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Preface

These are the proceedings of TCC 2011, the 8th Theory of Cryptography Confer-
ence, which was held in Brown University, Providence, RI, during March 28–30,
2011. The conference was sponsored by the International Association for Cryp-
tologic Research (IACR). The General Chair was Anna Lysyanskaya.

The Program Committee, consisting of 18 members, selected 35 of 108 sub-
missions for presentation at the conference. Two closely related submissions were
presented by a single joint talk, resulting in a technical program with 34 talks.
The program also included two invited lectures: by Luca Trevisan, titled “Dense
Model Theorems and Their Applications,” and by Rafael Pass, titled “Concur-
rent Security and Non-Malleability.” The conference featured a rump session for
informal short presentations of new results, chaired by Tal Malkin.

The Best Student Paper Award was given to Stefano Tessaro for his pa-
per “Security Amplification for the Cascade of Arbitrarily Weak PRPs: Tight
Bounds via the Interactive Hardcore Lemma.” Three additional papers were se-
lected for invitation to the Journal of Cryptology: “Input Locality and Hardness
Amplification,” by Andrej Bogdanov and Alon Rosen, “PCPs and the Hardness
of Generating Private Synthetic Data,” by Jonathan Ullman and Salil Vad-
han, and “Round-Optimal Password-Based Authenticated Key Exchange,” by
Jonathan Katz and Vinod Vaikuntanathan.

I am grateful to all those who helped make this conference possible. First
and foremost I wish to thank all authors who contributed to the excellent pool
of submissions. There were more high-quality submissions than we could fit into
the program, a clear indication that the TCC conference is going strong. I deeply
thank the Program Committee members for their dedication and hard work. The
initial review stage was followed by intensive discussions which helped shape the
program and resulted in additional feedback to the authors. Many of the reviews
were provided by external reviewers whose names are listed in the following page.
I thank them all for their time and effort.

Special thanks go to Anna Lysyanskaya, who as a General Chair was in
charge of the local arrangements and also doubled as a Program Committee
member, to Geetha Jagannathan for administering the conference website, and
to Tal Malkin for chairing the rump session. I thank Vipul Goyal, Krzysztof
Pietrzak, Mike Rosulek, and Dominique Unruh for their help with shepherding
and verifying accepted papers. We had the pleasure of using the submissions
and review software developed by Shai Halevi. I thank Shai for providing quick
technical assistance whenever it was needed. Finally, I am indebted to Oded
Goldreich, the Chair of the TCC Steering Committee, as well as the recent TCC
Chairs Tal Rabin, Shai Halevi, Salil Vadhan, Ran Canetti, Omer Reingold, and
Daniele Micciancio for their help and advice.

January 2011 Yuval Ishai
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Input Locality and Hardness Amplification

Andrej Bogdanov1,� and Alon Rosen2,��

1 Dept. of CSE and ITCSC, Chinese Univ. of Hong Kong
andrejb@cse.cuhk.edu.hk

2 Efi Arazi School of Computer Science, IDC Herzliya
alon.rosen@idc.ac.il

Abstract. We establish new hardness amplification results for one-way
functions in which each input bit influences only a small number of out-
put bits (a.k.a. input-local functions). Our transformations differ from
previous ones in that they approximately preserve input locality and at
the same time retain the input size of the original function.

Let f : {0, 1}n → {0, 1}m be a one-way function with input locality
d, and suppose that f cannot be inverted in time exp(Õ(

√
n · d)) on an

ε-fraction of inputs. Our main results can be summarized as follows:

– If f is injective then it is equally hard to invert f on a (1−ε)-fraction
of inputs.

– If f is regular then there is a function g : {0, 1}n → {0, 1}m+O(n)

that is d + O(log3 n) input local and is equally hard to invert on a
(1 − ε)-fraction of inputs.

A natural candidate for a function with small input locality and for
which no sub-exponential time attacks are known is Goldreich’s one-way
function. To make our results applicable to this function, we prove that
when its input locality is set to be d = O(log n) certain variants of the
function are (almost) regular with high probability.

In some cases, our techniques are applicable even when the input
locality is not small. We demonstrate this by extending our first main
result to one-way functions of the “parity with noise” type.

Keywords: one-way function, input locality, hardness amplification,
parity with noise.

1 Introduction

In this paper we are interested in amplifying the hardness of inverting a
one-way function. Our goal is to do so without significantly deteriorating the
function’s parallel complexity and/or efficiency. To the best of our knowledge,
these objectives are not simultaneously achieved by any of the previous methods
for amplifying hardness.
� Research supported by RGC GRF grant 2150617.

�� Research supported by BSF grant 2006317 and ISF grant 334/08.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 1–18, 2011.
c© International Association for Cryptologic Research 2011



2 A. Bogdanov and A. Rosen

Our results assume the function is regular, and sub-exponentially hard to
invert. They crucially rely on it being input-local, meaning that each input bit
affects only a small number of output bits. Under these assumptions we show
how to amplify hardness while preserving the function’s input length and input
locality. In some cases we achieve this without modifying the function altogether.

1.1 Hardness Amplification

The problem of hardness amplification can be described as follows: given a one-
way function f(x), construct a function, g(y), so that if f(x) is hard to invert on
an ε fraction of inputs, then g(y) is hard to invert on some 1− δ > ε fraction of
inputs. Amplification of hardness is established by exhibiting a reduction from
the task of inverting f to the task of inverting g. The overall quality of the ampli-
fication is determined by: (1) the complexity of the construction (in particular,
the relationship between |x| and |y|), (2) the complexity of the reduction, and
(3) the exact asymptotic relationship between ε and 1− δ.

The most basic method for amplifying hardness is due to Yao [16]. It consists
of independently evaluating the function f(x) many times in parallel. Using this
transformation, it is essentially possible to obtain an arbitrary level of ampli-
fication. However, this comes at the cost of significantly blowing up the input
size. For instance, if we wish to amplify from error ε > 0 to error 1 − δ > ε,
evaluating g(y) will involve applying f(x) to O((1/ε) log(1/δ)) small pieces of y,
each of size |x| (resulting in |y| = O(|x| · (1/ε) log(1/δ))).

A better tradeoff between security and efficiency is achieved by Goldreich
et al (GILVZ), for the special case of regular one-way functions [9]. In their
construction, the evaluation of g(y) consists of repeatedly applying f in sequence,
where every two successive applications are interleaved with a randomly chosen
step on an expander graph. The starting point of g’s evaluation is an input
x to f , and intermediate steps on the graph are determined by an auxiliary
random string whose total length is O((1/ε) log(1/δ)). This results in |y| =
|x|+O((1/ε) log(1/δ)), but renders the evaluation of g(y) inherently sequential.

A related transformation was analyzed by Haitner et al (HHR), also for the
case of regular functions [11,10]. Their transformation sequentially iterates the
function with intermediate applications of a hash function, and has the advan-
tage of not requiring knowledge of the regularity of f . Similarly to the GILVZ
transformation, it is sequential in nature.

One last category of amplification results relies on random self-reducibility. It
applies to functions that allow an efficient randomized mapping from f(x) to
f(y), where y is a random value from which one can efficiently retrieve x. When
satisfied, random self-reducibility enables very simple worst-case to average-case
hardness amplification, without having to modify the original function. However,
it is not known to be satisfied by one-way functions in general.

1.2 Highly Parallelizable One-Way Functions

Applebaum, Ishai and Kushilevitz (AIK) give strong evidence for the existence
of one-way functions that can be evaluated in as little as constant parallel time.
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They first present one-way functions with constant output locality, meaning that
each output bit depends on a most a constant number of input bits [3]. These
functions are constructed using randomized encodings, a tool that allows them
to transform well known candidate one-way functions that have low (but not
necessarily constant) parallel complexity into ones with constant output locality.
They then go on and show that, in some specific cases, the functions resulting
from their randomized encodings also satisfy constant input locality [4].

An alternative source for candidate one-way functions with small input and
output locality is given by Goldreich [8]. These candidates are arguably more
natural than the ones resulting from the AIK transformations. They also seem
to offer a more attractive tradeoff between input length and security (as in many
cases randomized encodings necessitate a significant blow up in the input size
of the original function). Goldreich’s constructions are quite general, and allow
flexibility in the choice of the function, both in terms of the way in which inputs
are connected to outputs, as well as in the choice of the predicates used to
compute the function’s output bits. To date, no sub-exponential time inversion
algorithm is known for any variant of his functions.

Known hardness amplification methods are not well suited for functions of
the above sort. Being inherently sequential, the GILVZ and HHR transforma-
tions do not preserve parallelism. Yao’s transformation, on the other hand, does
not increase parallel time, but it does incur a significant loss in efficiency (cf.
Lin et al. [15]). This presents us with the challenge of coming up with efficient
hardness amplification methods that are well suited for parallelizable functions.
Our approach to the problem will be to utilize properties implied by the highly
parallel structure of the function, and specifically small input-locality.

1.3 Main Results

Let f : {0, 1}n → {0, 1}m be a one-way function with input locality d, and sup-
pose that f cannot be inverted in time exp(Õ(

√
n ·d)) on an ε-fraction of inputs.

Our first main result falls into the category of self-amplification, meaning that
the hardness amplification does not require modifying the underlying function.

Theorem 1 (Self-amplification for injective functions): Suppose that f is
injective. Then, f cannot be inverted in time exp(Õ(

√
n ·d)) on a (1−ε)-fraction

of inputs.

Based on the ideas used in the proof Theorem 1, we prove an analogous theorem
for functions of the “parity with noise” type. Specifically, consider a family,
{Mn}, of m(n)×n matrices with entries in {0, 1} and let p ∈ [0, 1] be a parameter.
Define a function family fn : {0, 1}n → {0, 1}m as fn(x, e) = Mnx + e (mod 2),
where x is a vector chosen uniformly at random from {0, 1}n, and e ∈ {0, 1}m is
a vector of hamming weight at most 2pm chosen from the following distribution:
Each entry of e is chosen independently from a p-biased distribution, conditioned
on e having hamming weight at most 2pm.

We assume that {fn} is one-way against randomized time exp(Õ(
√
m)) on

some ε fraction of inputs. We also require that the functions fn are 1-1. This
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happens when Mn is a generator matrix of a code of minimum distance 4pm. In
such a case, the input locality of fn will be as large as Ω(n). Nevertheless, we
can prove the following analogue of Theorem 1.

Theorem 2 (Self-amplification for parity with noise): Suppose that {fn}
is injective. Then, (under appropriate constraints on parameters) {fn} cannot
be inverted in randomized time exp(Õ(

√
m)) on a (1− ε)-fraction of inputs.

To make our results applicable to a wider class of functions, we also consider a
generalization of Theorem 1 to the case where the function we wish to amplify is
regular (every output has the same number of preimages). As before, we assume
that the function f : {0, 1}n → {0, 1}m has input locality d, and that f cannot
be inverted in time exp(Õ(

√
n·d)) on an ε-fraction of inputs. This time, however,

we are not able to prove self-amplification and settle for some increase in output
length and input locality, while still preserving input length.

Theorem 3 (Amplification for regular functions): Suppose that f is reg-
ular. Then, there is a function g : {0, 1}n→{0, 1}m+O(n) that is d + O(log3 n)
input local and that cannot be inverted in time exp(Õ(

√
n·d)) on a (1−ε)-fraction

of inputs.

A natural candidate for a function with small input locality and for which no sub-
exponential time attacks are known is Goldreich’s one-way function [8]. Given
a bipartite graph G with n vertices on the left, m vertices on the right, and
regular right-degree dout and given a predicate P : {0, 1}dout → {0, 1}, the function
fG,P : {0, 1}n → {0, 1}m is defined by setting the ith bit of fG,P (x) to be equal
to P (xΓ (i,1), . . . , xΓ (i,dout)), where Γ(i,j) is the jth neighbor of right vertex i of G.
Goldreich proposed setting m = n and considered dout ranging from a constant
to O(log n). He conjectured that when G is a good expander graph and P is
randomly chosen, with high probability fG,P is one-way when n is sufficiently
large.

We consider instantiations of Goldreich’s functions with a certain class of
balanced predicates, which we call dout-parity-blowup predicates, and assume
that G is chosen at random. Relying on Theorem 3 we can prove the following.

Theorem 5 (Amplification for Goldreich’s function): Suppose that for at
least half the graphs G, the function fG,P is hard to invert on an ε-fraction of
inputs for circuits of size exp(Õ(

√
n)). Then there exists a function g : {0, 1}n →

{0, 1}n+O(log(1/ε)) of circuit size O(n log n) that is hard to invert on a (1 − ε)-
fraction of inputs by circuits of size exp(Õ(

√
n)).

By observing that parity-blowup predicates can be represented by constant de-
gree polynomials over GF (2) we can apply the randomized encodings of AIK [3],
and obtain a function with constant output locality and slightly longer input and
output length.

Finally, we state a result that applies in the setting where dout is constant
and m ≥ Dn, where D = D(dout) is a sufficiently large constant. Invoking a
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recent result of Bogdanov and Qiao [6], we prove that for any P and with high
probability over the choice of G if fG,P is hard to invert on an ε fraction of
inputs in time exp(Õ(

√
n)), then fG,P is hard to invert on a 1 − ε fraction of

inputs in time exp(Õ(
√
n)).

1.4 Applicability

Generally speaking, our results are not applicable to functions that are obtained
via the randomized encodings of AIK. This is because these encodings typically
incur at least a quadratic blow up in the input size. Thus, even if the original
function is exponentially hard to invert, we cannot hope to prove that the re-
sulting function is more than exp(O(

√
n)) hard to invert (at least not based on

the hardness of the original function).
It is conceivable that in some specific cases the randomized encodings can

be performed in a way that does not significantly increase the input length of
the original function. However, even if such cases exist, we are currently not
aware of any natural candidate one-way function that would potentially satisfy
Theorem 1’s hypothesis. While AIK give several injective functions with constant
output locality, none of these seems to have small input locality, and moreover
they are all known to be invertible in time less than exp(Õ(

√
n)) (e.g., ones that

are based on the hardness of factoring and of finding discrete-logarithms). Other,
presumably harder to invert, candidates are not known to be injective (though
they may be regular, making Theorem 3 applicable).

Nevertheless, we feel that Theorem 1 is worth stating and proving. First of all,
the fact that we could not think of any appropriate example does not mean that
such does not exist. Secondly, the proof of the theorem contains the core ideas
behind our reductions, and gives us the opportunity to present them without any
irrelevant complications. Finally, and most importantly, using the main ideas of
the theorem, we are able to prove an analogous result for functions of the ”parity
with noise” type, which are generally not known to be invertible in less than
exp(O(n/ logn)) time [5].

As we mentioned above, there is no known sub-exponential time algorithm
that succeeds in inverting Goldreich’s function on a non-negligible fraction of
inputs. Applebaum, Barak, and Wigderson [2] prove that, when based on d-
parity blowup predicates, the output of Goldreich’s function is pseudorandom
against linear functions, low-degree polynomials, and constant-depth circuits. In
light of this, it currently seems reasonable to conjecture that no algorithm can
invert such variants of the function on a small ε = ε(n) fraction of inputs in
time exp(Õ(

√
n · d)). Under this assumption, we obtain a function with poly-

logarithmic input locality and constant output locality that cannot be inverted
by algorithms with comparable running time on a significantly larger, (1 − ε),
fraction of inputs.

Even though not stated explicitly in Section 1.3, our reductions offer a concrete
tradeoff between the running time of the reduction and the error ε = ε(n)
we are able to amplify from. The actual overhead incurred by the reduction is
exp(O(

√
n · log(1/ε)·d·logn)). Thus, assuming that the original function is hard
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to invert in roughly this time, we can amplify starting from errors as small as say
ε(n) = 2−n

O(1)
. Note that previous amplification methods are not applicable for

such ranges of parameters, even if we assume sub-exponential hardness. This is
because the input lengths of the functions resulting from their transformations
grows proportionally to Õ(1/ε).

1.5 Ideas and Techniques

Our self-amplification result is based on the following simple idea. Suppose f is
a 1-1 function with input locality d and x and x′ are two inputs that differ in
one coordinate. Suppose we can invert f(x). Then with a little bit more work
we can invert f(x′): By input locality, f(x) and f(x′) can differ in at most d
coordinates. We change d coordinates of f(x′) until we find f(x), recover x, and
change x in one coordinate to recover x′.

By repeating this argument r times, we can invert f(x′) where x and x′ are
within distance r using O(ndr) invocations to the original inverter. So if we can
invert f at x, we can also invert f at any x′ within distance r of x. Therefore,
assuming f is easy to invert on some set that covers an ε-fraction of {0, 1}n, we
can also invert f at any input within distance r of this set. By setting r = O(

√
n),

we obtain Theorem 1, the self-amplification result for 1-1 functions.

Amplifying regular functions. The assumption that f is 1-1 is important in
this argument. If f was not 1-1, the inverter could return some other preimage
which is very far from x and therefore also far from x′. In Theorem 3 we show
that if the function f : {0, 1}n → {0, 1}m is not 1-1 but regular (i.e. K-to-1 for
some K), then there exists a new function f ′ : {0, 1}n → {0, 1}m′

, m′ = m+O(n)
such that if f is hard on an small fraction of inputs, then f ′ is hard on almost
all of its inputs.

The transformation from f to f ′ effectively isolates inputs by applying an
appropriate hash function. Hashing is a standard way to reduce a regular func-
tion to a 1-1 function [13,12]. However, applying a pairwise-independent hash
increases input locality by Ω(logK) (see Section 5.1) and makes Theorem 1
inapplicable when K is large. In Claim 1 we describe a new construction of a
hash function which increases input locality only by O((log n)3) and maps most
preimages of f to unique values. Combining this hash with Theorem 1, we obtain
Theorem 3, our amplification result for regular input-local functions.

Parity with noise. In Section 4 we apply our ideas to show self-amplification
for functions of the parity with noise type. Although these functions do not
have low-input locality, we are able to apply our techniques. The reason is that
these functions consists of two parts: A linear component, which is randomly
self reducible, and the noise component, which is input-local. By combining an
application of Theorem 1 to the noise component with a random self-reduction
on the linear component, we prove Theorem 2.

Goldreich’s function. As we explain in Section 6, Goldreich’s function is
unlikely to be 1-1 (except in special cases which are easy to invert), so Theorem 1
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does not apply directly. However, we show that when m/n is a sufficiently large
constant, if f(x1) = f(x2), then x1 and x2 must be substantially correlated.
Assuming f can be inverted on an ε-fraction of inputs, using our self-reduction
from Theorem 1, for most x′ we can invert f(x) at some x that is close to x′. The
inverse we obtain may not be equal to x, but it will be substantially correlated to
x′. Using a result of Bogdanov and Qiao [6], we then recover an inverse for f(x′).

Our second application concerns functions f : {0, 1}n → {0, 1}m where m = n,
but the degree is O(log n) and the predicate that f is based on is a “parity
blowup” predicate (see Section 6). First we prove that such functions are likely to
be at most K-to-1 for some constant K. Using the hash from Claim 1, we obtain
a new function f ′ that is almost 1-1 and is almost as hard to invert. Finally,
using the randomized encodings of Applebaum et al. [3], we can transform f ′

into a function with constant output locality at a polylogarithmic cost in the
input and output length.

1.6 Open Questions

We believe it is interesting to investigate if our methods apply to a wider class
of candidate one-way functions. In Section 6 we show that our amplification
methods apply to variants of Goldreich’s function where either (1) the degree
is constant but the output to input length ratio is sufficiently large, or (2) the
function is length-preserving, but the degree is logarithmic (so the function is
not output-local) and the predicate is of a special form.

It would be interesting to investigate the range of parameters where the func-
tion is length-preserving and the degree is constant. We conjecture that when
the predicate is balanced, such functions are “almost 2cn-to-1” for some con-
stant c, in the sense that for most x, f(x) has 2cn±o(n) preimages. If this was the
case, we could apply Theorem 3 (and Corollary 1) to obtain very hard to invert
functions with better locality parameters.

1.7 Paper Organization

Section 2 contains the most basic definitions relating to input locality, output
locality, and regularity. The proof of Theorem 1, which holds the key ideas for
our results, as well as the proof of Theorem 3, which deals with the regular case
and involves the construction of a new input local hash function, are included in
the main body of the paper. Other results are stated in corresponding sections.
Due to lack of space, their proofs are deferred to the full version.

2 Definitions

Let f : {0, 1}n → {0, 1}m be a function. We say that the ith output f(x)i depends
on the jth input xj if there exists a setting of the inputs x1, . . . , xj−1, xj+1, . . . , xn
such that f(x1, . . . , xj−1, 0, xj+1, . . . , xn)i �= f(x1, . . . , xj−1, 1, xj+1, . . . , xn)i. We
define the degree of the jth input to be the number of outputs that depend on
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the jth input. We say f has input locality d if the degree of every input is at
most d. We define the degree of an output as the number of inputs it depends
on and the output locality as the maximum degree of an output.

We say that f is K-to-1 if for every x ∈ {0, 1}n, there exist exactly K inputs
x′ ∈ {0, 1}n such that f(x′) = f(x). We say f is regular if it is K-to-1 for some
K. We say f is at most K-to-1 (resp., at least K-to-1) if for every x there are
at most K (resp., at least K) x′ such that f(x′) = f(x). We say f is ε-close
to K-to-1 if for at least a (1 − ε) fraction of the inputs x ∈ {0, 1}n, there exist
exactly K inputs x′ ∈ {0, 1}n such that f(x′) = f(x).

In this work we consider both uniform and non-uniform constructions of one-
way functions. The security of such functions can be defined against determin-
istic, randomized, and non-uniform inverters. We do not attempt to state our
results in the most general setting. Instead, we use the definition that is most
natural for the proof, in order to avoid distracting technical issues. For our pur-
poses, it will be sufficient to define non-uniform one-way functions against non-
uniform adversaries and uniform one-way functions against uniform (possibly
randomized) adversaries.

In the non-uniform setting, we say f : {0, 1}n → {0, 1}m is hard against cir-
cuits of size s on an α-fraction of inputs if for every circuit C of size at most s,
f(C(f(x))) = f(x) for at most α · 2n inputs x ∈ {0, 1}n.

In the uniform setting, a function family f = {fn : {0, 1}n → {0, 1}m(n)} is
one-way against (randomized) time t(n) on an α(n)-fraction of inputs if (1) f is
computable in deterministic polynomial time and (2) for every (randomized) al-
gorithm A that runs in time t(n) and every sufficiently large n, fn(A(1n, fn(x))) =
fn(x) for at most an α(n)·2n fraction of inputs x ∈ {0, 1}n (and with probability
at most 1/2 over the coin tosses of A). (To simplify notation, we will omit the
length parameter 1n as an input to the inverter in our proofs.)

3 Self-amplification for 1-1 Functions

Let f : {0, 1}n → {0, 1}m be any 1-1 function, and let dj be the degree of the
jth input. Set Δ =

∑n
j=1 d2

j .

Theorem 1. Let f = {fn : {0, 1}n → {0, 1}m(n)} be a 1-1 function family.
Suppose f is one-way against time exp(O(

√
rΔ logn)) on a e−r-fraction of inputs

(r = r(n)). Then f is one-way against time exp(O(
√
rΔ logn)) on a (1− e−r)-

fraction of inputs.1

When f is a 1-1 function with input locality d, we get that if f is one-way against
time exp(O(

√
rn · d logn)) for a e−r-fraction of inputs, then the same function

is also one-way for a (1− e−r)-fraction of inputs.

1 Usually, hardness amplification results are stated in terms of two parameters, the
initial hardness ε and the “derived hardness” (1 − δ). Since the complexity of our
inverter is dictated by the minimum of ε and δ, without loss of generality we state
our results for the special case ε = δ = e−r.
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The proof is based on the following idea. For simplicity let us consider the
case where the degree of every input is at most d. Assume that f can be inverted
in time exp(O(

√
rΔ logn)) on an e−r-fraction of inputs and let S′ be the set of

inputs on which this inversion algorithm succeeds. Let us consider all inputs x
that are within hamming distance

√
2rn from S′. By a standard probabilistic

argument (Lemma 1, based on Theorem 7.5.3 in [1]) it follows that at least
1 − e−r fraction of inputs x have this property. Now if x and x′ ∈ S′ differ in
at most

√
2rn coordinates, then y = f(x) and y′ = f(x′) will differ in at most√

2rnd coordinates. Therefore we can invert f at y = f(x) by flipping the given
set of

√
2rnd coordinates on which y and y′ differ, inverting f at y′ to obtain x′,

and then moving back from x′ to x by changing at most
√

2rn coordinates.
We first state and prove the probabilistic inequality which is the technical

heart of our argument. We prove the inequality in slightly more general form
than is needed to prove Theorem 1 for later applications.

Lemma 1. Consider the space {0, 1}n with the p-biased distribution (i.e., each
coordinate takes value 1 independently at random with probability p) for some
p ∈ [0, 1]. Let X ⊆ {0, 1}n be any set of measure e−r and let d1, . . . , dn be positive
numbers. Let

Z =
{
z :
∑

j∈[n] : xj �=zj
dj ≤

√
2rΔ for some x in X

}
.

where Δ =
∑n

i=1 d2
i . Then Z has measure at least 1− e−r.

Proof. Define d(z) = minx∈S
∑

j∈[n] : xj �=zj
dj . Then any change in zj changes

d(z) by at most dj . By Azuma’s inequality, we have

Pr[d(z) ≤ E[d(z)]− t] < e−2t2/Δ and Pr[d(z) ≥ E[d(z)] + t] < e−2t2/Δ

Setting t = E[d(z)], from the first inequality we get e−2t2/Δ > e−r, and therefore
t <
√

rΔ/2. From the second one, Pr[z �∈ Z] = Pr[d(z) ≥
√

2rΔ] < e−r. 	


Alternatively, Lemma 1 follows from a simple application of Talagrand’s
inequality.

Proof (of Theorem 1). Let ε = e−r. We prove the contrapositive. Assume A
inverts fn on an ε-fraction of inputs in time exp(O(

√
rΔ logm)). We construct

an algorithm B that inverts fn on a (1−ε)-fraction of inputs as follows: On input
y, perform the following procedure: For any set of at most

√
2rΔ coordinates of

[m], flip the value of y in these coordinates to obtain y′, compute x′ = A(y′),
then flip any set of

√
2rΔ coordinates of x′ to obtain x. If fn(x) = y, output x.

The running time of B is(
m√
2rΔ

)
· (running time of A) ·

(
n√
2rΔ

)
· (eval. time of fn) = exp(O(

√
rΔ logn)).

We now argue that B inverts f on a (1− ε)-fraction of inputs. Let S′ be the
set of those x′ such that A(f(x′)) = x′. For each j ∈ [n], let dj denote the degree
of the jth input. Now let

S =
{
x :
∑

j∈[n] : xj �=x′
j
dj ≤

√
2rΔ for some x′ in S′}.
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If x′ is in S′ and x is its closest element in S, then f(x) and f(x′) differ in at
most

√
2rΔ coordinates. Moreover, x and x′ can also differ in at most this many

coordinates. It follows that if x is in S, then B successfully inverts f(x′). By
Lemma 1, S contains at least a 1− ε fraction of inputs. 	


Remark 1. The proof of Theorem 1 easily generalizes to function families that
are e−r/2-close to 1-1. A non-uniform version, where “running time” is replaced
by “circuit size”, is also straightforward. We will use these extensions in our
applications in Sections 5 and 6.

Theorem 1 gives a non-trivial result only when the sum of the squares of the
input degrees D is at most o(n2/ logn). This assumption could be violated even
if there is a single input of f whose degree is Ω(n). It is natural to ask if the
self-amplification argument could be modified so as to allow for a small number
of inputs that have unusually large degree.

We argue that this is unlikely to be the case: In the full version of the paper,
we give an example showing that if non-trivial self-amplification can be achieved
for functions where all but one of their inputs have degree at most d + 1, then
every function of input locality d has a non-trivial inversion algorithm.

4 Linear Functions with Noise

We now state a self-amplification result for functions of the “parity with noise”
type. We consider the following type of function. Let {Mn} be a family of m(n)
by n matrices with entries in {0, 1} and p ∈ [0, 1] be a parameter. We define the
function family fn : {0, 1}n → {0, 1}m(n) as follows:

fn(x, e) = Mnx + e

where x is a vector chosen uniformly at random from {0, 1}n, and e ∈ {0, 1}m is
a vector of hamming weight at most 2pm chosen from the following distribution:
Each entry of e is chosen independently from a p-biased distribution, conditioned
on r having hamming weight at most 2pm. The matrix multiplication and vector
addition are performed modulo two.

We will consider functions fn that are 1-1. This happens when Mn is a gen-
erator matrix of a code of minimum distance 4pm. In such a case, the input
locality of fn will be as large as Ω(n). Nevertheless, we can prove an analogue of
Theorem 1 in this setting. One difference is that our self-amplification argument
here is randomized, so we require that the function family is hard to invert even
for randomized adversaries.

Theorem 2. Suppose the function family {fn : fn(x, e) = Mnx + e} is 1-1
and one-way against randomized time exp(O(

√
rm logm)) on a e−r fraction of

inputs. Assume r < pm/10. Then {fn} is one-way against randomized time
exp(O(

√
rm logm)) on a 1− e−r fraction of inputs.

The proof of Theorem 2 is given in the full version of this paper.
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5 Hardness Amplification for Regular Functions

Theorem 1 shows how to achieve self-amplification for functions with small input
locality that are 1-1. The assumption that the function is 1-1 was crucial in the
argument for the following reason. Suppose f is a 1-1 function with input locality
d and x and x′ are two inputs that differ in exactly one coordinate. Suppose we
can invert f(x). Then with a little bit more work we can invert f(x′): Since f(x)
and f(x′) can differ in at most d coordinates, we change d coordinates of f(x′)
until we find f(x), recover x, and move back from x to x′.

An important point in this argument is that because f is 1-1, the inversion
algorithm is guaranteed to return x and not some other preimage for f(x). If f
were not 1-1, the inverter could return some other preimage which is very far
from x and therefore also far from x′. So in general we do not know how to
achieve self-amplification for input-local functions that are not 1-1.

We now argue that if f : {0, 1}n → {0, 1}m is not 1-1 but regular, then there
exists a new function f ′ : {0, 1}n → {0, 1}m′

, m′ = m + O(n) such that if f is
hard on an small fraction of inputs, then f ′ is hard on almost all of its inputs.
Moreover, the input locality of f ′ is not much larger than the input locality of f .

To simplify notation, let α(d, r, log n) = (d + r + (logn)3) · (logn).

Theorem 3. Suppose there exists a K-to-1 function f : {0, 1}n → {0, 1}m with
input locality d which is hard against circuits of size exp(O(

√
rn · α(d, r, log n))

on a e−r-fraction of inputs. Then there exists f ′ : {0, 1}n → {0, 1}m+log2 K+O(r),
with input locality d + O(r + (logn)3) which is hard against circuits of size
exp(O(

√
rn · α(d, r, log n))) on a (1 − e−r)-fraction of inputs. Moreover, if f

is computable by a circuit of size s, then f ′ is computable by a circuit of size
s + O(n(log n)3).

The construction of f ′ from f is non-uniform. In fact, our proof provides a
randomized construction but for simplicity we present the argument in the non-
uniform setting. We follow the standard approach of turning a general function
into an almost 1-1 function via hashing [13,12]. The function f ′ will have the
form f ′(x) = (f(x), h(x)), where h is a suitably chosen hash function that does
not increase input locality by much. If f is regular, then f ′ will be almost 1-1 in
the sense that for most x, f(x) has a unique preimage. Moreover, if f has input
locality d, then f ′ will have input locality d + O(r + (logn)3). We then amplify
the hardness of f using Theorem 1 (and Remark 1).

Theorem 3 can be combined with the randomized encodings of Applebaum et
al. [3,4] to obtain a hardness amplification result that preserves output locality,
at the expense of increasing the input length by logarithmic factors.

Corollary 1. Suppose there exists a regular function f : {0, 1}n → {0, 1}m with
input locality din and output locality dout ≥ 3 that is hard against circuits of size
exp(O(

√
rn·α(din, r, logn))) on a e−r-fraction of inputs. Then there is a function

f ′ : {0, 1}n′ → {0, 1}m′
, where n′ = O(n(log n)3) and m′ = m+O(n(logn)3) with

output locality dout that is hard against circuits of size exp(O(
√
rn·α(din, r, logn)))

on a (1 − e−r)-fraction of inputs. If f is computable by a circuit of size s, then
f ′ is computable by a circuit of size s + O(n(log n)3).
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5.1 A Hash with Small Input Locality

A standard way to reduce a K-to-1 one-way function to a 1-1 one-way func-
tion is by hashing. Namely, we would like to define f ′(x) = (f(x), h(x)), where
h : {0, 1}n → {0, 1}log2K+O(1) is a pairwise independent hash function. However,
known constructions of pairwise independent hash functions have input locality
as large as Ω(log2 K). This is in fact necessary: Mansour et al [14] showed that
pairwise independent hash functions have average sensitivity Ω(n). By averaging,
it follows that the input locality of such functions must be Ω(log2 K).

We need to construct a function f ′ from f which preserves not only the
hardness of f but also its small input locality. Our function f ′ will also have the
form f ′(x) = (f(x), h(x)), where h is a suitably chosen hash function. However,
our hash function h will only be approximately pairwise independent, chosen in
a manner to have small input locality.

We note that Appelbaum et al. [4] (Appendix C in the journal version)
give a different construction of an “almost pairwise-independent” hash function.
However, the almost pairwise independence property they establish for their
construction, while sufficient for their application, appears too weak to derive
Claim 1.

Claim 1. Suppose f : {0, 1}n → {0, 1}m is at most K-to-1, where 2k−1 ≤ K <
2k. Then there exists a function h : {0, 1}n → {0, 1}k+3r+3 such that the function
f ′(x) = (f(x), h(x)) is e−r/2-close to 1-1. Moreover, h is a linear function over
{0, 1}n with input locality O(r) + min{k,O((log n)3)}.

We now prove Claim 1. The construction of h will be probabilistic.

Construction of h. Assume that f is at most K-to-1, where 2k−1 ≤ K < 2k.
The function h has the form h(x) = (ha(x), hb(x)) where

ha(x) = (ak · x + a′k, ak−1 · x + a′k−1, . . . , ak0+1 · x + a′k0+1)
hb(x) = (b1 · x + b′1, b2 · x + b′2, . . . , b3r+k0+3 · x + b′3r+k0+3).

and k0 = min{8(logn)2, k}. (In particular, if k < 8(logn)2, h only consists of
the hb part.)

To generate a random h, we choose the vectors ai, bi ∈ {0, 1}n from the
following distributions: Each ai is chosen independently at random from the pi-
biased distribution over {0, 1}n, where pi = 4(logn)2/i < 1/2. Each bi is chosen
independently at random from the uniform distribution over {0, 1}n, and a′i, b

′
i

are uniformly random bits.
We now argue that if f is regular, then with probability at least 1/2 over the

choice of h, f ′ is regular over all but an e−r/2 fraction of its inputs.
The proof will have two stages. In the first stage, we argue that for all but

an e−r/8 fraction of inputs x, there are at most 2r+k0 inputs x′ such that
(f(x), ha(x)) = (f(x′), ha(x′)). In the second stage, we finish the proof by show-
ing that hb hashes all but an e−r/8 fraction of those xs uniquely.
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The first stage. If k0 = k, the conclusion is trivial, so let us assume that
k0 < k. Let us fix an input x and let S = {x′ : f(x) = f(x′)}. Without loss of
generality, we may assume that 2k−1 ≤ |S| < 2k. (If |S| is smaller, we disregard
the effect of the first few hashes in ha.) We consider the following sequence of
random sets defined recursively: Sk = S, Ti = {x′ ∈ Si : ai · x′ = ai · x)} and

Si−1 =

{
Ti, if (1 − 1/n)|Si|/2 ≤ |Ti−1| ≤ (1 + 1/n)|Si|/2
Si, otherwise.

Here is the intuition for this definition: We want to think of the ith hash ai as
“successful” if it decreases the size of siblings of x by roughly a factor of two (not
much more and not much less). If all but r of the hashes are successful, then the
size of S0 can not be much more than 2r, and so x will not have more than 2r

siblings that map to (f(x), ha(x)). It is sufficient to show that the probability
that more than r of the hashes fail to be successful is quite small.

Notice that by definition of the sets Si, it must be that Si ≥
∏k
j=i(1− 1/n) ·

2i−1 ≥ 2i−2. So we are left with the following question: Given a set S of size at
least 2i−2, how likely is it to be split successfully at stage i?

Lemma 2. Assume |R| ≥ 2i−2. Let a ∼ {0, 1}np , b ∼ {0, 1}1/2, where p =
4(logn)2/i < 1/2. Then for n sufficiently large and any ε > 0,

Pr
[
#{y ∈ R : a · y + b = 0} �∈ (1± ε)|R|/2

]
≤ 1

n4ε2 .

Applying this lemma with R = Si and ε = 1/n, we have that each hash is suc-
cessful with probability at least 1− 1/n2, and the events are independent of one
another. By a union bound, the probability of having more than r unsuccessful
splits is at most

(
n
r

)
· (1/n2)r ≤ n−r < e−r/8. So for any x ∈ {0, 1}n,

Pr
[
|Sk0 | ≥ 2k0+r

]
≤ e−r/8.

Proof. Let X =
∑

y∈R(−1)a·y+b. Then E[X ] = 0 and

E[X2] =
∑
y,z∈R

E[(−1)a·(y+z)]

≤ |R|maxz
∑
y∈R

E[(−1)a·(y+z)]

= |R|maxz
∑
y∈Rz

E[(−1)a·y]

= |R|maxz
∑
y∈Rz

(1 − 2p)|y|

where Rz = {y + z : y ∈ T }, and |y| denotes the hamming weight of y. Notice
that the summation is maximized when Rz is a threshold set T – the set of all
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strings of hamming weight up to k− 1 and possibly some of hamming weight k.
Then we have

E[X2] ≤ |R| ·
∑
y∈T

(1− 2p)|y| ≤ |R| ·
k∑

w=0

(
n

w

)
· (1− 2p)w.

We look at two cases: If i ≥ n, then

E[X2] ≤ |R|
n∑

w=0

(
n

w

)
· (1− 2p)w = |R| · 2n · (1− p)n ≤ 4|R|2 · e−pn ≤ |R|2/n4,

for n sufficiently large. If i < n, the ratio of consecutive terms in the summation
is (

n

w + 1

)
(1− 2p)w+1

/(
n

w

)
(1 − 2p)w = (1− 2p) · n− w

w + 1
> 1

for every w ≤ k, and so

E[X2] ≤ |R| · k ·
(
n

k

)
· (1 − 2p)k ≤ |R|2 · n · (1− 2p)k ≤ |R|2 · n · e−2pk.

Since k ≥ i/ logn, we get that E[X2] ≤ |R|2/n4 in this case also. By Chebyshev’s
inequality, it follows that

Pr
[
#{y ∈ R : a · y + b = 0} �∈ (1± ε)|R|/2

]
= Pr
[
|X | > ε|R|

]
≤ 1/n4ε2. 	


The second stage and conclusion. Now fix an x such that |Sk0 | < 2k0+r. We
now argue that by the end of the second stage, x is very likely to have a unique
hash:

Pr[∃x′ ∈ Sk0 − {x} : h(x′) = h(x)] ≤
∑

x′∈Sk0−{x}
Pr[h(x′) = h(x)] < e−r/8.

Putting the analysis of both stages together, it follows that by the end of stage
2, for any specific x,

Prh[∃x′ : f ′(x′) = f ′(x)] ≤ e−r/4.

Averaging over x and applying Markov’s inequality, we get that for at least half
the functions h,

Prx[∃x′ : f ′(x′) = f ′(x)] ≤ e−r/2.

Now let us calculate the locality of a typical function h. For any fixed input bit,
say x1, let Ya and Yb be the number of occurrences of x1 in ha and hb respectively.
Then E[Ya] =

∑k
i=k0

4(logn)2/i ≤ 4(logn)3 and E[Yb] = (3r + k0 + 3)/2, so
E[Ya + Yb] = O((log n)3 + r). By Chernoff bounds and a union bound, we get
that with probability at least 3/4, no input bit has more than O((log n)3 + r)
occurrences in h.

Therefore, there exists a hash function h that has input locality O((log n)3+r)
and such that f ′ is 1-1 on all but e−r/2 fraction of its inputs.

Remark 2. The conclusion of Claim 1 also holds under the weaker assumption
that the function h is e−r/4-close to at most K-to-1. We will use this general-
ization in Section 6.
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5.2 Proof of Theorem 3

We now prove Theorem 3. To do so, first we show that the transformation from
f to f ′ is hardness-preserving in the following sense: If f is hard to invert on an
e−r-fraction of inputs, then f ′ is hard to invert on an Ω(e−r)-fraction of inputs.
Since f ′ is almost 1-1, we can apply self-amplification to conclude that f ′ is in
fact hard on a 1− e−r fraction of inputs.

Claim 2. Assume f : {0, 1}n → {0, 1}m is K-to-1 where 2k−1 ≤ K < 2k. Let
f ′ and h be as in Claim 1. Assume that f ′ can be inverted on an (1− e−r/400)-
fraction of inputs by a circuit of size s. Then f can be inverted on a (1 − e−r)-
fraction of inputs by a circuit of size O(s · r · 23r).

The proof of Claim 2 can be found in the full version of this paper.

Proof (of Theorem 3). Suppose f : {0, 1}n → {0, 1}m is a regular function with
input locality d which is hard against circuits of size exp(O(

√
rn ·α(d, r, log n)))

on a e−r-fraction of inputs. Let f ′(x) = (f(x), h(x)), where h is chosen as in
Claim 1. It is easy to check that f ′ has the desired input locality and circuit
complexity.

Now suppose f ′ can be inverted by a circuit of size exp(O(
√
rn ·α(d, r, log n)))

on a e−r fraction of its inputs. By Claim 1, f ′ is e−r/2-close to 1-1. By Theorem 1
and Remark 1, f ′ can be inverted on a (1−e−r/400)-fraction of inputs by a circuit
of size s = exp(O(

√
rn ·α(d, r, log n))). By Claim 2, f can then be inverted on a

(1− e−r) fraction of inputs by circuits of size exp(O(
√
rn · α(d, r, log n))). 	


Proof (of Corollary 1). Since h(x) is a linear function, we can apply the ran-
domized encoding of Applebaum et al. to reduce its output locality at the cost of
increasing the input and output length of f ′. Specifically, we perform the follow-
ing transformation on f ′ to obtain a new function f ′′. Suppose the ith output
h(x)i has the form

h(x)i = xi1 + xi2 + · · ·+ xiki .

We introduce new inputs ri1, ri2, . . . , ri(ki−1) and replace the output h(x)i by
the sequence of outputs:

(xi1 + ri1, ri1 + xi2 + ri2, . . . , ri(ki−1) + xiki ).

It is easy to check that f ′′ has the desired input and output length, and its
output locality is max{dout, 3}.

Applebaum et al. [3,4] show that if f ′′ can be inverted on an ε-fraction of in-
puts by a circuit of size s, then f ′ can be inverted on a Ω(ε)-fraction of inputs by
a circuit of size O(s/ε). Plugging in ε = e−r and s = exp(O(

√
rn·α(din, r, logn))),

the corollary follows. 	


6 Goldreich’s Function on a Random Graph

We now consider two applications of our techniques to the candidate one-way
function proposed by Goldreich [8]. Given a bipartite graph G with n vertices
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on the left, m vertices on the right, and regular right-degree dout and a predicate
P : {0, 1}dout → {0, 1}, the function fG,P from {0, 1}n to {0, 1}m is defined by

fG,P (x)i = the ith bit of f(x) = P (xΓ (i,1), . . . , xΓ (i,dout))

where Γ(i,j) is the jth neighbor of right vertex i of G.
Goldreich [8] considered such constructions for the setting of parameters m =

n and dout ranges from a constant to O(log n). He conjectured that when G
is a good expander graph and P is a randomly chosen predicate, with high
probability fG,P is one-way.

Cook et al. [7] showed that when G is random and P is suitably chosen,
fG,P is secure against adversaries that implement myopic algorithms. Bogdanov
and Qiao [6] studied a variant of Goldreich’s function in the setting where G is
random, d is constant, and m = Dn, where D = D(dout) is a sufficiently large
constant. They showed that for a large class of predicates P (those that correlate
with one or a pair of their inputs) and for most G, fG,P can be inverted on most
inputs. It is conceivable that fG,P could be one-way for all predicates P that are
not linear and do not belong to the class ruled out by Bogdanov and Qiao.

We establish two results regarding local hardness amplification of Goldreich’s
function. Informally, we show that

1. In the setting where d is constant and m ≥ Dn, where D = D(dout) is
a sufficiently large constant, for any P and with high probability over the
choice of G if fG,P is hard to invert on an e−r fraction of inputs in time
exp(O(

√
rn · dout · logn)), then fG,P is hard to invert on a 1 − e−r fraction

of inputs in time exp(O(
√
rn · dout · logn)).

2. When dout = O(log n) and m = n, for a certain class of predicates P and
with high probability over G, if fG,P is hard to invert on a e−r fraction of
inputs, then there exists a function f ′ : {0, 1}n′ → {0, 1}m′

, where n′,m′ =
n · polylogn, of similar complexity to f and constant output locality that is
hard to invert on a 1− e−r fraction of inputs.

Our result applies to all O(log n)-parity-blowup predicates, which we define
as follows. Let Pc : {0, 1}c → {0, 1} be any balanced predicate, where c is
some constant. The dout-parity-blowup of Pc is the predicate P : {0, 1}dout →
{0, 1} which is obtained by replacing each of the variables in Pc by a parity
of dout/c� inputs, where all the inputs are distinct. Applebaum, Barak, and
Wigderson [2] showed that the output of Goldreich’s function based on such
predicates is pseudorandom against linear functions, low-degree polynomials,
and constant-depth circuits.

The random graph G is chosen from the following distribution: For each of the
m right vertices of G, choose all of its dout neighbors independently at random
among the n left vertices of G. We will call such graphs (n,m, dout) random
graphs.

6.1 Self-reducibility for Functions with Long Output

Theorem 4. Let D ≥ 2Kdout where K is a sufficiently large constant, and
P : {0, 1}dout → {0, 1} be any predicate. Let G be an (n,m, dout) random graph.
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With probability at least 1−o(1) over the choice of G, if fG,P is hard for circuits
of size exp(O(

√
rn ·Ddout logn)) on an e−r-fraction of inputs, then fG,P is hard

for circuits of size exp(O(
√
rn ·Ddout logn)) on a 1− e−r-fraction of inputs.

We prove Theorem 4 (in the full version of this paper) by an argument similar
to the one used in the proof of Theorem 1. The principal obstacle to applying
Theorem 1 here is that with high probability, the function fG,P is not 1-1. There
are several reasons for this. One reason is that fG,P is likely to contain inputs
that do not appear in any output. A more important reason is that unless the
predicate P is linear, for most inputs x, it is likely that there is a linear number
of coordinates i such that the ith coordinate does appear in the output, but
changing the value of xi does not change the value of fG,P (x).

We show that although fG,P is unlikely 1-1, with high probability every pair
of inputs that map to the same output is highly correlated (or anticorrelated),
that is they agree (or disagree) in value on most of the coordinates. Using the
argument from the proof of Theorem 1, we show that if fG,P can be inverted on
an ε-fraction on inputs by a circuit of suitable size, then for a 1 − ε fraction of
inputs x, it is possible to find an x′ such that x and x′ are highly correlated. We
then use a result of Bogdanov and Qiao [6] which says that for most inputs x,
given x′ that is correlated with x, then we can invert fG,P (x).

6.2 Amplification for Certain Length-Preserving Functions

Let P : {0, 1}c → {0, 1} be a balanced predicate. The dout-parity-blowup of P
is the predicate obtained by replacing each variable in P by dout/c� variables,
where all the new variables are disjoint.

