Compute u = ϕ−1
R−β+1,R(y)

• Perform matching in the middle between the values of v and the values
of u on m bits, 1 ≤ m ≤ b (see Subsection 4.3) and add surviving
key candidates to the list K of surviving keys. We expect to have false
positives with probability 2−m which is called the false positive rate of
a MITM attack.

Key Testing Stage. In this stage, we test the surviving key candidates from K
using some plaintext-ciphertext pairs in a brute-force manner. Generally speak-
ing, it is not necessary to use additional plaintext-ciphertext pairs. The number
of the texts needed is defined by the unicity distance of the cipher which essen-
tially depends on the block size and key length. If we can significantly reduce
the key space in the MITM stage (by ruling out a large part of the keys), the
complexity of the key testing stage will be negligible with respect to the MITM
stage. Generally speaking, however, this is not necessarily the case.

Attack Complexity. The computational complexity of the attack will be dom-
inated by

Ccomp = 2|A0|(2|A1| + 2|A2|)︸ ︷︷ ︸
MITM stage

+ (2�−m + 2�−m−b + 2�−m−2b + . . .)︸ ︷︷ ︸
key testing stage

. (1)

If A1 and A2 are both non-empty and |A1|+ |A2| > 2, then the attack becomes
more efficient than exhaustive search provided that the false positive rate is low
enough.

The MITM stage requires exactly one plaintext/ciphertext pair. However, of
the b bits only m are used for matching. That is, the information contained in
the other b − m state bits is not used in this stage and can be used in the key
testing stage. For the key testing stage, more pairs might be required, depending
on the relation between the key length and the block size. This results in data
complexity

Cdata =
⌈

�

b

⌉
depending on the block size b and the key length �. The memory complexity is
defined by matching in the MITM stage. For small sets A1 and A2, it is negligible.

Generalized Meet-in-the-Middle Attacks 233

3 A Short Description of KTANTAN

KTANTAN is a block cipher which accepts an 80-bit user-supplied key. Versions
with block size b ∈ {32, 48, 64} bit have been specified. Each version has 254
rounds. While the definition of a round transform differs from version to ver-
sion, the key schedule remains the same. Throughout the paper, we refer to the
KTANTAN version with b-bit blocks as KTANTANb.

3.1 Round Transform

KATAN and KTANTAN share the specification of a round transform, as the
operations on the state are exactly the same up to the key schedule. The state
of the cipher is represented as two disjunct parts L1 and L2. The transform of
round r is based on two Boolean functions f1,r and f2,r, having L1 and L2 as
their domain, correspondingly:

f1,r(L1) = L1[x1] ⊕ L1[x2] ⊕ (L1[x3] · L1[x4]) ⊕ (L1[x5] · IRr) ⊕ κ1,r

f2,r(L2) = L2[y1] ⊕ L2[y2] ⊕ (L2[y3] · L2[y4]) ⊕ (L2[y5] · L2[y6]) ⊕ κ2,r,

where xi, yi are the numbers of active bit positions, IRr is the round constant
bit in round r, and κ1,r, κ2,r are the bits of the extended key defined by the key
schedule for round r. The lengths of L1 and L2 as well as the bit positions xi,
yi are specific for each KTANTAN version.

Once f1,r and f2,r are computed, the registers L1 and L2 are shifted, the MSB
of each register falls off and the LSB is set to the output of f2,r and the output
of f1,r, respectively. KTANTAN32 applies transformations f1,r and f2,r once in
a round. One round of KTANTAN48 and KTANTAN64 updates the registers
using f1,r and f2,r two and three times, respectively.

Table 2. Version-specific parameters of KTANTAN

b |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

32 13 19 12 7 8 5 3 18 7 12 10 8 3

48 19 29 18 12 15 7 6 28 19 21 13 15 6

64 25 39 24 15 20 11 9 38 25 33 21 14 9

Table 3. Round constant bits IRr: IR1 first, IR254 last

1111111000 1101010101 1110110011 0010100100 0100011000 1111000010

0001010000 0111110011 1111010100 0101010011 0000110011 1011111011

1010010101 1010011100 1101100010 1110110111 1001011011 0101110010

0100110100 0111000100 1111010000 1110101100 0001011001 0000001101

1100000001 0010

234 A. Bogdanov and C. Rechberger

3.2 Key Schedule

The functions f1,r and f2,r require input from the key schedule, which is a
function mapping the 80-bit user-supplied key K = k79k78 . . . k1k0 to κ1,r and
κ2,r for each round r. It is exactly this part where KTANTAN differs from
KATAN. This difference, together with some properties of the data transform,
makes KTANTAN vulnerable to our attack.

An 8-bit round counting LFSR is used to control the key schedule. It is defined
by the feedback polynomial

ζ8 + ζ7 + ζ5 + ζ3 + 1

and its initial state is all ones. The value of IRr is specified as the most significant
bit of this LFSR in round r. Let l7,rl6,r...l1,rl0,r denote the 8-bit state of the
LFSR in round r.

The key schedule of KTANTAN chooses two bits of K in each round. This is
done by applying two layers of MUX logic. First, K is divided into 5 chunks Wi

of 16 bits each: K = W4||W3||W2||W1||W0. One bit out of each chunk is selected:

ωi,r = MUX16to1(Wi, l7,rl6,rl5,rl4,r), i = 0, . . . , 4,

where the LFSR bits define the position in Wi to choose. Second, two out of
these five bits are chosen controlled by the other half of the LFSR state:

κ1,r = l3,r · l2,r · ω0,r ⊕ (l3,r ∨ l2,r) · MUX4to1(ω4,rω3,rω2,rω1,r, l1,rl0,r)
κ2,r = l3,r · l2,r · ω4,r ⊕ (l3,r ∨ l2,r) · MUX4to1(ω3,rω2,rω1,rω0,r, l1,rl0,r).

4 Low Data-Complexity Attacks on KTANTAN

In here, we apply the MITM framework described in Section 2 to all 3 variants of
the full KTANTAN with 254 rounds. The resulting attack requires an extremely
small number of known plaintext/ciphertext pairs (basically, the minimum due
to the unicity distance) and negligible memory. The MITM techniques make use
of the fact that several key bits remain unused by the KTANTAN key schedule
in large connected parts of the cipher. More precisely, it is the rounds at the
beginning and end of KTANTAN which we are most interested in to make the
attack work.

4.1 Related-Key Differentials of Probability 1

We start with a note on probability-1 related-key differentials of KTANTAN
over many rounds.

The key observation here is that if certain key bits are not used over many
rounds, they can be flipped without affecting the data transformation. In other
words, the R-round related-key differential (0, Δ) �→ 0 holds with probability 1,
where 0 is the zero input and output difference in the data transformation and
Δ is the key difference with ones at key bit position not used in the R rounds

Generalized Meet-in-the-Middle Attacks 235

Table 4. Related key differentials for KTANTANb, b ∈ {32, 48, 64}

covered #rounds differential probability

rounds

ϕ1,218 218 (0, 00000000800000000000) �→ 0 1

ϕ−1
81,254 174 (0, 00000000000000010000) �→ 0 1

(first key bit positions are on the left-hand side). Some of the longest related-
key differentials of this type we found for KTANTANb are given in Table 4.
These differentials are due to the fact that the first 218 and last 174 rounds of
KTANTAN do not use key bits k32 and k63, respectively.

We notice that it seems possible that these properties can be turned into
low-complexity differential related-key attacks on KTANTAN. However, we are
mostly concerned with attacks that do not require related keys, and hence con-
tinue by exploiting this property in another way.

4.2 Application of the MITM Framework to KTANTAN

Depending on the KTANTAN version, different properties of the key schedule
are exploited in our attack. This is due to the fact that all three versions of
KTANTAN have different numbers of register clocks in one round. The versions
with a larger block size have heavier rounds with more diffusion which compli-
cates the partial matching phase. Effectively, this might reduce the number of
rounds in the middle for which matching is possible.

In Table 5 we give a summary of the properties and parameters of our attacks.
We aim for the full, and if this is not possible for the highest number of rounds.
Considering variants with a more reduced number of rounds would lead to more
neutrals key bits, and generally lower attack complexities.

To illustrate the meaning of this table, let us consider the first entry. We attack
the full 254-round KTANTAN32. The two basic properties of the KTANTAN key
schedule which make our attack on KTANTAN32 possible can be formulated as:

Fact 1. ϕ1,α does not use key bits {k32, k39, k44, k61, k66, k75} for 1 ≤ α ≤ 111.

Fact 2. ϕ254−β+1,254 does not use key bits {k3, k20, k41, k47, k63, k74} for 1 ≤
β ≤ 131.

Table 5. Details of the proposed attacks

b R α A1 R − β A2 matching complexity Ccomp

bits m MITM key test total

32 254 111 32,39,44,61,66,75 131 3,20,41,47,63,74 8 75.000 72 75.170

48 254 111 32,39,44,61,66,75 131 3,20,41,47,63,74 10 75.000 70 75.044

64 254 123 32,44,61,66,75 131 3,20,41,47,63,74 47 75.584 33 75.584

236 A. Bogdanov and C. Rechberger

This means that if we fix α = 111 and β = 131, then ϕ1,111 and ϕ123,254 will
have 6 neutral key bits in each direction. Moreover, one can efficiently match v
and u in 8 bits, despite being 21 rounds apart due to the slow diffusion in one
round of KTANTAN32, which is demonstrated in Subsection 4.3.

4.3 Partial-Matching Phase

In here, we describe in more detail the matching procedure that is used as a
sub-routine in the MITM stage.

Procedure. The starting point are two completely determined internal states
u and v several rounds apart (for KTANTAN32, one at round 111 and the other
one at round 131). If we considered a cipher where those middle rounds were cut
away, then the matching phase would be trivial as we would simply check if the
u = v. With a probability of about 2−b this check would give a false positive,
but overall the number of key candidates is reduced to about 280−b. Remember
that b ∈ {32, 48, 64}. Hence the number of key candidates is small enough to not
influence the attack complexity during the key testing state.

In order to bridge this gap and to obtain a result on the full cipher, we drop
the requirement to match on every state bit but allow for a much smaller number
of matched bits m. This will increase the number of false positives, but in a way
that does not noticeably influence any property of the attack. In more detail, we
find that m bits (for KTANTAN32, m = 8) will still match with probability 1
(see below for details). This means that we will have reduced the number of key
candidates to 280−m after the MITM stage. In total, we hence need only between
2 (for block size b = {48, 64}) or 3 (for b = 32) known plaintext/ciphertext
pairs.

We note that this procedure can be implemented in an essentially memoryless
way, as every match can immediately be tested with another plaintext/ciphertext
pair. Also in our estimate of the attack complexity, we do not consider any
implementation optimizations that e.g. would also be possible for a brute force
search that does not use any shortcut attacks. Examples of such optimizations
would e.g. be a reuse of computations from one key guess to the next.

Details on the Partial Matching Phase. In the following we trace those bits
that remain unaffected during the middle rounds for the block size of b = 32. ’1’
means affected, ’0’ means not affected. k1 and k2 denote disturbances caused by
the unknown neutral bits from the opposite chunk at the respective rounds. For
other block sizes, we refer to Appendix A.

Generalized Meet-in-the-Middle Attacks 237

10 bits match as follows

forward part:

forward R=111: k1=1, k2=1 0

forward R=112: k1=0, k2=0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=113: k1=0, k2=0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=114: k1=0, k2=0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=115: k1=0, k2=0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=116: k1=0, k2=0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=117: k1=0, k2=0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=118: k1=0, k2=0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

forward R=119: k1=0, k2=0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

forward R=120: k1=0, k2=0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

forward R=121: k1=0, k2=0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

forward R=122: k1=0, k2=0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

forward R=123: k1=1, k2=0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

forward R=124: k1=0, k2=0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0

forward R=125: k1=0, k2=0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0

forward R=126: k1=0, k2=0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0

forward R=127: k1=0, k2=1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

backward part:

backward R=131: k1=0, k2=1 0

backward R=130: k1=1, k2=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1

backward R=129: k1=0, k2=0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1

backward R=128: k1=0, k2=0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0

backward R=127: k1=0, k2=0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0

The highest number of matching bits is obtained at round 127:

forward R=127: k1=0, k2=1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

backward R=127: k1=0, k2=0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0

As can be seen, at three positions in the state both in the forward and in
the backward part no changes happen, which is the property needed for the
matching part.

5 Discussion and Future Work

The recently proposed lightweight block cipher KTANTAN is susceptible to a
class of meet-in-the-middle attacks that seems to put less constraints on the
selection of key bits than some earlier meet-in-the-middle attacks on block ci-
phers. We proposed key-recovery attacks with an extremely low number of known
plaintexts. The approach we describe is inspired by recent advances in MITM
preimage attacks on hash functions like those that succeeded in breaking MD5
or Tiger [16,27], even though it remains an open problem to transfer most of
the techniques there from the key-less hash setting to the cipher setting. The
MITM approach may be seen as a way to turn very strong related-key properties
into attacks in the single-key setting, complementing e.g. the work on the self-
synchronized stream-cipher Moustique [21]. Even though the time complexity
of our attack remains high, optimizations may result in reduced time complex-
ities, by e.g. allowing the attacker to choose the plaintext instead (possible in
many protocols), or asking for more plaintext/ciphertext pairs. Also, implemen-
tation techniques that speed-up brute force search, such as determining a good
sequence of keys to guess and save computations that way, are likely to carry
over to the meet-in-the-middle attack.

Among the ciphers most vulnerable to the meet-in-the-middle attacks, are
those with little key-dependency in the sense that large parts of the cipher de-
pend on a subset of key bits only. This is opposed to substitution-permutation
networks which usually use subkeys of the block length in each round. For such
ciphers, it is often difficult to mount a meet-in-the-middle attack even on a small
number of rounds because of the strong key dependency. However, this approach

238 A. Bogdanov and C. Rechberger

as a rule results in a much higher number of XOR-operations needed for the key
addition which in turn leads to higher area and/or time requirements and, thus,
to a lower efficiency. An optimal trade-off between the level of resistance and the
amount of key dependency remains, however, an area of research.

Acknowledgements. Andrey Bogdanov was supported in part by a visit-
ing postdoctoral fellow grant from the Fund for Scientific Research - Flanders
(FWO) within the FWO research project ”Linear codes and cryptography”
G.0317.06. This work was also sponsored by the Research Fund K.U.Leuven
grant (OT/08/027) ”A mathematical theory for the design of symmetric prim-
itives”, by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian
Science Policy), and by the European Commission under contract ICT-2007-
216646 (ECRYPT II).

The authors are grateful to the designers of KATAN/KTANTAN for clari-
fying the issues with the KTANTAN key schedule and would like to thank the
anonymous reviewers of SAC 2010 whose insightful comments improved the pre-
sentation of the paper.

References

1. Bit-sliced reference code of KATAN and KTANTAN (2010),

http://www.cs.technion.ac.il/~orrd/KATAN/katan.c

2. Albrecht, M., Cid, C., Dullien, T., Faugre, J.C., Perret, L.: Algebraic Precomputa-

tions in Differential Cryptanalysis. In: ECRYPT Tools for Cryptanalysis Workshop

2010 (2010)

3. Babbage, S., Dodd, M.: The MICKEY Stream Ciphers. In: Robshaw and Billet

[26], pp. 191–209

4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,

M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.

In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.

Springer, Heidelberg (2007)

5. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,

Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P.

(eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

6. Bogdanov, A., Rechberger, C.: Generalized Meet-in-the-Middle Attacks: Crypt-

analysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,

Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544. Springer, Heidelberg (2010)

7. Chaum, D., Evertse, J.H.: Cryptanalysis of DES with a Reduced Number of

Rounds. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211.

Springer, Heidelberg (1986)

8. De Cannière, C.: Trivium: A Stream Cipher Construction Inspired by Block Cipher

Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,

B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

9. De Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A

Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,

Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg

(2009)

http://www.cs.technion.ac.il/~orrd/KATAN/katan.c

Generalized Meet-in-the-Middle Attacks 239

10. De Cannière, C., Preneel, B.: Trivium. In: Robshaw and Billet [26], pp. 244–266

11. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In:

Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg

(2008)

12. Demirci, H., Taskin, I., Çoban, M., Baysal, A.: Improved Meet-in-the-Middle At-

tacks on AES. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,

pp. 144–156. Springer, Heidelberg (2009)

13. Diffie, W., Hellman, M.: Exhaustive Cryptanalysis of the NBS Data Encryption

standard. Computer 10(6), 74–84 (1977)

14. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks

on 8-round AES. Cryptology ePrint Archive, Report 2010/322 (2010),

http://eprint.iacr.org/

15. Dunkelman, O., Sekar, G., Preneel, B.: Improved Meet-in-the-Middle Attacks

on Reduced-Round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)

INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007)

16. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-

age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.

Cryptology ePrint Archive, Report 2010/016 (2010), http://eprint.iacr.org/

17. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream

Ciphers. In: Robshaw and Billet [26], pp. 179–190

18. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-

ronments. IJWMC 2(1), 86–93 (2007)

19. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,

J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable

for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,

vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

20. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A Practical

Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,

pp. 1–18. Springer, Heidelberg (2008)

21. Käsper, E., Rijmen, V., Bjørstad, T.E., Rechberger, C., Robshaw, M.J.B., Sekar,

G.: Correlated Keystreams in Moustique. In: Vaudenay, S. (ed.) AFRICACRYPT

2008. LNCS, vol. 5023, pp. 246–257. Springer, Heidelberg (2008)

22. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-

ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,

Heidelberg (2007)

23. Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of

Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA

2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

24. Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun.

ACM 24(7), 465–467 (1981)

25. van Oorschot, P.C., Wiener, M.J.: A Known-Plaintext Attack on Two-Key Triple

Encryption. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 318–

325. Springer, Heidelberg (1991)

26. Robshaw, M.J.B., Billet, O. (eds.): New Stream Cipher Designs. LNCS, vol. 4986.

Springer, Heidelberg (2008)

27. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive

Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.

Springer, Heidelberg (2009)

http://eprint.iacr.org/
http://eprint.iacr.org/

240 A. Bogdanov and C. Rechberger

A More Details on Partial Matching

A.1 Block Size 48 Bits

The details for the partial matching phase for the attack on KTANTAN with
b = 48 are as follows:

10 bits match as follows

forward part:
forward R=111: k1=1, k2=1 0000000000000000000 00000000000000000000000000000
forward R=112: k1=0, k2=0 1100000000000000000 11000000000000000000000000000
forward R=113: k1=0, k2=0 0011000000000000000 00110000000000000000000000000
forward R=114: k1=0, k2=0 0000110000000000000 00001100000000000000000000000
forward R=115: k1=0, k2=0 1000001100000000000 10000011000000000000000000000
forward R=116: k1=0, k2=0 0110000011000000000 11100000110000000000000000000
forward R=117: k1=0, k2=0 0001100000110000000 00111000001100000000000000000
forward R=118: k1=0, k2=0 0000011000001100000 10001110000011000000000000000
forward R=119: k1=0, k2=0 1100000110000011000 11100011100000110000000000000
forward R=120: k1=0, k2=0 1111000001100000110 11111000111000001100000000000
forward R=121: k1=0, k2=0 0011110000011000001 10111110001110000011000000000
forward R=122: k1=0, k2=0 1100111100000110000 11101111100011100000110000000
forward R=123: k1=1, k2=0 1111001111000001100 11111011111000111000001100000

backward part:
backward R=131: k1=0, k2=1 0000000000000000000 00000000000000000000000000000
backward R=130: k1=1, k2=1 0000000000000000000 00000110000011110011110000011
backward R=129: k1=0, k2=0 0000011100011011011 00011110001111111111110001111
backward R=128: k1=0, k2=0 0001110001101101100 01111000111111111111000111100
backward R=127: k1=0, k2=0 0111000110110110000 11100011111111111100011110000
backward R=126: k1=0, k2=0 1100011111011011011 10001111111111110001111000000
backward R=125: k1=0, k2=0 0001111101111111111 00111111111111110111110000011
backward R=124: k1=0, k2=0 0111110111111111100 11111111111111011111000001100
backward R=123: k1=0, k2=0 1111011111111111011 11111111111101111100000110000

The highest number of matching bits is obtained at round 123:
forward R=123: k1=1, k2=0 1111001111000001100 11111011111000111000001100000

backward R=123: k1=0, k2=0 1111011111111111011 11111111111101111100000110000

A.2 Block Size 64 Bits

The details for the partial matching phase for the attack on KTANTAN with
b = 64 are as follows:
47 bits match as follows

forward part:

forward R=123: k1=1, k2=0 0000000000000000000000000 000000000000000000000000000000000000000

forward R=124: k1=0, k2=0 0000000000000000000000000 111000000000000000000000000000000000000

forward R=125: k1=0, k2=0 0000000000000000000000000 000111000000000000000000000000000000000

forward R=126: k1=0, k2=0 0000000000000000000000000 000000111000000000000000000000000000000

forward R=127: k1=0, k2=1 1100000000000000000000000 000000000111000000000000000000000000000

forward R=128: k1=0, k2=0 1111100000000000000000000 000000000000111000000000000000000000000

forward R=129: k1=0, k2=0 1111111100000000000000000 000000000000000111000000000000000000000

forward R=130: k1=0, k2=0 0001111111100000000000000 100000000000000000111000000000000000000

forward R=131: k1=0, k2=0 1100001111111100000000000 111100000000000000000111000000000000000

backward part:

backward R=131: k1=0, k2=1 0000000000000000000000000 000000000000000000000000000000000000000

The highest number of matching bits is obtained at round 131:

forward R=131: k1=0, k2=0 1100001111111100000000000 111100000000000000000111000000000000000

backward R=131: k1=0, k2=1 0000000000000000000000000 000000000000000000000000000000000000000

Improving DPA by Peak Distribution Analysis

Jing Pan1, Jasper G.J. van Woudenberg1, Jerry I. den Hartog2,
and Marc F. Witteman1

1 Riscure BV, 2628 XJ Delft, The Netherlands

{pan,vanwoudenberg,witteman}@riscure.com
2 Eindhoven University of Technology,

5600 MB Eindhoven, The Netherlands

j.d.hartog@tue.nl

Abstract. Differential Power Analysis (DPA) attacks extract secret key

information from cryptographic devices by comparing power consump-

tion with predicted values based on key candidates and looking for peaks

which indicate a correct prediction. A general obstacle in the use of DPA

is the occurrence of so called ghost peaks, which may appear when eval-

uating incorrect key candidates. Some ghost peaks can be expected from

the structure and may actually leak information. We introduce a DPA

enhancement technique—Euclidean Differential Power Analysis (EDPA),

which makes use of the information leaked by the ghost peaks to diminish

the ghost peaks themselves and bring forward the correct key candidate.

The EDPA can be combined with any standard DPA attack irrespective

of the distinguisher used. We illustrate that EDPA improves on DPA

with both simulations and experiments on smart cards.

Keywords: Differential power analysis, Euclidean similarity, ghost peaks.

1 Introduction

Side-channel attacks (SCA) reveal the secret key of a cryptosystem based on in-
formation gained from physical implementation of the cryptosystem on a smart
card or other device. Information provided by sources such as timing [8], power
consumption [9] and electromagnetic emulation [15] can be exploited by SCA at-
tacks to break cryptosystems. Differential power analysis (DPA) [9] is a form of
SCA that can extract secrets from power consumption measurements which may
contain a lot of noise. Using DPA, an adversary can obtain intermediate values
within cryptographic computations by statistically analyzing the power con-
sumption measurements collected from multiple cryptographic operations per-
formed by a vulnerable device.

A successful DPA attack would typically result in a vector of statistical test
results amongst which the highest value occurs for the correct key candidate and
the correct time (the moment in time during which the examined intermediate
value is manipulated on the device). This highest value is usually referred to
as the correct peak and the location in the vector where this peak occurs as the
correct time. An unsuccessful attack normally implies a ‘ghost peak ’ problem,

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 241–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

242 J. Pan et al.

where the highest peak does not accord to the correct key candidate and thus
erroneous conclusions can be drawn from the attack results.

Both academic research and practical experimentation have been conducted to
make a clearer distinction between the correct peak and the ghost peaks resulted
from a DPA attack. Proposed solutions include, for example, improvement on
measurement techniques such that strong noises are filtered out from the power
traces [13], improvement on the trace alignment such that power signals that
correspond to the same intermediate result are located at the same position
for all the traces [18], and improvement on DPA algorithms so that suitable
power models or statistic tools are applied in specific attacks [2,5]. Such solutions
attempt to reduce noise but at best can achieve the theoretical distinctions
between the correct peak and the ghost peaks obtained in an attack using noise-
free measurements. No solutions have, to the best of our knowledge, involved
strengthening the correct peak by analyzing the distribution of the DPA results
of all key hypotheses.

Here we propose a novel approach which treats the ghost peaks as a source of
information as well and allows an attack to reduce ghost peaks based on infor-
mation provided by the ghost peaks themselves. The proposed approach is built
upon a standard DPA attack with additional adjustment made as suggested by
the characteristics of the ghost peaks. Typically, the distribution of the DPA
results at the correct time shows a predictable pattern with the real key giving
the highest peak and some of the incorrect keys giving ghost peaks. Our attack
exploits this information by comparing the distribution of the peaks in a real
attack to the distribution of the peaks predicted by a hypothetical noise free
attack. We use Euclidean similarity [6] to match the hypothesis with the actu-
ally observed pattern of peaks and hence refer to this method as the Euclidean
Differential Power Analysis (EDPA).

The distribution of the DPA results at the correct time will always reflect
the correct key. The DPA attack, however, only looks which peak is the highest
and ignores the distribution of other peaks. Hence, there is always additional
information about the key that an EDPA attack regards and a DPA attack
ignores. We apply EDPA to Correlation Power Analysis (CPA) [2], calling the
resulting method ECPA, and show that ECPA improves on CPA, almost always
providing a clearer distinction between the correct peak and ghost peaks. We
show this using both simulation and physical experiments on smart cards.

Commonly used measures to evaluate the effectiveness of SCA attacks, so
called SCA security metrics, are success rate and guessing entropy [17]. As an
additional result we propose a new measure ‘oth-order guessing entropy’ and
argue that it is more practical than the original guessing entropy.

The remainder of this paper is organized as follows. Section 2 recaps suc-
cess rate and guessing entropy, analyzes their relation and introduces oth-order
guessing entropy. Section 3 explains an EDPA attack in more detail. Section 4
demonstrates ECPA in simulation and compares it to CPA. In Section 5, the
two attacks are applied and compared using experiments on smart cards. Finally,
Section 6 provides conclusions.

Improving DPA by Peak Distribution Analysis 243

2 SCA Security Metrics

Soon after the introduction of SCA attacks [8] many different attacks and op-
timizations of attacks were proposed e.g. [12,1,2]. To be able to compare dif-
ferent attacks several SCA security metrics have been proposed such as success
rate [17], guessing entropy [17], signal-to-noise ratios [12] and number of traces
needed [3]. How meaningful a metric is and how easy it is to evaluate depends a
lot on the type of adversary and the conditions under which the attack is per-
formed. Thus often several metrics are combined when evaluating a SCA attack,
see e.g. [10,16].

Here we have chosen to use o-th order success rate (SR in short) and guessing
entropy (GE in short) as our security metrics. SR makes sense if the adversary
only looks at the top results. GE is compatible if the adversary only uses the
DPA as a method to sort key candidates for a brute-force attack. Additionally,
we introduce a new security metric, called oth-order guessing entropy, which is
similar to guessing entropy but better reflects the fact that the computational
ability of an attacker will have some limit. Below we first quickly recall success
rate and guessing entropy and then discuss the need for and define o-th order
guessing entropy.

2.1 Success Rate and Guessing Entropy

An SCA attack executes a set of queries, obtains side channel information during
the execution1 and based on this information sorts key candidates according to
their likelihood of being correct. Let random variable gq denote the vector result-
ing from sorting all possible key candidates based on an attack using q queries.
(Note that in practice gq is built by combining the results from many sub-SCA,
where each sub-attack targets a different sub-key. See also Section 2.2.) The
success rate of order o, sro

gq
, is the probability that the correct key s is ranked

amongst the first o candidates in attack gq. The guessing entropy, gegq , gives the
expected index of the correct key in gq. Intuitively, SR measures the probability
of success with a fixed limit on the amount of computation, while GE measures
the average cost of a brute-force key search with no limit on the computational
ability.

Note that the GE of an attack can be calculated based on the SR of the attack
for the various orders of SR. For S = |gq| and i = 1, 2, ..., S let P(gq[i] = s)
denote the probability that the correct key s is ranked at position i in gq, then

sr0
gq

= 0 ,

sri
gq

= sri−1
gq

+ P(gq[i] = s) ,

gegq =
S∑

i=1

i · P(gq[i] = s) =
S∑

i=1

i · (sri
gq

− sri−1
gq

) .

1 This may involve optimizations to reduce noise such as running the algorithm mul-

tiple times with the same input and averaging the measurements.

244 J. Pan et al.

2.2 Sorting Key Candidates

An SCA attack divides a secret key into several sub-keys each of which contains
a small number of bits. A series of sub-SCA attacks are applied to rate the
likelihood of each possible sub-key. The full keys are then sorted and tested in
an order derived from the likelihood of the sub-keys. It is reasonable to assume
that, to improve the attack, an adversary will not just use the ranking in the
sub-attacks for sorting full keys but will also perform some global optimization
combining and comparing ratings across different sub-attacks.

For independent sub-attacks combined with naive sorting, the product of GEs
can be used as an approximation of the full GE. When using global optimiza-
tions there is no guarantee this is still a good estimation. Only when there is a
consistent and similar improvement in GE across the sub-attacks is it reasonable
to assume this translates into a proportional advantage in the overall GE. (See
also Section 4.3.)

Without loss of generality, we focus on two sorting algorithms that can be
used to sort the key candidates in gq. The first is an optimal solution, which
performs a full global-optimization by sorting the key candidates in descending
order of their combined sub-SCA results. The cost of sorting (O(N log(N)) where
N is the size of the key space) is acceptable compared to the effort needed for a
brute-force attack, so an attacker will likely want to do this to optimize attack.
However, note that N is exponential in the key size (N = 2|k|) which means
that actually doing the sorting will quickly become unfeasible. This means that
estimating the guessing entropy with experiments is not realistically possible.

We address this problem in two ways. The first is to introduce a second, sub-
optimal, sorting algorithm. It sorts the key candidates by a heuristic search in
which optimal next key candidates are only selected at fixed points in the sorting
rather than at every step. With this algorithm we are able to calculate the index
of the correct key (in time polynomial in the key size) without actually having
to do the sorting. However, the index of a key may increase a lot compared
to its optimal ranking which may, especially for very noisy sub-SCA results,
cause a much higher index of the correct key. (We refer the interested readers to
Appendix A for a more detailed description of the sorting algorithms.)

The second way we address the problem with computing guessing entropy is
to propose an enhanced alternative security measure called o-th order guessing
entropy.

2.3 The oth-Order Guessing Entropy Security Metric

The GE of an attack measures the average brute-force cost after an SCA attack
without a limit on the amount of computation. In the other words, it assumes
that the adversary can always test as many key candidates as it is necessary
to find the correct key. This is usually not a practical assumption. Considering
the usually large key space (56-bit DES key or 128-bit AES key) an adversary
will likely have to limit the number of candidates tested before considering the
attack a failure. To capture this in a security measure, we introduce o-th order
GE.

Improving DPA by Peak Distribution Analysis 245

Fig. 1. An example of sro
gq

, gegq and geo
gq

The oth-order guessing entropy of an attack gq, written as geo
gq

, measures the
average number of key candidates to test after an SCA attack with q queries,
given that in maximum o candidates can be tested. Intuitively, it merges the
concept of the ‘average cost’ from the guessing entropy and the ‘maximum cost
limit’ from the success rate. It allows an easily interpretable measurement when
characterizing the average cost of a post-SCA brute-force attack in practical
scenarios where the adversary does not test all possible key candidates.

Like gegq , the geo
gq

of an attack can be calculated from the success rates sro
gq

of the attack for the various order o:

geo
gq

=
o∑

i=1

i · P(gq[i] = s) + o ·
S∑

i=o+1

P(gq[i] = s)

=
o∑

i=1

i · (sri
gq

− sri−1
gq

) + o · (1 − sro
gq

) .

Figure 1 illustrates the relation between sro
gq

, gegq and geo
gq

using results from
a simulated CPA attack that targets eight DES S-boxes (see Section 4.2). The
curve formed by the bottom of the colored area depicts the sro for various o.
The (dark and light) gray region visualizes the calculation of the ge based on
Eq. (1) with each of the horizontal bars marking an area equal to i · (sri −sri−1)
for some order i. As the summation of those small bars, the ge is then equal to
the entire gray area. The oth-order guessing entropy, geo, limits the maximum
computation to o and thus is equal to the dark gray area between the axis x = 0
and the line x = o. Compared to ge, the light gray area to the right of the line
x = o is omitted from geo. (Note that this area is much larger than it appears
due to the logarithmic scale.)

3 The EDPA Attack

The result of a DPA attack S is calculated based on some distinguisher D that
compares the real power measurement T to the hypothetical power

246 J. Pan et al.

consumption values H: S = D(T ,H). The distinguisher D can be various statis-
tical tests, such as difference-of-means [9], Pearson’s correlation coefficient [2],
mutual information [7], variance test [16], etc. An EDPA attack can be built
on top of any DPA attack independently from the distinguisher used. In this
section, we demonstrate the construction of an EDPA attack with emphasis on
ECPA, where Pearson’s correlation coefficient is used as the distinguisher D.
Note that all attacks mentioned in this section are actually sub-attacks using
the terminology of Section 2.

3.1 Description of the Attack

We use the block representations of [11, Ch. 6] to describe our attack. (See
appendix B for a graphical representation.) The hypothetical power consumption
values are contained in a q × n matrix H, with q being the number of queries
used and n being the number of key candidates in this attack. A column of H,
written as hi, corresponds to a key hypothesis ki. The result of a DPA attack can
be represented as an n×m matrix S, calculated based on n key hypotheses and
m time samples. In S, si,j corresponds to the DPA result for key hypothesis ki

and time sample tj . Let (ck, ct) be the index of the correct peak in S, i.e. kck is
the correct key and tct is the correct time.

After obtaining the results of DPA, an EDPA attack continues with the fol-
lowing three steps.

Step 1: Generate hypothetical attack results. The hypothetical power consump-
tion values of a DPA attack model the power consumption of the device caused
by the processing of the targeted intermediate value. We use this model to sim-
ulate the attack with each of the n key candidate as the correct key. As each
attack gives a result for every key candidate this yields an n-by-n matrix C of
DPA results, where ci,j = D(hj , hi). The ck-th column cck in C thus mod-
els the expected DPA results at the correct time ct. For ECPA this means
that, for candidate ki given correct key kj , we calculate the correlation between
columns hj and hi of H, ci,j = ρ(hj , hi) (i, j = 1..n). In this case we refer to C
as inter-data correlation.

Step 2: Compare the actual and the hypothetical attacks. Next we match the
DPA results predicted for each key candidate (i.e. each column of C) with the
actually observed DPA results at each point in time (i.e. each column of S)
using Euclidean similarity [6]. In ECPA a similarity ei,j is assigned to column i
of the inter-data correlation C and column j of DPA results S, as defined in
Eq. (1) (i = 1..n and j = 1..m) resulting in an n × m matrix E. Like in S, ei,j

corresponds to key hypothesis ki and time sample tj .

ei,j = 1 − di,j

max{dx,j | x = 1..n} , where di,j =

√√√√ n∑
p=1

(cp,i − sp,j)2 . (1)

Here di,j is the Euclidean distance between vectors ci and sj .

Improving DPA by Peak Distribution Analysis 247

Fig. 2. Histogram of the distribution of S Fig. 3. Histogram of the distribution of Ê

Step 3: Combine the DPA and Euclidean similarity results. Finally, the DPA S
is scaled using the Euclidean similarity E by Eq. (2) resulting the final result R
of the attack.

ri,j =
1
2

si,j +
1
2

si,j · êi,j , where êi,j =
ei,j

max{ex,y | x = 1..n, y = 1..m} .

(2)

The highest value in R now reveals the location (ck, ct) and hence kck and tct.
Let Ê be the matrix of the normalized Euclidean similarity êi,j . The mixing
function Eq. (2) scales down the DPA values by factors of 0 to 1/2, linearly
to the corresponding normalized Euclidean similarity: si,j remains unaltered
if êi,j = 1 and si,j is halved if êi,j = 0.

Remark 1. In contrast to DPA attacks where only the highest correlation value is
used to indicate the correct key hypothesis, EDPA attacks determine the correct
key based on the correlation values of all key candidates. As presence of DPA
peaks where they are expected more strongly indicates the correct key than
absence of DPA peaks where none is expected, Euclidean similarity is used to
ensure that higher DPA values contribute more than lower ones. The Euclidean
similarity values are then used to tune the DPA values such that only the peaks
that are significant in both are retained.

Remark 2. In choosing the mixing function in Eq. (2) we note that the Euclidean
similarity measure is more sensitive to noise, as illustrated in Figures 2 and 3.
These figures plot distributions of the DPA results S and the normalized Eu-
clidean similarity Ê. (For 100 repetitions of a simulated attack on DES with high
noise levels, see Section 4 for a detailed description of such simulated attacks.)
These graphs show the typical distribution of values for S and Ê for correlated
and/or uncorrelated time. They show that random Ê values have a much higher
chance of being close to the expected peak êck,ct = 1 and thus overtaking the
correct value due to noise.

248 J. Pan et al.

We view si,j and êi,j as independent indicators for the ‘likelyhood’ of a key
candidate, making their product a good choice for a combined indicator where
only peaks which occur in both stand out. However, as S is less sensitive to noise
we weight this indicator stronger than the indicator Ê which we do by adding
it again to the combined result resulting in the mixing function in Eq. (2). Note
that the factors (1

2 , 1
2) in this function are determined based on empirical study

and may not be the optimal solution.

Remark 3. The EDPA attack as given in this section assumes that the correct
peak has a positive sign. The attack can be easily adjusted to cope with unknown
or negative signs (for the correct peak). E.g. when this sign is unknown, one can
modify the mixing function in Step 3 so that {ei,j | i = 1..n, j = 1..m} that are
of the same distance to their mean factorize their corresponding si,j by the same
amount.

4 Evaluating ECPA Using Simulation

In this section, we show results of simulated attacks on DES and AES using
ECPA and CPA and compare the attacks using the security metrics described
in Section 2.

4.1 Simulation Setup

We model the power consumption of a device as the summation of the Hamming-
weight of the processed intermediate value v, some constant value and noise (see
e.g. [2]). The constant value is determined by the operation applied to v. The
noise is a normally distributed variable with expectation 0 and some standard
deviation σ.

For DES, we let2 σ = 10 and simulate the power consumption for the first
three rounds of an encryption. To be precise 28 power consumption values are
generated per encryption round: 1 for the left half of the round input, 1 for the
right half of the round input, 8 for the output of the expansion, 8 for the input
of the S-box substitution, 8 for the output of the substitution, 1 for the output
of the permutation, and 1 for the XOR of the permutation output and the left
half of the round input.

For AES, we let2 σ = 12 and simulate the power consumption for the first
round of an encryption. To be precise 108 power consumption values are gen-
erated: 16 each for the outputs of the initial KeyAddition, and the SubBytes,
12 for the output of the ShiftRows, 32 for the intermediate values of the Mix-
Columns and 16 each for the outputs of the MixColumns, and the KeyAddition
at the end of the first round.
2 We choose σ = 10 (resp. σ = 12) for DES (resp. AES) to demonstrate the increase of

success rate from 0 to 1 within query span 0 ≤ q ≤ 3000, providing a good trade-off

between the practicality of the simulation and the cost of the computation.

Improving DPA by Peak Distribution Analysis 249

Fig. 4. DES with optimal sorting: SR for

different number of queries

Fig. 5. DES with sub-optimal sorting: SR

for different number of queries

To estimate SR and GE, we generate for each algorithm 100 sets of power
traces, each containing 3000 simulated traces based on 3000 random plaintexts
and one fixed randomly chosen key. Using statistical tests based on one random
key is sufficient as, given the same amount of measurements, it is equally difficult
to attack one key as an another key for DES and AES.

4.2 Comparing ECPA and CPA on DES

For attacks on DES, we target the eight 4-bit output of the S-boxes in the
first round aiming to find the 48-bit round key used in this round. Hence, we
perform eight sub-attacks each targeting a 6-bit sub-key used in an S-box. In this
experiment, we refer to the SR (resp. the GE) of an attack as the probability
(resp. the average cost) of recovering this 48-bit round key. In practice, the
remaining 8 bits of the secret key can be found either by another SCA on the
second encryption round or by a brute-force attack. Which method is used is
immaterial for our comparison of ECPA and CPA.

We use both the optimal and the sub-optimal sorting algorithm for the evalu-
ation of the success rate sro

gq
and the guessing entropies gegq and geo

gq
. Because

the computational cost of sorting all the 248 key candidates by the optimal sort-
ing algorithm is too high to be practical, we limit the number of candidates to
sort by this algorithm to 216. Recall that checking a single candidate already
requires a significant amount of work from an attacker (e.g. 28 encryptions to
find the remaining 8 bits).

Figures 4 and 5 show the SR of the ECPA attack and the CPA attack for
various q and o using the two sorting algorithms. A 28th-order SR (resp. GE)
corresponds to the success rate (resp. average cost) of a SCA attack provided
that the adversary tests, on average, 2 candidates per S-box after the attack.
A 216th-order SR (resp. GE) corresponds to the success rate (resp. average cost)
of an attack provided that on average 4 candidates are tested per S-box.

For both sorting algorithms, ECPA results in a higher success rate than CPA
in most of the cases. Comparing the graphs between the figures, we observe that
for both sorting algorithms the 1st-order SRs are equal for every attack and
every q. This is because both algorithms sort the same candidate the first. The

250 J. Pan et al.

higher-order SRs (see graphs (c) and (d) in Figures 4 and 5) differ per sorting
algorithm. It is obvious that the optimal sorting algorithm almost always results
in a higher success rate than the sub-optimal sorting algorithm. This gives us
an empirical proof that the optimal sorting algorithm is indeed better than the
sub-optimal sorting algorithm with respect to the success rate of an attack.

The guessing entropy with the ECPA and CPA attack are shown in Figures 6
and 7 for the two sorting algorithms used. Figure 6 show the GE of order 216

while Figure 7 show the GE of order 248, i.e. the full GE. The interesting range is
roughly 232 ≥ GE ≥ 28, as above this range a brute-force attack is too expensive
and below this range the cost is too small for differences to matter. Both Figure 6
and Figure 7 show that ECPA improves on CPA, especially in this range.

4.3 Comparing ECPA and CPA on AES

For the attack on AES, we target the 8-bit output of the first S-box in the first
round. Since the same S-box is used for every byte of the state and the power
consumption caused by each of the 16 S-box substitution is simulated based
on the same function, we consider that it is as difficult to attack one S-box as
attacking another in the same round. We, therefore, only look at the SR (resp.
GE) of a sub-attack recovering one byte of the secret key of AES. An advantage
in the sub-attack will translate to a proportional advantage in a full attack.

Figure 8 shows the 1st, the 2nd and the 4th-order SRs and the GE of the
attacks. The 1st-order SR of the ECPA attack is approximately equal to the 1st-
order SR of the CPA attack. For the higher-order SRs, the advantage of ECPA
over CPA also does not seem that large. However, when all are added in the
GE, a clear benefit of ECPA can be seen. Note that this is only the advantage
for the sub-attack and for a full attack, which repeats this attack 16 times, the
advantage can grow quickly.

The advantage of ECPA over CPA is greater for DES S-boxes than for the
AES S-box. Recall that the advantage of ECPA relies on the information leaked
by the ghost peaks. The greater the ghost peaks caused structure in the analyzed
instruction, the more information an ECPA attack gains in addition to a CPA
attack. Because of their mathematical structure, with the same level of noise,
a CPA attack on DES S-boxes leads to higher and more ‘telling’ ghost peaks,

Fig. 6. DES with optimal sorting: 216th-

order GE for different number of queries

Fig. 7. DES with sub-optimal sorting: GE

for different number of queries

Improving DPA by Peak Distribution Analysis 251

Fig. 8. AES: SR and GE for different number of queries

whereas the AES S-box would result in lower and more uniformly distributed
peaks (see e.g. [14]). Hence, the ECPA attack is more effective on DES S-boxes.

5 Evaluating ECPA Using Physical Experiments

To validate our theoretical motivation, we performed CPA and ECPA attacks on
two smart cards running a hardware DES and a software AES implementation
respectively. The experiment shows that for both devices, with the tested number
of traces, ECPA successfully finds the correct key while CPA does not3.

5.1 Attacking a Hardware DES Implementation

The attacked smart card has an 8-bit processor, with a DES accelerator con-
taining two 32-bit registers. The hardware-implemented DES is countermeasure
free. The DES accelerator is clocked at 30.76 MHz. For the power measurement,
the oscilloscope collects samples at a frequency of 250 MHz which are then com-
pressed to one sample per internal clock period of the smart card, i.e. 30.76 MHz.

In the smart card that we attack, one round of DES encryption is completed
within one clock cycle of the DES accelerator. Therefore, it is very difficult to
exploit the leakage caused by the S-boxes substitution. Instead, we target the
XOR of the 32-bit permutation output and the 32-bit left half of the round input
that takes place at the end of the first round. Assuming that the result of this
3 Though the comparison performed in this section considers both positive and nega-

tive peaks, advantage of ECPA over CPA can also be concluded even when only the

positive peaks are regarded, which is the case when the power model of the attacked

device is known beforehand.

252 J. Pan et al.

Fig. 9. CPA result of DES S-boxes 2

and 7

Fig. 10. ECPA result of DES S-boxes 2

and 7

XOR is written in the same register that previously contained the right half of
the round input, we use the Hamming distance of these two 32-bit values as our
power model. We use eight sub-attacks each targeting 6 key bits (used in the
same S-box thus allowing prediction of 4 bits of the 32-bit intermediate value).

The attacks were performed using the same set of 23,000 power traces. We
take sub-keys 2 and 7 as examples and show their attack results in Figures 9
and 10, where the results of the correct key candidate is plotted in black and the
others are plotted in gray. The attack results for all sub-keys can be found in
Appendix C. Though CPA and ECPA both reveal the correct sub-key 2, ECPA
significantly lowers the incorrect peaks compared to CPA and therefore raises
the confidence level of the correct key.

Sub-key 7 is ranked second by CPA but correctly found by ECPA, showing
an improvement of ECPA on CPA. Decreasing the number power traces used,
we find that for this sub-key the correct key is always sorted earlier by ECPA
than by CPA (see Table 1). Experiments described in Table 1 show that on
average ECPA approximately halfs the rank of the correct key compared to CPA.
Concerning a global sorting that regards all the eight sub-keys, the difference of
the ranking for sub-key 7 can add up to a much more significant difference of
the overall ranking for the secret DES key.

Table 1. The rank of the correct sub-key 7 using decreasing numbers of power traces

Number of Traces 22K 21K 20K 19K 18K 17K 16K 15K 10K

CPA 9 5 5 8 22 15 13 13 30

ECPA 3 2 3 5 18 14 6 3 17

Improving DPA by Peak Distribution Analysis 253

Table 2. The results of CPA (top) and ECPA (bottom) of an AES software-

implementation. The attack results are written outside the brackets, and the sub-key

candidates are written inside the brackets in hexadecimal numbers. The correct peaks

and candidates are written in bold.

Rank Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

1 .5845(8d) .4699(f5) .5186(91) .5227(54) .4659(6e) .5832(c3) .4826(3e) .5384(5c)

2 .4353(d8) .4212(8a) .4692(45) -.4468(c1) .4613(2e) .4725(68) -.4398(46) -.4389(71)

3 .4255(66) -.4211(ac) .4123(82) .4394(5c) .4339(b3) -.4587(2c) -.4279(3d) -.4351(56)

4 .4247(8b) .4188(20) -.4117(7d) -.4304(23) -.4313(0b) .4414(f0) -.4210(71) .4149(68)

Rank Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16

1 .4788(f5) .4843(69) .5219(7c) .4576(c8) .5445(ac) .5525(1c) .4886(61) .5023(84)

2 .4685(d4) -.4653(8c) -.4220(d8) .4487(4a) -.4399(91) -.4194(93) -.4869(56) -.4395(fe)

3 -.4289(e4) .4440(d9) -.4205(94) -.4449(4f) .4160(6b) .4160(6b) -.4532(72) -.4260(91)

4 .4211(cc) -.4087(41) .4199(a6) -.4190(5b) -.4103(85) -.4103(85) .4527(e5) -.4228(a5)

Rank Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

1 .5845(8d) .4612(f5) .5181(91) .5227(54) .4659(6e) .5832(c3) .4887(3e) .5234(5c)

2 .3995(8b) .3945(20) .4417(45) .4177(63) .4065(25) .4118(68) .4098(84) .3654(c8)

3 .3912(d8) .3914(73) .3834(f8) .4108(5c) .4043(2e) .4002(f0) -.4005(d8) .3643(5d)

4 .3792(66) .3911(3b) .3770(82) .3906(5d) .3980(b3) .3802(76) .3935(45) .3643(85)

Rank Byte 9 Byte 10 Byte 11 Byte 12 Byte 13 Byte 14 Byte 15 Byte 16

1 .4613(d4) .4659(69) .5219(7c) .4418(c8) .5445(ac) .5525(1c) .4769(61) .4928(84)

2 .4224(f5) .4186(d9) .3995(a6) .4296(4a) .3871(c2) .3723(6b) .4271(e5) -.4147(9d)

3 .3950(df) .3600(13) .3855(89) .3859(5a) .3827(05) .3648(2c) .4062(0a) .4037(f5)

4 .3867(cc) .3597(fa) .3683(1b) .3764(22) .3783(75) .3645(95) .3988(c0) .3763(a8)

5.2 Attacking a Software AES Implementation

The attacked smart card for the AES experiment shows quite a lot of side-channel
leakage allowing us to suffice with 110 traces. Unlike the card we attacked in
Section 5.1, this card does not have an accelerator embedded. The card works
on its external clock, which is set at 4 MHz. The oscilloscope was set at frequency
200 MHz and the signals were compressed to one sample per clock period of the
card: 4 MHz.

For both ECPA and CPA attacks, we target the 16 bytes of the output of the
S-boxes in the first encryption round. We use the Hamming weight of the bytes
as our power model.

Table 2 lists the top candidates resulted from both attacks. The attacks use
the same set of 110 traces. As in the previous experiment ECPA gives better
results than CPA: all the correct sub-keys are ranked the first by ECPA and all
the correct peaks stand out more significantly from the ghost peaks. The CPA
attack fails to sort the correct candidate of byte 9 the first, resulting that the
correct full key of AES will be sorted the 6th and the 9th candidate after the
CPA attack according to the optimal and the sub-optimal sorting algorithms
respectively.

254 J. Pan et al.

Fig. 11. CPA result of AES for byte 9 of

AES

Fig. 12. ECPA result of AES for byte 9

Figures 11 and 12 plot the results of the attacks for byte 9, where the black
(resp. gray) curves correspond to the correct (resp. incorrect) key candidates.
Observe that the ‘bandwidth’ of the gray region is narrower in case of ECPA.
Additionally, the highest ghost peak in CPA (Figure 11, t ≈ 570μs), which is
higher than the correct peak, gets reduced by ECPA (Figure 12, t ≈ 570μs) and
is now lower than the correct peak. Plots of the results for the other bytes can
be found in Appendix C.

6 Conclusion

We introduce a new SCA attack—EDPA, which is able to extract more infor-
mation from SCA leakage compared with a standard DPA attack and effectively
diminishes ghost peaks using the information leaked by the ghost peaks them-
selves. We show with simulation and experiment that the extra information
indeed improves the effectiveness of the attack. To help evaluate this effective-
ness we introduce o-th order guessing entropy. We argue that the o-th order
guessing entropy is more realistic and show that it is more practical with a sce-
nario where the o-th order guessing entropy is possible but the original (full)
guessing entropy cannot be used. Our results show a consistent advantage of
EDPA over DPA but the advantage is not huge, which is to be expected as the
attack simply improves the use of the same leaked information. Still, the limited
computational overhead of an EDPA attack with respect to a DPA attack, and
its efficiency in reducing the noise in the final result suggest that EDPA is at
least an effective tool for further eliminating ghost peaks after an ambiguous
DPA attack. Finally, since EDPA is based on the same leakage information as a
DPA attack, countermeasures that prevent a standard DPA attack can also be
used to thwart an ECPA attack.

Improving DPA by Peak Distribution Analysis 255

References

1. Bevan, R., Knudsen, E.: Ways to enhance differential power analysis. In: Lee, P.J.,

Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg

(2003)

2. Brier, É., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.

Springer, Heidelberg (2004)

3. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence

of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,

vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

4. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press,

Cambridge (1990)

5. Coron, J.-S., Naccache, D., Kocher, P.C.: Statistics and secret leakage. ACM Trans.

Embedded Comput. Syst. 3(3), 492–508 (2004)

6. Elmore, K.L., Richman, M.B.: Euclidean distance as a similarity metric for princi-

ple component analysis. American Meteorological Society 129(3), 540–549 (2001)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:

Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,

Heidelberg (2008)

8. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and

other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.

Springer, Heidelberg (1996)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Mangard, S.: Hardware countermeasures against dpa - a statistical analysis of their

effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235.

Springer, Heidelberg (2004)

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets

of Smart Cards. In: Advances in Information Security. Springer, Heidelberg (2007)

12. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under

the threat of power analysis attacks. IEEE Trans. Computers 51(5), 541–552 (2002)

13. Orfanidis, S.J.: Introduction to signal processing. Prentice-Hall, Inc., Upper Saddle

River (1995)

14. Pan, J., den Hartog, J.I., de Vink, E.P.: An operation-based metric on cpa resis-

tance. In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC, International Federation

for Information Processing, pp. 429–443. Springer, Boston (2008)

15. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and

counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) E-smart 2001.

LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

16. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-

channel distinguishers: An empirical evaluation of statistical tests for univariate

side-channel attacks against two unprotected cmos devices. In: Lee, P.J., Cheon,

J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

17. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of

side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,

vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

18. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power

analysis by elastic alignment (2009),

http://www.riscure.com/fileadmin/images/Docs/elastic_paper.pdf

http://www.riscure.com/fileadmin/images/Docs/elastic_paper.pdf

256 J. Pan et al.

A The Sorting Algorithms

In this section we present the two key sorting algorithms. We take a fixed number
of sub-key candidates for each sub-attack, and assume all sub-attacks use the
same set of traces and that none of the peaks are exactly the same. All of these
assumptions can be easily removed at the cost of complicating the notation.