Theorem 5. Let c ≥ 3 and dout = max{130c logn, 4c2}. Let P be the dout-
parity-blowup of some balanced predicate on c bits and let G be an (n, n, dout)-
random graph. Suppose that for at least half the graphs G, fG,P : {0, 1}n →
{0, 1}n is hard to invert on an e−r-fraction of inputs against circuits of size
exp(O(r3/2√n logn)). Then there exists

1. A function f ′ : {0, 1}n → {0, 1}n+O(r) of circuit size O(n logn + r) that is
hard on a 1−e−r-fraction of inputs for circuits of size exp(O(r3/2√n logn)).

2. A function f ′′ : {0, 1}n′ → {0, 1}m′
, where n′,m′ = O(n · d(n)c), f ′′ is hard

on a 1− e−r-fraction of inputs for circuits of size exp(O(r3/2√n logn)) and
where every output of f ′′ depends on at most c + 1 inputs.

Theorem 5 is proved in the full version of this paper. To prove part 1, we first
show that the function fG,P is likely to be e−r/4-close to O(er)-to-1. Using
Claim 1, we then transform fG,P into a function f ′ : {0, 1}n → {0, 1}n+O(r)

which is e−r/2-close to 1-1. Using the self-reduction of Theorem 1, we then
argue that if f ′ is easy to invert on an e−r fraction of inputs, then it is also easy
to invert on a 1−e−r-fraction of inputs, and so fG,P is also easy to invert on the
same fraction of inputs by circuits of similar size. To prove part 2, we observe that
parity-blowup predicates can be represented constant degree polynomials over
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GF (2). Applying the randomized encodings of Applebaum et al. [3] to these
polynomials, we obtain a function with constant output locality and slightly
longer input and output length.

Acknowledgements. We thank the TCC’11 reviewers for useful comments.
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Abstract. We give new proofs for the hardness amplification of effi-
ciently samplable predicates and of weakly verifiable puzzles which gen-
eralize to new settings. More concretely, in the first part of the paper,
we give a new proof of Yao’s XOR-Lemma that additionally applies to
related theorems in the cryptographic setting. Our proof seems simpler
than previous ones, yet immediately generalizes to statements similar in
spirit such as the extraction lemma used to obtain pseudo-random gener-
ators from one-way functions [H̊astad, Impagliazzo, Levin, Luby, SIAM
J. on Comp. 1999].

In the second part of the paper, we give a new proof of hardness
amplification for weakly verifiable puzzles, which is more general than
previous ones in that it gives the right bound even for an arbitrary mono-
tone function applied to the checking circuit of the underlying puzzle.

Both our proofs are applicable in many settings of interactive
cryptographic protocols because they satisfy a property that we call
“non-rewinding”. In particular, we show that any weak cryptographic
protocol whose security is given by the unpredictability of single bits
can be strengthened with a natural information theoretic protocol. As
an example, we show how these theorems solve the main open question
from [Halevi and Rabin, TCC2008] concerning bit commitment.

1 Introduction

In this paper, we study two scenarios of hardness amplification. In the first
scenario, one is given a predicate P (x), which is somewhat hard to compute
given x. More concretely: Pr[A(x) = P (x)] ≤ 1 − δ

2 for any A in some given
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complexity class, where typically δ is not too close to 1 but at least polynomially
big (say, 1

poly(n) < δ < 1 − 1
poly(n) ). One then aims to find a predicate which is

even harder to compute.
In the second scenario, one is given a computational search problem, speci-

fied by some relation R(x, y). One then assumes that no algorithm of a certain
complexity satisfies Pr[(x,A(x)) ∈ R] > 1 − δ, and again, is interested in find-
ing relations which are even harder to satisfy. It is sometimes the case that R
may only be efficiently computable given some side information generated while
sampling x. Such problems are called “weakly verifiable puzzles”.

Our aim is to give proofs for theorems in both scenarios which are both
simple and versatile. In particular, we will see that our proofs are applicable in
the interactive setting, where they give stronger results than those previously
known.

1.1 Predicates

Overview and Previous Work. Roughly speaking, Yao’s XOR-Lemma [39] states
that if a predicate P (x) is somewhat hard to compute, then the k-wise XOR
P⊕k(x1, . . . , xk) := P (x1)⊕ · · · ⊕ P (xk) will be even harder to compute. While
intuitive, such statements are often somewhat difficult to prove. The first proof
of the above appears to be by Levin [31] (see also [11]). In some cases, even
stronger statements are needed: for example, the extraction lemma states that
one can even extract several bits out of the concatenation P (x1)P (x2) . . .P (xk),
which look pseudorandom to a distinguisher given x1, . . . , xk. Proving this state-
ment for tight parameters is considered the technically most difficult step in the
original proof that one-way functions imply pseudorandom generators [17]. Ex-
cluding this work, the easiest proof available seems to be based on Impagliazzo’s
hard-core set theorem [23], more concretely the uniform version of it [19,1]. A
proof along those lines is given in [20,13]. Similar considerations are true for
the more efficient proof that one-way functions imply pseudorandom generators
given by Haitner et al.[15].
Contributions of this Paper. In this paper, we are concerned with statements of
a similar nature as (but which generalize beyond) Yao’s XOR-Lemma. We give
a new theorem, which is much easier to prove than the hard-core set theorem,
and which is still sufficient for all the aforementioned applications.

Our main observation can be described in relatively simple terms. In the
known proof based on hard-core sets ([23,19]), the essential statement is that
there is a large set S, such that for x ∈ S it is computationally difficult to
predict P (x) with a non-negligible advantage over a random guess. Proving the
existence of the set S requires some work (basically, boosting, as shown in [30]).
We use the idea that the set S can be made dependent on the circuit which
attempts to predict P . The existence of a hard set S for a particular circuit is a
much easier fact to show (and occurs as a building block in some proofs of the
hard-core theorem). For our idea to go through, S has to be made dependent on
some of the inputs to C as well as some other fixed choices. This technique of
switching quantifiers resembles a statement in [2], where Impagliazzo’s hard-core
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set theorem is used to show that in some definitions of pseudo-entropy it is also
possible to switch quantifiers.

Besides being technically simpler, making the set S dependent on C has an
additional advantage. For example, consider a proof of the XOR Lemma. To get
a contradiction, a circuit C is assumed which does well in predicting the XOR,
and a circuit D for a single instance is built from C. On input x, D calls C
as a subroutine several times, each time “hiding” x as one of the elements of
the input. Using our ideas, we can ensure that x is hidden always in the same
place i, and even more, the values of the inputs x1, . . . , xi−1 are constant and
independent of x. This property, which we call non-rewinding, is useful in the
case one wants to amplify the hardness of interactive protocols.

We remark that in this paper we are not concerned with efficiency of XOR-
Lemmas in the sense of derandomizing them (as in, e.g., [28,24,26]).

1.2 Weakly Verifiable Puzzles

Overview and Previous Work. The notion of weakly verifiable puzzles was in-
troduced by Canetti et al. [4]. A weakly verifiable puzzle consists of a sampling
method, which produces an instance x together with a circuit Γ (y), checking
solutions. The task is, given x but not necessarily Γ , to find a string y for which
Γ (y) = 1. One-way functions are an example: Γ (y) just outputs 1 if f(y) = x
(since Γ depends on the instance it can contain x). However, weakly verifiable
puzzles are more general, since Γ is not given at the time y has to be found.

Canetti et al. show that if no efficient algorithm finds solutions with probabil-
ity higher than δ, then any efficient algorithm finds k solutions simultaneously
with probability at most δk + ε, for some negligible ε. This result was strength-
ened by [25], showing that requiring some δ′ > δ + 1/ poly(n) fraction of correct
answers already makes efficient algorithms fail, if k is large enough. Indepen-
dently of the current work, Jutla [29] improved their bound to make it match
the standard Chernoff bound. A different strengthening was given in [16], where
it was noted that the algorithm in [4] has an additional property which implies
that it can be applied in an interactive cryptographic setting, also they studied
how much easier solving a weakly verifiable puzzle becomes if one simply asks for
a single correct solution from k given puzzles. Also independently of our work,
Chung et al. [6] give a proof for the threshold case (similar to Jutla) which is
also applicable in an interactive setting; however, their parameters are somewhat
weaker than the ones given by most other papers. Finally, [9] gives yet another
strengthening: they allow a weakly verifiable puzzle to have multiple solutions
indexed by some element q, and the adversary is allowed to interactively obtain
some of them. They then study under what conditions the hardness is amplified
in this setting.
Contributions of this Paper. In this work, we present a theorem which unifies
and strengthens the results given in [4,16,25,29,6]: assume a monotone function
g : {0, 1}k → {0, 1} specifies which subpuzzles need to be solved in order to
solve the resulting puzzle (i.e., if c1, . . . , ck are bits where ci indicates that a
valid solution for puzzle i was found, then g(c1, . . . , ck) = 1 iff this is sufficient



22 T. Holenstein and G. Schoenebeck

to give a valid solution for the overall case.) Our theorem gives a tight bound for
any such g (in this sense, previous papers considered only threshold functions
for g). Furthermore, as we will see our proof is also applicable in an interactive
setting (the proof given in [25,29] does not have this property). Our proof is
heavily inspired by the one given in [4].

1.3 Strengthening Cryptographic Protocols

Overview and Previous Work. Consider a cryptographic protocol, such as bit
commitment. Suppose that a non-perfect implementation of such a protocol is
given, which we would like to improve. For example, assume that a cheating
receiver can guess the bit committed to with some probability, say 3/5. Further-
more, suppose that a cheating sender can open the commitment in two ways
with some probability, say 1/5. Can we use this protocol to get a stronger bit
commitment protocol?

Such questions have been studied in various forms both in the information
theoretic and the computational model [8,7,10,19,21,38,16].

However, all of the previous computational work except [16] focused on the
case where the parties participating in the protocol are at least semi-honest, i.e.,
they follow the protocol correctly (this is a natural assumption in the case for the
work on key agreement [10,19,21], as in this case the participating parties can
be assumed to be honest). An exception to this trend was the work by Halevi
and Rabin [16], where it was shown that for some protocols, the information
theoretic bounds also apply computationally.

The above are results in case where the protocol is repeated sequentially. The
casewhere the protocol is repeated inparallel ismore complicated [3,35,34,18,12,5].

Contributions of this Paper. We explicitly define “non-rewinding” (which was,
however, pointed to in [16]) which helps to provide a sufficient condition for
transforming complexity theoretic results into results for cryptographic proto-
cols. Using, the above results, and specifically that the above results are non-
rewindable, we show that we can strengthen any protocol in which the security
goal is to make a bit one party has unpredictable to the other party, in the case
where an information theoretic analogue can be strengthened. We also study
interactive weakly verifiable puzzles (as has been done implicitly in [16]), and
show that natural ways to amplify the hardness of these work.

We only remark that our proof is applicable to parallel repetition for non-
interactive (two-round) protocols (e.g. CAPTCHAs).

Due to space restrictions, many of the proofs and even some of the formal
statements of theorems have been omitted. We encourage the interested reader
to look at the full version of this paper [22].

2 Preliminaries

Definition 1. Consider a circuit C which has a tuple of designated input wires
labeled y1, . . . , yk. An oracle circuit D(·) with calls to C is non-rewinding if there
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is a fixed i and fixed strings y∗1 to y∗i−1 such that for any input y to D, all calls
to C use inputs (y∗1 , . . . , y

∗
i−1, y) on the wires labeled y1, . . . , yi.

Definition 2. Let C be a circuit which has a block of input wires labeled x. An
oracle circuit D which calls C (possibly several times) treats x obliviously if the
input x to D is forwarded to C directly, and not used in any other way in D.

We say that an event happens almost surely if it has probability 1−2−n poly(n).
We denote by [m] the set {1, . . . ,m}. The density of a set S ⊆ {0, 1}n is

μ(S) = |S|
2n . We sometimes identify a set S with its characteristic function S :

{0, 1}n → {0, 1}. We often denote a tuple (x1, x2, . . . , xk) by x(k).
If a distribution μ over some set is given, we write x← μ to denote that x is

chosen according to μ. We sometimes identify sets with the uniform distribution
over them. We let μδ be the Bernoulli distribution over {0, 1} with parameter δ,
i.e., Prx←μδ

[x = 1] = δ. Furthermore, μkδ is the distribution over {0, 1}k where
each bit is i.i.d. according to μδ.

When two interactive algorithms A and B are given, we will denote by 〈A,B〉A
the output A has in an interaction with B, and by 〈A,B〉B the output which B
has. We sometimes consider probabilities like Pr[〈A,B〉A = 〈A,B〉B ], in which
case the probability is over random coins of A and B (if any), but they are
chosen the same on the left and the right hand side.

3 Efficiently Samplable Predicates

3.1 Single Instance

Informal Discussion. Fix a predicate P : {0, 1}n → {0, 1} and a circuit
C(x, b, r) which takes an arbitrary x ∈ {0, 1}n, a bit b ∈ {0, 1}, and some
randomness r as input. We may think of C as a circuit which tries to distinguish
the case b = P (x) from the case b = 1−P (x). Our idea is to identify a set S for
which we can show the following:

1. If x is picked randomly from S, then Pr[C(x, P (x), r) = 1] ≈ Pr[C(x, 1 −
P (x), r) = 1].

2. C can be used to predict P (x) for a uniform random x correctly with prob-
ability close to 1− 1

2μ(S)

On an informal level, one could say that S explains the hardness of computing P
from C’s point of view: for elements from S the circuit just behaves as a uniform
random guess, on the others it computes (or, more accurately, helps to compute)
P . Readers familiar with Impagliazzo’s hardcore lemma will notice the similarity:
Impagliazzo finds a set which explains the computational difficulty of a predicate
for any circuit of a certain size. Thus, in this sense Impagliazzo’s theorem is
stronger. The advantage of ours is that the proof is technically simpler, and that
it can be used in the interactive setting (see Section 3.3) which seemingly comes
from the fact that it helps to build non-rewinding proofs.
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Fig. 1. Intuition for the proof of Theorem 1. In both pictures, on the vertical axis,
the advantage of the circuit in guessing right over a random guess is depicted. The
elements are then sorted according to this quantity. The point x∗ is chosen such that
the area of A is slightly smaller than the area of B.

The Theorem. The following theorem formalizes the above discussion. It will
find S by producing a circuit which recognizes it, and also produces a circuit Q
which uses C in order to predict P .

Theorem 1. Let P : {0, 1}n → {0, 1} be a computable predicate. There is an al-
gorithm Gen which takes as input a randomized circuit C(x, b, r) and a parameter
ε, and outputs two deterministic circuits Q and S, both of size size(C)·poly(n, 1

ε ),
as well as δ ∈ [0, 1], such that almost surely the following holds:

Large Set: S(x, P (x)) recognizes a set S∗ = {x|S(x, P (x)) = 1} of density at
least μ(S∗) ≥ δ.

Indistinguishability: For the above set S∗ we have∣∣ Pr
x←{0,1}n,r

[C(x, P (x), r) = 1]− Pr
x←{0,1}n,r

[C(x, P ′(x), r) = 1]
∣∣ ≤ ε, (1)

where P ′(x) := P (x)⊕S(x), i.e., P ′ is the predicate which equals P outside S
and differs from P within S.
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Predictability: Q predicts P well: Pr
x←{0,1}n

[Q(x) = P (x)] ≥ 1− δ

2
.

Additionally, these algorithms have the following properties:

1. Unless δ = 1 algorithm Q predicts slightly better:1 Pr[Q(x) = P (x)] ≥ 1 −
δ
2 + ε

4 .
2. If P is efficiently samplable (i.e., pairs (x, P (x)) can be generated in polyno-

mial time), Gen runs in time poly(n, 1
ε ).

3. Gen, S, and Q can be implemented with oracle access to C only (i.e., they
do not use the description of C).

4. When thought as oracle circuits, S and Q use the oracle C at most O( nε2 )
times. Also, they both treat x obliviously, and their output only depends on
the number of 1’s obtained from the oracle calls to C and, in case of S, the
input P (x).

The proof uses no new techniques. For example, it is very similar to Lemma 2.4
in [19], which in turn is implicit in [31,11] (see also Lemma 6.6 and Claim 7 on
page 121 in [20]). Our main contribution here is to give the statement and to
note that it is very powerful. The proof itself is only given in the full version of
the paper [22], which we encourage the reader to view. It is only remarkable for
how straight-forward it is (given the statement).

Proof Overview. We assume that overall C(x, P (x), r) is more often 1 than
C(x, 1−P (x), r). Make S the largest set for which the Indistinguishability prop-
erty is satisfied as follows: order the elements of {0, 1}n according to Δx :=
Prr[C(x, P (x), r) = 1] − Prr[C(x, 1 − P (x), r) = 1], and insert them into S se-
quentially until both Prx←S,r[C(x, P (x), r) = 1] > Prx←S,r[C(x, 1−P (x), r) = 1]
and indistinguishability is violated. Then, it only remains to describe Q. For any
x /∈ S note that Pr[C(x, P (x), r) = 1]− Pr[C(x, 1 − P (x), r) = 1] ≥ ε, as other-
wise x could be added to S. Thus, for those elements P (x) is the bit b for which
Pr[C(x, b, r) = 1] is bigger. In this overview we assume that Pr[C(x, b, r) = 1]
can be found exactly, so we let Q(x) compute the probabilities for b = 0 and
b = 1, and answer accordingly; we will call this rule the “Majority Rule”. Clearly,
Q(x) is correct if x /∈ S, and in order to get “predictability”, we only need to
argue that Q is not worse than a random guess on S.

Consider now Figure 1 (a), where the elements are ordered according to Δx.
The areas depicted A and B are roughly equal, which follows by the way we
chose S (note that Prx←S,r[C(x, P (x), r) = 1] − Prx←S,r[C(x, 1 − P (x), r) =
1] = Ex←S [Δx]).

At this point our problem is that the majority rule will give the incorrect
answer for all elements for which Δx < 0, and as shown in Figure 1 (b), this
can be almost all of S, so that in general the above Q does perform worse than
a random guess on S. The solution is to note that it is sufficient to follow the
majority rule in case the gap is bigger than Δx∗ . In the full proof we will see that
if the gap is small so that −Δx∗ ≤ Pr[C(x, 0, r) = 1]− Pr[C(x, 1, r) = 1] ≤ Δx∗

1 This implies that δ ≥ ε
2
, which can always be guaranteed.
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then a randomized decision works: the probability of answering b = 0 is 1 if the
gap is −Δx∗ , the probability of answering b = 0 is 0 if the gap is Δx∗ . When the
gap is in between then the probability of answering b = 0 is linearly interpolated
based on the value of the gap. So for example, if the gap is 0, then b = 0 with
probability 1

2 .2 A bit of thought reveals that this is exactly because the areas A
and B in Figure 1 are almost equal.

In the full proof, we also show how to sample all quantities accurately enough
(which is easy) and how to ensure that S is a set of the right size (which seems
to require a small trick because Δx as defined above is not computable exactly,
and so we actually use a different quantity for Δx). We think that the second is
not really required for the applications later, but it simplifies the statement of
the above theorem and makes it somewhat more intuitive.

3.2 Multiple Instances

Informal Discussion. We explain our idea on an example: suppose we want
to prove Yao’s XOR-Lemma. Thus, we are given a predicate P : {0, 1}n →
{0, 1} which is somewhat hard to compute, i.e., Pr[C(1)(x) = P (x)] < 1 − δ

2
for any circuit C(1) coming from some family of circuits (the superscript (1)
should indicate that this is a circuit operating on a single instance). We want to
show that any circuit C(⊕k) from a related family predicts P (x1)⊕ · · · ⊕ P (xk)
from (x1, . . . , xk) correctly with probability very close to 1

2 , and aiming for a
contradiction we now assume that a circuit C(⊕k) exists which does significantly
better than this is given.

As a first step, we transformC(⊕k) into a circuitC(k)(x1, b1, x2, b2, . . . , xk, bk) as
follows:C(k) invokesC(⊕k)(x1, . . . , xk) and outputs 1 if the result equals b1⊕· · ·⊕
bk, otherwise it outputs 0. We see that we would like to show Pr[C(k)(x1, P (x1),
. . . , xk, P (xk)) = 1] ≈ 1

2 .
Here is the key idea: we apply Theorem 1 sequentially on every position i of

C(k). Done properly, in each position one of the following happens: (a) we can
use C(k) to predict P (x) from x with probability at least 1 − δ

2 , or (b) we find
a large set S∗

i such that if xi ∈ S∗
i , C(k) behaves roughly the same in case bi

equals P (xi) and in case bi is a uniform random bit. If (a) happens at any point
we get a contradiction and are done, so consider the case that (b) happens k
times. Recall now how C(k) was built from C(⊕k): it compares the output of
C(⊕k) to b1 ⊕ · · · ⊕ bk. If xi lands in the large set for any i we can assume that
bi is a random bit (and it is very unlikely that this happens for no i). Then,
C(k) outputs 1 exactly if C(⊕k) correctly predicts a uniform random bit which is
independent of the input to C(⊕k). The probability such a prediction is correct
is exactly 1

2 , and overall we get that C(⊕k) is correct with probability close to 1
2 .

The theorem gives the formal statement for C(k), in the full version the trans-
formation to C(⊕k) is done as an example.
2 It may be instructive to point out another rule which does not work: if one produces

a uniform random bit in case the gap is smaller than Δx∗ then elements in the region
marked A with negative gap larger than Δx∗ are problematic.



General Hardness Amplification of Predicates and Puzzles 27

The Theorem. Fix a predicate P : {0, 1}n → {0, 1} and a boolean circuit
C(k)(x1, b1, . . . , xk, bk). We are interested in the probability that the circuit out-
puts 1 in the following Experiment 1:

Experiment 1:
∀i ∈ {1, . . . , k} : xi ← {0, 1}n
∀i ∈ {1, . . . , k} : bi := P (xi)
r ← {0, 1}∗
output C(k)(x1, b1, . . . , xk, bk, r)

We will claim that there are large sets S∗
1 , . . . , S

∗
k with the property that for any

xi which falls into S∗
i , we can set bi to a random bit and the probability of the

experiment producing a 1 will not change much. However, we will allow the sets
S∗
i to depend on the xj and bj for j < i; we therefore assume that an algorithm

GenS is given which produces such a set on input ti = (x1, b1, . . . , xi−1, bi−1).

Experiment 2:
for i := 1 to k do

ti := (x1, b1, . . . , xi−1, bi−1)
S∗
i := GenS(ti)

xi ← {0, 1}n
if xi ∈ S∗

i then bi ← {0, 1} else bi := P (xi) fi
end for
r ← {0, 1}∗
output C(k)(x1, b1, . . . , xk, bk, r)

Theorem 2 essentially states the following: assume no small circuit can predict
P (x) from x with probability 1 − δ

2 . For any fixed circuit C(k), any ε, and any
k there is an algorithm GenS which produces sets S∗

i with μ(S∗
i ) ≥ δ and such

that the probability that Experiment 1 outputs 1 differs by at most ε from the
probability that Experiment 2 outputs 1.

Theorem 2. Let P be a computable predicate, k, 1
ε ∈ poly(n) parameters. There

are two algorithms Gen and GenS as follows: Gen takes as input a randomized
circuit C(k) and a parameter ε and outputs a deterministic circuit Q of size
size(C(k)) · poly(n) as well as δ ∈ [0, 1]. GenS takes as input a circuit C(k),
a tuple ti, and a parameter ε and outputs a deterministic circuit Sti(x, b) of
size(C(k)) · poly(n). After a run of Gen, almost surely the following properties
are satisfied:

Large Sets: Foranyvalueof ti := (x1, b1, . . . , xi−1, bi−1) thecircuitSti(xi, P (xi))
recognizes a set S∗

i := {xi|S(ti, xi, P (xi)) = 1}. The probability that in an ex-
ecution of Experiment 2 we have μ(S∗

i ) < δ for any of the S∗
i which occur is at

most ε.
Indistinguishability: Using sets S∗

ti as above in Experiment 2 gives∣∣Pr[Experiment 1 outputs 1]− Pr[Experiment 2 outputs 1
∣∣ ≤ ε. (2)

Predictability: Q predicts P well: Pr
x←{0,1}n

[Q(x) = P (x)] ≥ 1− δ

2
.
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Additionally, these algorithms have the following properties:

1. Unless δ = 1 algorithm Q predicts slightly better: Pr[Q(x) = P (x)] ≥ 1− δ
2 +

ε
16k .

2. If P is efficiently samplable (i.e., pairs (x, P (x)) can be generated in polyno-
mial time), Gen and GenS run in time poly(n).

3. Gen, GenS, Sti , and Q can be implemented with oracle access to C only (i.e.,
they don’t use the description of C).

4. When thought of as oracle circuits, Sti and Q use the oracle C at most
O(k

2n
ε2 ) times. Also, they both treat x obliviously and are non-rewinding.

Finally, their output only depends on the number of 1’s obtained from the
oracle calls to C and, in case of Sti , the input P (x).

The proof is given in the full version, but follows the informal discussion above.
We encourage the interested reader to see the full version [22].

3.3 Cryptographic Protocols Which Output Single Bits

Again we start with an example: consider a slightly weak bit commitment proto-
col, where the receiver can guess the bit the sender committed to with probability
1− δ

2 . In such a case, we might want to strengthen the scheme. For example, in
order to commit to a single bit b, we could ask the sender to first commit to two
random bits r1 and r2, and then send b ⊕ r1 ⊕ r2 to the receiver. The hope is
that the receiver has to guess both r1 and r2 correctly in order to find b, and so
the protocol should be more secure.

In the case where the protocol has some defect that sometimes allows a sender
to cheat, we might also want to consider the protocol where the sender commits
twice to b, or, alternatively, that he commits to r1, then to r2, and sends both
b⊕r1 and b⊕r2 to the receiver. In this case, one can hope that a cheating receiver
still needs to break the protocol at least once, and that the security should not
degrade too much.

Just how will the security change? We want to consider a scenario in which
the security is information theoretic. We can do this by assuming that instead
of the weak protocol, a trusted party distributes a bit X to the sender and some
side information Z to the receiver. The guarantee is that for any f , Pr[f(Z) =
X ] ≤ 1− δ

2 . In such a case, one can easily obtain bounds on the security of the
above protocols, and the hope is that the same bounds hold in the computational
case. The theorem below states that this is indeed true (for protocols where the
security consists of hiding single bits).

We remark that while the two aforementioned examples of protocol composi-
tion are already handled in [16] (their result applies to any direct product and
any XOR as above), Theorem 3 handles any information theoretic amplification
protocol as long as it can be implemented efficiently.

Definition 3. A pair (X,Z) of random variables over {0, 1} × Z, where Z is
any finite set, is δ-hiding if

max
f :Z→{0,1}

Pr[f(Z) = X ] ≤ 1− δ

2
. (3)
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Theorem 3. Let a cryptographic protocol (which we think of as “weak”) W =
(AW , BW ) be given in which AW has as input a single bit c. Assume that there is
a function δ such that for any polynomial time adversary B∗

W there is a negligible
function ν such that

Pr
x←{0,1}

[〈AW (x), B∗
W 〉B = x] ≤ 1− δ

2
+ ν(n), (4)

where the probability is also over the coins of AW and B∗
W (if any).

Let further an information theoretic protocol I = (AI , BI) be given. In I, AI

takes k input bits (X1, . . . , Xk) and has a single output bit. Furthermore, assume
that I is hiding in the sense that for k independent δ-hiding random variables
(Xi, Zi), any (information theoretic) adversary B∗

I , and for some function η(k):

Pr
[
〈AI(X1, . . . , Xk), B∗

I (Z1, . . . , Zk)〉A =
〈AI(X1, . . . , Xk), B∗

I (Z1, . . . , Zk)〉B

]
<

1
2

+ η(k). (5)

Let S = (AS , BS) be the protocol where A and B first execute k(n) copies of W
sequentially, where A uses uniform random bits as input. Then, they run a single
execution of protocol I. In the execution to I, A uses his k input bits to the weak
protocols as input. The output of A in S is the output of A in the execution of I.
We also need that (AI , BI) and k(n) are such that I can be run in time poly(n)
for k = k(n).

Then, for any polynomial time B∗
S there is a negligible function ν′ such that

Pr[〈AS , B
∗
S〉A = 〈AS , B

∗
S〉B] ≤ 1

2
+ η(k) + ν′(n) . (6)

Proof. Let x ∈ {0, 1}n be the concatenation of the randomness which A uses in
an execution of the protocol W and his input bit c. We let P : {0, 1}n → {0, 1}
be the predicate which outputs c = P (x).

In order to obtain a contradiction, we fix an adversary B∗
S for the proto-

col S which violates (6). We would like to apply Theorem 2. For this, we define
C(k)(x1, b1, . . . , xk, bk) as follows: C(k) first simulates an interaction of B∗

S with
AS , where AS uses randomness xi in the ith invocation of the weak protocol W .
After this, B∗

S is in some state in which it expects an invocation of the informa-
tion theoretic protocol. C(k) simulates this information theoretic protocol, but it
runs AI with inputs b1, . . . , bk instead of the actual inputs to the weak protocols.
In the end, B∗

S produces a guess for the output bit of AS , and C(k) outputs 1 if
this guess equals the output of AI(b1, . . . , bk) in the simulation.

In Experiment 1 of Theorem 2, bi = P (xi) is used, and so C(k) exactly simu-
lates an execution of the protocol S. Since we assume that B∗

S contradicts (6),
we see that the probability that C(k) outputs 1 in Experiment 1 is, for infinitely
many n and some constant c at least 1

2 + η(k) + n−c.
We now apply Theorem 2 on the circuit C(k) with parameter n−c/3. This

yields a parameter δT2 (the subscript indicates that it is from Theorem 2). We
claim that

δT2 ≤ δ almost surely. (7)
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To see this, we assume otherwise and obtain a contradiction. In Experiment 2,
Let Γi be the communication produced by the weak protocol W in round i.
Assuming all sets S∗

i in the execution are of size at least δ (this happens with
probability at least 1−n−c/3), the tuples (bi, Γi) are δ-hiding random variables.
Consequently, when the circuit C(k) simulates the information theoretic protocol
I using bits bi, it actually simulates it in an instance in which it was designed
to be used. Since (5) holds for an arbitrary adversary in this case we get that

Pr[C(k) outputs 1 in Experiment 2|No set S∗
i was of measure less than δ]

≤ 1
2

+ η(k). (8)

Therefore, the probability that C(k) outputs 1 in Experiment 2 is at most 1
2 +

η(k) + n−c

3 , and using “indistinguishability” the probability that C(k) outputs 1
in Experiment 1 is at most 1

2 + η(k) + 2n−c

3 . However, our assumption was that
the probability that C(k) outputs 1 is at least 1

2 + η(k) + n−c, and so almost
surely Gen does not output such a big δT2, establishing (7).

Theorem 2 also provides us with a non-rewinding circuit Q which treats x
obliviously and which satisfies “predictability”. We explain how to use Q to
break (4), the security property of the weak protocol W .

Since Q(x) is non-rewinding, it uses the input x exclusively in a fixed posi-
tion i, together with a fixed prefix (x1, . . . , xi−1), in all calls to C(k). We first
extract i and the prefix.

We now explain a crucial point: how to interact with AW in order to cheat.
We simulate the i − 1 interactions of AW with B∗

S up to and including round
i− 1 using (x1, . . . , xi−1) as the input bit and randomness of A. In round i, we
continue with the actual interaction with AW . Here, AW uses randomness x (on
which we, however, do not have access).

After this interaction, we need to be able to extract the bit c of AW . For this,
we evaluate Q(x), which we claim is possible. Since Q is oblivious and deter-
ministic, the only difficulty is in evaluating the calls to C(k)(x1, b1, . . . , xk, bk, r).
All calls use the same values for x1, . . . , xi. Recalling how C(k) is defined, we see
that we can continue from the state we had after the interaction with AW in
order to evaluate C(k) completely (note that all the bi are given, so the we can
also evaluate the information theoretic protocol I).

We get from Theorem 2 that Q satisfies, almost surely, infinitely often, us-
ing (7)

Pr
x←{0,1}n

[Q(x) = P (x)] ≥ 1− δ

2
+

1
48knc

. (9)

This therefore gives a contradiction to (4): in order to get rid of the “almost
surely”, we just consider the algorithm which first runs Gen and then applies
the above protocol – this only loses a negligible additive term in the probability.
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4 Weakly Verifiable Puzzles

4.1 Interactive Weakly Verifiable Puzzles

Consider a bit commitment protocol, in which a sender commits to a single bit
b. In a first phase the sender and the receiver enact an interactive protocol, after
which the sender holds some opening information y, and the receiver has some
way of checking whether (y, b) is a valid decommitment. If the protocol is secure,
then it is a computationally hard problem for the sender to come up with two
strings y0 and y1 such that both (y0, 0) and (y1, 1) are valid decommitments, in
addition, he may not even know the function the receiver will use to validate
a decommitment pair,3 and thus in general there is no way for the sender to
recognize a valid pair (y0, y1). We abstract this situation in the following defini-
tion; in it we can say that the solver produces no output because in the security
property all efficient algorithms are considered anyhow.

Definition 4. An interactive weakly verifiable puzzle consists of a protocol
(P, S) and is given by two interactive algorithms P and S, in which P (the
problem poser) produces as output a circuit Γ , and S (the solver) produces no
output.

The success probability of an interactive algorithm S∗ in solving a weakly
verifiable puzzle (P, S) is:

Pr[y = 〈P, S∗〉S∗ ;Γ (y) = 1] (10)

The puzzle is non-interactive if the protocol consists of P sending a single mes-
sage to S.

Our definition of a non-interactive weakly verifiable puzzle coincides with the
usual one [4]. The security property of an interactive weakly verifiable puzzle is
that for any algorithm (or circuit) S∗ of a restricted class, the success probability
of S∗ is bounded.

An important property is that S∗ does not get access to Γ . Besides bit com-
mitment above, an example of such a puzzle is a CAPTCHA. In both cases it is
not obvious whether a given solution is actually a correct solution.

4.2 Strengthening Interactive Weakly Verifiable Puzzles

Suppose that g is a monotone boolean function with k bits of input, and (P (1), S(1))
is a puzzle. We can consider the following new puzzle (P (g), S(g)): the sender and
the receiver sequentially create k instances of (P (1), S(1)), which yields circuits

3 One might want to generalize this by saying that in order to open the commitment,
sender and receiver enter yet another interactive protocol. However, our presentation
is without loss of generality: the sender can send the randomness he used in the first
protocol instead. The receiver then checks, if this randomness together with b indeed
produces the communication in the first round, and whether in a simulation of the
second protocol he accepts.
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Γ (1), . . . , Γ (k) for P . Then P (g) outputs the circuit Γ (g) which computes
Γ (g)(y1, . . . , yk) = g(Γ (1)(y1), . . . , Γ (k)(yk)).

Intuitively, if no algorithm solves a single puzzle (P (1), S(1)) with higher prob-
ability than δ, the probability that an algorithm solves (P (g), S(g)) should not be
more than approximately Pru←μk

δ
[g(u) = 1]. (Recall that μkδ is the distribution

on k-bits, where each bit is independent and 1 with probability δ.) The following
theorem states exactly this.

Theorem 4. There exists an algorithm Gen(C, g, ε, δ, n) which takes as input
a circuit C, a monotone function g, and parameters ε, δ, n, and produces a cir-
cuit D such that the following holds. If C is such that

Pr[Γ (g)(〈P (g), C〉C) = 1] ≥ Pr
u←μk

δ

[g(u) = 1] + ε, (11)

then, D satisfies almost surely,

Pr[Γ (1)(〈P (1), D〉D) = 1] ≥ δ +
ε

6k
. (12)

Additionally, Gen and D only require oracle access to both g and C, and D is
non-rewinding.

Furthermore, size(D) ≤ size(C)· 6kε log(6k
ε ) and Gen runs in time poly(k, 1

ε , n)
with oracle calls to C.

The monotone restriction on g in the previous theorem is necessary. For example,
consider g(b) = 1− b. It is possible to satisfy g with probability 1 by producing
an incorrect answer, but Pru←μδ

[g(u) = 1] = 1− δ.

4.3 Proof of Theorem 4

Algorithm Description. If k = 1, Gen creates the circuit D which runs C and
outputs its answer. Then either g is the identity or a constant function. If g is
the identity, the statement is trivial. If g is a constant function, the statement
is vacuously true. D is non-rewinding.

In the general case, we need some notation. For b ∈ {0, 1}, let Gb denote the
set of inputs Gb := {b1, . . . , bk|g(b, b2, . . . , bk) = 1} (i.e., the first input bit is
disregarded and replaced by b). We remark that G0 ⊆ G1 due to monotonicity
of g. We will commonly denote by u = u1u2 · · ·uk ∈ {0, 1}k an element drawn
from μkδ . After a given interaction of C with P (g), let c = c1c2 · · · ck ∈ {0, 1}k
denote the string where ci is the output of Γ (i) on input yi, which is the ith
output of C. We denote the randomness used by P (g) in execution i by πi.

For π∗, b ∈ {0, 1}n × {0, 1} we now define the surplus Sπ∗,b. It denotes how
much better C performs than “it should”, in the case where the randomness
of P (g) in the first instance is fixed to π∗, and the output of Γ (1)(y1) is ignored
(i.e., we don’t care whether C solves the first puzzle right), and b is used instead:

Sπ∗,b := Pr
π(k)

[c ∈ Gb|π1 = π∗]− Pr
u←μk

δ

[u ∈ Gb], (13)
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where the first probability is also over the interaction between P (g) and C as
well as randomness C uses (if any).

The algorithm then works as follows: first pick 6k
ε log(n) candidates π∗ for the

randomness of P (g) in the first position. For each of those, simulate the inter-
action (P (g), C) and then get estimates S̃π∗,0 and S̃π∗,1 of Sπ∗,0 and Sπ∗,1 such
that |S̃π∗,b − Sπ∗,b| ≤ ε

4k almost surely.

We consider two cases:
– One of the estimates satisfies S̃π∗,b ≥ (1− 3

4k )ε.
In this case, we fix π1 := π∗ and c1 := b, and invoke Gen(C′, g′, (1− 1

k )ε, δ, n),
using the function g′(b2, . . . , bk) = g(c1, b2, . . . , bk) and circuit C′ which is
defined as follows: C′ first (internally) simulates an interaction of P (1) with
C, then follows up with an interaction with P (g′).

– For all estimates S̃x∗,b < (1− 3
4k )ε.

In this case, we output the following circuit DC : in a first phase, use C to
interact with P (1). In the second phase, simulate k − 1 interactions with
P (1) and obtain (y1, . . . , yk) = C(x, x2, . . . , xk). For i = 2, . . . , k set ci =
Γi(yi). If c = (0, c2, . . . , ck) ∈ G1 \ G0, return y1, otherwise repeat the second
phase 6k

ε log(6k
ε ) times. If all attempts fail, return the special value ⊥ (or an

arbitrary answer).

Due to space constraints, the proof of correctness of the above algorithm is
omitted, but can be found in the full version [22].

5 Example: Bit Commitment

Theorems 3 and 4 can be used to show how to strengthen bit commitment
protocols, which was the main open problem in [16]. We explain this as an
example here. Assume we have given a weak bit protocol, where a cheating
receiver can guess a bit after the commitment phase with probability 1− β

2 , and
a cheating sender can change the bit he committed to with probability α. We
show that such a protocol can be strengthened if α < β − 1/ poly(n).

We should point out that a different way to prove a similar theorem exists: one
can first show that such a weak bit-commitment protocol implies one-way func-
tions (using the techniques of [27]). The long sequence of works [17,32,36,33,14]
imply that one-way functions are sufficient to build bit commitment protocols
(the first two papers will yield statistically binding protocols, the last three sta-
tistically hiding protocols). However, this will be less efficient and also seems less
natural than the method we use here.

In the example, we first define weak bit commitment protocols. We then re-
call a theorem by Valiant [37], and then show how to use it to strengthen bit
commitment. However, due to space constraints, the example only appears in
the full version [22].
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Abstract. We consider the task of amplifying the security of a weak
pseudorandom permutation (PRP), called an ε-PRP, for which the com-
putational distinguishing advantage is only guaranteed to be bounded by
some (possibly non-negligible) quantity ε < 1. We prove that the cascade
(i.e., sequential composition) of m ε-PRPs (with independent keys) is an
((m − (m − 1)ε)εm + ν)-PRP, where ν is a negligible function. In the
asymptotic setting, this implies security amplification for all ε < 1− 1

poly ,
and the result extends to two-sided PRPs, where the inverse of the given
permutation is also queried. Furthermore, we show that this result is
essentially tight. This settles a long-standing open problem due to Luby
and Rackoff (STOC ’86).

Our approach relies on the first hardcore lemma for computational
indistinguishability of interactive systems: Given two systems whose
states do not depend on the interaction, and which no efficient adver-
sary can distinguish with advantage better than ε, we show that there
exist events on the choices of the respective states, occurring each with
probability at least 1− ε, such that the two systems are computationally
indistinguishable conditioned on these events.

1 Introduction

1.1 Motivation: Weak PRPs

The security of several cryptographic schemes relies on the assumption that an
underlying block cipher is a pseudorandom permutation (PRP), a keyed family
of permutations E = {Ek}k∈K with the following property: any computationally
bounded distinguisher can only decide with negligible advantage over random
guessing whether it is given access to EK (under a random secret key K) or to
a uniformly chosen permutation with the same domain.

However, pseudorandomness is a very strong requirement, and continuous
progress in cryptanalysis raises some doubts as to whether block-cipher designs
such as the Advanced Encryption Standard (AES) are indeed secure PRPs. It

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 37–54, 2011.
c© International Association for Cryptologic Research 2011
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is therefore a prudent approach, as well as a central question in theoretical
cryptography, to investigate weaker assumptions on a block cipher which are
sufficient to efficiently solve a certain cryptographic task at hand.

A natural weakening of a PRP, considered in this paper, is to only require that
the best advantage of a computationally restricted distinguisher is bounded by
some given quantity ε < 1; we refer to such a primitive as an ε-PRP. In particular,
in the asymptotic setting, ε is not required to be a negligible function. Instead,
it may be a constant or even moderately converge to one as a function of the
security parameter. For instance, common sense dictates that AES is much more
likely to be a 0.99-PRP, rather than a fully secure PRP.

1.2 Our Result: Security Amplification of PRPs by Cascading

We investigate the natural and central problem of finding an efficient construc-
tion of a fully secure PRP (i.e., a δ-PRP for a negligible δ) from any ε-PRP
E = {Ek}k∈K. Such constructions should work for arbitrary ε < 1 and call E

as few times as possible (ideally, log(1/δ) · (log (1/ε))−1 times to implement a
δ-PRP). This is in the same spirit of the long line of research devoted to security
amplification initiated by Yao [16] in the context of one-way functions.

The most natural approach is the m-fold cascade, a construction which out-
puts the value

(Ek1 ◦ · · · ◦ Ekm)(x)

on input x and keys k1, . . . , km (which are chosen independently). Here, ◦ denotes
(sequential) composition of permutations.

Despite its simplicity, proving security amplification for the cascade has been
a long-standing open problem. On the one hand, Luby and Rackoff [6] and
Myers [12] showed that the c-fold cascade is a ((2 − ε)c−1εc + ν)-PRP for any
constant c, where ν is a negligible additive term, but their results fall short
of implying that a sufficiently long cascade yields a fully secure PRP for a non-
negligible ε. On the other hand, Maurer and Tessaro [10] showed that the cascade
of arbitrary (polynomial) length m is a (2m−1εm + ν)-PRP, but their bound,
which only implies security amplification when ε < 1

2 , is clearly not tight in view
of the superior result for the constant-length case [6,12].

Our Result on Cascades. This paper closes this gap by providing an exact
characterization of the security amplification properties of the cascade: We prove
that the cascade of m ε-PRPs (with domain X ) is a ((m− (m− 1)ε)εm + ν)-
PRP, i.e., it is security amplifying for essentially any ε < 1 − 1

|X | .
1 The result

extends to two-sided ε-PRPs, where the inverse can also be queried, and is shown
to be nearly tight. Also, this result arises from the application of new generic
techniques of independent interest, illustrated in the next section.

1 This restriction is necessary, as an ε-PRP with a fixed point (independent of the
key value) can satisfy ε = 1 − 1

|X| , and the cascade obviously preserves such a fixed
point.
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Further Related Work. Less efficient constructions of fully secure PRPs
from ε-PRPs exist: Maurer and Tessaro [11] showed that XORing two indepen-
dent keys at both ends of the cascade yields an (εm + ν)-PRP. Alternatively,
techniques [13,2,10] for strengthening the security of pseudorandom functions
(PRF) can be used in conjunction with known PRF-to-PRP conversion tech-
niques such as [7]. However, this paper improves on these works in at least two
respects: First, we show that similar amplification is achieved with better effi-
ciency by the most natural construction. Second, our approach entails a new set
of generic techniques which promise to be applicable in a wider context.

Additionally, let us point out that cascades have been studied in other contexts
and models; a comprehensive discussion is deferred to the full version due to
space constraints.

1.3 Our General Paradigm: The Interactive Hardcore Lemma and
High-Entropy Permutations

The following technique is well known in the study of random processes: One
can always define events A and B on any two finite random variables X and Y ,
by means of conditional probability distributions PA|X and PB|Y , such that:

(i) X and Y are equally distributed conditioned on the respective events, i.e.,
PX|A = PY |B,

(ii) P [A] = P [B] = 1 − d(X,Y ), where d(X,Y ) is the so called statistical
distance, which equals the best advantage of a computationally unbounded
distinguisher in distinguishing X and Y .

A computational version of this statement is due to Maurer and Tessaro [11],
and was used to prove security amplification results for PRGs. In this paper, we
take this approach one step further by presenting a computational version of the
above statement for discrete interactive systems.
CC-Stateless Systems. We consider the general class of convex-combination
stateless (or simply cc-stateless) interactive systems [10]. Like most crypto-
graphic systems of interest, these systems have the property that the answer
of each query can be seen as depending solely on the query input and on an ini-
tial state, but does not depend on previous queries and their answers. A simple
example is the cc-stateless system implementing a permutation EK for a keyed
family of permutations {Ek}k∈K and a uniform random key K ∈ K. A further
example is a uniform random permutation (URP) P on a set X , a system choos-
ing a permutation P : X → X uniformly at random, and answering each query
x as P (x). Moreover, a randomized encryption scheme where each encryption
depends on the random key and some fresh randomness is also cc-stateless.

We stress that being cc-stateless is a property of the input-output behavior of
a system, rather than of its actual implementation: Indeed, any implementation
using such an initial state may be inefficient (e.g., due to its large size), but at
the same time an efficient implementation of a cc-stateless system may be fully
stateful. For example, an efficient implementation of a URP keeps an interaction-
dependent state (in form of a table of all input-output pairs associated with all
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previous queries) and employs lazy sampling, returning for each new query a
uniformly distributed value among those not returned yet.

The Hardcore Lemma.Our main technical tool is the Hardcore Lemma (HCL)
for computational indistinguishability (Theorem 2): Informally, it states that if
all computationally bounded distinguishers only achieve advantage at most ε in
distinguishing two cc-stateless systems S and T, then there exist events A and
B, defined on the respective initial states of (the cc-stateless representations of)
S and T, such that the following holds:

(i) The (cc-stateless representations of the) systems S and T are computa-
tionally indistinguishable conditioned on the respective events A and B.

(ii) Both events occur with probability at least 1− ε.

In addition, some applications of the HCL require the ability to efficiently sim-
ulate S and T under the assumption that the associated events occur (or do
not occur), possibly with the help of some short (but not necessarily efficiently-
samplable2) advice. In general, it is unclear whether this is possible given any two
events satisfying (i) and (ii), even if both systems are efficiently implementable.