A.1 Pre Processing Sub-SCA Results

Depending on the implementation, the measurement, and other factors, the
amount of exploitable information can be different for different sub-attacks.
Rather than using the actual SCA result, a normalized SCA result gives better
estimation of relative likelihood, which is what we want to sort on. E.g. Con-
sider two sub-attacks where the top two candidates of the attacks have peaks
(0.8, 0.7) and (0.2, 0.1), respectively. Clearly we want to try the second candidate
from attack 1 (0.7) before that of attack 2 (0.1) as it seems more likely to be the
correct key.

Hence, the sorting algorithms presented in this section take as reference the
relative SCA value of a key candidate that is with respect to the highest SCA
value within the same sub-attack. That is, we sort a key candidate by the ratio
between the SCA result of a key candidate and the highest SCA value resulted
from the same attack. See Table 3 for an description. We do not give an imple-
mentation of this computation since it is relatively trivial.

Table 3. Pre processing sub-SCA results

Input: A list of SCA results r
(a)
i,j (a = 1..A, i = 1..n, j = 1..m), where A is the number

of sub-attacks performed, n is the number of sub-key candidates per sub-attack and m
is the number of leakage samples per power trace.

Output: Normalized maximal SCA peaks for each sub-key candidate rr
(a)
i =

pk
(a)
i /max{pk

(a)

i′ | i′ = 1..n} where pk
(a)
i = max{|r(a)

i,j | | j = 1..m}.

A.2 The Sub-optimal Sorting Algorithm

According to the normalized SCA peaks, the sub-optimal algorithm first rates
every sub-key candidates with its global ranking concerning all sub-attacks. The
vector g is initialized with the top candidate from every sub-attack: (k(1)

max, . . . ,

k
(A)
max). Next, the rest of sub-key candidates are brought into consideration in

the order of their global ratings. Before considering any combination which uses
a sub-key with a global rating x, the algorithm will tests all candidates whose
sub-keys all have a global ranking lower than x. To add a sub-key k

(a)
i into g,

we first find all the items in g that use k
(a)
max, then we replace k

(a)
max with k

(a)
i and

append the updated items into g in the order of their original items in g.

Improving DPA by Peak Distribution Analysis 257

Table 4. The sub-optimal sorting algorithm

Input: Sub-key candidates k
(a)
i and normalized maximal SCA peaks rr

(a)
i where a =

1..A, i = 1..n, A is the number of sub-attacks performed and n is the number of sub-key

candidates per sub-attack.

Output: A sorted list of full key candidates g.

For each a = 1..A let k
(a)
max = k

(a)
i with i such that rr

(a)
i = max{rr(a)

p | p = 1..n};
Let G be a list of all A× n sub-key candidate indexes (a, i) sorted in descending order

of rra
i (a = 1..A, i = 1..n);

Initialize g to [(k
(1)
max, . . . , k

(A)
max)];

For p = A + 1 to A × n
Let (a, i) = G[p];

For c = 1 to |g|
If g[c][a] == k

(a)
max

Append (g[c][1], . . . ,g[c][a − 1], k
(a)
i ,g[c][a + 1], . . . ,g[c][A]) to g;

End

End

End

Return g;

To estimate the SR and GE of an attack with a known key, we do not need
the whole vector g but only the position of the real key in this vector. This
ranking cr of the correct key can be computed by Eq (3).

cr = 1 +
A∑

a=1

A∏
b=1,
b≤Ga

#{i | i = 1..n, (b, i) <G (a, cka)} . (3)

There we write cka for the index of correct key candidate in sub-attack a (a =
1..A), i.e. the correct key is (k(1)

ck1
, . . . , k

(A)
ckA

), we write (a, i) <G (a′, i′) if (a, i)
appears before (a′, i′) on list G and we write a <G b if (a, cka) <G (b, ckb) i.e. if
the correct index of sub-attack a appears before the correct index of sub-attack b
on list G.

A.3 The Optimal Sorting Algorithm

The optimal sorting algorithm (in Table 5) outputs the full key candidates based
on their monotonically non-increasing sum (for a = 1..A) of normalized sub-SCA
results rr

(a)
i .

The algorithm works by creating a sub-key-specific set of candidates L sorted
by decreasing SCA value. Next, a key candidate indexes set H is initialized with
the best candidate, which by definition consists of the top sub-key in each L(a).

The set H is now iteratively updated by first removing the candidate h with
the highest sum and adding the corresponding key to g. The candidate h is now
expanded to all its successors, represented by E(h). This set contains for each
sub-key the next best candidate. The set E(h) contains A elements unless all n

258 J. Pan et al.

Table 5. The optimal sorting algorithm

Input: Sub-key candidates k
(a)
i and normalized maximal SCA peaks rr

(a)
i where a =

1..A, i = 1..n, A is the number of sub-attacks performed and n is the number of sub-key

candidates per sub-attack.

Output: A sorted list of full key candidates g.

For each a = 1..A let L(a) be a list of candidate indexes i sorted in descending order

of rra
i (i = 1..n);

Let H = {(1, . . . , 1)};
Define E(i1, . . . , iA) = {(i1, . . . , ia−1, ia + 1, ia+1, . . . , iA) | a = 1, . . . , A, ia + 1 ≤ n};
Define c(i1, . . . , iA) =

∑A
a=1 rr

(a)

L[ia];

While |H | > 0 do

Let h = (i1, . . . , iA) be such that c(h) = max{c(h′) | h′ ∈ H};
Let H := H ∪ E(h)\h;

Append (k
(1)
L[i1], . . . , k

(A)
L[iA]) to g;

End

Return g;

candidates for a sub-key have already been tried. Next, E(h) is added to the
set H .

Note that H is a set, and can therefore not contain duplicate items. Because
of the construction of the search, the entire space is guaranteed to be visited;
the g contains all possible keys without duplicates. By sorting vectors L(a) and
incrementally walking through the elements, we also guarantee a non-increasing
sum.

The complexity of this sorting algorithm is O(N log N), with N = nA being
the number of possible keys. The loop of the algorithm walks though all N
candidates. As |H | < N , the set query max, insertion and deletion are O(log N)
if implemented using e.g. a red-black tree [4].

We are not aware of an effective method (i.e. polynomial in the key size n) to
determine the ranking of the correct key for this algorithm.

B Block Diagram of ECPA

The block diagram of the ECPA attack is plotted in Figure 15.

C Graphical Presentation of the Practical Experiment
Results

In this section we show the plotting of the attack results from the physical
experiments described in Section 5, where a DES hardware implementation and
an AES software implementation were attacked by both ECPA and CPA.

In the experiment on the DES implementation, the same set of 23,000 power
traces were used in both attacks to reveal the sub-keys used in the first encryption

Improving DPA by Peak Distribution Analysis 259

Fig. 13. CPA result of a DES implemen-

tation: x-axis is time (ns), y-axis is corre-

lation

Fig. 14. ECPA result of a DES implemen-

tation: x-axis is time (ns), y-axis is corre-

lation

round. Figures 13 and 14 show the results of the attacks. Every graph in these
figures shows the results of 64 sub-key candidates that were involved in one of
the S-box substitutions. In case of the AES experiment, 110 power traces were
used to reveal the first round key of an AES encryption. Figures 16 and 17 show
the results of the attacks for all key candidates and a selected range of samples
in time, where each graph corresponds to one key byte.

In all the graphs shown in this section, the black curves correspond to the
correct key candidates and the gray curves correspond to the incorrect key can-
didates. One can observe that for every attacked sub-key the gray band formed
by the ghost peaks is reduced by ECPA compared to CPA.

260 J. Pan et al.

1

2

q

· · ·

· · ·

· · ·

...

h2,1

h1,1

hq,1

...

h2,2

h1,2

hq,2

...

h2,n

h1,n

hq,n

k1 k2 kn

H: Hypothetical power consumption

ci,j = D(hj ,hi)si,j = D(tj ,hi)

...

t2,1

t1,1

tq,1

...

t2,2

t1,2

tq,2

...

t2,m

t1,m

tq,m

· · ·

· · ·

· · ·

t1 t2 tm

1

2

q

T: Power traces

· · ·

· · ·

· · ·

...

s2,2

s1,2

sn,2

...

s2,1

s1,1

sn,1

...

s2,m

s1,m

sn,m

t1 t2 tm

k1

k2

kn

S: DPA result

· · ·

· · ·

· · ·

...

c2,1

cn,1

c1,1

...

c2,2

c1,2

cn,2

...

c2,n

c1,n

cn,n

k1 k2 kn

k1

k2

kn

C: Inter-data correlation

· · ·

· · ·

· · ·

...

e2,1

e1,1

en,1

...

e2,2

e1,2

en,2

...

e2,m

e1,m

en,m

t1 t2 tm

k1

k2

kn

E: Euclidean similarity

ei,j = 1−
di,j

max{dx,j | x = 1..n}

di,j =

√√√√ n∑
p=1

(cp,i − sp,j)2

· · ·

· · ·

· · ·

...

r2,1

r1,1

rn,1

...

r2,2

r1,2

rn,2

...

r2,m

r1,m

rn,m

t1 t2 tm

k1

k2

kn

R: EDPA result

ri,j =
1

2
· si,j +

1

2
· si,j ·

ei,j

max{ex,y | x = 1..n, y = 1..m}

Fig. 15. Block diagram illustrating the last steps of an ECPA attack

Improving DPA by Peak Distribution Analysis 261

Fig. 16. CPA result on AES: x-axis is time (μs), y-axis is correlation

Fig. 17. ECPA result on AES: x-axis is time (μs), y-axis is correlation

Affine Masking against Higher-Order Side
Channel Analysis

Guillaume Fumaroli1, Ange Martinelli1,
Emmanuel Prouff2, and Matthieu Rivain3

1 Thales Communications

{guillaume.fumaroli,jean.martinelli}@fr.thalesgroup.com
2 Oberthur Technologies

e.prouff@oberthur.com
3 CryptoExperts

matthieu.rivain@cryptoexperts.com

Abstract. In the last decade, an effort has been made by the research

community to find efficient ways to thwart side channel analysis (SCA)

against physical implementations of cryptographic algorithms. A com-

mon countermeasure for implementations of block ciphers is Boolean

masking which randomizes the variables to be protected by the bitwise

addition of one or several random value(s). However, advanced techniques

called higher-order SCA attacks exist that overcome such a countermea-

sure. These attacks are greatly favored by the very nature of Boolean

masking. In this paper, we revisit the affine masking initially introduced

by Von Willich in 2001 as an alternative to Boolean masking. We show

how to apply it to AES at the cost of a small timing overhead compared to

Boolean masking. We then conduct an in-depth analysis pinpointing the

leakage reduction implied by affine masking. Our results clearly show that

the proposed scheme provides an excellent performance-security trade-off

to protect AES against higher-order SCA.

1 Introduction

Side Channel Analysis is a cryptanalytic technique that consists in analyzing the
side channel leakage (e.g. the power consumption, the electromagnetic emana-
tions) produced during the execution of a cryptographic algorithm embedded on
a physical device. SCA exploits the fact that this leakage is statistically depen-
dent on the intermediate variables that are processed. Some of these variables
are sensitive in the sense that they are related to secret data, and recovering
information on them therefore enables efficient key recovery attacks [13,2,10].

A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques [3,12].
The principle is to add one or several random value(s) (called mask(s)) to every
sensitive variable occurring during the computation. Masks and masked vari-
ables propagate throughout the cipher in such a way that every intermediate
variable is independent of any sensitive variable. This strategy ensures that the

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 262–280, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Affine Masking against Higher-Order Side Channel Analysis 263

instantaneous leakage is independent of any sensitive variable, thus rendering
SCA difficult to perform. The masking can be characterized by the number of
random masks used per sensitive variable. A masking that involves d random
masks is called a dth-order masking. Such a masking can always be theoretically
broken by a (d + 1)th-order SCA, namely an SCA that targets d + 1 intermedi-
ate variables at the same time [16,24,20]. However, the noise effects imply that
the difficulty of carrying out a dth-order SCA in practice increases exponentially
with d [3]. The dth-order SCA resistance (for a given d) is thus a good secu-
rity criterion for implementations of block ciphers. Unfortunately, only a few
higher-order masking schemes exist and they are costly in timings [24,5,21,22].

Instead of looking for perfect security against dth-order SCA, an alternative
approach consists in looking for practical resistance to these attacks. It may
for instance be observed that the efficiency of higher-order SCA is related to
the way the masks are introduced to randomize sensitive variables. Merely all
masking schemes proposed in the literature are based on Boolean masking where
masks are introduced by exclusive-or (XOR). This masking enables securing
implementations against first-order SCA quite efficiently, however it is especially
vulnerable to higher-order SCA [16,18] due to the intrinsic physical properties
of electronic devices.

A first work towards the direction of practical – instead of perfect – secu-
rity against dth-order SCA has been published by von Willich [27]. It argues
that affine masking offers an improved SCA resistance compared to standard
first-order masking schemes. However, implementation issues are not taken into
account and the paper does not explain how to apply affine masking to usual
block ciphers such as AES or DES. Moreover, von Willich defines the affine
masking over the vector space GF(2)n. When defined in such a way, it implies
the generation of an invertible n × n binary matrix, and n scalar products over
GF(2) each time a sensitive variable must be masked. Those steps, and espe-
cially the scalar products, are very costly when applied in software. A natural
idea to deal with this issue is to define the operations over the field GF(2n) in
place of the vector space GF(2)n. The addition operation stays unchanged and
the field multiplication is a particular case of the matrix product (the security
analysis conducted in this paper shows that both operations offer similar SCA
resistance). The idea of masking sensitive data with a multiplicative mask in
a field structure was first proposed in [1] to protect an AES implementation.
However it was shown in [11] that such a masking is insecure since, by nature,
it fails in masking the zero value. A similar zero-value first-order flaw was sub-
sequently exploited in [8] to break the linear masking proposed to protect DES
in [12]. These works clearly show that letting the zero value unmasked renders
a masking scheme insecure.

Our contribution. In this paper, we propose a practical application of affine
masking to AES. Namely, we present an implementation of the block cipher such
that every 8-bit intermediate result z ∈ GF(256) is manipulated under the form
G(z) = r1 · z ⊕ r0, where (r1, r0) ∈ GF(2n)∗ × GF(2n) is a pair of random val-
ues generated before each new execution of the algorithm. Our scheme is very

264 G. Fumaroli et al.

efficient as it maintains the same compatibility as Boolean masking (which is
a particular case of our scheme for r1 = 1) with the linear transformations of
the algorithm. In the second part of the paper, we conduct an in-depth anal-
ysis which shows that the joint use of a multiplicative mask with a Boolean
mask greatly improves the resistance of the scheme to higher-order SCA. As we
argue, the multiplicative mask enables to complicate the relationship between
the unmasked data and the leakage while the Boolean mask prevents the zero-
value leakage. Our analysis pinpoints the leakage reduction resulting from affine
masking as well as its improved higher-order SCA resistance.

Length constraints do not permit us to give all proofs in details. They can be
found in the extended version [7] of this paper.

2 Securing AES with Affine Masking

The AES is an iterated block cipher algorithm. It is composed of several rounds
that operate on a 4 × 4 array of bytes denoted by s = (si,j)0≤i,j≤3 and termed
the state. At the beginning of AES in encryption mode, the state is initialized
with the plaintext.

Let us first briefly introduce the outlines of our method. Initially, both the
state s and the master key k = (ki,j)0≤i,j≤3 are masked by applying a randomly
generated affine transformation G to each si,j and ki,j . Then, all the original
transformations of the cipher are adapted in order to process on and to return
affinely masked variables. Should the additive part of the mask cancel out within
the computation, a temporary additive mask is introduced in order to avoid any
potential zero-value first-order flaw. Eventually, the ciphertext (ci,j)0≤i,j≤3 is
simply recovered by applying the inverse mapping G−1 to each coordinate of the
final value of the masked state (which contains the values G(ci,j)).

In the following section, we explain how the AES implementation can be
adapted to securely operate on a state masked by an affine transformation G.

2.1 Affine Masking Applied to AES

A round of the AES is composed of the four following transformations whose
description can be found in [7, Section 2.1]: AddRoundKey, SubBytes, ShiftRows
and MixColumns. Each of them operates on the state s and updates it. To distin-
guish the updated state from the state at input of the transformation, we denote
it by s′ = (s′i,j)0≤i,j≤3.

To secure the state manipulations thanks to the affine masking counter-
measure every manipulation of s is replaced by a manipulation of G(s) =
(G(si,j))0≤i,j≤3. In the following, we assume that G is defined with respect to a
pair (r1, r0) of random elements of GF(256)∗ × GF(256) as:

G : x ∈ GF(256) �−→ r1 · x ⊕ r0 ∈ GF(256) .

In the sequel, G(x) shall be called the G-representation of x and the variables r1
and r0 shall be referred to as the multiplicative mask and and the additive mask
respectively.

Affine Masking against Higher-Order Side Channel Analysis 265

Let us now explain how the four main AES primitives can be easily adapted
to securely operate on a state masked by an affine transformation G. We shall
denote by G(s) = (G(si,j))0≤i,j≤3 the masked state at the input of each trans-
formation and by G(s′) = (G(s′i,j))0≤i,j≤3 the masked state at the output.

1. To securely compute the G-representation of the output of AddRoundKey
from the G-representations of the input state and the round key, each byte
G(s) of the state is XOR-ed with the corresponding round key byte G(k) as
follows:

G(s′) ← (((G(s) ⊕ r) ⊕ G(k)) ⊕ r0) ⊕ r .

where r is randomly chosen in GF(256). The method is essentially based on
the following observation: each masked output byte G(s′) can be computed
as G(s′) = G(s ⊕ k) = G(s) ⊕ G(k) ⊕ r0. A temporary random mask has to
be introduced to ensure that the state bytes are always masked affinely and
not only linearly.

2. To process the s-box transformations, we propose to use a new look-up table
S̃ that is recomputed at each new AES execution from both G and S such
that for every x ∈ GF(256), we have:

S̃[G(x)] = G(S[x]) . (1)

It can be easily checked that processing S̃ on the G-representation of a byte
si,j results in the G-representation of s′i,j = S[si,j]. Securing the SubBytes
transformation with the affine masking thus simply consists in applying S̃ to
each byte of the state:

G(s′i,j) ← S̃[G(si,j)] .

3. Since we have ShiftRows(G(s)) = G(ShiftRows(s)) and since ShiftRows op-
erates on each byte separately, it can be directly applied on G(s) without
introducing any flaw:

G(s′) ← ShiftRows(G(s)) .

4. Since each output byte of MixColumns can be expressed as a linear function
of the bytes of the input state over GF(256), it can be checked that we have:

MixColumns(G(s0,c), G(s1,c), G(s2,c), G(s3,c))
= (G(s′0,c), G(s′1,c), G(s′2,c), G(s′3,c)).

This suggests to perform the following steps to securely process MixColumns
on the G-representation of the state columns.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tmp ← r ⊕ G(s0,c) ⊕ G(s1,c) ⊕ G(s2,c) ⊕ G(s3,c)
G(s′0,c) ← xtimes(G(s0,c) ⊕ r′ ⊕ G(s1,c)) ⊕ tmp ⊕ G(s0,c) ⊕ r ⊕ xtimes(r′)
G(s′1,c) ← xtimes(G(s1,c) ⊕ r′ ⊕ G(s2,c)) ⊕ tmp ⊕ G(s1,c) ⊕ r ⊕ xtimes(r′)
G(s′2,c) ← xtimes(G(s2,c) ⊕ r′ ⊕ G(s3,c)) ⊕ tmp ⊕ G(s2,c) ⊕ r ⊕ xtimes(r′)
G(s′3,c) ← r ⊕ G(s′0,c) ⊕ G(s′1,c) ⊕ G(s′2,c) ⊕ tmp

266 G. Fumaroli et al.

where xtimes denotes a look-up table for a multiplication by some constant in
the field GF(256) (see [6] for more details). To ensure that the state bytes are
always masked affinely and not only linearly, two temporary random masks
r, r′ ∈ GF(256) have to be introduced. Moreover, the operations above must
be processed from left to right.

Finally, since the round key derivation is a composition of the previous transfor-
mations, it can be protected by the exact same methods as previously described.

2.2 Time-Memory Trade-Offs

Affine masking requires 32 computations of G in order to mask both the plaintext
and the key, and eventually 16 computations of G−1 in order to unmask the
ciphertext. Field multiplications and inversions involved in affine masking can
be efficiently implemented with the well-known log/alog tables technique as long
as conditional statements are avoided to thwart timing attacks (see Appendix A
in [7] for an example of such an implementation).

Essentially, the processing of G(si,j), G−1(si,j) and S̃(si,j) may be conducted
on-the-fly or may involve pre-computations. Both strategies have different im-
pacts on time and storage costs.

The best time-memory trade-off consists in using two look-up tables for G
and S̃, and in processing one field multiplication and one addition each time
G−1 must be performed on a state element. The different steps of the look-up
table generations of G and S̃ are summarized in Algorithm 1.

Algorithm 1
Input: r0 ∈ GF(256), r1 ∈ GF(256)∗, and the LUT S for the AES s-box

Output: The LUTs for G and S̃

1. for i = 0 to 255 do

2. G[i] ← r1 · i ⊕ r0

3. for i = 0 to 255 do

4. S̃[G[i]] ← G[S[i]]

5. return (G, S̃)

As G−1 is not stored as a look-up table, each byte s̃ of the final output state
has to be unmasked using s ← r−1

1 · (s̃ ⊕ r0).
This way of implementing the affine masking requires the storage of 512 bytes

for the look-up tables G and S̃. It also involves 256 multiplications in the field
GF(256) and 256 XORs to generate G, while S̃ is generated using look-ups only.
The initial masking of the plaintext and the key only requires 32 table look-ups.
Unmasking implies a total of 16 inversions and 16 multiplications in the field
GF(256).

As an alternative to the previous algorithm, two variants can be proposed.

1. First variant. S̃, G and G−1 are pre-computed using three look-up tables
in order to save on-the-fly computations. Masking both the plaintext and

Affine Masking against Higher-Order Side Channel Analysis 267

the key involves 32 table look-ups and unmasking the ciphertext involves 16
table look-ups. This method requires the storage of 3 × 256 bytes for these
look-up tables. It also involves 256 multiplications in the field GF(256) to
generate G.

2. Second variant. This variant involves a single look-up table for S̃ and
performs every other operation on-the-fly. It requires the storage of 256 bytes
for this look-up table. It also involves 2 × 256 multiplications in the field
GF(256) to generate S̃, and 32 multiplications for the initial masking of the
plaintext and the key. Unmasking implies a total of 16 inversions and 16
multiplications in the field GF(256).

2.3 Implementation Results

In this section, we compare several AES implementations protected by affine
masking, first-order Boolean masking and second-order Boolean masking. The
codes are written in assembly language for an 8051-based 8-bit architecture.
More details about these countermeasures can be found in the respective papers
[15,21,24]. Table 1 lists the timing and memory performances of each implemen-
tation.

Table 1. Comparison of AES implementations

Method Reference Cycles RAM (bytes) ROM (bytes)

Unprotected Implementation

No Masking Na. 2 × 103 32 1150

Provably Secure First-Order SCA Resistant Implementation

First-Order Boolean Masking [15] 9 × 103 256 + 35 1744

Affine Masking (ref. implem.) This paper 29 × 103 512 + 37 2857

Affine Masking (1st var.) This paper 28 × 103 768 + 36 2985

Affine Masking (2nd var.) This paper 38 × 103 256 + 37 3252

Provably Secure Second-Order SCA Resistant Implementation

Second-Order Boolean Masking [24] 594 × 103 512 + 90 2336

Second-Order Boolean Masking [21] 672 × 103 256 + 86 2215

Table 1 shows that the implementation of AES protected by affine masking is
3.2 to 4.2 times slower than the one protected by first-order Boolean masking,
whereas the memory overhead is either +0% (2nd variant) or +100% (reference
implementation) or +200% (3rd variant). When compared to the second-order
Boolean masking proposed in [24] and [21], the affine masking of AES is 17.7 times
faster with the third variant and 20.5 times faster with the first variant.

As every intermediate variable of the computation is affinely masked, we keep a
perfect securitywithrespect tofirst-orderSCA.Moreover, asargued in thenext sec-
tion, we significantly increase the resistance of the implementation against higher-
order SCA. In view of the implementation performances depicted in Table 1, this

268 G. Fumaroli et al.

rise in security has been obtained at the cost of a very small overhead when com-
pared to the overhead of provably secure second-order Boolean masking.

3 Resistance to Higher-Order SCA

Affine masking is not inherently perfectly secure against higher-order SCA. It can
for instance be checked that several pairs of intermediate variables of the scheme
proposed in Sect. 2 depend on sensitive variables. We however argue in this sec-
tion that affine masking is much more resistant than the widely-used Boolean
masking. To highlight this statement, we quantify the information leakage re-
duction provided by affine masking and we study the efficiency of higher-order
DPA [16,20] against it. For comparison purposes, we apply the same analysis to
Boolean masking. We eventually give the results of several attack experiments in
order to check the reliability of our theoretical analysis with respect to practical
attack scenarios.

3.1 Leakage of Affine Masking

In what follows, we shall consider that an intermediate variable Ui is associated
with a leakage variable Li representing the information leaking about Ui through
side channel. We will assume that the leakage can be expressed as a deterministic
leakage function ϕ of the intermediate variable Ui with an independent additive
noise Bi. Namely, we will assume that the leakage variable Li satisfies:

Li = ϕ(Ui) + Bi . (2)

In the following, we shall call dth-order leakage a tuple of d leakage variables Li

corresponding to d different intermediate variables Ui that jointly dependent on
some sensitive variable. As already argued in Sect. 2, when an implementation
is correctly protected by affine masking (i.e. when every sensitive variable is
affinely masked), no first-order leakage of sensitive information occurs. This is a
consequence of the action of the random additive mask R0. However, as detailed
hereafter, second-order and third-order information leakages do occur in the
presence of affine masking.

Second-order leakage. To recover sensitive information when affine masking is
applied, one must at least consider the joint leakage of two different intermediate
variables U1 and U2 that share common masks. Those variables can thus be
assumed to satisfy: {

U1 = G(Z1) = R1 · Z1 ⊕ R0
U2 = G(Z2) = R1 · Z2 ⊕ R0

, (3)

where R1 and R0 are random variables defined over GF(2n)∗ and over GF(2n)
respectively and where Z1 and Z2 are sensitive variables. A particular case is
Z2 = 0 which amounts to target the pair (G(Z1), R0).

In the following, we shall assume that R1 and R0 are uniformly distributed
over GF(2n)∗ and over GF(2n) respectively and that they are mutually indepen-
dent of the pair (Z1, Z2), and of each other. After denoting by Z the sensitive
variable Z1 ⊕ Z2, we obtain the following lemma.

Affine Masking against Higher-Order Side Channel Analysis 269

Lemma 1. The pairs (U1, U2) and (G(Z), R0) are identically distributed.

Lemma 1 shows that the second-order leakage corresponding to a pair of sensitive
variables (Z1, Z2) both affinely masked is equivalent to the the second-order
leakage on a sensitive variable Z = Z1 ⊕ Z2 that is affinely masked and on the
corresponding additive mask R0. For this reason, in the following, we shall only
consider a second-order leakage corresponding to a pair (G(Z), R0), with Z being
possibly the sum of two sensitive variables. The analysis hereafter shall further
make use of the following lemma.

Lemma 2. The random pair
(
(L1, L2)|Z = z

)
is identically distributed for every

z ∈ GF(2n)∗ and the random pair
(
(L1, L2)|Z = 0

)
has a distinct distribution.

Lemma 2 shows that the second-order leakage (L1, L2) only reveals information
about whether Z equals 0 or not (i.e. whether Z1 equals Z2 or not). Such a
leakage can be thought as a zero-value second-order leakage analogously to the
zero-value first-order leakage of multiplicative masking [1,11]. Intuitively, we have
the following diagram where each arrow indicates an additional security level.

No countermeasure
1st-order leakage

↙ ↘
Boolean masking Multiplicative masking
2nd-order leakage zero-value 1st-order leakage

↘ ↙
Affine masking

zero-value 2nd-order leakage

Third-order leakage. To get more information about Z, a natural idea is
to exploit (L1, L2) together with the leakage L3 on the multiplicative mask
U3 = R1. Indeed, while the pair (U1, U2) only reveals whether Z equals 0 or not,
the triplet (U1, U2, U3) does reveal the full value of Z by:

Z = U−1
3 · (U1 ⊕ U2) = R−1

1 · (G(Z1) ⊕ G(Z2)). (4)

However, the information about the Ui’s that leak through the Li’s does not
enable a simple recovery as in (4). In fact, we expect that extracting information
on Z through side channels is more difficult when affine masking is applied
in place of Boolean masking. Indeed, when the mask is introduced by bitwise
addition, then each bit of the mask acts on a single bit of the sensitive variable.
In this case, every bit of the masked variable depends on a single bit of the mask.
Since bits of processed variables usually contribute to the leakage independently,
the information leaking about the mask and the information leaking about the
masked variable can be efficiently combined to unmask the variable. This can
be illustrated in the Hamming weight leakage model (where ϕ = HW) by the
important correlation between HW(Z) and either |HW(Z ⊕ R0) − HW(R0)| or
(HW(Z⊕R0)−n/2)(HW(R0)−n/2) [16,20]. When a further mask is introduced

270 G. Fumaroli et al.

by multiplication in GF(2n)∗, the additive mask still prevents from a zero-value
first-order leakage (as for multiplicative masking [11]), and the new multiplicative
mask ensures that every bit of the masked variable depends on every bit of both
the sensitive variable and the multiplicative mask. In this case, it is legitimate
to expect that the information leaked by side channel is much more difficult to
exploit to recover information about Z. For instance, there is no evident way to
combine HW(Z ·R1) and HW(R1) to construct a variable with high correlation
with HW(Z). In order to validate this intuition, we conduct in the next section
an information theoretic evaluation of the leakages resulting from affine masking
and different kinds of masking.

3.2 Information Theoretic Evaluation

In order to evaluate the information revealed by affine masking leakages
(first-order and second-order) we follow the information theoretic approach sug-
gested in [25]. Namely we compute the mutual information between the sensi-
tive variable Z and either the pair of leakages (L1, L2) or the triplet of leakages
(L1, L2, L3). For comparison purposes, we proceed similarly for Boolean masking
and multiplicative masking. We list hereafter the leakages we consider and the
underlying leaking variables:

– 2nd-order leakage of 1st-order Boolean masking: (Z ⊕ R0, R0)
– 3rd-order leakage of 2nd-order Boolean masking: (Z ⊕ R0 ⊕ R′

0, R0, R
′
0)

– 1st-order leakage of multiplicative masking: R1 · Z
– 2nd-order leakage of multiplicative masking: (R1 · Z, R1)
– 2nd-order leakage of affine masking: (R1 · Z ⊕ R0, R0)
– 3rd-order leakage of affine masking: (R1 · Z ⊕ R0, R0, R1)

The variables Z, R0, R′
0 and R1 are assumed to be uniformly distributed (over

GF(256) for the former and over GF(256)∗ for R1) and mutually independent.
For each kind of leakage, we computed the mutual information between Z and
the tuple of leakages in the Hamming weight model with Gaussian noise: the
leakage Li related to a variable Ui is distributed according to (2) with ϕ =
HW and Bi ∼ N (0, σ2) (the different Bi’s are also assumed to be mutually
independent). In this context, the signal-to-noise ratio (SNR) of the leakage is
defined as Var [ϕ(Ui)] /Var [Bi] = 2/σ2. Fig. 1 shows the mutual information
values obtained for each kind of leakage with respect to an increasing noise
standard deviation over [0.1, 4.47] (i.e. a decreasing SNR over [1

10 , 200]). These
results demonstrate the information leakage reduction implied by the use of affine
masking. As expected, affine masking leaks less information than multiplicative
masking and first-order Boolean masking for all SNRs. We further observe that
affine masking leaks less information than second-order Boolean masking when σ
is lower than 2.36, that is when the SNR is greater than 0.36. This first analysis
allows us to conclude that affine masking is less leaky than 2nd-order Boolean
masking when the amount of noise in the leakage is small. On the other hand,
these results illustrate that a 2nd-order SCA security is asymptotically better
than a 1st-order SCA security even if the masking relation is more complicated

Affine Masking against Higher-Order Side Channel Analysis 271

0.1 1 2 3 4 4.47
−12

−10

−8

−6

−4

−2

0

2

noise standard deviation σ

lo
g 10

(M
I)

1O Boolean
2O Boolean
Mult (1O Leak)
Mult (2O Leak)
Affine (2O Leak)
Affine (3O Leak)

Fig. 1. Mutual information (log10) between the leakage and the sensitive variable over

an increasing noise standard deviation

in the latter case. Similarly, we see that for a low noise amount, multiplicative
masking is more resistant than 1st-order Boolean masking although it does not
thwart 1st-order SCA while Boolean masking does.

Fig. 1 also confirms our intuition regarding the information provided by the
leakage on the multiplicative mask. Observing the obtained mutual information
for affine masking and for multiplicative masking, we note that the information
gained from the leakage on the multiplicative mask is low. This phenomenon
amplifies when σ increases and, beyond σ ≈ 2 the distance between the mutual
information curves almost vanishes for both kinds of masking. This means that
when the noise is sufficiently strong, the leakage on the multiplicative mask does
not provide useful information anymore and only the zero-value leakage reveals
sensitive information.

In this section, we have quantified the impact of affine masking on the reduc-
tion of the information leakage. We will now see to which extent this reduction
also applies to the efficiency of side channel attacks on affine masking.

3.3 Higher-Order DPA Evaluation

Let us assume that Z depends on the plaintext and of a subkey k�, and let
us denote by Z(k) the hypothetic value of Z for a guess k on k�. In a higher-
order DPA (HO-DPA) [16,20], the attacker tests the guess k by estimating the
correlation coefficient ρ [ϕ̂(Z(k)), C(L)], where C is a combining function that
converts the multivariate leakage L into a univariate signal and where ϕ̂ is a
prediction function chosen such that ϕ̂(Z) is as much as possible correlated to
C(L). The guess k leading to the greatest correlation in absolute value is selected
as key-candidate. In [14], the authors show that the number of traces required
to mount a successful DPA attack is roughly quadratic in ρ−1 where ρ is the
correlation coefficient ρ [ϕ̂(Z), C(L)] (that is the expected correlation for the

272 G. Fumaroli et al.

correct key guess). The latter can therefore be used as a metric for the efficiency
of a (HO-)DPA attack.

The analysis conducted in [20] states that a good choice for C is the normalized
product combining:

C : L �→
∏

i

(Li − E [Li]). (5)

Although the effectiveness of the normalized product combining has been only
studied in [20] in the context of Boolean masking, this combining function stays
a natural choice against any kind of masking since ρ [ϕ̂(Z(k)), C(L)] is related
to the multivariate correlation1 between ϕ̂(Z(k)) and every coordinate of L [26].
Besides, in the presence of (even little) noise in the side-channel leakage, the
HO-DPA with normalized product combining is nowadays the most efficient
unprofiled attack against Boolean masking in the literature (see for instance
[20,26,22]). For those reasons, it is natural to study how efficient is a HO-DPA
with normalized product combining against affine masking compared to Boolean
masking.

In [20], it is also shown that the best choice for ϕ̂ given C is:

ϕ̂ : z �→ E [C(L)|Z = z] . (6)

As explained in [20], the attacker may not be able to evaluate ϕ̂ without knowing
the exact distribution of L given Z (as in a profiled attack scenario). In a security
evaluation context, it however makes sense to assume that the attacker has
this ability. As proved in [7, Appendix B], the optimal prediction function ϕ̂
computed according to (6) for the zero-value 2nd-order leakage of affine masking
is an affine transformation of the dirac function δ0 defined as2:

δ0(z) =
{

1 if z = 0 ,
0 if z �= 0 .

(7)

Therefore, we have ρ [ϕ̂(Z(k)), C(L)] = ±ρ [δ0(Z(k)), C(L)], that is, the attack
performs similarly with ϕ̂ and δ0.

Remark 1. Computing ρ [δ0(Z(k)), C(L)] amounts to performing a zero-value
DPA attack as in [11] but on the combined leakage C(L). After assuming that
Z(k) is uniformly distributed over GF(2n), it can indeed be checked that the
covariance between δ0(Z(k)) and C(L) (which is the discriminating element in
the correlation) equals 2n−1

2n E [C(L)|Z(k) �= 0] − 1
2n E [C(L)|Z(k) = 0].

When the leakage satisfies (2) with ϕ = HW and Bi ∼ N (0, σ2) (i.e. when the
Hamming weight leakage model with Gaussian noise is assumed), it is shown in

1 What we call multivariate correlation here is the straightforward generalization of

the correlation coefficient to more than two variables (see [26]).
2 This is actually true whatever the leakage function and noise distribution as a direct

consequence of Lemma 2.

Affine Masking against Higher-Order Side Channel Analysis 273

[7, Appendix B] that the coefficient ρaff obtained for the zero-value second-order
leakage of affine masking satisfies:

ρaff =
n

(4σ2 + n)
√

2n − 1
, (8)

where n is the bit-size of Z.
We also computed the correlation coefficient corresponding to the 3rd-order

leakage of affine masking. We did not obtained explicit formulae for this coef-
ficient but we observed for several values of n and σ that it was always lower
that ρaff. This suggests that HO-DPA with normalized product combining works
better against the 2nd-order leakage of affine masking than against the 3rd-order
one. From our analysis, we therefore concluded that ρaff not only quantifies the
resistance of affine masking against 2nd-order DPA, but also that against HO-
DPA in general.

Regarding Boolean masking, it has been shown in [23] that the correlation
ρbool corresponding to HO-DPA with normalized product combining against
dth-order Boolean masking satisfies (in the Hamming weight model):

ρbool = (−1)d

√
n

(n + 4σ2)
d+1
2

. (9)

Let us denote by Naff (resp. Nbool) the number of leakage measurements for a
successful attack on affine masking (resp. Boolean masking). Since, according
to [14], Naff and Nbool are respectively roughly quadratic in the values of the
inverse of the correlation coefficients, the ratio Naff

Nbool
satisfies:

Naff

Nbool
≈
(

ρbool

ρaff

)2

=
2n − 1

n

(
1

n + 4σ2

)1−d

. (10)

Let ν denote the value 2n−1
n

(
1

n+4σ2

)1−d

. In view of (10), affine masking is more

resistant to HO-DPA than dth-order Boolean masking if and only if ν ≥ 1.
Comparing the resistance of Boolean masking and affine masking against HO-
DPA thus amounts to study when ν ≥ 1 is satisfied. Let us study this inequality
with respect to d:

– When d = 1, we have ν ≥ 1 for all n ≥ 1 whatever σ. We deduce that affine
masking is more resistant to HO-DPA than first-order Boolean masking for
all SNRs. Moreover, from (10), we expect that HO-DPA against first-order
Boolean masking required around 32 times more leakage measurements than
against affine masking whatever σ.

– For d = 2, ν ≥ 1 if and only if σ2 ≤ (2n − n2 − 1)/4n. This implies that for
the case of AES where n = 8, affine masking is more resistant to HO-DPA
than 2nd-order Boolean masking if σ ≤ 2.44, which corresponds to a SNR
greater than 0.335.

– For d ≥ 3, ν is always smaller than 1 for every n ≥ 1. Affine masking is hence
less resistant to HO-DPA than 3rd-order Boolean masking for all SNRs.

274 G. Fumaroli et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
−3

10
−2

10
−1

10
0

noise standard deviation σ

co
rr

el
at

io
n

1O Boolean
2O Boolean
3O Boolean
Affine (2O−DPA)
Affine (3O−DPA)

Fig. 2. Correlation values with respect to σ (logarithmic scale)

Eventually Fig. 2 plots the correlation values ρbool for d ∈ {1, 2, 3}, ρaff (2O-DPA
against affine masking) as well as the correlation values obtained for the third-
order DPA against affine masking. It illustrates the fact that the correlation
corresponding to the 3rd-order leakage of affine masking is always lower than
that corresponding to the 2nd-order leakage of affine masking. Moreover and as
expected, it shows that the coefficient ρaff is always lower than ρbool for d = 1,
always greater than ρbool for d = 3, and lower than ρbool d = 2 only when
σ ≤ 2.44.

3.4 Attack Experiments

In order to confront the theoretical analyses conducted in the previous sections
to practice, we performed several attack experiments. In a first place, we applied
several side-channel distinguishers to leakage measurements simulated in the
Hamming weight model with Gaussian noise. We not only applied (HO)-DPA,
but also two other kinds of attacks, namely (higher-order) Mutual Information
Analysis (MIA) and Template Attacks (TA). We chose to test these three side-
channel distinguishers against the different kinds of masking firstly because they
are the most widely used in the literature, and secondly because they represent a
brand spectrum of adversary capabilities. As already mentioned, HO-DPA with
normalized product combining is the most efficient unprofiled attack against
Boolean masking. On the other hand HO-MIA does not rely on a specific com-
bining function, which is of interest for a fair comparison between Boolean and
affine masking. Eventually, assuming that the adversary’s templates are perfect,
template attacks are the best possible attacks and hence they give the maximal
security level reached by each kind of masking. Our methodology enabled us to
observe how the different attacks perform against affine masking and to com-
pare its resistance with that of the Boolean/multiplicative masking for different

Affine Masking against Higher-Order Side Channel Analysis 275

SNRs. Afterward, we performed some attacks against real power consumption
measurements of smart-card implementations in order to check our observations
in a real-world context.

Attack simulations. The leakage measurements have been simulated as sam-
ples of the random variables Li defined according to (2) with ϕ = HW and
Bi ∼ N (0, σ2) (the different Bi’s are also assumed independent). For all the
attacks, the sensitive variable Z was chosen to be an AES s-box output of the
form S(X ⊕ k�) where X represents a varying plaintext byte and k� represents
the key byte to recover.

Side-channel distinguishers. We applied higher-order DPA such as described in
Sect. 3.3 and we also applied higher-order MIA (HO-MIA) and template attacks.
In a higher-order MIA [19,9], the correlation coefficient is replaced by the mutual
information: the guess k is tested by estimating I(ϕ̂(Z(k));L). Since the mutual
information is a multivariate operator, this approach does not involve a combin-
ing function. In a template attack [4,17], the attacker owns some templates of the
leakage that he previously acquired during a profiling phase. More precisely, he
has some estimations of the probability distributions (�, z) �→ Pr [L = �|Z = z].
Based on those estimations, the attacker tests a guess k by estimating the like-
lihood Pr[k� = k|L, X].

Target variables. Each attack was applied against the leakages of affine masking,
multiplicative masking and Boolean masking. The target variables are those
listed in Sect. 3.2 for Z being S(X ⊕ k�).

Prediction functions. For each (HO-)DPA, we chose ϕ̂ to be the optimal predic-
tion function (6). As explained in Sect. 3.3, this leads us to select the dirac func-
tion δ0 in the attacks against the zero-value 2nd-order leakage of affine masking
(resp. the zero-value 1st-order leakage of multiplicative masking) and, according
to [23], to select the Hamming weight function in the attacks against Boolean
masking of any order.

For the (HO-)MIA attacks, we chose ϕ̂ such that it maximizes the mutual
information I(ϕ̂(Z(k));L) for k = k� while ensuring discrimination (i.e. the mu-
tual information must be lower for k �= k�). As a direct consequence of Lemma 2,
we chose ϕ̂ = δ0 to attack the zero-value 2nd-order leakage. Naturally, we did the
same choice for the zero-value 1st-order leakage of multiplicative masking. For
the third-order MIA on affine masking (and second-order MIA on multiplicative
masking), ϕ̂ was chosen to be the identity function since it maximizes I(ϕ̂(Z);L).
However, for the attack to succeed with such a choice, the target sensitive vari-
able Z must be such that the function X �→ Z = fk�(X) (where X is the plain-
text part involved in Z) is not injective [10,19]. This constrained us to slightly
modify the target variables for these attacks. Against affine masking, we targeted
an affinely masked s-box output G(S(X ⊕ k�)) and an affinely masked plaintext
byte G(X ′) (together with the multiplicative mask R1), which by Lemma 1 yields
a non-injective function (X, X ′) �→ Z = S(X ⊕ k�) ⊕ X ′. Against multiplicative

276 G. Fumaroli et al.

masking, we targeted the bitwise addition between two s-box outputs, which
yields a non-injective function (X, X ′) �→ Z = S(X ⊕ k�) ⊕ S(X ′ ⊕ k�′). Even-
tually, every HO-MIA against Boolean masking was performed with ϕ̂ = HW
since the distribution of (HW(Z ⊕ R0), HW(R0)) only depends on HW(Z), and
therefore I

(
Z; (HW(Z ⊕ R0), HW(R0))

)
= I

(
HW(Z); (HW(Z ⊕ R0), HW(R0))

)
(the same argument holds for every masking order).

Pdf estimation method. For the (HO-)MIA attacks, we used the histogram esti-
mation method with rule of [10] for the bin-widths selection.

Leakage templates. For the template attacks, the attacker’s templates were as-
sumed to be perfect. In our context, this means that the attacker is aware of
ϕ = HW and Bi ∼ N (0, σ2) for every i, and he uses this knowledge to evaluate
the real probabilities Pr [L|Z].

Attack simulation results. Each attack simulation was performed 100 times for
various SNR values (+∞, 1, 1/2, 1/5 and 1/10), that is, for several noise standard
deviation values (0,

√
2, 2,

√
10 and 2

√
5). Table 2 summarizes the number of

leakage measurements required to observe a success rate of 90% in retrieving k�

for the different attacks.
The results presented in Table 2 show the significant gain of security induced

by affine masking compared to multiplicative and first-order Boolean masking.
Some more specific observations are reported hereafter.

– Affine masking versus multiplicative masking. In all scenarios, affine
masking is more resistant than multiplicative masking. When the SNR de-
creases, the resistance of affine masking increases faster than that of multi-
plicative masking. This is a consequence of the fact that affine masking is
perfectly secure against first-order attacks which is not the case of multi-
plicative masking.

– Affine masking versus Boolean masking. When compared to first-
order Boolean masking, a successful HO-DPA requires between 30 and 40
more leakage measurements against affine masking. For low noises (i.e. high
SNRs), HO-DPA is also less efficient against affine masking than against
second-order masking. The tide is turned when noise increases, which cor-
roborates that higher-order masking combined with noise provides good re-
sistance to SCA [3]. These results validate the theoretical analysis done in
Sect. 3.3, where it is expected that affine masking is around 32 times more
resistant than first-order Boolean masking and more resistant than second-
order Boolean masking only when the SNR is greater than 0.335. On the
other hand, the results of template attacks confirm that affine masking is
always more resistant than first-order Boolean masking, and that it is also
more resistant than second-order Boolean masking for high SNRs. It is in-
teresting to note the strong correlation between the information theoretic
evaluation of Sect. 3.2 and the efficiency of template attacks. We see that
template attacks are more efficient against second-order Boolean masking

Affine Masking against Higher-Order Side Channel Analysis 277

Table 2. Number of leakage measurements for a 90% success rate

Attack \ SNR +∞ 1 1/2 1/5 1/10

Unprofiled Attacks against Boolean Masking

2O-DPA on 1O Boolean Masking 150 500 1500 6000 20 000

2O-MIA on 1O Boolean Masking 100 5000 15 000 50 000 160 000

3O-DPA on 2O Boolean Masking 1500 9000 35 000 280 000 > 106

3O-MIA on 2O Boolean Masking 160 160 000 650 000 > 106 > 106

Unprofiled Attacks against Multiplicative Masking

1O-DPA on Multiplicative Masking 900 1500 2500 4000 7500

1O-MIA on Multiplicative Masking 700 2500 3500 5500 15000

2O-DPA on Multiplicative Masking 2500 7500 20 000 60 000 220 000

2O-MIA on Multiplicative Masking 4000 35 000 55 000 100 000 200 000

Unprofiled Attacks against Affine Masking

2O-DPA on Affine Masking 6500 20 000 45 000 170 000 650 000

2O-MIA on Affine Masking 5500 100 000 600 000 > 106 > 106

3O-DPA on Affine Masking > 106 > 106 > 106 > 106 > 106

3O-MIA on Affine Masking 100 000 > 106 > 106 > 106 > 106

Profiled Attacks

2O-TA on Boolean Masking 20 500 1200 7000 20 000

3O-TA on 2O Boolean Masking 20 8000 35 000 300 000 > 106

1O-TA on Multiplicative Masking 500 1300 1900 4000 7000

2O-TA on Multiplicative Masking 60 900 1400 4000 8000

2O-TA on Affine Masking 1300 15 000 45 000 200 000 > 106

3O-TA on Affine Masking 260 15 000 35 000 200 000 106

than against affine masking when the SNR is greater than 1/2 (i.e. σ < 2)
which corresponds to the situation where the information leakage of affine
masking is lower than that of second-order Boolean masking according to
Fig. 1. This observation is in accordance with the argumentation of [25] that
the mutual information metric is related to the efficiency of template attacks.

– 3rd-order attacks against affine masking. It can be observed that tar-
geting the multiplicative mask to mount a third-order attack against affine
masking does not improve the efficiency of unprofiled attacks. On the con-
trary, they become clearly inefficient. This is quite natural for the third-order
DPA using the product combining since unlike for an additive mask, such a
combination is not suitable to remove a multiplicative mask. Therefore, the
contribution of the third leakage to the combined leakage mainly acts as a
noise, which renders the attack inefficient. For third-order MIA, the efficiency
loss may result from the fact that precise estimations of 3-variate densities
require significantly more samples than for bivariate densities which slows
down the attack efficiency convergence. For template attacks, targeting the
multiplicative mask improves the attack efficiency for high SNRs. However
when the noise increases the efficiency of 2O-TA and 3O-TA against affine

278 G. Fumaroli et al.

masking become similar. Once again, this corroborates the information the-
oretic evaluation of Sect. 3.2 which shows that the information provided by
the third-order leakage of affine masking get closer to that provided by the
second-order leakage as the noise increases.

– (HO-)MIA versus (HO-)DPA. (HO-)MIA attacks are always less effi-
cient than the corresponding (HO-)DPA. A possible explanation is that the
measurements are simulated in the Hamming weight model which is a situa-
tion more favorable to DPA attacks than to MIA attacks. A second possible
explanation is that the rule proposed in [10] for the bin-widths selection in
the MIA is not suitable when targeting affine masking. This point is let for
further research.

Practical attacks. In order to confirm our simulation results, we performed
several attacks against software implementations of the AES s-box executed on
a 8051 microcontroller. Results of these attacks are reported in [7, Figure 5] and
corroborate quite well the attack simulations we performed for an SNR equal to
1/2 (which was approximately the observed SNR on the test device).

4 Conclusion

In this paper, we introduced affine masking as an alternative to the commonly
used Boolean masking to protect implementations of block ciphers against side
channel analysis. The principle is to mask each sensitive variable both additively
and multiplicatively in order to complicate the masking relation and therefore
achieve better higher-order resistance in practice. We described an affine masking
scheme for AES and we provided some implementation results for our scheme.
Moreover, we conducted an in-depth analysis which demonstrates that affine
masking significantly improves the resistance to higher-order SCA compared to
Boolean masking. This analysis together with our implementation tests clearly
show that the proposed scheme provides a good performance-security trade-off
compared to existing countermeasures.

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against

Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,

vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.

Springer, Heidelberg (2004)

3. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract

Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.

398–412. Springer, Heidelberg (1999)

4. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.,

Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg

(2003)

Affine Masking against Higher-Order Side Channel Analysis 279

5. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-

der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,

vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

6. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)

7. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-

order side channel analysis (extended version). Cryptology ePrint Archive, Report

2010/523 (2010), http://eprint.iacr.org/

8. Fumaroli, G., Mayer, E., Dubois, R.: First-Order Differential Power Analysis

on the Duplication Method. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)

INDOCRYPT 2007. LNCS, vol. 4859, pp. 210–223. Springer, Heidelberg (2007)

9. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting Higher-Order

DPA Attacks: Multivariate Mutual Information Analysis. Cryptology ePrint

Archive, Report 2009/228 (2009), http://eprint.iacr.org/

10. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:

Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,

Heidelberg (2008)

11. Golić, J., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:

Kaliski Jr., B.S., Koç, Ç., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–

212. Springer, Heidelberg (2003)

12. Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar,

C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

13. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets

of Smartcards. Springer, Heidelberg (2007)

15. Messerges, T.: Securing the AES Finalists against Power Analysis Attacks. In:

Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg

(2001)

16. Messerges, T.: Using Second-order Power Analysis to Attack DPA Resistant Soft-

ware. In: Paar, C., Koç, Ç. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.

Springer, Heidelberg (2000)

17. Oswald, E., Mangard, S.: Template Attacks on Masking—Resistance is Futile. In:

Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg

(2006)

18. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-order DPA At-

tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,

D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

19. Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information

Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,

Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidel-

berg (2009)

20. Prouff, E., Rivain, M., Bévan, R.: Statistical Analysis of Second Order Differential

Power Analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

21. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure

Against Second Order Side Channel Analysis. In: Nyberg, K. (ed.) FSE 2008.

LNCS, vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

22. Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In: Mangard,

S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,

Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/

280 G. Fumaroli et al.

23. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software

Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.

LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

24. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.

(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

25. Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis

of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.

LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

26. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed,

M., Kasper, M., Mangard, S.: The world is not enough: Another look

on second-order dpa. Cryptology ePrint Archive, Report 2010/180 (2010),

http://eprint.iacr.org/

27. von Willich, M.: A technique with an information-theoretic basis for protecting

secret data from differential power attacks. In: Honary, B. (ed.) Cryptography and

Coding 2001. LNCS, vol. 2260, pp. 44–62. Springer, Heidelberg (2001)

http://eprint.iacr.org/

Search on Encrypted Data in the
Symmetric-Key Setting

Alexandra Boldyreva

Georgia Institute of Technology, USA

aboldyre@cc.gatech.edu

Abstract. With cloud storage and computing on the rise, the need for

searching on encrypted data is becoming more urgent. In this talk we will

survey the existing solutions for the problem of searchable encryption

in the symmetric-key setting. We will discuss various tradeoffs between

functionality, efficiency and security. We will look at several schemes

permitting searches of various types, and will discuss their efficiency and

security. Finally we will identity some open problems related to the topic.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, p. 281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Preimages for the Tillich-Zémor Hash Function

Christophe Petit� and Jean-Jacques Quisquater

UCL Crypto Group��

Universit catholique de Louvain

Place du levant 3

1348 Louvain-la-Neuve, Belgium

christophe.petit@uclouvain.be, jjq@uclouvain.be

Abstract. After 15 years of unsuccessful cryptanalysis attempts by the

research community, Grassl et al. have recently broken the collision re-

sistance property of the Tillich-Zémor hash function. In this paper, we

extend their cryptanalytic work and consider the preimage resistance of

the function.