As an illustrative example, let S = EK and T = P, where K ∈ K is uniformly
distributed, E = {Ek}k∈K is an efficiently computable family of permutations,
and P is a URP (all permutations are on the n-bit strings). If E is an ε-PRP,
the HCL yields an event A defined on K and an event B defined on a uniformly
chosen permutation table P , both occurring with probability at least 1 − ε,
such that EK′ (for K ′ sampled from PK|A) and a system P′ (implementing a
permutation table P ′ sampled from PP |B) are computationally indistinguishable.
While EK′ is efficiently implementable given K ′, a representation of P ′ requires
2Θ(n) bits, and it is unclear how to define a short advice (i.e., with length poly(n))
that can be used to efficiently simulate P′. However, quite surprisingly, we will
show that one can always find events with short advice as long as S and T are
efficiently implementable. This will be the major challenge in proving the HCL
for the interactive setting.

The core of our proof is a tight generalization (Theorem 1) of Impagliazzo’s
HCL [5] to the setting of guessing a random bit given access to some interactive
system whose behavior is correlated with the bit value.

Cascade of Permutations with High Min-Entropy. We briefly illustrate
how the HCL is used to prove our bounds for the cascade of ε-PRPs. The main
observation is that P ′ as above has min-entropy at least

H∞(P ′) = log
(

min
π

1
P [P ′ = π]

)
= log

(
min
π

P [B]
P [P = π] · P

[
B
∣∣P = π

]) ≥ log (2n!)− log
(

1
1− ε

)
,

2 For now, we only consider the non-uniform setting, thus efficient samplability is not
a requirement.
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i.e., at most log
(
(1− ε)−1

)
away from the maximum achievable min-entropy.

This gap potentially makes P′ easily distinguishable from a URP. However, we
prove (Theorem 3) that the cascade of (at least) two such permutations is indis-
tinguishable from a URP for computationally unbounded distinguishers making
at most an exponential number of queries and even when allowing queries to the
inverse. (The proof uses techniques from the random systems framework [8], and
is of independent interest.)

The main security amplification result (Theorem 4) follows from the observa-
tion that by the above at least two (independent) permutations EKi and EKj

(for i �= j) in the cascade EK1 ◦ · · ·◦EKm (for independent keys K1, . . . ,Km) are
computationally indistinguishable from P′, except with probability εm + m(1−
ε)εm−1, and in this case the cascade is computationally indistinguishable from a
URP by Theorem 3. The final bound follows from a more fine-grained analysis.
Uniform vs. Non-Uniform Proofs. The results of this paper are formulated
in a concrete, non-uniform, computational model. This simplifies the presen-
tation considerably and helps conveying the main ideas. In the full version, we
highlight the changes required in order to obtain uniform statements and proofs.

2 Preliminaries

Calligraphic letters X ,Y, . . . denote sets and events, upper-case letters X,Y, . . .
random variables (with expected values E [X ] ,E [Y ] , . . .), and lower-case letters
x, y, . . . the values they take. Moreover, P[A] is the probability of an event A (we
denote as A its complement) and we use the shorthands PX(x) := P[X = x],
PX|Y (x, y) := P[X = x|Y = y], PXA|Y B(x, y) := P[A ∧ X = x|B ∧ Y = y],
etc. Also, PX , PX|Y , PAX|BY denote the corresponding (conditional) probability
distributions,3 and x

$← PX is the action of sampling a value x with distribution
PX . (We use x

$← S to denote the special case where x is drawn uniformly
from a finite set S.) The statistical distance d(X,Y ) (or d(PX ,PY )) of X and
Y (both with range S) is defined as d(X,Y ) := 1

2

∑
x∈S |PX(x) − PY (x)| =∑

x:PX(x)≥PY (x) (PX(x)− PY (x)). Also, recall that a function is negligible if it
vanishes faster than the inverse of any polynomial.
Computational Model. We consider interactive randomized stateful algo-
rithms in some a-priori fixed RAM model of computation. Such an algorithm
keeps a state (consisting, say, of the contents of the memory space it employs),
and answers each query depending on the input of this query, some coin flips,
the current state (which may be updated), and (possibly) one or more queries to
an underlying system. It is also convenient to denote by A[σ] the algorithm ob-
tained by setting the state of A to σ (provided σ is a compatible state), and then
behaving according to A’s description. We say that A has time complexity tA
(where tA is a function N×N→ N) if the sum of the length of the description of
A, of s, and the total number of steps of A is at most tA(q, s) for all sequences of
3 In particular, PX|Y and PAX|BY take two arguments corresponding to all possible

values of X and Y , respectively.
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q queries, all compatible initial states with size s, and all compatible interactions
with an underlying system. We use the shorthand tA(q) := tA(q, 0). Furthermore,
sA : N → N is the space complexity of A, where sA(q) is the worst-case amount
of memory used by A when answering any q queries.
Systems and Distinguishers. This paper considers abstract discrete interac-
tive systems [8], denoted by bold-face letters S,T, . . ., taking as inputs queries
X1, X2, . . . and returning outputs Y1, Y2, . . .. Such systems may be implemented
by an interactive algorithm A (in which case we sometimes write A as a place-
holder for the system it implements to explicit this fact), but may also arise
from an arbitrary random process. The input-output behavior of the system
S is fully described by the (infinite) family of conditional probability distri-
butions pS

Yi|XiY i−1 (for i ≥ 1) of the i-th output Yi given the first i queries
X i = [X1, . . . , Xi], and the first i− 1 outputs Y i−1 = [Y1, . . . , Yi−1]. In general,
every statement that involves a system S holds for any realization of the system
S, i.e., it only depends on its input-output behavior. In particular, we say that
two systems S and T are equivalent, denoted S ≡ T, if they have the same
input-output behavior, i.e., pS

Yi|XiY i−1 = pT
Yi|XiY i−1 for all i ≥ 1. Moreover, we

say that an algorithm A implements the system S if A ≡ S.
A distinguisher D is a special type of system which interacts with another

system S by means of q queries and outputs a decision bit D(S) depending on
their outputs: Its advantage in distinguishing systems S and T is

ΔD(S,T) := |P [D(S) = 1]− P [D(T) = 1]| .

Moreover, Δq(S,T) is the best distinguishing advantage ΔD(S,T) over all q-
query D, whereas Δt,q(S,T) is used when the maximization is restricted to
distinguishers implemented by an algorithm with time complexity t.
Stateless Systems. A system S is called stateless if the i-th answer Yi only
depends on the i-th query Xi, that is, there exists a conditional distribution pS

Y |X
such that pS

Yi|XiY i−1(yi, xi, yi−1) = pS
Y |X(yi, xi) for all i ≥ 1, xi = [x1, . . . , xi],

and yi = [y1, . . . , yi]. Furthermore, S is convex-combination-stateless (or simply
cc-stateless) [10] if there exists a system T(·) accessing a random variable S
(called the initial state) such that S ≡ T(S) and T(s) is stateless for all values
s taken by S. To save on notation, we usually write S(·) instead of T(·), but we
stress that S(·) and S are different objects, despite their notational similarity.
We refer to S(S) as the cc-stateless representation of S.

It is crucial to remark that being cc-stateless is a property of the input-output
behavior of a system: Its (efficient) implementation may well be stateful, and
its cc-stateless representation may be completely inefficient (e.g., because the
description of the initial state is even too large to be processed by an efficient
algorithm).
Random Functions and Permutations.A system F taking inputs from a set
X and returning outputs in Y is a random function X → Y if for any two equal
queries Xi = Xj we have Yi = Yj for the respective answers. Furthermore, if
X = Y, it is called a random permutation if Xi �= Xj also implies Yi �= Yj . Typical
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(cc-stateless) examples are uniform random function (URF) R : X → Y, which
answers according to a uniformly chosen function X → Y, a uniform random
permutation (URP) P : X → X , implementing a uniformly chosen permutation
X → X , or EK for a permutation family {Ek}k∈K and a random K ∈ K.

The initial state of a cc-stateless random function F can always be seen with-
out loss of generality as a (randomly chosen) function table F according to which
F answers its queries, and usually write F(x) instead of F (x). In particular, the
inverse Q−1 of a cc-stateless permutation Q is well-defined, and 〈Q〉 is the two-
sided random permutation which allows both forward queries (x,+) returning
Q(x) as well as backward queries (y,−) returning Q−1(y). The cascade Q′ �Q′′

of two random permutations is the system which on input x returns Q′′(Q′(x)),
i.e., it implements the composition of the associated permutation tables. (This
extends naturally to longer cascades.) Note in particular that for any cascade we
have Q1 � · · ·� Qm ≡ P whenever there exists i such that Qi ≡ P for a URP
P. Moreover, we let 〈Q′〉� 〈Q′′〉 := 〈Q′ � Q′′〉.

An efficiently implementable family of permutations E = {Ek}k∈K with do-
main X and indexed by keys k ∈ K is an ε-pseudorandom permutation (ε-PRP)
if Δt,q(EK ,P) ≤ ε for all polynomially bounded t and q, a uniform K ∈ K,
and a URP P. It is a two-sided ε-PRP if 〈EK〉 is efficiently implementable and
Δt,q(〈EK〉 , 〈P〉) ≤ ε for all polynomially bounded t and q.

3 Hardcore Lemmas for Interactive Systems

3.1 System-Bit Pairs, Measures, and State Samplers

We consider the general setting of system-bit pairs [10] (S, B) consisting of a
bit B (with an associated probability distribution PB), and a system S = S(B)
whose behavior depends on the outcome of the bit B. A system-bit pair (S, B)
is to be interpreted as a system which parallely composes S and a correlated
bit B (which is initially chosen, before any interaction with S has taken place).
The notion of a cc-stateless system-bit pair (S(S), B(S)) is obtained naturally.
Also, an implementation A(S,B) of a system-bit pair (S, B) is without loss of
generality an algorithm which outputs the bit B and then simulates the system
S(B).

We associate with every system-bit pair (S, B) a game where an adversary
A interacts with S(B) and outputs a binary guess A(S(B)) ∈ {0, 1} for B: Its
guessing advantage is defined as the quantity

GuessA(B |S) := 2 · P[A(S(B)) = B]− 1 ∈ [−1, 1].

If GuessA(B |S) = 1, then A always guesses B correctly, whereas GuessA(B |S)=
− 1 means that A is always wrong (though flipping A’s output bit yields an ad-
versary which is always correct.) The shorthand Guesst,q(B |S) denotes the best
guessing advantage taken over all adversaries with time complexity t and issuing
at most q queries to S.
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Example 1. An example is the (cc-stateless) system-bit pair (R, B) for a URF
R : X → {0, 1} and B := ⊕x∈XR(x) is the parity of its function table. It is easy
to see that Guessq(B |R) = 0 for all q < |X |.

Example 2. If (F, B) is such that B is uniform, and F behaves as a system S if
B = 0, and as another system T if B = 1, then GuessD(B |F) = ΔD(S,T) for
all D by a standard argument. Note that if both S and T are cc-stateless, then
(F, B) is also cc-stateless.

Measures. A measure M for a cc-stateless system S ≡ S(S), where S ∈ S is
the initial state, is a mapping M : S → [0, 1]. Its density is defined as μ(M) :=
E [M(S)] =

∑
s∈S PS(s) · M(s). The measure M is naturally associated with a

probability distribution PM on S such that PM(s) := PS(s) · M(s) · μ(M)−1

for all s ∈ S. Also, we define the complement of a measure M as the measure
M such that M(s) := 1 −M(s) for all s ∈ S. We repeatedly abuse notation
writing S

$←M instead of S $← PM.
Traditionally, measures are seen as “fuzzy” subsets of S. Alternatively, it

is convenient to think of M in terms of a conditional probability distribution
PA|S with PA|S(s) := M(s) which adjoins the event A on the choice of S: In
particular, μ(M) = P[A], PM = PS|A, and PM = PS|A. In the following, we
stick to measures for stating and proving our hardcore lemmas, while an event-
based view will be useful when exercising these results.

State Samplers. Ideally, the hardcore lemma for a cc-stateless system-bit pair
(S, B) ≡ (S(S), B(S)) (for initial state S ∈ S) states that if Guesst,q(B |S) ≤ ε,
then there exists a measure M on S such that (i) μ(M) ≥ 1 − ε and (ii)
Guesst′,q′(B(S′) |S(S′)) ≈ 0 for S′ $← M and t′, q′ as close as possible to t, q.
Whenever S(S) is a random variable, this is equivalent to (a tight) version of
Impagliazzo’s Hardcore Lemma [4]. However, applications of the hardcore lemma
(as the one we give later in this paper) require the ability, possibly given some
short advice, to efficiently simulate (S(S′), B(S′)) for S′ $←M or (S(S′′), B(S′′))
for S′′ $←M.4 While in the context of random variables the advice is generally
a sample of S′ itself, this approach fails in the setting of interactive systems: Re-
call that the representation (S(S), B(S)) is possibly only a thought experiment,
and the description of S′ may be of exponential size, or no efficient algorithm
implementing (S, B) from S′ exists, even if the system-bit pair itself is efficiently
implementable.

To formalize the concept of an advice distribution, we introduce the notion
of a state sampler for a cc-stateless system (such as e.g. a system-bit pair).

Definition 1 (State Samplers). Let S ≡ S(S) be a cc-stateless system with
implementation AS and S ∈ S, let ζ1, ζ2 ∈ [0, 1], and let M : S → [0, 1] be a

4 Formally, one actually needs to prove that Guesst′,q′(B(S′) |S(S′)) ≈ 0 holds even
given access to the advice: While this is implicit in the non-uniform setting (every
adversary with advice can be turned in an equally good one without advice), the
proof is more challenging in the uniform setting, cf. the full version.



Security Amplification for the Cascade of Arbitrarily Weak PRPs 45

measure for S. A (ζ1, ζ2)-(state) sampler O for M and AS with length � is a
random process O such that:

(i) O always returns a pair (σ, z) with σ being a valid state for AS with |σ| ≤ �
and z ∈ [0, 1];

(ii) For (Σ,Z) $← O, we have5

(AS[Σ], Z) ≡ (S(S), Z ′(S)),

where Z ′(S) ∈ [0, 1] is a random variable (which only depends on S) that
differs from M(S) by at most ζ1, except with probability ζ2, for any value
taken by S.

Example 3. For all implementations AS of S, the all-one measure (i.e., PM = PS)
admits an error-less sampler O which returns the initial (void) state for AS and
z = 1.

Note that O is not required to be efficiently implementable, but black-box access
to state samplers allow for efficient simulation of S(S′) for S′ $←M using reject-
sampling (provided S admits an efficient implementation): Given the output
(Σ,Z) sampled from a (ζ1, ζ2)-sampler O, we flip a coin B with PB(1) = Z:
Consider the distribution PΣ|B=1 of Σ conditioned on the outcome B = 1. If
ζ1 = ζ2 = 0, it is not hard to verify that AS[Σ′] ≡ S(S′) for Σ′ $← PΣ|B=1. This
is because, by definition, we have (AS[Σ], Z,B) ≡ (S(S),M(S), B′), where B′ is
a bit which is 1 with probability M(S), and thus in particular AS[Σ′] ≡ S(S′)
where S′ $← PS|B′=1. In addition, since PB′|S(1, s) := M(s) and PB′(1) :=∑

s∈S PS(s) ·M(s) = μ(M),

PS|B′(s, 1) =M(s) · PS(s) · μ(M)−1 = PM(s).

Of course, one can similarly simulate S(S′′) for S′′ $← PM, as we obtain a
corresponding sampler by just replacing z by 1 − z in the output (σ, z). This
approach can be extended to non-zero errors ζ1 and ζ2 with some care.

3.2 The Hardcore Lemma for System-Bit Pairs

In the following, for understood parameters γ, ε, ζ1, and ζ2, we define

ϕhc :=
6400

γ2(1− ε)4
· ln
(

160
γ(1− ε)3

)
and ψhc :=

200
γ2(1− ε)4ζ2

1
· ln
(

2
ζ2

)
.

We now state the HCL for cc-stateless system-bit pairs. Even though we apply
the result only in a more restricted setting, we prove a more general statement
for arbitrary cc-stateless system-bit pairs.

5 That is, we consider the parallel composition of a system (either AS[Σ] or S(S)) and
a correlated [0, 1]-valued random variable.
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Theorem 1 (HCL for System-Bit Pairs). Let (S, B) ≡ (S(S), B(S)) be
a cc-stateless system-bit pair admitting an implementation A(S,B) with space
complexity sA(S,B). Furthermore, for some integers t, q > 0 and some ε ∈ [0, 1),

Guesst,q(B |S) ≤ ε.

Then, for all 0 < ζ1, ζ2 < 1 and all 0 < γ ≤ 1
2 , there exists a measure M for

(S, B) with μ(M) ≥ 1− ε such that the following two properties are satisfied:

(i) For S′ $←M, t′ := t/ϕhc, and q′ := q/ϕhc,

Guesst′,q′(B(S′) |S(S′)) ≤ γ.

(ii) There exists a (ζ1, ζ2)-sampler for M and A(S,B) with length sA(S,B)(ψhc ·
q′). Moreover, if (S(s), B(s)) is deterministic for all s, then there also exists
a (0, 0)-sampler for M and A(S,B) with length sA(S,B)((7 · γ−2 · (1− ε)−3 +
1) · q′).

In the remainder of this section, we outline the main ideas behind the proof.
The complete proof is found in the full version.
Proof Outline. The proof is by contradiction: We assume that for all mea-
sures M with μ(M) ≥ 1 − ε admitting a (ζ1, ζ2)-sampler as in (ii), there exists
an adversary A with time complexity t′ and query complexity q′ such that
GuessA(B(S′) |S(S′)) > γ for S′ $←M. The core of the proof consists of prov-
ing that, under this assumption, there exists a sufficiently small family of ad-
versaries A (more specifically, |A| = 7 · γ−2 · (1 − ε)−3 + 1) such that either
(A) α(S) > γ holds with probability higher than 1 − 1−ε

4 over the choice of

S, where α(s) := E
[
GuessA

′
(B(s) |S(s))

]
for all s, where A′ $← A, or (B)

E [α(S′)] > Θ
(
(1− ε)2γ

)
for all measures M with density 1− ε and S′ $←M.

In Case (A), a simple majority-voting based strategy yields a good adversary
breaking the assumed hardness of (S, B), whereas in Case (B) such an adversary
can be built fromA using techniques similar to the case of random variables [5,3].
Both adversaries heavily rely on the cc-stateless property of (S, B).

To show the existence of an appropriate family, we associate with each family
A and τ ∈ N a measure MA,τ such that elements for which A is worse, i.e.,
|A| · α(s) ≤ τ , are given high weight (i.e. MA,τ (s) = 1), whereas elements for
which A performs well, i.e., |A|·α(s) ≥ τ+ 1

γ(1−ε) , are not chosen (MA,τ (s) = 0).
An intermediate measure value is assigned to states not falling into one of these
two categories. In particular, M∅,0 is the all-one measure (i.e., PM equals the
state distribution PS), which has density 1 ≥ 1 − ε. A crucial property is that
MA,τ admits an (ζ1, ζ2)-state sampler for all A and τ , which is shown by using
the observation that MA,τ (S) can always be estimated given black-box access
to (S(S), B(S)). We then consider the following iterative process: It starts with
A := ∅ and then, at each round, it possibly increases τ to ensure that μ(MA,τ ) ≥
1−ε and then uses the assumption of the HCL being wrong to find an adversary
achieving advantage larger than γ for MA,τ , and adds it to A. We prove that
within 7 · γ−2 · (1 − ε)−3 + 1 iterations, A satisfies (A) or (B).
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Remark 1. A natural question is whether the HCL can be extended to arbi-
trary system-bit pairs, where the measure is defined on the randomness of
the implementation of the system-bit pair, regardless of the system having a
cc-stateless representation. Yet, techniques similar to the ones used in counter-
examples to soundness amplification for interactive arguments via parallel rep-
etition [1,14] yield (non cc-stateless) efficiently implementable system-bit pairs
for which, given multiple independent instances of the system-bit pair, the prob-
ability of guessing all of the bits given access to all of the associated systems
in parallel does not decrease with the number of instances. If such a a general
HCL were true, then it is not hard to prove that the guessing probability would
decrease exponentially in the number of instances.

3.3 The Hardcore Lemma for Computational Indistinguishability

This section presents the hardcore lemma for computational indistinguishability
of interactive systems, which generalizes the statement for random variables
previously shown in [11].

Theorem 2 (HCL for Computational Indistinguishability). Let S ≡ S(S)
and T ≡ T(T ) be cc-stateless systems, with respective implementations AS (with
space complexity sAS) and AT (with space complexity sAT). Furthermore, for
some integers t, q > 0 and some ε ∈ [0, 1),

Δt,q(S,T) ≤ ε.

Then, for all 0 < ζ1, ζ2 < 1 and all 0 < γ ≤ 1
2 , there exist measures MS and

MT such that μ(MS) ≥ 1− ε and μ(MT) ≥ 1− ε and the following properties
hold:

(i) For S′ $←MS, T ′ $←MT, t′ := t/ϕhc, and q′ := q/ϕhc, we have

Δt′,q′(S(S′),T(T ′)) ≤ 2γ;

(ii) There exist a (ζ1, ζ2)-sampler OS for MS and AS with length sAS(ψhc ·
q′) and a (ζ1, ζ2)-sampler OT for MT and AT with length sAT(ψhc · q′).
Furthermore, if both S and T are random functions, then both samplers
can be made error-less with lengths sAS(ψ · q′) and sAT(ψ · q′), where ψ :=
7 · γ−2 · (1− ε)−3 + 1.

We postpone the proof to the full version, which relies on Theorem 1, and only
present the main ideas in the following.
Proof Sketch.We define (F, B) ≡ (F(X,B), B) to be the cc-stateless system-
bit pair with a uniform random bit B and where F behaves as S if B = 0 and
as T if B = 1. In particular, the initial state (X,B) of (F, B) is sampled by first
letting B

$← {0, 1}, and then choosing X
$← PS if B = 0 and X

$← PT otherwise,
and

(F(x, b), B(x, b)) =
{

(S(x), 0) if b = 0,
(T(x), 1) if b = 1.
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By a standard argument Δt,q(S,T) = Guesst,q(B |F) ≤ ε holds (also cf. Exam-
ple 2), and Theorem 1 thus implies that there exists a measure M for (F, B)
such that μ(M) ≥ 1 − ε, and Guesst′,q′(B′ |F(X ′)) ≤ γ, where (X ′, B′) $←M,
t′ = t/ϕhc, and q′ = q/ϕhc. Define MS(s) := M(s, 0) and MT(t) := M(t, 1),
and note that

PX′B′(s, 0) =
1

2μ(M)
· PS(s) ·MS(s),

PX′B′(t, 1) =
1

2μ(M)
· PT (t) ·MT(t).

(1)

If B′ were uniformly distributed (i.e.,
∑

s PX′B′(s, 0) =
∑

t PX′B′(t, 1) = 1
2 ), we

then would have μ(MS) = μ(MT) = μ(M) ≥ 1 − ε by (1), and (X ′, B′) could
be sampled by choosing B′ uniformly, and letting X ′ = S′ $←MS if B′ = 0, and
X ′ = T ′ $←MT if B′ = 1. This would also yield

Δt′,q′(S(S′),T(T ′)) = Guesst′,q′(B′ |F(X ′)) ≤ γ,

concluding the proof. The main challenge in the full proof is dealing with the
fact that B′ is generally only Θ(γ)-close to uniform.

Remark 2. Theorem 2 can be seen as a computational analogue of Lemma 5
in [9], which shows a similar property for information-theoretic indistinguisha-
bility (i.e., with respect to computationally unbounded distinguishers). Theo-
rem 2 can of course also be used in the IT setting, and it is somewhat stronger
in that it yields events defined on the initial state of the system, instead of
interaction-dependent sequences of events as in [9]. However, Lemma 5 in [9]
holds for arbitrary systems and presents a tight reduction with q′ = q and no
additive term γ, which we do not know how to achieve in the computational
setting.

Connection to Computational Entropy. Let Q be a cc-stateless ran-
dom permutation on X (with N := |X |) with function table Q and such that
Δt,q(Q,P) ≤ ε for a URP P. Theorem 2 yields events A on Q and B on a
uniform permutation table P such that P [A] ≥ 1 − ε, P [B] ≥ 1 − ε, and
Δt′,q′(Q′,P′) ≤ γ, where Q′ and P′ are cc-stateless random functions with
function tables Q′ $← PQ|A and P ′ $← PP |B, respectively. In particular, PP ′(π) =
PP (π)·PB|P (π)

P[B] ≤ 1
(1−ε)·(N !) for all permutations π, and the min-entropy H∞(P ′) :=

− logmaxπ PP ′(π) is at least log(N !) − log
(
(1 − ε)−1

)
. Informally, this can be

interpreted as Q having “computational” min-entropy at most log
(
(1 − ε)−1

)
away from the maximum achievable entropy log(N !) with probability 1 − ε.6

Clearly, the statement also extends to the two-sided case as well as to other
types of systems.

6 We stress, however, that the distribution P ′ depends on t, q, as well as on γ.
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Remark 3. Another useful fact is that P ′ has statistical distance ε from P . This
follows from the observation that the distribution of P ′ is a convex combination
of flat distributions over subsets of size at least (1 − ε) · (N !): As each such
distribution is ε-away from uniform, the bound follows from the convexity of the
statistical distance. Therefore, Δt,q(P′,P) ≤ Δt,q(〈P′〉 , 〈P〉) ≤ d(P ′, P ) ≤ ε for
all t, q.

4 Cascade of Weak Permutations

4.1 Cascade of Permutations with Large Entropy

Let Q1 and Q2 be two independent cc-stateless random permutations on the set
X (with N := |X |) with the property that the min-entropies of their respective
function tables Q1 and Q2 satisfy H∞(Q1) ≥ log(N !) − log

(
(1− ε)−1

)
and

H∞(Q2) ≥ log(N !) − log
(
(1− ε)−1

)
for some ε ∈

[
0, 1− 1

N

)
. We prove that

the cascade Q1 � Q2 is indistinguishable from a URP P for computationally
unbounded distinguishers, both in the one- and in the two-sided cases.

Theorem 3 (Cascade of Large-Entropy Permutations). For all q, Λ ≥ 1,

Δq(〈Q1 � Q2〉 , 〈P〉) ≤ 4qΛ
N + 2Λ(q+Λ)

(1−ε)N + 2
(
q log((1−ε)−1)

Λ

) 1
2

.

The same bound applies to any cascade Q′
1 � · · · � Q′

m of m independent cc-
stateless random permutations such that Q′

i ≡ Q1 and Q′
j ≡ Q2 for some

i < j, as such a cascade can be seen as the cascade of two permutations Q1 :=
Q′

1 � · · ·�Q′
i and Q2 := Q′

i+1 � · · ·�Q′
m with the same min-entropy guarantees

on their function tables. The theorem allows free choice of Λ: For our purposes,
it suffices to set Λ := (logN)ζ (for a slowly growing ζ = ω(1) in the security
parameter logN) to achieve indistinguishability for q = poly(logN) queries and
any ε ≤ 1− (logN)3ζ

N .
The core of the proof, which is omitted for lack of space, is a lemma stating

that 〈Qi〉 (for i = 1, 2) is indistinguishable from a random permutation 〈Qi〉Di

which is initialized by letting a carefully chosen distinguisher Di (making Λ
queries) interact with 〈Qi〉, and then answering queries according to a randomly
chosen permutation consistent with Di’s interaction. (This extends a previous
result by Unruh [15] to random permutations.) We employ tools from the random
systems framework [8] (including a new lemma) to prove that the cascade of two
independent such permutations is indistinguishable from a URP.

4.2 Security Amplification of Weak PRPs

Let Q be a cc-stateless random permutation with domain X (for N := |X | = 2n,
where n is the security parameter) such that 〈Q〉 is implemented by the algorithm
A〈Q〉 with time complexity tA〈Q〉 and space complexity sA〈Q〉 . We also consider
the canonical (efficient) implementation of a two-sided URP 〈P〉 that maintains
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a table consisting of all input-output pairs (xi, yi) of previous queries as its state,
and, upon a new query (x,+) or (y,−), it chooses uniformly at random a y′ (or
x′) not appearing as the second (first) element in a previous input-output pair,
and adds (x, y′) (or (x′, y)) to the table. (If a corresponding pair is in the table,
it answers accordingly.) Thus each query is answered in time O(log(s)), where s
is the size of the table, and s = O(q · n) after q queries.

The following is the main security amplification result of this paper.

Theorem 4. Let Q1, . . . ,Qm be independent instances of Q and let P be a
URP, and assume that for some t, q we have Δt,q(〈Q〉 , 〈P〉) ≤ ε. For all γ > 1
and Λ > 0,

Δt′′,q′′(〈Q1 � · · ·� Qm〉 , 〈P〉) ≤ (m− (m− 1)ε) · εm + 4q′′Λ
N + 2Λ(q′′+Λ)

(1−ε)N

+ 2
(
q′′ log((1−ε)−1)

Λ

) 1
2

+ (2m + 2)γ,

where t′′ := t/ϕhc−(m−1)max
{
tA〈Q〉(q

′′, sA〈Q〉(q
′′ · ψ)),O (q′′ log(q′′ · (ψ + 1)n))

}
and q′′ := q/ϕhc, for ψ := 7 · γ−2 · (1 − ε)−3 + 1 and ϕhc as in Theorem 2.

Essentially the same result can be proven for the single-sided case. The proof
of Theorem 4 follows from the observation that, with very high probability, at
least two permutations in the cascade are computational indistinguishable from
random permutations with large entropy, allowing application of Theorem 3.
Extra work is required to prove a non-trivial bound for the case where at most one
permutation is guaranteed to have high-entropy. The tightness of these bounds
is discussed in Section 4.3.

Proof. Theorem 2 implies that we can define (two-sided) random permutations
〈Q′〉 , 〈Q′′〉, and 〈P′〉 such that the following three properties hold for some p ≤ ε:
(i) The function table of 〈P′〉 has min-entropy at least log(N !)− log

(
(1− ε)−1

)
,

(ii) 〈Q〉 behaves as 〈Q′〉 with probability 1− p and as 〈Q′′〉 with probability p,
and (iii) Δt′,q′′(〈Q′〉 , 〈P′〉) ≤ 2γ for t′ := t/ϕhc. Furthermore, 〈Q′〉 and 〈Q′′〉 can
both be perfectly implemented using A〈Q〉 initialized with some appropriately
distributed state of length at most sA〈Q〉(q

′′ · ψ) given as advice. Similarly, 〈P′〉
can be simulated by running the above canonical algorithm initialized with an
appropriate state of length O(q′′ · ψ · n). (See the discussion in Section 3.1.)

Additionally, for I ⊆ {1, . . . ,m}, letAI be the event that 〈Qi〉 behaves as 〈Q′〉
for all i ∈ I whereas 〈Qi〉 behaves as 〈Q′′〉 for all i /∈ I. Likewise, for independent
instances 〈Q′

i〉 and 〈Q′′
i 〉 (for i = 1, . . . ,m) of 〈Q′〉 and 〈Q′′〉, respectively, let

QI := S1 � · · ·� Sm, where Si := Q′
i for all i ∈ I and Si := Q′′

i for all i /∈ I.
We now fix some distinguisher D with time complexity t′′ and making q′′

queries, and we first observe that

δD(〈Q1 � · · ·� Qm〉 , 〈P〉) =
∑

I⊆{1,...,m}
qI · δD(〈QI〉 , 〈P〉), (2)
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where δD(F,G) := P [D(F) = 1]− P [D(G) = 1] and qI := P [AI ] = (1− p)|I| ·
pm−|I|. Note that the maximum of δD(F,G) over all distinguishers D with time
complexity t′′ and space complexity q′′ is Δt′′,q′′(F,G).

We first upper bound the summands corresponding to sets I with at most one
element. To this end, for all i = 1, . . . ,m, we define the distinguisher Di which,
given access to a two-sided random permutation 〈S〉, outputs

D(
〈
Q′′

1 � · · ·� Q′′
i−1 � S � Q′′

i+1 � · · ·� Q′′
m

〉
),

and is implemented with time complexity t′′ +(m−1)tA〈Q〉(q
′, sA〈Q〉(ψ · q′)) ≤ t′

given the appropriate advice.
We have δ′i := δDi(〈Q′〉 , 〈P〉) = δDi(〈Q′〉 , 〈P′〉) + δDi(〈P′〉 , 〈P〉) ≤ 2γ + ε,

where the bound on the first term follows from the hardcore lemma (for every
fixed value of the advice), whereas the bound on the second term follows from
Remark 3. Additionally, δDi(〈Q〉 , 〈P〉) = (1 − p) · δ′i + p · δ′′i ≤ ε with δ′′i :=
δDi(〈Q′′〉 , 〈P〉) by the indistinguishability assumption on 〈Q〉 and the fact that
t′ < t. Since 〈

Q′′
1 � · · ·� Q′′

i−1 � P � Q′′
i+1 � · · ·� Q′′

m

〉
≡ 〈P〉 ,

we obtain δD(〈Q∅〉 , 〈P〉) = δ′′i and δD(
〈
Q{i}
〉
, 〈P〉) = δ′i for all i ∈ {1, . . . ,m},

and thus∑
|I|≤1

qI · δD(〈QI〉), 〈P〉) =
m∑
i=1

1
m
· pm · δ′′i + pm−1(1− p) · δ′i

≤ max
i∈{1,...,m}

{
pm · δ′′i + m · pm−1 · (1 − p) · δ′i

}
.

However, for all i ∈ {1, . . . ,m}, we combine all of the above observations to
obtain

pmδ′′i + mpm−1(1 − p)δ′i = pm−1(pδ′′i + (1− p)δ′i) + (m− 1)pm−1(1− p)δ′i
≤ pm−1ε + (m− 1)pm−1(1 − p)ε + 2γ
≤ εm + (m− 1)εm(1− ε) + 2γ
= εm(m− (m− 1)ε) + 2γ,

where we also have used p ≤ ε and the fact that pm+ (m− 1)pm−1(1− p) grows
monotonically for p ∈ [0, 1].

To bound the remaining summands of Equation (2) with |I| ≥ 2, we use a
standard hybrid argument and Theorem 3 to obtain

δD(〈QI〉 , 〈P〉) ≤ m · γ +
4q′′Λ
N

+
2Λ(q′′ + Λ)
(1 − ε)N

.

This concludes the proof. 	


The following corollary follows by applying the theorem to all γ = 1/p (for some
polynomial p in n) and to all polynomially bounded t, q, and by choosing an
appropriate Λ := nω(1):
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Corollary 1. Let E = {Ek}k∈K be a (two-sided) ε-PRP for ε ≤ 1 − 1
poly(n) ,

where n is the security parameter. Then, for any m = poly(n), the cascade {Ek1 ◦
· · · ◦ Ekm}k1,...,km∈K is a (two-sided) (εm(m − (m − 1)ε) + ν)-PRP for some
negligible function ν, where ◦ denotes permutation composition.

4.3 Tightness

Let ε < 1 − 2−n be such that log
(
(1− ε)−1

)
∈ {1, . . . , n}. Let Q : {0, 1}n →

{0, 1}n be the cc-stateless random permutation which initially chooses B ∈ {0, 1}
with PB(0) = ε. If B = 0, then Q behaves as the identity permutation id,
whereas if B = 1 it behaves as a uniformly chosen permutation Q′ with the
constraint that the first log

(
(1− ε)−1

)
bits of Q′(0n) are all equal to 0. Clearly,

it is possible to give an efficient stateful algorithm implementing Q (or 〈Q〉) by
using lazy sampling.7 Also, let Q1, . . . ,Qm be independent instances of Q. We
prove the following two statements:

(i) For all distinguishers D and an n-bit URP P, we have ΔD(〈Q〉 , 〈P〉) ≤ ε,
regardless of their computing power.

(ii) There exists a constant-time distinguisher D∗ making one single (forward)
query such that

ΔD∗
(Q1 � · · ·� Qm,P) ≥ (m− (m− 1)ε)εm − 1

2n
.

Hence, the bound of Theorem 4 cannot be substantially improved, even if allow-
ing a huge security loss (i.e., t′′ << t and q′′ << q). This extends to arbitrary
m a previous tightness result given by Myers [12] for the special case m = 2.
Q is a two-sided ε-PRP. In the following, let Q and P be random variables
representing the distributions of the permutation tables of Q and P, respectively.
There are (1 − ε)(2n!) permutations π for which the last log

(
(1 − ε)−1

)
bits of

π(0n) all equal to 0, and the identity id is one such permutation. Hence,

PQ(id) = ε + (1− ε) · 1
(1− ε)(2n!)

= ε +
1

2n!
≥ 1

2n!
= PP (id).

For all π �= id, we have PQ(π) ≤ (1 − ε) · 1
(1−ε)(2n!) = 1

2n! = PP (π). This yields
ΔD(〈P〉 , 〈Q〉) ≤ d(P,Q) = PQ(id)− PP (id) = ε for all distinguishers D.

7 Also, from any PRP E = {Ek}k∈{0,1}n with n-bit string domain, we can define
a permutation family E′ = {E′

k′}k′∈{0,1}log(1/ε)+n which is computationally in-
distinguishable from Q under a uniform (log(1/ε) + n)-bit random key: For all
k′ ∈ {0, 1}log(1/ε) and k ∈ {0, 1}n, let E′

k′‖k(x) := x if k′ = 0log(1/ε), and
E′

k′‖k(x) := Ek(x) ⊕ Ek(0n)|log((1−ε)−1) otherwise, where z|r sets the last n − r

bits of z ∈ {0, 1}n to be 0 (and leaves the first r unchanged) and ‖ denotes string
concatenation.
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Lower Bound for Distinguishing the Cascade. We define D∗ as the dis-
tinguisher querying 0n and outputting 1 if and only if the first log

(
(1 − ε)−1

)
bits of the resulting output are all 0, and outputting 0 otherwise. In particu-
lar, P[D∗(P) = 1] = 2− log((1−ε)−1) = 1 − ε, as the output of P on input 0n is
uniform.

Denote as Bi the bit B associated with the i-th instance Qi, and let AI for
I ⊆ {1, . . . ,m} be the event that Bi = 1 for all i ∈ I and Bi = 0 for all
i /∈ I. Furthermore, let E be the event that AI occurs for some I with |I| ≤ 1.
Clearly, P [E ] = εm + m(1 − ε)εm−1 and P

[
D∗(Q1 � · · ·� Qm) = 1

∣∣ E] = 1,
since Q1 � · · ·�Qm under E behaves either as the identity or as Q′, and in both
cases the first log

(
(1− ε)−1

)
output bits are all 0.

Let us fix I with k := |I| ≥ 2, and let Q′
1, . . . ,Q

′
k be independent random

permutations answering according to Q′. Then,

P
[
D∗(Q1 � · · ·� Qm) = 1

∣∣AI
]

= P [D∗(Q′
1 � · · ·� Q′

k) = 1] .

For any input x �= 0n the probability that the first log
(
(1− ε)−1

)
output bits of

Q′
k(x) are all 0 is exactly 1 − ε, whereas the probability that Q′

k is invoked on
0n is at most 1

(1−ε)2n (as regardless of the input, the output Q′
k−1 is uniformly

distributed on a set of at least size (1 − ε)2n), and therefore

P [D∗(Q′
1 � · · ·� Q′

k) = 1] ≥
(

1− 1
(1− ε)2n

)
· (1− ε) = 1− ε− 1

2n
,

which in turn implies P
[
D∗(Q1 � · · ·� Qm) = 1

∣∣ E] ≥ 1 − ε − 1
2n . From this,

we conclude ΔD∗
(Q1 � · · ·� Qm,P) ≥ (m− (m− 1)ε)εm − 1

2n .

5 Conclusions and Open Problems

This paper has presented the first tight analysis of the security amplification
properties of the cascade of weak PRPs, both in the one- and two-sided cases.
Our main tool is a hardcore lemma (Theorem 2) for computational indistin-
guishability of discrete interactive cc-stateless systems. It is our belief that the
generality of this result makes it suitable to the solution of a number of other
problems. For instance, an interesting problem is whether parallel and determin-
istic security-amplifying constructions for arbitrarily weak pseudorandom func-
tions exist. To date, the best known constructions are either randomized [13,10],
or only work for moderately weak PRFs [2,10]. Also, quantitative improvements
of our results should also be of interest. One may try to minimize the length of
the state output by the state sampler or to improve the bound of Theorem 3.
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Dense Model Theorems and Their Applications

Luca Trevisan�

Department of Computer Science, Stanford University,
Stanford CA 94305

In 2004, Ben Green and Terry Tao [6] proved that, for every k, there are infinitely
many length-k arithmetic progressions made entirely of prime numbers. This
settled a very long-standing open question in number theory that had been
open even for the k = 4 case.

A key innovation in their proof is a “transference” or “dense model” theorem
that, described in a “computer science terminology,” states that if R is a “pseu-
dorandom” set of integers, and P ⊆ R is a subset of R that has positive density
within R, then there exists a set of integers M that has positive density within
all of N and that is “indistinguishable” from P in the sense that if a statistical
property of a certain type is true for M then it must also be true for P .

Green and Tao apply their theorem to the case in which: (i) R are the almost-
primes, integers with few, large, prime factors, which were known to have strong
pseudorandomness properties; and (ii) P are the primes, which are known to have
positive density inR, when the proper quantitative definition ofR is given. Because
of Szemerédi’s Theorem [11, 12], M contains infinitely many arithmetic
progressions of any length and, in fact, the probability that a random length-k pro-
gression is entirely contained in M is within a constant factor of the probability
that are random k-tuple of elements is entirely contained in M . The notion of “in-
distinguishability” between M and P is such that this statistical property must
be true for P too, and so not only it follows that P contains infinitely many arith-
metic progressions of any length, but even the stronger statement that there are
Ωk(n2/(logn)k) length-k progressions entirely composed of primes less than n.

A later paper of Tao and Ziegler [13] presents a more abstract version of the
Green-Tao dense model theorem that, qualitatively, can be given the following
translation in computer science terminology: if R is a pseudorandom distribution
over a universe X , and D is a distribution that is c-dominated by R, in the sense
that D(x) ≤ c · R(x) for a domination parameter c, then there is a model dis-
tribution M such that D and M are indistinguishable, and M is 2c-dominated
by the uniform distribution over X . In particular, M has very high entropy
log2 |X | − log2 c + 1, and so D has very high pseudoentropy. Unfortunately, the
proof in [6,13], which is based on the proof of the Szemerédi Regularity Lemma,
does not give the right quantitative result, because the complexity of the “se-
curity reduction” is exponential in the accuracy of the indistinguishability that
one wants to achieve.
� This material is based upon work supported by the National Science Foundation

under Grant No. CCF-1017403.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 55–57, 2011.
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Reingold, Trevisan, Tulsiani and Vadhan [10] provide an alternative proof
based on duality of linear programming, inspired by Nisan’s proof of the Im-
pagliazzo hard-core lemma [7], which has a security reduction of polynomial
complexity and hence works with “cryptographically strong” notions of pseu-
dorandomness and indistinguishability. This gave a new characterization of the
notion of pseudoentropy, which adds to the study of Barak, Shaltiel and Wigder-
son [1], who had proved equivalences between various computational analogs of
entropy. Gowers [3] independently discovered the same argument based on du-
ality of linear programming, which he has applied to other problems in additive
combinatorics in joint work with Wolfe [4, 5].

Dziembowski and Pietrzak [2] formulated the computational dense model the-
orem in independent work (not inspired by the number-theoretic analog), and
proved it based on a result that is attributed to [1], although it is actually first
proved in [10]. Dziembowski and Pietrzak apply the dense model theorem to the
task of designing cryptosystems that are resilient to key leakage, introducing an
approach that has been tremendously influential.

Mironov, Pandey, Reingold and Vadhan [9] give an application of the dense
model theorem to the study of computational differential privacy.

Impagliazzo [8] showed that the dense model theorem can be proved from a
weaker assumption, giving yet another new characterization of pseudoentropy; he
also showed that one can derive the dense model theorem in a black box way from
any proof of a sufficiently strong version of his hard-core set lemma. This implied
that a computational dense model theorem can be derived from an “iterative”
approach, which is different from both the original argument of Green and Tao
and from the argument based on duality of linear programming. The work of
Trevisan, Tulsiani and Vadhan [14] gives a different way of “tying together” the
Szemerédi regularity lemma, the dense model theorem, the Impagliazzo hard-
core set lemma, and the use of iterative or linear-programming based techniques.

In this talk we will tell the number-theoretic side of this story, and give a
quick overview of the several different, but equivalent, ways in which this family
of results can be thought about.
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Abstract. If a cryptographic primitive remains secure even if � bits about
the secret key are leaked to the adversary, one would expect that at least
one of n independent instantiations of the scheme remains secure given
n · � bits of leakage. This intuition has been proven true for schemes satis-
fying some special information-theoretic properties by Alwen et al. [Euro-
crypt’10]. On the negative side, Lewko and Waters [FOCS’10] construct a
CPA secure public-key encryption scheme for which this intuition fails.

The counterexample of Lewko and Waters leaves open the interesting
possibility that for any scheme there exists a constant c > 0, such that n
fold repetition remains secure against c·n·� bits of leakage. Furthermore,
their counterexample requires the n copies of the encryption scheme to
share a common reference parameter, leaving open the possibility that
the intuition is true for all schemes without common setup.

In this work we give a stronger counterexample ruling out these pos-
sibilities. We construct a signature scheme such that:

1. a single instantiation remains secure given � = log(k) bits of leakage
where k is a security parameter.

2. any polynomial number of independent instantiations can be broken
(in the strongest sense of key-recovery) given �′ = poly(k) bits of
leakage. Note that �′ does not depend on the number of instances.

The computational assumption underlying our counterexample is that
non-interactive computationally sound proofs exist. Moreover, under a
stronger (non-standard) assumption about such proofs, our counterex-
ample does not require a common reference parameter.

The underlying idea of our counterexample is rather generic and can
be applied to other primitives like encryption schemes.

1 Introduction

In a cryptographic security definition one must precisely specify in which way
an anticipated adversary can access the scheme. Classical security definitions
usually give the adversary only black-box access, that is she can observe the
input/output behavior of the scheme, but nothing else is leaked.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 58–69, 2011.
c© International Association for Cryptologic Research 2011
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Unfortunately, in the last two decades, it has become evident that such no-
tions are often insufficient to guarantee security in the real world where the
physical implementation (e.g. on a smart-card) of a scheme is under attack. Two
important types on attacks which are not captured by classical security notions
are side-channel attacks and malware.

Side-Channel Attacks. Cryptanalytic attacks where the adversary exploits
information leakage from the physical implementation of a scheme are called side-
channel attacks. Important examples of side-channels that have been exploited
include measuring the running-time [24,29], electromagnetic radiation [32,17] or
power consumption [25] of a cryptodevice. Cold-boot attacks [19] exploit the fact
that memory retains its content for several seconds or even minutes even after
being removed from a laptop, allowing the adversary to learn (a noisy version of)
the content of the memory. In a probing attack [4], one measures the contents
carried by some wires of the circuit.

Malware. Today most computers (and even simpler devices) are connected to
the Internet, where they are constantly exposed to attacks by malicious softwares
like viruses and Trojans. Even with anti-virus protection in place, it is quite
inevitable that a computer is from time to time infected by malware. Such attacks
are particularly devastating if cryptographic keys are stored on the computer,
as the malware can send them out to the bad guys.

Notions for Key-Leakage. Traditional security notions only consider adver-
saries having black-box access to the primitive at hand, and thus do not capture
side-channel or malware attacks at all. The common approach to protect against
side-channel attacks (similarly for malware) is ad-hoc, in the sense that one has
to devise a countermeasure against all the known attacks. A more recent ap-
proach is to model security against “general” side-channel (or malware) attacks
at the definitional level.

Memory-Attacks. A basic such notion is called “security againstmemory-attacks”.
A cryptographic scheme is secure against memory attacks, if it remains secure
even if a bounded amount of information about the secret key is given to the ad-
versary. In this model, [1,28,7] construct public-key encryption schemes and [22,3]
construct signature schemes, identification schemes and key exchange protocols.

Formally, memory attacks are modeled by giving the adversary – on top of
the normal black-box access – the power to choose any efficient leakage function
f with bounded range � bits; she then gets f(sk) where sk denotes the secret
key of the scheme at hand. Of course � must be significantly smaller than |sk|
since otherwise the adversary can just leak the entire key.