We present two algorithms for computing preimages, each algorithm

having its own advantages in terms of speed and preimage lengths. We

produce theoretical and experimental evidence that both our algorithms

are very efficient and succeed with a very large probability on the function

parameters. Furthermore, for an important subset of these parameters,

we provide a full proof that our second algorithm always succeeds in

deterministic cubic time.

Our attacks definitely break the Tillich-Zémor hash function and show

that it is not even one-way. Nevertheless, we point out that other hash

functions based on a similar design may still be secure.

1 Introduction

The Tillich-Zémor hash function was one of the oldest unbroken cryptographic
hash functions in the literature. It was proposed at CRYPTO’94, following the
cryptanalysis of a related scheme of Zémor [15,16,14,12]. It received significant
cryptanalytic attention over the years [3,5,1,11,10] but although closely related
schemes had been completely broken [2,13,9], it remained essentially intact dur-
ing 15 years.

In August 2009, Grassl et al. introduced a new and very elegant algorithm
finding collisions for the Tillich-Zémor hash function [6]. The authors discov-
ered a particular structure in the hash values of palindromic messages (messages
such that their bitstring representation can be reversed without changing) and
exploited their finding with a nice result of Mesirov and Sweet [8] on the Eu-
clidean algorithm applied to polynomials in characteristic 2.

In this paper, we extend the work of Grassl et al. to the problem of find-
ing preimages for the Tillich-Zémor hash function. We first show that a tiny
� Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS) at Uni-

versit catholique de Louvain (UCL).
�� Supported by the Interuniversity Attraction Pole (IAP) projet BCrypt.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 282–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Preimages for the Tillich-Zémor Hash Function 283

modification of their algorithm actually provides a second preimage algorithm.
Inspired by previous work on a similar hash function [9], we then reduce the
problem of finding preimages to any hash value to the problem of precomputing
preimages to a few hash values with certain characteristics. Finally, we provide
two algorithms for this precomputing part.

Both our precomputing algorithms are very efficient and successful for ran-
dom choices of the function parameters. Each algorithm has its own advantages
resulting from different approaches. The first algorithm produces shorter preim-
ages than the second one and it is therefore more interesting from a practical
point of view. On the other hand, the second algorithm is deterministic and it
is faster than the first one. It is also more interesting from a theoretical point of
view since we have a proof that it always succeeds in deterministic cubic time
for an important subset of the function parameters.

The remainder of this paper is organized as follows. In Section 2 we introduce
our notations, the Tillich-Zémor hash function, the essential of Grassl et al.’s
algorithm, and we briefly sketch out our algorithms. In Section 3, we modify
Grassl et al.’s algorithm into a second preimage algorithm. In Section 4, we
reduce the preimage problem to a precomputation part. In Sections 5 and 6 we
give our two precomputation algorithms. We conclude the paper in Section 7 with
a discussion of our results and the security of Tillich-Zémor-like hash functions.
Finally, we illustrate our algorithms with a toy example in Appendix A.

2 Preliminaries

2.1 The Tillich-Zémor Hash Function

Let n be a positive integer and let p(X) be an irreducible polynomial of degree
n over the field F2. Let A0 and A1 be the following two matrices

A0 :=
(

X 1
1 0

)
and A1 :=

(
X X + 1
1 1

)

that have determinant 1. We call these matrices the generators of the Tillich-
Zémor hash function. Let m = m1m2...mk ∈ {0, 1}∗ be the bitstring representa-
tion of a message. The Tillich-Zémor hash value of m is defined as

H(m1m2...mk) := Am1Am2 ...Amk
mod p(X).

2.2 Notations

Let K := F2[X]/(P (X)) ≈ F2n . The images of the Tillich-Zémor hash func-
tions are the matrices of the group SL(2, K), that is the group of matrices with
elements in K and determinant 1. Let

h(m1...mk) := Am1Am2 ...Amk

284 C. Petit and J.-J. Quisquater

be the Tillich-Zémor hash function without modular reduction. Its images are
elements of SL(2, F2[X]). In this paper, we sometimes identify the elements of
K to their unique representatives of degree smaller than n in F2[X]. To remove
any ambiguity when it may appear, we use the symbol = to mean an equality
over F2[X] and ≡ to mean an equality over K. For q(X) ∈ F2[X], we write qi

for the coefficient of the term of degree i of q(X). Finally, if m, m′ ∈ {0, 1}∗ are
two bitstrings, we write mm′ for their concatenation.

2.3 Grassl et al.’s Collision Algorithm

Grassl et al. [6] first observed that two messages collide for the Tillich-Zémor
hash function if and only if they collide for the following modified function

H ′(m1...mk) := A′
m1

A′
m2

...A′
mk

mod p(X)

where

A′
0 := A0 =

(
X 1
1 0

)
and A′

1 := A−1
0 A1A0 =

(
X + 1 1

1 0

)
.

Grassl et al. then observed the following property of palindromic messages. Let
h′ be the modified Tillich-Zémor hash function without reduction.

Proposition 1. [6] Let m ∈ {0, 1}2k be a palindrome of even length, say m =
mk...m1m1...mk. Let a(0), ..., a(k) be the following polynomials

a(i) =

⎧⎨
⎩

1, if i = 0;
X + m1 + 1, if i = 1;
(X + mi)a(i−1) + a(i−2), if 1 < i ≤ k.

Then h′(m) =
(

a2 b
b d2

)
for a = a(k), d = a(k−1) and some b ∈ F2[X]. Moreover,

h′(0m0) + h′(1m1) =
(

a2 a2

a2 0

)
.

From Proposition 1, we see that the square roots of the upper left entries of
h′(m1m1), h′(m2m1m1m2), h′(m3m2m1m1m2m3), etc. satisfy a Euclidean al-
gorithm sequence (in reverse order) where each quotient is either X or X + 1.
Those sequences are often called maximal length sequences for the Euclidean al-
gorithm or maximal length Euclidean sequences, and they have long been a topic
of interest in number theory. Mesirov and Sweet [8] showed that, when a ∈ F2[X]
is irreducible, there exist exactly two polynomials d such that a, d are the first
terms of a maximal length Euclidean sequence. They also provide an algorithm
to compute them, which we will give below.

In their collision algorithm, Grassl et al. apply Mesirov and Sweet’s algorithm
to the irreducible polynomial a = p(X) in order to recover d. The corresponding
bit sequence m1...mn can be recovered by applying the Euclidean algorithm to
a and d. By Proposition 1, we have

h′(0mn...m1m1...mn0) = h′(1mn...m1m1...mn1) +
(

a2 a2

a2 0

)
hence

H ′(0mn...m1m1...mn0) ≡ H ′(1mn...m1m1...mn1).

Preimages for the Tillich-Zémor Hash Function 285

2.4 Maximal Length Sequences in the Euclidean Algorithm in F2[X]

The Mesirov and Sweet’s algorithm, as described by Grassl et al., is the fol-
lowing one. To find a maximal length Euclidean sequence starting from a given
polynomial a(X) of degree k,

1. Construct a matrix A ∈ F
(k+1)×k
2 from the k + 1 polynomials

g0 = 1,

gi = X i−1 + X2i−1 + X2i mod a(X), for i = 1, 2, ..., k,

placing in the ith row of A the coefficients gi,0, gi,1, ..., gi,k−1 of the polynomial
gi(X) = gi,0 + gi,1X + ... + gi,k−1X

k−1.
2. Solve the linear system Aut = (1, 0, ..., 0, 1)t where u = (u1, ..., uk).
3. Compute d(X) by multiplying a(X) by

∑k
i=1 uiX

−i and taking only the
non-negative powers.

Mesirov and Sweet showed in [8] that polynomials d such that a, d are the first
terms of a maximal length sequence for the Euclidean algorithm, are in one-
to-one correspondence with the solutions of the equation Aut = (1, 0, ..., 0, 1)t.
Moreover, they proved that when a is irreducible, this equation has exactly two
solutions.

Maximal length Euclidean sequences are closely connected to the matrices A′
0

and A′
1. If mi and a(i) are as in Proposition 1, we have

(a(1) a(0)) = (1 0)
(

X+1+m1 1
1 0

)
= (1 0) A′

m1

(where m1 := 1 − m1) and for 1 < i ≤ k we have

(a(i) a(i−1)) = (a(i−1) a(i−2))
(

X+mi 1
1 0

)
= (a(i−1) a(i−2))A′

mi
.

Therefore, the first row of any product of A′
0 and A′

1 is the beginning of a
maximal length Euclidean sequence. By induction, we have

(a(k) a(k−1)) = (1 0)h′(m1m2...mk). (1)

2.5 Ideas behind Our Algorithms

Before going into the details of our algorithms, we provide some intuition behind
them. Let m be the palindromic message used in Grassl et al.’s collision attack.
In Section 3, we first observe that the hash values of m0 and 0m have the form
L := (1 0

α 1) and U := (1 α
0 1) for some α ∈ F2n . Since L and U have order 2, we

obtain an algorithm finding preimages to the identity matrix, hence a second
preimage algorithm for the Tillich-Zémor hash function.

We then observe that the set of matrices L := {Lα := (1 0
α 1) , α ∈ K} forms an

Abelian subgroup of SL(2, K) that is isomorphic to the additive group (K, +).
Finding n matrices Lαi (together with their preimages) such that the set {αi, i =

286 C. Petit and J.-J. Quisquater

1, ..., n} is a basis of K over F2, therefore suffices to generate the whole subgroup
L. The same holds for the set U := {Uα := (1 α

0 1) , α ∈ K}. Moreover, inspired
by previous work on a similar function [9], we prove in Proposition 3 that any
matrix of SL(2, K) can be written as a small product of A0 and matrices of
the sets L and U . At this point, it remains to obtain n matrices Lαi and Uαi

generating L and U . We solve this problem in two different ways and obtain two
algorithms, each of them having its own advantages but both of them being very
efficient and successful.

As observed above, Grassl et al.’s paper indirectly provides one matrix L ∈ L
after applying Mesirov and Sweet’s algorithm to a = p. In our first precomputing
algorithm, we obtain n different matrices after applying Mesirov and Sweet’s
algorithm to ai = pp′i, where p′i are randomly-chosen small degree polynomials.
This idea is quite simple but proving its correctness requires solving two issues.
First, Mesirov and Sweet only guarantee the success of their algorithm when
applied to an irreducible polynomial. Second, the αi values obtained by this way
should not be restricted to any vectorial subspace of K. In this paper, we extend
Mesirov and Sweet’s result in Proposition 5 and then argue on the correctness
of our algorithm.

In our second precomputing algorithm, we follow a different approach and
obtain n matrices recursively from the first one. In particular, we exhibit a
sequence of messages with increasing lengths hashing to matrices of the required
form, such that the corresponding values αi satisfy a very simple recurrence.
By studying the elements of this recurrence, we identify a subset I ⊂ {1, ..., 2n}
such that the corresponding matrices {Lαi , i ∈ I} generate the whole subgroup
when n is prime. This important result is proved through Lemma 6, Lemma 7
and Proposition 9. Matrices {Uαi , i ∈ I} and their preimages are recovered at
the same time.

Due to the way it constructs matrices Lαi and Uαi , our second precomputing
algorithm produces larger preimages than the first one. On the other hand, it is
deterministic, faster than the first one, and it is guaranteed to always succeed
when parameter n is prime.

3 Second Preimages for Tillich-Zémor Hash Function

The following proposition constructs collisions with the void message from the
palindromic messages used in Grassl et al.’s attack.

Proposition 2. Let
(

a2 b
b d2

)
= H ′(m) with a ≡ 0 be the modified Tillich-Zémor

hash value of some message m ∈ {0, 1}∗. Then

H(0m0m) = H(1m1m) = H(m0m0) = H(m1m1) = I = H().

Proof: We have 1 = det(h′(m)) = a2d2 + b2 ≡ b2 hence b ≡ 1. By a straightfor-
ward computation, we have H ′(0m) =

(
1 X+d2

0 1

)
, H ′(m0) =

(1 0
X+d2 1

)
, H ′(1m) =(

1 X+1+d2

0 1

)
, H ′(m1) =

(1 0
X+1+d2 1

)
, and all these matrices have order 2. Fi-

nally, we observe that for any m̃ ∈ {0, 1}∗ such that H ′(m̃) = I, we have

Preimages for the Tillich-Zémor Hash Function 287

H(m̃) = A0H
′(m̃)A−1

0 = A0A
−1
0 = I. �

The message m in Proposition 2 can be obtained by applying Mesirov and
Sweet’s algorithm to a = p(X) as in Grassl et al.’s attack (see Proposition 1).
We therefore obtain a message m̃ colliding with the void message for the Tillich-
Zémor hash function. A second preimage algorithm is straightforwardly deduced,
since for any m ∈ {0, 1}∗ we have H(mm̃) = H(m).

4 Preimage Algorithm from a Few Precomputed
Preimages

For the remaining of the paper, we define Lα := (1 0
α 1) and Uβ :=

(
1 β
0 1

)
for any

α, β ∈ K. In [9], preimages for the LPS hash function (a function similar to
Tillich-Zémor, with different matrix generators) were computed by decompos-
ing any matrix into a product of generators and diagonal matrices, a subset of
matrices for which computing preimages appeared to be easier. In the case of
Tillich-Zémor, the proof of Proposition 2 suggests the following decomposition.

Proposition 3. Given a preimage of length at most L for every matrix among
a set S = {Lαi, Uβi , i = 1, ..., n} where {αi, i = 1, ..., n} and {βi, i = 1, ..., n} are
two basis of K as a vector space over F2, there is a deterministic algorithm com-
puting preimages of length at most 3nL+5 for the Tillich-Zémor hash function,
in time O(n3).

Proof: We first observe that it is sufficient to have an algorithm with the same
characteristics for the modified Tillich-Zémor hash function. Indeed, for any
A, B, C, D with AD + BC = 1,

H(m) = (A B
C D) ⇔ H ′(m) = A−1

0 (A B
C D)A0.

Now, suppose we are given M = (A B
C D) with det(M) = 1 and we want to find

a preimage of M for the modified Tillich-Zémor function. If B �= 0, it is easily
checked that (

A B
C D

)
=
(

1 0
α 1

)(
X 1
1 0

)(
1 β
0 1

)(
X 1
1 0

)3(1 0
γ 1

)

with ⎧⎨
⎩

α = (DX + X + B)/(XB)
β = (B + X3)/X2

γ = (X + B + X2B + AX)/(XB)

while if B = 0, we have(
A 0
C D

)
=
(

X 1
1 0

)(
C D

A + CX DX

)

and D �= 0, so we may apply the above decomposition to the last matrix.

288 C. Petit and J.-J. Quisquater

Since {αi, i = 1, ..., n} and {βi, i = 1, ..., n} are two basis of K, we may
write α =

∑
i∈Iα

αi, β =
∑

i∈Iβ
βi and γ =

∑
i∈Iγ

αi, for some Iα, Iβ , Iγ ⊂
{1, ..., n}. Moreover, those decompositions can be recovered in time O(n3) by
solving three corresponding linear systems over F2. Finally, we observe that for
any I ⊂ {1, ..., n}, we have(

1 0∑
i∈I αi 1

)
=
∏
i∈I

(
1 0
αi 1

)
and

(
1
∑

i∈I βi

0 1

)
=
∏
i∈I

(
1 βi

0 1

)
.

Putting together what we have seen so far, we obtain a decomposition of any
matrix into at most 5 matrices A′

0 and 3n matrices from the set S. A preimage
is obtained by concatenating the preimages of the corresponding matrices, and
the maximal length of this preimage follows. �
Let μL, μU : {0, 1}∗ → {0, 1}∗ be two transformations on bitstrings defined as
follows:

μL(m1m2...mk) = mk...m2m1m1m2...mk0;
μU (m1m2...mk) = 0mk...m2m1m1m2...mk.

Lemma 4. Let m ∈ {0, 1}∗ such that (1 0)H ′(m) = (0 q) for some q ∈ K.
Then

H ′(μL(m)) =
(

1 0
X+q2 1

)
and H ′(μU (m)) =

(
1 X+q2

0 1

)
.

Proof: Let m = m1...mk be the bitwise representation of m. According to
Equation 1 and Proposition 1 we have H ′(mk...m2m̄1m̄1m2...mk) =

(
0 b
b q2

)
.

Moreover b = 1 since the determinant of any hash value is 1. Multiplying left
and right by A0 we obtain the result. �
Proposition 3 reduces the preimage problem to the problem of precomputing the
preimages of some set of matrices. Lemma 4 further reduces the precomputation
to find n messages mi, i = 1, ..., n such that

(1 0)H ′(mi) = (0 qi) for some qi ∈ K (2)

and {q2
i +X mod p, i = 1, ..., n} is a basis of K. In Sections 5 and 6, we give two

algorithms for finding these messages.

5 First Precomputing Algorithm

As observed in Section 3, we can obtain one message satisfying Equation 2 by
applying Mesirov and Sweet’s algorithm to a = p. In order to obtain more
messages satisfying the equation, a natural idea is to apply the algorithm to a
small multiple of p. This leads us to the following algorithm.

Preimages for the Tillich-Zémor Hash Function 289

1. Take R large enough.
2. Construct a set T = {αi, i = 1, ..., n} containing elements of K that are

linearly independent over F2, as well as preimages to Lαi and Uαi . To this
aim, start from an empty set T , then until the set contains n elements:
(a) Generate a random irreducible polynomial p′ of degree R.
(b) Construct a matrix A by applying the first step of Mesirov and Sweet’s

algorithm to a = pp′.
(c) If Aut = (1, 0, ..., 0, 1)t has solutions, compute α := d2 + X where d is

obtained by completing Mesirov and Sweet’s algorithm.
(d) Check whether α is independent of the elements of T ; if it is, add it to

the list and compute the corresponding preimages.

The algorithm is conceptually simple but it is not a trivial task to prove its cor-
rectness. First, Mesirov and Sweet only guarantee the success of their algorithm
for irreducible polynomials while in Step 2(b) we apply it to a more general poly-
nomial. Second, the above algorithm succeeds only if it is possible to generate n
independent αi values in Step 2(d). This last condition seems particularly hard
to prove given our current understanding of maximal length Euclidean sequences
in F2n .

In Section 5.1 below, we extend Mesirov and Sweet’s result and argue that
in Step 2(c) of our algorithm, the system Aut = (1, 0, ..., 0, 1)t has solutions
with a probability ρ at least 1/2 on average. In Section 5.2, we provide intuitive
arguments and experimental evidence showing that if R is O(log n), the loop
of Step 2 must only be repeated O(n) times. Since each loop requires solving
at most two linear systems of size n, we expect the whole algorithm to run in
probabilistic O(n4) time.

All the messages constructed by this algorithm have length exactly R + n.
These messages can be used in Lemma 4 and Proposition 3 to compute preimages
of length O(n2 + nR) ≈ O(n2) for any matrix.

5.1 Mesirov and Sweet’s Algorithm for a = pp′

In this section, we argue that for a parameter p chosen at random, the probability
that Aut = (1, 0, ..., 0, 1)t has solutions in Step 2(c) of our algorithm is ρ ≈ 1/2.
Let us consider the arithmetic sequence

1 + p + �X(X + 1)p, � ∈ F2[X], deg(�) ≤ R − 1.

For any � ∈ F2[X], let N(�) be the number of distinct irreducible polynomials of
degree R in the factorization of 1+p+�X(X +1)p. Let N0 :=

∑
deg(�)≤R−2 N(�)

and N1 :=
∑

deg(�)=R−1 N(�). Although a priori there may exist some R and
p such that N0 ≈ 0, for most values R and random polynomials p it seems
reasonable to expect N0 ≈ N1. In the following, we show that the probability
that Aut = (1, 0, ..., 0, 1)t has solutions is at least N0

N0+N1
, hence for a parameter

p chosen at random we expect to have ρ at least equal to 1/2.
By simple linear algebra the system Aut = (1, 0, ..., 0, 1)t has solutions if both

1) the first row of A is a linear combination of its last row and some other rows

290 C. Petit and J.-J. Quisquater

and 2) the last row of A is not a linear combination of its middle rows. In other
terms,

1. There exists v = (v0, ..., vn+R) ∈ F
(n+R+1)×1
2 such that vA = 0 and v0 =

vn+R = 1.
2. For any w = (w0, ..., wn+R) ∈ F

(n+R+1)×1
2 such that wA = 0 and w0 = 0, we

have wn+R = 0.

Following Mesirov and Sweet [8], let us consider the following equations in the
(polynomial) variables r(X) and s(X):

r(X) + Xr(X)2 + X2r(X)2 = 1 mod a(X), (3)
s(X) + Xs(X)2 + X2s(X)2 = 0 mod a(X). (4)

Remembering the definition of A, we see that Aut = (1, 0, ..., 0, 1)t has solutions
if

1. For some r(X) = rn+R−1X
n+R−1 + ... + r1X + r0 solution to Equation 3,

we have rn+R−1 = 1.
2. For any s(X) = sn+R−1X

n+R−1 + ... + s1X + s0 solution to Equation 4, we
have sn+R−1 = 0.

Since X does not divide a = pp′, it must divide a+1. The polynomial (a+1)/X
has degree n + R − 1 and is a solution to Equation 3; it therefore satisfies the
first condition. Equation 4 has four solutions s00, s01, s10 and s11 characterized
as follows:{

s00 = 0 mod p,
s00 = 0 mod p′;

{
s10 = 0 mod p,
1 + X(X + 1)s10 = 0 mod p′;{

1 + X(X + 1)s01 = 0 mod p,
s01 = 0 mod p′;

{
1 + X(X + 1)s11 = 0 mod p,
1 + X(X + 1)s11 = 0 mod p′.

Clearly, s00 = 0 mod a. Since X +1 does not divide a = pp′, it must divide a+1.
The polynomial (a + 1)/X(X + 1) has degree n + R − 2 and is a solution to
Equation 4. Reducing it modulo p and p′, we see that (a + 1)/X(X + 1) = s11.
As Equation 4 is homogeneous, its solutions form a vector space, hence s01 =
s10 + s11. Since the coefficient n + R− 1 of s11 is zero, the coefficient N + R− 1
of s01 and s10 are equal. Using Chinese Remainder Theorem, we have

s10 =
[
(X(X + 1)p′)−1 mod p

]
p′

hence the coefficient N + R − 1 of s10 is equal to the coefficient N − 1 of
(X(X + 1)p′)−1 mod p. We have proved the following proposition that extends
Mesirov and Sweet’s result on irreducible polynomials to polynomials with two
distinct nonlinear irreducible factors:

Preimages for the Tillich-Zémor Hash Function 291

Proposition 5. Let p, p′ be nonlinear irreducible polynomials and let a = pp′.
If

deg
(
[X(X + 1)p′]−1 mod p

)
≤ deg(p) − 2.

then the corresponding Mesirov and Sweet system Aut = (1, 0, ..., 0, 1)t has
solutions.

Let y := [X(X + 1)p′]−1 mod p. By definition, we have

yX(X + 1)p′ = 1 + kp

for some unique k ∈ F2[X]. As deg(y) ≤ N − 1, we have deg(k) ≤ R + 1. We
easily see that X(X +1) divides 1+kp if and only if k = 1+X(X +1)� for some
� ∈ F2[X] with deg(�) ≤ R− 1. Therefore for any p′ (randomly generated in our
algorithm), there exists exactly one polynomial � with deg(�) ≤ R− 1 such that

yX(X + 1)p′ = 1 + p + X(X + 1)�p.

If � �= 0, then by Proposition 5, the system Aut = (1, 0, ..., 0, 1)t has solutions if
deg(�) = deg(y)+R−deg(p) ≤ R−2. For � = 0 we have deg(y) = deg(p)−2−R
which satisfies the condition of Proposition 5. Defining N0 and N1 as above, N0
(respectively N1) is precisely the number of irreducible polynomials p′ of degree
R such that the corresponding polynomial � satisfies deg(�) ≤ R−2 (respectively
deg(�) = R − 1). We finally obtain ρ ≥ N0

N0+N1
.

Remark. It is possible to remove the irreducibility condition on p′ in Step 2(a) of
our algorithm. However, the probability that Mesirov and Sweet system Aut =
(1, 0, ..., 0, 1)t has solutions in Step 2(c) is maximal when p′ is irreducible, as can
be seen by further extending Proposition 5.

5.2 Correctness of the Algorithm

Even after finding many different α values in Step 2(c), our algorithm could still
fail if all these values belonged to a vector subspace of K. However, the algorithm
will always succeed if the following hypothesis holds.

Hypothesis 1. The polynomials d resulting from applying the Mesirov and
Sweet’s algorithm to a = pp′ (with p and p′ irreducible, p fixed and p′ ran-
dom), form a set without any particular structure. In particular, this set can be
thought of as a random set of polynomials of degree n + R − 1.

If each d value constructed can be considered as a random polynomial of degree
n + R − 1, then the corresponding value α := d2 + X mod p can be considered
as a random polynomial of degree at most n − 1. In that case, every new value
α is (very) likely to be independent from the previous one: if there are already i
independent elements in T , the new value will be independent from the previous
ones with a probability 1 − 2i−n. After generating a little more than n polyno-
mials d, our algorithm will be likely to succeed in finding n linearly independent

292 C. Petit and J.-J. Quisquater

α values. By the analogue of the prime number theorem for irreducible polyno-
mials over a finite field, the number of irreducible polynomials p′ of degree R is
roughly 2R/R. By our analysis in Section 5.1, the Mesirov and Sweet’s system
has solutions for at least one half of the corresponding polynomials a = pp′.
Therefore, we must have

2R

R
≥ 2n. (5)

Assuming Hypothesis 1 is correct, taking a value O(log n) for R in Step 1 should
be sufficient to guarantee the success of our algorithm.

Hypothesis 1 seems very likely to hold. Of course, there is a strong relationship
between two polynomials a and d such that all their partial quotients are X or
X + 1. However, this relation does not seem to restrict d to any vector subspace
of K, even if a is only chosen among the multiples of p. Today, the “simplest”
relation known to hold between two consecutive terms of a maximal length
Euclidean sequence is precisely given by the Mesirov and Sweet’s algorithm,
and it does not seem to impose such a restriction.

A theoretical analysis of our algorithm based on firmer grounds than Hypoth-
esis 1 would be very valuable, but given current understanding of maximal length
Euclidean sequences in F2n , we believe that it is far from reach. To prove the
efficiency of our algorithm, we therefore complete our arguments with experi-
mental results. In our experiments, we took p the shortest irreducible polynomial
of degree n, that is the polynomial p = Xn + ...+p0 for which

∑
pi2i is minimal.

For some values of n between 5 and 2039, we tried different values of R until we
found one that was large enough. The results are given in Figure 1.

n R n R n R

5 5 67 11 257 13

7 7 73 11 277 13

11 8 83 11 307 13

13 9 97 11 331 14

17 9 103 12 353 14

19 9 109 12 379 14

23 9 127 12 401 14

29 9 137 12 449 14

31 10 149 12 499 14

37 10 167 13 607 15

41 10 191 13 1021 15

47 10 211 13 2039 16

59 11 233 13

10
0

10
1

10
2

10
3

10
4

4

6

8

10

12

14

16

n

R

experimental

2R/cR, c=1,2,3,4,5,6

Fig. 1. Minimal value R for different values n and the “shortest” polynomials of degree

n. The points on the staircase-like curve are experimental results. The other curves are

n = 2R

cR
for c = 1, 2, 3, 4, 5, 6.

Preimages for the Tillich-Zémor Hash Function 293

The algorithm always succeeded with a value R satisfying

2R

R
≥ 5n,

that is slightly larger than predicted by Equation 5 but still consistent with the
expected R = O(log n). When n ≥ 17, it always succeeded as long as 2R

R ≥ 4n.
The last points of Figure 1 for n = 1021 and n = 2039 are very close to the
bound of Equation 5. The results confirm the analysis performed in this section
and in the previous one. In Appendix B, we describe additional experiments
performed on randomly chosen polynomials. All the results obtained are also
consistent with our analysis.

6 Second Precomputing Algorithm

Our first precomputing algorithm is very efficient both in theory and in practice,
but its correctness must likely rely on some ad hoc hypothesis. In this section, we
provide an alternative algorithm precomputing messages of length bounded by
n2, resulting in preimages of length O(n3) after applying Lemma 4 and Propo-
sition 3. On the one hand this second algorithm is worse than the first one since
it produces larger preimages, but on the other hand it is deterministic and it
runs in time O(n3), much faster than the first one. More importantly from a
theoretical point of view, we provide a proof that it always succeeds when n is
prime, and strong evidence that it has a very large probability of success when
n is reasonably large and the polynomial p is chosen at random.

The Mesirov and Sweet’s algorithm applied to p is guaranteed to succeed since
p is irreducible. It provides a polynomial q of degree n − 1 such that p and q
are the first terms of a maximal length Euclidean sequence. By Equation 1, we
have (p q) = (1 0)h′(m̃1) for some m̃1 ∈ {0, 1}n that can be recovered with the
Euclidean algorithm. For i > 1, let

m̃i := m̃i−10m̃1. (6)

We first show that the messages m̃i satisfy the requirements of Lemma 4.

Lemma 6. For any i ≥ 0, (1 0)H ′(m̃i) ≡ (0 qi).

Proof: For i = 1 the result is trivial. Moreover, assuming the property is
satisfied for some i, it is also satisfied for i + 1 since

(1 0)H ′(m̃i+1) = (1 0)H ′(m̃i)A′
0H

′(m̃1)
≡ (0 qi) (X 1

1 0) (0 q
... ...) ≡ (qi 0) (0 q

... ...) ≡ (0 qi+1) . �

To apply Lemma 4 and Proposition 3, we must find a subset of {q2i + X mod
p, i ≥ 1} that is a basis of K. We start by studying the sets Sj := {q2(j+i) mod
p, i = 1, ..., n}.

294 C. Petit and J.-J. Quisquater

Lemma 7. If n is prime, then for any j ≥ 0, the set Sj := {q2(j+i) mod p, i =
1, ..., n} is a basis of K over F2.

Proof: It suffices to show that each Sj is a free set of K. Let us assume
by contradiction that there exists (b1, ..., bn) ∈ Fn

2 \ {(0, ..., 0)} such that 0 =∑n
i=1 biq

2(j+i). Since q is a polynomial of degree n − 1, q �= 0, 1 hence q2 �= 0, 1.
The degree of the minimal polynomial of q2 must divide n, hence if n is prime
it is either 1 or n. Since q2 �= 0, 1 the minimal polynomial degree has degree
larger than 1 and hence it has degree n. Now, let us define the polynomial
f : y → f(y) =

∑n−1
i=0 bi−1y

i. We have deg(f) < n. We also have q2(j+1)f(q2) = 0
hence f(q2) = 0. Therefore f must be a multiple of the minimal polynomial of
q2, which brings us to a contradiction. �
The proof of Lemma 7 does not work if n is not prime since the degree of the
minimal polynomial of q2 may then be a nontrivial divisor of n. However, even
if n is not prime, Sj is a basis for all j if and only if Sj is a basis for some j. If
n1 is a divisor of n, the probability that a random element of K has a minimal
polynomial with degree dividing n1 is 2n1−n, that is very small for reasonably
large values of n (Tillich and Zémor suggested n > 130). Of course, q2 is not
a random element of K since q is one of the two polynomials making p and q
the first terms of a maximal length Euclidean sequence. However, the best link
known today between p and q is the Mesirov and Sweet’s algorithm, and when
p is chosen at random this algorithm does not seem to influence the degree of
the minimal polynomial of q. We have confirmed this intuition experimentally:
for large n and random p, S0 was always a basis, while for very small values of
n like n = 4 it was not always (although most often) the case1.

Let Tj := {q2(i+j) + X mod p, i ≥ 1}. We now show that if S0 is a basis over
K, then there exists j ≤ n such that Tj is a basis of K. To this aim we first need
the following lemma.

Lemma 8. Let {βi, i = 1, ..., n} be a basis of K over F2 and let ei ∈ F2, i =
1, ..., n be such that X =

∑
i eiβi. Then {αi := βi + X, i = 1, ..., n} is a basis of

K over F2 if and only if
∑

i ei = 0.

Proof: We can write X =
∑

i eiαi + (
∑

i ei)X . If
∑

i ei = 1, then 0 =
∑

i eiαi

hence {αi, i = 1, ..., n} is not a free set of elements. On the other hand, if∑
i ei = 0 then X =

∑
i eiαi. Let α ∈ K and let bi ∈ F2, i = 1, ..., n be such that

α =
∑

i biβi. Let ai := bi+(
∑

i bi) ei. We have α =
∑

i biαi+(
∑

i bi)X =
∑

i aiαi

hence {αi, i = 1, ..., n} is a generating set. �
We are now ready to prove the following result.

Proposition 9. If S0 is a basis of K over F2 (in particular, if n is prime), then
there exists j < n such that Tj is a basis of K over F2.

Proof: We give a constructive proof of the result. Since S0 is a basis of K over
F2, we know that Sj is a basis of K over F2 for all j ≥ 0. Let ei ∈ F2, i = 1, ..., n

1 The Tillich-Zémor hash function is a priori even weaker when n is not prime, due

to the subgroup structure of SL(2, K) [11].

Preimages for the Tillich-Zémor Hash Function 295

such that X =
∑n

i=1 eiq
2i. If

∑
i ei = 0, then according to Lemma 8 we are

done with j = 0. Otherwise, let j be the smallest index i such that ei = 1. Since
q2 mod p belongs to K, the degree n′ of its minimal polynomial p′ divides n.
(This polynomial can be easily computed, but it is not needed by the algorithm.)
By definition, we have p′0 + p′1q2 + ... + p′n−1q

2(n′−1) + q2n′
= 0 mod p. Since p′

is irreducible, we have p′0 = 1 (otherwise X |p′) and
∑n′

i=0 p′i = 1 (otherwise
X + 1|p′). Let us define ei := 0 for i > n and p′i := 0 for i > n′. We have

X≡
n∑

i=1

eiq
2i≡

n∑
i=1

eiq
2i

+q2j
(
1 + p′

1q
2

+ ... + p′
n′−1q

2(n′−1)
+ q2n′)≡ j+n∑

i=j+1

(ei +p′
i−j)q

2i.

Moreover,
∑j+n

i=j+1(ei + p′i−j) = (1 +
∑n

i=1 ei) +
(
1 +

∑n′

i=0 p′i
)

= 0. Together
with Lemma 8, this shows that Tj is a basis of K over F2. �
In short, our second algorithm is as follows

1. Apply Mesirov and Sweet’s algorithm to p; get q and m̃1.
2. If n is not prime, check whether S0 = {q2, q4, ..., q2n} is a basis of K over

F2. If it is not, abort.
3. Decompose X in the basis S0.
4. Determine j as in the proof of Proposition 9.
5. Compute m̃j+1, ..., m̃j+n using Equation 6 and apply Lemma 4.

Step 1 and Step 3 both require solving a linear system of size n × n over F2
which can be done in time O(n3); the remaining steps are comparatively fast. The
length of m̃i is i(n+1)−1 and we have i ≤ j+n and j < n. After application of the
mappings μL and μU , we may apply Proposition 3 with L = 4n2+2n+1, resulting
in preimages of length O(n3) for any matrix. The algorithm is guaranteed to
succeed if n is prime, and as argued above when n is composite but reasonably
large it will likely succeed with a very large probability.

7 Discussion

In this paper, we presented very efficient algorithms computing preimages for
the Tillich-Zémor hash function. We first gave a second preimage algorithm.
Then we reduced the problem of finding preimages for the Tillich-Zémor hash
function to the problem of precomputing a few preimages with certain properties.
Subsequently, we gave two algorithms for the precomputing part:

1. The first algorithm produces messages of length O(n), resulting in generic
preimages of length O(n2). We provided theoretical and experimental evi-
dence that it runs in probabilistic time O(n4) and succeeds with a very large
probability on the function parameters.

2. The second algorithm produces messages of length O(n2), resulting in generic
preimages of length O(n3). We gave a proof that it always succeeds when
n is prime, and arguments that it succeeds for most polynomials p when
n is not necessarily prime but is reasonably large. The algorithm runs in
deterministic time O(n3).

296 C. Petit and J.-J. Quisquater

Since the size of SL(2, F2n) is about 23n, it seems reasonable to conjecture that
preimages of length 3n exist for any matrix. However, even if this conjecture
is true, it is not clear whether there exists an efficient algorithm computing
preimages of this length. We leave that question as an interesting open problem.
From a practical point of view, our first algorithm is the most interesting one
since it produces shorter messages. On the other hand, the second algorithm
is more appealing from a theoretical point of view. In particular, it provides a
constructive proof that the Cayley graphs corresponding to the Tillich-Zémor
hash function satisfy Babai’s conjecture (that is, that they have a polylogarith-
mic diameter [7]), at least when we restrict n to the prime values. Besides those
important results, in the argumentation for our first algorithm we provided an
extension of Mesirov and Sweet’s result [8] and a connection to some arithmetic
sequence of polynomials, both of which are of independent interest.

Grassl et al.’s attack found collisions for the Tillich-Zémor hash function. In
this paper, we showed that the function is not even one-way. The attacks also
break its vectorial and projective variants [10]. Our work puts a final end to the
story of the Tillich-Zémor hash function, one of the oldest and most elegant hash
functions in the literature. Similar hash functions that are using the same design
(replacing the group SL(2, K) and the generators A0, A1 by other groups and
generators) have also been cryptanalyzed recently [14,13,9].

Nevertheless, we point out that these particular attacks do not invalidate the
generic design. The key tool in the cryptanalysis of Tillich-Zémor hash function
is Mesirov and Sweet’s algorithm which is specific to quotients X and X+1 in the
Euclidean algorithm. At the current state of knowledge, collision and preimage
resistances are recovered if we replace the matrices A0 and A1 by B0 :=

(
X2 1
1 0

)
and B1 :=

(
X+1 1

1 0

)
. Moreover, since current attacks do not allow controlling

the form of the collisions and preimages, security might also be recovered by
introducing some simple redundancy in the messages. It might even be suffi-
cient to replace A0 by A2

0 or A3
0. More generally, similar hash functions can be

constructed from other non-Abelian groups and generators.
The generic design of the Tillich-Zémor hash function has many advantages

over traditional hash functions like SHA: it has inherent parallelism, potentially
efficient implementations in a wide range of contexts and a security equivalent to
some concise mathematical problems [4]. For these reasons, we do not recommend
to give it up but on the contrary, we suggest the community to look for secure
and insecure instances. In the same way as many RSA instances can be insecure,
especially when they are optimized for efficiency, we believe that the particularly
efficient Tillich-Zémor hash function may be an unfortunately insecure instance
of a more generally sound design.

Acknowledgements. We are grateful to Gilles Zémor for pointing us an error in
an early version of Proposition 5. We also thank Sylvie Baudine, Franéis Koeune
and Franéis-Xavier Standaert for their help in improving this paper.

Preimages for the Tillich-Zémor Hash Function 297

References

1. Abdukhalikov, K.S., Kim, C.: On the security of the hashing scheme based on SL2.

In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 93–102. Springer, Heidelberg

(1998)

2. Charles, D., Goren, E., Lauter, K.: Cryptographic hash functions from expander

graphs. J. Cryptology 22(1), 93–113 (2009)

3. Charnes, C., Pieprzyk, J.: Attacking the SL2 hashing scheme. In: Safavi-Naini, R.,

Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 322–330. Springer,

Heidelberg (1995)

4. de Meulenaer, G., Petit, C., Quisquater, J.-J.: Hardware implementations of a

variant of Zémor-Tillich hash function: Can a provably secure hash function be

very efficient? (2009) (preprint)

5. Geiselmann, W.: A note on the hash function of Tillich and Zémor. In: Gollmann,

D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 51–52. Springer, Heidelberg (1996)

6. Grassl, M., Ilic, I., Magliveras, S., Steinwandt, R.: Cryptanalysis of the Tillich-

Zémor hash function. Cryptology ePrint Archive, Report 2009/376 (2009),

http://eprint.iacr.org/

7. Helfgott, H.A.: Growth and generation in SL2(Z/pZ) (2005)

8. Mesirov, J.P., Sweet, M.M.: Continued fraction expansions of rational expressions

with irreducible denominators in characteristic 2. Journal of Number Theory 27,

144–148 (1987)

9. Petit, C., Lauter, K., Quisquater, J.-J.: Full cryptanalysis of LPS and morgenstern

hash functions. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008.

LNCS, vol. 5229, pp. 263–277. Springer, Heidelberg (2008)

10. Petit, C., Quisquater, J.-J., Tillich, J.-P., Zémor, G.: Hard and easy components of

collision search in the Zémor-tillich hash function: New attacks and reduced vari-

ants with equivalent security. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,

pp. 182–194. Springer, Heidelberg (2009)

11. Steinwandt, R., Grassl, M., Geiselmann, W., Beth, T.: Weaknesses in the SL2(IF2n)

hashing scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 287.

Springer, Heidelberg (2000)

12. Tillich, J.-P., Zémor, G.: Hashing with SL2. In: Desmedt, Y. (ed.) CRYPTO 1994.

LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)

13. Tillich, J.-P., Zémor, G.: Collisions for the LPS expander graph hash function. In:

Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 254–269. Springer,

Heidelberg (2008)

14. Tillich, J.-P., Zémor, G.: Group-theoretic hash functions. In: Cohen, G., Lobstein,

A., Zémor, G., Litsyn, S.N. (eds.) Algebraic Coding 1993. LNCS, vol. 781, pp.

90–110. Springer, Heidelberg (1994)

15. Zémor, G.: Hash functions and graphs with large girths. In: Davies, D.W. (ed.)

EUROCRYPT 1991. LNCS, vol. 547, pp. 508–511. Springer, Heidelberg (1991)

16. Zémor, G.: Hash functions and Cayley graphs. Des. Codes Cryptography 4(4),

381–394 (1994)

A Can We Also Compute Preimages? A Toy Example

In this section, we provide toy examples of our algorithms. We use n = 11 and
the “smallest” irreducible polynomial of degree 11 which is p(X) = X11+X2+1.

http://eprint.iacr.org/

298 C. Petit and J.-J. Quisquater

The representation of the sentence “Grassl et al. have shown how to find
collisions. But can we also compute preimages?” in ASCII is 47 72 61 73 73 6c
20 65 74 20 61 6c 2e 20 68 61 76 65 20 73 68 6f 77 6e 20 68 6f 77 20 74 6f 20
66 69 6e 64 20 63 6f 6c 6c 69 73 69 6f 6e 73 2e 20 42 75 74 20 63 61 6e 20 77
65 20 61 6c 73 6f 20 63 6f 6d 70 75 74 65 20 70 72 65 69 6d 61 67 65 73 3f to
which corresponds the message mtext =01000111 01110010 01100001 01110011 01110011 01101100

00100000 01100101 01110100 00100000 01100001 01101100 00101110 00100000 01101000 01100001 01110110 01100101

00100000 01110011 01101000 01101111 01110111 01101110 00100000 01101000 01101111 01110111 00100000 01110100

01101111 00100000 01100110 01101001 01101110 01100100 00100000 01100011 01101111 01101100 01101100 01101001

01110011 01101001 01101111 01101110 01110011 00101110 00100000 01000010 01110101 01110100 00100000 01100011

01100001 01101110 00100000 01110111 01100101 00100000 01100001 01101100 01110011 01101111 00100000 01100011

01101111 01101101 01110000 01110101 01110100 01100101 00100000 01110000 01110010 01100101 01101001 01101101

01100001 01100111 01100101 01110011 00111111.The Tillich-Zémor hash value of this message
for polynomial p(X) is

h =
(

X7+X5+X4+X2+1 X8+X2+X+1
X9+X8+X7+X5+X4+X3+X X9+X6+X5+X4+X2+X

)
.

We compute other preimages of this matrix using the algorithms of this paper.
We start with the second preimage algorithm of Section 3. The Mesirov and

Sweet algorithm applied to p gives d(X) = X10+X8+X7+X6+X5+X2+X+1
and the message m = 01011000010. The message

m̃ = μL(m)μL(m) = [(101111001011)(11011000010)0][(101111001011)(11011000010)0]

is a preimage of the identity matrix, hence H(mtextm̃) = H(mtext) = h.
We now apply our preimage algorithms to h. We first change the generators

and we look for a preimage of

h′ =
(

X10+X8+X X9+X8+X7+X5+X4+X3+X
X9+X6+X5+X3+X2 X10+Xy+X8+X7+X6+1

)
for the modified Tillich-Zémor hash function. We first write(

A B
C D

)
=
(

1 0
α 1

)(
X 1
1 0

)(
1 β
0 1

)(
X 1
1 0

)3(1 0
γ 1

)

with ⎧⎨
⎩

α = X10 + X9 + X8 + X7 + X6 + X5 + X4 + 1
β = X10 + X7 + X6 + X5 + X3 + X2 + X
γ = X8 + X4 + 1

.

Now, we illustrate our first precomputing algorithm. We take R = 10 and gener-
ate random polynomials p′ of degree R. We apply Mesirov and Sweet’s algorithm
to a = pp′. If successful, we obtain a d value and compute the corresponding
α value. If this α value is linearly independent (over F2n/F2) with the previous
values, we keep it and compute m such that (a d) = (1 0)H ′(m). The following
table summarizes the results obtained.

Preimages for the Tillich-Zémor Hash Function 299

p′ d α ⊥? m

X10 + X9 + X8 + X7 + X6 + X5 +
X4 + X3 + 1

X20+X19+X15+X14+X13+X11+
X10 + X9 + X5 + X4 + X

X8 + X7 + X6 + X5 + X4 + X3 + X2 yes m1 =001101001000100100100

X10 + X6 + X5 + X3 + X2 + X + 1 - - - -
X10 + X9 + X7 + X6 + X5 + X4 +
X3 + X2 + 1

X20+X18+X16+X15+X14+X12+
X9 + X7 + X5 + X3 + X

X10+X9+X8+X7+X6+X5+X4+1 yes m2 =101111101001011101100

X10 + X9 + X5 + X4 + X2 + X + 1 X20 +X19 +X18 +X15 +X6 +X5 +
X3 + X2 + X + 1

X10+X9+X8+X7+X6+X3+X+1 yes m3 =010010111110101111100

X10 + X9 + X7 + X5 + X2 + X + 1 - - - -
X10 + X9 + X8 + X5 + 1 X20+X19+X17+X16+X14+X13+

X9 + X6 + X5 + X4 + X2 + 1
X10 + X9 + X6 + X5 + X4 + X3 +
X2 + X + 1

yes m4 =001010011110111001001

X10 + X9 + X5 + X + 1 - - - -
X10 + X9 + X8 + X6 + X4 + X3 + 1 - - - -
X10 + X7 + X5 + X3 + X2 + X + 1 - - - -
X10 + X8 + X4 + X3 + 1 - - - -
X10 + X9 + X8 + X4 + 1 - - - -
X10 + X8 + X3 + X2 + 1 X20 +X17 +X14 +X10 +X8 +X7 +

X3 + X + 1
X10 + X7 + X5 + X4 + 1 yes m5 =010111010111101011110

X10 + X9 + X7 + X5 + X2 + X + 1 - - - -
X10 + X4 + X3 + X2 + 1 - - - -
X10 + X9 + X8 + X6 + X5 + X4 +
X3 + X2 + 1

X20 +X15 +X13 +X10 +X9 +X8 +
X7 + X5 + X3 + X

X10 + X9 + X7 + X6 yes m6 =100101101001110010110

X10 + X7 + X6 + X2 + 1 - - - -
X10 + X8 + X4 + X3 + 1 - - - -
X10 + X7 + 1 X20+X18+X16+X14+X12+X11+

X10 + X7 + X3 + X2 + 1
X9 + X6 + X5 + X4 + X3 + X yes m7 =010010001011100010001

X10 + X9 + X7 + X5 + X4 + X3 +
X2 + X + 1

- - - -

X10 + X8 + X3 + X2 + 1 X20 +X17 +X14 +X10 +X8 +X7 +
X3 + X + 1

X10 + X7 + X5 + X4 + 1 no

X10 + X6 + X5 + X3 + X2 + X + 1 - - - -
X10 + X8 + X5 + X + 1 X20+X19+X18+X17+X16+X14+

X11 + X10 + X8 + X4 + X

X8 + X7 + X6 + X5 + X3 + X2 yes m8 =111110110010101111001

X10 + X7 + X4 + X3 + 1 - - - -
X10 + X9 + X7 + X5 + X4 + X3 +
X2 + X + 1

- - - -

X10 + X9 + X8 + X7 + 1 X20+X17+X15+X14+X13+X12+
X9 + X8 + X7 + X5 + X4 + X2 + 1

X8 + X5 + X4 + X3 + X2 + X yes m9 =100001010010010001001

X10 + X9 + X8 + X5 + X4 + X2 + 1 - - - -
X10 + X9 + X7 + X6 + X4 + X + 1 X20 +X18 +X16 +X11 +X9 +X8 +

X5 + X4 + X + 1
X9 + X8 + X5 + X2 + X + 1 yes m10 =101000011111000001010

X10 + X9 + X8 + X6 + X5 + X4 +
X3 + X2 + 1

X20 +X15 +X13 +X10 +X9 +X8 +
X7 + X5 + X3 + X

X10 + X9 + X7 + X6 no

X10 + X7 + X6 + X4 + X2 + X + 1 - - - -
X10 + X7 + X6 + X5 + X2 + X + 1 - - - -
X10 + X9 + X8 + X6 + X2 + X + 1 - - - -
X10 + X9 + X8 + X7 + 1 X20+X17+X15+X14+X13+X12+

X9 + X8 + X7 + X5 + X4 + X2 + 1
X8 + X5 + X4 + X3 + X2 + X no

X10 + X7 + X6 + X5 + X2 + X + 1 - - - -
X10 + X9 + X8 + X7 + X6 + X2 + 1 - - - -
X10 + X8 + X7 + X3 + X2 + X + 1 X20+X17+X16+X15+X14+X13+

X11 + X10 + X9 + X7 + X

X9 + X7 + X6 + X5 + X4 + X + 1 yes m11 =000011011010111000101

Writing α, β, γ in the basis obtained, we get α = α2, β = α2 + α8 + α11 and
γ = α1 + α2 + α3 + α4 + α5 + α9 + α10. Finally we obtain one preimage of h as

m′ = mα0mβ000mγwhere
mα = μL(m2),
mβ = μU (m2)μU (m8)μU (m11),
mγ = μL(m1)μL(m2)μL(m3)μL(m4)μL(m5)μL(m9)μL(m10).

(Note that the terms composing mβ and mγ can be permuted arbitrarily.)
Finally, we use our second precomputing algorithm to find yet another preim-

age. Let m̃1 = 01011000010 be the message obtained by applying Mesirov and
Sweet’s algorithm to a = p. The corresponding q value is q = d = X10 + X8 +
X7 + X6 + X5 + X2 + X + 1. We recursively define

m̃i := ˜mi−10m̃1.

Since n is prime, we know that S0 := {q2, q4, ·, q1+n} is a basis of F2n/F2. We
have X = q2 + q4 + q6 + q8 + q12 + q18 + q22 so Tj := {q2(i+j) + X, i = 1, ..., n}
is a basis for j = 1. Let αi = q2(j+1) + X for i = 1, ..., n.

Writing α, β, γ in this basis, we get α = α1+α4+α6+α8+α9+α10+α11, β =
α1+α2+α4+α6+α7+α8+α9+α10+α11 and γ = α1+α2+α3+α4+α7+α9+α11.
Finally we compute a preimage of h as

m′ = mα0mβ000mγ

300 C. Petit and J.-J. Quisquater

where
mα = μL(m1)μL(m4)μL(m6)μL(m8)μL(m9)μL(m10)μL(m11),
mβ = μU (m1)μU (m2)μU (m4)μU (m6)μU (m7)μU (m8)μU (m9)μU (m10)μU (m11),
mγ = μL(m1)μL(m2)μL(m3)μL(m4)μL(m7)μL(m9)μL(m11).

B Further Experimental Results on Our First
Precomputing Algorithm

Since it is unlikely that we can give a better theoretical analysis of our first pre-
computing algorithm, we provide additional experimental results in this section.

The results shown in Figure 1 were obtained with each “shortest” polynomial
of degree n. Figure 2 shows similar results for randomly chosen polynomials. The
algorithm always succeeds with a value R satisfying 2R

R ≥ 6n. For reasonably
large n, it always succeeds when 2R

R ≥ 4n. When n increases the points get closer
to the bound 2R

R ≥ 2n. Some of the points of Figure 1 and Figure 2 differ, but
the differences are small and they only appear for small n.

n R n R n R

5 7 67 11 257 13

7 7 73 11 277 13

11 9 83 11 307 13

13 9 97 12 331 14

17 9 103 12 353 14

19 9 109 12 379 14

23 9 127 12 401 14

29 10 137 12 449 14

31 9 149 12 499 14

37 10 167 12 607 15

41 10 191 13 1021 15

47 11 211 13 2039 16

59 11 233 13

10
0

10
1

10
2

10
3

10
4

7

8

9

10

11

12

13

14

15

16

n

R

experimental

2R/cR, c=1,2,3,4,5,6

Fig. 2. Minimal value R for different values n and random polynomials. The points

on the staircase-like curve are experimental results. The other curves are n = 2R

cR
for

c = 1, 2, 3, 4, 5, 6.

To study these differences in more details, we generated twenty random poly-
nomials of degrees n = 11, n = 47 and n = 127. For each polynomial, we
recorded the shortest value of R for which the algorithm succeeded. (We started
with short R values and increased R when 1000 α values linearly dependent
with the previous ones were found). The results are presented in Table 1. The
minimal value R for the success of the algorithm does not depend very much
on the parameter p but only on its degree. Moreover, this dependence seems to

Preimages for the Tillich-Zémor Hash Function 301

Table 1. Variability of the minimal R needed for the algorithm when the polynomial p
is randomly chosen. For each degree n and each R value, the table indicates how many

polynomials p among the 20 polynomials generated required at least a randomness R.

n = 11 n = 47 n = 127

R = 7 3/20 R = 10 11/20 R = 12 20/20

R = 8 14/20 R = 11 9/20

R = 9 3/20

disappear for reasonably large degrees n. Therefore, the algorithm is likely to
succeed for any p as long as 2R

R ≥ 4n (for reasonably large n values).
Choosing R close to the minimal value will improve the efficiency of the al-

gorithm since it performs linear algebra on vectors of length N + R. On the
other hand, if R is chosen too close to the minimum, the algorithm will have
to generate more polynomials p′ before getting n independent elements αi. In
Table 2, it seems more efficient to choose R = 10 instead of R = 8 for the
polynomial p(X) = X11 + X2 + 1, and R = 12 instead of R = 10 for the poly-
nomial p(X) = X47 + X5 + 1. The reason appears clearly in the toy example of
the previous section, presented in Table 1: in this example, all the dependencies
obtained between the α values do actually come from the fact that the same
polynomials are generated various times.