Although in a memory attack the adversary can learn arbitrary leakage, she
is limited to learn a total of � bits. This is not sufficient to protect against most
side-channel attacks or malware, where we need stronger models. One way is to
consider “continuous” leakage, which requires frequent key-updates, or making
the key huge while preserving efficiency of the scheme.
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Continuous Leakage Models. Typical side-channel attacks leak small amounts of
information per invocation, but since a scheme can typically be invoked many
times, no upper bound on the total leakage should be assumed. The notion
of “leakage-resilient cryptography” [15,30,16,33,10,18,21] and the recently intro-
duced model of “continuous memory attacks” [12,8] capture such attacks, allow-
ing the adversary to learn a bounded amount of leakage (computed by adaptively
chosen leakage functions) with every invocation. In the model of leakage-resilience
one needs the additional assumption that during each invocation, only the part
of the memory that is actually accessed leaks. Continuous memory attacks re-
quire (almost) leakage free update phases.

The Bounded Retrieval Model. The bounded-retrieval model (BRM) [13,11] pro-
pose a solution to the leakage of cryptographic keys from devices which can get
infected by malware as explained above. The idea is to design schemes where
the key can be made huge (2GB, say), and the scheme remains secure even if
a large amount (1GB, say) of arbitrary information of the key is leaked. The
key is protected, even if the computer is infected by malware which can perform
arbitrary computation on the infected computer, but can only send out at most
1GB worth of data, either due to low bandwidth or because larger leakage can be
detected. This notion is strictly stronger than security against memory attacks,
as here one additionally requires that the efficiency of the scheme is basically
independent of the size of the secret key. In the BRM model, symmetric au-
thentication schemes [13,11,9], password authentication [11] and secret-sharing
[14] were constructed. Recently the first public-key primitives in the BRM model
were constructed by Alwen at al.[3,2].1

Security Amplification by Repetition. Given a scheme that withstands
memory attacks with, say � = |sk|/2 leakage, we can construct a scheme that
withstands 1GB of leakage by using a huge key |sk| =2GB. This would not be
considered a solution in the BRM model, as this model requires the efficiency
of the scheme to depend only on some security parameter k, but not (or only
logarithmically) on the key length (In particular, schemes in the BRM model
cannot even read the entire key on a single invocation.)

The approach taken by Alwen et al. [3,2] is to use parallel repetition. They
start with a scheme which can tolerate � bits of leakage, and run this scheme
n times in parallel. For a signature scheme this means to sample n secret keys
sk1, . . . , skn, a signature for the parallel scheme would then consist of n signa-
tures, using the respective keys.2

1 The BRM predates the notion of memory-attacks, but public-key cryptography in
the BRM came only after it was constructed in the model of memory attacks.

2 This is still not really a scheme in the BRM model as efficiency of the scheme is
linear in n. To actually get signatures, [3] only use a cleverly chosen subset of the
keys for signing, and also must “compress” the n public keys in order to make their
size independent of n.
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The hope is that if the signature scheme is secure against � bits of leakage, the
parallel scheme will remain secure given n · � bits of leakage. Alwen et al. prove
that for their particular scheme this is indeed the case, but their proof exploits
information theoretic properties of the scheme, and cannot be generalized to
work for any scheme.

The Counterexample of Lewko and Waters. Recently, Lewko and Waters
[26] showed that in fact, n-fold parallel repetition does not, in general, amplify
leakage resilience from � to n · � bits. They construct a scheme (their main
example is encryption, but it is outlined how to adapt the counterexample to
signatures.) where a single instance is secure given � bits of leakage, but can
be broken given c · n · � bits of leakage for some constant c < 1. Their attack
also requires a common setup, in that all the instances of the basic scheme in
the parallel system must be over the same group, and the group order must be
secret.3

Our Results. The counterexample of Lewko and Waters leaves open the pos-
sibility that for every scheme, there exists a constant c > 0 such that n-fold
parallel repetition (even with common setup) amplifies leakage-resilience from �
to c · n · � bits.

Moreover the common setup seems crucial for their counterexample, and it
leaves open the question whether n-fold parallel repetition without common
setup amplifies leakage-resilience from � to n · � bits for all schemes.

We give a new counterexample that answers both questions in the negative
(albeit the 2nd only under a non-standard assumption, details are given below.)
More concretely, from any secure signature scheme, we construct a new signature
scheme such that:

1. a single instantiation of the scheme remains secure given � = log(k) bits of
leakage where k is a security parameter.

2. n independent instances (where n can be any polynomial in k) of the scheme
can be broken (in the strongest sense of key-recovery) given �′ = poly(k)
bits of leakage.

Note that �′ – the leakage needed to break n instances – does not even depend
on n.

Our techniques are quite general and we anticipate that they can be extended
to construct counter-examples for other primitives as well. Besides the coun-
terexample for signature schemes just mentioned (which also works for one-time
signatures), we provide a similar counterexample for CCA-secure encryption
schemes.

We note here that the results of [26] are applicable to even 1-bit (CPA-secure)
encryption schemes and signature schemes with “random message unforgeability
under no-message attack”, while our techniques do not seem to lend themselves
to such settings.
3 The constant c depends on the underlying group, and can be made arbitrary small,

but once the group is fixed, so is c.
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The main assumption underlying our results is the existence of non-interactive
CS proofs (see below). We note that in contrast, the counterexample of [26] is
based on a specific-number theoretic, but falsifiable assumption.

Our Techniques. Our negative results make crucial use of computationally
sound (CS) proofs as constructed by Micali [27] (using techniques from [23]).
Specifically, our counterexample relies on the existence of non-interactive CS
proofs for NP languages. The usefulness of non-interactive CS proofs lies in
the fact that they are extremely short; in particular, their length is only poly-
logarithmic in the size of the statement and its witness.

Proof Idea. We construct our counterexample by starting with any signature
scheme, and extending it as follows. To every secret key we add some random
string w, and to the public-key we add the value G(w) where G(.) is a (sufficiently
expanding) pseudorandom generator.

The signing algorithm is basically unchanged, except that it additionally
checks if the message to be signed contains a CS proof for the fact that G(w) is
indeed the the range of G(.). If this is the case, it does something stupid, namely
outputting its entire secret key as part of the signature.

The security of the underlying signature scheme and the CS proof system
implies that this altered scheme is secure against � = log(k) bit of leakage. On
the other hand, a leakage function which has access to n secret keys, can output
a short (i.e. of length which is independent of n) CS proof showing that the
string G(w1), . . . , G(wn) is indeed the concatenation of n strings in the range of
G(.). This proof can then be used (making signing queries) to extract the entire
secret key of all the n instances of the scheme.

About the common reference parameter. Non-interactive CS proofs have been
shown to exist in the random oracle model (which in practice must be instanti-
ated with an efficient hash-function.) Since a random oracle implies a common
reference string, it seems that we haven’t improved upon the counterexample of
Lewko and Waters [26] as far as the usage of common setup is concerned. Recall
that the common setup in [26] contains a number N whose factorisation must
remain secret since otherwise the scheme can be trivially broken. In our case,
the common setup contains a hash function h(.) (replacing the random oracle).
Although for every h(.), there exist CS proofs for invalid statements, this may
not necessarily be a problem for us, as all we need is that it is hard to come up
with a proof for a random word not in the language (the language and exact
distribution depends on the PRG we use in our construction.) It is conceivable
that for some concrete choices of a PRG and hash function repalcing the ran-
dom oracle (SHA256, say), it is hard to come up with such invalid proofs even
given a polynomial amount of auxiliary information (containing e.g. many in-
valid proofs.) If we make such a (non-standard) assumption, our counterexample
does not need any common setup.

Related Work. We are aware of at least two works where proof systems with
short proofs are used to construct counterexamples. Closest to ours is the work
of “seed-incompressible functions” of Halevi, Myers and Rackoff [20], who use CS
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proofs to show that no pseudorandom function exists which remains secure after
one leaks a “compressed” key. Another example is the work on parallel repetition
of computationally sound proofs [31] (based on [6]), which uses a different kind
of proof systems, universal arguments [5], to show that parallel repetition of
computationally sound protocols with eight (or more) rounds does in general
not reduce the soundness error of the protocol.

2 Preliminaries

2.1 Leakage-Resilient Signatures

Our definition of leakage resilient signatures is essentially the standard notion of
existentially unforgeability under adaptive chosen message attacks, except that
we allow the adversary to specify an arbitrary function f(·) (whose output length
is bounded by the leakage parameter), and obtain the value of f applied to the
signing key. Let k be the security parameter, and (KeyGen, Sign, Verify) denote a
signature scheme. Let � denote the leakage parameter. In order to define leakage
resilient signatures, we consider the following experiment.

1. Compute (pk, sk)← KeyGen(1k, �) and give pk to the adversary.
2. Run the adversary A(1k, pk, �). The adversary may make adaptive queries

to the signing oracle Signsk(·) and the leakage oracle Leaksk(·), defined as
follows:
– On receiving the ith query mi, Signsk(mi) computes σi ← Sign(sk,mi)

and outputs σi.
– On receiving an input f (where f is a polynomial-time computable func-

tion, described as a circuit), Leaksk(f) outputs f(sk) to A. The adver-
sary is allowed only a single query to the leakage oracle. It can choose
any function f(·) of the form f : {0, 1}∗ → {0, 1}�.

3. At some point, A stops and outputs (m,σ).

We say that A succeeds if (a) Verify(pk, σ) = 1, and (b) m was never queried to
Signsk(·).

Definition 1. A signature scheme (KeyGen, Sign, Verify) is �-leakage resilient
if all polynomial-time adversaries A can succeed with only negligible probability
in the above experiment.

2.2 CS Proofs

Our negative result makes crucial use of CS proofs as constructed by Micali [27]
(using techniques from [23]). Below, we recall the definition of non-interactive
CS proofs. The definition below is taken almost verbatim from [20].

Definition 2 (Non-interactive CS proofs). A non-interactive CS-proof sys-
tem for a language L ∈ NP (with relation RL), consists of two deterministic
polynomial-time machines, a prover P and a verifier V , operating as follows:
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– On input (1k, x, w) such that (x,w) ∈ RL, the prover computes a proof π =
P (x,w) such that |π| ≤ poly(k, log(|x| + |w|)).

– On input (1k, x, π), the verifier decides whether to accept or reject the proof
π (i.e., V (x, π) ∈ {accept,reject}).

The proof system satisfies the following conditions, where the probabilities are
taken over the random coins of the prover and the verifier:

Perfect completeness: For any (x,w) ∈ RL and for any k,

Pr[π ← P (x,w), V (x, π) = accept] = 1

Computational soundness: For any polynomial time machine P̃ and any in-
put x /∈ L, it holds that

Pr[π ← P̃ (x), V (x, π) = accept] ≤ negl(k)

3 A Leakage Resilient Signature Scheme

Let k be the security parameter. Let (KeyGen, Sign, Verify) be any λ-leakage
resilient signature scheme where λ is at least logarithmic in the security param-
eter. Let G : {0, 1}k → {0, 1}2k be a pseudo-random generator (PRG). Let L be
an NP language such that a string y ∈ L iff y = y1, y2, . . . (where |yi| = 2k) and
∀i, ∃wi such that G(wi) = yi. Let 〈P, V 〉 be a non-interactive CS-proof system
for the language L, where both prover and verifier are ppt machines. We now
describe a new �-leakage resilient signature scheme (KeyGen, Sign, Verify),
where � = log(k).

KeyGen(1k, �): Compute (pk, sk)← KeyGen(1k, λ). Choose random w ∈ {0, 1}k
and compute y = G(w). The public key is PK = (pk, y) and the secret key is
SK = (sk, w).

Sign(SK,m): To sign message m = m1,m2 using secret key SK = (sk, w), first
parse m1 as m1

1,m
2
1, . . . such that |mi

1| = 2k. If ∃i such that mi
1 = y (= G(w)),

then run V (m1,m2). If it returns accept, then output SK. Otherwise, output
σ ← Sign(sk,m) as the signature.

Verify(PK,m, σ): Given a signature σ on message m with respect to the public
key PK = (pk, y), output 1 iff Verify(pk,m, σ) = 1.

This completes the description of our signature scheme. We now state our main
results.

Theorem 1. The proposed signature scheme (KeyGen, Sign, Verify) is �-
leakage resilient, where � = log(k).

Theorem 2. There exists a fixed polynomial q(·) such that any n-fold repetition
(where n can be any polynomial in k) of the signature scheme (KeyGen, Sign,
Verify) can be broken by a key-recovery attack with �′ = q(k) bits of leakage.



Parallel Repetition for Leakage Resilience Amplification Revisited 65

Remark. Note that in Theorem 2, �′ = q(k) only depends on the security
parameter, but does not depend on the number of repetitions n.

We prove Theorem 1 in the next subsection. Theorem 2 is proven in Section 4.

3.1 Leakage Resilience of our Signature Scheme

We will prove theorem 1 by contradiction. Specifically, we will show that given
an adversary A that forges signatures for (KeyGen, Sign, Verify) with non-
negligible probability δ, we can construct an adversary B that forges signatures
for (KeyGen, Sign, Verify) with probability δ′ = δ−negl(k)

k .

Description of B. Let C denote the challenger for the signature scheme (KeyGen,
Sign, Verify). At a high level, B works by internally running the adversary A;
B answers A’s queries by using the responses (to its own queries) from C, and
then outputs the signature forgery created by A. We now give more details.

On receiving a public key pk from C, B chooses a random w ∈ {0, 1}k and
computes y = G(w). It then sends PK = (pk, y) as the public key to A. Now,
when A makes a signature query m = m1,m2, B first parses m1 as m1

1,m
2
1, . . .

such that |mi
1| = 2k. If ∃i such that mi

1 = y, then B runs V (m1,m2). If it
returns accept, then B outputs the abort symbol ⊥ and stops. Otherwise, it
obtains a signature σ on message m from C and sends σ to A. Further, when A
makes a leakage query f , B simply guesses y = f(sk, w) (where sk is the secret
key corresponding to pk) and sends y to A. Finally, when A creates a forgery
(m∗, σ∗), B outputs (m∗, σ∗) and stops. This completes the description of B.

Let us now analyze the interaction between B and A. First note that since the
leakage query function f has a bounded output length � = log(k), B’s response
to A’s leakage query is correct with probability ε = 1

k . Now assuming that B
outputs the abort symbol during its interaction with A with only negligible
probability, we can establish that B outputs a valid forgery with probability
δ′ = δ−negl(k)

k which proves our hypothesis. Therefore, in order to complete the
proof, we only need to argue that B outputs the abort symbol with negligible
probability.

Lemma 1. B outputs the abort symbol ⊥ with probability negl(k).

We prove lemma 1 by a simple hybrid experiment. Consider two hybrids H0 and
H1, described as follows.

H0: This is the real experiment between B and A. Here B uses a pseudo-random
generator G to compute y as part of the public key PK.

H1: Same as H0, except that B chooses y ∈ {0, 1}2q uniformly at random.

Recall that B outputs the abort symbol only when A sends a signature query
m = m1,m2 where m1 = m1

1,m
2
1, . . . (|mi

1| = 2q) and ∃i such that mi
1 = y and

V (m1,m2) outputs accept (i.e., if m contains a non-interactive CS proof that
“explains” y). We will denote such a query as a bad query. Let p0 (resp., p1) be
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the probability that A makes a bad query in hybrid H0 (resp., H1). Then, from
the pseudo-randomness property of G, it follows that:

p0 − p1 ≤ negl(k) (1)

Now, note that since y is chosen uniformly at random in hybrid H1, A can make
a bad query in H1 only if it can create a false non-interactive CS proof. Then,
from the soundness of the CS proof system 〈P, V 〉, it follows that the probability
that A makes a bad query in H1 is negligible, i.e., p1 = negl(k). Combining this
with equation 1, we establish that p0 = negl(k). This completes the proof of
lemma 1.

4 Attack on Parallel System

Recall from Definition 2 that the length of a non-interactive CS proof is q′(k, log
(|x|+|w|)) for some polynomial q′(., .), where x is the instance and w is the witness
for x. Now, note that for any such pair (x,w), if |x| and |w| are polynomial in k,
then for sufficiently large k, we have that |x|+|w| ≤ klog(k). Therefore, there exists

a fixed polynomial q(·) def
= q′(., log(klog k)) such that for any non-interactive CS

proof π = P (x,w), we have that |π| ≤ q(k) for sufficiently large k.
Now consider a parallel system (KeyGen, Sign, Verify) defined as an n-fold

repetition of (KeyGen, Sign, Verify), where n = p(k) for any polynomial p(·).
KeyGen runs KeyGen n times to generate n key pairs (PK1, SK1), . . . , (PKn,
SKn). To sign a message m, Sign computes σi ← Sign(SKi,m) for each i ∈ [n]
and outputs σ = (σ1, . . . , σn) as the signature. Finally, on input a signature
σ = (σ1, . . . , σn), Verify outputs 1 iff ∀i, Verify(PKi,m, σi) = 1.

We now describe an adversary A that can mount a key-recovery attack on
(KeyGen, Sign, Verify) given q(k) bits of leakage. The adversary A receives
(PK1, . . . , PKn) from the challenger of the signature scheme. Recall that ∀i,
key pairs (PKi, SKi) are of the form: PKi = (pki, yi), SKi = (ski, wi). Let y =
y1, . . . , yn and π be a non-interactive CS-proof to prove the membership of y in L.
Then, A makes a leakage query with function f such that f(SK1, . . . , SKn) = π.
As discussed above, it holds that |π| ≤ q(k). A now queries the challenger for a
signature on the message m = m1,m2 where m1 = y1, . . . , yn and m2 = π. At
this point, A must receive SK1, . . . , SKn in response since π is a valid proof for
the statement y ∈ L.

This completes the description of the attack on the parallel system.

5 Extending Our Techniques to Other Primitives

The techniques used in section 3 are rather general and not specific to signature
schemes. In particular, they can be used to construct other leakage resilient
crypto primitives that are insecure under parallel repetition. As an example, in
this section, we briefly explain how to construct a leakage resilient CCA-secure
public-key encryption scheme that is insecure under parallel repetition.
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Let (KeyGen, Encrypt, Decrypt) be a CCA-secure public-key encryption scheme
that can tolerate at least logarithmic amount of leakage (here the adversary has
to choose the leakage function before getting the challange ciphertext). Let G
be a length doubling PRG and 〈P, V 〉 be a non-interactive CS-proof system for
the language L, as described in section 3. We now describe a new �-leakage
resilient CCA-secure public-key encryption scheme (KeyGen, Encrypt, De-

crypt), where � is logarithmic in the security parameter.

KeyGen(1k, �): Compute (pk, sk) ← KeyGen(1k). Choose random w ∈ {0, 1}k
and compute y = G(w). The public key is PK = (pk, y) and the secret key is
SK = (sk, w).

Encrypt(PK,m): To encrypt a message m using public key PK = (pk, y),
simply compute c← Encrypt(pk,m).

Decrypt(SK, c): Given a ciphertext c = c1, c2 and secret key SK = (sk, w),
first parse c1 as c11, c

2
1, . . . such that |ci1| = 2k. If ∃i such that ci1 = G(w),

then run V (c1, c2). If it returns accept, then output SK. Otherwise, output
m← Decrypt(sk, c) as the decrypted message.

It is not difficult to see that the new scheme is �-leakage resilient, where � =
log(k). Essentially, we can leverage the soundness of CS proof system and the
fact that G is a PRG (in the same manner as in the security proof of the signature
scheme described in section 3) to reduce the security of (KeyGen, Encrypt,
Decrypt) to that of the underlying scheme (KeyGen, Encrypt, Decrypt).

Now, consider an n-fold repetition of the above scheme. Let PKi = (pki, yi)
denote the public key of the ith instance of the above scheme. A natural way to
encrypt a message m in the parallel system is to split m into n shares and encrypt
each share mi with PKi. Now, (as in the proof of Theorem 2) an adversary A
can make a leakage query to obtain a short CS proof π that explains each yi.
Then, since A has access to a decryption oracle, it can now send a decryption
query c = c1, c2 where c1 = y1, . . . , yn and c2 = π. A can therefore successfully
recover the secret key of the parallel system.
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Abstract. In this work, we show that strong leakage resilience for cryp-
tosystems with advanced functionalities can be obtained quite naturally
within the methodology of dual system encryption, recently introduced
by Waters. We demonstrate this concretely by providing fully secure
IBE, HIBE, and ABE systems which are resilient to bounded leakage
from each of many secret keys per user, as well as many master keys.
This can be realized as resilience against continual leakage if we assume
keys are periodically updated and no (or logarithmic) leakage is allowed
during the update process. Our systems are obtained by applying a sim-
ple modification to previous dual system encryption constructions: es-
sentially this provides a generic tool for making dual system encryption
schemes leakage-resilient.

1 Introduction

Defining and achieving the right security models is crucial to the value of prov-
ably secure cryptography. When security definitions fail to encompass all of the
power of potential attackers, systems which are proven “secure” may actually be
vulnerable in practice. It is often not realistic or desirable to address such prob-
lems solely at the implementation level. Instead, the ultimate goal of cryptogra-
phy should be to provide efficient systems which are proven secure against the
largest possible class of potential attackers. Additionally, these systems should
provide the most advanced functionalities available.

Recently, much progress has been made in obtaining increasingly complex
systems with stronger security guarantees. The emergence of leakage-resilient
cryptography has led to constructions of many cryptographic primitives which
can be proven secure even against adversaries who can obtain limited additional
information about secret keys and other internal state. This line of research is
motivated by a variety of side-channel attacks [46, 13, 7, 12, 53, 8, 47, 58, 33, 41],
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which allow attackers to learn partial information about secrets by observing
physical properties of a cryptographic execution such as timing, power usage,
etc. The cold-boot attack [41] allows an attacker to learn information about
memory contents of a machine even after the machine is powered down.

Leakage-resilient cryptography models a large class of side-channel attacks by
allowing the attacker to specify an efficiently computable leakage function f and
learn the output of f applied to the secret key and possibly other internal state
at specified moments in the security game. Clearly, limits must be placed on
f to prevent the attacker from obtaining the entire secret key and hence easily
winning the game. One approach is to bound the total number of bits leaked over
the lifetime of the system to be significantly less than the bit-length of the secret
key. Another approach is to continually refresh the secret key and bound the
leakage between each update (this is called “continual leakage”). Both of these
approaches have been employed successfully in a variety of settings, yielding
constructions of stream ciphers, signatures, symmetric key encryption, public
key encryption, and identity-based encryption (IBE) which are leakage-resilient
under various models of leakage [52, 45, 31, 57, 26, 1, 2, 32, 29, 24, 19, 30, 3, 15, 21,
16,25].

Concurrently, the methodology of dual system encryption has emerged as
a useful tool for improving the security guarantees for efficient cryptosystems
with advanced functionalities like identity-based encryption (IBE), hierarchical
identity-based encryption (HIBE), attribute-based encryption (ABE) [63,50,48].
These works provide efficient systems with short parameters which are proven
fully secure in the standard model under static assumptions. Previous con-
structions of IBE and HIBE either used random oracles, had large parame-
ters, were only proven selectively secure (a weaker model of security where
the attacker must declare its target immediately instead of choosing it adap-
tively in the course of the security game), or relied on “q-based” assumptions
(where the size of the assumption depends on the number of the attacker’s
queries) [14,22, 37, 18, 9, 10, 61, 11, 34, 36, 35]. All previous constructions of ABE
were only proven selectively secure [59,40,20,6,55,39,62]. Like leakage resilience,
moving from selectively secure systems to fully secure systems is important be-
cause it results in security against a more powerful class of attackers.

Our Contribution. In this work, we show that the techniques of dual system
encryption naturally lead to leakage resilience. We demonstrate this by providing
leakage-resilient constructions of IBE, HIBE, and ABE systems which retain all
of the desirable features of dual system constructions, like full security from
static assumptions and close resemblance to previous selectively secure schemes.
We present our combination of dual system encryption and leakage resilience
as a convenient abstraction and reduce proving security to the establishment of
three properties.

Our approach not only combines the benefits of dual system encryption and
leakage resilience, but also qualitatively improves upon the leakage tolerance of
previous leakage-resilient IBE schemes [16,2,21]. In particular, our IBE system
can tolerate leakage on the master key, as well as leakage on several keys for
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each identity (this can be viewed as continual leakage, where secret keys are
periodically updated and leakage is allowed only between updates, and not during
updates).1 The IBE schemes of [2,21] only allow bounded leakage on one secret
key per identity, and allow no leakage on the master key. The IBE scheme of [16]
allows bounded leakage on each of many keys per identity, but allows no leakage
on the master key.

We develop a simple and versatile methodology for modifying a dual system
encryption construction and proof to incorporate strong leakage resilience guar-
antees. The change to the constructions is minimal, and can be viewed as the
adjoining of a separate piece which does not interfere with the intuitive and
efficient structure of the original system. Essentially, we show that dual system
encryption and leakage resilience are highly compatible, and their combination
results in the strongest security guarantees available for cryptosystems with ad-
vanced functionalities, with no sacrifice of efficiency.

Our Techniques. In a dual system encryption scheme, keys and ciphertexts can
each take on two forms: normal and semi-functional. Normal keys can decrypt
both forms of ciphertexts, while semi-functional keys can only decrypt normal
ciphertexts. In the real security game, the ciphertext and all keys are normal.
Security is proven by a hybrid argument, where first the ciphertext is changed
to semi-functional, and then the keys are changed to semi-functional one by one.
We must prove that the attacker cannot detect these changes. Finally, we arrive
at a game where the simulator need only produce semi-functional objects, which
cannot correctly decrypt. This greatly reduces the burden on the simulator and
allows us to now prove security directly.

There is an important challenge inherent in this technique: when we argue
the indistinguishability of games where a certain key is changing from normal to
semi-functional, it is crucial that the simulator cannot determine the nature of
this key for itself by test decrypting a semi-functional ciphertext. However, the
simulator should also be prepared to make a semi-functional ciphertext for any
identity and to use any identity for this particular key. This challenge is overcome
by allowing the simulator to make nominal semi-functional keys: these are keys
that are distributed like ordinary semi-functional keys in the attacker’s view,
but in the simulator’s view they are correlated with the challenge ciphertext, so
that if the simulator tries to decrypt a semi-functional ciphertext, decryption
will always succeed, and hence will not reveal whether the key is normal or
nominally semi-functional.

To keep nominal semi-functionality hidden from the attacker’s view, previous
dual system encryption constructions relied crucially on the fact that the attacker
cannot ask for a key capable of decrypting the challenge ciphertext. When we
add leakage to this framework, the attacker is now able to ask for leakage on
keys which are capable of decrypting the challenge ciphertext: hence we need a

1 For simplicity, we present our system as allowing no leakage during key updates,
but our system can tolerate leakage which is logarithmic in terms of the security
parameter using the same methods employed in [16].
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new mechanism to hide nominal semi-functionality from attackers who can leak
on these keys.

We accomplish this by expanding the semi-functional space to form n + 2
dimensional vectors, where n ≥ 3 is a parameter determining the leakage tol-
erance. Nominality now corresponds to the vector in the semi-functional space
of the key being orthogonal to the vector in the semi-functional space of the ci-
phertext. Because the leakage function on the key must be determined before the
challenge ciphertext is revealed, an attacker whose leakage is suitably bounded
cannot distinguish orthogonal vectors from uniformly random vectors in this
context (this is a corollary of the result from [16], which shows that “random
subspaces are leakage-resilient”). Hence, the attacker cannot distinguish leakage
on a nominally semi-functional key from leakage on an ordinary semi-functional
key. This allows us to obtain leakage resilience within the dual system encryption
framework.

Comparison to Previous Techniques. One of the leakage-resilient IBE con-
structions of [21] also applied the dual system encryption methodology, but ulti-
mately relied on the technique of hash proof systems [23,52,2] to obtain leakage
resilience, instead of deriving leakage resilience from the dual system encryp-
tion methodology itself, as we do in this work. More precisely, they used the
dual system encryption framework to allow the simulator to produce keys in-
capable of decrypting the challenge ciphertext, but did not apply dual system
encryption to handle leakage on keys which are capable of decrypting the chal-
lenge ciphertext. Instead, they relied on a hash proof mechanism for this part
of the proof. This leads them to impose the restriction that the attacker can
only leak from one key for the challenge identity, and no leakage on the master
key is allowed. Essentially, their application of dual system encryption is “or-
thogonal” to their techniques for achieving leakage resilience. In contrast, our
techniques allow us to handle all key generation and leakage queries within the
dual system encryption framework, eliminating the need for a separate technique
to achieve leakage resilience. This enables us to allow leakage from multiple
keys which can decrypt the challenge ciphertext, as well as leakage from the
master key.

The leakage-resilient IBE construction of [16] in the continual leakage model
relies on selective security to allow the simulator to produce the keys incapable of
decrypting challenge ciphertext. This is accomplished with a partitioning tech-
nique. Their technique for handling leakage on secret keys for the challenge
identity is more similar to ours: they produce these keys and ciphertext in such
a way that each is independently well-distributed, but the keys for the challenge
identity exhibit degenerate behavior relative to the challenge ciphertext. This
correlation, however, is information-theoretically hidden from the adversary be-
cause the leakage per key is suitably bounded. We employ a similar information-
theoretic argument to hide nominal semi-functionality of leaked keys from the
attacker’s view. However, their technique does not quite fit our dual system en-
cryption framework, and only achieves selective security in their implementation,
with no leakage allowed from the master key.
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1.1 Related Work

Leakage resilience has been studied in many previous works, under a variety of
leakage models [60, 56, 45, 3, 19, 24, 30, 28, 44, 29, 52, 1, 2, 17, 26, 31, 42, 51, 57, 32,
15,27, 16,25]. Exposure-resilient cryptography [17,28,44] addressed adversaries
who could learn a subset of the bits representing the secret key or internal state.
Subsequent works have considered more general leakage functions. Micali and
Reyzin [51] introduced the assumption that “only computation leaks informa-
tion.” In other words, one assumes that leakage occurs every time the cryp-
tographic device performs a computation, but that any parts of the memory
not involved in the computation do not leak. Under this assumption, leakage-
resilient stream ciphers and signatures have been constructed [31, 57, 32]. Addi-
tionally, [43,38] have shown how to transform any cryptographic protocol into one
that is secure with continual leakage, assuming that only computation leaks infor-
mation and also relying on a simple, completely non-leaking hardware device.

Since attacks like the cold-boot attack [41] can reveal information about
memory contents in the absence of computation, it is desirable to have leakage-
resilient constructions that do not rely upon this assumption. Several works have
accomplished this by bounding the total amount of leakage over the lifetime of
the system, an approach introduced by [1]. This has resulted in constructions of
pseudorandom functions, signature schemes, public key encryption, and identity-
based encryption [26,52, 3,45,2,21] which are secure in the presence of suitably
bounded leakage. For IBE schemes in particular, this means that an attacker can
leak a bounded amount of information from only one secret key per user. This
does not allow a user to update/re-randomize his secret key during the lifetime
of the system.

Recently, two works have achieved continual leakage resilience without as-
suming that only computation leaks information [16, 25]. Dodis, Haralambiev,
Lopez-Alt, and Wichs [25] construct one-way relations, signatures, identification
schemes, and authenticated key agreement protocols which are secure against at-
tackers who can obtain leakage between updates of the secret key. It is assumed
the leakage between consecutive updates is bounded in terms of a fraction of
the secret key size, and also that there is no leakage during the update process.
Brakerski, Kalai, Katz, and Vaikuntanathan [16] construct signatures, public key
encryption schemes, and (selectively secure) identity-based encryption schemes
which are secure against attackers who can obtain leakage between updates of
the secret key, and also a very limited amount of leakage during updates and
during the initial setup phase. The leakage between updates is bounded in terms
of a fraction of the secret key size, while the leakage during updates and setup
is logarithmically small as a function of the security parameter.

The dual system encryption methodology was introduced by Waters in [63].
It has been leveraged to obtain constructions of fully secure IBE and HIBE
from simple assumptions [63], fully secure HIBE with short ciphertexts [50],
fully secure ABE and Inner Product Encryption (IPE) [48], and fully secure
functional encryption combining ABE and IPE [54].
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Independently, Alwen and Ibraimi [4] have proposed a leakage resilient system
for a special case of Attribute-Based Encryption, where the ciphertext policy is
expressed as a DNF. Their work pursues a different technical direction to ours,
and provides an interesting application of hash proof systems to the ABE setting.
Security is proven from a “q-type” assumption.

2 Preliminaries

Notation. We denote by s
$← S the fact that s is picked uniformly at random

from a finite set S and by x, y, z
$← S that all x, y, z are picked independently

and uniformly at random from S. We say that a function is of constant output
size if the number of bits output by it is independent of the input. By |x|, we
denote the size/number of bits of term x. Also, the special symbol ⊥ is meant
to serve as a unique dummy value in all our systems. Finally, by PPT we denote
a probabilistic polynomial-time algorithm.

Complexity Assumptions. To prove the security of our system, we will use
three assumptions in composite order groups, also used in [50, 48]. These are
static assumptions, which hold in the generic group model if finding a nontrivial
factor of the group order is hard. The proof of this can be found in [50]. The
first two of our assumptions belong to the class of General Subgroup Decision
Assumptions described in [5]. The specific statement of the assumptions can be
found in the full version [49].

2.1 Security Definition

In this section we assume familiarity with the main functionalities of the algo-
rithms of an IBE system. Due to lack of space in this version we included the
detailed definition only in the full version [49].

The security of our system is based on a game, called MasterLeak. It is a
modified version of the usual IbeCpa security game. In that game, the attacker
can make a polynomial number of Keygen queries for identities other than the
challenge identity. Each of these queries returns a secret key of the requested
identity. The main idea of our security game is to allow these queries and in
addition allow leakage on the master key and secret keys of the challenge identity.
The only restriction we impose is that it can not get leakage of more than �MK
bits per master key (remember we can have many master keys) and �SK bits per
secret key, where �MK, �SK are parameters of the game.

The game starts with a setup phase, where the challenger runs the setup
algorithm and gives the attacker the public parameters. It also gives the attacker
a handle (i.e. reference) to the master key. We now allow the attacker to make
three kinds of queries, called Create, Leak, and Reveal. With a Create query,
the attacker asks the challenger to create a key and store it. The attacker supplies
a handle that refers to a master key to be used in the key generation algorithm.
Each such query returns a unique handle-reference to the generated key, so that
the attacker can refer to it later and either apply a leakage function to it and/or
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ask for the entire key. The original master key (the one created in the Setup
algorithm) gets a handle of 0.

Using a handle, the attacker can make a leakage query Leak on any key of its
choice. Since all queries are adaptive (the attacker has the ability to leak from
each key a few bits at the time, instead of requiring the leakage to occur all at
once) and the total amount of leakage allowed is bounded, the challenger has to
keep track of all keys leaked via these queries and the number of leaked bits from
each key so far. Thus, it creates a set T that holds tuples of handles, identities,
keys, and the number of leaked bits. Each Create query adds a tuple to this set
and each Leak query updates the number of bits leaked.

The Reveal queries allow the attacker to get access to an entire secret key.
They get as input a handle to a key and the challenger returns this secret key
to the attacker. The obvious restriction is that the attacker cannot get a master
key, since it would trivially break the system. For the same reason, no key for
the challenge identity should be revealed and thus the challenger has to have
another set to keep track of the revealed identities. We will denote this set by R.
We also note that the Reveal queries model the attacker’s ability to “change its
mind” in the middle of the game on the challenge identity. Maybe the attacker,
after getting leakage from a secret key, decides that it is better to get the entire
key via a Reveal query. Thus we achieve the maximum level of adaptiveness.

We now define our game formally. The security game is parameterized by a
security parameter λ and two leakage bounds �MK = �MK(λ), �SK = �SK(λ). The
master keys’, secret keys’ and identities’ spaces are denoted byMK, SK, and I,
respectively. We assume that the handles’ space is H = N. The game MasterLeak
consists of the following phases:

Setup: The challenger makes a call to Setup(1λ) and gets a master key MK
and the public parameters PP. It gives PP to the attacker. Also, it sets R = ∅
and T = {(0, ε,MK, 0)}. Remember thatR ⊆ I and T ⊆ H×I×(MK∪SK)×N

(handles - identities - keys - leaked bits). Thus initially the set T holds a record
of the original master key (no identity for it and no leakage so far). Also a handle
counter H is set to 0.

Phase 1: In this phase, the adversary can make the following queries to the
challenger. All of them can be interleaved in any possible way and the input of
a query can depend on the outputs of all previous queries (adaptive security).

– Create(h,X): h is a handle to a tuple of T that must refer to a master key
and X can be either an identity I or the empty string ε.

The challenger initially scans T to find the tuple with handle h. If the
identity part of the tuple is not ε, which means that the tuple holds a secret
key of some identity, or if the handle does not exist, it responds with ⊥.

Otherwise, the tuple is of the form (h, ε,MK′, L). Then the challenger
makes a call to Keygen(MK′, X)→ K and adds the tuple (H + 1, X,K, 0)
to the set T . K is either a secret key for identity I or another master key
depending on X . If X is an identity it returns a secret key and if X is the
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empty string ε it returns another master key. See the full version [49] for a
detailed definition. After that, it updates the handle counter to H ← H +1.

– Leak(h, f): In this query, the adversary requests leakage from a key that
has handle h ∈ N with a polynomial-time computable function f of constant
output size2 acting on the set of keys.

The challenger scans T to find the tuple with the specified handle. It is
either of the form (h, I, SK, L) or

(
h, ε,MK′, L

)
3.

In the first case, it checks if L+ |f(SK)| ≤ �SK. If this is true, it responds
with f(SK) and updates the L in the tuple with L + |f(SK)|. If the check
fails, it returns ⊥ to the adversary.

If the tuple holds a master key MK′, it checks if L +
∣∣f(MK′)

∣∣ ≤ �MK. If
this is true, it responds with f(MK′) and updates the L with L+

∣∣f(MK′)
∣∣.

If the check fails, it returns ⊥ to the adversary.
– Reveal(h): Now the adversary requests the entire key with handle h. The

challenger scans T to find the requested entry. If the handle refers to a master
key tuple, then the challenger returns ⊥. Otherwise, we denote the tuple by
(h, I, SK, L). The challenger responds with SK and adds the identity I to
the set R.

Challenge: The adversary submits a challenge identity I∗ /∈ R and two mes-
sages M0,M1 of equal size. The challenger flips a uniform coin c

$← {0, 1} and
encrypts Mc under I∗ with a call to Encrypt(Mc, I

∗). It sends the resulting
ciphertext CT∗ to the adversary.

Phase 2: This is the same as Phase 1 with the restriction that the only queries
allowed are Create and Reveal queries that involve a (non-master) secret key
with identity different than I∗. The reason for forbidding Leak queries on a
master key and on I∗ is that the adversary can encode the entire decryption
algorithm of CT∗ as a function on a secret key, and thus win the game trivially
if we allow these queries. For the same reason, the challenger can not give an
entire secret key of I∗ to the adversary and hence no Reveal queries involving
I∗ are allowed too. Leak queries on keys of identities other than I∗ are useless,
since the adversary can get the entire secret keys.

Guess: The adversary outputs a bit c′ ∈ {0, 1}. We say it succeeds if c′ = c.
The security definition we will use is the following:

Definition 1. An IBE encryption system Π is (�MK, �SK)-master-leakage secure
if for all PPT adversaries A it is true that

AdvMasterLeak
A,Π (λ, �MK, �SK) ≤ negl(λ)

2 We apply this restriction so that the adversary does not get any “extra” information
about the input; only the output bits of the function. This restriction is also present
in other works (e.g. in [16] they use circuits as leakage functions).

3 It can be the case that MK′ is the original master key.
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where AdvMasterLeak
A,Π (λ, �MK, �SK) is the advantage of A in game MasterLeak with

security parameter λ and leakage parameters �MK = �MK(λ), �SK = �SK(λ) and
is formally defined as

AdvMasterLeak
A,Π (λ, �MK, �SK) =

∣∣∣∣Pr[A succeeds]− 1
2

∣∣∣∣ ,
where the probability is over all random bits used by the challenger and the
attacker.

3 Dual System IBE

We now define dual system IBE schemes as an abstraction and define three secu-
rity properties which will ensure leakage resilience. We show that these properties
imply that a dual system IBE scheme is (�MK, �SK)-master-leakage secure4.

3.1 Definition

A dual system IBE scheme ΠD has the following algorithms:

Setup(1λ)→ (PP,MK). The setup algorithm takes in the security parameter,
λ, and outputs the public parameters, PP, and a normal master key, MK.

Keygen(MK′, X)→ K. The key generation algorithm takes in a normal master
key, MK′, and either an identity, I, or the empty string ε. In the first case, it
outputs a normal secret key, SK, for the identity I, and in the second case, it
outputs another normal master key, MK′′.

Encrypt(PP,M, I) → CT. The encryption algorithm takes in the public pa-
rameters PP, a message M , and an identity I, and outputs a normal ciphertext,
CT.

Decrypt(CT, SK) → M . The decryption algorithm takes in a ciphertext CT
encrypted to identity I, and a secret key SK for identity I. It outputs the message
M , unless both the key and the ciphertext are semi-functional.

KeygenSF(MK′, X)→ K̃. The semi-functional key generation algorithm works
in a similar way to Keygen but outputs semi-functional keys. If X = I, an
identity, it outputs a semi-functional secret key, S̃K for identity I. If X = ε, the
empty string, it outputs a semi-functional master key, M̃K.

Notice that this algorithm takes in a normal master key; not a semi-functional
one. Also, this algorithm need not be polynomial time computable, in contrast to
Setup, Keygen, Encrypt, and Decrypt.

EncryptSF(PP,M, I)→ C̃T. The semi-functional encryption algorithm takes
in the public parameters PP, a message M , and an identity I, and outputs
a semi-functional ciphertext, CT. This algorithm need not be polynomial time
computable.
4 We choose not to include nominal semi-functionality as part of our abstraction, since

one can use dual system encryption without employing this concept. For example,
nominal semi-functionality was not used in [63].
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3.2 Security Properties for Leakage Resilience

We now define three security properties for a dual system IBE scheme. For this,
we define two additional games which are modifications of the MasterLeak game.

The first game, called MasterLeakC, is exactly the same as the MasterLeak
game except that in the Challenge phase, the challenger uses EncryptSF
instead of Encrypt to create a semi-functional ciphertext, and returns this to
the adversary.

In the second new game, called MasterLeakCK, the challenger again uses En-
cryptSF for the challenge phase. However, the set of tuples T has a different
structure. Each tuple holds for each key (master or secret) a normal and a semi-
functional version of it. In this game, all keys leaked or given to the attacker
are semi-functional. As we have noted above, the semi-functional key genera-
tion algorithm takes as input a normal master key. Thus the challenger stores
the normal versions, as well the semi-functional ones so that it can use the
normal versions of master keys as input to Keygen calls.5 More precisely, the
challenger additionally stores a semi-functional master key in tuple 0 by call-
ing KeygenSF(MK, ε) after calling Setup. Thereafter, for all Create(h,X)
queries, the challenger makes an additional call to KeygenSF(MK′, X), where
MK′ is the normal version of the master key stored in tuple h. Leak and Reveal
queries act always on the semi-functional versions of each key.

Finally, notice that the same attackers that play game MasterLeak can play
games MasterLeakC and MasterLeakCK without any change in their algorithms
- queries etc. The simulator answers them in a different way.

Semi-functional Ciphertext Invariance: We say that a dual system IBE
scheme ΠD has (�MK, �SK)- semi-functional ciphertext invariance if for any prob-
abilistic polynomial time algorithm A, the advantage of A in the MasterLeak
game is negligibly close to the advantage of A in the MasterLeakC game.

Semi-functional Key Invariance: We say that a dual system IBE scheme ΠD

has (�MK, �SK)-semi-functional key invariance if for any probabilistic polynomial
time algorithmA, the advantage ofA in the MasterLeakC game is negligibly close
to the advantage of A in the MasterLeakCK game.

Semi-functional Security: We say that a dual system IBE scheme ΠD has
(�MK, �SK)-semi-functional security if for any probabilistic polynomial time al-
gorithm A, the advantage of A in the MasterLeakCK game is negligible.

The proof of the following theorem is straightforward, and can be found in
the full version [49].

Theorem 1. If a dual system IBE scheme ΠD =(Setup, Keygen, En-
crypt, Decrypt, KeygenSF, EncryptSF) has (�MK, �SK)-semi-functional
ciphertext invariance, (�MK, �SK)-semi-functional key invariance, and (�MK,

5 As one should notice, we will never use the normal versions of non-master keys in
this game. However, we have them here because we will need them in the game of
the next section and when we move to the HIBE setting.
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�SK)-semi-functional security, then Π =(Setup, Keygen, Encrypt, Decrypt)
is a (�MK, �SK)-master-leakage secure IBE scheme.

3.3 An Alternate Security Property

We additionally define a property called One Semi-functional Key Invariance.
In the full version we will show that this implies semi-functional key invariance,
and so can be substituted for semi-functional key invariance in proving that a
system is (�MK, �SK)-master-leakage secure. The motivation for this is that prov-
ing semi-functional key invariance directly will often involve a hybrid argument,
and defining one semi-functional key invariance allows us to include this hybrid
as part of our abstraction and hence avoid repeating it for each system.

To define this property, we first define one more variation of our security
game, called MasterLeakb. This is similar to the MasterLeakCK game, with the
main difference being that the attacker can choose on which version of each key
to leak or reveal. In other words, on the first leakage or reveal query on a key
of the augmented set T , the attacker tells the challenger whether it wants the
normal or the semi-functional version of the key. In order for the challenger to
keep track of the attacker’s choice on each key, we further augment each tuple
of T with a lock-value denoted by V ∈ Z that can take one of the three values
{−1, 0, 1}:

– If V = −1 the attacker has not made a choice on this key yet and the key is
“unlocked”. This is the value the tuple gets, in a Create query.

– If V = 0 the attacker chose to use the normal version of the key on the first
leakage or reveal query on it. All subsequent Leak and Reveal queries act
on the normal version.

– If V = 1 the attacker chose the semi-functional version and the challenger
works as above with the semi-functional version.

To summarize, each tuple is of the form (h,X,K, K̃, L, V ) i.e. handle - identity
or empty string - normal key - semi-functional key - leakage - lock. For example,
the original master key is stored at the beginning of the game in the tuple
(0, ε,MK,KeygenSF(MK, ε), 0,−1).

At some point, the attacker must decide on a challenge key which is “un-
locked”, V = −1, and tell this to the challenger. The challenger samples a
uniformly random bit b

$← {0, 1} and sets V = b. Therefore, the attacker has
access to either the normal (if b = 0) or the semi-functional (if b = 1) version
of this key via Leak and Reveal queries. We note that if the attacker did not
make a choice for the original master key in tuple 0, it can choose this master
key as the challenge key.

The attacker is then allowed to resume queries addressed to either normal or
semi-functional keys, with the usual restrictions (i.e. no leakage or reveal queries
on keys capable of decrypting the challenge ciphertext after the attacker has
seen the challenge ciphertext).
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One Semi-functional Key Invariance: We say that a dual system IBE
scheme ΠD has (�MK, �SK)-one semi-functional key invariance if, for any prob-
abilistic polynomial time algorithm A, the advantage of A in the MasterLeakb
game with b = 0 is negligibly close to the advantage of A in the MasterLeakb
game with b = 1.

The proof of the following theorem can be found in the full version [49].

Theorem 2. If a dual system IBE scheme ΠD has (�MK, �SK)-one semi-
functional key invariance, then it also has (�MK, �SK)-semi-functional key
invariance.

4 Master-Leakage Secure IBE Scheme

Our IBE scheme is an augmented version of the Lewko-Waters IBE [50], designed
to sustain master and secret key leakage from an arbitrary number of keys.
To hide nominal semi-functionality in the attacker’s view, we add vectors of
dimension n to the front of the ciphertexts and secret keys of the LW system.
Notice in the construction below that the last two elements of our secret keys and
ciphertexts are very similar to the elements in the LW system (which is essentially
a composite order version of the selectively-secure Boneh-Boyen IBE system
[9]). Nominal semi-functionality now corresponds to the vector of exponents of
the semi-functional components of the key being orthogonal to the vector of
exponents of the semi-functional components of the ciphertext. We can use the
algebraic lemma of [16] to assert that this orthogonality is hidden from attackers
with suitably bounded leakage. Finally, to allow leakage on the master key, we
designed the master key to be similar in form to regular secret keys.

Like the original LW scheme, our system uses a bilinear group whose order
is the product of three distinct primes (additional background on composite
order bilinear groups can be found in the full version [49]). The role of the first
prime order subgroup is to “carry” the necessary information of the plaintext
message and the secret information of each user or the master authority. The
second subgroup is used only in the proof to provide semi-functionality. The
third subgroup is used to additionally randomize secret keys. Each of these
components is orthogonal to the other two under the pairing operation.

In the construction below, we will use angle brackets to denote vectors and
parentheses to denote collections of elements of different types. The dot prod-
uct of vectors is denoted by · and component-wise multiplication is denoted
by ∗. For a group element u ∈ G and a vector �a ∈ ZnN , we define u�a to be
〈ua1 , ua2 , . . . , uan〉. We also define a pairing operation of vectors in Gn: For
�v1 = 〈v11, v12, . . . , v1n〉 ∈ Gn and �v2 = 〈v21, v22, . . . , v2n〉 ∈ Gn, their pairing
is en(�v1, �v2) :=

∏n
i=1 e(v1i, v2i) ∈ GT , where e : G × G → GT is the bilinear

mapping of G and the product is the group operation of GT .

4.1 Construction

Our dual system IBE scheme consists of the following algorithms:
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Setup(1λ). The setup algorithm generates a bilinear group G of composite
order N = p1p2p3, where p1, p2, p3 are three different λ1,λ2,λ3-bit prime numbers
respectively6. The subgroup of order pi in G is denoted by Gi. We assume that
the identities of users in our system are elements of ZN .

We let n be a positive integer greater than or equal to 2. The value of n
can be varied - higher values of n will lead to a better fraction of leakage being
tolerated (see Section 5), while lower values of n will yield a system with fewer
group elements in the keys and ciphertexts.

The algorithm picks 3 random elements 〈g1, u1, h1〉 ∈ G1 × G1 × G1
and one random element g3 ∈ G3. It also picks n + 1 random exponents
〈α, x1, x2, . . . , xn〉

$← Zn+1
N . It picks 〈r, y1, y2, . . . , yn〉

$← Zn+1
N , a random vec-

tor �ρ = 〈ρ1, . . . , ρn+2〉 $← Zn+2
N , and a random element ρn+3

$← ZN . It outputs
the following public parameters and master key:

PP = (N, g1, g3, u1, h1, e(g1, g1)α, gx1
1 , gx2

1 , . . . , gxn
1 )

MK =
(

�K∗,K∗
)

=

(〈
gy11 , . . . , gyn

1 , gα1 h
−r
1

n∏
i=1

g−xiyi

1 , gr1

〉
∗ g�ρ3 , ur1g

ρn+3
3

)

Keygen(MK,PP, X). We first consider when X = ε, the empty string.
Then this algorithm re-randomizes the master key by picking another
〈r′, y′1, y′2, . . . , y′n〉

$← Zn+1
N , a random vector �ρ′ =

〈
ρ′1, . . . , ρ

′
n+2
〉 $← Zn+2

N , and

a random element ρ′n+3
$← ZN . If MK =

(
�K∗,K∗

)
, it outputs the new (same-

sized) master key:

MK′=
(
�K ′,K ′

)
=

(
�K∗ ∗
〈
g
y′1
1 , . . . , g

y′n
1 , h−r′

1

n∏
i=1

g
−xiy

′
i

1 , gr
′

1

〉
∗ g �ρ′3 ,K∗ur

′

1 g
ρ′n+3
3

)

If X = I ∈ ZN , an identity, the algorithm picks n + 1 random exponents
〈r′, z1, z2, . . . , zn〉 $← Zn+1

N . Also it picks �ρ′
$← Zn+2

N and outputs the secret key:

SK = �K1 = �K∗ ∗
〈
gz11 , gz21 , . . . , gzn

1 , (K∗)−I(uI1h1)−r
′
n∏
i=1

g−xizi
1 , gr

′

1

〉
∗ g �ρ′3

The terms g
−xiy

′
i

1 and g−xizi
1 above are calculated by using the gxi terms of PP.

It is very important to notice that with knowledge of α alone, one can create
properly distributed secret keys, because the random terms r, y1, . . . , yn, ρn+3, �ρ
of the master key are all masked by the random terms r′, z1, . . . , zn, �ρ′ generated

6 The three λ’s depend on the security parameter and are chosen appropriately to get
a better leakage fraction (see Section 5 for details).
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by the algorithm. However, instead of storing α, the master authority now stores
n + 3 elements of G.

Encrypt(M, I). The encryption algorithm picks s
$← ZN and outputs the

ciphertext:

CT =
(
C0, �C1

)
=

=
(
M · (e(g1, g1)α)s,

〈
(gx1

1 )s, . . . , (gxn
1 )s, gs1, (u

I
1h1)s
〉)
∈ GT ×Gn+2

Decrypt(CT, SK). To calculate the blinding factor e(g1, g1)αs, one computes
en+2( �K1, �C1) and the message is computed as M = C0

en+2( �K1, �C1)
.

4.2 Semi-functionality

All the ciphertexts, master keys, and secret keys generated by the above algo-
rithms are normal, where by normal we mean that they have no G2 parts. On
the other hand, a semi-functional key or ciphertext has G2 parts. We let g2
denote a generator of G2. The remaining algorithms of our dual system IBE are
the following:

KeygenSF(MK, X)→ K̃. This algorithm calls first the normal key generation
algorithm Keygen(MK, X) to get a normal key MK =

(
�K∗,K∗

)
or SK = �K1,

depending on X .
In the former case, it picks �θ

$← Zn+2
N and θ

$← ZN and outputs

M̃K =
(

�K∗ ∗ g�θ2 ,K∗gθ2

)
.

In the latter case, it picks �γ
$← Zn+2

N and outputs

S̃K = �K1 ∗ g�γ2 .

EncryptSF(M, I) → C̃T. This algorithm calls first the normal encryption
algorithm Encrypt(M, I) to get the ciphertext CT =

(
C0, �C1

)
. Then it picks

�δ
$← Zn+2

N and outputs

C̃T =
(
C0, �C1 ∗ g

�δ
2

)
.

We call the three terms
(
�θ, θ
)
, �γ, �δ the semi-functional parameters of the mas-

ter key, secret key, and ciphertext, respectively. The semi-functional keys are
partitioned in nominal semi-functional keys and in truly semi-functional keys,
with respect to a specific semi-functional ciphertext. In short, a nominal secret
key can correctly decrypt the ciphertext (by using Decrypt), while a nominal
master key can generate a semi-functional secret key that correctly decrypts the
ciphertext.
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As a result, a semi-functional secret key of identity Ik with parameters �γ is
nominal with respect to a ciphertext for identity Ic with parameters �δ if and
only if �γ · �δ = 0 mod p2 and Ik = Ic.

It is easy to see that only then the decryption is correct, because we get an
extra term e(g2, g2)�γ·

�δ by the pairing. A semi-functional master key with param-
eters �θ, θ is nominal with respect to a ciphertext for identity I with parameters
�δ if and only if �δ ·

(
�θ + 〈0, . . . , 0,−Iθ, 0〉

)
= 0 mod p2.

The proof of the following theorem can be found in the full version [49].

Theorem 3. Under our complexity assumptions and for (�MK = (n − 1 −
2c) log(p2), �SK = (n− 1 − 2c) log(p2)), where c > 0 is a fixed positive constant,
our dual system IBE scheme is (�MK, �SK)-master-leakage secure.

Our HIBE and ABE constructions as well as their security proofs can also be
found in the full version [49].

5 Our Leakage Bound

Our systems allow the same absolute amount of leakage for both the master and
the secret keys. That is, �MK = �SK = (n − 1 − 2c) log p2 bits, where n is an
arbitrary integer greater than or equal to 2 and c is a fixed positive constant.
Notice that the leakage depends only on the size of the G2 subgroup, and not
on the size of p1 or p3. Thus by varying the relative sizes of the G1, G2, and G3
subgroups, we can achieve variable key sizes and allow different fractions of the
key size to be leaked. We use the term “leakage fraction” to mean the number
of bits allowed to be leaked from a key divided by the number of bits required
to represent that key.

Recall that p1, p2, p3 are primes of λ1, λ2, λ3 bits, respectively, and N = p1p2p3
is the order of our group G. We assume that each group element is represented
by approximately λ1 + λ2 + λ3 = Θ(logN) bits. Then, by fixing λ1 = c1λ,
λ2 = λ, and λ3 = c3λ, where λ is the security parameter and c1, c3 are arbitrary
positive constants, we get that the leakage fractions of our systems are the values
presented in the table above.

One notable property of our HIBE scheme is that the higher our keys are in
the hierarchy, the less leakage is allowed from them. The master key which is at
the top allows for a leakage fraction of (n−1−2c)/((n+2+D)(1+c1+c3)). This
is because the base system we adapted, a HIBE system with short ciphertexts,
has keys which contain more group elements for users which are higher in the
hierarchy. This feature could be avoided by choosing a different base system.

The leakage fraction can be made arbitrarily close to 1 by modifying n, c1
and c3 (if we assume a fixed maximum depth for HIBE and a fixed universe size
for ABE). Higher values of n give a better leakage fraction, but larger public
parameters, keys, and ciphertexts. Smaller values of c1, c3 give a better leakage
fraction, but also give fewer bits of security in the G1 and G3 subspaces as a
function of λ. We must choose λ so that c1λ and c3λ are sufficiently large.



Achieving Leakage Resilience through Dual System Encryption 85

Table 1. c, c1, c3 are arbitrary positive constants and n is an integer greater than 2.
For the HIBE scheme, D is the maximum depth of the hierarchy and i is the depth of
the key in question. The master key is considered to be the root of the hierarchy tree
and had depth 0. For the ABE scheme, |U | is the total number of attributes in the
system, and |S| is the number of attributes of the key in question. Notice that in the
ABE scheme we ignored the size of the representations of U and S. They are included
in the keys, but they are considered public; thus not included in the leakage fraction.

Scheme Master Key Secret Key

IBE n−1−2c
n+3

· 1
1+c1+c3

n−1−2c
n+2

· 1
1+c1+c3

HIBE n−1−2c
n+2+D−i

· 1
1+c1+c3

for key of depth i in the hierarchy

ABE n−1−2c
n+2+|U| ·

1
1+c1+c3

n−1−2c
n+2+|S| ·

1
1+c1+c3
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Abstract. Recent breakthrough results by Brakerski et al and Dodis et
al have shown that signature schemes can be made secure even if the
adversary continually obtains information leakage from the secret key of
the scheme. However, the schemes currently do not allow leakage on the
secret key and randomness during signing, except in the random oracle
model. Further, the random oracle based schemes require updates to the
secret key in order to maintain security, even when no leakage during
computation is present.

We present the first signature scheme that is resilient to full continual
leakage: memory leakage as well as leakage from processing during signing
(both from the secret key and the randomness), in key generation, and
in update. Our scheme can tolerate leakage of a 1 − o(1) fraction of the
secret key between updates, and is proven secure in the standard model
based on the symmetric external DDH (SXDH) assumption in bilinear
groups. The time periods between updates are a function of the amount
of leakage in the period (and nothing more).

As an additional technical contribution, we introduce a new tool: inde-
pendent pre-image resistant hash functions, which may be of independent
interest.

1 Introduction

Cryptographic schemes have traditionally been modeled under the assumption
that the secret key is hidden completely within a device and attacks are of “black
box” nature. However, cryptographic engineering has taught us that devices are
not perfect and can leak information about the key, primarily via what is known
as “side channels.” These channels give the adversary some partial information
by observing physical leakage correlated with the secret key, such as timing or
radiation or power consumption associated with computations (either directly
by probing the circuit or via antennas probing unshielded devices), as well as
memory leakage that reveals information about the secret key (cf., [BB05,QS01,
KJJ99,HSH+08]).
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The threat of partial leakage of keys has not escaped cryptographers; perhaps
the earliestworks on the subject areShamir’s secret sharing [S79], and laterRivest’s
all ornothing transform [R97]. In the last few years a large body of workon leakage-
resilient cryptography has emerged (cf., [ISW03,MR04,SMY09,AGV09, DKL09,
P09,NS09,ADW09,KV09,FKPR10,DGK+10,FRR+10,BG10,DP10,JV10,GR10,
DHLW10,BKKV10]), which provide different leakage models requiring that cryp-
tographic schemes be secure even if partial information about the secret key is
leaked to an adversary. In order to have an abstract model that is not directly
dependent upon the hardware architecture itself, but rather can produce some
general guidelines to systems and hardware designers regarding how much leak-
age can be tolerated overall (within a given setting), leakage was formally modeled
as functions associated with algorithmic steps and states. These leakage functions
f1(sk), . . . , fq(sk ) of the secret key sk , are from some given family of functions,
where the specific fi is selected by the adversary arbitrarily. The leakage (i.e., the
function result which contains only partial information about the key) is applied
to the relevant state or computation and is given to the adversary (in addition to
the black-box access it gets).

Wiki-Leakage: The variety of Leakage Models. There are many types
of leakage sub-models based on various parameters of leakage, which we briefly
review here. Adaptive leakage, where the function is chosen dynamically by the
adversary, obviously gives it more power than non-adaptive. Such adversaries
that rather than observing the device once execute side channel attacks repet-
itively, are stronger and require the schemes to be continuous leakage resilient.
Repeating (continual) adaptive leakage requires the scheme to have an update
procedure for the secret key. Otherwise, the adversary can eventually leak enough
information about the key to break the scheme, even if the amount of leakage
per time period is small. However, the public key should not be changed by the
secret key update. For example, a signature verification key should remain valid
throughout the lifetime of the scheme.

Next we note that leakage can be processing leakage (i.e., only computation
leaks) so that physical computations on the device are the only source of leakage.
Procedures such as key generation, key updates, and other kinds of processing
(i.e., signing, decryption, etc.) which involve random values may be allowed dif-
ferent amounts of leakage, but are all related to some physics of computations
(e.g., timing of operations). The influential works of Ishai, Sahai, and Wag-
ner [ISW03] and Micali and Reyzin [MR04] enable us to construct schemes under
the “any computation, and only computation, leak information,” model, which
has led to many recent achievements. In contrast, memory leakage [AGV09]
(which, in some sense, can be traced to the original works of Shamir and Rivest
mentioned above) are produced as a function of the memory state itself. This
type of leakage is orthogonal to computational leakage: an adversary can get
memory leakage by probing memories even if the memories are not currently
used in any computation (e.g., the cold-boot attacks [HSH+08]). For example,
the scheme of [DHLW10] is secure against memory attacks (even continual), but
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assumes that the signing process leaks no information. The most general model
allows full leakage which includes leakage both from processing and memory.

The most demanding case for designing digital signature schemes seems to be
the case of adaptive and continual full leakage that is available to the adversary
from both computational and memory sources (without protection of sub-steps
of computations). However, to date, there are no known schemes which achieve
a digital signature scheme in this adversarial setting in the standard model. All
known schemes with full (memory and processing) leakage either do not have
a key update algorithm and thus are not continual (cf., [KV09]), have a key
update algorithm but require some restrictions (e.g., [ADW09] which requires
an additional leakage-free master key), or are based on the random oracle model
(with a relaxation of the definition of a “time period”) [BKKV10].

1.1 Our Contributions

We propose the first signature scheme satisfying all of the above requirements,
whose security can be proven in the standard model and without further relax-
ation. Specifically, our scheme protects against (1) continual memory leakages
combined with (2) all types of continual processing (computational) leakages,
namely leakages from key generation, key updates, and signing.

Moreover, the amount of information that our scheme allows to leak in each
time period is optimal, in the sense that our scheme remains secure even if
1 − o(1) fraction of the secret key of each time period is leaked. Here “time
period” is the period between two consecutive updates of the secret key (the
time period is a function of the accumulated leakage itself and not a relaxed
notion which depends on other parameters). We stress that our scheme remains
secure even when the leakage during signing is a function f(sk , r) of both the
secret key and the randomness. Further, the function f can be adaptively chosen
by the adversary. Using standard techniques, our scheme also allows O(log κ)
leakage in the key generation and in each of the key updates, where κ is a
security parameter. (The secret key has O(κ) bit length. The fraction of leakage
is therefore O(log κ/κ)).

Comparison with Recent Schemes. Let us compare our scheme with the re-
centbreakthrough resultsofDodis,Haralambiev,Lopez-Alt,andWichs [DHLW10]
andBrakerski,Kalai,Katz, andVaikuntanathan [BKKV10].The signature scheme
of [DHLW10], as noted above, has to assume that there is no leakage from the sign-
ing process. The work in [BKKV10] proposed two signature schemes. Their first
scheme is secure on if there is no leakage from the signing process. The second
scheme relies on random oracle to protect against leakage during signing, and fur-
ther requires signatures to be treated as leakage. That is, even if there is no actual
side-channel leakage during a certain timeperiod, the signing keymustbe refreshed
to preserve security. In contrast, our signature scheme is proved secure in the stan-
dard model and the key needs to be refreshed only if leakage occurs (i.e. signatures
do not constitute leakage).



92 T. Malkin et al.

Concurrent work. In a concurrent work, Boyle, Segev, and Wichs [BSW10]
construct a fully leakage resilient signature scheme using different techniques.
[BSW10] take a more generic approach than we do. On the other hand, our
scheme is somewhat more efficient.

Other related work. In the recent years a very rich body of research on leakage
resilient cryptography has been developed. Dziembowski and Pietrzak [DP08],
and Pietrzak [P09] describe the first stream ciphers resilient to continual leakage
in the only computation leaks model. Faust et al [FKPR10] construct signa-
ture schemes resilient to continual leakage in the only computation leaks model.
Faust et al [FRR+10] give a general compiler using secure hardware that pro-
tects an arbitrary circuit against continual leakage that can be modeled as a
shallow (AC0) boolean circuit. Juma and Vahlis [JV10], and separately Gold-
wasser and Rothblum [GR10], give compilers that protect any algorithm against
continual leakage (without complexity restrictions), using secure hardware. Re-
cently, Dodis and Pietrzak [DP10] show how to build continual leakage resilient
pseudorandom functions that are secure against non-adaptive leakage.

Discussion on processing leakage. Continual memory attacks are a very
powerful leakage model that allows the adversary to continuously obtain leakage
from the entire secret key. A natural question to ask is whether adding process-
ing leakage into the mix adds anything to adversarial power. Indeed, the only
additional information available to the adversary during processing leakage is
ephemeral randomness that is used in the computation. In many cases, such
as in the case of public key encryption or decryption (using the corresponding
private key), leakage on ephemeral randomness does not provide any useful in-
formation to the adversary about the secret key. In fact, in public key encryption
and decryption, the adversary can simulate the leakage from the randomness of
these algorithms on her own. However, this is not the case for signature schemes.

In a signature scheme, a signature is computed using the secret key, and made
public. Consequently, signatures can viewed as a very restricted type of leakage
on the secret key. A signature scheme is considered secure if such “signature leak-
age” is useless to any efficient adversary. When the adversary is given leakage
from the randomness of the signing process, she may be able obtain information
that will allow her to extract useful information from the accompanying signa-
ture. For example, each signature may contain an encryption of the secret key
under a random key that is generated during signing, and then forgotten. If the
adversary is able to leak this random key, she trivially breaks the security of the
scheme.

1.2 The Idea behind Our Construction

We are motivated in our construction by the (non-continual) memory-attack
resilient signature schemes of Alwen, Dodis, and Wichs [ADW09], and of Katz
and Vaikuntanathan [KV09]. Both [ADW09] and [KV09] use the following high
level approach, which is based on the Fiat-Shamir heuristic [FS86]: a signature
of a message M relative to a public key pk is an extractable proof of knowledge
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(in the random oracle model) of a value sk for which H(sk) = pk. Here is H is
a hash function.

The security proof of these signature schemes relies on the second preimage
resistance of the hash function H , and the witness extractability of the proofs
that are used. That is, they use the property that it is infeasible to find sk∗ �= sk
satisfying H(sk∗) = H(sk).

To prove security, they construct a simulator that generates a secret key sk
randomly and computes pk = H(sk). The simulator then can answer leakage
queries and signing queries using the secret key that it itself has generated. If an
adversary can forge a message/signature pair, the simulator extracts the witness
sk′. Now, if the fraction of leakage of sk is less than 1 − o(1), the exact key sk
that is used by the simulator is information theoretically undetermined in the
view of the adversary (specifically, there are at least two possible keys, given
the leakage). Therefore, with probability at least 1/2, the witness sk′ is different
from sk, which breaks the second pre-image resistance of H .

We start with this basic approach, and enhance it along three dimensions.
Specifically, we:

1. Remove the requirement for a random oracle, and get a scheme secure in the
standard model.

2. Add a key update procedure that refreshes the secret key, while keeping the
public key fixed. This yields a signature scheme resilient against continual
memory attacks [BKKV10].

3. Develop a proof method that allows leakage of randomness used in signing
within a period (allowing optimal leakage).

Removing the Random Oracle. The simplest idea to remove the random
oracle from the scheme of [ADW09,KV09] is to prove the knowledge of the secret
key not by using Fiat-Shamir heuristic, but by using other known non-interactive
proof systems in the standard model.

This initial attempt fails for the following reason: the argument of [ADW09,
KV09] showing sk∗ �= sk is purely information theoretic. Hence, if we want to
use the argument of [ADW09, KV09], the proof systems should hide sk not in
a computational sense, but in an information theoretic sense. But if the proof
system hides sk information theoretically, the secret key sk∗ used by an adversary
is also hidden information theoretically (since no random oracle is available).
Hence, it is impossible for the simulator to get the second pre-image sk∗ from
the adversary’s forgery, and so we cannot rely on second pre-image resistance.

To overcome the above problem, we use the Waters’ function

h(H,M) = H0 +
∑
k

MkHk,

where Mk is the k-th bit of a message M and H = (H0, . . . , Hm) is a tuple
of group elements1. The function is introduced in [W05] in order to construct
1 Here we use additive notation to describe the function.
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an adaptively secure ID-based encryption scheme. The Waters’ function has the
property that a simulator can choose the parameters H0, . . . , Hm in a special
way that defines a subset M of the range of h. It can then be shown that
with non-negligible probability, all signing queries M of the adversary satisfy
h(H,M) ∈M, and the forgery M∗ satisfies h(H,M∗) �∈ M.

We construct a Waters-like function h′ such that M is a set of all non-DDH
tuples in the range of h′. Consequently, we get that with non-negligible probabil-
ity all signing queries of the adversary map to non-DDH tuples, and the forgery
maps to a DDH tuple.

We then combine the above hash function h′ with the Groth-Sahai [GS08]
proof system. Groth-Sahai is a proof system which uses a common reference
string (CRS). The proof system hides the witness information theoretically if
the CRS is a non-DDH tuple and hides it only computationally, and the witness
therefore is extractable, if the CRS is a DDH tuple.

Hence, by using Groth-Sahai proofs as signatures, and h′(M) as the CRS of the
Groth-Sahai proof, we get a proof system that hides the witness sk information
theoretically when the simulator generates proofs as answers to signing queries,
and allows the witness sk∗ to be extracted from the proof generated by an
adversary as a forged signature.

The scheme before adding key update. Our scheme therefore has the
following basic structure. The private key consists of a vector of group elements
W , and the public key consists of group elements A and T such that e(A,W ) =
T . The public key also contains the description of a Waters-like hash function h′.
To sign a message M , we first use h′ to compute a CRS h′(H,M) for the Groth-
Sahai proof system. Then, the signature is a proof, under the CRS h′(H,M),
that e(A,W ) = T .

Before proceeding to describe our key update procedure, we believe it is in-
structive to see why the above scheme, without update, is secure. Intuitively,
this follows from the second pre-image resistance of the hash function HA(X) :=
e(A,X). From the perfect witness indistinguishability of Groth-Sahai proofs we
know that the adversary learns about the specific witness W only from leak-
age. However, since the amount of leakage is bounded, the actual witness W in
the private key remains information theoretically undetermined. Finally, when
the adversary submits a successful forgery, we use the indistinguishability of
common reference strings technique discussed above to show that, with non-
negligible probability, a witness W ′ can be extracted from the forgery. This
witness is likely to be different from W , which would give the simulator two
inputs W and W ′ such that HA(W ) = HA(W ′). This in turn violates the
second pre-image resistance of HA.

We remark that the above technique is somewhat reminiscent of the Feige-
Lapidot-Shamir [FLS90] method for using witness indistinguishability to achieve
witness hiding.

Adding Key Updates. The approach of Section 1.2 allows us to move from the
random oracle to the standard model. However, the above scheme can still tolerate
only a bounded amount of leakage. We now describe a method for choosing the
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private keys of the scheme that allows us to randomize the key without having to
issue a new public key.

We start by observing that if our scheme relies for security on the second
pre-image resistance of the hash function H , then no key update algorithm can
exist. This is because otherwise we could use the key update algorithm itself to
break second pre-image resistance as follows:

If we can get new key sk [i+1] efficiently by updating sk [i], this means
that one can get two keys sk [i] and sk [i+1] satisfying of T = H(sk [i])
and T = H(sk [i+1]), where T is the public key. The function H therefore
cannot be second pre-image resistant.

Note that our model does not allow to update the public key for the conve-
nience of verifiers. The above collision of the function H is therefore unavoidable.

(n, k)-independent pre-image resistant (IPIR) hash functions. We over-
come the above problem by introducing the following new notion: (n, k)-
independent pre-image resistant hash function H , where n is an integer and
k ≤ n − 2. This is a linear function H from an n-dimensional vector space Hn

to a 1-dimensional vector space T, over Zp. We require that, given certain trap-
door information about H , one can find a tuple (Y 1, . . . ,Y k+1, T ) satisfying
T = H(Yj) for all j ∈ [k + 1]. However, it must be infeasible to find Y ∗ ∈ Hn

satisfying T = H(Y ∗) and Y ∗ /∈ Aff(Y 1, . . . ,Y k+1), where Aff(Y 1, . . . ,Y k+1)
is the smallest affine space spanned by Y 1, . . . ,Y k+1. We call the hardness prop-
erty (n, k)-independent preimage resistance.

We note that although in this paper we give a construction of an (n, k)-IPIR
hash function, we do not use it as a black box in our signature scheme. Indeed, the
Groth-Sahai proofs that are generated use the parameters of the hash function,
which are of a very specific form. However, the notion of IPIR seems useful in
itself, and we hope that other applications will be found for it. Furthermore,
abstracting the properties that we need from H allows us to present a modular
and structured proof of security for our signature scheme.

Generating and updating keys. Using the linearity of H , we can generate
any linear sum of Y 1, . . . ,Y k+1 in polynomial time. We use this property to
perform key update. And we use the IPIR (instead of the second pre-image
resistance) when we show that no adversary can forge a signature.

In slightly greater detail, we construct the key generation algorithm and
the update algorithm of our scheme as follows. In the key generation, by us-
ing the trapdoor of the hash function H , we generate (Y 1,Y 2, T ) satisfying
T = H(Y 1) = H(Y 2). We then compute Q ← Y 1 − Y 2 and publish Q as
a part of the public key. The secret key is W [0] ← Y 2. Note that H(Q) =
H(Y 1)−H(Y 2) = 0 holds.

Key update then works as follows: in the (i + 1)-st round, we select s[i] $←
Zp randomly and compute W [i+1] ← W [i] + s[i]Q. Based on the linearity
of H , and the equality H(Q) = 0, one can easily show that H(W [i+1]) =
H(W [i]) = · · ·H(W [0]) = H(Y 2) = T holds, and that W [i] is an element
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of Aff(Y 1,Y 2). The latter holds because W [i] are linear sums of W [0] = Y 2
and Q = Y 1 − Y 2. We then use an adaptation of the “leakage resilient sub-
space” technique from [BKKV10] to show that the affine subspace Aff(Y 1,Y 2)
(or even Aff(Y 1, . . . ,Y k+1)) is hidden from the adversary, even given continual
leakage (assuming the refresh procedure above is periodically performed). Given
the hiding property of the affine space, it follows that if the adversary forges
a signature σ∗ = PrfM∗(W ∗) for some message M∗, she likely uses a witness
W ∗ /∈ Aff(Y 1,Y 2). However, this violates the IPIR of H . The security of the
scheme follows.

Security Against Leakage in Signing. The main challenge in achieving
security under leakage from the signing process is that the signature and the
secret key are correlated through the randomness that was used to produce the
signature. When the adversary obtains leakage on the randomness, the signature
may become much more valuable, and potentially allow the adversary to break
the scheme (as we discussed in the introduction).

In the proof based signature schemes we described above, there is no guarantee
that leakage on the randomness of the prover does not break the zero-knowledge
or witness indistinguishability property of the proof system. We solve this prob-
lem through a combination of several tools: first, as described above, we rely
on Groth-Sahai proofs, which have a dual mode – witness hiding and witness
binding. When the proof is (perfectly) hiding, it is information theoretically in-
dependent from the witness, which is the secret key, if there is no leakage on the
randomness of the prover.

We use the above fact to “invert” the order in which components of the
signature are generated: first the GS proof σ in the signature is generated using
some globally fixed witness Y (note that this is only done by the simulator
in the analysis, and so there is no leakage on the witness Y). Then, given an
actual witness W for the proof, we “reverse engineer” the randomness R that
would yield the same proof σ, and compute leakage on (W , R). We use an
additional property of Groth-Sahai that for every pair of proof and witness
(σ,W ) there exists a unique randomness Rσ,W that causes the prover to output
σ given witness W . Moreover, since the proof is perfectly witness hiding, for all
witnesses W , the distribution on the tuple (σ,Rσ,W ) are identical whether we
first generate the proof using witness V and then determine the randomness, or
choose the randomness uniformly, and compute the proof directly.

The above approach, however, does not work as is, since the process of find-
ing R may not be efficiently computable! We therefore rely on an informa-
tion theoretic leakage resilience property of random subspaces that was shown
in [BKKV10] (in fact, we prove a slightly stronger version that suits our con-
struction). We combine both techniques together, simultaneously using the ran-
domness reverse engineering technique described above to handle leakage from
signing, and information theoretic indistinguishability of random subspaces un-
der leakage. Using these techniques together, we show that the adversary is
unable to gain information about the subspace from which we generate private



Signatures Resilient to Continual Leakage on Memory and Computation 97

keys during update, even if leakage on the signing process is available. We then
use independent pre-image resistance to conclude that our scheme is secure.

2 Preliminaries

Notations. Let [n] denote {1, . . . , n} and [k..n] denote {k, . . . , n}. For two ran-
dom variables X and Y , dist(X,Y ) denote the statistical distance between X
and Y .

Linear Algebra. Unless otherwise stated, vectors in this paper are column vec-
tors. We represent a row vector as a transpose of a column vector in this paper.
For natural numbers n and m, let Zn×mp denote the set of n×m matrices over Zp.
Let AT denote the transposed of a matrix A = (ai,j)i,j , that is, AT = (aj,i)i,j .
For two vectors u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Znp , we let 〈u,v〉 denote
the inner product of them in Zp, that is, 〈u,v〉 =

∑
i uivi mod p.

For a vector v = (v1, . . . , vn) ∈ Znp and an element W of the group G or H,
let vW denote the vector (v1W, . . . , vnW ).

For a vector space V and vectors Y 1, . . . ,Y k+1 ∈ V , let Span(Y 1, . . . ,Y k)
denote the smallest vector subspace of Vn which contains all of (Y j)j∈[k], that
is,

Span(Y 1, . . . ,Y k) = {Y ∈ Vn | ∃s1, . . . , sk ∈ Zp : Y =
∑
j∈[k]

sjY j}.

Similarly, let Aff(Y 1, . . . ,Y k+1) is the smallest affine subspace of Vn which con-
tains all of (Y j)j∈[k+1], that is,

Aff(Y 1, . . . , Y k+1)={Y ∈Vn | ∃s1, . . . , sk+1 ∈ Zp : Y =
∑

j∈[k+1]

sjY j ,
∑

j∈[k+1]

sj = 1}.

Note that the space Aff(Y 1, . . . ,Y k+1) becomes k dimensional, when k + 1 vec-
tors Y 1, . . . ,Y k+1 are linear independent.

2.1 Signature Schemes Resilient against Continual Leakage

A signature scheme with key update SGN consists of four algorithms Kg, Sig,
Ver, and Update. The inputs and outputs of Kg, Sig, and Ver are the same as in
standard signature schemes. Update takes as input a secret key and a public key
and outputs a new element of the secret key space. SGN = (Kg, Sig,Ver,Update)
has to satisfy the following property:

– (Correctness). For any integer n ≥ 0 and any message M , if we compute
(pk , sk0) ← Gen(1κ), sk1 ← Updatepk (sk0), . . ., skn ← Updatepk (skn−1),
and σ ← Sig(skn,M), Ver(pk ,M, σ) = 1 always holds.

We follow the definition of [BKKV10] of leakage resilient signatures.
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Setup. A(1κ) sends to the challenger a function f satisfying |f(R)| ≤ ρG|R| for all

R. The challenger then selects R
$← Rnd[Gen] computes (pk , sk0) ← Gen(1κ; R)

sends (pk , f(R)) to A, and initializes i ← 0 and Li ← |f(R)|. Here i represents
the number of updates and Li denote the bit length of all leakages about the i-th
secret key.

Queries. A makes queries of the following three types polynomial number of times:
– Update queries (update, f) where f is a circuit satisfying |f(sk , R)| ≤ ρU (|sk |+

|R|) for any (sk , R). If Li + |f(sk i, R)| ≤ ρM |sk i| holds, the challenger chooses

R
$← Rnd[Update] randomly, computes sk i+1 ← Updatepk (sk i) and sends

f(sk i, R) back to A and resets i ← i + 1 and Li ← |f(sk i, R)|. Otherwise,
the challenger aborts.

– (Memory) leak queries (leak, f), where f is a circuit. If Li + |f(sk i)| ≤ ρM |sk i|
holds, the challenger sends f(sk i) to adversary and resets Li ← Li + |f(sk i)|.
Otherwise, the challenger aborts.

– Signing queries (sig, M, f) where f is a circuit with |f(sk , R)| ≤ ρS(|sk |+ |R|)
for any (sk , R). The challenger chooses R ← Rnd[Sig] randomly, computes
σ ← Sig(sk i, M ; R) and sends (σ, f(sk i, R)) back to A.

Challenge. Assuming the challenger did not aborts, A outputs (M∗, σ∗). It succeeds
if Ver(pk , M∗, σ∗) = 1 holds and A never made query (sig, M∗).

Fig. 1. Game of (ρG, ρU , ρM , ρS)-EU-CMA-CML secure

Definition 1 ( [BKKV10]). Let ρG, ρU , ρM , and ρS be elements of the real
range [0, 1]. We say that SGN = (Gen, Sig,Ver,Update) is (ρG, ρU , ρM , ρS)- EU-
CMA-CML secure (stand for existentially unforgeable under chosen message
attack in the CML model) if no PPT adversary A succeeds in the game of Fig.1
with non-negligible probability. Here Rnd[Algo] denote the set of randomnesses
for algorithm Algo.

2.2 Bilinear Pairings

In our paper, we are working on a bilinear pairing, e : G × H → T with prime
order p, where G �= H holds and there is no efficiently computable homomor-
phism between two groups G and H (Such a pairing is called Type III [GPS08]).
We denote by gk bilinear map parameters of the form (p,G,H,T, e). We will
occasionally refer to gk as group description.

Our proofs rely on basic properties of linear algebra. We therefore find
it convenient to use additive notation for pairings. For example, we write
e((a + b)A,W ) = a · e(A,W ) + b · e(A,W ). For two (column) vectors A =
(A1, . . . , An)T ∈ G and W = (W1, . . . ,Wn)T ∈ H, we denote

e(AT,W ) =
∑
i∈[n]

e(Ai,Wi)

Assumption 2 (SXDH assumption [GS08]). We say that gk = (p,G,H,T,
e) satisfies the Symmetric external Diffie-Hellman (SXDH) assumption, if the
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DDH assumption holds both over G and H (note that this is possible in type III
pairings).

2.3 Groth-Sahai Proofs

Groth and Sahai [GS08] proposed efficient non-interactive witness indistinguish-
able proof systems for settings where a bilinear pairing is available. Their system
allows efficient proofs of various statements about the groups of the pairing, and
the pairing relation.

In this work we prove statements of the form e(AT,W ) = T , where an in-
stance (A, T ) ∈ Gn × T is the input to the verifier, and W is the witness used
by the prover.

Let gk = (p,G,H,T, e) be a group description and crs = (G,H) ∈ H2. The
Groth-Sahai proof using crs as CRS (Common Reference String) is as follows.

– Prf(gk , crs , (T,A),W ) : Parse gk and crs as (p,G,H,T, e) and (G,H) re-

spectively. Select R
$← Zn×2

p randomly, and compute

(C,D)← (R ·G,W + R ·H)

Π ← RTA

and output σ = (C,D,Π).
– Vrf(gk , crs , (A, T ), σ) : Parse gk , crs , and σ as (p,G,H,T, e), (G,H) and

(C,D,Π) respectively.
Output 1 iff the following equality holds.

(e(AT,C), e(AT,D)) ?= (e(ΠT,G), T + e(ΠT,H))

One can easily show that a correctly generated proof is always accepted by Vrf.
Groth and Sahai [GS08] gave the following two algorithms HideCRS and

BindCRS to generate two different types of CRS: hiding and binding. When
a hiding CRS is used for the proof, the witness is perfectly (information theo-
retically) hidden. When a binding CRS is used, BindCRS provides a trapdoor
along with the CRS, and the trapdoor can be used to extract the witness from
any proof. Finally, it is required that the two types of CRS are computationally
indistinguishable.

For the above proof system, let gk = (p,G,H,T, e). The algorithms HideCRS
and BindCRS are defined as follows:

– HideCRS(gk ) : Select G,H
$← H2 randomly and output crs ← (G,H).

– BindCRS(gk) : Select G
$← H2 and α

$← Zp randomly, compute H ← αG
and output crs ← (G,H) and the trapdoor α.

Groth-Sahai show that in the above proof system, a hiding CRS and a binding
CRS are indistinguishable under the SXDH assumption. Formally, the perfect
witness indistinguishability, and the witness extractability properties are defined
as follows [GS08]. Below, Setup(1κ) be an algorithm which generates a group
description gk = (p,G,H,T, e).
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– (Composable Perfect Witness Indistinguishability). For all (possibly
unbounded) adversaries A

Pr
[
gk ← Setup(1κ), crs ← HideCRS(gk),
(A, T,W 0,W 1, st) ← A(gk , crs), σ ← Prf(gk, crs, (A, T ),W 0), b ← A(σ, st) : b = 1

]

= Pr
[
gk ← Setup(1κ), crs ← HideCRS(gk),
(A, T,W 0,W 1, st) ← A(gk , crs), σ ← Prf(gk, crs, (A, T ),W 1), b ← A(σ, st) : b = 1

]

where we require e(A,W [0]) = e(A,W [1]) = T .
– (Perfect Extractability). For all possible output gk = (p,G,H,T, e) of

Setup(1κ), all possible output (crs , α) of BindCRS(gk), all (A, T ) ∈ Gn × T

and all σ = (C,D,Π) ∈ H2×H2×G2 satisfying Vrf(gk , crs , (A, T ), σ) = 1,
if we set

W ∗ ←D − αC,

the equality e(A,W ∗) = T always holds.

3 Independent Preimage Resistant (IPIR) Hash
Functions

We introduce a new notion: independent pre-image resistance (IPIR), that we use
in the construction and analysis of our scheme. As we have already mentioned in
the introduction, our construction does not use the IPIR hash function described
below in a black box way. Nevertheless, we believe it to be instructive to define
this notion separately, both to conceptually isolate the properties of the hash
function that we use, and for potential future use.

Definition 3 (Independent Preimage Resistant Hash Function). Let
n be a positive number, and let H and T be cyclic groups of order p. Let
Gen, H,GenSim,Check be polynomial time algorithms whose inputs and outputs
are as follows. Below, k is the parameter representing the dimension. Note that
a k-dimensional affine (not linear) subspace contains k + 1 vectors and GenSim
of the below therefore outputs k + 1 vectors Yj .

– Gen(1κ) outputs some public information P .
– For any possible output P of Gen, HP is a deterministic linear function from

Hn to T.
– GenSim takes an integer k ∈ [n − 2] as an input and outputs a public in-

formation P , a trapdoor td , (T,Y 1, . . . ,Y k+1) ∈ T × (Hn)k+1 satisfying
T = HP (Y i) for all i ∈ [k + 1].

– Check takes P , (T,Y 1, . . . ,Y k+1), an element Y ′ of Hn, and a trapdoor td
as inputs and outputs 1 or 0.

For integers n and k ∈ [n−2], we say that H is (n, k)-independent pre-image resis-
tant with respect to (Gen,GenSim,Check) if it satisfies the following
properties.
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– (Correctness). For all outputs (P, td , (T,Y 1, . . . ,Y k+1)) of GenSim and all
Y ′ ∈ Hn,

Check(P, td , (T,Y 1, . . . ,Y k+1),Y ′) = 1 holds iff T = HP (Y ′) and Y ′ ∈
Aff(Y 1, . . . ,Y k+1) holds.

Moreover, for an output (P, td , (T,Y 1, . . . ,Y k+1)) of GenSim, P have the
same distribution as an output of Gen(1κ) and (Y 1, . . . ,Y k+1) uniformly
distributed on {Y ∈ Hn | HP (Y ) = T }k+1.

– ((n, k)-Independent Preimage Resistance). For any polytime adversary
A,

Pr
[
(P, td , (T,Y 1, . . . ,Y k+1))← GenSim(1κ),
Y ∗ ← A(P, T,Y 1, . . . ,Y k+1)

:
T = HP (Y ∗)
Y ∗ /∈ Aff(Y 1, . . . ,Y k+1)

]
is negligible.

Note that one can check whether Y ∗ /∈ Aff(Y 1, . . . ,Y k+1) holds or not
in polytime by using Check and the a trapdoor td.

Construction of an independent pre-image resistant function. In our
signature scheme we use the function HA(Y ) = e(A,Y ). The algorithms Gen,
GenSim, and Check for the function H are as follows. Below, Setup(1κ) is an
algorithm which generates a group description gk = (p,G,H,T, e).

– Gen(1κ) : Compute gk ← Setup(1κ) and generates A
$← Gn randomly, and

output P ← (gk ,A).
– GenSim(1κ) : Compute gk ← Setup(1κ), and choose randomly A

$← G, and

a
$← Znp . Compute A← aA. Choose randomly Y

$← H, t $← Zp, and yj ∈ Znp
satisfying 〈a,yj〉 = t for j ∈ [k + 1]. Choose n − k linearly independent
vectors e1, . . . , en−k satisfying 〈ei,yj〉 = 0 for all i ∈ [n−k], j ∈ [k]. Output
P = (gk ,A), td ← (ei)i∈[n−k], and Y j ← yjY for j ∈ [k], T ← tY .

– Check(P, td , (T,Y 1, . . . ,Y k+1),Y ′) : Parse P and td as (gk ,A) and
(ei)i∈[n−k] respectively. Output 1 iff e(A,Y ′) = T and 〈ei,Y ′〉 = 0 holds
for all i ∈ [n− k].

Proposition 4. For any n and k ≤ n−2, the scheme (Setup, H,GenSim,Check)
is (n, k)-independent pre-image resistant under the SXDH assumption.

Correctness is straightforward. We give the proof of independent pre-image re-
sistance in the full paper.

4 Proposed Scheme

Let n ≥ 3 and m be integers. Let Setup be a polytime algorithm that generates a
group description gk = (p,G,H,T, e), as discussed above, where e : G×H→ T.
For H = (H0,H1, . . . ,Hm) ∈ (H2)m+1 and M ∈ {0, 1}m, we define a Water’s
hash function h as

hgk (H,M) = H0 +
∑
k∈[m]

MkHk,
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where Mk is the k-th bit of M . Let Prf and Vrf be the proof algorithm and the
verification algorithm of the Groth-Sahai proof system reviewed in Section 2.3.
Our signature scheme SGN = (Kg,Update, Sig,Ver) works as follows.

Key Generation Kg(1κ): gk ← (p,G,H,T, e) ← Setup(1κ), G ← H2,H ←
(H0,H1, . . . ,Hm)← (H2)m+1.

Randomly select A
$← G, Q

$← H, and a, q
$← Znp satisfying 〈a, q〉 = 0

and compute A ← aA, Q ← qQ. Select W [0] $← Hn randomly, compute
T ← e(A,W [0]), and outputs pk ← (gk ,G,H,A, T,Q) and sk [0] ←W [0].

Key Update Updatepk (sk [i]): Parse pk and sk [i] as (gk ,G,H,A, T,Q) and

W [i] respectively, select s
$← Zp randomly, and output sk [i+1] ← W [i+1] ←

W [i] + sQ.
Signing Sig(sk [i],M) for M ∈ {0, 1}m: Parse pk and sk [i] as (gk ,G,H,A, T,

Q) and W [i]. Compute HM ← hgk(H,M), set crsM ← (G,HM ), and
σ ← Prf(gk , crsM , (A, T ),W [i]) and output σ.

Verification Ver(pk ,M, σ): Parse pk as (gk ,G,H,A, T,Q), compute HM ←
hgk (H,M), and set crsM ← (G,HM ). If Ver(gk , crsM , (A, T ), σ) = 1, out-
put 1. Otherwise, output 0.

Theorem 5. For any constants c > 0 and any γ = Θ(1/
√
κ), the proposed

scheme SIG is (ρG, ρU , ρM , ρS)-EU-CMA-CML secure under the SXDH assump-
tion. Here

(ρG, ρU , ρM , ρS) =
(
c · log k

n log p
,
c · log k

n log p
, 1− 2 + γ

n
, 1− 2 + γ

n

)
.

We can achieve the fraction 1 − o(1) of leakage in signing and in memory by
setting n = κ.

4.1 Overview of Security Analysis

Our proof starts with a reduction that shows how to convert any adversary that
obtains leakage on key generation and updates, to an adversary that does not
require such leakage. This follows from the lemma of Brakerski et al [BKKV10].
(See our full paper for the proof.)

Lemma 1 (Informally given in [BKKV10]). Let SGN = (Kg, Sig,Ver,
Update) be a (0, 0, ρM , ρS)-EU-CMA-CML secure signature scheme. Then if
ρM = ω(logn), it is also (c log κ/m, c logκ/m, ρM , ρS)-EU-CMA-CML secure
for any c. Here m is the maximum of the length of secret key.

The proof of Theorem 5 then proceeds by a sequence of games (depicted in
Fig.2):

1. In games 1-3 we follow a standard argument about the properties of Waters’
hash. Specifically, we show that with non-negligible probability the common
reference strings determined by the messages that the adversary submits in
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leak. of key gen and

updates becomes 0︷ ︸︸ ︷
Original--------Game

Waters hash︷ ︸︸ ︷
0--------Game 1--------Game 2--------Game

W [i] becomes

a random

element of W︷ ︸︸ ︷
3--------Game

IPIR︷ ︸︸ ︷
4--------neg.

stat.

indis.

{∣∣∣
Game† 4 (W [i] $←Y)

Fig. 2. Games in the reduction

signing queries are hiding CRS (and therefore hide the witness perfectly),
and the CRS of the forgery is binding (and therefore the witness can be
extracted).

This part of discussion of the our proof is essentially the same as that
of [W05] (simplified by [BR09]).

2. In game 4, we change the way that secret keys are generated. Instead of being
generated by the update algorithm, the secret key is now randomly chosen
from an n-3 dimensional subspace W of the set Y = {W |e(A,W ) = T } of
valid secret keys (which is of dimension n− 1).