To conclude this section, we observe that in the experiments of Table 2, the
Mesirov and Sweet’s system had solutions respectively 49, 21% and 51, 36% of
times for the polynomials p(X) = X11 +X2 +1 and p(X) = X47 +X5 +1. This
confirms the analysis of Section 5.1.

Table 2. Number of iterations needed to obtain a basis of K, for various R and the

polynomials p(X) = X11 + X2 + 1 and p(X) = X47 + X5 + 1. The first row gives

the total number of polynomials generated, the second row gives the number of times

the Mesirov and Sweet’s system had no solution, and the last row gives the number of

times a new α value was linearly dependent on the previous ones. For each value R,

we performed the experiment three times.

p(X) = X11 + X2 + 1

R = 8 R = 9 R = 10 R = 15 R = 20 R = 50

pol. generated 48 36 25 41 61 46 28 24 38 35 23 19 27 26 17 25 28 22

no sol. MS 21 9 6 28 44 30 15 8 22 22 11 8 14 11 6 11 13 10

dependencies 16 16 8 2 6 5 2 5 5 2 1 0 2 4 0 3 4 1

p(X) = X47 + X5 + 1

R = 10 R = 11 R = 12 R = 15 R = 20 R = 50

pol. generated 211 293 209 119 110 110 100 131 101 94 107 93 89 98 87 104 105 111

no sol. MS 103 150 103 47 46 46 44 73 53 44 55 44 40 50 38 54 54 61

dependencies 61 96 59 25 17 17 9 11 1 3 5 2 2 1 2 3 4 3

One-Time Signatures and Chameleon Hash
Functions

Payman Mohassel

Computer Science Department, University of Calgary

pmohasse@cpsc.ucalgary.ca

Abstract. In this work we show a general construction for transforming

any chameleon hash function to a strongly unforgeable one-time signature
scheme. Combined with the result of [Bellare and Ristov, PKC 2007],

this also implies a general construction of strongly unforgeable one-time

signatures from Σ-protocols in the standard model.

Our results explain and unify several works in the literature which

either use chameleon hash functions or one-time signatures, by showing

that several of the constructions in the former category can be inter-

preted as efficient instantiations of those in the latter. They also imply

that any “noticeable” improvement to the efficiency of constructions for

chameleon hash functions leads to similar improvements for one-time

signatures. This makes such improvements challenging since efficiency of

one-time signatures has been studied extensively.

We further demonstrate the usefulness of our general construction by

studying and optimizing specific instantiations based on the hardness

of factoring, the discrete-log problem, and the worst-case lattice-based

assumptions. Some of these signature schemes match or improve the effi-

ciency of the best previous constructions or relax the underlying hardness

assumptions. Two of the schemes have very fast signing (no exponenti-

ations) which makes them attractive in scenarios where the signer has

limited computational resources.

Keywords: One-time Signatures, Chameleon Hash Functions, Strong

Unforgeability, Identification Schemes.

1 Introduction

One-time signature (OTS) schemes are digital signatures that can be used to
sign a single message for each pair of verifiction/signing key. Despite their limited
functionality, OTS schemes have found numerous applications. In fact, earlier
constructions of standard signature schemes, use one-time signatures as their
main component [21,22,28,30].

OTS schemes are used as building blocks in many cryptographic construc-
tions such as the (i) design of online/offline signature schemes [18], (ii) design
of CCA-secure public key encryption from identity-based encryption [8], (iii)
transformation of standard signature schemes to those with strong unforgeability
properties [26,5], and (iv) secure composition of multiple encryption schemes [17].

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 302–319, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

One-Time Signatures and Chameleon Hash Functions 303

Finally, OTS schemes are directly employed in networks protocols, for example
to authenticate messages in sensor networks [16] or to provide source authenti-
cation in multicast and broadcast networks [35].

The earlier constructions of one-time signatures built such schemes from gen-
eral assumptions such as the existence of one-way functions [28,6,18]. The main
drawback of this family of constructions is that they produce very large signa-
tures. In many cases, this has led researchers to search for alternative methods
that avoid the use of OTS schemes. The following are just a few instances:
IBE to IND-CCA PKE transformations [9,1], online/offline signatures [39], and
transformations for strongly unforgeable signatures [40].

Chameleon hash functions (trapdoor hash functions), in particular, have
proven to be an extremely useful tool in such scenarios. Several of the exam-
ples we gave above take advantage of chameleon hash functions in their con-
structions. Roughly speaking, chameleon hash functions [27] are randomized
collision-resistant hash functions with the additional property that given a trap-
door, one can efficiently generate collisions. More specifically, each function in
the family is associated with a pair of public and private (trapdoor) keys with
the following properties (i) anyone who knows the public key can compute the
associated hash function, (ii) for those who do not know the trapdoor the func-
tion is collision resistant in the usual sense, and (iii) the holder of the trapdoor
information can easily find collisions for every input. As described in more detail
in Section 4 several constructions of chameleon hash functions based on standard
number theoretic assumptions are known [27,39,3]. Chameleon hash functions are
also closely related to the notion of chameleon commitment schemes originally
introduced by Brassard et al. [13].

1.1 Our Contribution

We design a black-box construction for transforming any chameleon hash func-
tion to a strongly unforgeable one-time signature scheme. Such a connection
between one-time signatures and chameleon hash functions is not surprising. On
the contrary, as alluded to earlier, the knowledge of a close relation between
the two primitives seems to have been “in the air”. For example, in [23] Groth
shows how to design a DL-based one-time signature from the pedersen trapdoor
commitment. However, it is not clear how to generalize his construction to work
for arbitrary trapdoor commitments.

Our work appears to be the first to formally study this relation by design-
ing a black-box transformation from one primitive to another, and exploring
new and useful implications of this transformation. Next, we elaborate on these
implications:

Unifying and explaining the previous work. Our general construction confirms
that the usefulness of chameleon hash functions in replacing OTS schemes is not
a coincidence. Particularly, in several instances, constructions in one work can
be interpreted as efficient instantiations of those in another. Here is one example:

304 P. Mohassel

Starting with the work of Boneh et al. [10], several works in the litera-
ture studied constructions for transforming any standard unforgeable signature
scheme to a strongly unforgeable scheme. While Boneh et al.’s construction
only works for signature schemes with a special partitioning property, the later
works of [26,40,5] develop techniques that work for any uf-cma secure signature
scheme. The work of [26] and [5] use strongly unforgeable one-time signatures
while the work of [40] takes advantage of a chameleon hash function. Our re-
sults demonstrate that the construction of [40] can be interpreted as an efficient
instantiation of the constructions of [26,5].

OTS schemes from identification protocols. It is well-known how to design stan-
dard signature schemes from identification schemes in the random oracle model
via the fiat-shamir transform [19]. The only analogous result we know of in the
standard model is the work of Bellare and Shoup [5] who show a construction of
one-time signatures from ID schemes.

When we combine our general construction for OTS with the work of Bel-
lare and Ristov [3] who design chameleon hash functions from three move ID
schemes (Σ-protocols), we get a general construction of strongly unforgeable
OTS schemes from any Σ-protocol that satisfies natural security requirements.
Compared to the work of Bellare and Shoup [5], our security requirements ap-
pear to be more modest. Particularly, while there exist efficient Σ-protocols that
satisfy our security requirements under assumptions such as the hardness of fac-
toring or RSA inversion, the same is not known to be true about their work
which requires the ID scheme to be secure against concurrent attacks.

When instantiated based on specific identification schemes, our transforma-
tion also leads to several constructions of one-time signatures.

New OTS schemes based on standard assumptions. We further study and op-
timize several instantiations of our general construction based on standard as-
sumptions such as the hardness of factoring integers, the discrete-log problem
and the worst-case lattice-based assumptions.

Our new factoring-based construction has a very fast signing algorithm that
only involves a modular addition and multiplication. This is a useful property in
scenarios where the signing entity is a low-powered device with limited compu-
tational resources, while the verification entity has more computational power.
This is a common occurrence in sensor networks, MANETS and VANETs. As
discussed in detail in Section 4, our construction appears to be the first scheme
with such properties, based solely on the hardness of factoring RSA integers.

Our new discrete-log based construction (described in Appendix B also has a
very fast signing. It improves the key size compared to the DL-based construction
of Bellare and Shoup [5], and matches the efficiency of the DL-based fail-stop
signature of Van Heyst and Pedersen [42], in almost all respects.

Our new lattice-based construction, has a signature size of O(k log k) where k
is the security parameter. Compared to the signature scheme of Lyubashevsky
and Micciancio [29] who design OTS schemes based on hard problems on ideal
lattices, our signature scheme has the advantage of being based on a potentially

One-Time Signatures and Chameleon Hash Functions 305

weaker assumption, since we do not pose such restrictions on the structure of
the lattice. On the other hand, their scheme provides smaller key sizes and a
faster signing algorithm. Compared to the recent construction of [15] who design
standard signature schemes based on worst-case lattice-based assumptions, our
scheme has significantly shorter signatures. The work of Boyen [11], shows how
to improve that by designing a standard signature scheme with signature size
comparable to ours, but the verification key size is still significantly longer than
that of ours.

Chameleon hash functions from CRHFs? An interesting open question is whether
we can build chameleon hash functions from standard collision-resistant hash
functions (CRHFs), and other symmetric-key primitives (e.g. can one use a hash
function from the SHA family as the CRHF?). Such a construction has the poten-
tial of being significantly more efficient than the existing ones. Our results relate
this question to the design of efficient and short OTS schemes based on the same
primitives. More specifically, a new construction for chameleon hash functions
based on CRHFs, would automatically lead to short (note that chameleon hash
functions are compressing) OTS based on the same primitives. Unfortunately,
the latter is a long standing open question.

2 Preliminaries

2.1 Collision and Target Collision Resistance

A hash function is a pair H = (K, H). The key generation algorithm K returns
a key k, and the deterministic hash algorithm H takes k and an input x to
return a hash value y. We say that H is collision-resistant (CR) if for every
polynomial-time adversary A, the CR-advantage

Advcr
H(A) = Pr[H(k, x1) = H(k, x2) : k

$← K; (x1, x2)
$← A(k)]

of A against H is negligible. Similarly, we say that H is target-collision resistant
(TCR) if for every polynomial-time adversary A the TCR-advantage

Advtcr
H (A) = Pr[H(k, x1) = H(k, x2) : (x1, st)

$← A; k $← K; x2
$← A(k, st)]

of A against H is negilgible. This means that the TCR adversary has to commit
to an element in the collision before seeing the hash key. As discussed in [4], TCR
has some potential benefits over CR, such as being easier to achieve and allowing
for shorter output lengths. In this paper, for the most part we need our hash
functions to be target collision resistant. While formally such functions are keyed,
for simplicity (and since in practice one often uses non-keyed constructions) we
abuse the notation and drop the key for such functions in our constructions.

306 P. Mohassel

2.2 Chameleon Hash Functions

A family of chameleon hash functions [27] consists of a tuple of three algorithms
H = (Gen, h, h−1). The key generation algorithm (ek, td) $← Gen(1k) outputs a
pair of keys named the evaluation key and the trapdoor key, respectively. The
evaluation algorithm h takes the evaluation key ek, a message m ∈ Mek and
randomness r ∈ Rek and outputs h(ek, m, r) ∈ Yek.

Chameleon property. The chameleon property requires that h−1 on inputs the
trapdoor key td, messages m, m′ ∈ Mek and randomness r ∈ Rek, returns
r′ ← h−1(td, m, r, m′) such that h(ek, m, r) = h(ek, m′, r′).

Uniformity property. The uniformity property guarantees that there exists a dis-
tribution over Rek, which we denote by DRek

, such that for all m ∈ Mek, the
distributions (ek; h(ek, m, r)) and (ek; y) are computationally indistinguishable,
where (ek, td) $← Gen(1k), r $← DRek

and y is chosen uniformly from Yek. We
note that for all existing constructions of chameleon hash functions, the unifor-
mity property actually holds statistically.

Collision resistance. Finally, we require that given H and the evaluation key
ek, it is hard to compute (m, r) �= (m′, r′) such that h(ek, m, r) = h(ek, m′, r′).
More formally we have:

Pr
[

(m, r) �=(m′
, r

′) ∧ h(ek, m, r) = h(ek, m
′
, r

′) : (ek, td) $←Gen(1k) ; (m, r, m
′
, r

′) $← A(ek , H)
]

is negligible for any probabilistic polynomial time adversary A.
It is possible to weaken the collision resistance property by only requiring that

m �= m′. However, all the instantiations of chameleon hash functions we know
of possess this stronger property. Furthermore, we need this version of collision
resistance in order to achieve signature schemes that are strongly unforgeable.

2.3 Security Definitions for Signature Schemes

We introduce the necessary definitions for signatures schemes in Appendix A.

3 One-Time Signatures from Chameleon Hash Functions

In this section we show general constructions of one-time signatures from
chameleon hash functions. First we design an efficient one-time signature scheme
that is only secure against apriori message attacks. As we will discuss later, it
turns out that this level of security is sufficient for a number of applications of
one-time signatures in the literature. Then, we show how to enhance the con-
struction to achieve security against adaptively chosen message attacks.

3.1 A suf-ama Signature Scheme

We start with a simple construction of a one-time suf-ama signature scheme
from a chameleon hash function.

One-Time Signatures and Chameleon Hash Functions 307

Construction 31. Let H = (Gen, h, h−1) be a family of chameleon hash func-
tions. We construct a one-time suf-ama signature scheme OTS in the following
way:
• Key Generation:

1. Compute (ek, td) $← Gen(1k).
2. Choose a uniformly random rs ∈ Rek.
3. Output (vk, sk) where vk=(ek, z = h(ek, mf , rs)) and sk = (td, mf , rs).

Here mf can be an arbitrary message from Mek. There is no need to
keep mf secret, but it is also not needed for verification.

• Signing: On input message m, compute and return the signature σ =
h−1(td, mf , rs, m).

• Verification: On input (m, σ), accept if h(ek, m, σ) = z and reject other-
wise.

Claim. If H is a family of chameleon hash functions, the OTS scheme described
above is a one-time suf-ama signature scheme.

Proof. Let A be the adversary that breaks the OTS scheme in the suf-ama
game. Then, we build an adversary B that breaks the collision resistance of the
chameleon hash function H . B is given ek and H . B runs A. A chooses a message
m for his signature query. B generates a random r ∈ Rek, computes h(ek, m, r),
and returns vk = (ek, h(ek, m, r)) and the signature σ = r of message m to A.
Note that the uniformity property of the chameleon hash function implies that
for any two messages m, mf the distribution of h(ek, m, r) and h(ek, mf , rs)
are computationally indistinguishable (from uniform) when r and rs are chosen
uniformly at random from Rek. Hence B successfully simulates A’s view in the
suf-ama game.

Eventually, A returns (m′, σ′) �= (m, σ) as his forgery. B outputs (m, σ) and
(m′, σ′) as his collision pair for the hash function (see the definition of collision
resistance in Section 2.2). It is easy to verify that if A is successful in forging a
signature for m′, B outputs a valid collision.

Remarks on the proof. Note that since B in the above reduction does not know
the trapdoor for the hash function, he can only respond to a signature query for
an apriori chosen message (before the verification key is fixed). Also note that
the reason we only afford one-time security is that given a collision pair for the
hash function, all bets about its collision-resistance in the future are off. In fact,
for all existing instantiations of chameleon hash functions, given a collision pair
one can easily generate many more collisions. Finally, note that the chameleon
property of the hash function did not play a role in the security proof. Instead, it
was needed for the functionality it provides, as it is used in the signing algorithm.

Efficiency and optimizations. The signature consists of a single element in Rek.
The signing involves one invocation of the h−1 function. As we will see shortly,
for a number of instantiations of chameleon hash functions, this leads to very

308 P. Mohassel

efficient signing that only includes modular addition and multiplications (no
exponentiations). The verification requires one evaluation of the chameleon hash
function.

The verification key for the above signature scheme consists of the tuple
(ek, h(ek, mf , rs)). However, we can shorten the verification key via use of a tar-
get collision resistant hash function. In other words, given a function T from a
family of TCR functions, we can let the verification key be vk = (ek, T (h(ek, mf ,
rs))). It is easy to verify that the above proof of security still goes through
without any difficulties. Since h(ek, mf , rs) is often a group element this simple
optimization can lead to a decent improvement in the key size.

Unifying the previous works. The above construction explains and unifies several
previous works that use one-times signatures and/or chameleon hash functions.
Here we consider two use cases for chameleon hash functions in the literature.
The first application is the design of offline/online signature schemes. The ear-
lier work of Even et al. [18] used a one-time signature scheme to design an
offline/online signature scheme. It is not hard to show that the notion of secu-
rity they need for their one-time signature scheme is uf-ama security (not the
uf-cma security). The later work of Tauman and Shamir [39], proposed the use
of chameleon hash functions in order to design offline/online signature schemes.
Our construction implies that the latter construction can be interpreted as an
efficient instantiation of the former.

Another common application of chameleon hash functions is for transform-
ing uf-ama secure signature schemes to uf-cma secure signature schemes (e.g.
see [25,12]). Again, it is easy to verify that a uf-ama secure one-time signa-
ture can also be used for such a transformation, and that the transformations
based on chameleon hash functions can be seen as efficient instantiations of the
construction of [18].

3.2 A Strongly Unforgeable uf-cma Scheme

Security against apriori message attacks is not sufficient in all applications of
one-time signatures. In several instances, such as the design of IND-CCA PKE
from IBE schemes [14] or general transformation of uf-cma signature schemes
to strongly uf-cma signature schemes [26], the strong unforgeability and security
against chosen message attacks of the OTS scheme seem crucial. Next we show
how to enhance the previous construction to design such a signature scheme
from chameleon hash functions as well.

Construction 32. Let H = (Gen, h, h−1) be a family of chameleon hash func-
tions as defined in section 2 and Tek,ek′ : Yek → M′ ⊆ Mek′ be a target
collision resistant hash function, where ek and ek′ are two evaluation keys for
the chameleon hash family. We construct a one-time suf-cma signature OTS
in the following way:

One-Time Signatures and Chameleon Hash Functions 309

• Key Generation:
1. Compute (eki, tdi)

$← Gen(1k) for i ∈ {0, 1}.
2. Choose uniformly random strings r0

s ∈ Rek0 , r
1
s ∈ Rek1 .

3. Compute z0 = h(ek0, mf , r0
s) and z1 = Tek1,ek0(h(ek1, mf , r1

s)). Here
mf is an arbitrary message in Mek1 . mf can potentially be different for
different signers. As before, there is no need to keep mf secret, but it is
also not needed for verification.

4. Output (vk, sk) where vk = (ek0, ek1, z0) and sk = (td0, td1, r
0
s , r1

s , z1).
• Signing: On input message m, return the signature σ=(h−1(td1, mf , r1

s , m),
h−1(td0, mf , r0

s , z1)).
• Verification: On input (m, σ = (r, r′)), accept if h(ek0, Tek1,ek0(h(ek1,

m, r)), r′) = z0 . Else, reject.

Claim. If H is a family of chameleon hash functions, and Tek1,ek0 is a TCR hash
function, then the OTS scheme described above is a one-time suf-cma secure
signature scheme.

Proof. Let A be the adversary that breaks the OTS scheme in the suf-cma
game. Then we build an adversary B that breaks the collision resistance of the
chameleon hash function H . Let A’s signature query and answer be (m, σ =
(σ0, σ1)), and denote the forgery made by A with (m∗, σ∗ = (σ∗

0 , σ∗
1)). We divide

the proof into two separate parts for two different types of forgers. Note that
the two types of forger we consider are complements of each other and therefore
partition the space of all possible forgers. Hence, adversary A is a member of
exactly one of these two sets. Our adversary B has to randomly guess which type
of forger A is going to be. He will be correct with probability 1/2 which leads to
a factor of two reduction in tightness of security.

– Type I Forger. In this type of forgery we have that either (m, σ0) =
(m∗, σ∗

0) or h(ek1, m, σ0) �= h(ek1, m
∗, σ∗

0). In this case B finds a collision
for H under the public key ek0. B is given ek0.

He generates (ek1, td1)
$← Gen(1k) on his own, computes z1 = T (h(ek1, mf ,

r)) and z0 = h(ek0, z1, r
′) for random r ∈ Rek0 , r

′ ∈ Rek1 and sends
vk = (ek0, ek1, z0) to A. Note that even though B computes z1 before seeing
the signature query, the uniformity property of the chameleon hash function
guarantees that A’s view is indistinguishable from the real scheme.

A makes a signature query for a message m. B computes σ0 = h−1(td1, mf ,
r, m) and σ1 = r′ and returns the signature σ = (σ0, σ1) to A. A eventually
sends a forgery m∗, σ∗

0 , σ∗
1 where either (m, σ0) = (m∗, σ∗

0) or h(ek1, m, σ0) �=
h(ek1, m

∗, σ∗
0). If the latter is the case, due to the target collision resistance

of Tek1,ek0 , with all but negligible probability we have that z1 �= z∗1 where
z1 = Tek1,ek0(h(ek1, m, σ0)) and z∗1 = Tek1,ek0(h(ek1, m

∗, σ∗
0)).

Hence, it is easy to see that for this type of forger (z1, σ1) �= (z∗1 , σ∗
1)

which is exactly what B outputs as his collision for H under the public key
ek0. Given the way the verification algorithm is defined, it is easy to see that
B outputs a collision iff A successfully forges a signature for m∗.

310 P. Mohassel

– Type II Forger. In this type of forgery we have that (m, σ0) �= (m∗, σ∗
0)

and h(ek1, m, σ0) = h(ek1, m
∗, σ∗

0). In this case B finds a collision for H
under the public key ek1. B is given ek1.

He generates (ek0, td0)
$← Gen(1k) on his own, computes z0 = h(ek0, mf , r)

for a random r ∈ Rek0 and sends vk = (ek0, ek1, z0) to A. A makes a signa-
ture query for a message m. B computes z1 = h(ek1, m, r′), lets σ0 = r′ and
σ1 = h−1(td0, mf , r, z1) and returns the signature (σ0, σ1) to A. Eventually,
A will output a forgery (m∗, σ∗

0 , σ∗
1). B outputs the pair (m, σ0) �= (m∗, σ∗

0)
as his collision for H under the public key ek1. It is easy to see that based
on the way this type of forgery is defined B can successfully find a collision
as long as he simulates A’s view (which we showed he can).

Efficiency. We will shortly look at specific instantiations of the above construc-
tion based on standard assumptions, but it is useful to evaluate the efficiency
of the general construction as well. The signature consists of two elements in
Rek. In most instantiations of chameleon hash functions this translates to two
elements from the underlying group. The cost of signing a message is two invo-
cations of h−1. As mentioned earlier, in a number of constructions for chameleon
has functions, this translates to simple arithmetic operations and does not in-
clude exponentiations. In these cases, signing a message becomes very fast. The
verification requires two invocations of the function h. The verification key for
the scheme includes two evaluation keys for the chameleon hash function and
one element from the range of the chameleon hash. Similar to the construction of
previous section, the last element can be shortened by applying a target collision
resistant hash function.

Strong OTS from Σ-protocols. Bellare and Ristov [3] design chameleon hash
functions based on Σ-protocols that satisfy certain security properties (in the
standard model). Combined with our result, this leads to a general transforma-
tion of Σ-protocols to strongly unforgeable one-time signature schemes in the
standard model:

Theorem 33. There exists an efficient transformation for building suf-cma
one-time signature schemes from any Σ-protocol that satisfies strong special
soundness and strong HVZK.

We refer the reader to [3] for formal definitions of the above security notions
where the authors show that these two requirements are already satisfied by
several existing constructions such as the Schnorr [38] and GQ [24] protocols. It
is also shown that for Σ-protocols such as Fiat-Shamir [19], Micali-Shamir [31],
and Okamoto’s [32], one can modify the original constructions to satisfy these
properties without affecting the underlying hardness assumption or the efficiency
of the original scheme. The one-time signature schemes one derives from several
of these protocols are new, and warrant further study. In this paper, however,
we focus on constructions that are directly based on the existing chameleon hash
functions.

One-Time Signatures and Chameleon Hash Functions 311

We point out that Bellare and Shoup [5] also show a general transformation for
designing strong one-time signature schemes from Σ-protocols, but the security
properties they require from the starting protocol appear to be stronger than
ours (security against concurrent attacks). Particularly, while one can efficiently
instantiate our construction based on the RSA problem or even the hardness of
factoring integers, the same is not known about their constructions.

Unifying the previous works. Starting with the work of Boneh et al. [10], several
works in the literature studied constructions for transforming any uf-ama sig-
nature scheme to a strongly uf-cma signature scheme. While Boneh et al.’s con-
struction only works for signature schemes with a special partitioning property (a
property not possessed by most signature schemes), the later works of [26,40,5]
develop techniques that work for any uf-ama secure signature scheme. The
works of [5] and [26] use a strongly unforgeable one-time signature in their con-
struction while that of [40] takes advantage of a chameleon hash function. With-
out going into the details of their constructions, we observe that based on our
results the latter construction based on a chameleon hash function can be inter-
preted as an efficient instantiation of the former.

4 Instantiations Based on Standard Assumptions

Our general construction leads to a wide range of new constructions for strongly
unforgeable one-time signature schemes. Several of these constructions match or
improve the efficiency of the previous constructions based on similar assumptions
or relax the underlying hardness assumption. Here, we study the properties of
three specific instantiations of our construction based on assumptions such as the
discrete-log problem, the hardness of factoring, and lattice-based assumptions.

4.1 A Construction Based on the Factoring Assumption

Next we describe an instantiation of our general construction based on the hard-
ness of factoring integers. There are multiple constructions of chameleon hash
functions based on factoring but we focus on the hash function of Shamir and
Tauman [39], since it leads to a signature scheme with very fast signing (though
the verification still requires exponentiation).

• Key Generation:
1. Generate two random safe primes p, q ∈ {0, 1}k/2 and compute n = pq.
2. Choose at random an element g ∈ Z∗

n of order λ(n) where λ(n) =
φ(n)/2 = (p − 1)(q − 1)/2.

3. The public key is ek = (n, g) and the trapdoor key is td = (p, q). The
evaluation and inversion for the hash function h(ek, ·) : Zn ×Zλn → Z∗

n

is defined as:
• Evaluation: On message m ∈ Zn and randomness r ∈ Zλ(n), compute and

return gm||r mod n ∈ Z∗
n. The concatenation treats m and r as bitstrings

312 P. Mohassel

where we assume that each r ∈ Zλ(n) is represented using exactly k bits,
even if some of the leading bits are zero.

• Inversion: On input messages m, m′ ∈ Zn and randomness r ∈ Zλ(n),
return r′ = 2k(m − m′) + r mod λ(n).

See [39] for a proof that the above construction is a chameleon hash function
based on the factoring assumption. An important property of the above con-
struction is that the inversion function only requires one modular addition and
a multiplication. Given the above hash function, the strongly unforgeable one-
time signature scheme is as follows:

Construction 41. Let T0, T1 be target collision resistant functions, where T0
maps elements of Z∗

n0
to bitstrings, and T1 maps elements of Z∗

n1
to a subset of

Zn0 .
• Key Generation:

1. Compute n0 = p0q0 and n1 = p1q1 where pi, qi are safe primes, for
i ∈ {0, 1}.

2. Choose at random elements g0 ∈ Z∗
n0

and g1 ∈ Z∗
n1

of orders λ(n0) and
λ(n1) respectively.

3. Compute z0 = T0(g
0||r0
0 mod n0) and z1 = T1(g

0||r1
1 mod n1).

4. Return vk = (n0, n1, g0, g1, z0) and sk = ((p0, q0), (p1, q1), r0, r1, z1).
• Signing: On a message m ∈ Zn, return the signature σ = (σ0, σ1) where

σ0 = 2k(0 − z1) + r0 mod λ(n0) and σ1 = 2k(0 − m) + r1 mod λ(n1).
• Verification: On a message m and the signature σ = (σ0, σ1)

1. Compute y = T1(g
m||σ1
1 mod n1).

2. Compute y′ = T0(g
y||σ0
0 mod n0).

3. accept if y′ = z0 and reject otherwise.

Efficiency Comparison. The verification key contains two integers, two group
elements, and one hash output. The signature consists of two group elements.
The signing algorithm consists of two modular additions and two modular mul-
tiplications. The verification algorithm includes two exponentiations. Hence, the
scheme is desirable in situations where the signer has low computational power,
but the verifier does not have such limits.

General constructions of OTS schemes lead to secure schemes based on the
factoring assumption, however the resulting constructions are impractical. Gold-
wasser et al. [22] also design a signature scheme from claw-free trapdoor permu-
tations with instantiations based on the factoring assumption. Their signature
scheme leads to short signatures, but the signing algorithm requires one expo-
nentiation per bit of the message, which makes the resulting scheme inefficient.
A number of works in the literature have studied the design of fail-stop signature
schemes based on factoring-related assumptions [7,33,36,41,37]. However, almost
all such constructions rely on assumptions that are stronger than the standard
factoring assumption. The only exception is the construction of [7,33] which is

One-Time Signatures and Chameleon Hash Functions 313

based on the intractability of factoring integers n = pq for p, q with p = q = 3
mod 4 (i.e. Blum integers) and p �= q mod 8. However, it is not known if factor-
ing integers of this special form is as hard as factoring arbitrary RSA integers
(see [37] for a more detailed discussion).

Hence, to the best of our knowledge, our construction is the first short OTS
based solely on the standard factoring assumption, where the signing algorithm
only requires simple arithmetic operations.

More constructions based on factoring-related Assumptions. [3] and [2] design
multiple constructions of chameleon hash functions based on factoring and the
RSA problem, respectively. When plugged into our general construction, each of
these leads to a new strongly unforgeable one-time signature scheme. However,
the cost of signing for these schemes is higher than the scheme we described as
they involve exponentiation.

4.2 A Construction from Lattice-Based Assumptions

We briefly describe the lattice-based chameleon hash function of [20,34] based
on preimage samplable (trapdoor) function (PSF). Each function in the family
is represented by matrices A ∈ Zk×m1

q and B ∈ Zk×m2
q where k is the security

parameter, q = poly(k) is an odd prime and m1, m2 = O(k log q). The message
space is M = {x ∈ Zm1

q : ||x||2 ≤ β1}, and the randomness domain is R =
{r ∈ Zm2

q : 0 < ||r||2 ≤ β2} where β1 and β2 are chosen appropriately. The
randomness distribution is a discrete Gaussian over Z

m2
q , and the range of the

function is Y = Zk
q .

A function in the family is defined by hA,B(m, r) = Am + Br where m ∈ M
and r ∈ R. The hardness of collision follows from the short integer solution
(SIS) assumption, that is related to worst-case lattice-based assumptions such
as approximating the shortest vector problem. The trapdoor is a short basis for
the lattice whose parity-check matrix is B. The inversion function h−1

A,B involves
simple linear algebra operations. We do not explain the details here but refer
the reader to [20,34] for more information.

The strongly unforgeable one-time signature scheme is then obtained by plug-
ging in the above chameleon hash function in our general construction. Hence
we directly move to the analysis of the efficiency for the resulting scheme.

Efficiency and Comparison. The verification key for the resulting scheme con-
sists of matrices A and B which leads to a key size of O(k2 log k). The signature
contains two elements in R, and hence the signature is of size O(k log k). The
signing algorithm requires two invocations of the inversion for the preimage sam-
plable function described above.

Lyubashevsky and Micciancio [29] also design an asymptotically efficient one-
time signature based on lattice-based assumptions, but they need to work with
lattices with special structure (i.e. ideal lattices). As pointed out by the authors,
it is desirable to avoid such extra assumptions while achieving a similar level of
efficiency. Our construction removes this extra assumption, while still providing

314 P. Mohassel

a signature of size O(k log k). However, the verification key and the signing cost
for our scheme are larger than theirs.

Recently, Cash et al. [15] designed digital signature schemes based on worst-
case lattice-based assumptions in the standard model. However, the signature
size in their constructions is in the order of O(k2 log k). In [11] Boyen improved
their result by building a signature scheme with signature size linear in k, while
the verification key size is still significantly longer than ours (i.e. cubic in k).

Acknowledgement. I would like to thank Greg Zaverucha for helpful discussions
and the anonymous reviewers for valuable comments.

References

1. Abe, M., Cui, Y., Imai, H., Kiltz, E.: Efficient hybrid encryption from ID-based

encryption. Designs, Codes and Cryptography 54(3), 205–240 (2010)

2. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:

Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

3. Bellare, M., Ristov, T.: Hash functions from sigma protocols and improvements

to VSH. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 125–142.

Springer, Heidelberg (2008)

4. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs

practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.

Springer, Heidelberg (1997)

5. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and

fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007.

LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

6. Bleichenbacher, D., Maurer, U.M.: On the efficiency of one-time digital signatures.

In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 145–

158. Springer, Heidelberg (1996)

7. Bleumer, G., Pfitzmann, B., Waidner, M.: A Remark on Signature Scheme Where

Forgery Can Be Proved. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS,

vol. 473, pp. 441–445. Springer, Heidelberg (1991)

8. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from

identity-based encryption. SIAM Journal on Computing 36(5), 915–942 (2006)

9. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using

identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,

pp. 87–103. Springer, Heidelberg (2005)

10. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-

putational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)

PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

11. Boyen, X.: Lattice Mixing and Vanishing Trapdoors: A Framework for Fully Secure

Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.

LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

12. Brakerski, Z., Kalai, Y.T.: A Framework for Efficient Signatures, Ring Signatures

and Identity Based Encryption in the Standard Model,

http://eprint.iacr.org/2010/086.pdf

13. Brassard, G., Chaum, D., Crépeau, C.C.: Minimum disclosure proofs of knowledge.

Journal of Computer and System Sciences 37(2), 156–189 (1988)

http://eprint.iacr.org/2010/086.pdf

One-Time Signatures and Chameleon Hash Functions 315

14. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based

encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS,

vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate

a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.

523–552. Springer, Heidelberg (2010)

16. Dahmen, E., Krauß, C.: Short hash-based signatures for wireless sensor networks.

In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp.

463–476. Springer, Heidelberg (2009)

17. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,

J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

18. Even, S., Goldreich, O., Micali, S.: Online/offline signatures. Journal of Cryptology

(1996)

19. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,

pp. 186–194. Springer, Heidelberg (1987)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new

cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM

Symposium on Theory of Computing, pp. 197–206. ACM Press, New York (May

2008)

21. Goldreich, O.: Two remarks concerning the goldwasser-micali-rivest signature

scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.

Springer, Heidelberg (1987)

22. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308

(1988)

23. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size

group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,

pp. 444–459. Springer, Heidelberg (2006)

24. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to

Security Microprocessor Minimizing Both Transmission and Memory. In: Günther,

C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg

(1988)

25. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-

tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,

Heidelberg (2009)

26. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable

signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.

Springer, Heidelberg (2007)

27. Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed

System Security Symposium – NDSS 2000. The Internet Society, San Diego

(February 2000)

28. Lamport, L.: Constructing digital signatures from a one-way function. Technical

Report SRI-CSL-98, SRI International Computer Science Laboratory (October

1979)

29. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-

natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,

Heidelberg (2008)

30. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.

LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

316 P. Mohassel

31. Micali, S., Shamir, A.: An improvement of the fiat-shamir identification and signa-

ture scheme. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 244–247.

Springer, Heidelberg (1990)

32. Okamoto, T.: Provably secure and practical identification schemes and correspond-

ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.

31–53. Springer, Heidelberg (1993)

33. Pedersen, T.P., Pfitzmann, B.: Fail-stop signatures. SIAM Journal on Comput-

ing 26, 291–330 (1997)

34. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryp-

tology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/

35. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.

In: ACM CCS 2001: 8th Conference on Computer and Communications Security,

pp. 28–37. ACM Press, New York (November 2001)

36. Safavi-Naini, R., Susilo, W.: Threshold fail-stop signature schemes based on dis-

crete logarithm and factorization. In: Pieprzyk, J., Okamoto, E., Seberry, J. (eds.)

ISW 2000. LNCS, vol. 1975, pp. 292–307. Springer, Heidelberg (2000)

37. Schmidt-Samoa, K.: Factorization-based fail-stop signatures revisited. In: López,

J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 118–131.

Springer, Heidelberg (2004)

38. Schnorr, C.-P.: Efficient signature generation by smart cards. Journal of Cryptol-

ogy 4(3), 161–174 (1991)

39. Shamir, A., Tauman, Y.: Improved online/Offline signature schemes. In: Kilian, J.

(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

40. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable

signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007.

LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

41. Susilo, W., Safavi-Naini, R.: An efficient fail-stop signature scheme based on fac-

torization. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 62–74.

Springer, Heidelberg (2003)

42. van Heyst, E., Pedersen, T.P.: How to make efficient fail-stop signatures. In:

Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 366–377. Springer,

Heidelberg (1993)

43. Zaverucha, G.M., Stinson, D.R.: Short one-time signatures. Cryptology ePrint

Archive, Report 2010/446 2010, http://eprint.iacr.org/

A Security Definitions for Signature Schemes

A signature scheme is a tuple of the following algorithms:
• Gen(1k): The key generation algorithm outputs a key pair (vk, sk).
• Sign(sk, m): The signing algorithm takes in a secret key sk, and a message

m, and produces a signature σ.
• V er(vk, m, σ): The verification algorithm takes in a verification key vk, a

message m, and a purported signature σ, and returns 1 if the signature is
valid and 0 otherwise.

Unforgeability against Chosen Message Attacks

The standard security notion for signatures is existential unforgeability with re-
spect to adaptive chosen-message attacks (uf-cma) as formalized by Goldwasser,

http://eprint.iacr.org/
http://eprint.iacr.org/

One-Time Signatures and Chameleon Hash Functions 317

Micali and Rivest [22]. It is defined using the following game between a challenger
and an adversary A over a message space M:
• Setup: The challenger runs the algorithm Gen(1k) to obtain the verification

key vk and the secret key sk, and gives vk to the adversary.
• Queries: Proceeding adaptively, the adversary may request a signature on

any message m ∈ M and the challenger will respond with σ = Sign(sk, m).
Let Q be the set of messages queried by the adversary.

• Output: Eventually, the adversary will output a pair (m, σ) and is said to
win the game if m /∈ Q and V er(vk, m, σ) = 1.

We define Advuf-cma,A to be the probability that adversary A wins in the above
game.

Definition 1. (UF-CMA [22]) A signature scheme (Gen, Sign, V er) is exis-
tentially unforgeable with respect to adaptive chosen message attacks if for all
probabilistic polynomial time adversaries A, AdvA is negligible in the security
parameter.

Unforgeability against Apriori Message Attacks

Several works (e.g. [25]) have considered a weaker definition called existential
unforgeability with respect to apriori chosen-message attacks (uf-ama). It is de-
fined using the following game between a challenger and an adversary A over
message space M:
• Queries: The adversary sends the challenger a list Q of messages m1, . . . ,

mn ∈ M.
• Response: The challenger runs the algorithm Gen(1k) to obtain the verifi-

cation key vk and the secret key sk. Next, the challenger signs each queried
message as σi = Sign(sk, mi) for i = 1 to n. The challenger then sends
vk, σ1, . . . , σn to the adversary.

• Output: Eventually, the adversary will output a pair (m, σ) and is said to
win the game if m /∈ Q and V er(vk, m, σ) = 1.

We define Advuf-ama,A to be the probability that adversary A wins in the above
game.

Definition 2. (UF-AMA) A signature scheme (Gen, Sign, V er) is existentially
unforgeable with respect to apriori chosen message attacks if for all probabilis-
tic polynomial time adversaries A, Advuf-ama,A is negligible in the security
parameter.

Strongly Unforgeable One-time Signatures

A signature is called one-time if the adversary A in the above games is only
allowed to make a single message query before creating a forgery.

A signature scheme is called strongly unforgeable if in the above security
games, the adversary A wins even if in the output stage he forges a signature
for a message m ∈ Q, by creating a different signature for it. We denote the
corresponding notions of security with suf-cma and suf-ama .

318 P. Mohassel

B A Construction Based on the Discrete-Log Assumption

We use a well-known chameleon hash function based on the DL problem for
our construction. The signature scheme we obtain is new and is as efficient as
the best existing constructions based on the DLP (see [5] and [42]). Recently,
Zaverucha and Stinson [43] designed a new OTS scheme based on the discrete-
log assumption that is shorter than all previous schemes including ours. Further
improvements in efficiency of the underlying chameleon hash function would lead
to even more efficient constructions. The DL-based chameleon hash function we
use is described next:

• Key Generation:

1. Fix a generator g1 for a prime-order group G, of size p.

2. Generate a random x in Zp, and compute g2 = gx
1 .

3. The public key ek = (p, g1, g2) and the trapdoor key is td = x.

• Evaluation: On message m and randomness r in Zp, return gm
1 gr

2.

• Inversion: On inputs messages m, m′ and randomness r, compute r′ =
x−1(m − m′) + r mod p.

Given the above hash functions, the strongly unforgeable one-time signature
scheme is as follows:

Construction B1. A suf-cma one-time signature based on the DL problem

• Key Generation:

1. Fix a generator g1 for a prime order group G of size p. Let T be target
collision hash function that maps elements of G to a subset of Zp.

2. Generate random x, x′ ∈ Zp and compute g2 = gx
1 and g3 = gx′

1 .

3. Compute z0 = T (g1g
r
2) and z1 = T (g1g

r′
3) for random r, r′ ∈ Zp.

4. The verification key is vk = (g1, g2, g3, z0) and the signing key is sk =
(y = x−1, y′ = x′−1, r, r′, z1)1.

• Signing: To sign a message m, compute and return signature σ = (σ0, σ1)
where σ0 = y′(1 − m) + r′ mod p and σ1 = y(1 − z1) + r mod p.

• Verification: On message m and the signature σ = (σ0, σ1), accept if
T (gT (gm

1 g
σ0
3)

1 gσ1
2) = z0 and reject otherwise.

Efficiency Comparison. The verification key contains three group elements and
one TCR hash output. The signature consists of two integers in Zp. Signing is
very fast and only includes simple arithmetic operations. Verification requires
exponentiations.

1 Note that in this instantiation we let the fixed message mf = 1.

One-Time Signatures and Chameleon Hash Functions 319

Compared to the DL-based construction of [5] which is based on Okamoto’s
identification scheme, our construction has a shorter verification key (one less
group element). The signature sizes are the same and the signing algorithm for
both schemes only requires arithmetic operations2.

Our construction matches the efficiency of the DL-based construction of Van
Heyst and Pedersen [42] in many respects such as the key and signature sizes
and the cost of signing a message.

2 We note that [5] designs a more efficient OTS scheme based on a stronger assumption

called one-more DLP.

On the Minimum Communication Effort for Secure
Group Key Exchange

Frederik Armknecht1 and Jun Furukawa2

1 Universität Mannheim, Germany
armknecht@informatik.uni-mannheim.de

2 NEC Corporation, Japan
j-furukawa@ay.jp.nec.com

Abstract. Group key exchange protocols (GKE) allow a set of parties to estab-
lish a common key over an insecure network. So far the research on GKE mainly
focused on identifying and formalizing appropriate security definitions that has
led to a variety of different security models. Besides reaching a high security
level, another important aspect is to reduce the communication effort. In many
practical scenarios it is preferable (or possibly even indispensable) to reduce the
number of messages to a minimum, e.g., to save time and/or energy.

We prove that any n-party GKE that provides forward security (FS) and mu-
tual authentication (MA) against insider attackers needs at least two communica-
tion rounds and in that case at least 1

2
n2 + 1

2
n−3 messages. Observe that FS and

MA are today accepted as basic security recommendations. Hence these bounds
hold automatically as well for more elaborate security definitions.

Then, we describe a 2-round-GKE that requires n + 1 messages more than
the derived lower bound. We prove that the protocol achieves UC-security (in the
model by Katz and Shin (CCS’05)) in the common reference string (CRS) model.
To the best of our knowledge, this represents the most communication efficient
(in terms of number of rounds and messages) UC-secure GKE so far.

Keywords: Group key exchange, communication effort, UC security.

1 Introduction

Many cryptographic mechanisms, especially for confidentiality and authenticity, require
a common secret to be shared between the communication partners. Therefore, key ex-
change protocols (KE) belong to the most practically relevant cryptographic primitives.
However, while several secure and efficient KEs are known and used nowadays for the
case of n = 2 parties, the situation becomes more complicated in the case of group key
exchange protocols (GKE), where a key needs to be established between n > 2 parties.

Obviously, an optimal GKE should achieve the highest security goal with the lowest
possible communication effort. Here, the communication effort is usually represented
in the number of communication rounds and the number of messages. However, only
little is known about the minimum communication effort of GKEs. This question is not
only of theoretical interest. In practice the exchange of messages between the parties
can be more time consuming than the computations themselves. Thus, reducing the

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 320–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Minimum Communication Effort for Secure Group Key Exchange 321

number of messages can help to reduce the time effort. Furthermore, the energy effort
for sending messages (wireless) is usually by magnitudes higher than for performing
computations. Therefore, GKEs with reduced communication effort1 are beneficial for
application scenarios where low-weight devices with restricted resources are involved.

Actually, the minimum communication effort depends on several factors. For ex-
ample, although it is common to identify each protocol run by an individual session
identity (SID), differences exist on how to set up the SID. In principle, one can dis-
tinguish between two fundamental approaches: external-SID GKEs, where a globally
unique SID is provided by an external environment, and internal-SID GKEs, where a
SID is determined by the group members themselves during the protocol execution. As
we will see later this already impacts the minimum communication effort.

Other factors are the considered security model and security goals. Up to now, a
variety of different security models for GKEs exist. Based on the two-party case [3,4,2],
Bresson et al. [9,7,8] gave the first formal security model for GKEs. They formalized the
notions of authenticated key exchange (AKE) and mutual authentication (MA). AKE
means informally that a group key is computationally indistinguishable from a random
string while MA guarantees that each party is assured of the participation of every
other party in the protocol. Initially, these definitions considered outsider attackers only,
that is, adversaries who do not take part in the protocol. Later on, Katz and Shin [20]
introduced the notion of insider attacks: an attacker can corrupt several group members
and can actively participate into the protocol. They presented a security model for GKEs
within the Universal Composability (UC) framework [14] and showed that their model
covers insider attackers. They also presented the construction of UC-secure GKE. A
UC-secure protocol maintains its security properties even when composed concurrently
with an unbounded number of instances of other UC-secure protocols. In [11], Bresson
et al. revised the model from [9] so that (among other things) insider attackers are
captured as well. Another important security notion is contributiveness that has been
brought up by Bohli et al. [5] and strengthened by Bresson and Manulis [10]. A protocol
satisfying this property ensures that a proper subset of insiders cannot predetermine the
session key. Gorantla et al. [17] showed how to define UC-secure GKEs that provide
contributiveness. Evidently, the search for a comprehensive security model for GKEs
is still within the focus of current research, bringing up new security notions like key
compromise impersonation (e.g., Gorantla et al. [16]) or the consideration of special
approaches like password-authenticated GKEs (e.g., Abdalla et al. [1]).

Intuitively, one can expect that most additional security requirements on GKEs will
not ”come for free”. Making a GKE stronger will probably increase the computational
and/or communication effort. Previous works mostly investigated GKEs from a security
perspective, asking the question: When is a GKE secure? Here, we approach GKEs
more from complexity theory and ask: How much does it cost (in terms of messages
and rounds) to make a GKE secure?

Actually, we are only aware of the work by Furukawa et al. [15] that addressed
directly the question of the minimum communication effort of GKEs. More precisely

1 Of course, the communication effort depends on the length of the messages as well. We do not
investigate this question in this work.

322 F. Armknecht and J. Furukawa

they proved that any 2-round UC-secure2 GKE with internal-SID generation between
n parties requires at least 2n2 − 2n messages. Observe that this bound relies on two
rather strong assumptions: (i) UC-security (which requires straight-line simulatability)
and (ii) internal-SID generation. Therefore, it is plausible to assume that both aspects
impact the minimum communication effort but the question is to what extent.

Contribution. In this work we pick up the question investigated by Furukawa et al. [15].
First, we derive lower bounds on the communication effort of GKEs based on a selection
of minimum security requirements only: forward secrecy (FS) (the corruption of a party
has no impact on the security of past protocol runs) and mutual authentication (MA)
(an honest participant outputs a key only if all other participants in this group agreed
to participate in the GKE and all honest parties generate the same key) in the presence
of insider attackers (attackers that actively participate in the protocol). To have a clear
separation between the effort for SID generation and key establishment, we consider
external-SID GKEs only. We show that under these conditions, GKEs require at least
two communication rounds and in this case at least 1

2n2 + 1
2n − 3 messages in total.

Interestingly this bound is significantly smaller than the lower bound derived in [15].
This sheds some lights on the ”costs” for fulfilling additional requirements (as UC-
security and SID-generation in this case). To the best of our knowledge the notions of
forward secrecy and mutual authentication against insider attackers are covered by any
recent security models for GKEs. Thus, they can be seen as basic requirements and the
lower bounds should be valid for any current or upcoming security model3. We note
that the number of messages might be smaller for GKEs that comprise more than two
rounds. However, from our point of view, minimizing the number of rounds will have a
more significant impact in reducing the time effort for GKEs than reducing the number
of messages. The reason is that in practice, we expect that more time is spend for waiting
for all messages within one round, i.e., waiting that a round is completed, than for
generating the messages themselves. Therefore, minimizing the number of rounds was
our primary focus.

Our second contribution is a 2-round GKE that requires 1
2n2 + 3

2n − 2 messages,
being n+1 messages more than the derived lower bound. We prove that the protocol is
UC-secure (based on the UC-model given by Katz and Shin [20]) in the common ref-
erence string model under the decisional Diffie-Hellman assumption. As UC-security
implies FS and MA, the protocol illustrates that GKEs with almost optimal communica-
tion effort are possible. Of independent interest might be our observation that although
we aim for ”symmetric” security properties like mutual authentication, our protocol is
highly asymmetric regarding the roles of the different participants. A further interesting
observation is that both in the work by Furukawa et al. [15] and in our work, it is shown
that one can construct GKEs that are UC-secure and have an almost optimal number
of messages. This seems to indicate that considering UC-security has a rather minor
impact on the minimum number of messages.

To the best of our knowledge, the most efficient (in number of messages) GKEs so far
have been given by Furukawa et al. [15] and Gorantla et al. [17]. Both require 2 rounds

2 If not mentioned otherwise, UC-secure refers to the Katz-Shin-model [20].
3 Of course, the incorporation of additional assumptions might increase these bounds. We leave

this question for future research.

On the Minimum Communication Effort for Secure Group Key Exchange 323

and 2n2 − 2n messages, but possess stronger properties: internal SID-generation and
contributiveness, respectively. This makes them rather incomparable but indicates again
the higher communication effort for stronger requirements.

Organization. The paper is organized as follows: Sec. 2 informally repeats the com-
mon communication model and the security notions of internal attackers, forward se-
crecy (FS), and mutual authentication (MA). Sec. 3 presents some lower bounds on the
communication effort of external-SID GKEs that provide forward secrecy and mutual
authentication in the presence of insider attackers. Sec. 4 proposes a concrete GKE pro-
tocol that almost meets this lower bound and Sec. 5 proves that it achieves UC-security.
Sec. 6 concludes the paper.

2 Preliminaries

In this section we repeat some common aspects of GKE models. We assume for sim-
plicity a fixed group of parties P of potential participants. A GKE is executed between
the members of subset pid = {Π1, . . . , Πn} ⊆ P where Πi is the party ID of the
i-th participant in the GKE. Each protocol execution is labeled by its own session ID
(SID) sid that has to be globally unique. If a message (sid, pid, new-session) is send
to an honest party Π ∈ pid, a new instance (Π, sid, pid) of Π is invoked. An in-
stance can be seen as a copy of Π that has its own instance state (which, for example,
stores all ephemeral values). All instances (Π, sid, pid), Π ∈ pid, start a new execu-
tion of a GKE π where each instance uses its own instance state. During this session,
every instance (Π, sid, pid) communicates only with other instances (Π ′, sid′, pid′) if
(sid, pid) = (sid′, pid′), i.e., both instances participate into the same session sid with
the same participants pid, and if Π ′ ∈ pid. If an instance (Π, sid, pid) finishes its par-
ticipation into π, it outputs (Π, sid, pid, κ) with κ being the session key. Afterward, the
instance (Π, sid, pid) and its corresponding instance state is deleted.

As pointed out in Sec. 1, the definition of an appropriate security model for GKEs
is still in the focus of current research. However, several requirements exist that are
commonly agreed to be part of any meaningful security model. In the following, we
single out some of these and explain them shortly. We refer to Appendix A for a formal
treatment of the considered security notions. We emphasize that the following list of
conditions does not represent a full security model than rather a set of necessary basic
requirements. In Sec. 3 we will show that these already imply some lower bounds on
the communication effort. In consequence, the derived bounds automatically hold as
well for any more elaborate security model that comprises the mentioned aspects.

An adversary can invoke a GKE between any subset pid ⊆ P . In addition, she can
control the communication within the network, and corrupt any party. Corruption means
that she literally takes over control of the corrupted party and learns all its secrets. If
corrupted parties participate into the protocol one speaks of insider attackers. Obvi-
ously, the secrecy of the key cannot be longer achieved in such cases but other security
properties can still be true. One security requirement that is usually put on a GKE in the
context of corruption is forward secrecy: if an attacker corrupts a party Π at some point
in time, this does not impact the security of past protocol runs which Π participated
to. Another established security requirement is mutual authentication: an honest party

324 F. Armknecht and J. Furukawa

p̄id
(1)

p̄id
(2)

Π1 Π2

key key′

{ρ(1)
i }i {ρ(2)

i }i

1st round

1st round

1s
t

ro
un

d 1st
round2n

d
ro

un
d 2nd

round

(a) Execution 1

p̄id

Π1 Π2

keyrandom tape

1st round

1s
t ro

un
d

1st round
1st round

2nd
round

(b) Execution 2

Fig. 1. The protocol executions discussed in the proof of Theorem 1

only outputs a key if all parties in the same group confirmed their participation and keys
generated by honest parties are equal.