Indistinguishability with game 3 follows from the DDH assumption on the
group H.

3. Game† 4 is described only to prove a specific property of Game 4 that we
need. In Game† 4 the keys are chosen randomly from the space Y of all valid
secret keys.

We rely on the perfect witness hiding of Groth-Sahai proof and a lemma
from [BKKV10] to show that game 4 and Game† 4 are statistically indistin-
guishable.

We then obtain the property of Game† 4 that the subspaceW is informa-
tion theoretically hidden, and this property transfers to Game 4 due to the
indistinguishability of the two games.

4. Finally, in Game 4 we use the fact thatW is information theoretically hidden
from the adversary to argue that the witness W ∗ extracted from the forgery
the an adversary will almost certainly be an element of Y \W .

This allows us to violate the independent pre-image resistance of the hash
function HA(Y ) = e(A,Y ), because we can find a pre-image W ∗ of T under
HA, and that pre-image is independent from the set of known vectors W .

5 Conclusion

In this work, we propose a signature scheme that protects against (1) continual
memory leakage combined with (2) all types of continual processing (computa-
tional) leakage, namely leakage from key generation, key updates, and signing.
Our scheme remains secure even when the leakage during signing is a function
f(sk , r) of both the secret key and the randomness.
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The security of our scheme is proven in the standard model. Moreover, the
amount of information that our scheme is allowed to leak during each time period
is optimal, in the sense that our scheme remains secure even if 1− o(1) fraction
of the secret key of each time period is leaked.
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Abstract. What does it mean for an encryption scheme to be leakage-
resilient? Prior formulations require that the scheme remains semanti-
cally secure even in the presence of leakage, but only considered
leakage that occurs before the challenge ciphertext is generated. Although
seemingly necessary, this restriction severely limits the usefulness of the
resulting notion.

In this work we study after-the-fact leakage, namely leakage that the
adversary obtains after seeing the challenge ciphertext. We seek a “nat-
ural” and realizable notion of security, which is usable in higher-level
protocols and applications. To this end, we formulate entropic leakage-
resilient PKE. This notion captures the intuition that as long as the en-
tropy of the encrypted message is higher than the amount of leakage, the
message still has some (pseudo) entropy left. We show that this notion
is realized by the Naor-Segev constructions (using hash proof systems).

We demonstrate that entropic leakage-resilience is useful by showing a
simple construction that uses it to get semantic security in the presence
of after-the-fact leakage, in a model of bounded memory leakage from a
split state.

1 Introduction

In the traditional view of cryptography, some parts of the system are designated
as secret, and these parts are kept beyond reach for the attackers and only
interact with the non-secret parts via well defined interfaces under the control
of the designers. In contrast, in reality many times attackers can “design their
own interfaces” for accessing the secret state. For example, they may get parts
of the secret state via a myriad of side-channels (e.g., timing, radiation, etc.),
read it off some backup tape or physical memory, or maybe bribe people who
have access to parts of the secret state (or install a virus on their machines).
Recent years saw many advances in our ability to reason formally about such
unintended leakage and to construct schemes that resist broad class of leakage
attacks (e.g., [13,15,9,1,16,3,14,10] and others). This line of work is typically
referred to as leakage-resilient cryptography.
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The general theme in formulating leakage resilience of some primitive is that
in addition to the usual interfaces that are available by design, the adversary
can also choose arbitrary leakage functions (from some broad class) and get the
result of applying these functions to the secret state of the scheme. We then
require that the scheme still meets the original notion of security, even in the
presence of this more powerful adversary. This approach was successfully applied
to model leakage resilience of many cryptographic schemes, such as pseudoran-
dom generators, signature schemes, etc.

The same approachwas also applied to leakage-resilienceof encryption schemes,
e.g., in [1,16,3], but here there seems to be a problem: Basic notions of security for
encryption schemes require that they hide the content of the plaintext even from
an adversary that knows many things about that plaintext. In particular, seman-
tic security of encryption requires that an adversary that knows two messages
m0,m1 and sees a ciphertext c encrypting one of them, will not be able to tell
which of the two messages is encrypted in c. But if we let the adversary learn
arbitrary functions of the secret key, then it could ask for a function that de-
crypts the “challenge ciphertext” c and outputs 0 if it is decrypted to m0 and
1 otherwise. In other words, given the challenge ciphertext the adversary can
design a leakage function that will leak to it exactly the one bit that we try to
hide using encryption.

Prior work on leakage-resilient PKE [1,16,3] bypassed this definitional diffi-
culty by only considering before-the-fact leakage. Namely, the adversary could
only ask for leakage on the secret key before it sees the challenge ciphertext,
and the scheme was deemed leakage resilient if it remained semantically secure
in face of such leakage. This approach indeed bypasses the technical problem,
but pays dearly in terms of the meaning and applicability of the resulting no-
tions. Indeed this solution means that as soon as even one bit of the secret key
is leaked, we cannot say anything about the secrecy of any message that was
encrypted before that bit was leaked.

Consider for example trying to address memory leakage (such as the “cold
boot attacks” [11]) by using leakage-resilient encryption. In a memory-leakage
attack, an attacker may get a laptop where the disk is encrypted. Lacking the
password to access the decryption functionality, the attacker may try to read the
decryption key directly off the physical memory. In this setting, the adversary
could first see the encrypted disk (hence getting access to the ciphertext), and
then try to design a method of measuring the memory specifically for the pur-
pose of decrypting this ciphertext. Existing notions of before-the-fact leakage-
resilient encryption say nothing about the secrecy of the plaintext under this
attack. This definitional problem was acknowledged in prior work, but no solu-
tions were offered. For example, Naor and Segev wrote in [16] that “It will be
very interesting to find an appropriate framework that allows a certain form of
challenge-dependent leakage.”

1.1 Our Contributions

In this work we study after-the-fact leakage, where the adversary obtains leak-
age information after seeing the challenge ciphertext. Our main contribution is
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formulating the notion of entropic leakage-resilient PKE and showing how to
meet it. Intuitively, this notion says that even if the adversary designs its leak-
age function according to the challenge ciphertext to leak the things it wants to
know, if it only leaks k bits then it cannot “amplify” them to learn more than k
bits about the plaintext. Technically, our notion can be viewed as an extension
of HILL entropy [12] to the interactive setting. Namely, our notion would say
that the message still looks like it has some min-entropy, even to the interactive
adversary that participated in the game of semantic-security with leakage.

We remark that this notion is not trivial: Indeed it is not hard to construct
“contrived” encryption schemes that are semantically secure (even with respect
to before-the-fact leakage), but such that leaking (say)

√
n bits after the fact

lets the adversary recover n bits of plaintext. On the other hand, we show that
the same construction that Naor and Segev used in [16] for obtaining leakage-
resilient encryption from hash proof systems, in fact realizes also the stronger
notion of entropic leakage-resilience relative to after-the-fact leakage.

To demonstrate the usefulness of entropic leakage-resilience we show that in
some cases it can be used to get full semantic security, even in the presence of
after-the-fact leakage. For this, we of course have to limit the type of leakage
functions that the adversary has access to. Specifically, we consider a model
where the key is broken into several parts, and the adversary can get access to
leakage from every part separately, but not to a global leakage from the entire
secret state. (This model is often used in conjunction with the only-computation-
leaks axiom of Micali and Reyzin [15].)

To get semantic security in that model, we use two instances of an entropic
leakage resilient encryption scheme. To encrypt a message m, we choose two
random long strings x1, x2, encrypt each xi under a different copy of the entropic
scheme, and use a two-source extractor to compute Ext2(x1, x2)⊕m. To decrypt
we recover the two strings x1, x2 (which we can do by working separately with the
two secret keys) and then recover m. The intuition is that as long as the adversary
can only get leakage functions from the two keys separately, the entropic leakage
resilience of the underlying scheme implies that x1, x2 still have a lot of entropy,
and hence Ext2(x1, x2) still hides the message. (We remark that we view this
construction more as an example to the usefulness of our new notion than as a
stand-alone application.)

Discussion: on defining useful leakage primitives. On some level, our notion
of entropic leakage-resilience departs from the usual theme described above for
defining leakage-resilience primitives. Namely, we no longer insist that the scheme
retains its original security properties even in the face of leakage. In the face of
the impossibility of achieving the strong notion of semantic security, we are
willing to settle on a weaker achievable notion so long as it is useful in higher-
level applications. It is interesting to formulate such useful weakened notions
also for other primitives, such as commitment, key-agreement, etc.

In this context we note that when thinking about encryption as part of a
communication system, our notion only captures leakage at the receiver side
(i.e., from the secret key) and not at the sender side (i.e., from the encryption
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randomness). It is interesting to find ways of simultaneously addressing leakage
at both ends.

1.2 Recent Related Work

We mention that two recent works by Goldwasser and Rothblum [10], and Juma
and Vahlis [14] implicitly also considered after-the-fact leakage for encryption
schemes. They presented general methods for compiling any circuit with secret
components into one that resists continuous leakage (in the only-computation-
leaks model), using leakage-free hardware. Their transformations use as a tech-
nical tool encryptions schemes that remain semantically secure even at the
presence of after-the-fact leakage of the secret key, provided that the adver-
sary sees only part of the challenge ciphertext. (Such notion of semantic-security
with respect to adversaries that cannot see the entire challenge ciphertext, if
defined as a stand-alone primitive, could be another example of a useful weaker
leakage primitive.)

2 Preliminaries

We denote random variables by uppercase English letters. For a random vari-
able A we (slightly) abuse notation and denote by A also the probability dis-
tribution on the support of this variable. We write A ∈ D to denote that A is
drawn from domain D. We use Ut to denote the uniform distribution on t-bit
binary strings. We write x← A to denote the random variable A assuming the
value x. We will rely on the following fact about independent random variables,
which is proved in the full version of [8].

Lemma 1. Let A, B be independent random variables and consider a sequence
V1, . . . , Vm of random variables, where for some function φ, Vi = φ(V1, . . . , Vi−1,
Ci), with each Ci being either A or B. Then A and B are independent conditioned
on V1, . . . , Vm.

2.1 Min-entropy and Average Min-entropy

The statistical distance between two random variables A and B over a finite
domain Ω is SD

(
A, B
)

= 1
2

∑
ω∈Ω |Pr[A = ω]− Pr[B = ω]|. Two variables are

ε-close if their statistical distance is at most ε. The min-entropy of a random
variable A is H∞(A) = − log(maxx Pr[A = x]). The notion of average min-
entropy, formalized in [6], captures the remaining unpredictability of the random
variable A conditioned on the value of another random variable B. Formally,

H̃∞(A|B) = − log
(
Ey←B

[
max
x

Pr [A = x | B = y]
])

= − log
(
Ey←B

[
2−H∞(A|B=y)

])
We will rely on the following useful properties of average min-entropy.
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Lemma 2 ([6]). Let A, B, C be random variables. If B has at most 2λ possible
values, then H̃∞(A|(B,C)) ≥ H̃∞(A|C) − λ.

Lemma 3. Let A be a random variable with domain Ω, and U the random
variable describing a uniformly sampled element from Ω; and let B a random
variable. For any ε ∈ [0, 1], if SD

(
(A,B), (U,B)

)
≤ ε, then H̃∞(A|B) ≥

− log
(

1
|Ω| + ε

)
.

This lemma follows directly from the definition of average min-entropy; we omit
the proof here.

2.2 Seeded Extractors

Definition 1 ([18]). A function Ext : {0, 1}n × {0, 1}r → {0, 1}m is a (worst-
case) (k, ε)-strong extractor if for every random variable A ∈ {0, 1}n, such that,
H∞(A) ≥ k, it holds that, SD

(
(Ext(A,S), S), (Um, S)

)
≤ ε, where S is uniform

on {0, 1}r.

Dodis et al. [6] generalized the definition above to the setting of average min-
entropy, and showed the following generalized variant of the leftover hash lemma,
stating that any family of pairwise independent hash functions is an average-case
strong extractor.

Definition 2. A function Ext : {0, 1}n × {0, 1}r → {0, 1}m is an average-case
(k, ε)-strong extractor if for all pairs of random variables A and B, such that, A ∈
{0, 1}n and H̃∞(A|B) ≥ k, it holds that, SD

(
(Ext(A,S), S,B), (Um, S,B)

)
≤ ε,

where S is uniform on {0, 1}r.

Lemma 4. Assume
{
Hx : {0, 1}n → {0, 1}l

}
is a family of universal hash func-

tions. Then for any random variables A and B, such that A ∈ {0, 1}n and
H̃∞(A|B) ≥ m, SD

(
(Hx(A), X,B), (Ul, X,B)

)
≤ ε whenever l ≤ m− 2 log 1

ε .

2.3 Two-Source Extractors

The extractors defined in the last section require the use of a short but truly
random seed, which sometimes might be hard to obtain. The notion of two-
source extractor [19,20,4] eliminates the use of a truly random seed, and instead
extracts random bits from two independent sources of randomness.

Definition 3. A function Ext2 : ({0, 1}t)2 → {0, 1}m is a (worst-case) (s, ε)
two-source extractor, if for all independent random variables A,B ∈ {0, 1}t with
min-entropy s, it holds that SD

(
Ext2(A,B), Um

)
≤ ε.

Definition 4. A function Ext2 : ({0, 1}t)2 → {0, 1}m is an average-case (s, ε)-
two source extractor, if for all random variables A,B ∈ {0, 1}t and C, such that,
conditioned on C, A and B are independent and have average min-entropy s, it
holds that SD

(
(Ext2(A,B), C), (Um, C)

)
≤ ε.
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It follows from the same proof of Lemma 2.3 in [6] that any worst-case two-source
extractor is also an average-case two-source extractor.

Lemma 5. For any δ > 0, if Ext2 : ({0, 1}t)2 → {0, 1}m is a (worst-case)
(s− log 1

δ , ε)-two-source extractor, then Ext2 is also an average-case (s, ε+ 2δ)-
two-source extractor.

2.4 Hash Proof Systems

Hash proof systems were introduced by Cramer and Shoup [5]. We briefly recall
the presentation in [16], which views the hash proof systems as key encapsulation
mechanisms.

Smooth Projective Hashing. All the notations below should be thought of as
relying on an implicit security parameter (and maybe some other system pa-
rameters, such as the underlying algebraic groups). Let SK,PK be the domains
of secret and public keys, let K be the space of encapsulated symmetric keys, C
be the space of ciphertexts and V ⊂ C be the space of valid ciphertexts.

Let F = {Fsk : C → K}sk∈SK be a collection of hash functions with domain
C and range K, and let μ : SK → PK be a projection function. Let F be the
construction which is described by all these sets, F = (SK,PK, C,V ,K, F, μ).

Definition 5. The construction F is a projective hash family if for all v ∈ V,
and for all sk1, sk2 ∈ SK such that μ(sk1) = μ(sk2), it holds that Fsk1 (v) =
Fsk2(v).

In other words, for all indexes sk ∈ SK, the actions of Fsk on elements in V
are uniquely determined by μ(sk). On the other hand, for elements not in V , we
require the hash function Fsk to behave almost “randomly”. Formally,

Definition 6. The construction F is ε-smooth, if it holds that

SD
(
(pk, c, Fsk(c)), (pk, c, k)

)
≤ ε,

where sk ∈ SK, c ∈ C/V, and k ∈ K are sampled uniformly at random and
pk = μ(sk).

Hash Proof System. A hash proof system is roughly a construction of smooth-
projective hash functions with several efficient associated algorithms. Specifi-
cally, we assume an efficient parameter-generating algorithm Param that given
the security parameter outputs the description of F = (SK,PK, C,V ,K, F, μ),
such that V is an NP language and there is an efficient algorithm for sampling
c ← V together with a witness w. We also assume that there are efficient algo-
rithms for sampling sk← SK and c← C \ V .

We also have two algorithms for computing the hash function Fsk. One is a
private evaluation algorithm Priv(sk, c) that on input a secret key sk ∈ SK and
a ciphertext c ∈ C, outputs the encapsulated key k = Fsk(c). The other is a
public evaluation algorithm Pub that computes the same given the public key,
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but only on valid ciphertexts and only when it is also given a witness of validity.
Namely, for every sk ∈ SK and pk = μ(sk) and for every c ∈ V with witness w,
it holds that Pub(pk, c, w) = Fsk(c).

Cramer and Shoup noted that a hash proof system immediately implies a
KEM mechanism, where key-generation consists of running the parameter gen-
erating routine, then choosing a random secret key sk ← SK and computing
the corresponding public key pk = μ(sk). Encapsulating a key is done by choos-
ing at random c ← V together with a witness w. Then the ciphertext is c and
the corresponding encapsulated key is computed by the sender using the public
evaluation algorithm, setting k = Pub(pk, c, w). On the receiving side, the same
key is recovered using the private evaluation algorithm, setting k = Priv(sk, c).
Security of this scheme follows from the smoothness of the construction, in con-
junction with the hardness subset membership problem, as defined below.

Subset Membership Problem. A hash proof system as above is said to have
a hard subset membership problem if a randomly generated valid ciphertext is
computationally indistinguishable from a randomly generated invalid ciphertext.
Formally, the following two ensembles are indistinguishable

VALID = {F = (SK,PK, C,V ,K, F, μ)← Param(1n), c← V : (F , c)}n∈N
INVALID = {F=(SK,PK, C,V ,K, F, μ)← Param(1n), c← C\V : (F , c)}n∈N

3 Entropic Security against After-the-Fact Leakage

Roughly speaking, we say that an encryption scheme is entropic leakage resilient
if a message M with high min-entropy still “looks random” to the adversary
even after it sees an encryption of it and some leakage information (even if
this leakage was obtained after seeing the ciphertext). This is formulated by
postulating the existence of a simulator that generates a view, which on one
hand is indistinguishable from the real adversary view and on the other hand
still leaves M with high min-entropy.

More formally, we define two games, one “real” and the other “simulated”.
Both games depend on several parameters: k is the a-priory min-entropy of the
message, and �pre, �post control the amount of leakage in various parts of the
games (namely the pre- and post- challenge-ciphertext leakage). All of these
parameters are of course functions of the security parameter n. (For simplicity,
in the definition below we assume that the message M is a uniform random
k-bit string. This is all we need for our application in Section 4 to the only-
computation-leak model, and extending the definition to arbitrary high-min-
entropy distributions is easy.)

The “real” game. Given the parameters (k, �pre, �post) and the encryption scheme
Ψ = (Gen,Enc,Dec), the real game is defined as follows:

Key Generation: The challenger chooses at random a message m← Uk. The
challenger also generates (sk, pk)← Gen(1n), and sends pk to the adversary.
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Pre-Challenge Leakage: The adversary makes a pre-challenge leakage query,
specifying a function fpre(·). If the output length of fpre is at most �pre then
the challenger replies with fpre(sk). (Else the challenger ignores the query.)

Challenge: Upon a challenge query, the challenger encrypts the message m and
sends the ciphertext c = Enc(pk,m) to the adversary.

Post-Challenge Leakage: The adversarymakes a post-challenge leakagequery,
specifying another function fpost(·). If the output length of fpost is at most
�post then the challenger replies with fpost(sk). (Else the challenger ignores
the query.)

We let Viewrl
A(Ψ) = (randomness, pk, fpre(sk), c, fpost(sk)) be the random vari-

able describing the view of the adversary A in the game above, and by M rl we
denote the message that was chosen at the onset of this game. (We view them as
correlated random variables, namely when we write (M rl,Viewrl

A(Ψ)) we mean
the joint distribution of the message M rl and A’s view in a real game with M rl).

The “simulated” game. In the simulated game we replace the challenger from
above by a simulator Simu that interacts with A in any way that it sees fit. Simu
gets a uniformly chosen message M sm as input, and it needs to simulate the
interaction conditioned on this M sm. The view of A when interacting with S is
denoted Viewsm

A (Simu).
Below we say that Ψ is entropic leakage-resilient (with respect to all the pa-

rameters) if on one hand the distributions Viewrl
A(Ψ), Viewsm

A (Simu) are indis-
tinguishable even given the message M , and on the other hand M sm has high
min-entropy given Viewsm

A (Simu).

Definition 7. Let k, �pre, �post be parameters as above, and let δ be another
“slackness parameter.” A public-key encryption scheme Ψ = (Gen,Enc,Dec) is
entropic leakage resilient with respect to these parameters if there exists a simu-
lator Simu, such that, for every PPT adversary A the following two conditions
hold:

– The two ensembles
(
M rl,Viewrl

A(Ψ)
)
,
(
M sm,Viewsm

A (Simu)
)

(indexed by the
security parameter) are computationally indistinguishable.

– The average min-entropy of M sm given Viewsm
A (Simu) is

H̃∞(M sm | Viewsm
A (Simu)) ≥ k − �post − δ.

Intuitively, in the simulated game the message M sm retains its initial entropy,
except for the �post post-challenge leakage bits and possibly also some “overhead”
of δ bits. And since the simulated game cannot be distinguished from the real
game, then M rl has the same number of pseudo-entropy bits also in the real
game.

What happened to �pre? Note that the min-entropy of M sm is only reduced by
the amount of the post-challenge leakage (and “overhead”) irrespective of the
pre-challenge leakage. This is reminiscent of the prior results that can tolerate
pre-challenge leakage while maintaining semantic security (hence “not losing
any entropy” of the message). Indeed, the security notions from [1,16] can be
obtained as a special case of our definition with �post = δ = 0.
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Adaptiveness. It was pointed out in [1] that the pre-challenge leakage can be
made adaptive without effecting the definition. The same holds also for the
post-challenge leakage.

3.1 Constructing Entropic Leakage-Resilient Scheme

We show that the generic construction of Naor and Segev for pre-challenge leak-
age resilient encryption from hash proof systems [16], is actually entropic secure
against bounded after-the-fact leakage. The encryption algorithm (overly sim-
plified) samples a valid ciphertext c of the hash proofs system, and uses the key
encapsulated in c to hide the message. To show entropic security, the entropic
simulator proceed the same as the encryption algorithm except that it uses in-
valid ciphertexts. It follows from the indistinguishability of the valid and invalid
ciphertexts that the real and the simulated games are indistinguishable. Fur-
thermore, due to smoothness the key encapsulated in an invalid ciphertext has
high min-entropy, and hence the message is well “hidden”, and has high average
min-entropy.

In more details, we need an ε-smooth hash proof system F = (SK,PK, C,V ,
K, F, μ), where the symmetric encapsulated keys are assumed (w.l.o.g.) to be just
t1-bit strings, K = {0, 1}t1. We also need a function Ext : {0, 1}t1 × {0, 1}t2 →
{0, 1}t3 which is an average-case (t4, δ) strong extractor. Namely, it has t1-bit
inputs, t2-bit seeds and t3-bit outputs, and for a random seed and input with
t4 bits of min entropy, the output is δ-away from a uniform t3-bit string. Then,
the encryption scheme Ψ = (Gen,Enc,Dec) proceeds as follows:

Key Generation: The key generation algorithm, on input a security parameter
1n, generates an instance of a projective hash family F = (SK,PK, C,V ,K, F,
μ) ← Param(1n), samples a secret key sk ← SK, and computes the corre-
sponding public key pk = μ(sk).

Encryption: The encryption algorithm, on input a message m ∈ {0, 1}t3, sam-
ples a valid ciphertext together with a corresponding witness (c, w)← V , and
computes the encapsulated key k using the public evaluation algorithm, i.e.,
k = Pub(pk, c, w). It then samples a random seed s ∈ {0, 1}t2, and computes
ψ = Ext(k, s)⊕m. Finally, it outputs the ciphertext ĉ = (c, s, ψ).

Decryption: The decryption algorithm on input a ciphertext (c, s, ψ), com-
putes the encapsulated key k using the private evaluation algorithm, i.e.,
k = Priv(sk, c), and outputs the message m = Ext(k, s)⊕ ψ.

It follows using the same proof as in [16] that the encryption scheme Ψ is a
correct public-key encryption scheme. Namely the decryption algorithm always
recovers the original message m correctly. Next, we proceed to prove the entropic
leakage resilience of Ψ against after-the-fact leakage.

Lemma 6. The public-key encryption scheme Ψ from above is entropic leakage-
resilient with respect to leakage �pre, �post and “overhead” δ′, as long as these
parameters satisfy the following constraints:

�pre ≤ log

(
1

1
|K| + ε

)
− t4 and δ′ ≤ t3 − log

1
2−t3 + δ
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To interpret these parameters, it is useful to think of a “very smooth” hash proof
system (ε� 1/|K| = 2−t1), and a very good extractor that can work with inputs
that have min-entropy t4 � log |K| = t1 and produces outputs whose distance
from uniform t3-bit strings is δ < 2−t3 . For such building blocks we can tolerate
pre-challenge leakage of �pre ≈ t1 − t4 = t1(1− o(1)), and our overhead is δ′ < 1
bits.

Proof. To prove Lemma 6 we need to describe a simulator, whose answers to the
adversary are indistinguishable from the real game but at the same time leave
many bits of min-entropy in the message m.

In our case, the simulator S proceeds almost identically to the challenger in
the real game, except that to generate the ciphertext ĉ = (c, s, ψ) it samples
an invalid ciphertext for the hash-prof system, c ← C/V , then it computes k =
Priv(sk, c) using the secret key sk that it knows, and outputs the ciphertext
ĉ = (c, s, ψ), where ψ = Ext(k, s)⊕m.

It follows directly from the indistinguishability of the valid and invalid cipher-
texts of the hash proof system that the simulated view is indistinguishable from
the real one even given the message m. It only remains to show the min-entropy
condition.

On a high-level, the proof consists of two steps. The first step shows that
conditioned on all the information that the adversary receives till the end of the
Challenge Phase, the message m still has high average min-entropy, namely at
least t3 − δ′.

To see this, note that by ε-smoothness the encapsulated key k has almost t1
bits of min-entropy even given pk and c, and therefore almost t1 − �pre bits of
min-entropy even given pk, c and the pre-challenge leakage. Specifically k has at

least log
(

1
1

|K|+ε

)
−�pre ≥ t4 bits of min-entropy, and therefore the bits extracted

from k using the extractor Ext are statistically close to random (even given pk, c
the pre-challenge leakage and the seed s). Thus the message m is δ-close to a
uniform t3-bit string, even given pk, c, the pre-challenge leakage, the seed s, and
the value ψ. (So far this is exactly the same argument as in the proof of the
Naor-Segev construction.) Hence upto this phase, the message m has at least
t3 − δ′ bits of min entropy.

Next, by further relying on the fact that the post-challenge leakage is bounded
by �post bits, the min-entropy of m is reduced by at most this much, so it retains
at least t3 − �post − δ′ bits of average min-entropy.

4 Semantic Security in a Split-State Model

We next demonstrate how Definition 7 can be used in a “higher level protocol”.
Specifically, we consider a split-state model, where the secret state of the cryp-
tosystem at hand is partitioned to a few parts and the adversary can obtain
leakage of its choice on every part separately but not a global leakage function
from the entire secret state.

This model is often used in conjunction with the only-computation-leaks ax-
iom (OCL) of Micali and Reyzin [15]. In our case we talk only about CPA security
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and there is no decryption oracle, hence after-the-fact there isn’t any computa-
tion to leak from and talking about only-computation-leaks does not make sense.
(An extension of this construction to get CCA-security may be applicable to the
OCL model, but this is beyond the scope of the current work.)

Definition 8. A 2-split-state encryption scheme is a public-key encryption
scheme Π = (Gen,Enc,Dec) that has the following structure:

– The secret key consists of a pair of strings S = (S1, S2), and similarly the
public key consists of a pair P = (P1, P2).

– The key generation algorithm Gen consists of two subroutines Gen1 and
Gen2, where Geni for i ∈ {1, 2} outputs (Pi, Si).

– The decryption algorithm Dec also consists of two partial decryption subrou-
tines Dec1 and Dec2 and a combining subroutine Comb. Each Deci takes
as input the ciphertext and Si and outputs partial decryption ti, and the
combining subroutines Comb takes the ciphertext and the pair (t1, t2) and
recovers the plaintext.

In the split-state model, we assume that information is leaked independently
from the two parts. Semantic security for such a 2-split-state scheme in the
presence of After-the-Fact Leakage in this model is defined below. Let �pre, �post
be parameters as before, and we consider the following game:

Key Generation: The challenger chooses r1, r2 ∈ {0, 1}∗ at random, generates
(skb, pkb)← Gen(1n, rb) for b = 1, 2, and sends (pk1, pk2) to the adversary.

Pre-Challenge Leakage: The adversary makes an arbitrary number of leak-
age queries (fpre

1,i , f
pre
2,i ) adaptively. Upon receiving the ith leakage query the

challenger sends back (fpre
1,i (sk1), f

pre
2,i (sk2)), provided that the total output

length of all the pre-challenge queries so far does not exceed �pre in each
coordinate. (Otherwise the challenger ignores the query.)

Challenge: The adversary sends two messages m0,m1 ∈ {0, 1}n. The chal-
lenger chooses a random bit σ, encrypts the message mσ, and returns the
ciphertext c = Enc(pk,mσ).

Post-Challenge Leakage: The adversary can submit an arbitrary number of
leakage queries (fpost

1,i , fpost
2,i ) adaptively. Upon receiving the ith leakage query

the challenger sends back (fpost
1,i (sk1), f

post
2,i (sk2)), provided that the total

output length of all the post-challenge queries so far does not exceed �post
in each coordinate. (Otherwise the challenger ignores the query.)

Output: The adversary outputs a bit σ′.

Definition 9. A 2-split-state encryption scheme Ψ = (Gen,Enc,Dec) is re-
silient to (�pre, �post) leakage in the split-state model, if for every PPT adversary
A that participates in an experiment as above, there is a negligible function negl
such that Pr[σ′ = σ] < 1/2 + negl(n).

4.1 Our Construction

As defined above, our 2-split-state scheme maintains a split secret key (S1, S2)
(and a corresponding split public key (P1, P2)), where Si is generated by Geni
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and used by Deci. Due to the the restriction on the leakage in the split-state
model, the adversary can never obtain leakage on S1 and S2 jointly, so even after
leakage we can hope that each of the two parts still has sufficient entropy and
moreover they are independent. Hence we can use two-source extractors to get a
close-to-uniform string from these two parts, and use it to mask the message.

In the scheme below, we do not try to extract from the secret keys themselves,
but rather in each encryption we encrypt two random strings, one under each of
the keys, and extract randomness from these two ephemeral random strings. We
argue that if the two copies are implemented using an entropic leakage-resilient
scheme, then we get semantic security in the split-state model. Intuitively, the
reason is that the entropic security ensures that the two ephemeral strings still
have high (pseudo)entropy even given the leakage, and the split-state model
ensures that they are independent, so the two-source extraction should give us
what we want.

The formal proof roughly follows this intuitive reasoning, with just one ad-
ditional complication, related to adaptivity: In the post-challenge leakage, the
adversary can choose the leakage functions from the two key parts after it al-
ready saw the value that was extracted from the two random strings, causing a
circularity in the argument. We solve this issue essentially by “brute force”: We
argue below that if the extracted value has only u bits, then the adaptivity issue
can increase the advantage of the adversary by at most a 2u factor, and set our
parameters to get around this factor1.

The construction. Let n be the security parameter, and let u be the bit-length
of the messages that we want to encrypt. Also let t, v, �pre, �post be some other
parameters (to be defined later). Let Ψ = (GenEnt, EncEnt, DecEnt) be a entropic
secure encryption for t-bit messages, resilient to leakage (�pre, �post), with over-
head of one bit.

Also, let Ext2 : {0, 1}t×{0, 1}t→ {0, 1}u be an average-case (v, ε)-two-source
extractor, with ε = 2−u−ω(logn). Namely both inputs to Ext2 are of length t,
and as long as they are independent and both have more than v min entropy,
the output of Ext2 is at most ε away from a uniform u-bit string2. Given these
ingredients, our 2-split-state encryption scheme Π = (Gen,Enc,Dec) proceeds
as follows:

Key Generation: The key generation algorithm runs two subroutines Gen1
and Gen2, where Geni for i ∈ {1, 2} on input 1n generates a public and
secret key pair (Si, Pi) ← GenEnt(1n) of the entropic encryption scheme Ψ .
The public key is P = (P1, P2) and the secret key is S = (S1, S2).

Encryption: The encryption algorithm, on input a message m ∈ {0, 1}u,
chooses two random strings x1, x2 ∈ {0, 1}t and encrypts the two strings us-
ing the two public keys P1 and P2 respectively; set ci = EncEnt(Pi, xi). Then,
it computes ψ = Ext2(x1, x2)⊕m, and outputs the ciphertext ĉ = (c1, c2, ψ).

1 We remark that we do not make exponential hardness assumptions to achieve this.
See proof of Claim 8 for more details.

2 Note that we set ε so that it remain negligible even if we multiply it by 2u, this is
needed for the adaptivity issue in the proof.
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Decryption: The decryption algorithm, on input a ciphertext (c1, c2, ψ), exe-
cutes the following three subroutines sequentially.
– The subroutine Dec1 decrypts c1 using S1 and outputs the plaintext

x1 = DecEnt(S1, c1).
– The subroutine Dec2 decrypts c2 using S2 and outputs the plaintext

x2 = DecEnt(S2, c2).
– The subroutine Comb on input x1, x2 and ψ, outputs the message M =

Ext2(x1, x2)⊕ ψ.

Lemma 7. The 2-split-state scheme Π from above is semantically secure with
respect to leakage (�′pre, �

′
post) in the split-state model, as long as the parameters

satisfy the following constraints:

�′pre ≤ �pre and �′post ≤ min(�post − u, t− v − 1).

Proof. We need to show that PPT adversaries only have negligible advantage
in guessing the choice bit σ in the semantic security game. To that end, fix a
semantic-security adversary Ass, and let Simu be the entropic simulator that
exists for the underlying entropic scheme Ψ3. We now consider the hybrid ex-
periments hyb1 and hyb2, which are defined as follows:

Hybrid hyb1: In this hybrid, the challenger generates the ciphertext c2 and
answers leakage queries against S2 just as in the real game. However, it uses
the entropic simulator Simu to generate the ciphertext c1 and to answer
leakage queries against S1.

In more details, the challenger chooses x1, x2 at random, then generates
(S2, P2) using the key-generation of Ψ , but it gets P1 by running Simu(x1).
(Recall that the entropic simulator expects a random plaintext string in
its input.) Then to answer a pre-challenge query (fpre

1,i , f
pre
2,i ), the challenger

forward fpre
1,i to Simu and gets the answer from it, computes the answer

fpre
2,i (S2) by itself, and send both answer to Ass.
When Ass makes a challenge query (m0,m1), the challenger asks Simu for

the first ciphertext c1, and computes c2 by itself c2 = Enc(P2, x2). (Recall
again that Simu was run with input x1, so the ciphertext that it returns is
supposed to simulate an encryption of x1.)

Next, the challenger makes a direct post-challenge leakage query
to Simu, querying with the function h1(S1) = Ext2(Dec(S1, c1), x2) (that
has u bits of output). Getting some answer r′, the challenger just discards
that answer, instead computing r = Ext2(x1, x2), choosing a random bit σ,
setting ψ = r ⊕mσ and sending (c1, c2, ψ) to Ass.

After that, post-challenge queries of Ass are handled just like the pre-
challenge queries, with the challenger asking Simu for the first part of the
answer (for the query against S1) and computing the answer to the query
against S2 by itself.

3 Our Definition 7 has only one pre- and one post-challenge query. Below we assume
for convenience that the entropic-security adversary can make adaptive queries, it
was noted in [1] that these definition are equivalent.
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Hybrid hyb2: In this hybrid the challenger still chooses x1, x2 at random, but
now both parts of the game are handled by the simulator, running as Simu(x1)
to answer the first part of all the queries (and to get c1) and as Simu(x2) to
answer the second part of all the queries (and to get c2).

The challenger makes direct post-challenge queries to both copies of the
simulator, asking the first for r′ = h1(S1) = Ext2(Dec(S1, c1), x2) and the
second for r′′ = h2(S2) = Ext2(x1, Dec(S2, c2)). The challenger still ignores
both answers, computing instead r = Ext2(x1, x2) and setting the ψ com-
ponent of the Π-ciphertext as r ⊕mσ.

Before proceeding with the proof, we point out that the direct post-challenge
leakage queries that the challenger makes are expected to return the same value
that the challenger computes itself, r′ = r′′ = r. (Indeed we prove below that
they almost always do). The reason that the challenger still makes them is to
ensure that the entropic simulators see the same queries in these hybrids as in
the reductions that we use below. One consequence of these direct queries is that
the entropic simulators need to answer more post-challenge queries than what
the semantic-security adversary asks. Specifically, it needs to answer u more bits,
hence the constraint �′post ≤ �post − u.

We now prove that the event σ′ = σ holds in the hybrids with essentially
the same probability as in the real game, by reducing to the indistinguishability
property of the entropic simulator.

The hybrid hyb1. Assume toward contradiction that the event σ′ = σ happens
in the real game with probability which is larger than in the first hybrid hyb1 by
a noticeable amount ρ. We describe an entropic adversaryAent and distinguisher
Dent that break this indistinguishability property. (In fact, for the same entropic
adversary Aent we describe two distinguishes Dent

1 , Dent
2 , and prove that at least

one of them has advantage ρ/2 or more.)

– The entropic adversary Aent, on input public key P1, chooses (P2, S2) and x2
in the same way as the hyb1 challenger, and sends (P1, P2) to the semantic-
security adversary Ass. It then proceeds similarly to the hyb1 challenger,
answering the first part of every query using its oracle and computing the
answer to the second part by itself.

The only difference between Aent and the hyb1 challenger is in the way
that the ψ component of the ciphertext is computed. Once Aent gets c1 from
its oracle and computes c2 = Enc(P2, x2), it makes a post-challenge leakage
query to its oracle asking for r′ = h1(S1) = Ext2(Dec(S1, c1), x2). Since
Aent does not have x1, it does not discard the answer but rather uses it for
setting ψ = r′ ⊕mσ.

– The first distinguisher Dent
1 gets the view of Aent, which includes x2 and r′,

and also the string x1 (which was supposed to be encrypted in c1). Dent
1

simply verifies that r′ = Ext2(x1, x2), outputting 1 if they are equal and 0
otherwise.

– The second distinguisher Dent
2 gets the view of Aent, which includes σ and σ′,

and outputs 1 if they are equal and 0 otherwise.
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Clearly, if the oracle of Aent is the real encryption scheme Ψ then the tran-
script that Ass sees is identical to the real semantic-security game. In partic-
ular, the ciphertext c1 is indeed an encryption of x1, and therefore we have
r′ = Ext2(x1, x2) with probability 1.

If the oracle ofAent is the simulator Simu(x1), then we have two possible cases:
either the event r′ �= Ext2(x1, x2) happens with probability at least ρ/2, or it
happens with smaller probability. In the first case, the distinguisher Dent

1 clearly
has an advantage at least ρ/2 in distinguishing between the real scheme Ψ and
the simulator Simu.

In the second case, the transcript that Ass sees is the same as in the hybrid
hyb1, except for an event of probability less than ρ/2. Since the probability of
σ = σ′ in the real game is larger by ρ than this probability in hyb1, then it is
larger by more than ρ/2 than this probability in the interaction with Aent. Hence
the distinguisher Dent

2 has advantage more than ρ/2.

The hybrid hyb2. The proof of indistinguishability between hyb1 and hyb2 is
essentially the same as the proof of indistinguishability between the real game
and hyb1, and is omitted here.

The advantage in hyb2. Having shown that the probability of σ = σ′ in the
second hybrid hyb2 is negligibly close to the probability in the real game, we now
proceed to bound it. For that purpose, we consider another mental experiment
˜hyb as follows:

Hybrid ˜hyb: hybrid ˜hyb proceeds the same as hyb2, except that, in the Chal-
lenge Phase, instead of sending the adversary Ass the complete ciphertext
ĉ = (c1, c2, ψ), the challenger sends only c1 and c2, and defers sending ψ
until after the Post-Challenge Leakage Phase.

Of course, the mental experiment ˜hyb is very much distinguishable from hyb2.
Moreover, compared with the adversary in ˜hyb, the adversary in hyb2 has the
advantage of choosing the leakage functions in the Post-Challenge Leakage Phase
based on ψ. Still, we argue that this advantage is limited, up to an exponential
factor in u. Namely, we show in Claim 8 that if Ass has advantage α in guessing
the bit σ in hyb2, then there is another adversary Ã that has advantage at least
α/2u in guessing the bit σ in the mental experiment ˜hyb.

Claim 8. If for some α > 0 there exists an adversary Ass for which Prhyb2
[σ =

σ′] ≥ 1
2 + α, then there exists another adversary Ã for which Pr ˜hyb[σ = σ′] ≥

1
2 + α

2u .

Proof. We present a generic construction of Ã given Ass. The adversary Ã in ˜hyb
runs Ass internally, and forward messages externally to the Challenger in ˜hyb.
Except that in the Challenge Phase, Ã randomly chooses some string ψ′ ∈ {0, 1}u
and sends it to Ass in lieu of ψ. Later, when Ã gets the “real ψ” from the
challenger, it aborts if it guessed wrong, ψ′ �= ψ, and proceeds just like Ass if
the guess was correct. Since the guess is correct with probability 2−u, it follows
that the advantage of Ã is exactly α/2u.
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The advantage in ˜hyb. We are now ready to use the min-entropy property of the
simulator S to prove that the advantage pf Ã in ˜hyb is at most 2ε. Since we set
ε = 2−u−ω(logn), then by Claim 8 it follows that the advantage of Ass in hyb2 is
at most 2ε · 2u = 21−ω(logn) = negl(n), as needed.

In the mental experiment ˜hyb, let Γ be the (partial) transcript of messages
that Ã receives till the end of the Post-Challenge Leakage Phase (i.e., before it
gets ψ). We show that the average min-entropy of each of the two seeds x1, x2,
conditioned on Γ is at least v. Let Γ = (Γ1, Γ2), where Γ1 denote the partial
transcript including the public key P1, the simulated encryption c1 of x1, and
all the leakage on S1, and Γ2 the partial transcript including P2, c2 and all the
leakage on S2. By the entropic security of Ψ in the simulated game, and the fact
that �′post ≤ t− v− 1, we have that H̃∞(x1|Γ1) ≥ t− �′post− 1 ≥ v. Furthermore,
since conditioned on Γ1, x1 and Γ2 are independent, we get H̃∞(x1|Γ ) ≥ v.
Similarly, it also holds that H̃∞(x2|Γ ) ≥ v.

Since both x1, x2 have min-entropy more than v, and furthermore, by Lemma 1,
are independent conditioned on Γ (as in Γ no function computes on both x1 and
x2), the output of the average-case (v, ε) two-source extractor Ext2(x1, x2) is
at most ε away from uniform. Therefore the two distribution Ext2(x1, x2)⊕m0
and Ext2(x1, x2)⊕m1 are at most 2ε apart (since each is at most ε away from
uniform). Therefore the advantage of Ã is at most 2ε.

4.2 Instantiations and Parameters

Naor and Segev presented some instances of their construction [16] based on
the DDH assumption (or DDH and the d-linear assumption), and the same
constructions work for our case too. This gives entropic leakage resilient scheme
Ψ with respect to any leakage �pre, �post and overhead 1, as long as �pre is bounded
by (1−o(1))L′−3t, where L′ and t are respectively the lengths of the secret key
and plaintext of the scheme Ψ . Therefore, we only need to focus on instantiating
the two-source extractor Ext2 with exponentially small error ε = 2−u−ω(logn)

in the length u of the output. In the work of Bouragin [2] it was shown how to
extract randomness from two independent sources with min-entropy rate slightly
less than half.

Theorem 9 ([2]). There exists a universal constant γ < 1/2 and a polynomial
time computable function Bou : {0, 1}t × {0, 1}t → {0, 1}u′

that is a (v, ε)-two-
source extractor, with v = γt, ε = 2−Ω(u′), and u′ = Ω(t).

It follow from Lemma 5 that Bou is also an average-case extractor as needed.
Furthermore, this construction lets us get two-source extractors with statistical
distance as small as we want. Namely, to get ε = 2−u−ω(logn) we simply use it
with u′ sufficiently larger than u. Then we can truncate the output to length u
without increasing the statistical distance, thus getting the parameters that we
need.

Remark 1. The scheme Π uses a two-source extractor. We show that the con-
struction can be easily modified to use a c-source extractor, for any c > 2:
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instead of having two secret keys, maintain c secret keys S1, . . . , Sc; each key Si
is used to encrypt and decrypt a random seed Xi sampled independently, and
the message is hidden using the random bits extracted from Xi’s—we call it a
c-split-state encryption scheme. It follows from the same proof as above that,
this scheme is secure in the split-state model. This can be used to improve the
parameters of our construction.

5 Conclusion and Future Work

In this paper, we study after-the-fact leakage for public-key encryption schemes.
We show that a meaningful notion of security, namely, entropic security, can
be achieved even at the presence of arbitrary (but bounded) leakage after the
ciphertext is generated, and furthermore, the full fledged semantic security can
be retained if considering some restricted form of leakage, namely a split-state
model.

It is, of course, very interesting to explore other notions of security and other
models in the context of after-the-fact leakage. For instance, Naor and Segev [16]
showed that PKE that is semantically secure resilient to before-the-fact leakage
can be transformed into a scheme that is CCA2-secure resilient to before-the-
fact leakage, following the Naor-Yung “double encryption” paradigm [7,17]. It is
interesting to see if a similar transformation can be done even with after-the-fact
leakage.

Furthermore, recently, there has been some developments in leakage resilient
cryptography in the continuous leakage model. One question studied in [14,10]
is how to transform any circuit with a secret hard-coded, into another one that
hides the secret even at the presence of arbitrary leakage during the computation
of the circuit, in the OCL model. It would be interesting to investigate if their
techniques can be applied to our scheme to make it secure even in the continuous
leakage model.

Another interesting question is to handle leakage from the encryption ran-
domness, not just the secret key. Perhaps the dense-model theorem from [9] can
be used to prove ressitance at least to logarithmically many leakage bits.

Beyond just encryption, it is interesting to see if there are “natural” and
useful relaxations of other primitives that can be achieved in the presence of
After-the-Fact Leakage, for example commitment, key-agreement, etc.
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One-Time Computable Self-erasing Functions�
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Abstract. This paper studies the design of cryptographic schemes that
are secure even if implemented on untrusted machines that fall under
adversarial control. For example, this includes machines that are infected
by a software virus.

We introduce a new cryptographic notion that we call a one-time com-
putable pseudorandom function (PRF), which is a PRF FK(·) that can
be evaluated on at most one input, even by an adversary who controls
the device storing the key K, as long as: (1) the adversary cannot “leak”
the key K out of the device completely (this is similar to the assump-
tions made in the Bounded-Retrieval Model), and (2) the local read/write
memory of the machine is restricted, and not too much larger than the
size of K. In particular, the only way to evaluate FK(x) on such device, is
to overwrite part of the key K during the computation, thus preventing
all future evaluations of FK(·) at any other point x′ �= x. We show that
this primitive can be used to construct schemes for password protected
storage that are secure against dictionary attacks, even by a virus that
infects the machine. Our constructions rely on the random-oracle model,
and lower-bounds for graphs pebbling problems.

We show that our techniques can also be used to construct another
primitive, called uncomputable hash functions, which are hash functions
that have a short description but require a large amount of space to
compute on any input. We show that this tool can be used to improve
the communication complexity of proofs-of-erasure schemes, introduced
recently by Perito and Tsudik (ESORICS 2010).