3 Lower Bounds on the Communication Effort

In this section, we derive lower bounds on the number of rounds and the number of
exchanged messages in GKEs that provide forward secrecy and mutual authentication
in the presence of insider attackers. We prove our lower bounds by contradiction. We
show that if the communication effort is below the specified bounds, then there exists
either an insider adversary who violates mutual authentication or an outsider adversary
who breaks forward secrecy.

Theorem 1. Consider a 2-round GKE between a group pid of parties that provides mu-
tual authentication and forward secrecy in presence of insider attackers. For two differ-
ent parties Π, Π ′ ∈ pid and r ∈ {1, 2} denote by mr

Π→Π′ the message that Π sends to-
ward4 Π ′ in the r-th round. Furthermore, we define by M r

Π,Π′ := {mr
Π→Π′ , mr

Π′→Π}
the set of messages exchanged between Π and Π ′ in the r-th round. It holds:

1. If M2
Π1,Π2

= ∅ for two different honest parties Π1, Π2 ∈ pid, that is, Π1 and Π2
do not exchange any message in the second round, then the session key depends
only on the random tapes of these two parties and some other public data, e.g., the
session identity, the public keys of parties, etc.

2. There exists at most one pair (Π1, Π2) of honest parties such that M2
Π1,Π2

= ∅.

Proof. The case of n = 2 parties is straightforward. There is only one possible pair of
parties so that the claims are obviously true. Hence, we restrict to the case n ≥ 3 in the
following.

4 Recall that it is not guaranteed that the message eventually reaches Π ′ as the attacker is as-
sumed to have complete control over the network.

On the Minimum Communication Effort for Secure Group Key Exchange 325

We describe for each claim a possible protocol execution (termed execution 1 and 2
and displayed in Fig. 1) where we show that if the claim is not fulfilled, the assumptions
are violated. We start with the first claim and explain execution 1. Let Π1, Π2 ∈ pid
be two different honest parties in a 2-round GKE with M2

Π1,Π2
= ∅. We consider an

adversary A who corrupts all parties in pid := pid \ {Π1, Π2}. For each Πi ∈ pid,

the adversary simulates two instances of Πi, called Π
(1)
i and Π

(2)
i . These use two

independent random tapes, denoted by ρ
(1)
i and ρ

(2)
i , respectively. Let pid

(1)
denote the

set of all instances Π
(1)
i for i ≥ 3, and define analogously pid

(2)
.

The core idea of the proof is to show that the adversary A who controls the commu-
nication within the network can execute the protocol such that Π1 receives messages

only from pid
(1) ∪ {Π2} while Π2 receives messages only from pid

(2) ∪ {Π1}. We
explain now in more detail how each message is handled.

Each message from either Π1 or Π2 to any other party Πi ∈ pid is forwarded to
both instances Π

(1)
i and Π

(2)
i . However, the other way around, only messages from

pid
(1)

to Π1 and from pid
(2)

to Π2 are forwarded while both messages from pid
(1)

to

Π2 and messages from pid
(2)

to Π1 are dropped. All messages between Π1 and Π2 are

forwarded. All messages from pid
(1)

to pid are only sent to the corresponding instance

in pid
(1)

and analogously for messages from pid
(2)

to pid. Any other messages are
deleted. Execution 1 is displayed in Figure 1(a).

Observe that Π1 communicates only with the instances in pid
(1) ∪ {Π2}, and simi-

larly Π2 only with pid
(2) ∪ {Π1}. Recall that all parties in pid are under the control of

the adversary. Hence, he can force the instances Π
(1)
i , Π

(2)
i to use the same session ID

sid as Π1 and Π2. Furthermore note that Π1 and Π2 communicate with different party

instances pid
(1)

and pid
(2)

which use different random tapes ρ
(1)
i and ρ

(2)
i respectively.

As Π1 and Π2 exchange only messages in the first round, the communication between
Π1 and Π2 does not depend on any message from pid. Hence, they are not able to notice
that each of them communicated with different instances from pid.

Now, by assumption the protocol provides mutual authentication which implies that
all (honest) parties generate the same session key. Hence, the key has to be independent
of the random tapes of pid which shows the first claim.

Regarding the second claim, assume two different pairs of parties (Π1, Π2) and
(Π ′

1, Π
′
2) who have no direct communication in the second round. Then it follows from

claim 1 that either {Π1, Π2}∩ {Π ′
1, Π

′
2} �= ∅ or that the exchanged key is independent

of the random tapes of all parties. The latter case contradicts the assumption that the
protocol provides forward secrecy.

Hence, we can assume w.l.o.g. that {Π1} = {Π1, Π2} ∩ {Π ′
1, Π

′
2}. This means in

particular (with the same arguments as above) that the key depends only on the random
tape of Π1. Consider now execution 2 in which all messages are honestly forwarded by
the adversary except of the following ones, which are discarded:

1. {m1
Πi→Π1

}i≥2 (all messages from pid \ {Π1} to Π1 in the first round)
2. M2

Πi,Π1
, i ≥ 3 (all messages between pid \ {Π1, Π2} and Π1 in the second round)

3. {m2
Π2→Πi

}i≥3 (all messages from Π2 to pid \ {Π1, Π2} in the second round)

326 F. Armknecht and J. Furukawa

This execution is illustrated in Figure 1(b). In this execution, Π2 cannot notice that some
of messages are dropped since it receives only messages that are independent of the
dropped messages. More precisely, Π2 cannot notice that the messages {m1

Πi→Π1
}i≥2

are deleted as it has no communication with Π1 in the second round by assumption.
Furthermore, as none of the messages specified in 2. and 3. are addressed for Π2 and as
the protocol has in total two rounds, Π2 cannot observe that these messages have been
dropped. Concluding, from Π2’s point of view, the execution was correct and it outputs
the correct session key at the end of the execution by assumption.

We also observe that Π1 receives no messages from other parties and that all mes-
sages Π1 sends in the second round are dropped. That means, an adversary can copy all
the messages Π1 sends in the first round of one session and later, even after the session
is over (after the key is deleted), the adversary can corrupt pid \Π1 and recover the key
exchanged in the session as Π2 is able to compute the correct session key (as argued
above). This contradicts forward secrecy, showing the claim. ��
Theorem 2. In the first round of a 2-round GKE π with n parties that achieves forward
secrecy and mutual authentication in respect to insider attackers, at least n−2 messages
are sent.

Proof. In the case of n = 2 parties, this is obviously true as less than n − 2 = 0
messages are impossible. We consider the case of n ≥ 3 parties in the following. We
first borrow some vocabulary from graph theory (see [6] for a reference). A path is
a sequence of vertices such that there is an edge between two consecutive vertices.
Two vertices u and v in a graph are connected if the graph contains a path from u to
v. Otherwise, they are disconnected. A connected component of a graph is a maximal
subgraph in which any two vertices are connected to each other. Obviously each vertex
belongs to exactly one connected component.

We consider parties of a GKE as vertices of a graph G and define an (undirected)
edge between two parties Πi and Πj if Πi sends a message directly to Πj in the first
round or vice versa. Then, there exists a unique (up to re-ordering) partition of the set
of parties pid into disjunct subsets pid1, . . . , pid� such that each group pidi a connected
component of G.

In case of � = 3, we construct an imaginary GKE π̄ out of π as follows. We consider
each group pid1, pid2, and pid3 as a party in π̄. For each i, the random tape of pidi is
the concatenation of the random tapes of all parties Π ∈ pidi. If Π ∈ pidi sends a
message to Π ′ ∈ pidi, we consider it is an internal process of pidi. When Π ∈ pidi

sends a message to Π ′ ∈ pidj �= pidi, we define that pidi sends the message to pidj .
When some parties in pidi output keys, we choose the first key that was given out and
define it as being the key generated by pidi. When Π ∈ pidi is corrupted, the whole set
pidi is corrupted as a party.

Since the parties pid1, pid2, and pid3 are by definition different connected compo-
nents, they are in particular pairwise disconnected. That is, no messages are exchanged
in the first round of π̄. Hence, we can ignore the first round of the original GKE and
consider π̄ as a 2-round GKE in which participants send no messages in the second
round. In particular, pid1 and pid2 do not exchange any messages in the second round
of π̄. This implies that, as discussed in the proof of Theorem 1, the session key does
not depend on the random tape of pid3. By the same argument, the session key does not

On the Minimum Communication Effort for Secure Group Key Exchange 327

depend on the random tapes of pid1 and pid2 either. Therefore, there exists an attacker
Ā that violates the forward secrecy or mutual authentication of π̄. Obviously, Ā can
be easily translated into an attacker A that successfully attacks π which contradicts the
assumption.

Therefore, there are at most two connected components, w.l.o.g. pid1 and pid2. By
the definition of connected components, at least |pid1| − 1 messages are sent within
pid1 and likewise |pid2| − 1 messages are sent within pid2. This shows that at least
|pid1| − 1 + |pid2| − 1 = n − 2 messages are sent. ��
Corollary 1. Let π denote any GKE with n ≥ 3 that provides forward secrecy and
mutual authentication against insider attackers. Then π requires at least two rounds.
Furthermore, if π is composed of exactly two rounds, then at least 1

2n2 + 1
2n − 3

messages are required.

Proof. For the first claim, assume that π uses only one round. 1-round protocols can
be considered as 2-round protocols, where no messages are sent in the first or second
round. In the first case, Theorem 2 implies that the number n of parties is at most 2. In
the second case, Theorem 1 implies that the number n of parties is at most 2 since there
exists at most one pair of parties who does not exchange any messages in the second
round. As we consider the case of n ≥ 3 parties, this yields a contradiction. Hence,
n ≥ 3 implies that at least 2 rounds are required, showing the first claim.

Now consider a 2-round protocol. By Theorem 2, at least n − 2 messages are nec-
essary in the first round. By Theorem 1, there exists at most one pair who does not
exchange any message in the second round. As a consequence, the second round re-
quires at least n·(n−1)

2 −1 messages. Adding both together yields the second claim. ��

4 The Proposed Protocol

In the following, we propose a 2-round group key exchange protocol which is an ex-
tension of the Burmester-Desmedt star-based protocol [12]. It requires 1

2n2 + 3
2n − 2

messages which is exactly n + 1 more than the lower bound derived in the previous
section. In that sense, our protocol is close to the lower bound and is asymptotically
optimal. In Sec. 5 we prove that the protocol is UC-secure according to the model given
by Katz and Shin [20].

Before we describe the protocol into details, we give an overview on the basic ideas
and its structure. We index each party in pid by i ∈ {1, . . . , n}, that is Πi denotes the
i-th party, and assume that the indices are uniquely determined from pid. Furthermore,
we presume that one single party is fixed, w.l.o.g. Π1. All parties can agree to the same
single party without the need of additional communication, for example by choosing
the party whose identifier is the first in lexicographical order in pid. Each party Πi has
its own pair of public/private keys (PKi, SKi) for signing messages and the public keys
are known to all parties. Once a party Πj receives a message (sid, pid, new-session),
a party instance (Πj , sid, pid) is created. For simplicity we identify the party instances
(Πj , sid, pid) with the parties Πj .

The protocol is conceptually divided into 4 protocols π1, . . . , π4, that run in parallel.
These are briefly explained in Table 1. In protocols π1 and π2, all necessary informa-
tion are distributed that allow for computing the group key κ. With protocol π3 every

328 F. Armknecht and J. Furukawa

party confirms to the others that it accepted to participate into a protocol identified by
(sid, pid). This mechanism prevents an adversary from impersonating honest parties.
Via protocol π4, every party signs the commitment com and sends the signature to
some other parties according to a distribution schedule. Here, in principle any schedule
can be used as long as it guarantees that within each pair of parties, at least one of both
receives a signature σ from the other. One possible realization is that Πi sends the sig-
natures to all Πj with i < j. This allows the recipient to check if both share the same
key. Observe that we do not require that every party gets a signature from every other
party. We will show that this is still sufficient for guaranteeing mutual authentication.
From our point of view, it is an interesting observation that an asymmetric condition is
sufficient for ensuring a symmetric security property.

Table 1. High level description of the four sub-protocols

Round 1
π1 Π1 exchanges a key x′

j with every other party Πj .
π2 Π1 generates a group key κ and sends a commitment com on κ to every other party.
π3 Every party Πj for j 	= i generates a signature σ′

j on (sid, pid) and sends it to Π1.

Round 2
π2 Π1 sends an encrypted opening of com to each Πj �=1 (using the bilateral keys x′

j from π1).
π3 Π1 distributes the set {σ′

�}� of signatures to all parties.
π4 Every Πj generates a signature σj on (sid, pid, com) and sends it to some other parties

according to a predefined distribution schedule.

Key generation
(a party accepts the key κ if . . .)

π2 com is a commitment on κ.
π3 Every σ′

� is a valid signature of Π� on (sid, pid).
π4 Πj received all signatures σ� from Π� according to the distribution schedule.

We now present a concrete description. We use a 1-round 2-party key exchange pro-
tocol here, being essentially the Diffie-Hellman key-exchange protocol with authenti-
cated channels where a universal hash function is applied to the result to generate a
smooth key. To improve the efficiency of the protocol, Π1 uses the same ephemeral
state r1 for all key exchange protocols.

Let (TGen, TCom, TVer, TOpen) be a trapdoor commitment scheme. Given a se-
curity parameter k′, the probabilistic algorithm TGen outputs a pair of parameters and
trapdoor (prm, τ). Given parameters prm and a message μ, the probabilistic algorithm
TCom outputs a pair of commitment and decommitment (com, dec) on the message
μ. Given prm, μ, com, and dec, TVer accepts (and outputs (acc)) if com is a correct
commitment on μ. Otherwise it rejects and outputs (rej). Given prm, μ, dec, τ , and an-
other message μ′, TOpen outputs another decommitment dec′ such that TVer accepts
(prm, μ′, com, dec′). Although the following description of our protocol uses a trap-
door commitment scheme, our protocol also works with commitment schemes that do

On the Minimum Communication Effort for Secure Group Key Exchange 329

not provide a trapdoor. Actually, the trapdoor is only used to allow straight-line simu-
latability for the proof of UC-security (Sec. 5).

Let k, k′, m, m′, λ be security parameters, where k is the length of the group key
and m is the minimum integer such that D, defined as the space of decommitments dec,
is a subset of {0, 1}m. Let p be a prime of size k′ + λ + 1 and G be a cyclic group
of prime orders p with a generator g. Let UH′ : {0, 1}k′ × {0, 1}m′ → {0, 1}k+m

be a universal hash function [18], φ : G → {0, 1}k′
be a projection, and define

UH(z, v) := UH′(φ(z), v). We assume k′ and m′ to be sufficiently large so that
(v,UH(z, v)) for randomly chosen z ∈ G and v ∈ {0, 1}m′

is indistinguishable
from (v, x′) when x′ is randomly distributed in {0, 1}k+m. The necessary size of k′

and m′ are determined by the leftover hash lemma [18,19]. The system parameters are
k, k′, m, m′, λ, p,G, g, prm, and UH.

We also require G, φ to be chosen such that φ−1 : {0, 1}k′ → G can be efficiently
computed with overwhelming probability and that the size of φ−1(y) for randomly
chosen y ∈ {0, 1}k′

is sufficiently large. This is possible if G is an elliptic curve of a
prime order p and φ extracts the least significant k′ bits of the x-coordinate of given
point in G with a large λ. Then, given a point in {0, 1}k′

, there are 2λ possible x-
coordinates on average. For each candidate, there exists a y-coordinate with probability
1/2 such that this pair is a point on the curve. Thus, if one tries 2λ possible values in G,
an appropriate z ∈ G can be found with probability at least 1−1/22λ

. Hence, choosing a
sufficiently large λ, an appropriateG and φ can be found. This later allows the adversary
to find z ∈ G such that (κ, dec) = UH(z, v) for randomly given κ ∈ {0, 1}k, dec ∈ D,
and v ∈ {0, 1}m′

.
At the beginning of the protocol, a value prm is randomly chosen according to the

distribution induced by TGen5 and is given to all parties as a common reference string
for the protocol. For the sake of readability, we implicitly assume that all participating
parties received (presumably correct) messages according to the protocol and stores all
necessary values that are required for a successful protocol run. For example, a party
participates only into the protocol if it initially received a (sid, pid, new-session). If
this does not happen in a certain time period, the party does not further take part into the
protocol without some further actions (e.g., requesting the missing messages, aborting,
etc.). The full description of the protocol is given in Fig. 2.

Communication effort. In the first round Π1 sends n − 1 messages and each of the
other n − 1 parties send exactly one message, thus 2(n − 1) messages in total. In the
second round, for each pair of parties, exactly one party sends one message to the other,
giving n(n− 1)/2 messages in the second round. Altogether, 2(n− 1)+n(n− 1)/2 =
1
2n2 + 3

2n − 2 messages are exchanged in the protocol.

5 Proof of Security

In this section we prove that the proposed protocol achieves UC-security according to
the model given by Katz and Shin [20]. We suggest this work and [13] for a more
detailed description of UC. Informally, a protocol π realizes a cryptographic task in an

5 It is not necessary to execute TGen as long as prm can be sampled from the same distribution.

330 F. Armknecht and J. Furukawa

Round 1

Π1, Computation: Π1 randomly chooses a group key κ ∈ {0, 1}k and generates a com-
mitment on these values: (com, dec) := TCom(κ). Furthermore, it randomly picks
r1 ∈ Z/pZ and computes y1 = gr1 . Finally, it samples random values vj ∈ {0, 1}m′

,
j = 2, . . . , n, and generates signatures σ′

1,j on (sid, pid, com, y1, vj) for j = 2, . . . , n.
Π1, Storage: Π1 stores (sid, pid, dec, κ, (vj)j=2,...,n, r1).
Π1, Communication: Π1 sends to each Πj ∈ pid \ {Π1} the message

(Π1; sid, pid, com, y1, vj , σ
′
1,j)

Πi 	= Π1, Computation: Πi randomly chooses ri ∈ Z/pZ and computes yi = gri . Then
Πi generates a signature σ′

i on (sid, pid, yi).
Πi 	= Π1, Storage: Πi stores (sid, pid, ri).
Πi 	= Π1, Communication: Πi sends (Πi; sid, pid, yi, σ

′
i) to Π1.

Round 2

Π1, Computation: Π1 verifies that each σ′
j is a valid signature on (sid, pid, yj) by Πj and

generates zj = yj
r1 , xj = (κ, dec) ⊕ UH(zj , vj). Π1 also generates a signature σ1 on

(sid, pid, com).
Π1, Storage: Π1 updates its storage to (sid, pid, com, κ).
Π1, Communication: Π1 sends (Π1; sid, pid, com, σ1), xj , and (σ′

�, y�)�>1 to each
Πj 	= Π1.

Πi 	= Π1, Computation: Πi verifies that σ′
1,i is a valid signature on (sid, pid, com, y1, vi)

by Π1 and generates zi = y1
ri , x′

i = UH(zi, vi) and a signature σi on (sid, pid, com).
Πi 	= Π1, Storage: Πi updates its storage to (sid, pid, com, x′

i).
Πi 	= Π1, Communication: Πi sends (Πi; sid, pid, com, σi) to all Πj ∈ pid specified by

the distribution schedule.

Key generation

Π1, Computation: If every σj is a valid signature on (sid, pid, com) by Πj , then Π1 outputs
(sid, pid, κ) and deletes its storage (instance state).

Πi 	= Π1, Computation: If all received signatures are correct, then it computes (κi, deci) =

x′
i ⊕ xi. If acc = TVer(prm, κi, com, deci), then Πi outputs (sid, pid, κ) and deletes its

state.

Fig. 2. The protocol

UC-secure way if no pair of environment Z and real adversary A, can distinguish the
protocol execution in the real world, called real execution, from the execution of an
ideal functionality F in an ideal world, called ideal execution. F can be seen as a kind
of black box that ideally realizes the considered cryptographic task. We recall in Fig. 3
the definition of its ideal functionality for GKEs from Katz and Shin [20].

On the Minimum Communication Effort for Secure Group Key Exchange 331

Ideal Functionality FGKE

([20]) The ideal functionality FGKE interacts with parties Φ1, . . . , Φn and an ideal adversary
S . FGKE runs on a security parameter k.
Initialization: Upon receiving (sid, pid, new-session) from a party Φi for the first time
(where |pid| ≥ 2), FGKE records (sid, pid, Φi) and sends this to S . Once the tuples
(sid, pid, Φj) for all Φj ∈ pid are recorded, FGKE stores (sid, pid, ready) and sends it to
S .
Key generation: Upon receiving a message (sid, pid, ok) from S where there is a recorded
tuple (sid, pid, ready), it checks if all Φj ∈ pid are uncorrupted. If this is the case, it chooses
uniformly a key κ ∈ {0, 1}k and stores (sid, pid, κ). If any of the parties Φj ∈ pid is
corrupted, it waits for S to send a message (sid, pid, key, κ) and then stores (sid, pid, κ).
Key delivery: If S sends a message (sid, pid, deliver, Φi) where there is a recorded tuple
(sid, pid, κ) and Φi ∈ pid, then FGKE sends (sid, pid, κ) to party Φi.
Player corruption: If S corrupts Φi ∈ pid where there is a recorded tuple (sid, pid, κ) but a
message (sid, pid, κ) has not yet been sent to Φi, then S is given κ, otherwise nothing.

Fig. 3. The group key exchange functionality

Theorem 3. The protocol described in Sec. 4 UC-realizes the ideal functionality of
GKE if the used signature scheme is secure and if the decisional Diffie-Hellman as-
sumption holds in the common reference string model.

For the proof, we have to give an ideal adversary S such that no pair of environment Z
and real adversary A can tell apart a real execution (i.e., real parties Πi executing the
protocol) and an ideal execution (i.e., S simulates parties ΠS

i compatibly to the outputs
of the ideal functionality F := FGKE that in turn communicates with ideal parties Φi).

We first define an ideal adversary S and show afterward in Lemmas 1 and 2 that
it fulfills the condition from above. S has black box access to the real adversary A.
Messages from Z to S (Z believes it is sending to A) are forwarded to A and vice
versa. Additionally, S simulates the real parties Πi on behalf of all uncorrupted ideal
parties Φi. The simulated parties are denoted by ΠS

i . As opposed to the ideal parties,
the simulated parties participate in a protocol execution. At the beginning, S generates
for every ΠS

j a public/private key pairs (PKj , SKj) for digital signatures and gives
the public keys to A. Any messages sent by A to Πi are processed by ΠS

i , and any
messages output by ΠS

i are given to A. S also runs TGen(k′) for a security parameter
k′ to obtain (prm, τ). prm is the common reference string of the protocol.

In addition to the above, the ideal adversary S proceeds as follows:

Session Key Generation (SKG): If at any point in time a simulated party ΠS
i outputs

a key (sid, pid, κ), S checks to see whether any of the parties in pid have been
corrupted.
SKG.¬cor.: If no parties in pid are corrupted, then:

SKG.¬cor.¬ok: If S has not yet sent (sid, pid, ok) to F , then S checks that it
has received the message (sid, pid, ready) from F . If not, S aborts. Other-
wise, it sends to F the messages (sid, pid, ok) and (sid, pid, deliver, Φi).

332 F. Armknecht and J. Furukawa

SKG.¬cor.ok: If S has already sent the message (sid, pid, ok) to F , then S
sends the message (sid, pid, deliver, Φi) to F .

SKG.cor.: Otherwise, say C ⊆ pid \ {Φi} are corrupted. Then:
SKG.cor.¬ok: If S has not yet sent (sid, pid, ok) to F , then it sends on be-

half of all Φj ∈ C the message (sid, pid, new-session, Φj) to F who
have not done so already, receives (sid, pid, ready) fromF , and then sends
(sid, pid, ok) to F . (If S does not receive (sid, pid, ready) after executing
the above, it aborts.) Next, S sends (sid, pid, key, κ) and (sid, pid, deliver,
Φi) to F .

SKG.cor.ok: If S has already sent (sid, pid, ok) to F , then S checks that no
parties in pid were corrupted at that point in time.
1. If this is the case, then S sends (sid, pid, deliver, Φi) to F .
2. Otherwise, S has already sent (sid, pid, key, κ′) to F (i.e., a party in

pid was corrupted at the time the “ok” message was sent). If κ′ �= κ
then S aborts. Otherwise, S sends the message (sid, pid, deliver, Φi)
to F .

Corruption (COR): When A intends to corrupt a party Φi, S corrupts that party in
the ideal world. S also provides A with the secret key SKi and the current internal
state of Φi as follows:
COR.¬ok: If S has not yet sent (sid, pid, ok) to F , then S simply gives A the

current instance state of ΠS
i if it exists.

COR.ok: Otherwise S has already sent (sid, pid, ok) to F . Then:
COR.ok.¬del: If S has not yet sent (sid, pid, deliver, Φi) to F , then it checks

if ΠS
i did finish the first round of the protocol. If this is not the case, then

S aborts. Otherwise, S corrupts Φi to obtain a key κ from F . This might
either been provided by S before or been generated by F . In the first case,
S simply forwards the internal state of ΠS

i to A. In the second case, we
make use of the fact that S has already sent (sid, pid, ok). This implies
either of the following:
¬Φ1: When i �= 1, at least Φ1 in pid has already sent xi to Φi. S uses

the trapdoor τ to generate a fitting decommitment dec, that is dec =
TOpen(prm, κ′, dec′, τ, κ). Here, (κ′, dec′) are the values generated
by ΠS

1 , i.e., (com, dec′) = TCom(prm, κ′). Then, S generates x′
i =

xi ⊕ (κ, dec) and hands to A the instance state (sid, pid, com, x′
i). We

note it is possible to find zi such that x′
i = UH(zi, vi) with over-

whelming probability if λ is long enough.
Φ1: When i = 1, S hands to A the instance state (sid, pid, com, κ).

COR.ok.del: If S has already sent (sid, pid, deliver, Φi) to F , then S returns
nothing (i.e., an empty instance state) to A.

Next we show that the ideal adversaryS aborts only with negligible probability (Lemma
1) and that the real and the ideal execution are indistinguishable (under the decisional
Diffie-Hellman assumption) if S does not abort (Lemma 2). From these two Lemmas,
Theorem 3 follows immediately.

Lemma 1. The probability that the ideal adversary S defined above aborts is
negligible.

On the Minimum Communication Effort for Secure Group Key Exchange 333

Proof. Suppose that there exists a real adversary A that can make the ideal adversary S
abort. By the description of S, there are exactly four situation when this might happen:
SKG.¬cor.¬ok, SKG.cor.¬ok. COR.ok.¬del, and SKG.cor.ok.

Assume that the abort has happened in one of the two cases SKG.¬cor.¬ok or
SKG.cor.¬ok. In both cases, a simulated party ΠS

i did output (sid, pid, κ) (session
key generation) but S did not receive (sid, pid, ready) from F . This in turn means that
there exists at least one uncorrupted simulated party ΠS

j ∈ pid such that Z never sent
(sid, pid, new-session). Hence, ΠS

j has never signed any message. On the other hand,
by the protocol specification ΠS

i only generates the key if it received a valid signature
from all parties. Therefore, this case can only happen if A forged a signature.

Suppose now that the abort took place in the case of COR.ok.¬del. This means that
on the one hand S has send before the message (sid, pid, ok) and hence there exists an
uncorrupted simulated party ΠS

j ∈ pid who has output (sid, pid, κ). On the other hand,
the abort condition tells that there exists a simulated party ΠS

i that has not finished the
first round at this point in time. In particular, ΠS

i had not send a signed message so far.
With the same arguments as above, this can only happen if A forged a signature.

It remains to consider the final case: SKG.cor.ok. By definition S has to deal only
with key generation if the key is generated by an uncorrupted party. The abort condition
says in principle that two uncorrupted parties Πi and Πj have generated two different
keys κ and κ′, respectively. Recall that the key is reconstructed from a commitment
distributed by Π1. As the commitment has been signed by Π1 and as at least one of
the two parties can check if both received the same commitment, it must hold that Πi

and Πj received the same commitment com (as none of them aborted) unless A has
forged a signature. But then the binding property of the commitment schemes implies
that κ = κ′ what contradicts the assumption6. Hence, this case can also only happen in
the case of a signature forgery. ��

Lemma 2. Suppose that the ideal adversary does not abort. Then, for any environment
and any real adversary, the ideal execution and the real execution are indistinguishable
as long as the decisional Diffie-Hellman assumption holds in the standard model.

Proof. Suppose that there exists an environment Z that can distinguish between the
ideal execution and the real execution. We will first show that Z does not gain any
useful information by corrupting parties. As a consequence we can restrict w.l.o.g. to
an environmentZ ′ that does no corruption at all. Finally, we will construct an algorithm
B from Z ′ that allows for solving the decisional Diffie-Hellman problem.

Assume that Z corrupts a party before any key has been generated. By definition of
S, from this point on Z only communicates with the simulated parties (e.g., learns its
states after corruption) and receives the results of the simulated protocol run. In other
words, the ideal functionality F is no longer involved. Obviously, in this case the real
and ideal executions are indistinguishable as the simulated parties behave exactly like
real parties.

Now we turn our attention to the case that Z only corrupts after a key has been
generated. By definition, this means that the key κ′ of the simulated protocol run has

6 Observe that the trapdoor τ is known only to S but not to any of the parties.

334 F. Armknecht and J. Furukawa

been replaced by a key κ that has been given by the ideal functionality. In particular
all players have finished both rounds already (the information send around at the end
of round 2 are a necessary pre-requisite for key generation). In the case that Π1 gets
corrupted, Z receives the values (sid, pid, com, κ) (where κ is the key generated by F).
This is obviously a perfect simulation. In the case that Πj �= Π1 gets corrupted, the
situation becomes a little bit more tricky: besides the values mentioned above, a real
party would additionally store an encryption of a decommitment dec′ that opens the
distributed commitment com to the ”real” key κ′. Here we make use of the trapdoor
in the commitment scheme and replace dec′ by another decommitment dec that opens
com to κ (instead of κ′). By the definition of the commitment scheme, this yields a
perfect simulation as well.

Concluding, an environment Z does not observe any differences between both exe-
cutions via corruption. Thus, we can restrict to an environment Z ′ that does not corrupt
at all. We construct from Z ′ an algorithm B that breaks the decisional Diffie-Hellman
assumption. That is given a triple (g, a, b, c) = (g, gα, gβ, gγ), we construct an algo-
rithm B (based on Z ′) that decides whether α · β = γ or not.

B behaves in principle like the ideal adversary S except of the following difference.
B replaces the values occurring within the Diffie-Hellman key exchange by other pa-
rameters that are derived from the problem instance mentioned above as follows:

y1 ← b, yj ← gμj aνj = gμj+α·νj , zj ← bμj cνj = gβ·μj+γ·νj . (1)

where {μj , νj ∈ Z/pZ}j=1,...,n are randomly chosen. The fact that B does not know the
discrete logarithms of these values (as opposed to the real execution) is not a problem
as Z ′ does not corrupt by assumption. Observe that zj is a Diffie-Hellman key derived
from y1 and yj if and only if α ·β = γ. Therefore, if α ·β = γ, then B acts exactly like
S. By assumption Z ′ can distinguish between the ideal or real execution in this case.
However, if α · β �= γ then the messages of the parties are independent of the key κ.
Thus, Z ′ cannot have any advantage in this case. Now, B invokes Z ′ several times with
different values of μj and νj and estimates the advantage of Z ′. If this is negligible,
then B assumes that α · β �= γ. Otherwise it guesses that α ·β = γ. With the arguments
above, this yields a distinguisher for the decisional Diffie-Hellman problem.

Concluding we have seen that (under the decisional Diffie-Hellman assumption) that
for none of the three cases an environment can exist that efficiently distinguishes be-
tween both executions. ��

6 Conclusion

We addressed the question of the communication complexity in group key exchange
(GKE) protocols. We derived from basic security requirements, i.e., forward secrecy
and mutual authentication, that any GKE needs at least two rounds and a lower bound on
the number of messages for this case. Furthermore we presented a UC-secure protocol
that almost achieves these bounds.

Still, several open questions remain. Some of them are: (1) Is it possible to either con-
struct protocols that exactly meet these bounds or can it be proved that the minimum
effort is actually higher? (2) Can we determine the effort for additional requirements,

On the Minimum Communication Effort for Secure Group Key Exchange 335

e.g., contributiveness, etc.? (3) Are UC-secure protocols possible with the same com-
munication effort as our protocol but within the standard model? (4) Are less messages
possible if one considers GKEs with more than 2 rounds?

References

1. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Password-authenticated group
key agreement with adaptive security and contributiveness. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 254–271. Springer, Heidelberg (2009)

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dic-
tionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155.
Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

4. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In:
STOC, pp. 57–66. ACM, New York (1995)

5. Bohli, J.-M., Vasco, M.I.G., Steinwandt, R.: Secure group key establishment revisited. Int. J.
Inf. Sec. 6(4), 243–254 (2007)

6. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. North-Holland, Amsterdam
(1976)

7. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group diffie-hellman key
exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
290–309. Springer, Heidelberg (2001)

8. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group diffie-hellman key exchange
under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 321–336. Springer, Heidelberg (2002)

9. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenticated group
diffie-hellman key exchange. In: ACM Conference on Computer and Communications Secu-
rity, pp. 255–264 (2001)

10. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions. In:
ASIACCS, pp. 249–260 (2008)

11. Bresson, E., Manulis, M., Schwenk, J.: On security models and compilers for group key
exchange protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 292–307. Springer, Heidelberg (2007)

12. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg
(1995)

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067 (2000), http://eprint.iacr.org/ (re-
vised in 2005)

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS, pp. 136–145 (2001)

15. Furukawa, J., Armknecht, F., Kurosawa, K.: A universally composable group key exchange
protocol with minimum communication effort. In: Ostrovsky, R., De Prisco, R., Visconti, I.
(eds.) SCN 2008. LNCS, vol. 5229, pp. 392–408. Springer, Heidelberg (2008)

16. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling key compromise impersonation
attacks on group key exchange protocols. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 105–123. Springer, Heidelberg (2009)

http://eprint.iacr.org/

336 F. Armknecht and J. Furukawa

17. Gorantla, M.C., Boyd, C., Nieto, J.M.G.: Universally composable contributory group key
exchange. In: ASIACCS, pp. 146–156 (2009)

18. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions
(extended abstracts). In: STOC, pp. 12–24. ACM, New York (1989)

19. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: FOCS, pp. 248–253. IEEE,
Los Alamitos (1989)

20. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In: CCS 2005:
Proceedings of the 12th ACM Conference on Computer and Communications Security, pp.
180–189. ACM Press, New York (2005)

A Forward Secrecy and MA Security

In this section, we formally define the security notions that are considered in this paper.
The attacker’s capabilities are modeled by a set of queries that she is allowed to do.
These are defined in the following definition.

Definition 1 (Attacker Model). An attacker A can make the following queries:

Invoke(Π, sid, pid, new-session): A new instance (Π, sid, pid) of Π is invoked by
sending a message (sid, pid, new-session) to Π . A obtains the response of Π . We
assume here that, if a party Π ∈ pid is uncorrupted, that is A has never queried
Corrupt(Π) (see below), Π is never given the same triple (sid, pid, new-session)
more than once.

Send(Π ; M): The message M is sent to Π and A receives the response.
RevealKey(Π, sid, pid): If Π has already generated an output (Π, sid, pid, κ), A is

given κ.
Corrupt(Π): The long-term secret of Π is given to A.

Observe that the queries Invoke and Send model the attacker’s capability of controlling
the schedules of the parties and the communication in the network. We do not need to
consider the strong corruption model where the adversaries are able to obtain instance
states. The above weak adversaries are sufficient for our lower bounds.

For defining AKE-security, we introduce an additional query:

Definition 2. The query Test(Π, sid, pid) is defined as follows. When Π has output
(Π, sid, pid, κ), b ∈ {0, 1} is randomly chosen. Then, A is either given κ if b = 1, or a
randomly chosen key if b = 0.

We say that the query Test(Π, sid, pid) is fresh if the following conditions hold for
every Π ′ ∈ pid:

– No query RevealKey(Π ′, sid, pid) is made after Π ′ outputs (Π ′, sid, pid, κ′) for
some κ′.

– No query Corrupt(Π ′) is made before Π ′ outputs (Π ′, sid, pid, κ′) for some κ′.

Definition 3. We say that an external-SID GKE is AKE-secure if, for every poly-time
adversary A, the difference between the probability that A wins the following game and
1/2 is negligible in some security parameter:

On the Minimum Communication Effort for Secure Group Key Exchange 337

AKE game:
After A and the parties are initialized by input of a security parameter, A interacts
with the parties by making queries as specified in Definition 1. A is allowed to
make one query Test(Π, sid, pid) for some Π, sid, and pid such that Π has output
(Π, sid, pid, κ) once during the game under the condition that Test(Π, sid, pid)
remains to be fresh until the end of the game. A outputs a bit b′ ∈ {0, 1} when
the game ends. We say A wins the game if b = b′, where b is the bit that oracle
generated when A queried Test(Π, sid, pid).

Observe that the freshness requirements guarantees that A cannot simply obtained
knowledge about the key by querying RevealKey or Corrupt. Although adversaries
are allowed to corrupt parties after they output the target keys, the above AKE security
requires that this faculty does not help adversary to guess the target key. This is the
Forward secrecy.

Definition 4. We say an external-SID GKE provides mutual authentication in presence
of insider attackers if, for every poly-time adversary A, the probability that A wins the
following game is negligible:

MA game:
After A and the parties are initialized by input of a security parameter, A inter-
acts with the parties by making queries as defined in Definition 1. We say that A
wins the game if two uncorrupted parties Π and Π ′ output (Π, sid, pid, κ) and
(Π ′, sid, pid, κ′), respectively, such that κ �= κ′ before A stops.

Deterministic Differential Properties of
the Compression Function of BMW

Jian Guo1 and Søren S. Thomsen2,�

1 Nanyang Technological University, Singapore
2 DTU Mathematics, Technical University of Denmark

Abstract. In this paper, we give some determinstic differential prop-

erties for the compression function of SHA-3 candidate Blue Midnight

Wish (tweaked version for round 2). The computational complexity is

about 20 compression function calls. This applies to security parame-

ters 0/16, 1/15, and 2/14. The efficient differentials can be used to find

pseudo-preimages of the compression function with marginal gain over

brute force. However, none of these attacks threaten the security of the

BMW hash functions.

Keywords: Hash function cryptanalysis, Blue Midnight Wish, SHA-3,

differential.

1 Introduction

Blue Midnight Wish [3] (BMW) is one of the 14 second round candidates of
NIST’s cryptographic hash algorithm competition [5]. It was tweaked after be-
ing selected for round 2, apparently in order to resist attacks by Thomsen [7].
Aumasson [1] and Nikolić et al. [6], independently of our work, found some dis-
tinguishers with data complexity 219, and for a modified variant of BMW-512
with probability 2−278.2, respectively. In this paper, we give explicit construc-
tions of message pairs, by tracing the propagation of the differences, to show
some interesting behaviour on certain bits of the output with probability 1.

The paper is organised as follows. Section 2 gives a brief description of BMW.
Then, we introduce some general observations in Section 3, which are further
extended to differentials for BMW variants with security parameters 0/16, 1/15,
2/14, in Sections 4, 5, 6, respectively. A pseudo-preimage attack on the compres-
sion function using such efficient differentials is discussed in Section 7. Section 8
concludes the paper.

2 Description of BMW

BMW is a family of hash functions, containing four major instances, BMW-n,
with n ∈ {224, 256, 384, 512}, where n is the size of the hash output. It follows
� Part of this work was carried out while the author was visiting Nanyang Technologi-

cal University, by the support of the Singapore National Research Foundation under

Research Grant NRF-CRP2-2007-03.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 338–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Deterministic Differential Properties of the Compression Function of BMW 339

a tweaked Merkle-Damg̊ard structure with double-pipe design, i.e., the size of
the chaining value is twice the output size. Since our differentials concentrate
on the compression function only, we refer to (tweaked for round 2) submission
documents [3] for the descriptions of padding, finalisation, etc.

The compression function bmwn of BMW-n takes the chaining value H and
a message block M as input, and produces the updated chaining value H∗. All
H , M , and H∗ are of 16 words, where the size of a word is 32 bits for BMW-
224/256, and 64 bits for BMW-384/512. We use Xi (i = 0, . . . , 15) to denote the
i-th word of X . The compression function comprises three functions, called f0,
f1, and f2, in sequence. We introduce them here.

The f0 function. A temporary W is introduced as

Wi ← ±(Mi+5 ⊕ Hi+5) ± (Mi+7 ⊕ Hi+7) ± (Mi+10 ⊕ Hi+10)
±(Mi+13 ⊕ Hi+13) ± (Mi+14 ⊕ Hi+14)

(1)

for i = 0, . . . , 15. By ‘±’ we mean ‘+’ or ‘−’; which operator is used varies and
does not seem to follow any simple pattern (see [3, Table 2.2] for details). Unless
specified otherwise, all additions (and subtractions) are to be taken modulo 2w

(where w is the word size) and all indices for H and M are modulo 16 throughout
this paper. The outputs of f0 are Qi, i = 0, . . . , 15, which are computed as

Qi ← si mod 5(Wi) + Hi+1, (2)

where si are predefined bijective functions with i = 0, . . . , 4; see Appendix A for
the definitions of these. Note that without the feed-forward of Hi+1, the output
of f0 would be a permutation of H⊕M , since the computation of W corresponds
to a multiplication by an invertible matrix.

The f1 function. f1 takes H , M , and Q0, . . . , Q15 (the output from f0) as
input, and produces 16 new words Qj, for j = 16, . . . , 31. The output words
are computed one at a time through 16 rounds. There are two types of rounds,
expand1 rounds and expand2 rounds. We denote the number of expand1 rounds
by R, where R is a security parameter that can take any value between 0 and
16. There are 16 − R expand2 rounds. For the sake of clarity, we shall denote
a specific choice of security parameter by R/(16 − R); the value of the security
parameter suggested by the designers is 2/14 (in other words: 2 expand1 rounds
and 14 expand2 rounds).

The 16 output words Q16, . . . , Q31 are computed as follows. An expand1 round
computes

Qj+16 ← AddElement(j) +
15∑

i=0

s(i+1) mod 4(Qi+j−16). (3)

Here, AddElement is defined as:

AddElement(j) ← (M≪(j mod 16)+1
j + M

≪(j+3 mod 16)+1
j+3

−M
≪(j+10 mod 16)+1
j+10 + Kj) ⊕ Hj+7,

(4)

340 J. Guo and S.S. Thomsen

where X≪n denotes a left-rotation of register X by n positions (by left we mean
towards the most significant bit). The words Kj are round constants equal to
(j + 16) · 0555555555555555h for BMW-384/512 and (j + 16) · 05555555h for
BMW-224/256. An expand2 round computes

Qj+16 ← Qj + r1(Qj+1) + Qj+2 + r2(Qj+3) + Qj+4 + r3(Qj+5) + Qj+6+
r4(Qj+7) + Qj+8 + r5(Qj+9) + Qj+10 + r6(Qj+11)+
Qj+12 + r7(Qj+13) + s4(Qj+14) + s5(Qj+15) + AddElement(j).

(5)

The functions ri are rotation functions; see Appendix A for details.

The f2 function. We list the description of H∗
0 , since our result concerns this

word only.

H∗
0 ← (XH�5 ⊕ Q16

5 ⊕ M0) + (XL ⊕ Q24 ⊕ Q0), (6)

where

XL = Q16 ⊕ · · · ⊕ Q23,

XH = Q16 ⊕ · · · ⊕ Q31.

Some notations. The attacks described in this paper deal with input pairs
for which there is a certain relation on the output pair. Hence, we shall be in-
terested in how differences propagate through the BMW compression function.
We use the following notation (apparently first introduced by De Cannière and
Rechberger [2]) for the difference between two bits: ‘-’ means there is no differ-
ence with probability 1, ‘x’ means there is a difference with probability 1, and
‘?’ means there may or may not be a difference (the probability of a difference
is not 0 or 1, but also may be bounded away from 1/2). When we talk about a
difference in a word, e.g., in a 32-bit word, we write (for instance)

[?????????????????x--------------],

which means that the 14 least significant bits contain no difference, the 15th
least significant bit contains a difference, and the 17 most significant bits may
or may not contain a difference.

With the above descriptions, we are able to introduce our differentials starting
with some important observations on the least significant bit (LSB) of H∗

0 .

3 Observations

Let X [n] denote the nth bit of the word X , where the least significant bit is the
0th bit. Since an addition takes no carry into the least significant bit, we can
state the following expression for the LSB H∗

0 [0] of H∗
0 :

H∗
0 [0] = Q16[5] ⊕ M0[0] ⊕ XL[0]⊕ Q24[0] ⊕ Q0[0].

Deterministic Differential Properties of the Compression Function of BMW 341

Given the definition of XL, this expression can be restated as

H∗
0 [0] = M0[0] ⊕ Q0[0] ⊕ Q16[5] ⊕

24⊕
i=16

Qi[0]. (7)

Hence, H∗
0 [0] does not depend on Q25, . . . , Q31. This means that if we can limit

difference propagation through the first 9 rounds of f1 (where Q16, . . . , Q24 are
computed), and if we can still keep the difference on M0[0] and Q0[0] under our
control, then the bit H∗

0 [0] may be biased.
In the function f1, differences may propagate only very slowly towards the

LSB. Consider an expand2 round:

Qj+16 ← Qj + r1(Qj+1) + Qj+2 + r2(Qj+3) + Qj+4 + r3(Qj+5) + Qj+6+
r4(Qj+7) + Qj+8 + r5(Qj+9) + Qj+10 + r6(Qj+11)+
Qj+12 + r7(Qj+13) + s4(Qj+14) + s5(Qj+15) + AddElement(j).

(8)

The function s5 is defined as

s5(x) = x2 ⊕ x.

Here x2 means a right-shift by two bit positions. Hence, if Qj+15 contains a
difference in an expand2 round, then the function s5 propagates this difference
two positions down towards the LSB. For example, the difference

[?????????????????x--------------]

would become

[???????????????????x------------].

4 The Security Parameter 0/16

Consider a variant of BMW with security parameter 0/16, meaning that all
16 rounds in f1 are of the expand2 type. Consider an input pair to the com-
pression function such that there is a difference in Q0 but in no word among
Q1, . . . , Q15, nor in M0, M3, M10, and H7. This difference on Q0 will propagate
to Q16. Due to the additions, the difference may propagate towards the most
significant bit (MSB), but never towards the LSB. Hence, if the t LSBs of Q0
contain no difference, then these bits also contain no difference in Q16. As an
example, the difference [----x----x---------x------------] in Q0 becomes
[???????????????????x------------] in Q16.

In the second round, Q16 will go through the function s5, and the difference
will be shifted two positions towards the least significant bit. In the example
above, we would get [?????????????????????x----------]. Hence, there will
be no difference in the t − 2 least significant bits of s5(Q16). The word Q0 no
longer affects the function f1, and if there is no difference in the t − 2 least

342 J. Guo and S.S. Thomsen

significant bits of AddElement(1), then Q17 will contain no difference in the
t − 2 LSBs. In the following round (under some conditions on M and H), the
difference again propagates two positions towards the LSB, meaning that the
t − 4 LSBs contain no difference.

The condition that the only difference in the words Q0, . . . , Q15 lies in Q0 can
be enforced by having the same difference in H1 and in M1, and no difference
in all other words of H and M . This means that there is no difference in the
permutation inside f0, but the difference in H1 will be fed forward to Q0. Denote
by Δ the difference on H1 and M1. If Δ has many trailing ‘0’ bits, i.e., there is
no difference in many LSBs of H1 and M1, then the behaviour described above
occurs.

The word M1 is involved in rounds 1, 7, and 14 of f1, and H1 is involved in
round 10. In rounds 1 and 7, M1 is rotated two positions left, and therefore, in
order to keep differences out of the least significant bit positions, we need Δ to
have ‘0’ bits in the two MSB positions. In rounds 9–15, we do not worry about
difference propagation, since this will affect only the words Q25, . . . , Q31, which
are not involved in the computation of H∗

0 [0].
The only remaining potential source of differences in the least significant bit

positions are due to the rotation functions ri. Looking closely at the effects
of these functions one sees that they make no difference in the case of BMW-
224/256, but they do have a significant effect in the case of BMW-384/512. On
the other hand, in BMW-384/512, the “distance” to the LSB is greater, and
therefore it is still possible to obtain interesting results as described now.

The difference Δ with the maximum value of t fulfilling the mentioned re-
quirements is Δ = 261 for BMW-384/512 (and Δ = 229 for BMW-224/256).
Hence, we have the difference

[--x---]

on H1 and M1, which becomes

[??x---]

in Q0 due to the feed forward of H1. The 16 words computed in f1 will have the
following differences:

ΔQ16 = [??x---]

ΔQ17 = [????x---]

ΔQ18 = [??????x---]

ΔQ19 = [?????????????x--]

ΔQ20 = [???????????????---]

ΔQ21 = [???????????????????????x--]

ΔQ22 = [?????????????????????????---------------------------------------]

Deterministic Differential Properties of the Compression Function of BMW 343

ΔQ23 = [?????????????????????????????x----------------------------------]

ΔQ24 = [??????????????????????????????????------------------------------]

ΔQ25 = [????????????????????????????????????----------------------------]

ΔQ26 = [??x-------------------]

ΔQ27 = [??x-----------------]

ΔQ28 = [??--------------]

ΔQ29 = [???---------]

ΔQ30 = [???-------]

ΔQ31 = [??]

The end result in the output word H∗
0 is the difference (one can verify this by

substituting all above differences to Eqn. (6))

[???-----].

Hence, there is no difference in the 5 LSBs with probability 1. In fact, there is
also a strong bias in H∗

5 , which has the difference
[??------].

For BMW-224/256 one gets a similar behaviour; the difference on H∗
0 is

[???????????????????????????-----],

and the difference on H∗
5 is [????????????????????????????x---].

5 The Security Parameter 1/15

When there is a single expand1 round in the beginning of f1, followed by 15
expand2 rounds, we can get a similar behaviour as described in the previous
section if we can find a difference Δ with many LSBs equal to 0, and such that
s1(Δ) also has many LSBs equal to 0. We shall investigate this in a moment.

Now, in order to keep the difference Δ from being changed by the feed-forward
with H in f0, we need a few more conditions on H and M compared to the
security parameter 0/16. What we need is that s0(W0) contains ‘0’ bits in the
positions where Δ contains ‘1’ bits. An easy way to ensure this is by requiring
that Mi and Hi are equal to zero for i ∈ {5, 7, 10, 13, 14}. Alternatively, without
introducing any requirements, the condition is fulfilled with probability 2−||Δ||,
where ||Δ|| is the Hamming weight of Δ excluding the MSB.

5.1 Searching for Good Differences

In order to simplify the discussion we introduce the following function:

P (X) = min{i |ΔX [i] �= ‘-’}.
In words, P (X) is the number of consecutive least significant bits of X , which
certainly contain no difference. It is clear that P (X+Y) ≥ min(P (X), P (Y)), and

344 J. Guo and S.S. Thomsen

P (X�) = max(P (X)− �, 0). In the case of rotations, we have that if � ≤ P (X),
then P (X≫�) = P (X) − �. For BMW-384/512, we have the following:

P (s5(X)) = P (X) − 2, since s5(X) = X2 ⊕ X
P (s4(X)) = P (X) − 1, since s4(X) = X1 ⊕ X
P (r7(X)) = P (X) − 11, since r7(X) = X≪53 = X≫11

P (r6(X)) = P (X) − 21, since r6(X) = X≪43 = X≫21

P (r5(X)) = P (X) − 27, since r5(X) = X≪37 = X≫27.

The last three identities are on the condition that � ≤ P (X), where � is the
(right) rotation value.

As above, we assume that among {Q0, . . . , Q15}, only Q0 contains a difference,
and among {Hi} ∪ {Mi}, only H1 and M1 contain a difference. This happens if
the differences in H1 and M1 are the same. Now we track the differences going
into each of the first nine rounds of f1. Below we have listed the (modified) input
words that contain a difference in each round.

Q16 : s1(Q0)
Q17 : s5(Q16), M≪2

1
Q18 : s5(Q17), s4(Q16)
Q19 : s5(Q18), s4(Q17), r7(Q16)
Q20 : s5(Q19), s4(Q18), r7(Q17), Q16
Q21 : s5(Q20), s4(Q19), r7(Q18), Q17, r6(Q16)
Q22 : s5(Q21), s4(Q20), r7(Q19), Q18, r6(Q17), Q16

Q23 : s5(Q22), s4(Q21), r7(Q20), Q19, r6(Q18), Q17, r5(Q16), M≪2
1

Q24 : s5(Q23), s4(Q22), r7(Q21), Q20, r6(Q19), Q18, r5(Q17), Q16

(9)

The goal is to find differences Δ in Q0 such that the LSB of Qi, for all i,
16 ≤ i ≤ 24, contains a strong bias. This bias is preferably in the form of a
difference or no difference with probability 1. We now identify the minimum
requirements on Δ in order for this to happen. We assume the difference on H1
and M1 is also Δ, i.e., that there is no propagation of bit differences in the feed
forward of H1 in f0.

We first find the bare requirements on Q16 in order to reach our goal. The
round in which the P -value of Q16 drops the most is round 7 (computing Q23),
in which r5 is computed on Q16. This yields the requirement P (Q16) ≥ 27.

The requirements on Q17 are similarly found to be P (Q17) ≥ 27. This “up-
dates” the requirement on Q16 due to the dependence of Q17 on Q16, which
means that we get P (Q16) ≥ 29.

If we continue like this, we find requirements on subsequent words of Q, which
may iteratively require updates to requirements on previous words. The end
result is that the requirement on Q16 becomes P (Q16) ≥ 32 and the requirement
on M1 is P (M1) ≥ 25 combined with the requirement that there is no difference
in the two MSBs of M1. Hence, we search for a difference Δ which has ‘0’ bits
in the two MSB positions, and such that Δ ends with 25 ‘0’ bits and s1(Δ) ends
with 32 ‘0’ bits.

Deterministic Differential Properties of the Compression Function of BMW 345

The function s1 can be described as a matrix multiplication over F2. The
matrix S1 has 64 rows and columns, and the input x is viewed as a 64-bit
column vector. Then we have s1(x) = S1 · x. Searching for a good difference
Δ corresponds to finding the kernel of a submatrix Ŝ1 of S1, in which rows
0, . . . , 31 and columns 0, 1, and 39, . . . , 63 are removed. Hence, we keep the
columns corresponding to input bits that may contain a difference, and we keep
the rows corresponding to output bits which must contain no difference. See
Fig. 1.

Ŝ1 =

⎡
⎢⎢⎢⎣

. 1 1 . . 1

. 1 1 . . 1 . . .

. 1 1 . . 1 . .

. 1 1 . . 1 .

. 1 1 . . 1

. 1 1 . .

. 1 1 .

. 1 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1
1 . 1
. 1 . 1
. . 1 . 1
. . . 1 . 1 . . .
. . . . 1 . 1 . .
. 1 . 1 .
. 1 . 1
. 1 .
. 1 .
. 1 .
. 1 .

⎤
⎥⎥⎥⎦

Fig. 1. The matrix Ŝ1 over F2 (a dot means ‘0’)

The kernel of Ŝ1 has dimension 5 and hence contains 25 − 1 =
31 non-zero vectors. Five basis vectors of the kernel correspond to the
64-bit words 0204800008000000h, 0102400004000000h, 1004000040000000h,
0081200002000000h, and 2401000090000000h, and so any linear combination
of these (except 0) can be used as a value for Δ. As an example, if we choose
Δ = 1004000040000000h (and assuming Δ is not changed by the feed-forward
in f0), we have the following differences with probability 1 (the words Qi for
1 ≤ i < 16 contain no difference):

346 J. Guo and S.S. Thomsen

ΔQ0 = [---x---------x-------------------x------------------------------]

ΔQ16 = [???????????????????????????????x--------------------------------]

ΔQ17 = [?????????????????????????????????x------------------------------]

ΔQ18 = [???????????????????????????????????x----------------------------]

ΔQ19 = [??x---------------------]

ΔQ20 = [??--------------------]

ΔQ21 = [??x-----------]

ΔQ22 = [??----------]

ΔQ23 = [??x-----]

ΔQ24 = [???-]

Hence, XL will be

[??x-----],

and from (7) we see that H∗
0 [0] will contain no difference with probability 1.

For BMW-224/256, a similar investigation results in a solution space for
Δ of dimension 2, parametrised by the vectors 08901000h and 20404000h.
As an example, with Δ = 20404000h we have the following differences with
probability 1:

ΔQ0 = [--x------x-------x--------------]

ΔQ16 = [???????????????x----------------]

ΔQ17 = [?????????????????x--------------]

ΔQ18 = [???????????????????x------------]

ΔQ19 = [?????????????????????x----------]

ΔQ20 = [???????????????????????x--------]

ΔQ21 = [?????????????????????????x------]

ΔQ22 = [???????????????????????????x----]

ΔQ23 = [?????????????????????????????x--]

ΔQ24 = [???????????????????????????????x]

Hence, XL will be [?????????????????????????????x--], and H∗
0 [0] will con-

tain a difference with probability 1. If we instead take Δ to be the xor of the
two basis vectors, then H∗

0 [0] will contain no difference with probability 1.

6 The Security Parameter 2/14

The results described above cannot be directly extended to the security param-
eter 2/14. The reason is that the difference in Q16 goes through s0 instead of s5
in round 1. s0 is much more effective in spreading differences than s5.

However, we observe that it is still possible if we are lucky (as attacker) enough
to get the differences in some LSBs cancelled. Note that when the security pa-
rameter is 2/14 instead of 1/15, we have the same dependencies (see (9)) except

Deterministic Differential Properties of the Compression Function of BMW 347

that Q17 depends on s0(Q16) instead of on s5(Q16). Hence, we may investigate
whether the requirement P (Q17) ≥ 27 that we found above holds for some Δ
among the 31 candidates mentioned above. Unfortunately, this is not the case.

Instead, we may allow differences in the 25 LSBs of Q0 and hope that the
modular addition cancels the differences in the 27 LSBs of s0(s1(Q0)) and M≪2

1 ,
which are the only terms in the computation of Q17 that contain differences. We
still need s1(Q0) to contain no difference in the 32 LSBs, and we also need M1
to have no difference in the two MSBs. So we search for Δ so that s0(s1(Δ)) and
Δ≪2 agree in the 27 LSBs, and so that s1(Δ) has ‘0’ bits in the 32 LSBs and
Δ has ‘0’ bits in the two MSBs.

Let S0 and S1 denote the bit matrices corresponding to the functions s0 and
s1, and let R2 denote the bit matrix corresponding to the operation x≪2. Let
Λ = s1(Δ); this means that we are interested in Λ having 32 trailing ‘0’ bits,
and such that S0 ·Λ and R2 ·S−1

1 ·Λ agree in the 27 LSBs (where Λ in this case is
viewed as a 64-bit column vector). Hence, similar to the situation above for the
security parameter 1/15, we are in fact interested in the kernel of a submatrix of
S0−R2 ·S−1

1 . The submatrix is the 27×32 matrix where the last 32 columns and
the first 37 columns are removed. Moreover, we need Λ to be such that s−1

1 (Λ)
has ‘0’ bits in the two MSBs.

It turns out that the kernel of this submatrix has dimension 5 and is
parametrised by the vectors that can be found in the table below, where also
the corresponding Δs are listed.

Λ Δ = s−1
1 (Λ)

80D2227300000000h 2B0D8FF05891139Ah

48002F6000000000h 29A78CAE96017B01h

22C4DC6100000000h 89ABBD3D9226E308h

10D27CB300000000h 784296AD7493E598h

01201CFD00000000h 28E58FDD2900E7E8h

Clearly, there are 7 (non-zero) linear combinations that contain only ‘0’ bits in
the two MSB positions and therefore admit a bias of the type ‘-’ or ‘x’ in H∗

0 [0].
One of these (Δ = 28E58FDD2900E7E8h) also admits this type of bias in H∗

0 [1].
Moreover, among the remaining 24 non-zero linear combinations, there are 16
which admit a weaker bias in the sense that H∗

0 [0] contains a difference with
probability about 3/8 or 5/8 (i.e., a bias 1/8, estimated from many experiments).
Note that a difference in the two MSBs of M1 is no longer a problem in round
1, since we obtain the required difference in round 1 by having the differences in
the 27 LSBs of s0(Q16) and M≪2

1 cancel. This can be ensured through simple
message modifications, as explained in the following.

First, we choose H1 = M1 = 0. Then we choose Hi and Mi at random, i ∈
{0, 2, 3, . . . , 15}. We then correct M5 such that Q0 = 0. Hence, Q0⊕Δ = Δ, and
so all bit differences in Q0 are of the form 0 → 1. We then correct Q8 (through
proper choice of H9 and M9, without affecting other words) such that Q16 = 0.
This ensures that there is no carry propagation after adding the difference Λ on
s1(Q0). Hence, the difference on Q16 will be Λ as required. This, in turn, means

348 J. Guo and S.S. Thomsen

that s0(Q16) will result in a difference that is the same as the difference on M≪2
1

in the 27 LSB positions. All bit differences in s0(Q16) will be of the form 0 → 1.
We can make the difference on M≪2

1 cancel the difference on s0(Q16) (in the 27
LSBs) by making sure that all bit differences on M≪2

1 are of the form 1 → 0.
This is ensured by correcting M11 so that AddElement(1) = 0 and by choosing
H8 = FFFFFFFFFFFFFFFFh. Note that this can be done in the very beginning,
since these values do not depend on any values of Q. There are still many degrees
of freedom left in the attack.

For BMW-224/256, we get the following three solutions:

Λ Δ = s−1
1 (Λ)

99108000h 5CD58223h

54E68000h 6A2F79CCh

245B0000h 872008B6h

Only the xor of the first two basis vectors fulfils the requirement that the two
MSBs of Δ are ‘0’ bits. Using this value of Δ (and with a similar message
modification as above), one gets that the LSB of H∗[0] is always ‘-’. Four out
of the remaining six non-zero linear combinations yield a difference in the same
bit with probability 3/8 or 5/8 (again an estimate based on experiments).

C program. The differential properties described in this section are demon-
strated in a C program available for download [4].

7 Potential Applications

In this section, we show how to convert the efficient differentials into pseudo-
preimages of the compression function. To describe the attack, we consider a
small ideal case: assume we have a set of differences D1, D2, D3 such that the
differentials give [-x], [x-], and [xx] on two output bits, respectively. Given
any target T , we perform the pseudo-preimage attack as follows.

1. Randomly choose (H, M) from the set of inputs that fulfil the requirements
for the differentials. Compute H∗ = bmwn(H, M).

2. Compare H∗ with T for the two bits.
3. If it gives [--], further compare others bits;
4. else if it gives [-x], compare bmwn(H ⊕ D1, M ⊕ D1) with T ;
5. else if it gives [x-], compare bmwn(H ⊕ D2, M ⊕ D2) with T ;
6. else if it gives [xx], compare bmwn(H ⊕ D3, M ⊕ D3) with T .
7. Repeat steps 1-6 until a full match is found.

Note, steps 2-5 each gives a full match with probability 22−n′
(with n′ the size

of the chaining value). Hence, the expected time complexity is 2n′−2 × (1 +
3/4) � 2n′−1.2, with negligible memory requirements. More generally, if there
are 2k − 1 differences giving all possible 2k − 1 probability 1 differentials on k
output bits of the compression function, then the pseudo-preimage takes time
about 2n′−k · (2 − 2−k) � 2n′−k+1.

Deterministic Differential Properties of the Compression Function of BMW 349

In the case of BMW-512, we only have differences giving differentials on the
2 LSBs of H∗

0 with [x-], [?x], and [x?]. This can be converted into a pseudo-
preimage of bmw512 in time 21023.2.

An interesting problem here is to find more such differentials, such that the
complexity could be further reduced. Moreover, if the differentials work on the
lower half of the output bits (those to be taken as the output of the hash func-
tion), then the pseudo-preimage on the compression function can be further
extended to a pseudo-preimage attack on the hash function.

8 Conclusion

We have described some determinstic differential properties for the BMW com-
pression function with security parameters 0/16, 1/15 and 2/14: by choosing a
certain xor difference in two input words to the compression function (and with
conditions on absolute values of a few other words), a single (or a few) output
bits of the compression function contain a difference with probability 0 or 1.

The differentials work for the compression function only, and do not affect
the security of the hash function because of the additional blank invocation of
the compression function before returning the hash output. Moreover, H∗

0 is
discarded in the final hash output, and only the least significant half (or less)
bits of H∗ of the final compression are taken.

Combining with more sophisticated message modification techniques, the dif-
ferentials might be further extended to higher security parameters, hence in-
creasing security parameter might not be enough to resist them. Tweaking the
rotation values for the si and ri functions may work, under the condition that
the tweak does not affect other security properties.

Another interesting problem to consider is to devise differentials on other
output words than merely H∗

0 . In particular, a bias on one of the output words
H∗

8 , . . . , H∗
15 would be interesting.

We note that tracing the propagation of differences, as done in this paper,
might help to explain the distinguisher found by Aumasson [1].

Acknowledgements. Special thanks go to Nicky Mouha for presenting the
paper on the conference for us. We would like to thank Jean-Philippe Aumasson
and the anonymous reviewers of SAC 2010 for their helpful comments. The work
in this paper is supported in part by the Singapore Ministry of Education under
Research Grant T206B2204.

References

1. Aumasson, J.-P.: Practical distinguisher for the compression function of Blue Mid-

night Wish. Comment on the NIST Hash Competition (Feburary 2010),

http://131002.net/data/papers/Aum10.pdf

2. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results

and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,

pp. 1–20. Springer, Heidelberg (2006)

http://131002.net/data/papers/Aum10.pdf

350 J. Guo and S.S. Thomsen

3. Gligoroski, D., Kĺıma, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes,

S.F.: Cryptographic hash function BLUE MIDNIGHT WISH. Submission to NIST

(Round 2) (September 2009),

http://people.item.ntnu.no/ danilog/Hash/BMW-SecondRound/Supporting

Documentation/BlueMidnightWishDocumentation.pdf (March 22, 2010)

4. Guo, J., Thomsen, S.S.: C program that demonstrates the distinguisher,

http://www2.mat.dtu.dk/people/S.Thomsen/bmw/bmw-distinguisher.zip

5. National Institute of Standards and Technology. Announcing Request for Candidate

Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family.

Federal Register 27(212), 62212–62220 (November 2007),

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf (April

7, 2009)

6. Nikolić, I., Pieprzyk, J., Soko�lowski, P., Steinfeld, R.: Rotational Cryptanalysis of

(Modified) Versions of BMW and SIMD. Comment on the NIST Hash Competition

(March 2010),

https://cryptolux.org/mediawiki/uploads/0/07/Rotational distinguishers

%28Nikolic%2C Pieprzyk%2C Sokolowski%2C Steinfeld%29.pdf (March 22, 2010)

7. Thomsen, S.S.: Pseudo-cryptanalysis of the Original Blue Midnight Wish. In: Hong,

S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 304–317. Springer, Heidelberg

(2010)

A Sub-functions Used in f0 and f1

The sub-functions si, 0 ≤ i ≤ 4, and ri, 1 ≤ i ≤ 7, used in f0 and f1 are defined
as follows.

BMW-224/256 BMW-384/512

s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪19 s0(x) = x�1 ⊕ x�3 ⊕ x≪4 ⊕ x≪37

s1(x) = x�1 ⊕ x�2 ⊕ x≪8 ⊕ x≪23 s1(x) = x�1 ⊕ x�2 ⊕ x≪13 ⊕ x≪43

s2(x) = x�2 ⊕ x�1 ⊕ x≪12 ⊕ x≪25 s2(x) = x�2 ⊕ x�1 ⊕ x≪19 ⊕ x≪53

s3(x) = x�2 ⊕ x�2 ⊕ x≪15 ⊕ x≪29 s3(x) = x�2 ⊕ x�2 ⊕ x≪28 ⊕ x≪59

s4(x) = x�1 ⊕ x s4(x) = x�1 ⊕ x

s5(x) = x�2 ⊕ x s5(x) = x�2 ⊕ x

r1(x) = x≪3 r1(x) = x≪5

r2(x) = x≪7 r2(x) = x≪11

r3(x) = x≪13 r3(x) = x≪27

r4(x) = x≪16 r4(x) = x≪32

r5(x) = x≪19 r5(x) = x≪37

r6(x) = x≪23 r6(x) = x≪43

r7(x) = x≪27 r7(x) = x≪53

http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://www2.mat.dtu.dk/people/S.Thomsen/bmw/bmw-distinguisher.zip
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_%28Nikolic%2C_Pieprzyk%2C_Sokolowski%2C_Steinfeld%29.pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_%28Nikolic%2C_Pieprzyk%2C_Sokolowski%2C_Steinfeld%29.pdf

Security Analysis of SIMD�

Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent

École Normale Supérieure – Département d’Informatique,

45 rue d’Ulm, 75230 Paris Cedex 05, France

{Charles.Bouillaguet,Gaetan.Leurent,Pierre-Alain.Fouque}@ens.fr

Abstract. This paper provides three important contributions to the

security analysis of SIMD. First, we show a new free-start distinguisher

based on symmetry relations. It allows to distinguish the compression

function of SIMD from a random function with a single evaluation. Then,

we show that a class of free-start distinguishers is not a threat to wide-

pipe hash functions. In particular, this means that our distinguisher has

a minimal impact on the security of the SIMD hash function. Intuitively,

the reason why this distinguisher does not weaken the function is that

getting into a symmetric state is about as hard as finding a preimage.

Finally, we study differential path in SIMD, and give an upper bound

on the probability of related key differential paths. Our bound is in the

order of 2−n/2 using very weak assumptions.

Keywords: SIMD, SHA-3, hash function, distinguisher, security proof

with distinguishers.

1 Introduction

SIMD is a SHA-3 candidate designed by Leurent, Fouque and Bouillaguet [11].
Its main feature is a strong message expansion whose aim is to thwart differential
attacks. In this paper we study the security of SIMD, and we introduce three
new results.

In Section 2 we study its resistance against self-similarity attacks [4]. This
class of attack is inspired by the complementation property of DES and includes
symmetry based attacks. In the case of SIMD, we show that it is possible to
exploit the symmetry of the design using special messages. This shows that
the constants included in the message expansion of SIMD are not sufficient to
prevent symmetry relations, and non-symmetric constants should be added in the
last steps of the message expansion. In-depth study of this symmetry property
shows that it is much weaker than symmetry properties in CubeHash [1,9] or
Lesamnta [4]. More precisely, most symmetry properties can be used to generate
many symmetric states out of a single state, but this is not the case for SIMD.

In Section 3, we show a proof of security for the mode of operation used
in SIMD, the truncated prefix-free Merkle-Damg̊ard, in the presence of some
efficient distinguishers on the compression function. The class of distinguisher we
� The full version of this paper appears as IACR ePrint report 2010/323 [5].

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 351–368, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

352 C. Bouillaguet, P.-A. Fouque, and G. Leurent

consider includes the symmetry based distinguisher, and also includes differential
paths with a non-zero chaining value difference. This shows that the properties
of the compression function of SIMD found so far do not affect the security of
the iterated hash function. This part is also of independent interest and applies
to other wide-pipe hash functions.

In Section 4, we study differential attacks, and bound the probability of paths
with a non-zero message difference, i.e., related key attacks on the block cipher.
We show an upper bound on such paths on the order of 2−n/2, and we argue
that the best paths are probably much worse than this bound. We note that
there are very few results known regarding resistance to related key attack for
block ciphers. In particular, the differential properties of the AES have been
extensively studied [13] but related key differential attacks have been shown
recently [3]. In many hash function designs (in particular those based on the
Davies-Meyer construction), related key attacks are a real concern and should
be studied accordingly.

By combining the results of Section 3 and 4, we show that SIMD is resistant to
differential cryptanalysis: a path with a non-zero difference in the chaining value
input cannot be used to attack the hash function because it is wide-pipe, while a
path a non-zero difference in the message can only have a low success probability.

1.1 Brief Description of SIMD

SIMD is built using a modified Davies-Meyer mode with a strong message expan-
sion, as shown in Figure 1. The compression part is built from 4 parallel Feistel
ladders (8 for SIMD-512) with 32-bit registers, and is shown in Figure 2. We can
describe the step update function as:

Dj ←
(
Dj � W

(i)
j � φ(i)(Aj , Bj , Cj)

)≪s(i)

� Ap(i)(j)
≪r(i)

(Aj , Bj , Cj , Dj) ← (Dj , A
≪r(i)

j , Bj , Cj)

where j denotes the Feistel number, and i denotes the round number. A, B,
C, and D are the four registers of the Feistel ladders, while φ(i) is the Boolean
function used at round i (which can be either IF or MAJ) and W is the expanded
message. The parallel Feistels interact through the permutations p(i), which are
built as p(i)(j) = j ⊕ αi, for some αi. There are no explicit constants in the
round function, but there are implicit constants in the message expansion.

The Message Expansion. The message expansion of SIMD is defined with
the following operations:

1. Use a NTT transform (which is the same as a FFT over F257) to double the
size of the message. The NTT is actually used as a Reed-Solomon code.

2. Make two copies of the NTT output.
3. The first copy is multiplied by 185, while the second copy is multiplied by

233. This step also doubles the size of the message, as the output are 16-bit
words.

4. Permute the 16-bit words and pack them into 32-bit words.

Security Analysis of SIMD 353

hi−1

hi

M E
2n 16n

2n

32 steps

4 steps

Fig. 1. SIMD modified

Davies-Meyer mode

D0 C0 B0 A0

s

r

D0 C0 B0 A0

φ
w

D1 C1 B1 A1

s

r

D1 C1 B1 A1

φ
w

Fig. 2. SIMD compression rounds. There are 4 par-

allel Feistels in SIMD-256, and 8 parallel Feistels in

SIMD-512.

Constants are added in the NTT layer, and make it an affine code instead of a
linear one. They avoid special expanded messages such as the all-zero message.
For more details, see the specification of SIMD [11].

2 A Distinguisher for the Compression Function of SIMD

Our distinguisher is based on symmetries in the design, and follows the ideas
of [4]. Symmetry based properties have already been found in several hash func-
tion designs, such as CubeHash [1,9] or Lesamnta [4]. We describe the distin-
guisher in the case of SIMD-256, but it applies similarly to SIMD-512.

2.1 Building the Symmetric Messages

The basic idea is to build a message so that the expanded message is symmetric.
Then, if the internal state is also symmetric, the compression rounds preserve
the symmetry. This can also be used with a pair of symmetric messages, and a
pair of symmetric states.

The NTT layer of the message expansion is an affine transformation, therefore
it is easy to find inputs that satisfy some affine conditions on the output. Since
it only doubles the size of the input, we have enough degrees of freedom to force
equalities between pairs of output. The next expansion step is a multiplication
by a constant, and it will preserve equality relations.

If we look at the permutations used in the message expansion, they have
the following property1: the NTT words used to build the message words W

(i)
0 ,

W
(i)
1 , W

(i)
2 , W

(i)
3 are always of the form (yk1 , yk2), (yk1+2, yk2+2), (yk1+4, yk2+4),

(yk1+6, yk2+6) for some k1 and k2 (with ki = 0 mod 8 or ki = 1 mod 8). The full
permutations are given in [11, Table 1.1]. Because of this property, if we have
yi = yi⊕2 after the NTT, then we have W

(i)
0 = W

(i)
1 and W

(i)
2 = W

(i)
3 . This

allows us to build a symmetric message.
1 This design choice was guided by implementation efficiency.

354 C. Bouillaguet, P.-A. Fouque, and G. Leurent

More precisely, let us use the notation ←→• to denote this symmetry relation,
and •←→ and ←→•←→ to denote the other two possible symmetries:

←−−−−−→
(a, b, c, d) = (b, a, d, c) (a, b, c, d)←−−−−−→ = (c, d, a, b)

←−−−−−→
(a, b, c, d)←−−−−−→ = (d, c, b, a)

We now consider two messages M and M ′. We use y to denote the NTT output
for M , and y′ to denote the NTT output for M ′. The equality constraints on the
NTT output that are necessary to build a pair of symmetric expanded messages
are (we use E to denote the message expansion):

yi = y′
i⊕2 ⇔ E(M) =

←−−→E(M ′) yi = y′
i⊕4 ⇔ E(M) = E(M ′)←−−→

yi = y′
i⊕6 ⇔ E(M) =

←−−→E(M ′)←−−→
By solving the corresponding linear systems, we can compute the sets of sym-
metric messages (the sets are described in the full version of this paper). We
can count the symmetric messages M such that E(M) =

←−−→E(M), and the pairs of
messages M, M ′ such that E(M) =

←−−→E(M ′):

Sym. class (SIMD-256) msg pairs

←→• yi = y′
i⊕2 Wi = W ′

i⊕1 28 256 · 255
•←→ yi = y′

i⊕4 Wi = W ′
i⊕2 216 (256 · 255)2

←→•←→ yi = y′
i⊕6 Wi = W ′

i⊕3 28 256 · 255

Sym. class (SIMD-512) msg pairs

yi = y′
i⊕2 Wi = W ′

i⊕1 28 256 · 255
yi = y′

i⊕4 Wi = W ′
i⊕2 216 (256 · 255)2

yi = y′
i⊕6 Wi = W ′

i⊕3 28 256 · 255
yi = y′

i⊕8 Wi = W ′
i⊕4 232 (256 · 255)4

yi = y′
i⊕10 Wi = W ′

i⊕5 28 256 · 255
yi = y′

i⊕12 Wi = W ′
i⊕6 216 (256 · 255)2

yi = y′
i⊕14 Wi = W ′

i⊕7 28 256 · 255

An important property of these message classes is that they are all disjoint: it
is not possible to use the intersection of two symmetry classes.

2.2 Symmetry Property on the Compression Function

Let us consider a pair of symmetric messages for one of the symmetry relations
(without loss of generality, we assume it’s the ←→• symmetry): E(M ′) =

←−−→E(M). We
can take advantage of the symmetry of the Feistel part using those messages. If

we have a pair of states S(i),S′(i) with S′(i) =
←→
S(i) and we compute one Feistel

step with messages W and W ′ such that W ′ =
←→
W , we obtain a new pair of

states with S′(i+1) =
←−−→
S(i+1). The xor-based symmetry classes commute with

the xor-based permutations p(i) used to mix the Feistels (and they are the only
symmetry classes to do so).

Because the compression function is built using a modified Davies-Meyer mode
(Figure 1), we need to start with Hi−1 such that Hi−1⊕M is symmetric: H ′

i−1⊕
M ′ =

←−−−−−→
Hi−1 ⊕ M . Then, in the feed-forward, Hi−1 is used as the key to a few

Security Analysis of SIMD 355

Feistel rounds, and since Hi−1 is not symmetric, those rounds will break the
symmetry. However, it turns out the symmetric messages are very sparse, so
Hi will be almost symmetric, and the feed-forward will mostly preserve the
symmetry of the outputs.

This gives a distinguisher on the compression function: an almost symmetric
chaining value is transformed into a somewhat symmetric chaining value. A
concrete example of message and chaining value is given in the full version of
this paper.

The distinguisher can be used either with a pair of messages and chaining
values with E(M ′) =

←−−→E(M) and H ′
i−1 ⊕ M ′ =

←−−−−−→
Hi−1 ⊕ M , or with a single

chaining value and message, with E(M) =
←−−→E(M) and Hi−1 ⊕ M =

←−−−−−→
Hi−1 ⊕ M .

2.3 Non-ideality of the Compression Function

Here we define the bias of the compression function with the notations that will
be used in Section 3. For each symmetric message M under a symmetry relation
(denoted by ←→• without loss of generality), we have a first order relation between
the inputs and output of the compression function:

RM
1 (h, m, h′) :=

(
m = M ∧ h ⊕ m =

←−−→
h ⊕ m

)
⇒ P−1(h′, h) =

←−−−−−→
P−1(h′, h)

We use the feed-forward permutation P to define the relation, because it is tricky
to describe exactly the somewhat symmetry of h′ after the feed-forward. We have
about 216 such relations for SIMD-256 and about 232 relations for SIMD-512.
Similarly, for each symmetric message pair M, M ′, this gives a second order
relation (there are about 232 such relations for SIMD-256 and 264 for SIMD-512):

RM,M ′
2 (h1, m1, h2, m2, h

′
1, h

′
2) :=(

m1 = M ∧ m2 = M ′ ∧ h1 ⊕ m1 =
←−−−−→
h2 ⊕ m2

)
⇒ P−1(h′

1, h1) =
←−−−−−−−→
P−1(h′

2, h2)

The corresponding weak states are:

WM
1 := {x ⊕ M | x = ←→x } WM,M ′

2 :=
{

(h,
←→
h ⊕ M ′ ⊕←→

M)
}

The study of the symmetry classes of SIMD shows that:

|W1| ≈ 2256 · 216 |W1| ≈ 2512 · 232 for SIMD-512

|W2| < 2512 · 232 |W2| < 21024 · 264 for SIMD-512

Each chaining value can be used with less than 232 related chaining values (less
than 264 for SIMD-512) and each such pair can be used with a single message.

2.4 Impact of the Symmetry-Based Distinguisher

There are two main classes of attacks based on symmetric properties of the com-
pression function. To attack the compression function, one can use the symmetry

356 C. Bouillaguet, P.-A. Fouque, and G. Leurent

property to force the output of the compression function into a small subspace.
This allows to find collisions in the compression function more efficiently than
brute force, with the efficiency of this attack depending on the size of the sym-
metry classes. On the other hand, to attack the hash function, one can first
try to reach a symmetric state using random messages, and then use symmetric
messages to build a large set of symmetric states. To expand the set, the attacker
will build a tree, starting with the symmetric state that was reached randomly.
The degree and the depth of the tree can be limited depending on the symmetry
property. In the case of SIMD, none of these attacks are effective for the following
reasons:

– First, the modified Davies-Meyer mode of operation means that the com-
pression function does not transform a symmetric state into a symmetric
state, but it transforms an almost symmetric state into a somewhat sym-
metric state. We show in the full version of the paper that a “somewhat
symmetric” output pair can only be used as an “almost symmetric” input
pair with a very small probability. This prevents attacks based on building
long chains of symmetric messages, like the attacks on CubeHash [1,9].

– Second, if a pair of almost symmetric states is reached, there is only a single
message pair that can be used to reach a symmetric state in the Feistel
rounds. This prevents attacks like the herding attack on Lesamnta [4], where
one reaches a symmetric state and then uses a lot of different messages in
order to explore the subset of symmetric outputs.

– Third, the final transformation of SIMD uses the message length as input.
Therefore, the symmetry property can only be seen in the output of the hash
function with messages of unrealistic length (almost 2512 bits for SIMD-256
and almost 21024 bits for SIMD-512). Note that computing the hash of such
a message is vastly more expensive than finding a preimage.

– Moreover the symmetry classes do not intersect. It is not possible to build
a smaller symmetry classes in order to show collisions in the compression
function, as was done for CubeHash [1,9]. Finding collisions in the compres-
sion function using the symmetry property costs 2n/2. It is more efficient
than generic attacks on the compression function, but cannot be used to
find collisions in the hash function faster than the birthday attack. We also
note that the initial state of the SIMD hash function is not symmetric.

To summarize, reaching a symmetric state in SIMD is far less interesting than
reaching a symmetric state in CubeHash or in Lesamnta. Table 1 gives a com-
parison of the symmetry properties found in these functions.

Another very important factor is that SIMD is a wide-pipe design. Therefore
reaching a symmetric state is about as hard a finding a preimage for the hash
function. In the next section, we provide a formal proof that this distinguisher
has only a small effect on the security of SIMD. We can prove that the hash
function behaves as a random oracle under the assumption that the compression
function is a weak perfect function having this symmetry property.

Security Analysis of SIMD 357

Table 1. Comparison of symmetry properties in several hash functions

Reach Max. Max. Free-start

Function symm. state length degree Collisions

Lesamnta-512 2256 1 2256 2128 (semi-free-start)

CubeHash (symm C1..C7) 2384 ∞ 2128 232 (semi-free-start)

CubeHash (symm C8..C15) 2256 ∞ 1 264 (semi-free-start)

SIMD-512 2480 1 1 2256

3 Free-Start Distinguishers, Non-ideal Compression
Functions and Wide-Pipe Designs

In this section, we discuss the security of the prefix-free iteration of non-ideal
compression functions. While our primary objective is to show that the distin-
guisher for the compression function of SIMD presented in Section 2 does not
void the security proof of SIMD, the reasoning and the proof presented here are
pretty general and could very well be adapted to other functions.

Let H = {0, 1}p denote the set of chaining values, M = {0, 1}m denote the
set of message blocks, and F be the set of all functions H×M → H. Let F ∈ F
be a compression function taking as input an p-bit chaining value and an m-bit
message block. A mode of operation for a hash function H · combined with a
compression function F yields a full hash function HF .

Following [12,8], we rely on the notion of indifferentiability of systems to
reduce the security of SIMD to that of its compression function. The usual way
of establishing the soundness of a mode of operation H · is to show that it is
indifferentiable from a random oracle. This is done by constructing a simulator
S such that any distinguisher D cannot tell apart (HF , F) and (RO,S) without a
considerable effort, where RO is a variable-input-length random oracle (VIL-RO,
for short). When this is established, it is shown in [12] that any cryptosystem
making use of a VIL-RO is not less secure when the random oracle is replaced
by the hash function HF , where F is an ideal compression function (i.e., a fixed-
input-length random oracle, FIL-RO for short). Informally, if F is ideal (i.e., has
no special property that a random function would not have), then HF is secure
up to the level offered by the indifferentiability proof. More precisely, if H · is
(tD, tS , qS , q0, ε)-indifferentiable from a VIL-RO when the compression function
is assumed to be a FIL-RO, then this means that there exists a simulator running
in time tS , such that any distinguisher running in time tD and issuing at most
qS (resp. q0) queries to the FIL-RO (resp. VIL-RO) has success probability at
most ε.

A property of this methodology is that as soon as the compression function
used in a hash function turns out to be non-ideal, then the security argument
offered by the indifferentiability proof becomes vacuous. For instance, distin-
guishers exhibiting a “non-random” behavior of the compression function are
usually advertised by their authors to nullify the security proof of the full hash
function.

358 C. Bouillaguet, P.-A. Fouque, and G. Leurent

This problematic situation was first tackled by the designers of Shabal, who
provided a security proof taking into account the existence of an efficient dis-
tinguisher on the internal permutation of their proposal [6]. We will follow their
track and demonstrate that the security of SIMD can be proved despite the
existence of an efficient distinguisher on its compression function.

The mode of operation of SIMD can be “concisely” described as being the
wide-pipe prefix-free2 iteration of the compression function. Let HF therefore
denote the prefix-free Merkle-Damg̊ard iteration of F . Formally, g : {0, 1}∗ →
M∗ is a prefix-free encoding if for all x, x′, g(x) is not a prefix of g(x′). The
mode of operation H · simply applies the Merkle-Damg̊ard iteration of F to the
prefix-free encoding of the message.

The original security argument was that if the internal state and the hash
are both p-bit wide, then prefix-free Merkle-Damg̊ard is indifferentiable from a
random oracle up to about 2p/2 queries [8]. Theorem 1 below gives a formal
statement of this result.

Theorem 1. Prefix-Free Merkle-Damg̊ard is (tD, tS , qS , qO, ε)-indifferentiable
from a VIL-RO when the compression function is modeled by a FIL-RO, for any
running time tD of the distinguisher, and tS = O

(
(qO + κ · qS)2

)
where κ is an

upper-bound on the size of the queries sent to the VIL-RO. If q = qS +κ ·qO +1,
then the success probability of the distinguisher is upper-bounded by:

ε = 8 · q2

2p

In SIMD where the internal state is 2n bits, this ensures the indifferentiability
of the whole function up to roughly 2n queries (if H is indifferentiable up to q
queries, then the composition of a truncation that truncates half of the output
and of H is also secure up to q queries).

To restore the security argument damaged by the distinguisher, we will show
that the prefix-free iteration of a non-ideal compression function is to some extent
still indifferentiable from a VIL-RO.

3.1 Deterministic Distinguishers for the Compression Function

Let us consider a non-ideal compression function F .

– For instance, it may have weak states, that are such that querying F thereon
with a well-chosen message block produces a “special” output allowing to dis-
tinguish F from random in one query. Known examples include for instance
the symmetry on the compression function of Lesamnta [4], CubeHash [1,9],
and SIMD (described in Section 2).

– But F can also have bad second-order properties, meaning that the output
of F on correlated input states (with well-chosen message blocks) produces

2 this is not explicitly stated in the submission document, but SIMD has a different

finalization function that effectively acts as a prefix-free encoding.

Security Analysis of SIMD 359

correlated outputs, allowing to distinguish F from random in two queries. A
notable example of this property include the existence of differential paths
with probability one in the compression function of Shabal [2]. Symmetry
properties also give second order relations, which means that Lesamnta,
CubeHash and SIMD have bad second-order properties as well.

Following the methodology introduced in [6], we model this situation by saying
that there are two relations R1 and R2 such that:

∀(h, m) ∈ H×M : R1(h, m, F (h, m)) = 1

∀(h1, h2, m1, m2) ∈ H2 ×M2 : R2(h1, m1, h2, m2, F (h1, m1), F (h2, m2)) = 1

We denote by R the relation formed by the union of R1 and R2, and we will
denote by F [R] the subset of F such that the above two equations hold. We
require the relations to be efficiently checkable, i.e., that given h, m and h′, it is
efficient to check whether R1(h, m, h′) = 1. The relation can thus be used as an
efficient distinguishing algorithm that tells F [R] apart from F .

A weak state is a state on which it is possible to falsify the relation R1. We
formally define the set of weak states for R1 in the following way:

W = {h ∈ H | ∃m, h′ ∈ M×H such that R1(h, m, h′) = 0}
W should be a relatively small subset of H because the loss of security will be
related to the size of W . Moreover, we require that the IV is not in W .

In the same vein, a weak pair is a pair of states on which it is possible to
falsify the relation R2. We therefore define the set of weak pairs for R2 by an
undirected graph GR2 = (H,WP), where WP is defined by:

WP =
{
h1 ↔ h2 | ∃m1, m2, h

′
1, h

′
2 ∈ M2 ×H2s.t.R2(h1, m1, h2, m2, h

′
1, h

′
2) = 0

}
Similarly, WP should be a relatively small subset of H2 because the security loss
will be related to the size of WP . For the sake of expressing things conveniently,
we define a variant of the same graph, G′

R2
= (H × M,WP ′), where WP ′ is

defined by:

WP ′ =
{
(h1, m1) ↔ (h2, m2) | ∃h′

1, h
′
2 ∈ H2s.t.R2(h1, m1, h2, m2, h

′
1, h

′
2) = 0

}
To simplify the proof we also require that the connected component of G′

R2
have

size at most two. This rules out some second-order relations, but it includes for
instance the existence of a differential path with probability one with a non-zero
difference in the input chaining value, as well as the symmetry in the compression
function of SIMD or Lesamnta. We expect a similar result with larger connected
components, but there will be a loss of security related to their size.

We also require the existence of sampling algorithms for R, namely of two
efficient algorithms Sampler1 and Sampler2 such that:

Sampler1(h, m)

h′ $←− {f(h, m) | f ∈ F [R]} ; return h′

360 C. Bouillaguet, P.-A. Fouque, and G. Leurent

Sampler2(h1, m1, h2, m2, h
′
1)

h′
2

$←− {f(h2, m2) | f ∈ F [R] and F (h1, m1) = h′
1} ; return h′

2

Informally, the sampling algorithms should produce an output that looks as if it
were produced by a random function constrained to conform to R.

3.2 Adapting the Indifferentiability Proof to Non-ideal Compression
Functions

We now assume that the compression function is a public function chosen uni-
formly at random in F [R], and for the sake of convenience we will call it a
“biased FIL-RO”. We show that the prefix-free iteration of biased FIL-RO is
indifferentiable from a VIL-RO. In fact, we extend Theorem 1 to the case where
the compression function is biased.

Theorem 2. Prefix-Free Merkle-Damg̊ard is (tD, tS , qS , qO, ε)-indifferentiable
from a VIL-RO, when the compression function is modeled by a biased FIL-
RO conforming to the relation R, for any running time tD of the distinguisher,
and tS = O

(
(qO + κ · qS)2

)
where κ is an upper-bound on the size of the queries

sent to the VIL-RO. If q = qS + κ · qo + 1, then the probability of success of the
distinguisher is upper-bounded by:

ε = 16 · q2

2p
+ 4 · |W| · q

2p
+ 4 · |WP| · q2

(2p − q)2

The first term of the expression of ε is similar to the result given in Theorem 1,
when the compression function is ideal (up to a factor two that could be avoided
by making the argument slightly more involved). The two other terms reflect
the fact that the compression function is biased. The relation induces a security
loss if |W| is at least of order 2p/2, or if |WP| is at least of order 2p. Informally,
it seems possible to iterate compression functions having a relatively high bias
in a secure way.

Application to Free-start Differential Attacks. Let us assume that the
compression function is weak because of the existence of a good differential path
with a non-zero difference in the input chaining value. Even if the probability
of the differential path is 1, this has a very limited effect on the security of the
hash function: this leads to W = ∅ and |WP| = 2p−1. The advantage of the
distinguisher is at most twice as high, compared to the iteration of an ideal
FIL-RO.

Application to SIMD. In SIMD-256 (resp. SIMD-512), the internal state has
p = 512 bits (resp. p = 1024 bits), and the distinguisher of Section 2 yields
|W| = 2p/2+16, |WP| = 2p+32 (resp. |W| = 2p/2+32, |WP| = 2p+64). Therefore
the advantage of any distinguisher in telling apart SIMD-256 from a VIL-RO
with q queries is upper-bounded by:

ε = 16 · q2

2p
+ 4 · 2p/2+16 · q

2p
+ 4 · 2p+32 · q2

(2p − q)2

Security Analysis of SIMD 361

SIMD-256 is then secure up to roughly 2256−16 queries (SIMD-512 is secure up
to 2512−32 queries).

Application to Lesamnta. Lesamnta follows the prefix-free Merkle-Damg̊ard
mode of operation due to its special finalization function. An efficient distin-
guisher based on symmetries was shown in [4], with |W| = 2p/2 and |WP| =
2p−1. According to Theorem 2, the advantage of any distinguisher in telling
apart Lesamnta-256 from a random oracle with q queries is upper-bounded by:

ε = 16 · q2

2p
+ 4 · 2p/2 · q

2p
+ 4 · 2p−1 · q2

(2p − q)2
≈ 22 · q

2p/2

Note that since Lesamnta is a narrow-pipe design, we have p = n. Our result
shows that Lesamnta remains secure against generic attacks up to the birthday
bound. This is the best achievable proof for Lesamnta, since it does not behave
as a good narrow-pipe hash function beyond that bound: a dedicated herding
attack based on the symmetry property is shown in [4], with complexity 2n/2.

The proof is heavily based on the proof in the extended version of [8]. Due to
space constraints, the proof is not included in this paper, but can be found in
the full version.

4 On Differential Attacks against SIMD

In this section we will present our results concerning differential paths in SIMD.
Using Integer Linear Programming, we show that if there is a difference in the
message, then the probability of the path will be at most of the order of 2−n/2.
We stress that this result is not tight, but the computational power needed to
improve the bound using this technique grows exponentially.

Related Work. The first attempt to avoid differential attack in a SHA/MD-
like hash function was proposed in [10], where Jutla and Patthak described a
linear code similar to the message expansion of SHA-1, and proved that it has
a much better minimal distance than the original SHA-1 message expansion.
They proposed to use SHA-1 with this new message expansion and called the
new design SHA-1-IME.

Our Results. The design of SIMD follows the same idea, using a strong message
expansion with a high minimal distance. In this paper we show that we can prove
the security of SIMD more rigorously than the security of SHA-1-IME. While
the security of SHA-1-IME is based on the heuristic assumption that the path
is built out of local collisions, our proof gives an upper bound on the probability
of any differential characteristic with a non-zero difference in the message.

Our results prove the following: for any message pair with a non-zero differ-
ence, the probability of going from an input difference Δin to an output difference
Δout is bounded by 2−132 for SIMD-256, and 2−253 for SIMD-512.

362 C. Bouillaguet, P.-A. Fouque, and G. Leurent

4.1 Modeling Differential Paths

To study differential attacks against SIMD, we assume that the attacker builds
a differential path. The differential path specifies the message difference and
the state difference at each step. For each step i, we study the probability p(i)
that the new step difference conforms to the differential path, assuming that
the previous state difference and the message difference conforms to the path,
but that the values themselves are random. Since SIMD heavily uses modular
additions, our analysis is based on a signed differential, as used by Wang et
al. [15]. A signed difference gives better differential paths than an XOR difference
if two active bits cancel each other out: with an XOR difference this gives a
probability 1/2, but with a signed difference we have a probability 1 if the signs
are opposed.

To study differential paths, we will consider the inner state of SIMD, and the
Boolean functions φ(i). A state bit A

(i)
j is called active if it takes two different

values for a message pair following the differential path. Similarly, a Boolean
function is called active if at least one of its inputs is active. A differential path
consists of a set of active message bits, active state bits, active Boolean function,
and the sign of each active element. We assume that the adversary first builds
such a differential path, and then looks for a conforming pair of messages and
chaining values. If we disregard the first and last rounds, each Boolean function
has three inputs, and each state bit enters three Boolean functions. We use this
simplification in Section 4.4.

4.2 The Message Expansion

The minimal distance of the message expansion of SIMD is at least 520. This
distance counts the number of active bits, but we can also show that even if
consecutive bits can collapse to give a single signed difference, we still have a
minimal distance of 455 (respectively 903 for SIMD-512). The only case where
adjacent differences can collapse to give a smaller signed difference is when the
bits 15 and 16 are active in the two 16-bit words that are packed into a 32-
bit word. In Section 4.4, we disregard this property and we just consider that
the message introduces 520 differences through the message expansion, but the
model used in Section 4.5 accounts precisely for that.

4.3 Structure of a Differential Path

The basic idea of our analysis is to use the lower bound on the number of active
message bits to derive a lower bound on the number of active state bits. Each
message difference must either introduce a new difference in the state, or cancel
the propagation of a previous state difference. A single difference propagates to
between 2 and 5 differences, depending on whether the Boolean functions absorb
it or let it go through. This means that a collision corresponds to between 3 and
6 message differences.

For instance, if a difference is introduced in the state A
(5)
1 by W

(5)
1 , it will

appear in A
(5)
1 , B

(6)
1 , C

(7)
1 , D

(8)
1 . Each of the Boolean function φ

(6)
1 , φ

(7)
1 , φ

(8)
1 can

Security Analysis of SIMD 363

either absorb it or pass it. This difference will propagate to A
(6)
0 , and to A

(9)
1 .

Moreover, it can propagate to A
(6)
1 , A

(7)
1 and A

(8)
1 if the Boolean functions do not

absorb it. Up to five active message bits can be used to cancel this propagation:
W

(4)
1 , W

(8)
1 , W

(5)
0 , and possibly W

(5)
1 , W

(6)
1 , W

(7)
1 if the corresponding Boolean

functions are not absorbing.
We consider two parts of the compression function: the computation of φ,

and the modular sum. In order to study the probabilities associated with these
computations, we will count the conditions needed for a message pair to follow
the characteristic.

φ-conditions. The Boolean functions MAJ and IF used in SIMD can either
absorb or pass differences. When there is a single active input, the probability
to absorb and to pass is 1/2. Each time a state difference enters a Boolean
function, the differential characteristic specifies whether the difference should be
passed or absorbed, and this gives one condition if the Boolean functions have
a single active input. Thus, each isolated difference in the state will account for
3 φ-conditions: one for each Boolean function they enter.

�-conditions. When a difference is introduced in the state, it has to come from
one of the inputs of the round function:

A
(i)
j =

(
D

(i−1)
j � W

(i)
j � φ(i)(A(i−1)

j , B
(i−1)
j , C

(i−1)
j)

)≪s(i)

�
(
A

(i−1)
p(i)(j)

)≪r(i)

The round function is essentially a sum of 4 terms, and the differential char-
acteristic will specify which input bits and which output bits are active. Thus,
the differential characteristic specifies how the carry should propagate, and this
gives at least one condition per state difference.

In the end, a state difference accounts for 4 conditions.

4.4 Heuristics

We first give some results based on heuristics. We assume that the adversary can
find message pairs that give a minimal distance in the expanded message, and
we allow him to add some more constraints to the expanded message. Note that
finding a message pair with a low difference in the expanded message is already
quite difficult with the message expansion of SIMD.

Heuristic I. assumes that the adversary can find message pairs with minimal
distance, but no other useful property. The adversary gets a message pair
with minimal distance, and connects the dots to build a differential charac-
teristic.

Heuristic II. assumes that the adversary can find message pairs with minimal
distance and controls the relative positions of the message difference. He will
use that ability to create local collisions.

Heuristic III. assumes that the adversary can find a message pair with any
message difference, limited only by the minimal weight of the code. He will
cluster local collisions to avoid many conditions.

364 C. Bouillaguet, P.-A. Fouque, and G. Leurent

Heuristic I. In this section, we assume that the adversary can find a message
pair such that the expanded messages reach the minimal distance of the code,
but we assume that the message pair has no further useful properties.

In this case, this adversary gets a message pair with a small difference and he
has to connect the dots to build a differential path. This is somewhat similar to
the attacks on MD4 [14]: the messages are chosen so as to make a local collision
in the last round, and the attacker has to connect all the remaining differences
into a path with a good probability.

It seems safe to assume that such a differential path will at least have as many
active state bits as active message bits. Since an isolated difference in the state
costs 4 conditions, we expect at least 2080 conditions (resp. 4128 for SIMD-512),
which is very high.

Heuristic II. We now assume that the adversary can force some structure in
the expanded message difference. Namely, he can choose the relative location
of the differences in the expanded message. Since the probability of the path
is essentially given by the number of active bits in the state, the path should
minimize this. This is achieved with local collisions, and each local collision will
use as many message differences as possible. Due to the structure of the round
function of SIMD, a local collision can use between 3 and 6 message differences,
depending on whether the Boolean functions absorb or pass the differences.
In order to minimize the number of state differences, the path will make all
the Boolean functions pass the differences, yielding six message differences per
state difference. This is somewhat counter-intuitive because most attacks try to
minimize the propagation of differences by absorbing them. However, in our case
it is more efficient to let the differences go through the Boolean functions, and
to use more message differences to cancel them, because we have a lower bound
on the number of message differences.

Since the adversary only controls the relative position of the message differ-
ences, we assume that most local collisions will be isolated, so that each local
collision gives 4 conditions. Thus, a differential is expected to have at least
520×4/6 ≈ 347 conditions (688 for SIMD-512). This leaves a significant security
margin, and even if the adversary can use message modifications in the first 16
rounds, it can only avoid half of those conditions.

This can be compared to the attacks on SHA-1 [7,15]. These attacks are
based on local collisions, but we do not know how to find a message pair which
would have both minimal distance and yield a series of local collisions in SHA-1.
Instead, attacks on SHA-1 use the fact that the message expansion is linear and
circulant : given a codeword, if we shift it by a few rounds we get another valid
codeword and similarly if we rotate each word we get another valid codeword.
Then we can combine a few rotated and/or shifted codewords so as to build local
collisions. The attacks on SHA-1 start with a codeword of minimal distance, and
combines 6 rotated versions. Thus the weight of the actual expanded message
difference used in the attack is six times the minimal weight of the code.

Security Analysis of SIMD 365

Note that message expansion of SIMD is more complex than the one from
SHA-1, and it seems very hard to find this kind of message pairs in SIMD.
Moreover, the trick used in SHA-1 cannot be used here because the message
expansion is neither linear nor circulant.

Heuristic III. We now remove all heuristic assumptions and we try to give a
bound on any differential trail. However, to keep this analysis simple, we still
disregard the specificities of the first round, and the fact that one can combine
some of the message differences.

The adversary will still use local collisions to minimize the number of differ-
ences in the state, but he will also try to reduce the number of conditions for each
local collision by clustering them. We have seen that an isolated state difference
costs 4 conditions, but if two state differences are next to each other, the cost
can be reduced when using a signed difference. For instance, if two inputs of the
MAJ function are active, the adversary does not have to pay any probability: if
both active inputs have the same sign, then the output is active with the same
sign, but if the inputs have opposite signs then the output will be inactive. In
this section we consider that a Boolean function with more than one active input
does not cost any probability.

Thus, the best strategy for the adversary is to place the state differences
so that each active Boolean function has two active inputs, in order to avoid
any φ-conditions. Each state difference costs only one �-condition, and gets
4.5 message differences (these message differences corresponding to the Boolean
functions are shared between two Boolean functions). This gives a lower bound
of 116 conditions.

More rigorously, this can be described by a linear program, as shown in Linear
Program 1. Equation (1) comes from counting the number of active inputs to the
Boolean functions in two different ways, while Equation (2) counts the number
of message differences that can be used. The objective value S + α − β counts
the conditions: one for each state difference, plus one for each Boolean function
with exactly one active input. The optimal solution to this program is 520/4.5 ≈
115.55.

In the next section we will see how to improve this bound and get a bound
on the probability of any differential path.

Comparison with SHA-1-IME. The security of SHA-1-IME is based on a
heuristic that is quite similar to our Heuristic I. Jutla and Patthak assume that
the adversary will use the same technique as the attacks on SHA-1, i.e. create
local collisions using the fact that the code is linear and circulant. They deduce
that the probability of a differential characteristic will be about 275×2.5. They
implicitly assume that the adversary cannot find minimal codewords that would
already give local collisions. Our Heuristic II assumes that the attacker can find
such codewords, and if we apply it to SHA-1-IME, it would only guarantee that
we have at least 13 local collisions (each local collision accounts for 6 message
differences). Since a local collision in SHA-1 has an average probability of 2−2.5,
this would only prove that an attack has at least a complexity 213×2.5 = 232.5.

366 C. Bouillaguet, P.-A. Fouque, and G. Leurent

Program 1. Linear Program
Minimize S + α − β with the constraints:

3S = α + β + γ (1)

520 ≤ 3S + α (2)

γ ≤ β ≤ α (3)

α ≥ 0 is the number of Boolean functions with at least one active input

β ≥ 0 is the number of Boolean functions with at least two active inputs

γ ≥ 0 is the number of Boolean functions with at least three active inputs

S ≥ 0 is the number of active state bits

This shows that our Heuristic II and III are much weaker than the heuristic
used in SHA-1-IME.

4.5 Upper Bounding the Probability of a Differential Path

The bound given by Heuristic III is slightly lower than n/2 so we would like
to improve it. To find a better bound, we will follow the approach of Linear
Program 1. Note that in the optimal solution, all the Boolean functions have
either zero or two active inputs, but it is unlikely that such a path actually exists
because of the way the Boolean functions share inputs. In order to remove some
impossible solutions, we use a more detailed modeling of differential paths where
each individual state bit is treated separately. This also allows us to express some
extra constraints that will help to improve the lower bound.

Constraints related to the message expansion. We know that the message ex-
pansion gives at least 520 differences in the expanded message, but there are
some constraints on the positions of these differences. Namely, we have at least
65 active words in each copy of the message, and each active word has at least
4 active bits. For instance, a difference pattern with 3 active bits in each word
would have 768 bit differences, but it is not a valid pattern.

Better cost estimation. In Program 1, we only count a condition for the Boolean
functions with a single active input. In fact, if we look at the truth table of the
Boolean functions we see that the IF function still needs a condition when inputs
1 and 2, or 1 and 3 are active. Since we are using distinct variables for each of
these inputs, we can include this in our description.

We can write all these constraints as a huge optimisation problem, but we
need some tool to find the optimal solution of the system, or at least find a
lower bound. We decided to write our problem as an Integer Linear Program.

Integer Linear Programming. Integer Linear Programming (ILP) is a gen-
eralisation of Linear Programming (LP) where some variables are restricted to
integer values. While LP is solvable in polynomial time, ILP is NP-complete. ILP
solvers usually use some variants of the branch-and-bound algorithm. In the case
of minimization problem, the branch-and-bound algorithm computes a lower

Security Analysis of SIMD 367

bound to the optimal solution and incrementally raises this lower bound. Mean-
while, non-optimal solutions give an upper bound, and when the two bounds
meet, the search is over.

A simplified version of the ILP is given in the full version of this paper.
The first equations and the objective value mirrors Program 1, but use many
variables to allow for more precise extra constraints. The full program has
28,576 variables and 80,162 equations for SIMD-256. We used the solver SYM-
PHONY, an open-source solver for mixed-integer linear programs, available at
http://www.coin-or.org/SYMPHONY/. The solver could not find an optimal so-
lution to the program, but it reached an interesting lower bound after some time:
a differential path for SIMD-256 has at least 132 conditions, while a differential
path for SIMD-512 has at least 253. The computation for SIMD-512 took one
month on a bi-quadcore machine.