1 Introduction

A recent trend in cryptographic research is to construct cryptographic schemes
that have some provable security properties, even when they are implemented
on devices that are not fully trusted. In general, two types of adversarial models
are considered in this area. In the passive one, the adversary can get some partial
information (“leakage”) about the internal data stored on a cryptographic ma-
chine M. This line of research, motivated by various side-channel attacks [24]
was initiated in the seminal papers of Ishai et al. [28] and Micali and Reyzin
[32], and followed by many recent works [22,1,35,29,33,12,37,13,14,25,8,7]. Some
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papers have also been motivated by the attacks of the malicious software (like
viruses) against computers [11,18,17,10,21,3,2]. What all these works have in
common is that they provide a formal model for reasoning about the adversary
that can obtain some information about the cryptographic secrets stored onM.
It is easy to see that some restrictions on the information that the adversary can
learn is necessary, as the adversary that has an unlimited access to the internal
data of M can simply “leak” the internals in their entirety, which is usually
enough to completely break any type of security. A common assumption in this
area is the bounded-retrievability property, which states that the adversary can
retrieve at most some input-shrinking function f of the secret K stored on the
device, i.e. he can learn a value f(K) such that |f(K)| � |K|. The second class
of models considered in the literature [27,26,23,30] are those where the adversary
is active, which corresponds to the so-called tampering attacks. In these models
the adversary is allowed to maliciously modify the internals of the device. For
example, in the model of [27] the adversary that can tamper a restricted number
of wires of the circuit that performs the computation (in a given time-frame),
and in [26] it is assumed that a device is equipped with a small tamper-free
component.

The above discussion motivates the following question:

Can we achieve security against an adversary that has complete ac-
tive/passive control over a device M storing cryptographic secrets, by
only relying on simple physical characteristics of the device? For which
cryptographic primitives can this be achieved and what characteristics
are needed?

In this work, we focus on answering the above question for new primitive called
a one-time computable pseudorandom function. That is, we consider a device that
stores a key K for a function FK(·) and allows the user to evaluate the function at
a single arbitrary input x. Moreover, even if an adversary gains complete control
of the device, he should be unable to learn any information, beyond a single value
FK(x) at a single point x. We rely on the following two physical characteristics of
the device M on which the secret key K is stored: (1) M satisfies the bounded-
retrievability property, and (2) the read/write memory of M is restricted in size
and not much larger than the size of the key K. Intuitively, the first property
ensures that the attacker cannot leak the key K out of the device, while the
second property will prevent the attacker from evaluating FK(·) at multiple
inputs using the resources of the device itself. The main application of this
primitive is a scheme for password-protected storage. We also construct another,
related primitive, that we call uncomputable hash functions, and use it construct
an improved protocol for proofs-of-erasure, a concept recently introduced in [34].

1.1 One-Time Computable Functions

In this section we informally define the concept of a one-time computable PRF
FK(·) implemented on a resource-constrained device M. Firstly, for correct-
ness/functinality, we need to ensure that the key K of the PRF can be stored
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on the device M and that there is a method for honestly evaluating FK(·) on
a single arbitrary input x, using the resources of the device M. Secondly, for
security, we consider an attacker that gains control of the device M. Such an
adversary may learn the value FK(x) for some arbitrary point x, but should not
have any other information about FK(x′) for any other point x′ �= x.

So far we have not been very specific about the type of constraints placed
on the resources of the device M, and the type of control that the adversary
gets over the device. One could imagine settings in which the above would be
easy to implement. For example, if the adversary only gets black-box access to
M then we can use an arbitrary PRF to achieve the above goal; simply have
the device only perform only one evaluation of the PRF and then set a flag to
stop responding to all future inputs. However, if the adversary can perform even
relatively simple tampering attacks, it may be possible for it to “reset” the flag
on the device and thus break security of the above solution.

In this work, we consider an adversary that has complete control over the
device M. That is, for the purpose of security, we can consider the device M
itself to be a resource-constrained adversarial entity that gets the key K, and
can communicate with an external unconstrained adversary A. In this case, we
must place some constraints on the resources of M. Firstly, we must bound the
amount of outgoing communication available to the device M, as otherwise the
M can just “leak” the entire key K to the external adversary A, who can then
evaluate FK(·) at arbitrarily many points. Secondly, we must also place some
limits on the computational resources available to M, to prevent it from e.g.
evaluating FK(x0), FK(x1) at two points x0 �= x1 and leaking the first bit of
each output to the external adversary A. In this work, we will assume that the
amount of read/write memory available to the device M is bounded, and not
much larger than the size of the key K. (The device can have arbitrary additional
read-only or write-only memory).

Putting this together, our goal is to design a PRF FK(·) which can be ef-
ficiently evaluated at any single point x on a memory-constrained device, but
cannot be evaluated at any additional point x′ �= x afterward. Roughly, our main
idea is to construct FK in such a way that any computation of FK(x) has to
(at least partially) destroy K, by overwriting it, and thus prevents future com-
putations of the function. That is, we assume that the key K itself is stored on
the read/write memory of the device and takes up m = |K| bits of space, which
is a large fraction of the total. We design the PRF in such a way that there is
an honest computation of FK(x) that uses (almost) no extra space beyond that
on which K was originally stored, but overwrites K with various intermediate
values during the computation. On the other hand, assuming the total memory
on the device is s < 2m, we show that there is no method for computing of
FK(x) at any single point x, without erasing part of the key K and preventing
evaluation at any other input. Note that it is necessary for us to require that the
key takes up more than half of the available read/write memory of the device, as
otherwise it is possible to make a “copy” of the key that does not get damaged
during the computation FK(x). In fact, we show a stronger result along these
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lines, where we also allow the adversarial memory-constrained deviceM to com-
municate up to c < m bits to an external unconstrained adversary A (and we
allow unbounded communication from A to the device).

One-time computable functions – a generalization. We also construct a general-
ization of the concept described above, where a single key K defines T different
pseudorandom functions: (F1,K , . . . .FT,K). Using the resources of the device, the
honest user can evaluate each of the function Fi,K at a single arbitrary point (i.e.
the user first chooses an arbitrary x1 and evaluates F1,K(x1), then adaptively
chooses x2 and evaluates F2,K(x2) . . .). However, even if the device is under
full adversarial control, the attacker cannot get information about any of the
T functions at more than one point – i.e. the attacker cannot get information
about Fi,K(x), Fi,K(x′) for any two distinct points x �= x′ and the same index
i. The construction is given in Section 5. The maximal T that we can have is
approximately equal to c+s

2(c+s−m) (cf. (3)).

Application: Password-protected storage. Let us now describe an appli-
cation of the primitives described above. Our application is related to password-
based cryptography, which is an area that deals with the protocols where the
secrets used by the parties are human-memorizable passwords. The crucial dif-
ference between a password and a cryptographic key is that the latter is usually
assumed to be chosen uniformly at random from a large domain, while the for-
mer may come from some relatively small (polynomial sized) dictionary set D.
One of the main problems in constructing the password-based protocols is that
one needs to consider the so-called offline dictionary attacks, where the adver-
sary simply tries to break the scheme by analyzing all of the passwords from D
one-by-one.

In this paper we are particularly interested in designing schemes for password-
protected storage, which are schemes for secure encryption of data using pass-
words. A typical scheme of this type works as follows: let π ∈ D be a password. To
encrypt a message X we apply a key-derivation function H to π and then encrypt
X with H(π) using some standard symmetric encryption scheme (Enc,Dec). To
decrypt a ciphertext C = Enc(H(π), X) one simply calculates Dec(H(π), C).

A typical choice for H is a hash function. This solution is vulnerable to a
following offline dictionary attack. An attacker simply tries, for every π′ ∈ D to
decrypt C until he finds π′ such that Dec(H(π′), C) “makes sense”. Most likely
there will be only one such π′, and hence, with a good probability, this will be
the correct π that the user has chosen to compute C.

A common way to make this attack harder is to design H in such a way that
it is moderately expensive to compute it. The time needed to compute H should
be acceptable for a legitimate user, and to high for the adversary if he has to do
it for all passwords in D. A drawback of this solution is that it depends on the
amount of computing power available to the adversary. Moreover, the algorithm
of the adversary can be easily parallelized.

An interesting solution to this problem was proposed in [9]. Here, a computa-
tion of H requires the user to solve the CAPTCHA puzzles [38], which are small
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puzzles that are easy to solve by a human, and hard to solve be a machine. A
disadvantage of this solution is that it imposes additional burden on the user
(he needs to solve the CAPTCHAs when he wants to access his data). Moreover,
experience shows that designing secure CAPTCHAs gets increasingly difficult.

In this paper we show an alternative solution to this problem. Our solution
works in a model where the data is stored on some machine that can be infected
by a virus. In this model, the virus can get a total control over the machine, but
he can retrieve only c bits from it. The main idea is that we will use a one-time
computable function F (secure against an adversary with c-bounded commu-
nication and s-bounded storage) as the key-derivation function. To encrypt a
message X with a password π we first choose randomly a key R for a one-time
computable PRF. We then calculate K = FR(π). The ciphertext stored on the
machine is Enc(K,X). It is now clear that the honest user can easily compute
K in space bounded by c − δ. On the other hand, the adversary can compute
K only once, even if he has space c. Of course, the adversary could use a part
of the ciphertext Enc(K,X) as his additional storage. This is not a problem if
X is short (shorter than δ). If X is long, we can solve this problem by assuming
that Enc(K,X) is stored on a read-only memory.

A problem with this solution is that if an honest user makes an error and types
in a wrong password then he does not have a chance to try another password.
This can be solved by using the generalized version of the one-time computable
functions. The scheme works as follows. First, we choose a key K for symmetric
encryption. Then, we choose randomly R and for each i = 1, . . . , T we calculate
Ki = FRi(π) ⊕ K (where the keys Ri are derived from R). The values that
are stored on the machine are (R, (K1, . . . ,KT ),Enc(K,M)). Now, to decrypt
the message, the user first calculates K = FR1(π) ⊕ K1, and then decrypts
Enc(K,M) using K. If a user makes an error and calculates K1 using a wrong
π he still has a chance to calculate K2, and so on.

1.2 Uncomputable Functions

We also introduce a notion of uncomputable hash functions, which we explain
here informally. A hash function H is (s, ε)-uncomputable, if any machine that
uses space s and takes a random input x ∈ {0, 1}∗ outputs H(x) with prob-
ability at most ε. We say that H is s′-computable if it can be computed in
space s′. Note that in this case we assume that the adversary cannot use any
external help to compute H (using the terminology from the previous sections:
his communication is 0-bounded). Informally, we are interested in constructing
(s, ε)-uncomputable, s′-computable functions for a small ε and s′ being only
slightly larger than s.

This notion can be used to construct an improved scheme for the proof of
erasure, a concept recently introduced in [34]. Essentially the proof of erasure is
a protocol between two parties: a powerful verifier V and a weak prover P (that
can be, e.g., an embedded device). The goal of the verifier is to ensure that the
prover has erased all the data that he stores in his RAM (we assume that P can
also have a small ROM). This is done by forcing P to overwrite his RAM. Let
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m be the size of RAM. Then, a simple proof of erasure consists of V sending to
P a random string R such that |R| = m, and then V replying with R. In [34]
the authors observe that the communication from P to V can be reduced in the
following way: instead of asking P to send the entire R, we can just verify his
knowledge of R using a protocol for the “proof of data possession” (see, e.g.,
[4]). Such a protocol still requires the verifier to send a large string R to the
prover, hence the communication from the verifier to the prover is m. Using our
uncomputable functions we can reduce this communication significantly.

Our idea as follows. Suppose we have a function H that is m-computable
and (m − δ, ε)-uncomputable (for some small δ ∈ N and a negligible ε ∈ [0, 1]).
Moreover, assume that H has a short domain and co-domain, say: H : {0, 1}w →
{0, 1}w for some w � m. We can now design the following protocol:

1. V selects X ← {0, 1}w at random and sends it to P ,
2. P calculates Y = H(X) and sends it back to V ,
3. V accepts if Y = H(X).

Clearly, an honest prover can calculate Y , since he has enough memory for
this. On the other hand, from the (m − δ, ε)-uncomputability of H we get that
a cheating prover cannot calculate Y with probability greater than ε without
overwriting m − δ bits. The total communication between P and V has length
2w. Note, that we need to assume that an adversary that controls the prover
cannot communicate any data outside of the machine (therefore we are interested
only in protocols with 0-bounded communication). This is because otherwise he
could simply forward X to some external party that has more memory. The
same assumption needs to be made in the protocols of [34]. What remains is to
show a construction of such an H . We do it in Section 6.

1.3 Related Work

Most of the related work was already described in the previous sections. In our
paper we will use a technique called graph pebbling (see e.g. [36]). This technique
has already been used in cryptography in an important work of [16], some of
our methods were inspired by this paper. The assumption that the adversary is
memory-bounded has been used in the so-called bounded-storage model [31,5,20].
As similar assumption was also used in [15]. The proof of erasures can be viewed
as a special case of the remote attestation protocols (see [34] for a list of relevant
references).

1.4 Notation

For a sequence R = (R1, . . . , RN ) and for indices i, j such that 1 ≤ i ≤ j ≤ N ,
we define R[i, . . . , j] = (Ri, . . . , Rj).

2 Model of Computation

To make our statements precise, we must fix a model of computation. We will
usually consider an adversary that consists of two parts: a “space-bounded” com-
ponent Asmall which gets access to the internals of an attacked device and has
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“bounded communication” to an external, and otherwise unrestricted, adversary
Abig.

Since the lower bounds on the computational complexity of functions are
usually hard to prove, it seems difficult to show any meaningful statements in
this model using purely complexity-theoretic settings. We will therefore use the
random-oracle model [6]. Recall, that in this case a hash function is modeled as
an external oracle containing a random function, and the oracle can be queried
by all the parties in the protocol (including the adversary).

Using the random-oracle model in our case is a little bit tricky. To illustrate
the problem consider a following protocol for the proof of erasure: (1) V sends to
P a long random string R, (2) P replies with H(R), where H is a hash function.
Now, this protocol is obviously not secure for most of the real-life hash functions.
For example, if H is designed using the Merkle-Damg̊ard paradigm, then it can
be computed “on fly”, and hence there is no need to store the whole R before
starting the computation of H .

On the other hand, if we model H as a random oracle, then the protocol
described above can be proven secure, as the adversary has to wait until he gets
the complete R before sending it to the oracle. We solve this problem in the
following way: we will require that the only way in which the hash function is
used is that it is applied to small inputs, i.e. if w is the length of the output
of a hash function (e.g.: w = 128) then the hash function will have a type
H : {0, 1}ξw → {0, 1}w, for some small ξ. Observe that if ξ = 2 then the function
H can simply be a compression function used to construct the hash function).

We model our adversary A = (Abig ,Asmall) as a pair of interactive algo-
rithms1 with oracle-access to a random-oracle H(·). The algorithm Abig will
only be restricted in the number of oracle calls made. On the other hand, we
impose the following additional restrictions on Asmall:

– s-bounded space: The total amount of space used by Asmall is bounded by
s. That is, we can accurately describe the entire configuration of Asmall at
any point in time using s bits2.

– c-bounded communication: The total number of outgoing bits communicated
by Asmall is bounded by c3.

We use the notation AH(·)(R) =
(
AH(·)
big () � AH(·)

small(R)
)

to denote the interac-
tive execution of Abig and Asmall, where Asmall gets input R and both machines
have access to the oracle H(·).
1 Say ITMs, interactive RAMs, . . . The exact model will not matter.
2 This is somewhat different than standard space-complexity considered in complexity

theory, even when we restrict the discussion to ITMs. Firstly, the configuration of
Asmall includes the value of all tapes, including the input tape. Secondly, it includes
the current state that the machine is in and the position of all the tape heads.

3 To be precise, we assume that we can completely describe the patters of outgoing
communication of Asmall using c bits. That is, Asmall cannot convey additional
information in when it sends these bits, how many bits are sent at a given time and
so on. . .
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3 Definitions

Let WH(·) be an algorithm that takes as input R ∈ {0, 1}m and has access to the
oracle H . Let (FH

1,R, . . . .F
H
T,R) be sequence of functions that depend on H and R.

Assume that WH(·) is interactive, i.e. it may receive queries from the outside. Let
x1, . . . , xT be the sequence of queries that WH(·) received. The algorithm WH(·)

replies to such a query by issuing a special output query to the oracle H . We
assume that after receiving each xi ∈ {0, 1}∗ the algorithm WH(·) always issues
an output query to H of a form ((FH

i,R(xi), (i, xi)), out). We say that WH(·) is a
(c, s,m, q, ε, T )-onetime computable PRF if:

– WH(·) has m-bounded storage, and 0-bounded communication.
– for any AH(·)(R) that makes at most q queries to H and has s-bounded

storage and c-bounded communication, the probability that AH(·)(R) (for a
randomly chosen R← {0, 1}m) issues two queries ((FH

i,R(x), (i, x)), out) and
((FH

i,R(x′), (i, x′)), out), for x �= x′, is at most ε.

Basically, what this definition states is that no adversary with s-bounded storage
and c-bounded communication can compute the value of any Fi,R on two different
inputs. It may look suspicious that we defined the secrecy of a value in terms of
the hardness of guessing it, instead of using the indistinguishability paradigm.
We now argue why our approach is ok. There are two reasons for this. The first
one is that in the schemes that we construct that output of each FH is always
equal to some output of H (i.e. the algorithm F simply outputs on the the
responses he got from H). Hence A cannot have a “partial knowledge” of the
output (either he was lucky and he queried H on the “right” inputs, or not –
in the latter case the output is indistinguishable from random, from his point of
view).

The second reason is that, even if it was not the case — i.e. even if FH

outputted some value y that is a more complicated function of the responses he
got from H — we could modify FH by hashing y with H (and hence if y is “hard
to guess” then H(y) would be completely random, with a high probability).

Now, suppose that V H(·) is defined identically to WH(·) with the only dif-
ference that it receives just one query x ∈ {0, 1}∗, and afterwards it issues one
output query ((FH(x), x), out) (for some function F that depends on H). We
say that V H(·) is an (s, w, q, δ, ε)-uncomputable hash function if:

– V H(·) has s-bounded storage, and 0-bounded communication.
– for any AH(·)(R) that makes at most q queries to H and has (s−δ)-bounded

storage and c-bounded communication, the probability that AH(·)(R) (for a
randomly chosen R← {0, 1}w) issues a query ((FH(x), xi), out) is at most ε.

4 Random Oracle Graphs and the Pebbling Game

We show a connection between an adversary computing a “random oracle graph”
and a pebbling strategy for the corresponding graph. A similar connection ap-
pears in [16].



One-Time Computable Self-erasing Functions 133

4.1 Random-Oracle Labeling of a Graph

Let G = (V,E) be a DAG with |V | = N vertices. Without loss of generality,
we will just assume that V = {1, . . . , N} (we will also consider infinite graphs,
in which case we will have N = ∞). We call vertices with no incoming edges
input vertices, and will assume there are M ≤ N of them. A labeling of G is a
function label(·), which assigns values label(v) ∈ {0, 1}w to vertices v ∈ V .
We call w the label-length. For any function H : {0, 1}∗ → {0, 1}w and input-
labels R = (R1, . . . , RM ) with Ri ∈ {0, 1}w, we define the (H,R)-labeling of G
as follows:

– The labels of the M distinct input vertices v1 < v2 < . . . < vM are given by
label(vi)

def= Ri.
– The label of every other vertex v is defined recursively by

label(v) def= H(label(v1), . . . , label(vd), v)

where v1 < . . . < vd are the d parents of v.

A random oracle labeling of G is an (H,R)-labeling of G where H is a random-
function and R is chosen uniformly at random.

For convenience, we also define preLabel(v) def= (label(v1), . . . , label(vd), v),
where v1 < . . . < vd are the parents of v, so that label(v) = H(preLabel(v)).

The output vertices of G are the vertices that have no children. Let v1, . . . , vK
be the output vertices of G. Let Eval (G,H, (R1, . . . , RM )) denote the sequence
of labels (label(v1), . . . , label(vK)) of the output vertices calculated with the
procedure described above (with R1, . . . , RM being the labels of the input ver-
tices v1, . . . , vM and H being the hash function).

Our main goal is to show that computing the labeling of a graph G requires a
large amount of resources in the random-oracle model, and is therefore difficult.
We will usually (only) care about the list of random-oracle calls made by Abig
and Asmall during such an execution. We say that an execution AH(·)(R) labels
a vertex v, if a random-oracle call to preLabel(v), is made by either Abig or
Asmall.

4.2 Pebbling Game

We will consider a new variant of the pebble game that we call the “red-black”
pebble game over a graph G. Each vertex of the graph G can either be empty,
contain a red pebble, contain a black pebble, or contain both types of pebbles.
An initial configuration consists of (only) a black pebble placed on each input
vertex of G. The game proceeds in steps where, in each step, one of the following
four actions is taken:

1. A red pebble can be placed on any vertex already containing a black pebble.
2. If all the parents of a vertex v have a red pebble on them, a red pebble can

be placed on v.
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3. If all the parents of v have some pebble on them (red or black), a black
pebble can be placed on v.

4. A black pebble can be removed from any vertex.

We define the black-pebble complexity of a pebbling strategy to be the maximum
number of black pebbles in use at any given time. We define the red-pebble com-
plexity of a pebbling strategy to be the total number of steps in which action 1
is taken. We also define the all-pebble complexity of a pebbling strategy to be the
sum of its black- and red-pebble complexities. By heavy-pebbles we will mean the
black pebbles, or the red-pebbles that appeared on the graph because of action
1. Note, that these are exactly the pebbles that count when we calculate the
all-pebble complexity of a strategy.

Remark 1. Let G be a graph with N vertices and M input vertices. Let v be an
output vertex of G and let vi1 , . . . , vid be a subset of the set of input vertices.
Suppose there exists a pebbling strategy that (1) pebbles v while keeping the
pebbles on the vertices vi1 , . . . , vid , and (2) has black-pebble complexity b and
it does not use the red pebbles, i.e. its red-pebble complexity 0. Then the value
of Eval (G,H, (R1, . . . , RM )) can be computed by a machine with bw-bounded
storage and an access to a random oracle that computes H . This is because
the only thing that the machine needs to remember are the labels of at most
b vertices (each of those labels has length at most w). The computation may
overwrite some part of the input (R1, . . . , RM ), however, it does not overwrite
the input corresponding to the vertices vi1 , . . . , vid , i.e.: (Rv1 , . . . , Rvd

).

It is more complicated to show a connection in the opposite direction, namely
to prove that if a graph cannot be pebbled with a strategy with low black- and
red-complexities, then it cannot be computed by a machine with a restricted
storage and communication. The following lemma establishes such a connection
(its proof, that appears in [19], is an extension of the proof of Lemma 1 in [16].)

Lemma 1. Let G be a DAG with M input vertices and K output vertices. Let
r and b be arbitrary parameters. Suppose that G is such that there does not exist
a pebbling strategy such that (1) its all-pebble complexity is at most a, and that
(2) pebbles at least α output vertices (for some α ∈ {1, . . . ,K}).

Then, for any c, s, w such that c+s+w
w−log(q) < a, and for any A = (Abig ,Asmall)

that makes at most q oracle calls and has s-bounded space and c-bounded com-
munication the probability that A labels more than α − 1 output vertices is at
most (q + 1) · 2−w (where the probability is taken over the randomness of A and
the random choice of H and R).

5 One-Time Computable Functions

In this section we show specific examples of graphs that are hard to pebble in
limited space and bounded communication. Let M,M ′ be a parameters such
that M ′ < M . The (M,M ′)-lambda graph (denoted LamM

M ′) is defined in the
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Fig. 1. An (M, M ′)-lambda graph for M ′ = 4 and M = 7. The sub-graph on the
left-hand side of the dashed line is an M ′-pyramid.

following way (cf. Fig. 1). Its set of vertices is equal to V0 ∪ V1, where V0 =
{(i, j) : 1 ≤ i ≤ j ≤ M ′} and V1 = {1, 2} × {M ′ + 1, . . . ,M}. The set of input
vertices is equal to {1} × {1, . . . ,M}. The output vertex is (2,M). The set of
edges is equal to the following sum: {((i− 1, j − 1), (i, j)) : (i− 1, j − 1), (i, j) ∈
V0} ∪ {((i− 1, j), (i, j)) : (i− 1, j), (i, j) ∈ V0} ∪ {((M ′,M ′), (2,M ′ + 1))} ∪
{((1, j−1), (1, j)) : (1, j−1), (1, j) ∈ V1} ∪ {((1, j), (2, j)) : (1, j), (2, j) ∈ V1}. If
M ′ = M then a (M,M)-lambda graph is defined as above, with V1 = ∅ and with
the set of edges consisting only of the first two summands of the sum above. Its
output vertex is (M,M). Such a graph is also called an M -pyramid graph.

Lemma 2. For any X < M ′ − 1 there exists a strategy that pebbles the output
vertex of LamM

M ′ that satisfies the following:

– it uses M +M ′−1−X black pebbles (remember that all the M input vertices
are initially pebbled with a black pebble, and therefore using M +M ′−1−X
means having M ′ − 1−X extra pebbles),

– it uses no red pebbles, and
– at the moment when the output vertex is pebbled there are still pebbles on the

last M −X input vertices, i.e.: vertices from the set {1} × {X + 1, . . . ,M}.

Proof. The pebbling strategy consists of the following steps:

pebble the second row of the pyramid. In this step we pebble the second
row of the pyramid, i.e. the vertices from the set {2} × {2, . . . ,M ′}. We do
it by removing X pebbles from the input of the pyramid, and by using the
M ′ − 1−X extra pebbles that we have. The procedure is as follows:

1. First, we put pebbles on the vertices from the set {2} × {2, . . . , X + 1}.
We do it in the following way: for j = 2, . . . , X ′ + 1 we put a pebble on
(2, j) and remove it from (1, j − 1).

2. We then put pebbles on the vertices from the set {2}×{X + 2,M ′}. We
do it just using the extra pebbles, without removing any pebble from the
input. Clearly we have enough extra pebbles, since |{2}×{X+2,M ′}| =
M ′ − 1−X .
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pebble the rest of the pyramid. In this step we pebble the pyramid row-by-
row, starting from the third row, and ending with the top of the pyramid
(M ′,M ′). We do it in the by executing the following procedure for i =
3, . . . ,M ′:
– for j = i, . . . ,M ′ do the following: put a pebble on (i, j) and remove it

from (i− 1, j − 1).
pebble the rest of the graph. We now pebble the rest of the graph in the

following way. First, we put a pebble on (2,M ′ + 1) and remove it from
(M ′,M ′). Then, for j = M ′+2, . . . ,M we put a pebble on (2, j) and remove
it from (2, j − 1). At the end of this loop there output vertex is pebbled.

It is easy to see that the above procedure results in a correct pebbling strategy.
Moreover, it uses only M ′ − 1 − X extra pebbles, and it removes the pebbles
only from the first X vertices of the input. 	


5.1 Hardness of Pebbling

Consider a configuration of the red and black pebbles on some DAG G. Let v
be a vertex of G. We say that v is input-dependent in this configuration if, after
removing all the pebbles from the input it is impossible to pebble the vertex v.
If v is not input-dependent then we say that it is input-independent.

Lemma 3. For M ≥ 2 consider an M -pyramid graph LamM
M and some config-

uration of pebbles on it. If the output vertex (M,M) is input-dependent then the
number of heavy pebbles is at least M .

Proof. We prove it by induction on M = 2, 3, . . .. To root the induction we first
consider the case when M = 2. In this case the graph consists of 3 vertices only:
2 input vertices, and 1 output vertex. If it is input-dependent then the output
vertex is not pebbled. Hence both input vertices need to have a pebble.

Now, let us assume the hypothesis for M−1 and consider GM = LamM
M . Take

some configuration γ of pebbles. Denote the set of heavy pebbles in γ by X . Let
GM−1 be a subgraph of GM induced by all the vertices of GM except of the
input row (in other words: GM−1 is equal to GM with the bottom row “cut”).
Of course GM−1 is LamM−1

M−1.
Now, put black pebbles on the vertices of the input row of GM−1 in the

following way: put a pebble on a vertex v whenever v has both parents in X
(and keep the old pebbles from the configuration γ). It is easy to see that the
number of black pebbles in this new configuration is at most |X | − 1.

Clearly the resulting configuration of pebbles on GM−1 satisfies the following:
(1) the output vertex can be pebbled from this configuration, and (2) the output
vertex on GM−1 is input-dependent (if it was not input-dependent then also
the configuration γ would not be input-dependent). Hence, by the induction
hypothesis |X | − 1 ≥M − 1, which implies that |X | ≥M . 	
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Lemma 4. Suppose M > 2. Consider a pebbling strategy for LamM
M that peb-

bles the vertex (M,M). In the first configuration in which (M,M) is input-
independent we have that: (1) the total number of the heavy pebbles that are not
on the input row is at least M − 1, and (2) there is no pebble on (M,M).

Proof. Let GM = LamM
M , and let GM−1 be defined as in the proof of Lemma

3. Let γ be the first configuration in which (M,M) is input-independent, and
let γ′ be the configuration that directly precedes γ, i.e. the last configuration
that is input-dependent. Keep on the vertices of GM−1 all the pebbles from
the configuration γ. We now show that in such a configuration of the pebbles on
GM−1 the output of GM−1 is input-dependent. After showing it we will be done:
part (1) will follow directly from Lemma 3 (applied to GM−1), and part (2) will
follow from the fact that (for M −1 > 1) if the output vertex is input-dependent
then it cannot be pebbled.

To finish the proof assume that the output of GM−1 is input-independent. We
obtain contradiction by showing that in this case also GM needs to be input-
independent. Clearly the only way in which γ′ was transformed into γ was that
a pebble was added on the input row of GM−1. However, by our assumption the
output of GM−1 (and hence also of GM ) does not depend on this row. Therefore
also in the configuration γ′ the output cannot depend on the two bottom rows
of GM . This gives us a contradiction. 	


Lemma 5. Consider a pebbling strategy that pebbles the output of LamM
M ′ . As

long as the vertex (M ′,M ′) has not been pebbled, there has to be a heavy pebble
on every input vertex on the second part of LamM

M ′ (i.e. the vertices (1, j) such
that j ∈ {M ′ + 1, . . . ,M}).

Proof. This follows easily from the construction of the LamM
M ′ graph: if one

removes a pebble from any vertex (1, j) such that j ∈ {M ′ +1, . . . ,M} then one
cannot put a pebble on it in the future. Therefore it will never be possible to
pebble (2, j), and hence also (2,M). 	


For � ∈ N ∪ {∞} consider a family of � DAGs {Gk = (Vk, Ek)}�k=1 such that
every DAG in this family has the same set of input VI of input vertices. Define
V ′
k = Vk \VI . The graph G = (V,E) is a sum of {Gk = (Vk, Ek)}�k=1 if is defined

as follows: the set of vertices V is equal to VI plus the disjoint sum of the sets
V ′
k. More precisely: V := VI ∪

⋃�
k=1{k} × Vk. The set E of edges is defined

as: E := {((k, v), (k, v′)) : v, v′ ∈ V ′
k and (v, v′) ∈ Ek} ∪ {(v, (k, v′)) : v ∈

VI and v′ ∈ V ′
k and (v, v′) ∈ Ek}. The set of input vertices of G is equal to VI ,

and the set of the output vertices is equal to VO,L ∪ VO,R, where VO,L and VO,R
are the sets of the output verices of GL and GR, respectively.

Lemma 6. Consider a family {Gk}�k=1 of (M,M ′)-lambda graphs. Let G be a
sum of the graphs in this family. Then there does not exist a pebbling strategy
with all-pebble complexity bounded by M + M ′ − 2 that pebbles more than one
output of G.
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Proof. For the sake of contradiction suppose that such a strategy exists. Pebbling
the output of LamM

M ′ requires first pebbling the top of the pyramid graph that
is a part of LamM

M ′ . Therefore there has to exist a pebbling strategy with all-
pebble complexity bounded by M + M ′ − 2 that pebbles two different vertices
that are the tops of the pyramids in some Gk and Gh (i.e. vertices (k, (M ′,M ′))
and (h, (M ′,M ′))).

Clearly, at the beginning of any pebbling strategy the top of each pyramid is
dependent on the input of this pyramid. Consider the first configuration where
the top of one of the pyramids, the one belonging to Gk, say, gets independent
from the input of this pyramid. In this moment, by Lemma 4 the total number
of the heavy pebbles that are not on the input row of Gk is at least M ′ − 1.
Since in this moment the top vertex of Gh is still dependent on the input, hence,
by Lemma 3 the total number of the heavy primary red pebbles and the black
pebbles on Gk is at least M ′. Therefore the number of the heavy pebbles on the
two pyramids is at least 2M ′ − 1.

On the other hand, by the second part of Lemma 4 the vertex (M ′,M ′) is
not yet pebbled in this configuration. Hence, by Lemma 5, there needs to be a
heavy pebble on every vertex from the second part of the input of Gh and Gk,
i.e. on the vertices (1, j)) such that j ∈ {M ′ + 1, . . . ,M}. Therefore altogether
we have 2M ′− 1 + (M −M ′) = M +M ′ − 1 pebbles on the sum of Gh and Gk.
This yields a contradiction with the assumption that the all-pebble complexity
of the strategy is bounded by M + M ′ − 2. 	


Combining Lemma 1 with Lemma 6 we get the following.

Corollary 1. Consider a family {Gk}�k=1 of (M,M ′)-lambda graphs. Let G be a
sum of the graphs in this family. Then, for any s, c, w and q, such that c+s+w

w−log(q) <

M + M ′ − 2, and any adversary A that has s-bounded storage and c-bounded
communication, and makes at most q queries to the oracle, the probability that
A labels more than one output of G is at most (q + 1) · 2−w.

5.2 The Construction

In our construction the hash function will depend on an additional parameter
a. Formally, let H : {0, 1}∗ × {0, 1}∗ → {0, 1}w be a function that is modeled
as a random oracle. For any a ∈ {0, 1}∗ let Ha denote a function defined as
Ha(z) = H(a, z). Let M,U and T be some positive integer parameters such
that

T <
U − 1
2Δ

(1)

where Δ := U −M . We now construct an interactive algorithm COMPH
U ,M,T,w

that has access to a random oracle H and stores a key consisting of M blocks
(of length w). That is, the input to the algorithm is R = (R1, . . . , RM ), and it
behaves as follows. Suppose it is queried on some inputs x1, . . . , xT . Then, after
receiving each xi it computes the value of

Eval (LamM−(i−1)Δ
iΔ+2 , H(i,xi), (R[1 + (i− 1)Δ, . . . ,M ]). (2)
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The algorithm COMPH
U ,M,T,w(R) simply computes each (2) one-by-one for i =

1, . . . , T . Each of these steps destroys Δ values Rj from the input. Thus, before
the i-th step we keep in the memory only R[1 + (i − 1)Δ, . . . ,M ]. This means
that the space used by the remaining part of the input (R[1, . . . , (i−1)Δ]) is now
free and it can be used as additional storage for computation. So, just before
the beginning of the i-th step the free storage (i.e. storage not including kept
fragment of the input) is bounded by ei = Ei · w, where Ei := 1 + (i − 1)Δ.
The algorithm in the i-th step is just a simple application of Remark 1 from
Section 4.2. Observe that from Lemma 2 we get a pebbling strategy that pebbles
output vertex of LamM−(i−1)Δ

iΔ+2 using Ei extra pebbles and removes the first
(iΔ+2)−1−Ei input pebbles. From the definition of Ei we have (iΔ+2)−1−Ei =
Δ. So, from Remark 1 we get that there is an algorithm that computes (2)
overwriting Δ · w first bits of remaining input. So, after this step the algorithm
can keep R[1 + iΔ, . . . ,M ] to be used in the next steps.

Theorem 1. For any integers c, s,m,w, let U def=  c+s+w
w−log(q) � and M

def= mw �− 1.

Then, for any integer T < U−1
2(U−M) the algorithm COMPH

U ,M,T,w is a (c, s,m, q,

(q + 1) · 2−w, T )-one-time computable PRF.

Asymptotically, as c, s,m� w � log(q), the maximal T becomes

T ≈ c + s

2(c + s−m)
. (3)

Proof (of Theorem 1). Suppose (R1, . . . , RM ) is chosen uniformly at random.
Let A = (Abig , Asmall) be an arbitrary adversary with oracle access to H that
has s-bounded space and c-bounded communication and makes at most q oracle
calls. Consider an execution AH(·)(R). Let E be an event that for some i and for
two different x and x′ the adversary labeled the output vertex of LamM−(i−1)Δ

iΔ+2

in the (H(i,x), R)-labeling and (H(i,x′), R)-labeling. To prove the theorem we
need to show the following.

P (E) ≤ T · (q + 1) · 2−w. (4)

Fix some ĩ, and let Eĩ denote the event that E happened for i = ĩ. Let G be equal

to the sum of following infinite sequence of graphs
{
LamM−(̃i−1)Δ

ĩΔ+2

}
x∈{0,1}∗

.

We now show an adversary Ã with an s-bounded space and c-bounded com-
munication that has access to an oracle H̃ and makes at most q queries to it,
and satisfies the following: for a randomly-chosen R̃ = (R1+(̃i−1)Δ, . . . , RM ) ∈
({0, 1}w)M−(̃i−1)Δ in the execution ÃH̃(·)(R̃) the probability that the adversary
labels at least two different output vertices of G is equal to P (Eĩ).

The adversary Ã simulates A in the following way. First, since A “expects”
the input to have length M , it fills-in the “missing” elements of R̃, i.e. he selects
randomly (R1, . . . , R(̃i−1)Δ) and sets R = (R1, . . . , R(̃i−1)Δ)||R̃. Next, it simply
runs A. The only thing that we need to take care of is to “translate” the oracle
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queries issued by A to H into oracle queries issued by Ã to H̃ . Let Q be a query
issued by A. Consider the following cases:

– Q has a form ((̃i, x), (label1, . . . , labeld, v)) (for somex, label1, . . . , labeld)
— in this case we translate it into a a query (label1, . . . , labeld, ((i, x), v),

– Q has a form or ((̃i, x), (label, v, out)) (for some x and label) — in this
case we translate it into a a query (label, ((̃i, x), v), out).

– if Q does not have any of the forms above — we translate it in some arbitrary
(deterministic and injective) way.

It is easy to see that Ã labels an output vertex ((̃i, x), v) of G if and only if
his simulated copy of A labeled v in the graph LamM−(̃i−1)Δ

ĩΔ+2
. Therefore the

probability that Ã labeled two output vertices of G is equal to P (Eĩ). Now,
by Corollary 1 we get that this probability is at most (q + 1) · 2−w as long as
s+c+w
w−log(q) < M − (̃i − 1)Δ + 1 + ĩΔ + 1 − 2 = M + Δ = U , which is exactly
the assumption that we made in the statement of the lemma. Since E = ∪Ti=1Ei,
therefore, by the union-bound we get that P (E) ≤ T · ((q + 1) · 2−w). Therefore
(4) is proven.

6 Arrowhead Functions

In this section we define a class of DAGs that we call the arrowhead graphs. For
every M ∈ N let ArrM be a graph consisting of defined previously M -pyramid
with one additional vertex (0, 0) and additional edge from (0, 0) to (1, x) for
x ∈ 1, . . .M . More precisely, ArrM = (VM , EM ), where V = {(0, 0)} ∪ {(i, j) :
1 ≤ i ≤ j ≤M . A graph ArrM consists of one input vertex (0, 0) and one output
vertex (M,M). The follwoing figure shows an example of an M -arrowhead graph
for M = 4. The subgraph on the upper side of the dashed line is an M -pyramid.

output: (M,M)������
������

(2, 2)

������
�������

�������
(2,M)

������

(1, 1)

�����
(1, 2)

�����
������

�������
������

(1,M)

�����

������������

input: (0, 0)

		�������



�����������

����������

��											

Lemma 7. For any a and R = (R1, . . . , RM ) the value of Eval(ArrM , H,R)
can be computed by an algorithm that has access to a random oracle H and has
(M + 1) · w-bounded storage.

Proof. Using Remark 1 it suffices to show a strategy that pebbles ArrM using
M + 1 pebbles. Such a strategy is straighforward and appears in the full version
of this paper [19].
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The following lemma shows the optimality of the algorithm given in Lemma 7.

Lemma 8. For any s, λ and q, such that s+λ
w−log(q) < M + 1, and any adversary

A that has s-bounded storage and 0-bounded communication, and makes at most
q queries to the oracle, the probability that A labels the output of ArrM is at
most q · 2−w + 2−λ.

This lemma follows from the fact that every strategy that pebbles the output of
ArrM , and does not use the red pebbles, must use at least M − 1 black pebbles.
The proof of this fact is very similar to the proof of Lemma 10.2.1 in the book of
John Savage ([36]), and it appears in the full version of this paper [19]. Lemma
7 and 8 imply the following.

Theorem 2. The hash function that takes as input R and outputs Eval (ArrM ,
H,R) is ((M + 1) · w,w, q, log(q)(M + 1) + λ, q · 2−w + 2−λ)-uncomputable.
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Perfectly Secure Oblivious RAM without
Random Oracles

Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen

Department of Computer Science, Aarhus University

Abstract. We present an algorithm for implementing a secure oblivious
RAM where the access pattern is perfectly hidden in the information
theoretic sense, without assuming that the CPU has access to a random
oracle. In addition we prove a lower bound on the amount of randomness
needed for implementing an information theoretically secure oblivious
RAM.

1 Introduction

In many cases it is attractive to store data at an untrusted place, and only
retrieve the parts of it you need. Encryption can help to ensure that the party
storing the data has no idea of what he is storing, but it may still be possible to
get information about the stored data by analyzing the access pattern.

A trivial solution is to access all the data every time one piece of data is
needed. However, many algorithms are designed for being efficient in the RAM-
model, where access to any word of the memory takes constant time, and so
accessing all data for every data access gives an overhead that is linear in the
size of the used memory.

This poses the question: is there any way to perfectly hide which data is
accessed, while paying a lower overhead cost than for the trivial solution?

Goldreich and Ostrovsky [6] solved this problem in a model with a secure
CPU that is equipped with a random oracle and small (constant size) memory.
The CPU runs a program while using a (large) RAM that is observed by the
adversary. The results from [6] show that any program in the standard RAM
model can be transformed using an “ ‘oblivious RAM simulator” into a program
for the oblivious RAM model, where the access pattern is information theoreti-
cally hidden. The overhead of this transformation is polylogarithmic in the size
of the memory.

Whereas it is not reasonable to assume a random oracle in a real implemen-
tation, Goldreich and Ostrovski point out that one can replace it by a pseudo-
random function (PRF) that only depends on a short key stored by the CPU.
This way, one obtains a solution that is only computationally secure. Moreover,
in applications related to secure multiparty computation (see below), one would
need to securely compute the PRF, which introduces a very significant overhead.

It is a natural question whether one can completely avoid the random ora-
cle/PRF. One obvious approach is to look for a solution that uses a very small

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 144–163, 2011.
c© International Association for Cryptologic Research 2011
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number of random bits. But this is not possible: in this paper we show a lower
bound on the number of secret random bits that an oblivious RAM simulator
must use to hide the access pattern information theoretically: the number of
random bits used must grow linearly with the number of memory accesses and
logarithmically with the memory size. The natural alternative is to generate the
random bits on the fly as you need them, and store those you need to remember
in the external RAM. This assumes, of course, that the adversary observes only
the access pattern and not the data written to the RAM. However, as we discuss
below, there are several natural scenarios where this can be assumed, including
applications for secure multiparty computation. The advantage of this approach
is that it only assumes a source that delivers random bits on demand, which is
clearly a more reasonable assumption than a random oracle and much easier to
implement in a secure multiparty computation setting.

Using this approach, we construct an oblivious RAM simulator where we can
make an access with an amortized log3(N) overhead, where N is the size of the
memory provided. The result remains the same, even if the adversary is told
which operations the program is executing, and even if the simulator has no
internal memory.

In recent concurrent and independent work [2] Ajtai also deals with oblivious
RAM and unconditional security. His result solves essentially the same problem
as we do, but using a completely different technique that does not lead to an
error-free solution. In Ajtai’s algorithm, a certain error event must not occur
and Ajtai shows that this event happens with probability only n− log n. If the
error event happens, then the simulation reveals information it shouldn’t, so one
cannot get an error-free solution from Ajtai’s by, for instance, rebuilding the
entire data structure if things go wrong. In comparison, our algorithm fails with
probability zero and is simpler to describe and to prove, being a more “direct
fit” to the model.

In work following ours [4], Beame and Machmouchi prove that an oblivious
RAM simulation always requires a superlogarithmic overhead in both time and
space, but in contrast to our work, their result says nothing about the amount
of randomness needed.

2 Applications

Software protection: This was the main original application of Goldreich and
Ostrovsky. A tamper-proof CPU with an internal secret key and randomness
could run an encrypted program stored in an untrusted memory. Now using an
oblivious RAM, the observer would only learn the running time and the required
memory of the program, and nothing else. Note that, while the adversary would
usually be able to see the data written to RAM in such a scenario, this does not
have to be the case: if the adversary is doing a side channel attack where he is
timing the memory accesses to see if the program hits or misses the cache, he is
exactly in a situation where only information on the access pattern leaks, and
our solution would give unconditional security.
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Secure multiparty computation: If secure multiparty computation is implemented
by secret sharing, each player will have a share of the inputs, and computations
can be done on the shares. We can use the oblivious RAM model to structure
the computation by thinking of the players as jointly implementing the secure
CPU, while each cell in the RAM is represented as a secret shared value. This
is again a case where an adversary can observe the access pattern (since the
protocol must reveal which shared values we access) but not the data1. Using an
oblivious RAM, we can hide the access pattern and this allows us, for instance,
to do array indexing with secret indices much more efficiently than if we had
used the standard approach of writing the desired computation as an arithmetic
circuit.

Note that players can generate random shared values very efficiently, so that
our solution fits this application much better than an approach where a PRF is
used and must be securely computed by the players.

Cloud computing: It is becoming more and more common to outsource data
storage to untrusted third parties. And even if the user keeps all data encrypted,
analysis of the access patterns can still reveal information about the stored data.
Oblivious RAM eliminates this problem, leaving the untrusted party only with
knowledge about the size of the stored data, and the access frequency.

3 The Model

An oblivious RAM simulator is a functionality that implements the interface of
a RAM, using auxiliary access to another RAM (the physical RAM). We say
that such a simulation securely implements an oblivious RAM, if for any two
access patterns to the simulated RAM, the respective access patterns that the
simulation makes to the physical RAM are indistinguishable.

To simplify notation we assume that the interface of a RAM has only one op-
eration, which writes a new value to a memory position and returns the previous
value.

We model that the identity of the instructions performed by the simulator
leak, but not the operands. We assume that the indices of the memory positions
updated by the simulation leak, but not the values being retrieved and stored.

A RAM is modeled as an interactive machine behaving as follows:

1. Set N [i] = 0 for i ∈ ZN .
2. On each subsequent input (update, i, v) on the input tape, where i ∈ ZN

and v ∈ Zq, let w = N [i], set N [i] = v and output w on the output tape.

We consider lists of form U = ((update, i1, v1), . . . , (update, i�, v�)) with ij ∈
ZN and vj ∈ Zq. Let IORAM(U) = ((update, i1, v1), w1, . . . , (update, i�, v�), w�)
denote the sequence of inputs and outputs on the input tape and the output tape
when the interactive machine is run on the update sequence U , where |U | = � .

1 This type of application was also already proposed by Goldreich and Ostrovsky.
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Formally, an ORAM simulator is a tuple S = (C, N,M, q), where C = (C[0], . . . ,
C[|C| − 1]) is the finite program code where each C[j] is one of (random, i),
(const, i, v), (+, t, l, r), (-, t, l, r), (*, t, l, r), (=, t, l, r), (<, t, l, r), (goto, i) with
i, t, l, r ∈ ZM and v ∈ Zq, and N ∈ N is the size of the simulated RAM, M ∈ N

is the size of the physical RAM, and q ∈ N indicates the word size of the RAMs:
the simulated and the physical RAM store elements of Zq. We require that
q > max(N,M) so a word can store a pointer to any address. We denote the
simulated memory by N ∈ ZNq , indexed by {0, 1, . . . , N − 1} ⊆ Zq. We denote
the physical memory by M ∈ ZMq , indexed by {0, 1, . . . ,M − 1} ⊆ Zq.