Summary. The optimal strategy of the attacker is to use local collisions (avoid-
ing any difference propagation) and to cluster the local collisions so as to avoid
most conditions. Our modeling allows the adversary to do this because he can
choose the message difference and the expanded message difference indepen-
dently, and he can position the differences arbitrarily in the inner code. However,
this is not possible in practice, and most solutions of the Integer Linear Program
will require an expanded message difference that is not actually feasible.

Therefore, we expect that the best differential path in SIMD is much worse
that our lower bound.

Acknowledgments

We would like to thank Praveen Gauravaram from Technical University of Den-
mark, Copenhagen for discussions on the proof of indifferentiability.

We would also like to thank Franck Landelle from CELLAR for insightful com-
ments on the security of SIMD and limitations of our initial study of differential
paths. Part of this work was supported by CELLAR.

Part of thisworkwas supportedbytheEuropeanCommission throughECRYPT,
and by the French government through the Saphir RNRT project.

References

1. Aumasson, J.P., Brier, E., Meier, W., Naya-Plasencia, M., Peyrin, T.: Inside the

Hypercube. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594,

pp. 202–213. Springer, Heidelberg (2009)

2. Aumasson, J.P., Mashatan, A., Meier, W.: More on Shabal’s permutation. Official

Comment (2009)

3. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192

and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.

Springer, Heidelberg (2009)

4. Bouillaguet, C., Dunkelman, O., Fouque, P.A., Leurent, G.: Another Look at Com-

plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,

pp. 347–364. Springer, Heidelberg (2010)

http://www.coin-or.org/SYMPHONY/

368 C. Bouillaguet, P.-A. Fouque, and G. Leurent

5. Bouillaguet, C., Fouque, P.A., Leurent, G.: Security analysis of simd. Cryptology

ePrint Archive, Report 2010/323 (2010), http://eprint.iacr.org/

6. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,

A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,

J.R., Thuillet, C., Videau, M.: Indifferentiability with Distinguishers: Why Sha-

bal Does Not Require Ideal Ciphers. Cryptology ePrint Archive, Report 2009/199

(2009), http://eprint.iacr.org/

7. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How

to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,

pp. 430–448. Springer, Heidelberg (2005)

9. Ferguson, N., Lucks, S., McKay, K.A.: Symmetric States and their Structure: Im-

proved Analysis of CubeHash. Cryptology ePrint Archive, Report 2010/273 (2010),

http://eprint.iacr.org/

10. Jutla, C.S., Patthak, A.C.: Provably Good Codes for Hash Function Design. In:

Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 376–393. Springer,

Heidelberg (2007)

11. Leurent, G., Bouillaguet, C., Fouque, P.A.: SIMD Is a Message Digest. Submission

to NIST (2008)

12. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results

on Reductions, and Applications to the Random Oracle Methodology. In: Naor,

M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

13. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum

Differential and the Maximum Linear Hull Probability for SPN Structures and

AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,

Heidelberg (2003)

14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions

MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,

pp. 1–18. Springer, Heidelberg (2005)

15. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.

(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Subspace Distinguisher for 5/8 Rounds of the
ECHO-256 Hash Function�

Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. In this work we present first results for the hash function of

ECHO. We provide a subspace distinguisher for 5 rounds and collisions for

4 out of 8 rounds of the ECHO-256 hash function. The complexities are 296

compression function calls for the distinguisher and 264 for the collision

attack. The memory requirements are 264 for all attacks. To get these

results, we consider new and sparse truncated differential paths through

ECHO. We are able to construct these paths by analyzing the combined

MixColumns and BigMixColumns transformation. Since in these sparse

truncated differential paths at most one fourth of all bytes of each ECHO

state are active, missing degrees of freedom are not a problem. Therefore,

we are able to mount a rebound attack with multiple inbound phases to

efficiently find according message pairs for ECHO.

Keywords: hash functions, SHA-3 competition, ECHO, cryptanalysis,

truncated differential path, rebound attack, subspace distinguisher,

near-collisions, collision attack.

1 Introduction

Many new and interesting hash function designs have been proposed in the NIST
SHA-3 competition [17]. In this paper, we analyze the hash function ECHO [1],
which is one of 14 Round 2 candidates of the competition. ECHO is a wide-pipe,
AES based design which transforms 128-bit words similar as AES transforms
bytes. Inside these 128-bit words, two standard AES rounds are used. So far, most
cryptanalytic results of ECHO were limited to the internal permutation [13, 7].
Recently, reduced round attacks on the wide-pipe compression function of ECHO
have been published in [18], which cover up to 4/8 rounds for ECHO-256 and 6/10
rounds of ECHO-512. However, a drawback of attacks on building blocks (such as
compression functions or permutations) is that they cannot be used to compare
SHA-3 candidates due to their great design variety and different requirements
for building blocks.

Therefore, in this work we analyze the hash function of ECHO and present re-
sults for up to 5/8 rounds of ECHO-256. We use the subspace distinguisher [9,10]
� Near-collisions for 4.5/8 rounds of the hash function and compression function results

for 7/8 rounds without chosen salt are given in an extended version of this paper [19].

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 369–387, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

370 M. Schläffer

to compare our distinguishing attacks with the generic complexity on ideal hash
functions. Our results greatly improve upon previously results, which were at-
tacks on a similar number of rounds of the compression function [18]. Further-
more, attacks on the compression function for up to 7/8 rounds of ECHO-256 and
7/10 rounds of ECHO-512 are given in an extended version of this paper [19].
The main improvement is to consider a new type of sparse truncated differen-
tial paths by placing only a single active byte in the ECHO state with 16 active
AES states. In all previous paths, the full active ECHO states also had full active
AES states. The construction of such paths is possible by combining the last
MixColumns transformation of the second AES round with the BigMixColumns
transformation of an ECHO round to a SuperMixColumns transformation.

The attack itself is a rebound attack [14] with multiple inbound phases. Similar
attacks have been applied to the SHA-3 candidate LANE [12] and the hash
function Whirlpool [9]. Since the truncated differential paths are very sparse, we
have plenty degrees of freedom to merge the solutions of these multiple inbound
phases. Note that using multiple inbound phases, we can control more distant
parts of much longer truncated differential paths than in a start-from-the-middle
attack [13] or simple Super-Sbox analysis [9,15,7] where the controlled rounds are
limited to only the middle rounds. To merge independent solutions of multiple
inbound phases, we use a technique based on the generalized birthday attack [20].

2 Description of ECHO

In this section we briefly describe the AES based SHA-3 candidate ECHO. For a
detailed description of ECHO we refer to the specification [1]. Since ECHO heavily
uses AES rounds, we describe the AES block cipher first.

2.1 The AES Block Cipher

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [16]. The AES
follows the wide-trail design strategy [4, 5] and consists of a key schedule and
state update transformation. Since ECHO does not use the AES key schedule, we
just describe the state update here.

In the AES, a 4 × 4 state of 16 bytes is updated using the following 4 round
transformations, with 10 rounds for AES-128. The non-linear layer SubBytes
(SB) applies the AES S-Box to each byte of the state independently. The cyclical
permutation ShiftRows (SR) rotates the bytes of row j to the left by j positions.
The linear diffusion layer MixColumns (MC) multiplies each column of the state
by a constant MDS matrix MMC. AddRoundKey (AK) adds the 128-bit round
key Ki to the AES state. Note that a round key is added prior to the first round
and the MixColumns transformation is omitted in the last round of AES. For a
detailed description of the AES we refer to [16].

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 371

2.2 The ECHO Hash Function

The ECHO hash function is a SHA-3 candidate submitted by Benadjila et al. [1]. It
is a double-pipe, iterated hash function and uses the HAIFA [2] domain extension
algorithm. More precisely, a padded t-block message M and a salt s are hashed
using the compression function f(Hi−1, Mi, ci, s), where ci is a bit counter, IV
the initial value and trunc(Ht) a truncation to the final output hash size of n
bits:

H0 = IV

Hi = f(Hi−1, Mi, ci, s) for 1 ≤ i ≤ t

h = truncn(Ht).

The message block size is 1536 bits for ECHO-256 and 1024 bits for ECHO-512, and
the message is padded by adding a single 1 followed by zeros to fill up the block
size. Note that the last 18 bytes of the last message block always contain the
2-byte hash output size, followed by the 16-byte message length.

The compression function of ECHO uses one internal 2048-bit permutation P
which manipulates 128-bit words similar as AES manipulates bytes. The per-
mutation consists of 8 rounds in the case of ECHO-256 and has 10 rounds for
ECHO-512. The internal state of the permutation P can be modeled as a 4 × 4
matrix of 128-bit words. We denote one ECHO state by Si and each 128-bit word or
AES state is indexed by [r, c], with rows r ∈ {0, ..., 3} and columns c ∈ {0, ..., 3}
of the ECHO state.

The 2048-bit input of the permutation (which is also tweaked by the counter
ci and salt s) are the previous chaining variable Hi−1 and the current message
block Mi, concatenated to each other. After the last round of the permutation,
a feed-forward (FF) is applied to get the preliminary output V :

V = Pci,s(Hi−1||Mi) ⊕ (Hi−1||Mi). (1)

To get the 512-bit chaining variable Hi for ECHO-256, all columns of the ECHO out-
put state V are XORed. In the case of ECHO-512, the 1024-bit chaining variable
Hi is the XOR of the two left and the two right columns of V . The feed-forward
together with the compression of columns is called the BigFinal (BF) operation.
To get the final output of the hash function, the lower half is truncated in the
case of ECHO-256 and the right half is truncated for ECHO-512.

The round transformations of the ECHO permutation are very similar to AES
rounds, except that 128-bit words are used instead of bytes. One round is the
composition of the following three transformations in the given order: The non-
linear layer BigSubWords (BSW) applies two AES rounds to each of the 16 128-
bit words of the internal state. The first round key consists of a counter value
initialized by ci and increased for every AES state and round of ECHO. The second
round key consists of the 128-bit salt s. The cyclical permutation BigShiftRows
(BSR) rotates the 128-bit words of row j to the left by j words. The linear
diffusion layer BigMixColumns (BMC) mixes the AES states of each ECHO column
by the same MDS matrix MMC but applied to those bytes with equal position
inside the AES states.

372 M. Schläffer

3 Improved Truncated Differential Analysis of ECHO

In this section we describe the main concepts used to attack the ECHO hash
function. We first describe the improved truncated differential paths which have
a very low number of active S-boxes. These sparse truncated differential paths
are the core of our attacks and for a better description of the attacks, we reorder
the ECHO round transformations. This reordering gives two combined building
blocks of ECHO, the SuperMixColumns and SuperBox transformations. We then
show how to efficiently find both differences and values through these functions
for a given truncated differential path.

3.1 Sparse Truncated Differential Paths for ECHO

In this section we construct truncated differential paths with a low number of
active bytes. Since ECHO has the same properties for words as AES has for bytes,
at least 25 AES states are active in each 4-round differential path of ECHO.
However, we can reduce the number of active S-boxes in each AES state to get
a sparse 4-round truncated differential path with only 245 active S-boxes. Note
that the truncated differential path of the previously best known analysis of ECHO
has already 320 active S-boxes in a single round [18]. A trivial lower bound [1]
of active S-boxes for 4 rounds is 125.

The AES structure of ECHO ensures that the minimum number of active AES
states (or words) for 4 rounds has the following sequence of active AES states:

1 r1−→ 4 r2−→ 16 r3−→ 4 r4−→ 1

Also, the same sequence of active bytes holds for 4 rounds of AES. In previous
analysis of ECHO, truncated differential paths have been used with 16 active bytes
in the AES states where the ECHO state has also 16 active words. In these attacks
always one full active state with 256 active S-boxes was used. In the following,
we show how to construct sparse truncated differential paths with a maximum
of 64 active bytes in each single ECHO state.

The main idea is to place AES states with only one active S-box into those
ECHO rounds with 16 active words. This way, the number of total active bytes
(or S-boxes) can be greatly reduced. The resulting 4-round truncated differential
path of ECHO is given in Fig. 1 and consists of only 245 active S-boxes. Since
one round of ECHO consists of two AES rounds, it follows that the full active
AES states result in those rounds of ECHO with 4 active words. The ECHO state
with only one active word contains only one active byte in this AES state. Note
that in the attacks on ECHO, we use this truncated differential path with small
modifications to improve the overall complexity of the attacks.

3.2 An Equivalent ECHO Round Description

For an easier description of our attack, we use an equivalent description of one ECHO
round. First, we swap the BigShiftRows transformationwith the MixColumns trans-
formation of the second AES round. Second, we swap SubBytes with ShiftRows of

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 373

the firstAES round. Swapping these operations does not change the computational
result of ECHO and similar alternative descriptions have already been used in the
analysis of AES. This way, we get two new super-round transformations separated
just by byte shuffling operations:SuperMixColumns and SuperBox. These functions
with adjacent byte shuffling operations are shown in Fig. 2. In the following subsec-
tions,we describe these transformations and showhow to efficiently finddifferences
and pairs according to a given truncated differential path for both transformations.

3.3 SuperMixColumns

The SuperMixColumns transformation combines the four MixColumns transfor-
mations of the second AES round with the 4 MixColumns transformations of
BigMixColumns in the same 1 × 16 column slice of the ECHO state (see Fig. 2).
We denote by column slice the 16 bytes of the same 1-byte wide column of the
16×16 ECHO state. Note that the BigMixColumns transformation consists of 16×4
parallel MixColumns transformations. Each of these MixColumns transformations
mixes those four bytes of an ECHO column, which have the same position in the
four AES states. Using the alternative description of ECHO (see Fig. 2), it is easy
to see that four MixColumns operations of the second AES round work on the
same column slice as four MixColumns operations of BigMixColumns. We combine
these eight MixColumns transformations to get a SuperMixColumns transforma-
tion on a 1-byte wide column slice of ECHO.

We have determined the 16 × 16 matrix MSMC of the SuperMixColumns
transformation which is applied to the ECHO state instead of MixColumns and
BigMixColumns. This matrix can be computed by the Kronecker product of two
MixColumns MDS matrices MMC and is given as follows:

MSMC = MMC ⊗ MMC =

[2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

]
⊗
[2 3 1 1

1 2 3 1
1 1 2 3
3 1 1 2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the optimal branch number of a 16 × 16 matrix is 17, which could
be achieved by an MDS matrix. Using Magma we have computed the branch
number of SuperMixColumns which is 8. Hence, it is possible to find differential
paths in SuperMixColumns such that the sum of active bytes at input and output
is only 8. An according truncated differential path through MixColumns and
BigMixColumns has the following sequence of active bytes:

4 MC−−→ 16 BMC−−−→ 4

374 M. Schläffer

D 1 C C C
C
C
C

C
C
C
C

F
F
F
F

D
D
D
D

D
D

D
D

D D D D
D D D D
D D D D
D D D D

D D D D
D D D D
D D D D
D D D D

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

C C C C
C C C C
C C C C
C C C C

C C C C
C C C C
C C C C
C C C C

C
C

C
C

C
C

C
C

F
F

F
F

D
D

D
D

D
D
D
D

D

S0 SAES
0 SBSB

0 SBSR
0 SBMC

0

AES AES BSR BMC

S1 SAES
1 SBSB

1 SBSR
1 SBMC

1

AES AES BSR BMC

S2 SAES
2 SBSB

2 SBSR
2 SBMC

2

AES AES BSR BMC

S3 SAES
3 SBSB

3 SBSR
3 SBMC

3

AES AES BSR BMC

Fig. 1. The sparse truncated differential path for 4 rounds of ECHO. By 1, D, C, F

we denote the pattern and number of active bytes in each AES state (also see [7]). A

1 denotes an AES state with only one active byte, a D an active diagonal (4 active

bytes), a C an active column (4 active bytes) and an F denotes a full active state (16

active bytes). Note that a maximum of 64 bytes are active in each single ECHO state.

An example for a valid SuperMixColumns differential according to this trun-
cated differential path is given as follows:

SMC([E000 9000 D000 B000]T) = [2113 0000 0000 0000]T

However, the probability for a truncated differential path from 4 → 16 → 4
active bytes (with fixed position) through SuperMixColumns is 2−24. Hence, only
28 (out of 232) such differentials for the given position of active bytes exist. In the
sparse truncated differential path of Fig. 1, this 4 → 16 → 4 transition through
SuperMixColumns occurs in the second and forth round.

3.4 SuperBox

The SuperBox has first been used by the designers of AES in the differential anal-
ysis of two AES rounds [6]. Since one round of ECHO also consists of two consec-
utive AES rounds we use this concept in our analysis as well. Using SuperBoxes,
we can represent two rounds of AES using a single non-linear layer and two
adjacent linear layers. Since we can swap the SubBytes and ShiftRows operation

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 375

Fig. 2. The two super-round transformations of ECHO: SuperBox (top, red) and

SuperMixColumns (bottom, green) with adjacent byte shuffling operations (ShiftRows
and BigShiftRows)

of the first AES round, we get a sequence of SB-MC-SB transformations with
independent columns in the middle. One such column is called a SuperBox and
consists of 4 parallel S-boxes, one MixColumns operation and another 4 parallel
S-boxes (see Fig. 2). Hence, a SuperBox is in fact a 32-bit non-linear S-box.

This separation of two AES rounds into parallel 32-bit SuperBoxes allows to
efficiently find pairs for a given (truncated) differential. In a theoretical attack
on ECHO or if we do not care about memory, we can simply pre-compute and
store the whole differential distribution table (DDT) of the AES SuperBox with
a time and memory complexity of 264. The DDT stores which input/output dif-
ferentials of the SuperBox are possible and also stores all input values such that
these differentials are fulfilled. Note that in ECHO, each SuperBox is keyed in the
middle by the counter value. Hence, we need different DDTs for all SuperBoxes
with different keys. To reduce the memory requirements and the maximum time
to find values for given SuperBox differentials, a time-memory trade-off with av-
erage complexity one and memory requirements of 232 can be used. This method
has first been proposed in the analysis of the hash function Whirlpool [9, Ap-
pendix A] and applied to Grøstl in [15]. The same technique has been discovered
independently in [7].

3.5 Expected Number of Pairs

At this point, we can already compute the expected number of pairs conforming
to the 4-round truncated differential path given in Fig. 1. The resulting number
of solutions determines the degrees of freedom we have in the attack. At the
input of the path, we have a 2048-bit value and differences in 4 bytes. Therefore,
the total number of possible inputs pairs (excluding the 128-bit salt) is about

22048 · 28·4 = 28·260 = 22080.

In general, the probability for a random pair to follow a truncated differential
path from a to b active bytes (with a+b ≥ 5) through MixColumns is 2−8·(4−b). An

376 M. Schläffer

exception is the propagation from 4 → 16 → 4 bytes through SuperMixColumns,
which has a probability of 2−24 (see Sect. 3.3). Multiplying all probabilities
through MixColumns and SuperMixColumns gives the approximate probability for
a random input pair to follow the whole truncate differential path. For the path
given in Fig. 1, we get a probability significantly less than one for all MixColumns
or SuperMixColumns transformation where a reduction in the number of active
bytes occur. This happens in the 1st MC of round 1 (D – 1), the 2nd MC of
round 2 (4 × F – D), the 1st MC (16 × D – 1) and SMC (4 × 1111 – FFFF –
F000) of round 3, and the 2nd MC (4 × F – D) and BMC (3 × D – 0) of round 4.
We then get for the total probability of the truncated differential path (in base
2 logarithm):

−8 · (3 + 4 · 12 + 16 · 3 + 4 · 3 + 4 · 12 + 3 · 4) = −8 · 171

So in total, the expected number of solutions for this path is

28·260 · 2−8·171 = 28·89 = 2712

and we have about 712 degrees of freedom in this 4-round truncated differential
path.

4 Attacks on the ECHO-256 Hash Function

In this section we use the sparse truncated differential path and properties of
SuperMixColumns to get attacks for up to 5 rounds of the ECHO-256 hash function.
We first describe our main result, the subspace distinguisher for 5 rounds of ECHO-
256 in detail. Then, we briefly show how to get near-collisions for 4.5 rounds and
collisions for 4 rounds of ECHO-256.

4.1 Subspace Distinguisher for 5 Rounds

In this section we show that ECHO-256 reduced to 5 rounds can be distinguished
from an ideal hash function. We are able to construct a large set of output dif-
ferences which fall into a vector space of fixed dimension. But when does this
result in a distinguisher on the hash function? An attacker could have chosen
the vector space specifically to fit a previously computed set of differences. Also,
finding up to x differences in subspace of dimension x is trivial, even for ideal
functions. But once a subspace has been chosen, finding additional differences in
this subspace should again have the generic complexity. We have a similar situa-
tion for preimage attacks: finding a preimage is trivial if the attacker can choose
the hash value. Note that in most distinguishing attacks, the generic complex-
ity also depends on the number of found solutions. To compare distinguishers
with generic attacks, differential q-multicollisions have been used in the distin-
guishing attacks on AES [3]. More general, to analyze the complexity of finding
differences in a vector space of fixed dimension, the subspace distinguisher has

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 377

been introduced in the analysis of Whirlpool [9,10]. Before we describe the sub-
space distinguisher for 5 rounds of ECHO-256 in detail, we give an overview of
the truncated differential path and provide a brief outline of the attack.

The Truncated Differential Path. For the attack we use two message blocks
where the first block does not contain differences. For the second message block,
we use the truncated differential path given in Fig. 3. We use colors (red, yellow,
green, blue, cyan) to describe different phases of the attack and to denote their
resulting solutions. Active bytes are denoted by black color and all AES states
are active which contain at least one active byte. Hence, the sequence of active
AES states for each round of ECHO is as follows:

5 r1−→ 16 r2−→ 4 r3−→ 1 r4−→ 4 r5−→ 16

Note that in this path we keep the number of active bytes low as described in
Sect. 3.1. Except for the beginning and end, at most one fourth of the ECHO state
is active and therefore, we have enough freedom to find many solutions. Since the
lower half of the state is truncated, we have most differences in the lower half of
the message and there are no differences in the chaining input (blue). The padding
of the second (and last) message block is denoted by cyan bytes. The last 16 bytes
(one AES state) of the padding contain the message length, and the two bytes
above contain the 2-byte value with the hash size. Note that the AES states con-
taining the chaining values (blue) and padding (cyan) do not get mixed with other
AES states until the first BigMixColumns transformation.

Attack Outline. To find input pairs according to this path we use the rebound
attack [14] with multiple inbound phases [9, 12]. The main advantage of multiple
inbound phases is that we can first find pairs for each inbound phase independently
and then, connect (or merge) the results. For the attack on 5 rounds of ECHO-256we
use an inbound phase in round 2 (red) and another inbound phase in round 3 (yel-
low). The 1st inbound phase finds values and differences for the red bytes which we
connect with the chaining input (blue) and padding (cyan) by merging lists. Then,
we compute the solutions of the 2nd inbound phase forwards in the outbound phase
(green) to insure the propagation according to the truncated differential path until
the end. Finally, we merge the solutions of the two inbound phases by determining
the remaining (white) values using a generalized birthday attack on 4 independent
columns of the state. Note that in some cases, the probability to find one solution
is only close to one. However, for simplicity reasons of describing the attack we as-
sume it is one, since we have enough freedom in the attack to repeat all phases with
different starting points to get one solution on average.

1st Inbound. We start the 1st inbound phase with a random difference according
to the truncated differential path throughSuperMixColumns between state S14 and
state S16 (see Sect. 3.3). We compute these differences backward to get the output
differences of the SuperBoxes in state S12. For each column in state S7 we choose
232 random differences for the given active bytes. We compute these differences
forward through BigMixColumns to the input of the SuperBoxes. Note that for the

378 M. Schläffer

F
ig

.
3
.

T
h
e

tr
u
n
c
a
te

d
d
iff

e
re

n
ti
a
l
p
a
th

to
g
e
t

a
su

b
sp

a
c
e

d
is
ti
n
g
u
is
h
e
r

fo
r

5
ro

u
n
d
s

o
f
E
C
H
O
-2

5
6
.
B

la
ck

b
y
te

s
a
re

a
c
ti
v
e
,
b
lu

e
a
n
d

c
y
a
n

b
y
te

s
a
re

d
e
te

rm
in

e
d

b
y

th
e

ch
a
in

in
g

in
p
u
t
a
n
d

p
a
d
d
in

g
,
re

d
b
y
te

s
a
re

v
a
lu

e
s

c
o
m

p
u
te

d
in

th
e

1
st

in
b
o
u
n
d

p
h
a
se

,
y
e
ll
o
w

b
y
te

s
in

th
e

2
n
d

in
b
o
u
n
d

p
h
a
se

a
n
d

g
re

e
n

b
y
te

s
in

th
e

o
u
tb

o
u
n
d

p
h
a
se

.

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 379

last column we could choose up to 264 differences (8 active bytes), whereas in all
other columns we have only 232 possible differences (4 active bytes).

As described in Sect. 3.4, we find values according to the SuperBox differentials
with an average complexity of 1 by using DDT lookups. Note that for some differ-
entials no solutions exist, but for each possible differential we get more pairs which
out-weight the non-existing ones (for more details we refer to [14]). In general, for
each active AES S-box a differential is possible with a probability of about 2−1 and
we get at least 2 pairs. Hence, for a full active AES state, one out of approximately
216 differences gives a differential match and then, provides at least 216 solutions.
In the following attacks, it is reasonable to assume that for each differential we get
one solution with average complexity one.

Since in the 1st inbound phase the columns of ECHO are independent, we get
232 independent solutions for each of the four columns in state S7 (red and black
bytes) with complexity 232 in time and memory. These solutions (or pairs) consist
of differences and values for the black bytes, and values for the red bytes in S7. Note
that for each solution (and arbitrary choice of white bytes in S7) the truncated
differential path from state S3 to state S23 is already fulfilled.

Merge Chaining Input. Next, we need to merge the solutions of the 1st
inbound phase with the chaining input and bytes fixed by the padding. Therefore,
we choose 232 random first message blocks and compute the resulting chaining
value after one compression function call of ECHO. Note that each AES state can
be independently computed forward to state S7 until the first BigMixColumns
transformation. We do this for the chaining values (blue) and the AES state
containing the message length (cyan). Note that we match the two remaining
bytes and one bit of the padding at a later step.

We merge the 232 chaining values with the solutions of the 1st inbound phase
column by column. We start with column 0 where we need to match the padding
state as well. Since we match 64 bits of overlapping red and blue/cyan bytes, the
expected number of solutions is 232 × 232 × 2−64 = 1. We compute this solution
by merging the two lists of size 232 and exploiting the birthday effect. For all
other columns, we need to match only 4 red bytes in each blue AES state and
we get 232 × 2−32 = 1 solution as well. Since we only merge lists of size 232 the
complexity of this step is 232 in time and memory.

After this step, we have found solutions where the values of all blue, cyan and
red bytes, as well as the values of the black bytes between state S7 and state
S14 are determined. Furthermore, all differences (black bytes) from state S4 up
to state S17 can be computed.

2nd Inbound. In the 2nd inbound phase, we search for values and differences
such that the truncated differential path in round 3 is fulfilled (yellow). Remem-
ber that the differences in state S17 have already been fixed due to the 1st inbound
phase. We start with 264 differences of state S24 and compute backwards to state
S20, the output of the SuperBoxes. Note that we have 16 independent SuperBoxes
for the yellow AES states between state S17 and S20. Again, we use the DDT of
the SuperBoxes to find the according values for the given differentials. For 4 full

380 M. Schläffer

active AES states, the probability of a differential is about 2−4·16. Among the 264

differentials, we expect to find one possible differential. Note that for a valid dif-
ferential, the expected number of solutions for the 2nd inbound phase is 264. For
each of these pairs, differences and values of all yellow and black bytes in round 3
are determined.

Outbound Phase. Next, we compute the 264 differences and values of state S24
forward to S31. With a probability of 2−96 we get 4 active bytes after MixColumns
in state S31. Hence, we have to repeat the 2nd inbound phase 232 times to find one
solution for the outbound phase as well and we get a total complexity of 296. After
this step, the complete truncated differential path is fulfilled (except for two cyan
bytes in the first states). Furthermore, all differences (black bytes) from state S4
until state S33 are already determined. Also, the values of the yellow, red, blue,
green and cyan bytes, and the values of the black bytes from state S7 to S31 except
for state S15 are determined. What remains is to find values for the white bytes
such that the results of the two inbound phases (blue/cyan/red and yellow bytes)
can be connected.

Merge Inbound. To merge the two inbound phases, we need to find according
values for the white bytes. We first choose random values for all remaining bytes
of the first two columns in state S7 (gray and lightgray) and compute them for-
ward to state S14. Note that we need to try 22·8+1 values for AES state S7[2, 1] to
also match the 2-byte (cyan) and 1-bit padding at the input in AES state S0[2, 3].
To illustrate all further steps, we use only states and colors shown in Fig. 4. Note
that all gray, lightgray and brows bytes have already been determined either by
an inbound phase, chaining value, padding or just by choosing random values for
the remaining free bytes of the first two columns of S7. Also the cyan bytes are
fixed already. However, all white, red, green, yellow and blue bytes are still free to
choose.

By taking a look at the linear SuperMixColumns transformation, we observe
that in each column slice, 14 out of 32 input/output values are already fixed.
Hence, we expect to get 216 solutions for this linear system of equations. Un-
fortunately, for the given position of already determined 14 bytes, the linear
system of equations does not have a full rank. One can determine the resulting

Fig. 4. States used to merge the two inbound phases with the chaining values. Gray,

lightgray and brown bytes show values already determined. Green, blue, yellow and

red bytes show independent values used in the generalized birthday attack and cyan

bytes represent values with the target conditions.

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 381

system using the matrix MSMC of SuperMixColumns. For the first column-slice
the system is given as follows:

MSMC· [a0L0L1L2a1L
′
0L

′
1L

′
2a2x0x1x2a3x3x4x5]T =

[b0b1b2b3y0y1y2y3y4y5y6y7y8y9y10y11]

The free variables in this system are x0, . . . , x5 (green). The values a0, a1, a2, a3,
b0, b1, b2, b3 (brown) have been determined by the first or second inbound phase,
and the values L0, L1, L2 (lightgray) and L′

0, L
′
1, L

′
2 (gray) are determined by

the choice of arbitrary values in state S7. Since the values y0, . . . , y11 (white) are
free to choose we can remove their respective equations. We move terms which
do not depend on xi to the right side and get the following linear system with 4
equations and 6 variables:

[3 1 1 3 1 1
2 3 1 2 3 1
1 2 3 1 2 3
1 1 2 1 1 2

]
·

⎡
⎢⎢⎣

x0
x1
x2
x3
x4
x5

⎤
⎥⎥⎦ =

[
c0
c1
c2
c3

]
(2)

On the right side, we have the constant values c0, c1, c2, c3 which are determined
by a0, a1, a2, a3, b0, b1, b2, b3, L0, L1, L2, L′

0, L
′
1, L

′
2 and we get for example:

c0 = b0 + 4a0 + 6L0 + 2L1 + 2L2 + 6a1 + 5L′
0 + 3L′

1 + 3L′
2 + 2a0 + 2a1

The matrix of this linear system has rank 3 instead of 4 and therefore, we only
get a solution with probability 2−8. We can solve this system of equations by
transforming the system into echelon form and get:

[1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0

]
·

⎡
⎢⎢⎣

x0
x1
x2
x3
x4
x5

⎤
⎥⎥⎦ =

[
c′0
c′1
c′2
c′3

]
(3)

where the values c′0, c
′
1, c

′
2, c

′
3 are a linear combination of c0, c1, c2, c3. From the

last equation, we get the 8-bit condition c′3 = 0. Since also c′3 depends linearly
on Li and L′

i, we can separate this linear equation into terms depending only on
values of Li and only on L′

i, and get c′3 = f1(Li)+ f2(L′
i)+ f3(ai, bi) = 0. For all

other 16 column-slices and fixed positions of gray bytes, we also get matrices of
rank 3. In total, we get 16 8-bit conditions and the probability to find a solution
for a given choice of gray and lightgray values in state S14 and S16 is 2−128.
However, we can also find a solution using the birthday effect with a complexity
of 264 in time and memory.

First, we start by choosing 264 values for each of the first (gray) and second
(lightgray) BigColumn in state S7. We compute these values independently for-
ward to state S14 and store them in two lists L and L′. We also separate all
equations of the 128-bit condition into parts depending only on values of L and
L′. We apply the resulting functions f1, f2, f3 to the elements of lists Li and L′

i,

382 M. Schläffer

and search for matches between the two lists using the birthday effect. Now, by
solving (3) we get 224 solutions for the fist column-slice. By doing the same for
all other slices, we get 224 independent solutions for each column-slice. Hence,
in total we can get up to 216·24 = 2384 solutions for the whole ECHO state.

We continue with a generalized birthday match to find values for all remaining
bytes of the state. For each column in state S14, we independently choose 264

values for the green, blue, yellow and red columns, and compute them indepen-
dently backward to S8. We need to match the values of the cyan bytes of state S7,
which results in a condition on 24 bytes or 192 bits. Since we have 4 independent
lists with 264 values in state S8, we can use the generalized birthday attack [20]
to find one solution with a complexity of 2192/3 = 264 in time and memory.
In detail, we need to match values after the BigMixColumns transformation in
backward direction. Hence, we first multiply each byte of the 4 independent
lists by the 4 multipliers of the InvMixColumns transformation. Then, we get 24
equations containing only XOR conditions on bytes between the target value
and elements of the 4 independent lists. This can be solved using a generalized
birthday attack.

After this step, all values and differences are determined. We can compute the
input message pair, as well as the output differences for ECHO-256 reduced to 5
rounds. By simply repeating the merge inbound phase 232 times, we can find at
least 232 solutions for the whole truncated differential path. The total complexity
is still 296 compression function evaluations and memory requirements of 264.

Subspace Distinguisher. Note that one message pair resulting in one output
differences does not give a distinguisher. We need to find many output differences
in a subspace with a complexity less than in the generic case. To determine
the generic complexity of finding output differences in a vector space and the
resulting advantage of our attack we use the subspace distinguisher. In general,
the size of the output vector space is define by the number of active bytes
prior to the linear transformations in the last round (16 active bytes after the
last SubBytes), combined with the number of active bytes at the input due to
the feed-forward (0 active bytes in our case). This would results in a vector
space dimension of (16 + 0) · 8 = 128. However, a weakness in the combined
transformations SuperMixColumns, BigFinal and output truncation reduces the
vector space to a dimension of 64 at the output of the hash function (for the
given truncated differential path).

Note that we can move the BigFinal function prior to SuperMixColumns, since
BigFinal is a linear transformation and the same linear transformation MSMC is
applied to all columns in SuperMixColumns. Hence, we get 4 active bytes in each
column slice at the same position in each AES state. To each (active) column
slice C16, we first apply the SuperMixColumns multiplication with MSMC and
then, a matrix multiplication with Mtrunc which truncates the lower 8 rows.
Since only 4 bytes are active in C16, these transformations can be combined into
a transformation using a reduced 4×8 matrix Mcomb applied to the reduce input
C4, which contains only the 4 active bytes of C16:

Mtrunc · MSMC · C16 = Mcomb · C4

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 383

The multiplication with zero differences of C16 removes 12 columns of MSMC

while the truncation removes 8 rows of MSMC. An example for the first active
column slice is given as follows:

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
0
0
0
b
0
0
0
c
0
0
0
d
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3
2 4 6 2
1 2 3 1
1 2 3 1
3 6 5 3

⎤
⎥⎥⎥⎥⎦·
[

a
b
c
d

]

Analyzing the resulting matrix Mcomb for all 4 active column slices shows that
in each case, the rank of Mcomb is 2 instead of 4. This reduces the dimension of
the vector space in each active column slice from 32 to 16. Since we have 4 active
columns, the total dimension of the vector space at the output of the hash function
is 64.

We use [9, Corollary 1] and [9, Equation (19)] to compute the complexity of a
generic distinguishing attack on the ECHO-256 hash function. We get the parame-
ters N = 256 (hash function output size), n = 64 (dimension of vector space) and
t = 232 (number of outputs in vector space) for the subspace distinguisher. Then,
the generic complexity to construct 232 elements in a vector space of dimension
64 is about 2111.8 compression function evaluations. Remember that in our attack
on ECHO we also get 232 pairs in a vector space of the same dimension. Hence, the
total complexity for our subspace distinguisher on 5 rounds of the ECHO-256 hash
function is about 296 compression function evaluations with memory requirements
of 264.

4.2 Collisions for 4 Rounds

Finally, we are able to construct collisions for 4 rounds of the ECHO-256 hash func-
tion. The attack and truncated differential path is similar as for the subspace dis-
tinguisher on 5 rounds. We use a two-block message and the truncated differential
path for the second block is given in Fig. 5. Again, we start with the 1st inbound
phase, merge the chaining input and continue with the 2nd inbound and outbound
phase. To get a collision at the output we use differences in the feed-forward and do
a 3rd inbound phase in two AES states in round 1. Finally, we merge the solutions
of the two inbound phases to determining the remaining values. In the following,
we only describe parts of the attack which are new or have been changed.

1st Inbound. The 1st inbound phase is the same as for the subspace distinguisher,
except that in state S7 we choose 264 random differences for the active bytes of col-
umn 0 and 1, and 232 random differences for column 2 and 3. Hence, after the 1st

384 M. Schläffer

F
ig

.
5
.
T

h
e

tr
u
n
c
a
te

d
d
iff

e
re

n
ti

a
l
p
a
th

to
g
e
t
a

c
o
ll
is
io

n
o
n

4
ro

u
n
d
s
o
f
E
C
H
O
-2

5
6
.
B

la
ck

b
y
te

s
a
re

a
c
ti
v
e
,
b
lu

e
a
n
d

c
y
a
n

b
y
te

s
a
re

d
e
te

rm
in

e
d

b
y

th
e

ch
a
in

in
g

in
p
u
t

a
n
d

p
a
d
d
in

g
,
re

d
b
y
te

s
a
re

v
a
lu

e
s

c
o
m

p
u
te

d
in

th
e

1
st

in
b
o
u
n
d

p
h
a
se

a
n
d

y
e
ll
o
w

b
y
te

s
in

th
e

2
n
d

in
b
o
u
n
d

p
h
a
se

,

g
re

e
n

b
y
te

s
in

th
e

o
u
tb

o
u
n
d

p
h
a
se

a
n
d

g
ra

y
b
y
te

s
in

th
e

in
p
u
t

in
b
o
u
n
d

p
h
a
se

.

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 385

inbound phase we get 264 independent solutions for each of the first two columns,
and 232 solutions for each of the last two columns in state S7 (red and black bytes).

Merge Chaining Input. Again, we choose 232 random first message blocks and
merge them with the solutions of the 1st inbound phase column by column. We
start with column 0 where we need to match the padding state as well. Since we
match 64 bits of overlapping red and blue/cyan bytes, the expected number of
solutions is 232 × 264 × 2−64 = 232. For all other columns, we need to match only
the 4 red bytes in each blue AES state with a probability of 2−32. For column 1
we get 232 solutions since we have computed 264 results in the 1st inbound phase.
For column 2 and 3, we have 232 solutions from the 1st inbound phase and get one
match on the overlapping 4 bytes.

2nd Inbound. To get the first solution for the 2nd inbound phase we need to try
264 differences of state S24, since the probability of a differential match in 4 full
active AES states is only about 2−4·16. Then, the expected number of solutions
for the 2nd inbound phase is 264 but we only need 248 solutions to continue.

Outbound Phase. In the outbound phase we compute these 248 differences and
values of state S24 forward to S27. With a probability of 2−48 we get one active
byte after MixColumns in each active state of S27. After this step, the complete
truncated differential path (except for the three first states) is fulfilled. What re-
mains is to determine differences in the first state to get a collision at the output
and to find values for the white bytes.

3rd Inbound. To get a collision at the output, we use two additional active AES
states in round 1. In S0[0, 1] and S0[1, 1], only the first column should be active
such that the active bytes overlap with the active bytes at the output. For these
active bytes at the input, we choose the differences to be S0[0, 1] =S32[0, 0]⊕
S32[0, 3] and S0[1, 1] =S32[1, 0]⊕S32[1, 3]. Then, these differences cancel each other
by the feed-forward and we get a collision. In a 3rd inbound phase, we determine
the remaining values of the gray and black bytes such that the given truncated
differential for these two AES states in round 1 is satisfied. Again, we can find
such values and differences with a complexity of about 1 using the DDT of the
SuperBoxes, and compute 232 solutions for each AES state. Since we still have 232

solutions for each of column 0 and column 1 due to the 1st inbound phase, we ex-
pect to find a match for both differences and values of the overlapping 4 diagonal
bytes of AES state S7[0, 1] and S7[1, 0].

Merge Inbound. Finally, we merge the 1st and 2nd inbound phases as in the
previous attacks. Then, all values and differences are determined and we can com-
pute the input message pair which results in a collision for ECHO-256 reduced to 4
rounds. The total complexity is 264 in time and memory.

5 Conclusion

In this work we have presented the first analysis of the ECHO hash function. We
give a subspace distinguisher for 5 rounds and collisions for 4 out of 8 rounds of

386 M. Schläffer

the ECHO-256 hash function. Our results improve upon the previous results which
are only on the (double-pipe) compression function of ECHO and for less rounds.
Note that also near-collision resistance is a NIST requirement for a future SHA-
3 [17]. In the extended version of this work [19] we provide near-collisions for 4.5/8
rounds of the hash function. Additionally we show distinguishers for 7 rounds and
near-collisions for up to 6.5 rounds of the ECHO-256 and ECHO-512 without chosen
salt.

In our improved attacks we combine the MixColumns transformation of the sec-
ond AES round with the subsequent BigMixColumns transformation to a com-
bined SuperMixColumns transformation. This allows us to construct very sparse
truncated differential paths. In these paths, at most one fourth of the bytes are
active throughout the whole computation of ECHO. This behavior is not known
from the AES or AES based hash functions which strictly follow the wide-trail
design strategy. Additionally, we are able to apply a rebound attack with multi-
ple inbound phases to ECHO by using a generalized birthday technique to merge
the inbound phases. Future work includes the search for even sparser truncated
differential paths and the improvement of the given attacks by using the large de-
grees of available freedom. Also the separate search for differences and values as
proposed in [13] and [8] may be used to improve the complexity of additional in-
bound phases.

Acknowledgements

We thank the members of the IAIK Krypto group, the designers of ECHO and espe-
cially Jérémy Jean and Florian Mendel for their comments and useful discussions.
This work was supported in part by the Austrian Science Fund (FWF), project
P21936, by the European Commission through the ICT programme under con-
tract ICT-2007-216676ECRYPT II, and by the IAP Programme P6/26 BCRYPT
of the Belgian State (Belgian Science Policy).

References

1. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,

Seurin, Y.: SHA-3 Proposal: ECHO. Submission to NIST (2008),

http://crypto.rd.francetelecom.com/echo

2. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA.

Cryptology ePrint Archive, Report 2007/278 (2007),

http://eprint.iacr.org/2007/278

3. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack

on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–

249. Springer, Heidelberg (2009)

4. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryp-

tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg

(2001)

5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, Heidelberg (2002)

http://crypto.rd.francetelecom.com/echo
http://eprint.iacr.org/2007/278

Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function 387

6. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De

Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer,

Heidelberg (2006)

7. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like

Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–

383. Springer, Heidelberg (2010)

8. Khovratovich, D., Naya-Plasencia, M., Röck, A., Schläffer, M.: Cryptanalysis of

Luffa v2 Components. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010.

LNCS, vol. 6544. Springer, Heidelberg (2011)

9. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound

Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui

[11], pp. 126–143

10. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: The Rebound

Attack and Subspace Distinguishers: Application to Whirlpool. Cryptology ePrint

Archive, Report 2010/198 (2010), http://eprint.iacr.org/2010/198

11. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009)

12. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound

Attack on the Full Lane Compression Function. In: Matsui [11], pp. 106–125

13. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved Cryptanalysis of

the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Ci-

pher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,

vol. 5867, pp. 16–35. Springer, Heidelberg (2009)

14. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound At-

tack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.)

FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

15. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound Attacks on

the Reduced Grøstl Hash Function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS,

vol. 5985, pp. 350–365. Springer, Heidelberg (2010)

16. National Institute of Standards and Technology (NIST). FIPS PUB 197: Advanced

Encryption Standard. Federal Information Processing Standards Publication 197,

U.S. Department of Commerce (November 2001),

http://www.itl.nist.gov/fipspubs

17. National Institute of Standards and Technology (NIST). Announcing Request

for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm

(SHA-3) Family. Federal Register 27(212), 62212–62220 (November 2007),

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

18. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. Cryptology ePrint

Archive, Report 2010/223 (2010), http://eprint.iacr.org/2010/223

19. Schläffer, M.: Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Func-

tion. Cryptology ePrint Archive, Report 2010/321 (2010),

http://eprint.iacr.org/2010/321

20. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.

LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

http://eprint.iacr.org/2010/198
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://eprint.iacr.org/2010/223
http://eprint.iacr.org/2010/321

Cryptanalysis of Luffa v2 Components�

Dmitry Khovratovich1, Maŕıa Naya-Plasencia2,
Andrea Röck3, and Martin Schläffer4

1 University of Luxembourg, Luxembourg
2 FHNW, Windisch, Switzerland

3 Aalto University School of Science and Technology, Finland
4 IAIK, Graz University of Technology, Austria

Abstract. We develop a number of techniques for the cryptanalysis of

the SHA-3 candidate Luffa, and apply them to various Luffa compo-

nents. These techniques include a new variant of the rebound approach

taking into account the specifics of Luffa. The main improvements in-

clude the construction of good truncated differential paths, the search for

differences using multiple inbound phases and a fast final solution search

via linear systems. Using these techniques, we are able to construct non-

trivial semi-free-start collisions for 7 (out of 8 rounds) of Luffa-256 with

a complexity of 2104 in time and 2102 in memory. This is the first analysis

of a Luffa component other that the permutation of Luffa v1. Addition-

ally, we provide new and more efficient distinguishers also for the full

permutation of Luffa v2. For this permutation distinguisher, we use a

new model which applies first a short test on all samples and then a

longer test on a smaller subset of the inputs. We demonstrate that a set

of right pairs for the given differential path can be found significantly

faster than for a random permutation.

Keywords: hash functions, SHA-3 competition, Luffa, cryptanalysis,

rebound attack, semi-free-start collision, distinguisher.

1 Introduction

The hash function Luffa [5] is a Round 2 candidate of the NIST SHA-3 competi-
tion, and follows the wide-pipe design using a sponge-based mode of operation.
Luffa shows its originality in the design of the compression function, which is
based on the parallel call of 3, 4, or 5 permutations (depending on the output
size). A similar design approach was used in the hash function LANE [8], but
with different input and output transformations.
� The work described in this paper has been supported in part by the European

Commission through the ICT program under contract ICT-2007-216676 ECRYPT II,

by the French Agence Nationale de la Recherche under Contract ANR-06-SETI-013-

RAPIDE, by the PRP ”Security & Trust” grant of the University of Luxembourg, by

the Academy of Finland under project 122736, and during the tenure of an ERCIM

Alain Bensoussan Fellowship Programme.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 388–409, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cryptanalysis of Luffa v2 Components 389

In this paper we present several results on various components of Luffa. First,
we analyze the Luffa mode of operation and derive sufficient conditions for a dif-
ferential path with low-weight input and output differences in the permutations.
Then we proceed with the analysis of the Luffa permutations and construct a
7-round truncated differential path with using a meet-in-the-middle approach.
We are able to exploit the rotational symmetry of Luffa to increase the number
of differential paths and construct solutions for these paths with an advanced
rebound attack [10].

Since the number of active S-boxes in the differential path is too large for a
straightforward application of the rebound attack, we need to solve this issue
with several refinements of the attack. We use multiple inbound phases and a
parallel matching technique to find all possible differential paths for the trun-
cated path first. We need a parallel matching technique to match large lists of
differences through the S-box layer in the inbound phase. A gradual matching
as in the attacks on AES is not possible for the not block-wise operating linear
transformation of Luffa.

Using this advanced rebound attack we get a semi-free-start collision for 7
(out of 8) rounds of Luffa-256 v2 in Section 3, which can be extended to an
8-round semi-free-start distinguisher (see Section 4). We have also defined a new
type of distinguisher which can be used to distinguish the full permutation of
Luffa v2 in Section 5.

Note that the supporting document of Luffa provides a semi-free-start col-
lision for Luffa-512 with complexity 2204 due to the properties of the message
injection and using the generalized birthday problem [11]. For Luffa-256 this
attack does not have a complexity lower than the birthday bound. Other pre-
vious results include the existence of a non-trivial differential path for 8 rounds
of the internal permutation with probability 2−224, and different variations of
high-order differential distinguishers [1,4].

Table 1. Results. Note that the meaning and setting of “distinguisher” varies

depending on the attack

building security time memory technique

block parameter

Distinguishers

permutation v1 full (8) 2224 - differential [7]

compression v1 6 284 - higher order diff. [4]

compression v1 7 2216 - higher order diff. [4]

permutation v1 full (8) 282 - algebraic zero-sum [1]

permutation v2 full (8) 2116 - two-tier differential Sect. 5

compression Luffa-256 v2 full (8) 2104 2102 advanced rebound attack Sect. 4

Semi-free-start collision

compression Luffa-256 v2 7 2104 2102 advanced rebound attack Sect. 3

390 D. Khovratovich et al.

2 Description of Luffa

In this section we briefly describe the SHA-3 candidate Luffa [5]. For a more
detailed description we refer to the submission document.

2.1 The Iteration

The hash function Luffa is a variant of a sponge function and consists of a linear
message injection MI, w 256-bit permutations Qj and a finalization function C′′.
The chaining value at instant i is represented by (H(i)

0 , . . . , H
(i)
w−1). The size of

each message block M (i), each value H
(i)
j and starting variable Vj is 256 bits. In

the iteration of the hash function Luffa, a padded t-block message M is hashed
as follows:

(H(0)
0 , . . . , H

(0)
w−1) = (V0, . . . , Vw−1)

(X0, . . . , Xw−1) = MI(H(i−1)
0 , . . . , H

(i−1)
w−1 , M (i)) for 1 ≤ i ≤ t

(H(i)
0 , . . . , H

(i)
w−1) = (Q0(X0), . . . , Qw−1(Xw−1)) for 1 ≤ i ≤ t

hash = C′′(H(t)
0 , . . . , H

(t)
w−1).

The parameter w depends on the hash output size and is specified to be w = 3
for Luffa-224 and Luffa-256, w = 4 for Luffa-384, and w = 5 for Luffa-512. Fig. 1
shows the iteration of the hash function Luffa-256 with w = 3. In the following,
we describe the permutations Qj and the message injection MI of Luffa in more
detail.

M1

MI

Q2

Q1

Q0

V2

V1

V0

M2

MI

Q2

Q1

Q0

M3

MI

Mt

MI

Q2

Q1

Q0

C′′
hash

C′

Fig. 1. The iteration of the hash function Luffa-256 (w = 3) with message injection

MI, permutations Qj and finalization function C′′

2.2 The Permutations

The non-linear 256-bit permutations Qj update a state of 8 32-bit words
a0, a1, . . . , a7. Initially, an InputTweak is applied to the input of the permutations.
Furthermore, each permutation consists of 3 round transformations SubCrumb,

Cryptanalysis of Luffa v2 Components 391

MixWord, and AddConstant which are repeated for 8 rounds. The permutations
Qj differ only in the InputTweak and AddConstant transformation. In the follow-
ing, we give a detailed description of the round transformations. We organize the
state in 4×2 32-bit words with the LSB of each word at the right hand side (see
Fig. 2). Furthermore, we call the 4 words a0, a1, a2, a3 left words (or left side)
and the 4 words a4, a5, a6, a7 right words (or right side), and we call each 4-bit
column of this state a nibble. In the following, we describe a specific difference
in a nibble either by its bit pattern, e.g. 1011 (with the LSB on the right), or by
its hexadecimal value, e.g. 0xB, depending on which is more convenient for the
understanding.

Fig. 2. The 256-bit state of each Luffa permutation Qi is organized in 8 32-bit words.

In this representation, SubCrumb is applied vertically to 4-bit columns (nibbles) and

MixWord horizontally to 64-bit rows of the state.

In permutation Qj , the InputTweak rotates the 4 right words a4, a5, a6, a7 to
the left by j positions. This tweak has no influence on the four left words. In
the non-linear SubCrumb layer, the same 4-bit S-box is applied to each nibble of
the state. Hence, 64 independent S-boxes are applied to the columns of the state
(see Fig. 2). Note that the wiring is different for the left and right side, which is
equivalent to applying two different S-boxes S and S′ on each side.

In MixWord, a linear mixing function is applied to two 32-bit words (ak and
ak+4 for k = 0, . . . , 3) of the state. Hence, 4 independent linear functions are
applied to each row of the state (see Fig. 2). We give here an alternative descrip-
tion of MixWord which is more suitable for our analysis. A detailed description
of MixWord can be found in the specification of Luffa [6]. We denote by ai

k and
ai

k+4 the i-th bit of the words ak and ak+4 with k = 0, . . . , 3. Then, the output
words bi

k and bi
k+4 are computed as follows:

bi
k = ai

k ⊕ ai+18
k ⊕ ai+20

k ⊕ ai+22
k ⊕ ai+30

k ⊕ ai
k+4 ⊕ ai+18

k+4 ⊕ ai+22
k+4

bi
k+4 = ai+17

k ⊕ ai+29
k ⊕ ai+31

k ⊕ ai+17
k+4 ⊕ ai+31

k+4 ,

with 0 ≤ i ≤ 31, k = 0, . . . , 3 and all indices modulo 32.

Note that each bit of the left output words bi
k depends on 8 bits of the input

and each bit of the right output words bi
k+4 depends on 5 bits of the input.

For the backward direction the opposite holds: Each bit of the left input words
ai

k depends on 5 bits of the output and each bit of the right input words ai
k+4

depends on 8 bits of the output. In addition, we show in Fig. 3 the propagation of
a 1-bit difference in forward and backward direction. Let us consider for example
the case k = 0 in the figure. We have a difference in all the bits of b0 and b4

392 D. Khovratovich et al.

Fig. 3. Propagation of a single bit at the LSB of the left (k = 0) and right (k = 1) word

in forward, and left (k = 2) and right (k = 3) word in backward direction. Empty bits

are zero. Note that the 64-bit rows are independent in each MixWord transformation.

which depend on a0
0, e.g.

b0
0 = a0

0 ⊕ a18
0 ⊕ a20

0 ⊕ a22
0 ⊕ a30

0 ⊕ ai
4 ⊕ a18

4 ⊕ a22
4 .

2.3 The Message Injection

The message injection in Luffa-256 can be described by an operation in a ring
of polynomials:

R = Z2[x]/(x8 + x4 + x3 + x + 1),

which is applied to those 8 bits of the state with equal bit position i in the
32-bit words ai

k for k = 0, . . . , 7. Hence, each bit of the message is mixed into
two nibbles of the state. In the message injection, the chaining values Hj and
the message block M are used to get the new intermediate chaining values Xi

as follows: ⎛
⎝X0

X1
X2

⎞
⎠ =

⎛
⎝x + 1 x x 1

x x + 1 x x
x x x + 1 x2

⎞
⎠ ·

⎛
⎜⎜⎝

H0
H1
H2
M

⎞
⎟⎟⎠ .

3 Semi-Free-Start Collision on Luffa-256 for 7 Rounds

In this section, we present a rebound technique to search for semi-free-start colli-
sions in Luffa. With semi-free-start collision, we denote a collision on the internal
state with no differences in the chaining value. Contrary to free-start collisions
(with arbitrary differences in the chaining value), semi-free-start collisions are
not trivial to find in sponge-like constructions. In our attack, we can find two
distinct two-block messages M1, M2 and M∗

1 , M∗
2 such that

MI(M2, P (MI(M1, CV))) = MI(M∗
2 , P (MI(M∗

1 , CV))).

for some chaining value CV . In the following, we show that the complexity to
find such a semi-free-start collision for 7 (out of 8) rounds of Luffa-256 is about
2104 in time and 2102 in memory.

Cryptanalysis of Luffa v2 Components 393

3.1 Outline of the Attack

To search for semi-free-start collisions in reduced Luffa-256 we use an adapted
and refined rebound attack. Since we do not allow differences in the chaining
values, all 3 permutations need to be active. In the attack, we first search for
truncated differential paths in Qj which result in a semi-free-start collision for 7
rounds. Contrary to AES based designs, this step is already a non-trivial task. In
the truncated differential path, we only consider active and non-active S-boxes
(or nibbles) of the state. Hence, we will represent the truncated differential path
using a line of 2x32 nibbles. We construct a path which has only one active S-
boxes at the input and the end of the path. Furthermore, we also try to keep the
number of active S-boxes in the middle rounds low. We use an improved rebound
attack where we first filter for all possible differential paths and then solve for the
values of the state to get corresponding input pairs for all three permutations.
While filtering for differential paths, we also need to ensure that the input and
output differences can be injected and erased by the message difference.

3.2 Matching the Message Injection

In the message injection, a difference in nibble i of M might affect two nibbles
of the input of each permutations Qj. Due to the InputTweak, these two nibbles
are, at the left side the nibble at position i, and on the right side the nibble at
position i + j. To get a sparse truncated differential path we aim for only one
active S-box (one active nibble) in the first and the last round.

In the first message injection, the difference in all chaining values Hj is zero.
Therefore, we get for the intermediate chaining variables Xj :

⎛
⎝ΔX0

ΔX1
ΔX2

⎞
⎠ =

⎛
⎝x + 1 x x 1

x x + 1 x x
x x x + 1 x2

⎞
⎠ ·

⎛
⎜⎜⎝

0
0
0

ΔM

⎞
⎟⎟⎠ =

⎛
⎝ ΔM

x · ΔM
x2 · ΔM

⎞
⎠

In order to have only one active S-box at the input of each permutation, we
require that ΔM, x · ΔM, x2 · ΔM are polynomials either of degree < 4 or
divisible by x4. The most simple conditions which do not spread to the other
nibble are

ΔM = ax + b or ΔM = ax5 + bx4.

The first solution corresponds to a difference in a nibble on the left side and the
second solution to a difference on the right side. The possible differences in these
nibbles are 0001, 0010 or 0011.

In the second message injection, we need to erase all differences of the internal
state. Hence, we get the following system of equations:

⎛
⎝0

0
0

⎞
⎠ =

⎛
⎝x + 1 x x 1

x x + 1 x x
x x x + 1 x2

⎞
⎠ ·

⎛
⎜⎜⎝

ΔH0
ΔH1
ΔH2
ΔM

⎞
⎟⎟⎠

394 D. Khovratovich et al.

Again, we consider only differences with only one active S-box, prior to the
last (linear) MixWord transformation. This condition filters out most possible
differences (we omit long calculations), and the only non-trivial solutions we
have found are⎛

⎜⎜⎝
ΔH0
ΔH1
ΔH2
ΔM

⎞
⎟⎟⎠ =

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝

x3 + x2 + 1
x3

x
x + 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x7 + x6 + x4

x7

x5

x5 + x4

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

The first solution corresponds to a difference in the left side and the second one
to a difference in the right side. Thus, for each permutation we have one specific
output difference for the single active S-box in the last round, for which we are
sure that we can erase it by a difference in the message. Note that the output
difference of the permutation is the same in each active nibble. The specific
differences in the nibbles of H0, H1, H2, and M are 1101, 1000, 0010, and 0011,
respectively.

To summarize, we search for differential paths with only a single active S-box
in the first and the last round. For an active S-box in a right nibble at position i
of Q0, only the two least significant bits of the input difference should be active.
The possible differences are then 0001, 0010 or 0011. For permutation Qj , the
active S-box will be at position i + j modulo 32 on the right side, due to the
InputTweak and should have the same difference as in Q0 but rotated j positions
to the MSB. We get the differences 0010, 0100 or 0110 for Q1, and 0100, 1000
or 1100 for Q2. Note that we fix the output difference of the active S-box to
only one possible difference depending on the permutation. The difference at the
output of the single active S-box in round 7 has to be 1101 for Q0, 1000 for Q1
and 0010 for Q2. Note that for these input and output differences of the three
permutations, the differences of the injected message block have been computed
deterministically.

3.3 Constructing Truncated Differential Paths

For the semi-free-start collision on 7 rounds of Luffa-256, we use many truncated
differential paths for each permutation to get enough solutions for an attack. All
paths have the same numbers of active S-boxes in each round which are given
as follows:

1 − 5 − 27 − 52 − 26 − 5 − 1

We have one active S-box after the SubCrumb of round 7, and we have already
determined which difference we must have in it’s output for each lane. This one
active nibble leads to differences in 8 nibbles after the MixWord. The differences
will be the same in each nibble and can be eliminated by the method described
in Section 3.2. In the following analysis we will omit this last step, since it has
no influence on the differential path.

To get a truncated differential path with only 5 active S-boxes in the second
and second last round, the single active S-box at the input has to be in the right

Cryptanalysis of Luffa v2 Components 395

side and the single active S-box at the output in the left side. Note that the
position of the single active S-box in round 7 is identical in all permutations.
However, the position of the active S-box in round 1 is rotated by j positions
for permutation Qj due to the InputTweak. However, for each permutation, we
are able to find an equivalent truncated differential path with the same number
of active S-boxes (see Appendix A). Therefore, in the following we only consider
the path of the first permutation Q0.

We have constructed the truncated differential path for Q0 by first propa-
gating forward and backward without constraints from a single active S-box in
round 1 and round 7 (see Fig. 4). For each single active S-box, we have tried
all 32 positions to get a good (sparse) truncated differential path for our attack.
We have found a path with the following number of active nibbles after each
SubCrumb and MixWord transformation in forward direction:

1 − SC − 1 − MW − 5 − SC − 5 − MW − 27 − SC − 27 − MW − 58

and in backward direction:

57 − MW − 26 − SC − 26 − MW − 5 − SC − 5 − MW − 1 − SC − 1

Since the 57 and 58 active nibbles have only 52 common active nibbles, we simply
impose some constraints on the connecting MixWord transformation. This results
in a (58−52)×4 = 24 bit condition for the forward part, and a (57−52)×4 = 20
bit condition for the backward part. These conditions are marked by red nibbles
in Fig. 4 and are required to be zero. In this truncated differential path, the active
S-box at the input is located in the right word in bit 0, and at the output in the
left word in bit 14. Furthermore, in the Luffa permutations all XOR differential
paths are rotation symmetric within 32-bit words. Hence, we actually get 32
truncated differential paths with active input the ith nibble of the right part
and active output the nibble i+14 modulo 32 of the left part for Q0. In general,
for Qj we get for an active input at nibble i+ j of the right part, the same active
output at nibble i+14 of the left part (see Appendix A) due to the InputTweak.

3.4 Rebound Attack on Luffa

To find pairs conforming to the given truncated differential paths, we use the
rebound attack [10]. Due to the different structure of Luffa compared to AES
based hash functions, several improvements are needed. Since the truncated
differential path consists of three rather active states in the middle a standard
inbound phase cannot be used. Previous rebound attacks dealt with relatively
short inbound phases to exploit the propagation of differences with probability
one. Since this is not possible for longer inbound phases, a different strategy is
needed to reduce the overall computational complexity of the attack.

The main idea is to first generate all possible differential paths which conform
to the truncated paths. Note that we do not compute values or generate condi-
tions in this step. We use 5 short inbound phases to filter for differential paths

396 D. Khovratovich et al.

Fig. 4. An example for a truncated differential path followed in the first permutation

for building the semi-free-start collisions. The difference in A can be one of 0001, 0010

or 0011, the difference in B has to be 1101 (see Section 3.2).

from both sides with a final filtering step in the middle (see Fig. 5). In each in-
bound phase, we first compute all possible differential paths independently and
merge the results of two adjacent inbound phases. We have carefully estimated
the number of possible differential paths. In each step, this number is signifi-
cantly lower than 2128. Note that we apply the inbound phase at every S-box
layer and also need to merge the resulting solutions through the S-box layer. This
is not trivial for very large lists and explained in detail in Section 3.6. Also note
that in AES-based primitives, differences between input and output of S-boxes
can be filtered gradually due to the column-wise operation of MixColumns. Since
this is not the case for the MixWord transformation of Luffa, more complicated
filtering steps are needed.

After determining all possible differential paths, the next step is to solve
for conforming input pairs to the permutation. We start by computing values
of SubCrumb in the middle rounds 2, 3, and 4 simultaneously using a linear
approach, similar as in the linearized match-in-the-middle step of [9]. Also this
step has to be adapted since some S-boxes are not active and therefore, do not
behave linearly. For each solution of these three rounds, all values of the state
are determined and we probabilistically compute the resulting pairs outwards in
the outbound phase. Finally, those pairs which match the message injection will
give a semi-free-start collision for Luffa-256.

3.5 The Inbound Phases

In this section, we filter the truncated path for all possible differential paths.
In total, about 268.7 differential paths are possible, given the constraints on the
message injection. We determine these paths by applying 5 inbound phases in the
5 middle rounds. In these inbound phases, we only determine which differences
are possible but do not choose actual values for the state. Note that each active
S-box can have one out of 15 ∼ 23.9 differences at the input or at the output.
However, only 96 out of these 15 · 15 differences are possible for the Luffa S-box
(see the differential distribution table of this S-box). Hence, the probability of
a differential match is about 96/225 ∼ 2−1.23. Contrary to the AES S-box, we
need to compute more exact probabilities to get correct results for Luffa.

The first inbound phase is applied to the truncated differential path 1−MW−
5−SC−5−MW−27 in round 0 and 1. We can have 15 ∼ 23.9 non-zero differences

Cryptanalysis of Luffa v2 Components 397

SC MW
round 0

SC MW
round 1

SC MW
round 2

SC MW
round 3

SC MW
round 4

SC MW
round 5

SC MW
round 6

1 5 27 52 26 5 1

5x inbound

linear solvingoutbound outbound

Fig. 5. A schematic view of the advanced rebound attack on Luffa. The attack consists

of 5 small inbound phases to determine possible differential paths, a linear solving step

to find the values and two outbound phases.

at the input of the S-box (one active nibble in the first MixWord) and 155 ∼ 219.5

non-zero differences at the output (5 active nibbles in the second MixWord). Since
only a fraction of 2−1.23·5 = 2−6.15 differentials are possible through the 5 active
S-boxes, we get in total about

23.9 · 219.5 · 2−6.15 = 217.3

possible differential paths for the first inbound phase. To support this estimate,
we have computed the exact number of differential paths conforming to this
truncated path, which is 217.49.

Next, we continue with a second inbound phase between rounds 0-2. In the
forward direction, we take all solutions of the previous inbound phase and in
backward direction, we determine all possible differences in 27−MW− 52. Note
that in general, 27 active nibbles would expand to 58 active nibbles through
MixWord. Therefore, we get a 24-bit condition on these differences and consider
only the valid 23.9·27−24 = 281.5 differences in round 3. These differences match
with the previously computed ones through the 27 active S-boxes with a prob-
ability of 2−1.23·27 = 2−33.2. In total, we get

217.3 · 281.5 · 2−33.2 = 265.6

possible differential paths for the truncated differential path 1−MW− 5− SC−
5 − MW − 27 − SC − 27 − MW − 52.

Now, we repeat the same procedure in backward direction for the second
half of the path. The third inbound phase deals with rounds 4-5 and the path
26 − MW − 5 − SC − 5 − MW − 1. Similarly to the first inbound phase, we
get 219.5 differences for MixWord in round 4 and 23.9 in round 5, which results
in 217.3 differential paths for this inbound phase. We continue with the fourth
inbound phase and combine these paths with all possible differences in round
3 for 52 − MW − 26. To get 52 active nibbles instead of 57, we need a 20-bit
conditions and get 23.9·26−20 = 281.6 differences. We match all differences in
backward and forward direction at the 26 active S-boxes and get

217.3 · 281.6 · 2−31.9 = 267

398 D. Khovratovich et al.

possible differential paths for the truncated differential path 52 − MW − 26 −
SC − 26 − MW − 5 − SC − 5 − MW − 1.

3.6 The Final Inbound Phase: Parallel Matching

Next, we need to match all 265.6 paths of the first three rounds with the 267

paths of the last three rounds at the middle S-box layer. Since we have 52
active S-boxes, only 265.6+67−1.23·52 = 268.8 differential paths will survive. How-
ever, the complexity of a straight forward filtering step is 265.6 · 267 = 2132.6,
which exceeds the birthday bound for collisions in Luffa-256. Therefore, we use
a parallel matching technique to independently match differences in sets of 13
S-boxes. This reduces the complexity of the final inbound phase to about 2102

table lookups.
We first generate two sorted lists A and B from the differential paths found

in the previous two inbound phases: List A contains all 265.6 paths of round 0-2,
sorted by the 52 non-zero input differences {x1, . . . , x52} of the active S-boxes
in round 3. Similarly, list B contains all 267 paths of round 3-5, sorted by the 52
non-zero output differences {y1, . . . , y52} of the same S-boxes. Next, we separate
these 52 S-boxes into sets of 13 S-boxes which we match independently. Note that
for each set of 13 S-boxes only 1513 = 250.8 non-zero input or output differences
exist. It follows that we can associate 265.6−50.8 = 214.8 elements from list A or
267−50.8 = 216.2 elements from list B to each of these 250.8 differences.

Using the two lists A and B, we generate two new and sorted lists C and D
with differential matches for the first 13 and second 13 active S-boxes. List C
contains differential matches between {x1, . . . , x13} and {y0, . . . , y13}, and list
D between {x14, . . . , x26} and {y14, . . . , y26}. The resulting size of each list is
250.8+50.8−13·1.23 = 285.6. The complexity to match two times 250.8 differences at
13 S-boxes is about 2102 table lookups.

Next, we associate the differences {x14, . . . , x52} of A to C, and the differences
{y1, . . . , y13, y27, . . . , y52} of B to D. The resulting list C′ contains the differences
{y1, . . . , y13, x1, . . . , x52} sorted by {y1, . . . , y13}, and list D′ contains the differ-
ences {x14, . . . , x26, y1, . . . , y52} sorted by {x14, . . . , x26, y1, . . . , y13}. The size of
the resulting new list C′ is the size of C multiplied by all elements of A which
can be associated to each of x1, . . . , x13. The same holds for D′ with elements of
B. Hence, we get 285.6+14.8 = 2100.4 entries in C′ and 285.6+16.2 = 2101.8 entries
in D′.

Finally, we merge the two lists C′ and D′ by their overlapping differences
{y1, . . . , y13, x14, . . . , x26}. Since we need to match differences in 26 active nib-
bles, we get a 101.4-bit condition. This results in about 2100.4+101.8−101.4 = 2100.8

solutions with a complexity of about 2102 simple table lookups (we do not need
to consider S-box differentials here anymore) and memory. Of these solutions,
about 2−1.23·26 = 2−32 differential paths give valid differentials also for the re-
maining 26 S-boxes. Hence, we get in total about 2100.8−32 = 268.8 differential
paths for round 0-6.

Cryptanalysis of Luffa v2 Components 399

3.7 Linear Solving for Pairs

In the previous step, we have constructed all 268.8 possible differential paths for
the given truncated differential path of Section 3.3. However, to get conforming
input pairs, we still need to determine the actual values. Note that we can only
find values for a fraction of the differential paths. In the following, we show how
to determine these paths and how to construct all values with a low average
cost, by extending the linear approach published in [9].

We start by constructing solutions which satisfy the differential path in rounds
2-4 first. Since these rounds contain most active S-boxes, they are usually consid-
ered as the most expensive rounds. Note that each active S-box in Luffa restricts
the number of possible values to either 2 or 4 elements, which can be described
by an affine space: If there are two solutions, the input values can be described
as ax + b, and the output values as cx + d. In this case x is a boolean variable
common for input and output, and a, b, c, d are elements from Z4

2 . If there are
four solutions, they are defined by two binary variables and two affine equations,
one for the input and one for the output.

Hence, we can describe the set of all possible values in the active S-boxes of
the three middle rounds using about 1.23 ·(26+52+27) = 129 boolean variables.
Note that this number is slightly different for each particular path, depending on
the actual number of solutions for each S-box. These variables are linked by the
equations of the linear MixWord transformation and the (affine) AddConstant in
round 3 and 4. In total, we get at least (26 + 27) · 4 = 212 equations which link
the active S-boxes of the three middle rounds.

Unfortunately, these equations involve 12 inactive S-boxes in round 3, whose
input and output values can not be described by affine spaces with common
boolean variables. However, the input and output values can be described by
a linear space separately. Note that there is also one inactive S-boxes which
does not influence the active S-boxes of round 4. Thus, only those 4 variables
describing its input are involved in the linear system. For the remaining 11
inactive S-boxes we get 11 · 8 = 88 additional variables. In total, we have to
match the result over 11 S-boxes and get 212 equations in 129 + 4 + 88 = 221
variables.

To summarize, we expect to get 29 solutions for each differential path with
a complexity of 223 simple bit operations. Most of these solutions are actually
filtered out by the 44-bit filter of the 11 inactive S-boxes. In total, we therefore
get 268.8+9−44 = 233.8 solutions for the three middle rounds. The complexity
of this step does not exceed 280 simple bit operations. Next, we compute these
solutions forwards and backwards and check whether they also conform to the
remaining differential path in the outbound phase.

3.8 The Outbound Phase

In the outbound phase, we simply propagate the solutions of the three middle
rounds outwards and check whether the remaining path and the conditions on the
message injection (see Section 3.2) are fulfilled. The probability that a solution

400 D. Khovratovich et al.

of the previous step also fulfills the differential of the 5 active S-boxes in round 1
and 6 is 2−(4−1.23)·10 = 2−27.7. Therefore, we get in total about 233.8 ·2−27.7 ∼ 26

pairs for the whole 7-round truncated differential path:

1 − MW − 5 − SC − 5 − MW − 27 − SC − 27 − MW − 52 − SC−
52 − MW − 26 − SC − 26 − MW − 5 − SC − 5 − MW − 1.

To satisfy the required differences at the input, we need to get one out of three
2-bit difference at the input of the single active S-box in round 0. At the output
of the single active S-box in round 7 we need to match one specific difference.
Hence, the conditions at both input and output are satisfied with a probability
of 3

15 · 1
15 = 2−6.2.

Next, we repeat all previous steps for each of the three permutations and
check whether we can find a message according to the input and output dif-
ferences of the permutations. Note that the input difference of one permutation
can be corrected by choosing an appropriate message differences. Hence, we only
need to ensure that the input differences in two permutations match. The prob-
ability that these three 2-bit differences match is 1

32 = 2−3.2. Hence, the prob-
ability to get the right input and output differences in all three permutations
is 23·(6−6.2)−3.2 = 2−3.8, which is actually not enough to get a semi-free-start
collision for Luffa-256.

However, as already noted in Section 3.3, we can rotate the differential path
32 times. Since the values cannot be rotated due to the addition of the round
constant we need to repeat the search for conforming pairs from Section 3.7, but
not the expensive part of finding the differences that verify the path. To get a
semi-free-start collision for Luffa-256, we have to repeat this about 23.8 = 14
times. To summarize, the most expensive part of the attack is the computation
of all possible differential paths in the final inbound phase for each of the three
permutations. Hence, the complexity to find a semi-free-start collision for Luffa-
256, or equivalently a collision on the internal state of 768 bits, is about 2104 in
time and 2102 memory.

4 Building an 8-Round Distinguisher from the 7-Round
Semi-Free-Start Collision

If we consider the previous explained procedure for building the semi-free-start
collision on 7 rounds, and we look at the differential path, it is easy to see
that one round later, so after the eighth rounds, if the path is followed, only 8
nibbles will be active before the last MixWord and all the other ones inactive. By
considering not the bits but the linear combination of bits, we get the same result
after the last MixWord. We can then build a distinguisher on the compression
function for 8 rounds, with the same complexity as before, where we will find
(64 − 8) × 3 combination of nibbles in the output without any difference, what
means a collision on 672 bits with a complexity of about 2104, which is much lower
than the birthday paradox. If we would try to build such a collision exploiting

Cryptanalysis of Luffa v2 Components 401

a generic attack on the general mode, we could control one permutation with
the message insertion, but this will mean colliding on 512 bits, and if we want
to have some active nibbles in all the permutations, we couldn’t do any better
than the birthday paradox on 672 bits, so our distinguisher has clearly a lower
complexity.

5 Distinguisher for 8 Rounds of the Permutation

We use a differential distinguisher which sends a certain number of queries to
a black-box B and will decide in the end if the black-box is the permutation of
Luffa or a random oracle. The innovative idea is that the distinguishing algo-
rithm works in two parts. In the first part, we apply a first test T1 to N input
quadruples, where one value is chosen randomly and the three others differ from
the first one in some nibbles in a deterministic manner. The test T1 is passed
if the quadruple fulfills a specific property P . As we will see later, to test the
property P of a quadruple we need on average 2(1+ p) queries to the black-box,
where p << 1/2 is a given probability. Thus, T1 involves 2(1+p)N ≈ 2N queries
to the black-box. Only a subset of the original quadruples will pass T1. To this
subset we will apply a second test T2 which uses several calls to the black-box
for each tested quadruple. However, since the number of quadruples we have to
test for T2 is much lower, the overall complexity is determined by the one of T1.
The probability of passing the two tests is much higher for the permutation of
Luffa than for a random oracle.

The distinguisher is based on a differential path represented in Fig. 6. As we
will see later, the path over the eight rounds is divided in four parts: one inverted
first round, three rounds of differential path, three rounds of truncated differen-
tial path, and one last round which maintains a distinguishing linear property.
Let a quadruple be defined by the four 256-bit states z = (z1, z2, z3, z4). Our goal
is to find quadruples such that the pairs (z1, z2) and (z3, z4) follow the path. Be-
cause of the first inverted round, a quadruple is constructed in the following way:
We choose the first message z1 randomly. Let LS(zi

j), RS(zi
j) denote the i’th

nibble on the left and right side of zj, respectively, which will enter the first S-box
layer. Then, for the messages zj , 2 ≤ j ≤ 4, we keep 64−kj out of the 64 nibbles
as in z1, and replace kj nibbles by fL(LS(zi

1), α) = S−1(S(LS(zi
1)) ⊕ α) and

fR(RS(zi
1), α) = S′−1(S′(RS(zi

1)) ⊕ α), respectively. The numbers of changed
nibbles are k2 = 32, k3 = 11 and k4 = 29, where 28 nibbles are the same in
all four states. The construction of a quadruple can be easily done by either
computing fL and fR each time or by a lookup in two tables of 16× 15 entries.
We are able to perform this inversion of the first round (and not more) as it is
going to determine a big structured subset of valid input quadruples with the
previous equations, where there is no difference in 28 nibbles and all the LS(zi

1)
and RS(zi

1) can be randomly chosen. For example, if more rounds were inverted,
the validity of the distinguisher might become controversial as differences will
spread over all the input and, for not having probability involved, some of those
values should be fixed for having the wanted difference at the beginning of the

402 D. Khovratovich et al.

differential path. So if there was no structure on the two pairs of inputs and the
values were determined, this could be compared with just inverting the permu-
tation from four outputs with the wanted property and obtaining four concrete
inputs that have no structure at all, which for obvious reasons can not be consid-
ered a distinguisher. This is not the case when we just invert one round. In the
following, we won’t differentiate each time between the left and the right side if
the general method stays the same, instead we use directly f and zj. Because of
the best probability of the differential transitions of the S-boxes, we choose the
difference α to be either 0x2 or 0x4.

The differential path in Fig. 6 has no difference in 6 nibbles (24 bits) in round
7. The 8th round is formed by a SubCrumb and a MixWord phase. We consider
first the SubCrumb phase, and we can notice that it is not going to modify the
property of having 6 nibbles with no difference. Then the MixWord is applied.
We recall here that this phase is linear. This will mean that, from the output
after the 8th round, there are 24-bit linear relations which values collide when
the differential path is verified. This is equivalent to finding the collision on the
6 nibbles before the MixWord linear phase, so for the sake of simplicity, we will
look for collisions before the last MixWord phase.

A quadruple z fulfills the property P if and only if after apply-
ing the black-box B, we have a collision in the 24 bits of the pair
(MixWord−1(B(z1)), MixWord−1(B(z2))) and in the pair (MixWord−1(B(z3)),
MixWord−1(B(z4))). The probability of P is defined by the differential path
(Section 5.1) and the property described in Section 5.2, which shows that for
each pair following the path we can find another pair following the path with
probability one.

Test T2 will use the non-trivial property that for a quadruple fulfilling P and
thus passing T1, we can change some nibbles in the four states such that with
high probability the new quadruple will again fulfill P . This property is described
in detail in Section 5.3. Thus from the subset of quadruples that pass T1, we will
be able to find new quadruples passing P with a much lower complexity.

The distinguisher works on the permutation. However, it can be easily adapted
to the compression function by choosing the message according to the chaining
value and by considering only the output of one permutation. For a known CV
and a random message, let us consider for example the first permutation. Let mi,
hi be the nibbles of the message and the value determined by the CV , which
are XORed as input of the permutation. Then, for the other three message
of the corresponding to a quadruple we will change some nibbles from mi to
f(mi ⊕ hi, α) ⊕ hi.

Related Work. Our distinguisher is similar to some adaptive attacks on block
ciphers. In these attacks a right pair for a differential provides information on
the internal computations, which may speed up the search for the next pairs if
it is required. In the attack on RC5 [3] the second and next right pairs could be
obtained with significantly lower complexity. In the attack on AES a single right
pair provides information on several key bytes, so the attacker partially controls
the first round and gets right pairs for the next differential much faster [2].

Cryptanalysis of Luffa v2 Components 403

5.1 The Differential Path

We use the differential path in Fig. 6 which consists of four parts. Note that the
last round and thus, part 4 is not represented in this figure:

1. Precomputation (round 0): We can guarantee a given difference in round 1
by choosing the blue nibbles in round 0 accordingly.

2. Differential (round 1-4): We use a difference that has probability 2−2 of
passing from the input of the S-box to the output (for S and S′), e.g. α = 0x2
or α = 0x4. This part is responsible for the final probability.

3. Considering unaffected bits (round 4-7): In the end of round 4 we have a
difference in one nibble. We consider how many nibbles in round 7 are never
“affected” by this difference.

4. Round 8: As mentioned above, the property of unaffected nibbles in round
7 can be checked by linear combination of bits after round 8. For simplicity
reasons we will omit this part for the further discussion.

For the differential path we only consider a pair of states (either (z1, z2) or
(z3, z4)) not a quadruple. We will denote by x the first state to which we will
add some difference.

In round 0, at every place where there is no difference we choose a random
nibble xi. In the other places we use the pairs (xi, f(xi, α)), where xi is chosen
randomly. Now we have guaranteed that we have the differences α after the
S-box and the corresponding differences in the beginning of round 1.

In the next part, we have three S-boxes layers with a total of 23+23+8 active
S-boxes, before we arrive in round 4. This gives us a probability of 2−54×2 of
following this part, as 2−2 is the probability of passing one active S-box for the
chosen α.

At the beginning of round 4 we only have a one bit difference. From rounds
4-7, we are only interested in which bits are unaffected by the difference in round
4. Thus, from the one bit difference in round 4, with probability one we have no
differences in 24 bits (6 nibbles) at the end of round 7.

5.2 Changing the Parity of Differences

We can change the parity of some differences in round 1 such that in the case of
a pair following the differential path, the new pair will also follow the differential
path with probability one. This property will be used in T1. The general concept
of changing the parity of differences is mainly the following: we consider one
nibble with a difference γ, that is a nibble taking the value y for message M1
and the value y⊕γ for message M2. If we change it’s parity, it will take the value
y ⊕ γ for message M1 and the value y for message M2. It is obvious to see that
if this nibble is the only difference between M1 and M2, this parity change will
have the effect of interchanging M1 and M2 and we will have gained nothing.
However, if there is more than one difference, changing the parity of some of
them will define two new input messages M ′

1 and M ′
2 with the same difference

as the original ones and the same values in the nibbles without difference.

404 D. Khovratovich et al.

Fig. 6. Differential path used for the distinguisher over 8 rounds

Let us consider an example. Let xi1 , xi2 , xi3 be some nibbles in round 1. Let the
pair with the corresponding difference be xi1 ⊕α, xi2 , xi3 ⊕α. Then, changing the
parity of the difference in xi1 leads to the pair xi1⊕α, xi2 , xi3 and xi1 , xi2 , xi3⊕α.
This change is equivalent to adding α at the position of xi1 in the two states.

We are going to see how changing the parity of some well chosen differences in
a pair of states that satisfies the differential path will immediately give us another
pair of states that also verifies the path with probability one. For this, we have
to take into account the effect that changing the parity of some differences at
round r might have some rounds later:

– SubCrumb Each active S-box that follows the path verifies S(x⊕α)⊕S(x) =
α. This property still holds when we change the parity of the difference of
the nibble. This means that through any SubCrumb phase where the only
change is the parity of some differences, the path will still be verified.

– MixWord Every difference after the linear transformation that is affected by
a parity change in the previous step will also have its parity changed. Thus,
it does not introduce any problem for verifying the path in next round (we
would be in the starting case). However, when two differences cancel out and
one had it’s parity changed but not the other, the value of the corresponding
nibble (in both states) will change from x to x ⊕ α. This won’t affect the
verification of the differential path for this round, but might affect the round
(r+2): the values for the nibbles (that have no difference) obtained after the
SubCrumb of round (r + 1) will change at these positions. This might affect
the values associated to nibbles with differences after the MixWord phase of
round (r + 1). Next, after the SubCrumb phase of round (r + 2) the active
S-boxes might not output the same difference as for the original pair (as
their values are changed).

We are going to use this, once we have obtained a pair of states that verify the
differential path, to obtain another pair verifying the path with probability one.
In the differential path we want to have the parity of some differences changed
at the beginning of the first round. To achieve this, we have to add α after
the first S-box to the corresponding positions, like in Fig. 7. We have chosen
these three positions as they verify that they generate no changes of values one
round later (no differences cancel out where an odd number of parity changes
at the beginning of round 2), and this way they will only affect the S-box two

Cryptanalysis of Luffa v2 Components 405

Fig. 7. Changing the parity of differences

rounds later (round 4), as we explained before. As the difference that the S-box
of round 4 outputs is not important for the verification of the differential path.
When changing the parities of the three difference, the remaining differential
path from 1 to 8 will also be verified.

In Fig. 7, the red bordered rectangle means that we added α to the corre-
sponding nibble. To see the effect that this has in the input pair, a thick black
bordered rectangle in round 0 means that we have to change the value xi to
f(xi, α). This can happen to positions with or without a difference in the orig-
inal pair. With this, once we have found a pair of messages that verifies the
path, if we generate a new pair from it by changing the nibbles associated to
the positions of the black bordered rectangle in round 0 from the value xi to
the values f(xi, α), we will have automatically generated a new pair that also
verifies the path.

5.3 Changing Values without a Difference

If we change in round 1 the value of the nibble at the 14th position on the right
side, this will have an effect on 4 S-boxes in round 3. The same happens when
we change the nibble at position 17 on the right side. If we change the two at
the same time, this has an effect on 7 S-boxes. This property will be used in T2.
The influenced bits are shown in Fig. 8. A red, blue and violet squares mean
that a nibble was influenced, respectively by the nibble 14, by the nibble 17 or
by the two nibbles.

We have 15 possibilities to change only position 14, 15 possibilities to change
only position 17 and 15× 15 = 225 to change the two.

Getting all possible values of the nibble in position 14 is equivalent to adding
the difference β to the nibble in round 1, for all β ∈ {0x1, . . . , 0xF}. This can
be done by changing 8 nibbles in round 0 from xi to f(xi, β), which will add β
to 8 nibbles after the first S-box layer. The position of the 8 nibbles are marked
in Fig. 8. The same can be done for position 17. If we change the two nibbles
at the same time we will have to change 8 nibbles to f(xi, β14) and 8 nibbles to
f(xi, β17).

Fig. 8. Influence of the nibbles 14 and 17

406 D. Khovratovich et al.

Now for the original pair of messages we change the values of the nibbles at
position 14 and 17 (on both messages) at round 1, send the corresponding values
at round 0 to the black box and look if the result has again a collision in the
24 bits. For i = 0, 1, let pi be the probability that when starting from a pair
following the differential path and trying out all the 15 other values at round
0 that produce all the nibble values at position 14 (or 17), we obtain exactly
i pairs with no differences in the 24 bits. Let qi be the same probability when
trying the 225 possibilities where the nibbles at position 14 and 17 are changed.
Then we have

p0 = (1 − 2−8)15

p1 = 15 × 2−8(1 − 2−8)14

q0 = (1 − 2−14)225

q1 = 225 × 2−14(1 − 2−14)224.

The total probability of having at least 2 new pairs out of 255 tried is

1 −
(
p2
0q0 + 2p0p1q0 + p2

0q1

)
= 2−8.3.

For a pair not following the differential path, this happens with a probability of

1 − (1 − 2−24)255 − 255 × 2−24(1 − 2−24)254 = 2−33.

5.4 Complete Distinguisher

For a random state z1 we define the quadruple z as following: The state z2 is set
such that together with z1 it forms an input pair of the differential path. The
states z3, z4 is obtained by changing the parity of difference of the pair (z1, z2).

Test T1. We try N different quadruples. For each quadruple z we first test if the
pair (z1, z2) has a collision in the 24 bits. The probability of this property is 2−24

in the general case. The probability of following the differential path is 2−108.
Only if we find a collision, we will test the pair (z3, z4). For a pair following the
path, this leads to a collision in the 24 bits with probability one, otherwise this
will happen with probability 2−24.

Thus in the case of the black-box being the permutation of Luffa we need
2N + 2−23N + 2−107N ≈ 2N queries and find N2−48 + N2−108 quadruples
having the property P and, thus, passing T2.

In the case of a random function we will have 2N + 2−23N ≈ 2N queries and
will find N2−48 quadruples with property P .

As this test is not enough for distinguishing Luffa’s permutation from a ran-
dom one, we need to define test T2.

Cryptanalysis of Luffa v2 Components 407

Test T2. This test is applied only on those pairs that passed T1. It exploits the
property of Section 5.3. The test T2 on a quadruple z works as follows. For each
of the 255 pair of differences (β14, β17) ∈ {0x0, 0x1, . . . , 0xF}2\(0, 0), we create
a corresponding quadruple z′ by an addition of this differences to the positions
14 and 17 in round 1 of z1, z2, z3, z4. The test T2 is passed if and only if, out of
the 255 new quadruples, at least 2 have the property P . For the test of P we
check again first if (z′1, z

′
2) have a collision and only in this case we check (z′3, z

′
4).

For each quadruple z′ it is still valid that the pair (z′3, z′4) is obtained from
(z′1, z

′
2) by changing the parity of differences. Thus (z′1, z

′
2) follows the differential

path if and only if (z′3, z
′
4) follows the differential path. In the case of a quadruple

z following the differential path, we find at least 2 new quadruples z′ following
the differential path and thus having property P with probability 2−8.3.

In the random case, we find at least two z′ such that (z′1, z
′
2) has a collision in

the 24 bits with probability 2−33.1. The probability of each of these quadruples
also having a collision for (z′3, z

′
4) is 2−24. So the probability of passing T2 is

2−33.1−2×24 = 2−81.1. We get the same result by considering the probability

1 − (1 − 2−48)255 − 255 × 2−48(1 − 2−48)254 = 2−81.

In the worst case we find a collision for all the 255 differences (β14, β17), which
would mean that we have to send about 210 queries to the black-box. However,
the percentage of initial quadruples passing T1 is much less than 2−10. This
means that the dominant costs come from T1.

Combining the Two Tests. In the case of the permutation of Luffa the
probability of finding a quadruple following the differential path and passing T2
is 2−108−8.3 = 2−116.3. For a random oracle, or in the general case, a quadruple
build from a random value z1 passes T1 and T2 with probability 2−48−81.1 =
2−129.1. Thus, for N = 2116.3 we will be able to distinguish with high probability
the permutation of Luffa from a random oracle. The time complexity of this
distinguisher is 2N queries. The memory complexity is negligible, since we apply
the two tests on the fly.

6 Conclusion

We developed a number of new differential techniques for the analysis of Luffa.
Our results do not threaten the security of Luffa as they are on building blocks
and not on the full hash function. Even though they do not contradict the
designers’ claims, our results improve upon previous work in several ways. When
considering collision attacks on the hash function with limited access to internal
variables, also less degrees of freedom are available for an attacker. Still, we
argue that the new techniques in this paper will be very useful to analyze Luffa
further in this setting. Also, the improvements to the rebound attack are likely
to be useful in the attacks on non-AES-based designs.

408 D. Khovratovich et al.

Acknowledgements

We would like to thank Christian Rechberger for his many helpful comments
and his contribution to this work.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for

the core functions of Luffa and Hamsi. NIST mailing list,

http://www.131002.net/data/papers/AM09.pdf (2009)

2. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack

on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.

231–249. Springer, Heidelberg (2009)

3. Biryukov, A., Kushilevitz, E.: Improved cryptanalysis of RC5. In: Nyberg, K. (ed.)

EUROCRYPT 1998. LNCS, vol. 1403, pp. 85–99. Springer, Heidelberg (1998)

4. Watanabe, D., Hatano, Y., Yamada, T., Kaneko, T.: Higher Order Differential

Attack on Step-Reduced Variants of Luffa v1. In: Hong, S., Iwata, T. (eds.)

FSE 2010. LNCS, vol. 6147, pp. 270–285. Springer, Heidelberg (2010)

5. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Specification. Sub-

mission to NIST (Round 1) (2008),

http://ehash.iaik.tugraz.at/uploads/e/ea/Luffa_Specification.pdf

6. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Specification.

Submission to NIST (Round 2) (2009),

http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa v2 Specification

20091002.pdf

7. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Supporting

Document. Submission to NIST (Round 2) (2009),

http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa v2 SupportingDocument

20090915.pdf

8. Indesteege, S.: The LANE hash function. Submission to NIST (2008),

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

9. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the

reduced grøstl compression function, ECHO permutation and AES block cipher. In:

Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,

pp. 16–35. Springer, Heidelberg (2009)

10. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound At-

tack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.)

FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

11. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.

LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

http://www.131002.net/data/papers/AM09.pdf
http://ehash.iaik.tugraz.at/uploads/e/ea/Luffa_Specification.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

Cryptanalysis of Luffa v2 Components 409

A The Truncated Differential Path for Each Permutation

In the main article we showed only a differential path for the permutation Q0.
Here, we show also the remaining two paths for permutations Q1 and Q2 for
the same position of the output difference as in Q0. In all three examples, the
output difference is in the 14th nibble of the left side.

Fig. 9. Truncated differential path for Q0. The value A corresponds to a difference of

0001, 0010 or 0011, the value B to 1101.

Fig. 10. Truncated differential path for Q1. The value A corresponds to a difference

of 0010, 0100 or 0110, the value B to 1000.

Fig. 11. Truncated differential path for Q2. The value A corresponds to a difference

of 0100, 1000 or 1100, the value B to 0010.

Author Index

Alaoui, Sidi Mohamed El Yousfi 171

Armknecht, Frederik 320

Bernstein, Daniel J. 143

Bogdanov, Andrey 229

Boldyreva, Alexandra 281

Borghoff, Julia 57

Bouillaguet, Charles 18, 351

Boura, Christina 1

Canteaut, Anne 1

Cayrel, Pierre-Louis 171

De Cannière, Christophe 36

den Hartog, Jerry I. 241

Detrey, Jérémie 99

Dunkelman, Orr 18

Feldhofer, Martin 114

Finiasz, Matthieu 159

Fouque, Pierre-Alain 18, 351

Fumaroli, Guillaume 262

Furukawa, Jun 320

Gaudry, Pierrick 99

Groß, Hannes 114

Guo, Jian 338

Khalfallah, Karim 99

Khovratovich, Dmitry 388

Knudsen, Lars R. 57

Lamberger, Mario 187

Lange, Tanja 143

Leurent, Gaëtan 18, 351

Martin, Keith M. 92

Martinelli, Ange 262

Matusiewicz, Krystian 57

Mohassel, Payman 302

Mouha, Nicky 36

Naya-Plasencia, Maŕıa 388

Nikolić, Ivica 198

Pan, Jing 241

Peters, Christiane 143

Petit, Christophe 282

Plos, Thomas 114

Preneel, Bart 36

Prouff, Emmanuel 262

Quisquater, Jean-Jacques 282

Rechberger, Christian 229

Rijmen, Vincent 187

Rivain, Matthieu 262

Röck, Andrea 388

Schläffer, Martin 369, 388

Sepehrdad, Pouyan 74

Shibutani, Kyoji 211

Struik, René 130

Thomsen, Søren S. 338

van Woudenberg, Jasper G.J. 241

Vaudenay, Serge 74

Velichkov, Vesselin 36

Véron, Pascal 171

Vuagnoux, Martin 74

Witteman, Marc F. 241

	Title Page
	Preface
	Organization
	Table of Contents
	Hash Functions I
	Zero-Sum Distinguishers for Iterated Permutations and Application to Keccak-f and Hamsi-256
	Introduction
	Zero-Sum Structures and Distinguishing Properties
	Zero-Sums and Codewords in a Linear Code
	Zero-Sum Partitions

	Exploiting the Degree of the Nonlinear Part
	Zero-Sum Partitions from Higher-Order Derivatives
	An Improved Bound on the Degree Based on the Walsh Spectrum

	Exploiting the Structure of the Diffusion Part
	One-Round Multiset Property
	Multiset Property on Several Rounds

	Application to the Keccak-f Permutation
	The Keccak-f Permutation
	Zero-Sum Partitions for 18 Rounds of Keccak-f
	Zero-Sum Partitions for 19 Rounds of Keccak-f
	Zero-Sum Partitions for 20 Rounds of Keccak-f

	Application to the Hamsi-256 Finalization Permutation
	Conclusions
	References

	Attacks on Hash Functions Based on Generalized Feistel: Application to Reduced-Round $Lesamnta$ and $SHAvite-3_ 512$
	Introduction
	Overview of the Attacks
	Our Results

	The Cancellation Property
	Generic Properties of Fi(Xi) = F(Ki ⊕ Xi)
	Using the Cancellation Property

	Application to $Lesamnta$
	Previous Results on $Lesamnta$
	Generic Attacks
	Dedicated 24-Round Attacks on $Lesamnta$

	Application to $SHAvite-3_512$
	A Short Description of $SHAvite-3_512$
	Cancellation Attacks on $SHAvite-3_512$
	Dealing with the Key Expansion
	9-Round Attacks

	References

	The Differential Analysis of S-Functions
	Introduction
	S-Functions
	Computation of xdp+
	Introduction
	Defining the Probability xdp+
	Constructing the S-Function for xdp+
	Computing the Probability xdp+
	Minimizing the Size of the Matrices for xdp+
	Extensions of xdp+

	Computation of adp ⊕
	Introduction
	Defining the Probability adp ⊕
	Constructing the S-Function for adp ⊕
	Computing the Probability adp ⊕

	Counting Possible Output Differences
	Introduction
	Algorithm with a Exponential Time in n
	Algorithm with a Linear Time in n
	Computing the Number of Output Differences xdc+
	Calculation of adc ⊕

	Conclusion
	References

	Stream Ciphers
	Hill Climbing Algorithms and Trivium
	Introduction
	Hill Climbing Algorithms
	Trivium System as an Optimization Problem
	Properties of Trivium Landscapes
	Trivium Systems and NK-Landscapes
	Landscape Auto-correlation

	Solving Trivium Systems with Modified Simulated Annealing
	Experimental Results
	Some Variations
	Conclusions and Future Directions
	References

	Discovery and Exploitation of New Biases in RC4
	Introduction
	Description of RC4

	Known Correlations in the PRGA of RC4
	Visual Representation of Correlations in the PRGA
	Spectral Approach to Derive New Biases

	Binding PRGA and KSA Weaknesses
	Known Binding between KSA and PRGA Weaknesses
	Binding New PRGA Bias Where S'i[j'i] Is Involved
	Exploiting Additional Biased Linear Correlations in the PRGA

	RC4 as a Black Box
	Maitra and Paul Correlation
	Discovering New Linear Correlations in RC4

	Key Recovery Attacks
	Theoretical Key Recovery Attack on Plain RC4
	Practical Key Recovery Attack on WEP
	Theoretical Key Recovery Attacks on WPA

	Conclusion
	References

	The Stafford Tavares Lecture
	The Rise and Fall and Rise of Combinatorial Key Predistribution
	Introduction
	The Rise and Fall of Combinatorial Key Predistribution
	Evolving Network Security
	A Key Establishment Framework
	The Second Rise of Combinatorial Key Predistribution
	Research Directions
	References

	Efficient Implementations
	A Low-Area Yet Performant FPGA Implementation of Shabal
	Introduction
	Shabal and Shift Registers
	The Shabal Hash Algorithm
	The Xilinx SRL16 Shift Register Primitive
	Adapting Shabal to Use Shift Registers
	Scheduling of a Shabal Message Round

	FPGA Implementation
	Overall Architecture
	Control Logic
	Technology Mapping

	Benchmarks and Comparisons
	Place-and-Route Results
	Against Other Shabal Implementations
	Against Implementations of the Other SHA-3 Candidates

	Conclusion
	References

	Implementation of Symmetric Algorithms on a Synthesizable 8-Bit Microcontroller Targeting Passive RFID Tags
	Introduction
	Description of the Synthesizable 8-Bit Microcontroller
	Overview of the Selected Cryptographic Algorithms
	Implementation Results
	AES-128
	SEA
	Present-80
	XTEA
	Trivium
	Summary of Implementation Results

	Discussing the Costs of Integrating the Implemented Algorithms on Passive RFID Tags
	Conclusion
	References

	Batch Computations Revisited: Combining Key Computations and Batch Verifications
	Introduction
	Preliminaries
	Probabilities
	Key Establishment Schemes
	ECDSA and the Modified Signature Scheme ECDSA*

	Accelerated Authenticated Key Agreement
	Static-ECDH with ECDSA*Signatures
	Extension of Results to ECDSA

	Conclusions
	References

	Coding and Combinatorics
	Wild McEliece
	Introduction
	The McEliece Cryptosystem
	Goppa Codes
	Wild McEliece
	Decrypting Wild-McEliece Ciphertexts
	Attacks
	Parameters
	References

	Parallel-CFS Strengthening the CFS McEliece-Based Signature Scheme
	The Original CFS Signature Scheme
	The Niederreiter Encryption Scheme
	The CFS Signature Scheme
	Existing Attacks - One Out of Many Syndrome Decoding

	Parallel-CFS: Cost and Gain
	Description of Parallel-CFS
	Cost of Parallel-CFS
	Gain of Parallel-CFS

	Parameter Selection
	Signature Size
	Parameter Examples
	Hiding the Structure in Parallel-CFS?

	Conclusion
	References

	A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome Decoding Problem
	Introduction
	Code-Based Cryptography
	Definitions
	SD and G-SD Identification Schemes
	Attacks

	An Identification Scheme Based on qSD
	Key Generation
	Identification Protocol

	Properties and Security of the Scheme
	Zero-Knowledge-Proof
	Security and Parameters
	Comparison with Other Schemes
	Reducing Public Key Size

	Conclusion
	References

	Optimal Covering Codes for Finding Near-Collisions
	Introduction
	Collisions and Near-Collisions of Hash Functions
	Memoryless Near-Collisions Based on Coding Theory
	Direct Sum Constructions of Covering Codes
	The Optimal Solution for Problem 1
	Conclusion
	References

	Block Ciphers
	Tweaking AES
	Introduction
	Efficiency and Security of AES
	xAES – A New and Improved AES
	Methods to Improve the Key Schedule of AES
	Specification of xAES
	Security Analysis of xAES
	Efficiency of xAES

	Conclusion
	References

	On the Diffusion of Generalized Feistel Structures Regarding Differential and Linear Cryptanalysis
	Introduction
	Preliminaries
	Target Structures
	Definitions
	Properties of Generalized Feistel Structures

	Related Work
	Differential Active S-Boxes in GFS
	The Lower Bounds for Four and Six Rounds of GFSstd_d
	The Search for the Minimum Number of Differential Active S-Boxes
	Detailed Explanation of the Algorithm
	Comparison of Results

	Linear Active S-Boxes in GFS
	Discussion
	Conclusion
	References

	A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN
	Introduction
	Framework for MITM Attacks
	Basic MITM Attack
	The 3-Subset MITM Approach

	A Short Description of KTANTAN
	Round Transform
	Key Schedule

	Low Data-Complexity Attacks on KTANTAN
	Related-Key Differentials of Probability 1
	Application of the MITM Framework to KTANTAN
	Partial-Matching Phase

	Discussion and Future Work
	References

	Side Channel Attacks
	Improving DPA by Peak Distribution Analysis
	Introduction
	SCA Security Metrics
	Success Rate and Guessing Entropy
	Sorting Key Candidates
	The oth-Order Guessing Entropy Security Metric

	The EDPA Attack
	Description of the Attack

	Evaluating ECPA Using Simulation
	Simulation Setup
	Comparing ECPA and CPA on DES
	Comparing ECPA and CPA on AES

	Evaluating ECPA Using Physical Experiments
	Attacking a Hardware DES Implementation
	Attacking a Software AES Implementation

	Conclusion
	References

	Affine Masking against Higher-Order Side Channel Analysis
	Introduction
	Securing AES with Affine Masking
	Affine Masking Applied to AES
	Time-Memory Trade-Offs
	Implementation Results

	Resistance to Higher-Order SCA
	Leakage of Affine Masking
	Information Theoretic Evaluation
	Higher-Order DPA Evaluation
	Attack Experiments

	Conclusion
	References

	Invited Talk
	Search on Encrypted Data in the Symmetric-Key Setting

	Mathematical Aspects
	Preimages for the Tillich-Z´emor Hash Function
	Introduction
	Preliminaries
	The Tillich-Zémor Hash Function
	Notations
	Grassl et al.'s Collision Algorithm
	Maximal Length Sequences in the Euclidean Algorithm in F2[X]
	Ideas behind Our Algorithms

	Second Preimages for Tillich-Zémor Hash Function
	Preimage Algorithm from a Few Precomputed Preimages
	First Precomputing Algorithm
	Mesirov and Sweet's Algorithm for $a=pp'$
	Correctness of the Algorithm

	Second Precomputing Algorithm
	Discussion
	References

	One-Time Signatures and Chameleon Hash Functions
	Introduction
	Our Contribution

	Preliminaries
	Collision and Target Collision Resistance
	Chameleon Hash Functions
	Security Definitions for Signature Schemes

	One-Time Signatures from Chameleon Hash Functions
	A suf-ama Signature Scheme
	A Strongly Unforgeable uf-cma Scheme

	Instantiations Based on Standard Assumptions
	A Construction Based on the Factoring Assumption
	A Construction from Lattice-Based Assumptions

	References

	On the Minimum Communication Effort for Secure Group Key Exchange
	Introduction
	Preliminaries
	Lower Bounds on the Communication Effort
	The Proposed Protocol
	Proof of Security
	Conclusion
	References

	Hash Functions II
	Deterministic Differential Properties of the Compression Function of BMW
	Introduction
	Description of BMW
	Observations
	The Security Parameter 0/16
	The Security Parameter 1/15
	Searching for Good Differences

	The Security Parameter 2/14
	Potential Applications
	Conclusion
	References

	Security Analysis of SIMD
	Introduction
	Brief Description of SIMD

	A Distinguisher for the Compression Function of SIMD
	Building the Symmetric Messages
	Symmetry Property on the Compression Function
	Non-ideality of the Compression Function
	Impact of the Symmetry-Based Distinguisher

	Free-Start Distinguishers, Non-ideal Compression Functions and Wide-Pipe Designs
	Deterministic Distinguishers for the Compression Function
	Adapting the Indifferentiability Proof to Non-ideal Compression Functions

	On Differential Attacks against SIMD
	Modeling Differential Paths
	The Message Expansion
	Structure of a Differential Path
	Heuristics
	Upper Bounding the Probability of a Differential Path

	References

	Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function
	Introduction
	Description of ECHO
	The AES Block Cipher
	The ECHO Hash Function

	Improved Truncated Differential Analysis of ECHO
	Sparse Truncated Differential Paths for ECHO
	An Equivalent ECHO Round Description
	SuperMixColumns
	SuperBox
	Expected Number of Pairs

	Attacks on the ECHO-256 Hash Function
	Subspace Distinguisher for 5 Rounds
	Collisions for 4 Rounds

	Conclusion
	References

	Cryptanalysis of $Luffa$ v2 Components
	Introduction
	Description of $Luffa$
	The Iteration
	The Permutations
	The Message Injection

	Semi-Free-Start Collision on $Luffa$-256 for 7 Rounds
	Outline of the Attack
	Matching the Message Injection
	Constructing Truncated Differential Paths
	Rebound Attack on $Luffa$
	The Inbound Phases
	The Final Inbound Phase: Parallel Matching
	Linear Solving for Pairs
	The Outbound Phase

	Building an 8-Round Distinguisher from the 7-Round Semi-Free-Start Collision
	Distinguisher for 8 Rounds of the Permutation
	The Differential Path
	Changing the Parity of Differences
	Changing Values without a Difference
	Complete Distinguisher

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