The simulation can be interpreted as an interactive machine. It has a register
c and a special leakage tape, which we use for modeling purposes. The machine
behaves as follows:
1. Set M[i] = 0 for i ∈ ZM .
2. Set c = 0.
3. On each subsequent input (update, i, v) on the input tape, where i ∈ ZM

and v ∈ Zq, proceed as follows:

(a) Set M[0] = i and M[1] = v.
(b) If c > |C|, then output M[2] on the output tape, append (return) to

the leakage tape and halt. Otherwise, execute the instruction C = C[c]
as described below, let c = c + 1 and go to Step 3b. Each instruction C
is executed as follows:

– If C = (random, i), then sample a uniformly random r ∈ Zq, set
M[i] = r and append (random, i) to the leakage tape.

– If C = (const, i, v), set M[i] = v and append (const, i, v) to the
leakage tape.

– If C = (+, t, l, r), setM[t] =M[l]+M[r] mod q and append (+, t, l, r)
to the leakage tape. The commands - and * are handled similarly.

– If C = (=, t, l, r), set M[t] = 1 if M[l] = M[r] and set M[t] = 0
otherwise, and append (=, t, l, r) to the leakage tape.

– If C = (<, t, l, r), set M[t] = 1 if M[l] < M[r] as residues in
{0, . . . , q − 1} and set M[t] = 0 otherwise, and append (<, t, l, r)
to the leakage tape.

– If C = (goto, i), let c =M[i] and append (goto, i, c) to the leakage
tape.

By IOS(U) we denote the random variable describing the sequence of inputs
and outputs on the input and output tapes when S is executed as above on the
update sequence U , where the randomness is taken over the values r sampled by
the random-commands. By LeakS(U) we denote the random variable describing
the outputs on the leakage tape.

Definition 1. S is an ε-secure ORAM simulator if for all update sequences U ,
the statistical difference Δ(IOS(U), IORAM(U)) ≤ ε and it holds for all update
sequences U0 and U1 with |U0| = |U1| that Δ(LeakS(U0),LeakS(U1)) ≤ ε.
We say that S is a perfectly secure ORAM simulator if it is a 0-secure ORAM
simulator.



148 I. Damgård, S. Meldgaard, and J.B. Nielsen

4 Oblivious Sorting and Shuffling

In the following, we will need to shuffle a list of records obliviously. One way
to do this, is to assign a random number to each, and sort them according to
this number. If the numbers are large enough we choose distinct numbers for
each value with very high probability, and then the permutation we obtain is
uniformly chosen among all permutations.

This issue is, in fact, the only source of error in our solution.
If we want to make sure we succeed, we can simply run through the records

after sorting to see if all random numbers were different. If not, we choose a
new random set of numbers and do another sorting. This will succeed in ex-
pected O(1) attempts each taking O(n) time, and so in asymptotically the same
(expected) time, we can have a perfect solution.

We can sort obliviously by means of a sorting network. This can be done with
O(n log n) compare-and-switch operations, but a very high constant overhead
[1], or more practically with a Batcher’s network [3] using O(n log2 n) switches.

Each switch can be implemented with two reads and two writes to the memory,
and a constant number of primitive operations. Sorting in this way is oblivious
because the accesses are fixed by the size of the data, and therefore independent
of the data stored.

By storing the choice bits of each switch we can arrange according to the
inverse permutation by running the elements through the switches of the sort-
ing network in backwards order while switching in the opposite direction from
before.

5 A Solution with Polylogarithmic Overhead

Like the original algorithm of Goldreich and Ostrovsky in [6], the algorithm
works by randomly permuting the data entries, and then storing the permutation
in a dictionary data structure used for lookups. Previously accessed elements are
put into a cache to ensure we do not have to look at the same place twice, as
that would reveal patterns in the accesses. The dictionary also contains dummy
elements we can look at, to hide whether we found an element in the cache or
in the dictionary. We amortize the time used for searching the increasingly large
cache by making levels of caches of growing sizes that are reshuffled when they
have been used enough.

The construction in [6] used a hash-table as the dictionary, and security was
proven in the random oracle model. A random oracle allows to remember and
randomly access a large number of random bits “for free”, but we want to do
without this, so instead we save our randomness in physical memory using a
binary tree for the dictionary.

We now present a solution with an amortized overhead per access of log3 N .
The solution proceeds somewhat like the protocol of [6] with polylogarithmic
overhead.
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As in [6] the idea is to have log2(N) + 1 levels of simulated RAMs each
level being a cache for the one below. The cache at level 0 has size 1, and the
one at level log2(N) size N , and in general the cache at level � stores O(2�)
elements.

As in [5] it is also possible to make a conceptually simpler solution with
a higher asymptotic overhead, this might be useful for some input sizes, and
also may aid in the understanding of the full algorithm, we describe that in
section 6.

5.1 Shuffled Trees

A shuffled tree is a complete binary search tree with all nodes (except the root
node) permuted randomly in the RAM. So when you follow a child-pointer, it
will give you a uniformly random location in the RAM where the child-node is
stored. The actual data is stored at the leafs.

Deciding between the left and right child can be done obliviously by looking
at both pointers. In this way a full lookup in a shuffled tree is oblivious: an
adversary observing the access pattern to the RAM storing the shuffled tree,
sees only logN random accesses to nodes, and thus learns nothing about what
element we find.

In the algorithm described below there is a single logical tree. The nodes of
this tree are represented by records in physical memory.

We will have several levels of caches, each can store a number of records
representing nodes from the tree. Pointers in the tree will be represented as a
pair: the number of the level and an offset into the memory block for that level.
The division of the physical RAM into levels is public information that does not
have to be hidden.

During a lookup we look at some nodes from the logical tree, this results in
touching the records representing these nodes. However, we will never again read
those records, we now call them dead records. Instead new records representing
the same nodes of the tree will be created on lower levels. In this way a node of
the tree might be represented by several records on different levels, but only one
will ever be alive. Specifically every logical node will always be represented by a
single live record at some level. In section 5.3 we show how to construct such a
tree obliviously.

5.2 Overview of the Construction

The main ideas behind the solution are as follows:

Initial setup. We start with a random shuffled tree at level logN with all data
in this tree and all other levels (the caches) being empty.

Each internal node of the tree stores: a left and a right child-pointer, each
storing both the level, and the index of that level where the child can be
found, a bound for dispatching during the lookup (this bound can actually
be inferred from the path we are following, and is mostly included for easing
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the presentation), and a tag telling if it is a dummy node or not. The leaf
nodes store a data-item and the original index of the item. The smallest kind
of node has to be padded to make them have the same size.

Lookup and caching. When a lookup is made, we start at the root node, and
follow child-pointers to a leaf, like when looking up in a binary tree. But now
a child pointer can point to a node at the same or any higher cache-level.

When a path (∇1, . . . ,∇m) is followed, we first try to put the nodes {∇i}
in the bottom level, i.e. level 0. If this level is empty, the path is shuffled
(such that the nodes ∇i are stored in random positions at level 0 and such
that ∇i points to the new physical location of ∇i+1 at the bottom level) and
inserted here. Otherwise it is merged with the tree already on this level, and
we try to put the result on the next level and so on until we find an empty
level. Below we describe a procedure for merging two trees while shuffling
them so all records end up being permuted randomly.

The pointers from ∇i to the physical addresses of the siblings of the ∇i
which were not on the path (∇1, . . . ,∇m), and hence were not moved, are
just copied along with the nodes during the shuffling, so that the nodes ∇i
at the bottom level might now have pointers to untouched nodes in the trees
at higher levels.

The root. The only node whose true position is not hidden is the root node.
Because it is touched as the first node for every look-up, it will always be at
the first position of the youngest tree. We take special precautions to make
sure it is not moved during the shuffling procedure. This is still oblivious
because the node is touched for every lookup independently of the index we
search for.

Dummy nodes. If we were just to start each search at the root node and then
following the updated points to physical addresses it is true that we would
never touch the same node twice in the same position, as a touched node
is moved down and then shuffled up. The pattern of how the path jumps
between the levels would however leak information2. We therefore make sure
to touch each level once every time we follow one pointer by doing dummy
reads at all other levels. If we are following a pointer to level � we do dummy
read at levels i = log2 N, . . . , � + 1, then we read the node at level �, and
then we do dummy reads at levels i = � − 1, . . . , 1. Only the real node ∇
read at level � is moved to the bottom level.

This requires the tree at each level to contain as many dummy nodes as
it has real nodes. These will be chained by their child-pointers, so we can
chose for each level to either look at the real node or the next dummy. The
location of the head of the dummy chain for each level is stored publicly, like
the root node.

2 If, e.g., we look up the same leaf node twice, the path to the node is moved to
the bottom level in the first update, so the second update would only touch nodes
at the bottom level. If we look up a distinct leaf in the second update the pointer
jumping would at some point take us back to the bottom level. This would allow the
adversary to distinguish.
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Algorithm 5.1: lookup(key)

output: Value stored in the ORAM at index key
global: live — The set of levels containing records
(current-level, current-offset) ← (min(live), 0) — Start at root
for i ← 0 to log2(N)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each level ∈ live

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if level = current-level

then

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇← physical[level, current-offset]
if key < ∇.bound

then

⎧⎨⎩
(next-level,next-offset)← (∇.left.level,∇.left.offset)
(∇.left.level,∇.left.offset) ← (0, i)
physical[level].dummy ← physical[level].dummy

else
{
. . . same thing for right side. . .

else

⎧⎨⎩
Dummy lookup:
t ← physical[level, physical[level].dummy]
physical[level].dummy ← t.left.offset

path ← path · ∇
(current-level, current-offset) ← (next-level,next-offset)

InsertPath(path)
return (∇.data)

Algorithm 5.2: InsertPath(path)

global: live — The set of levels containing records
level ← 0
while level ∈ live — Cascade down until we find a not-live level

do

⎧⎨⎩
path ← MergeLayers(path, physical[level])
live ← live− {level} — Level is no longer live
level ← level + 1

physical[level] ← path — Insert the merged nodes
live ← live ∪ {level}

A sequence of accesses is illustrated in Fig. 1. The procedure MergeLayers is
not described in pseudocode, but it is explained in detail in the following section.

5.3 Merging and Shuffling of Two Unbalanced Trees

Each time a lookup is made, we build a chain of records representing nodes on
a path from the root of the tree to the leaf-node we are looking up by copying
the nodes from the used path, and making sure that the child pointer we follow
points to the next node.

This chain will go to the bottom level cache. If the bottom level already is
filled, it will be merged with the new one path and they will be put one level
higher, etc.

The records we merge from two levels represent some subset of the nodes from
the logical tree. This subset is always forming a tree but not in general a full
tree, but an unbalanced tree.
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Fig. 1. To be read as a comic strip. Each frame shows the logical (unshuffled) view of
the different layers of each step of a sequence of accesses to an oblivious RAM storing
8 elements. Dummy elements at each level are shown at the bottom. The arrow shows
how the lookup progresses, and nodes with a dot are those read at this step. Used
nodes are shown in gray. Notice how no node is ever touched twice, and how, besides
the root node, log n nodes are read from each live level per lookup.
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We now describe how to merge and shuffle two such trees while updating the
pointers so they point to the right new place.

We make a crucial observation about the algorithm; that the two merged
levels are always two youngest existing levels, this in turn gives us the following:

– There will never be pointers from other levels into the merged records so
nothing outside the level has to be updated.

– The child-pointers that are not internal to the two levels will point out of
the local level and into an older level, as older levels are not updated, these
pointers do not have to be changed.

– The root of the tree will always be in one of the merged levels (the youngest
one).

We will copy all the records from both trees that we have not touched yet (the
live records) into a new list in the same order as they where before (but with
the dead records removed). We run through the second list, and obliviously add
to each internal child pointer the number of live records before it in the list, so
all internal child-pointers are unique.

Also we connect the two dummy chains, by running through all the records
of the first tree, and for each obliviously checking if it is the end of a dummy
chain, if so, it is set to point at the child of the head of the dummy chain of the
second tree.

In the two lists there will be a number of live dummies already, and they will
be reused, but for the resulting list we need more dummies (as many as there are
already), so we make a chain of new dummies and make the end of that point
to the head of the old dummy chain. These new records are put at the end of
the list of nodes, and we shuffle them together with the rest.

We know that every live node is a unique representative of a node in the logical
tree. It always (except for the root) has exactly one incoming pointer from the
other nodes in the list. And it has one or two children among the copied nodes,
the pointers to these needs to be updated, while the (one or zero) child-pointers
pointing out of the tree to an older tree from where it was copied should stay
unchanged.

The root-node and the head of the dummy chain are exceptions to this in-
variant as they have no incoming pointers, on the other hand their location is
not secret, and we take special care of these two nodes.

Note that we cannot allow the dummy nodes to have both child-pointers
pointing to the next node because that would give dummy nodes two incoming
nodes as well. Instead they must have one forward pointer, an nil-pointer and
a tag so we can recognize them as dummy nodes, and when following such one,
we always obliviously choose to follow the real pointer.

We now collect this into a subroutine for updating the pointers while we merge
and shuffle the two lists with a total of p nodes at the same time. The process
is illustrated in Fig. 2

1. For each child pointer in the list in order, we write in a new list a pointer y
that, if the pointer is internal, is a copy of the child pointer and∞ otherwise
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Fig. 2. Illustration of the shuffling process. “:n” here indicates a pointer inside the level
that is shuffled, “:o” is a pointer to the old level where the node was copied from.

so it will be sorted last. These represent pointers out of the tree, and should
not be updated.

When shuffling a list with p live records, the list of pointers will have 2p
entries. Approximately half of these will be external pointers, and nil-pointers
from dummies. It might be more than half, because the paths represented
by the two trees might overlap. This does not affect the shuffling procedure,
only the dummy chains will end up longer than what can ever be used before
reshuffling, but this knowledge is never revealed to the adversary.

2. Sort the row of y’s obliviously, and save the sorting permutation as σ. Be-
cause each node (except the two special nodes) has exactly one incoming
pointer, the first p−2 nodes will be internal, and those are the ones we want
to update, so they point to the new locations of those nodes.
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3. Now we create the permutation, π, that we want to shuffle the final list in.
This permutation should leave location 1 (the root) and the location of the
head of the dummy chain the same place, and be uniformly random for all
other indices.

4. Now permute a list containing the numbers from 1 to p according to π−1,
and remove the first element, and the dummy-head pointer (they stay in
place under π). Take this list of p− 2 elements and concatenate them with
p + 2 ∞’s.

5. Now first undo the sorting by applying σ−1 to this list, and use the unsorted
list to overwrite the pointers of the original records where they came from
(obliviously choosing to change the value only when the new value is �=∞),
now we have updated all the internal pointers, and left the external pointers
untouched.

6. Finally shuffle the nodes according to π. We now have a shuffled list with all
nodes pointing to the right places.

The main trick behind this procedure is that π(M)[π−1(x)] =M[x] (where M
denotes the physical memory, seen as an array). The time the procedure takes
is dominated by the time it takes to sort the list of pointers.

5.4 Security

The transcript of a lookup, as seen by the adversary, always consists of the
following parts:

– An access to the root node, it will always be the first entry of the youngest
tree

– logn accesses at uniformly random records at each live cache-level of the
tree

– A fixed amount of merging and reshuffling, done obliviously

This transcript is independent from the simulated access, and therefore the al-
gorithm is secure.

5.5 Performance

To see how many log factors we use, we look at the two parts of the algorithm
(that takes time). That is the operations for doing the lookup, and the operations
for doing the reshuffling.

Following a path of length logN requires to look up logN nodes. For each
node we have to touch each level for obliviousness, which gives a total of log2 N
reads.

For reshuffling we saw that the time for shuffling a level is dominated by
sorting it. We have logN cache-levels. Level i is of size O(2i · logN), so that
takes O(2i · logN · log(2i · logN)) = O(2i · logN · i) operations to sort (because
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i is in O(logN), so it dominates log logN). But that level is only shuffled every
2i−1th. lookup. On average we therefore use time for all levels:

O

(logN∑
i=1

logN · i
)

= O(log3 N) .

Therefore the total amortized time spent per lookup is in O(log3 N).
This gives rise to the following theorem:

Theorem 1. The described algorithm implements a perfectly secure ORAM
simulation in the standard model with a time and memory overhead in
O(log3 N).

6 The Square Root Algorithm

In this section we describe a simpler algorithm implementing an oblivious RAM
using memory and amortized time in O(

√
N log2 N). The algorithm assumes

access to a functionality that shuffles n elements of the physical RAM in time
O(n log2 n).

In this solution the tree is stored with each level shuffled individually, so each
child pointer from a node points to a random location of the next level. Also we
make

√
N dummy chains, that are also shuffled into the tree. Only the root level

is (trivially) not shuffled. The shuffling is depicted in Fig. 3.

Making a lookup. A lookup in the simulated RAM is implemented by making
a lookup in the binary search tree. In order to touch every node in the tree only
once, we do a (possibly dummy) lookup in the physical RAM on each level of
the tree, and for each level we also linearly scan through all of the cache to see
if we have accessed the same node earlier. If we found the element in the cache,
the next access in the tree will still be to a dummy node.

The physical memory is split up into log2(N) parts, the i’th part is again split
in two; physical[i] storing 2i +

√
N records (the tree, and the dummy chains),

and cache[i] storing
√
N records (the cache). Each node in the three record stores

a .left and .right field for pointing to the next level, and a .bound for directing
the search in the tree.

The leaf-records at the lowermost level are different, they contain the .data
that are stored, an .index field naming the original index where the data is stored
in the simulated RAM, and a .used field that is used for reshuffling the data as
described below.

An invariant for the outer loop in the Lookup-algorithm below can be phrased:

1. next is the real index we are going to look for at level
2. next_from_tree is the index of the tree where we will look if we do not

find the item in the cache. If this is different from next, it is still pointing at
a dummy chain.
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Fig. 3. Visualization of the memory layout of a tree storing 8 elements, before and
after shuffling the tree. The edges indicate child-pointers.

By changing the index of the cached value to∞ when it is found at 1 we implicitly
invalidate it; it will be sorted last and therefore thrown away when we reshuffle.
This is only necessary to do for the cache of the last level of the tree.

Obliviously shuffling a tree. This is a somewhat simpler algorithm for shuf-
fling a tree that the one described in the main part of the paper: it works by
shuffling one level at a time, starting at the bottom of the tree, and ending with
the root-level. Because we always have all nodes present, we can allow ourselves
to consider only one level at a time. After shuffling a level L with permutation
π (so L′[i] = L[π(i)]), we apply π−1 on a sequence [1, . . . , n], and copy these
numbers into the child-pointer fields of the level above. This gives the right re-
sult, because what before pointed at k will now point at π−1(k). But looking up
in the shuffled layer yields the record at L′[π−1(k)] = L[π(π−1(k))] = L[k]. We
take special care to also shuffle the dummy chains, and ensuring that their left
and right pointers point to the same next node in the chain.

Algorithm 6.1: unmingle( )

a ← Filter out any physical[log2 N ] record which has .used= true
b ← a concatenated with cache[log2 N ].
Obliviously sort b according to the original index of the records
Remove the last

√
N records of b

physical[log2N ] ← b

Algorithm 6.2: shuffle( )

for level ← log2(n) downto 1

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Choose a permutation π uniformly at random
Shuffle physical[level] according to π

temp = [1, 2, . . . , 2level +
√

N ]
Shuffle temp according to π−1

for i ← 0 to 2level−1

do
{

physical[level − 1, i].left ← temp[2i]
physical[level − 1, i].right ← temp[2i + 1]

for i ← 2level−1 to 2level−1 +
√

N

do
{

physical[level − 1, i].left ← temp[2level + i]
physical[level − 1, i].right ← temp[2level + i]
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Algorithm 6.3: dispatch(key, record)

output: The left or right child of record, depending on key
if key < record.bound
then return (record.left)
else return (record.right)

Algorithm 6.4: lookup(key)

input: key
output: Value stored at key
if count ≥ √

n

then

⎧⎨⎩
unmingle()
shuffle()
count ← 0

else count ← count + 1
next ← count
next_from_tree ← count
for level ← 0 to log2(N) − 1

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

found ← False
for i ← 0 to count − 1

do

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k ← cache[level, i]
if k.index = next

then

⎧⎪⎪⎨⎪⎪⎩
k_from_cache ← k
found ← True
k.index = ∞ (1)
cache[level, i] ← k

if found
then next ← next_from_tree

k_from_tree ← physical[level, next]
physical[level, next].used = True
next_from_tree ← dispatch(index, k_from_tree)
next ← dispatch(index, k_from_tree)
if found
then next ← dispatch(index, k_from_tree)

cache[level, count] ← (next,update(k))

Security. The transcript of a lookup, as seen by the adversary, always consists
of the following parts:

– An access at index count of the first level of the tree
– An access at a uniformly random location at each lower level of the tree
– A scan of the full cache of each level
– For each

√
N accesses, the tree is reshuffled

All these are independent of the access pattern to the original RAM, and thus
an eavesdropper will learn nothing whatsoever about the access pattern.
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Performance. The time for a single lookup (without the shuffling) is domi-
nated by accessing log2 N caches, each of size O(

√
N). For each

√
N lookups, we

perform a shuffle taking time O(N log2 N). Giving an amortized running time
of O(

√
N log2 N) per lookup.

7 Lower Bounds on Randomness

An equivalent way to state the definition of a secure oblivious RAM simulation is
that, for simulation of any program running on an standard RAM, the resulting
distribution of accesses to physical memory is the same for every choice of input.
In particular, if we choose (part of) the input at random, the distribution of
memory accesses must remain the same.

Our goal in this section will be to show a lower bound on the number of
random bits that a simulation must use in order to be secure. We will for the
moment assume that the simulation is data-oblivious, i.e., the simulation treats
every word it is asked to read or write as a black-box and does not look at the
data it contains. Any such word is called a data-word. All known oblivious RAM
simulators are data oblivious. Indeed, letting anything the simulator does depend
on the content of a data-word would only seem to introduce extra difficulties,
since at the end of the day the access pattern must not depend on this content.
Nevertheless, we show in section 8 a weaker lower bound for data non-oblivious
simulation.

To show the lower bound, we consider the program that first writes random
data to all N locations in RAM. It then executes d read operations from ran-
domly chosen locations. Let U denote this sequence of update instructions.

Let P be the random variable describing the choice of locations to read from.
Clearly H(P ) = d logN . Let C = LeakS(U) be the random variable describing
the history of the simulation as seen by the adversary. Finally, let K be the
random variable describing the random choices made by the simulation during
the execution of the program, the r-values of the random-commands. We will
show a bound on H(K|C), that is, a bound on the number of random bits that
are unknown to the adversary.

By construction of the random experiment, K is independent of P and, as-
suming the simulation is perfectly secure, C and P are independent.

From this it follows by elementary information theory that

H(K|C) ≥ H(P )−H(P |C,K) = d logN −H(P |C,K) . (1)

Now, let us assume that each read operation causes the simulation to access at
most n locations in physical RAM. From this we will show an upper bound on
H(P |C,K).

Let Pi be the random variable describing the choice of location to read from
in the i ’th read. Then we can write P = (Pd, . . . , P1), and we have

H(P |C,K) = H(P1|C,K) + H(P2|P1, C,K) + · · ·+ H(Pd|Pd−1..P1, C,K)(2)
≤ H(P1|C,K) + H(P2|C,K) + · · ·+ H(Pd|C,K) . (3)
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The plan is now to bound H(Pi|C = c,K = k) for each i and arbitrary, fixed
values c, k, from this will follow a bound on H(P |C,K). We will write H(Pi|C =
c,K = k) = H(Pi|c, k) for short in the following.

Note first that once we fix K = k, C = c, in particular the value of c specifies
a choice of at most n locations that are accessed during the i’th read operation.
This will constrain the distribution of Pi to be only over values that cause these
locations to be accessed. Let w be the number of remaining possible choices for
Pi. This is a set of addresses that we call the relevant addresses. Since there are
w relevant addresses, we have H(Pi|c, k) ≤ logw.

Let a = log2 q be the number of bits in a memory location, and recall that the
program initially writes random data to all addresses. Let the random variable
Dc,k represent the choice of data originally written to the w relevant addresses.
Since the simulation is data oblivious, fixing C = c,K = k does not constrain
the data stored in the relevant addresses, and hence Dc,k is uniform over the
2aw possible values, or equivalently H(Dc,k) = aw.

Let Rc,k represent all the data the simulator accesses while it executes the
i’th read operation given the constraints we have defined. Since at most n words
from external memory are accessed, we have H(Rc,k) ≤ an.

But on the other hand, H(Rc,k) must be at least H(Dc,k), since otherwise
the simulator does not have enough information to return a correct result of
the read operation. More precisely, since the simulation always returns correct
results, we can reconstruct the exact value of Dc,k as a deterministic function
of Rc,k by letting the value of Pi run through all w possibilities and computing
in each case what the simulation would return. Since applying a deterministic
function can only decrease entropy, it must be that H(Dc,k) ≤ H(Rc,k).

We therefore conclude that aw ≤ an, and from this and H(Pi|c, k) ≤ logw it
follows immediately that H(Pi|c, k) ≤ logn. By definition of conditional entropy
we have H(Pi|C,K) ≤ logn as well, and hence by (3) that H(P |K,C) ≤ d logn.
Combining this with (1) we see that H(K|C) ≥ d log(N/n), when d read opera-
tions are executed. Thus we have:

Theorem 2. Suppose we are given a perfectly secure oblivious RAM simulation
of a memory of size N . Assume it accesses at most n locations in physical RAM
per read operation and is is data-oblivious. Then there exist programs such that
the simulator must, on average, use at least log(N/n) secret random bits per read
operation.

Extensions. Suppose the simulation is not perfect, but leaks a small amount
of information. This means that P and C are not independent, rather the dis-
tributions of C caused by different choices of P are statistically close. There-
fore the information overlap I(C;P ) is negligible as a function of the security
parameter. If we drop the assumption that P,C are independent (3) becomes
H(K|C) ≥ d logN −H(P |C,K) − I(P ;C). The rest of proof does not depend
on C,P being independent, so the lower bound changes by only a negligible
amount.
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The result also holds even if the adversary does not know which instructions
are executed by the simulated program, as the proof does not exploit the fact
that in our model, he knows this information.

Another remark is that the result assumes that every read operation causes
at most n locations to be accessed. This does not, actually, cover the known
solutions because they may at times access a very large number of locations,
but do so seldom enough to keep the amortized overhead small. So we would
like to show that even if we only assume the amortized overhead to be small,
a large number of secret random bits is still needed. To this end, consider the
same program as before, and suppose we have a simulation that accesses at most
ni bits during the i’th read operation. Let n̄ be the average, n̄ = 1

d

∑
i ni. Then

we have

Theorem 3. Suppose we are given a perfectly secure oblivious RAM simulation
of a memory of size N . Assume it accesses at most ni locations in physical RAM
during the i’th read operation and is data-oblivious. Then there exist programs
such that the simulator must, on average, use at least log(N/n̄) secret random
bits per read operation.

Proof. Observe first that the argument in the proof for Theorem 2 for equations
(3) and (1) still holds here, and that furthermore the argument for H(Pi|C,K) ≤
logn does not depend on the bound n being the same for every read operation.
Hence, under the assumption given here, we get H(Pi|C,K) ≤ logni, and hence
by (3), (1) that

H(K|C) ≥ d logN −
d∑
i=1

logni = d logN − d
1
d

d∑
i=1

logni

≥ d logN − d log(
1
d

d∑
i=1

ni) = d logN − d log n̄ = d log(N/n̄) .

where the last inequality follows from Jensen’s inequality.

8 Data Non-oblivious Simulation

The argument used in section 7 breaks down if the simulation is not data-
oblivious. The problem comes from the fact that then, even if security demands
that C is independent of the data D that is written, this may no longer be the
case if K is given. And then, if we fix C, this may mean that the data written
in the w locations in the proof above are no longer uniformly distributed.

We can nevertheless prove a different lower bound. Since we assume that
q ≥ N we have that the word size a = log2 q is θ(logN). Our result would get
stronger if a was larger. The goal will be to show that when executing θ(N)
read operations, security implies that H(K|C) must be at least θ(N), and so
one must use a constant number of secret random bits per read operation.
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We will consider the same program as in the previous subsection, and we
will reuse the notation. We will, however, choose d to be d = αN where α is a
constant.

Observe first that since both C and K are independent of D, it follows
that I(K;D|C) = I(C;D|K). It is also straightforward to see that H(K|C) ≥
I(K;D|C). So if I(C;D|K) ≥ d we are already done. So, we may assume
I(C;D|K) < d. We have that H(D) = Na, and also it holds that

H(D|C,K) ≥ H(D)− I(K;D|C)− I(C;D|K) ≥ Na− 2d,

where the first inequality holds for any 3 random variables D,K,C. Now by our
choice of d, it is much smaller than Na, so H(D|C,K) is almost as large as it can
be. So since H(D|K,C) is the average of the values H(D|K = k, C = c) we want
to claim that H(D|K = k, C = c) is “large most of the time”. Concretely, let p
be the probability that H(D|K = k, C = c) ≤ 3Na/4, taken over the choices of
K,C. Then it is straightforward to argue that

(1− p) ·Na + p · 3Na/4 ≥ Na− 2d = Na− 2αN,

from which we conclude that p ≤ 8α/a, and so is θ(1/ logN).
We will now do exactly the same argument as for the previous theorem, so we

will want to bound H(Pi|c, k) ≤ logw, by looking at the number w of possible
choices for Pi given that C = c,K = k.

We will use the fact we established above, that with probability 1 − p,
H(D|c, k) ≥ 3Na/4. Values c, k for which this holds will be called a good choice
of c, k.

So we will assume for the moment that we are in the good case. Now, there
are two sub-cases: first, if w ≤ N/2 we already know enough, as we shall see in
a moment. In the second sub-case w > N/2, and we now use that H(D|c, k) ≥
3Na/4: there are at most N/2 words that are not among those w we consider,
so their entropy can be at most Na/2. It follows that the joint entropy of the w
words we do consider is at least Na/4 ≥ wa/4.

We now argue as before, that since the simulator only has access to at most na
bits in order to answer the read request, it must be that na ≥ wa/4, or w ≤ 4n.

Hence, for a good choice of c, k we have

H(Pi|c, k) ≤ max(log(N/2), log(4n)).

We now make the reasonable assumption that 4n ≤ N/2, and note that even for
bad values of c, k H(Pi|c, k) ≤ logN . From this we conclude that

H(Pi|C,K) ≤ p logN + (1 − p) log(N/2) = log(N/2) + p log 2.

Plugging this into (1), we finally obtain that

H(K|C) ≥ d logN − d log(N/2)− dp log 2 = d(1− p log 2),

which is indeed θ(N), since p is θ(1/ logN), and is in fact essentially d for large
N . We therefore have the following:
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Theorem 4. Suppose we are given a perfectly secure oblivious RAM simulation
of a memory of size N , accessing at most n locations in physical RAM per
read operation. Even if the simulation is data non-oblivious, if n ≤ N/8, such
a simulation must use, on average, at least θ(1) secret random bits per read
operation.

The analysis in fact shows that one must use (essentially) 1 bit per read opera-
tion. This bound is almost certainly not tight, but we have not spent much effort
in optimizing it, since data oblivious simulation clearly is the way to construct
actual solutions.

The result can easily be extended to the case where the simulation does not
access the same number of locations in every operation, as long as the bound
N/8 is always observed.
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Abstract. Cryptographic assumptions regarding tamper proof
hardware tokens have gained increasing attention. Even if the tamper-
proof hardware is issued by one of the parties, and hence not necessarily
trusted by the other, many tasks become possible: Tamper proof hard-
ware is sufficient for universally composable protocols, for information-
theoretically secure protocols, and even allow to create software which
can only be used once (One-Time-Programs). However, all known proto-
cols employing tamper-proof hardware are either indirect, i.e., additional
computational assumptions must be used to obtain general two party
computations or a large number of devices must be used. In this work
we present the first protocol realizing universally composable two-party
computations (and even trusted One-Time-Programs) with information-
theoretic security using only one single tamper-proof device issued by
one of the mutually distrusting parties.

Keywords: Secure Two-Party Computation, Universal Composability,
Tamper-Proof Hardware, Information-Theoretical Security.

1 Introduction

Recently, tamper-proof hardware tokens have received increasing attention. Tam-
per-proof hardware tokens allow information-theoretically secure protocols which
are universally composable (UC) [4], they can be employed for protocols in the
globalized UC framework [5,17], and they even allow for One-Time-Programs,
i.e. circuits which can be evaluated only once [13]. However, all known protocols
employing tamper-proof hardware are either indirect, i.e., the secure hardware is
used to implement commitments or Zero Knowledge proofs and additional com-
putational assumptions must be used to obtain general, composable two party
computations [19,22,8,7], or a large number of devices must be used [13,15]. How-
ever, issuing multiple independent tamper-proof devices requires much stronger
isolation assumptions. Not only the communication between the device and the
issuer must be prevented, but also the many devices must be mutually isolated.
This is especially difficult as the devices are not necessarily trusted (see [3] for
the difficulty of isolating two devices in one location).

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 164–181, 2011.
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In this work we present the first protocol realizing universally composable two-
party computations (and even trusted One-Time-Programs) with information-
theoretic security using only one single (untrusted) tamper-proof device. One
of the main challenges is to prevent a corrupted token from encoding previous
inputs in subsequent outputs.

2 Related Work

The idea of secure computation based on separation assumptions was introduced
by Ben-Or et al. [2] to construct multi-prover interactive proof systems. Ben-Or
et al. [2] construct an unconditionally secure protocol for Rabin-OT [23] between
two provers and a verifier. Even though this result is not explicitly stated in
the context of tamper-proof hardware1 and is proven secure in a standalone,
synchronous model, we suppose that an amplified variant of the protocol of
[2] can be proven UC-secure if the sender is allowed to issue two tamper-proof
hardware tokens.

The idea of explicitly using tamper-proof hardware for cryptographic purposes
was introduced by Goldreich and Ostrovsky [12]. They showed that tamper-proof
hardware can be used for the purpose of software-protection.

The interest in secure hardware and separation assumptions was renewed,
when it was realized that universally secure multi-party computation can be
based on the setup assumption of tamper-proof hardware tokens. The tamper-
proof hardware must suffice strong separation conditions, even if a more recent
result showed that the assumptions about the physical separation can be relaxed
to some extent [8,7].

Generally, the work on secure multi-party computation with tamper-proof
hardware assumption can be divided in works dealing with either stateful or
stateless hardware-tokens. Katz [19] considers a scenario where all parties can
create and issue stateful tamper-proof hardware tokens. Using additional num-
ber theoretic assumptions, [19] implements a multiple commitment functionality
in this scenario. Subsequently Moran and Segev [22] improved upon Katz result,
by constructing commitments in an asymmetric scenario, where only one out
of two parties is able to issue stateful tamper-proof hardware tokens. Hofheinz,
Mller-Quade and Unruh [17] use (stateless) signature cards, issued by a trusted
authority to achieve universal composability with respect to global setup as-
sumptions [5]. Fischlin et al. [10] show how set intersection can be computed
securely using a single untrusted tamper-proof hardware token and additional
computational assumptions.

Goldwasser et al. [13] show that using a minimalistic stateful tamper-proof
hardware assumption called One-Time-Memory, a new cryptographic primitive
called One-Time-Program can be implemented. Recently, Kolesnikov [21] imple-
mented string oblivious transfer with stateless tamper-proof hardware tokens.
Goyal et al. [15] consider a unified treatment of tamper-proof hardware assump-
tions. Important in the context of this work, they show that in a mutually
1 [2] mention that the provers in their protocol might be implemented as bank-cards.
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mistrusting setting, trusted One-Time-Programs can be implemented statisti-
cally secure from a polynomial number of OTMs. Goyal et al. [14] show that
a single stateless tamper-proof hardware token is sufficient to implement sta-
tistically secure commitments and statistical zero-knowledge. Furthermore, if
stateless tokens can be encapsulated into other stateless tokens, general statis-
tically secure composable multi-party computation is possible in this setting.
[14] also show that unconditionally secure Oblivious Transfer cannot be realized
from stateless tamper-proof hardware alone.

With the exception of [2], all of the above schemes based on stateful tamper-
proof hardware either use additional complexity assumptions to achieve secure
two party computations [17,19,22,13,8,7,21] or a large number of hardware tokens
must be issued [13,15]. The question if one single tamper-proof device, issued
by one of two mistrusting parties, suffices for information-theoretically secure
two-party computations remains open in the literature.

3 Our Contribution

In this paper, we show that general, statistically secure, composable two-party
computations are possible in a setting where a single untrusted stateful tamper-
proof hardware token can be issued by one party. All previous solutions
supposed that either the creator of the tamper-proof hardware is honest, that ad-
ditional complexity assumptions are used, or that a larger number of independent
tamper-proof hardware tokens is issued. As a reasonable abstraction for the prim-
itives that can be implemented in our setting, we introduce a new primitive which
we call Sequential-One-Time-Memory. Sequential-One-Time-Memories provide
a large amount of single One-Time-Memories, with the additional guarantee that
the memory cells can only be queried sequentially. Just like One-Time-Memories,
Sequential-One-Time-Memories have the property of being non-signaling to their
issuer once they have been sent. We show that the Oblivious Transfer (OT) func-
tionality can be realized straightforwardly using Sequential-One-Time-Memories,
thus our results for statistically secure, composable two party computations
follow immediately by [18,20]. Our main contribution is a statistically secure,
universally composable protocol that realizes the Sequential-One-Time-Memory
functionality with a single, untrusted, tamper-proof hardware token. Our pro-
tocol construction is efficient, it realizes m sequential n-bit-string-OTMs while
having a communication overhead of O(n2m) bits in its interactive send phase,
where n is the security parameter. This is achieved by using tokens that compute
blinded tensor-product functions. The algebraic structure of these functions al-
lows the token-sender to encapsulate two random keys, one of which the token-
receiver can learn. In turn, the token-receiver has the promise that the token
will not learn his choice-bit from his function input and that the key he com-
putes from the function-output solely depends on his choice-bit. Moreover, these
functions can be computed by simple linear algebra operations. The technical
challenge in the security-proof, compared to issuing a large number of indepen-
dent devices, is that an untrusted, adversarial token might deviate arbitrarily
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from the specification of an honest token. It may thus try to correlate its out-
put or abort-behavior with previous inputs. Our protocol is semi-interactive as
it requires an interactive send-phase. This interaction is necessary, as we can
further show that any protocol that implements Sequential-OTMs using a sin-
gle untrusted device without any further interaction is insecure. Furthermore,
a simple modification of our protocol yields a completely non-interactive pro-
tocol that implements Sequential-One-Time-Memories from two tamper-proof
hardware tokens. Finally, we can resolve a question left open by [22] positively.
Moran and Segev asked if multiple commitments from the receiver of a token to
its issuer can be realized with a single untrusted tamper-proof hardware token.
As we can realize Oblivious Transfer, standard techniques (e.g. [9,18]) can be
used to implement commitments.

4 Framework

We state and prove our results in the Universal-Composability (UC) framework
of [4]. In this framework security is defined by comparison of an ideal model
and a real model. The protocol of interest is running in the latter, where an
adversaryA coordinates the behavior of all corrupted parties. In the ideal model,
which is secure by definition, a simulator S tries to mimic the actions of A. An
environment Z is plugged either to the ideal or the real model and has to guess,
which model it is actually plugged to.

By the random variable ViewA
Π(Z) we denote the complete view of the envi-

ronment Z when plugged to the real model with protocol Π and adversary A.
Analogously, by the random variable ViewS

F (Z) we denote the view of Z when
plugged to the ideal model, where the functionality F realizes the protocol task
and the simulator S coordinates the behavior of the corrupted parties. Therefore
Π is a (statistically) UC-secure implementation of F , if for every adversary A
there exists a simulator S, such that for all environments Z the random variables
ViewA

Π(Z) and ViewS
F (Z) are (statistically) close.

In our case the adversarial entities A,S and the environment Z are computa-
tionally unbounded and a hybrid functionality F stateful

wrap models our tamper-proof
hardware assumption (cf. Section 6). Moreover, as it was proven sufficient in [4],
we always focus on the dummy adversary Ã, which is completely controlled by
the environment Z.

5 Preliminaries

We use the notation [m] := {1, . . . ,m}. To formulate our protocol, we need
some elementary concepts of linear algebra over finite fields. IF2 is the finite field
with two elements. We can canonically identify the vector-space IFn2 with the set
{0, 1}n of strings of length n. For two column-vectors a ∈ IFn2 and b ∈ IFk2 we
write abT = (aibj)ij ∈ IFn×k2 for the outer product (or tensor-product) of a and
b. Similarly, for a, b ∈ Fn

2 we denote the inner product by aT b =
∑n

i=1 aibi ∈ IF2.
Let C ∈ IFn×2n

2 . Then dim(ker(C)) ≥ n. Let B = {b1, . . . , bn} ⊆ ker(C) be a
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linearly independent set. We can choose a set B∗ = {bn+1, . . . , b2n} such that
B ∪ B∗ is a basis of IF2n

2 . Let ei ∈ IFn2 be the i-th unit-vector. Then there
exists a matrix G ∈ IFn×2n

2 such that Gbi = ei for i = 1, . . . , n and Gbi = 0
for i = n + 1, . . . , 2n. We call such a G a complementary-matrix to C. It holds
that rank(G) = n and B∗ ⊆ ker(G). For such C and G, we can always solve
linear equation systems Cx = r, Gx = s by solving CxB∗ = r and GxB = s
independently for some xB ∈ span(B) and xB∗ ∈ span(B∗). We can then set
x = xB + xB∗ . It holds Cx = r and Gx = s, as xB ∈ ker(C) and xB∗ ∈ ker(G).

6 Modeling Tamper-Proof Hardware

Our formulation of general stateful tamper-proof hardware resembles the mean-
while standard definitions of [19] and [22]. To model tamper-proof hardware, we
employ the F stateful

wrap wrapper-functionality. A sender-party G (Goliath) provides
as input a Turing-machineM to F stateful

wrap . The receiver party D (David) can now
query F stateful

wrap on inputs w, whereupon F stateful
wrap runs M on input w, sends the

output y that M produced to D and stores the new state of M. Every time D
sends a new query w′ to F stateful

wrap , it resumes simulating M with its most recent
state, sends the output to D and updates the stored state of M. This captures
the following properties one expects from tamper-proof hardware. First, G is
unable to revoke M once it has sent a token to D. Second, D can run M on
inputs of his choice, but the program-code and state of M are out of reach for
D, due to the tokens tamper-proofness. Note that stateful tokens don’t need a
trusted source of randomness, as M can be provided with a sufficiently long
hard-coded random-tape. Thus we can, w.l.o.g restrict M to be deterministic.
See Figure 1.

A very basic tamper-proof hardware primitive called One-Time-Memory
(OTM) (Figure 2), that can be considered minimal in the sense that it only
needs to be able to erase its contents after being queried, was defined in [13].

Functionality Fstateful
wrap

Parametrized by an implicit security parameter n and a (polynomial) runtime bound
p(·).

Creation. Upon receiving a message (create,sid,Pi,Pj ,M) from party Pi, where M
is a deterministic Turing-machine, go to state ready and store (M,⊥), where ⊥ is
the initial state of M. Send (ready,sid,Pi ,Pj) to party Pj .

Execution. Upon receiving a message (run,sid,Pi,Pj ,in) where in is an input word,
first check if current state is ready. If so, run M(state, in) for at most p(k) steps.
Read out from the output tape of M and save its new state. Send (out,sid,Pi,Pj ,out)
to Pj .

Fig. 1. The wrapper functionality that models general stateful tamper-proof hardware
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OTMs resemble the well known Oblivious Transfer (OT) functionality [23,9],
with just a slight difference. While OT notifies the sender when the receiver
queries the primitive, this is not the case for OTM. Moreover, OTMs have the
property of immediate delivery, which means that even a malicious sender can-
not revoke or abort the functionality once it has been sent. Together with One-
Time-Memories, [13] defined the notion of One-Time-Programs (OTP), and its
generalization, k-Time-Programs (k-TP). OTP is a functionality that allows a
receiver to evaluate a circuit on exactly one input, then it shuts down. Similarly,
a k-TP can be evaluated exactly k-times, then shuts down. While [13] showed
that OTPs can be realized with OTM and computational assumptions and as-
sumed that the sender of the OTPs is trusted, [15] provided an unconditionally
secure implementation of trusted OTPs using only OTMs, where the sender of
the OTPs is untrusted.

Functionality FOTM

Parametrized by a security parameter n.

Creation. Upon receiving a message (create,sid,Pi,Pj ,(s0, s1)) from party Pi, go to
state ready and store (s0, s1). Send (ready,sid,Pi,Pj) to party Pj .

Choice. Upon receiving a message (choice,sid,Pi,Pj ,x) from Pj , check if current
state is ready. If so, send (out,sid,Pi,Pj ,sx) to Pj and go to state dead.

Fig. 2. The One-Time-Memory Functionality

We introduce a new variant of the One-Time-Memory functionality that we
call Sequential-One-Time-Memory (Seq-OTM) (Figure 3). Seq-OTM constitutes
a set of m single OTM functionalities, with the restriction that they can only be
queried in a fixed order. We refer to the single OTMs of Seq-OTM as its stages.
We impose the sequential ordering to the stages, to model that the untrusted
token might stop answering queries after an arbitrary stage. The limitation to
sequential access makes applications impossible where random access is essential.
All constructions where sequential access is sufficient can be implemented with
Seq-OTM as well. As the construction of unconditionally secure trusted OTPs
[15] using multiple OTM tokens is quite involved, we cannot present it here.
However, we observe that the construction of [15] works using Seq-OTM instead
of multiple independent OTM tokens. This holds because in this construction,
an honest receiver queries all the OTM primitives he received in a fixed order
anyway. Interestingly, the technical challenges [15] deals with in constructing
unconditionally secure OTPs arises from the fact that a malicious receiver might
query the OTMs out of order. Finally, a remark is in place. Even though Seq-
OTM can be used to implement several OTPs, the sequential nature of Seq-OTM
demands that those OTPs can only be executed in a fixed order. If one wishes to
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execute several OTPs in random order, multiple Seq-OTMs (and thus multiple
hardware tokens) have to be issued.

The restriction to sequential access also bears advantages in certain appli-
cations. In [15], a construction was provided that realizes a single OT from
polynomially many OTM tokens. The construction is rather expensive regard-
ing the number of OTMs used, as it involves One-Time-Programs to issue a proof
that the primitive has been queried. Such a proof is necessary to convince the
OT-sender that the receiver has provided his input. Again, what makes this con-
struction technically challenging is that the single OTM tokens can be queried
in an arbitrary order.

Functionality FSeq−OTM

Parametrized by a security parameter n and a parameter m = poly(n), which is the
number of single OTMs that can be stored.

Creation. Upon receiving a message (create,sid,Pi,Pj ,((s1,0, s1,1), . . . , (sm,0, sm,1)))
from party Pi, go to state ready and store ((s1,0, s1,1), . . . , (sm,0, sm,1)). Set a counter
t = 1. Send (ready,sid,Pi ,Pj) to party Pj .

Choice. Upon receiving a message (choice,sid,Pi,Pj ,x) from Pj , check if current
state is ready and t ≤ m. If so, send (out,sid,Pi,Pj ,st,x) to Pj and increment t by 1.
If t > m, go to state dead.

Fig. 3. The Sequential-One-Time-Memory Functionality

We will now briefly outline how a polynomial number of OTs can be im-
plemented using the Seq-OTM functionality. Given a Seq-OTM primitive with
2m single OTMs, OTM1, . . . ,OTM2m, the sender programs OTM2i−1 with his
inputs for OTi and programs a random-string ri into OTM2i. In the choice-
phase, the receiver queries OTM2i−1 with his i-th choice-bit xi and OTM2i with
choice-bit 0. To prove to the sender that OTM2i−1 has already been queried,
the receiver sends ri to the sender. As Seq-OTM forces the receiver to open
OTM1, . . . ,OTM2m sequentially, he has only negligible chance to guess ri cor-
rectly unless he has opened OTM2i−1 already. Thus, this reduction is perfectly
secure against the sender of the OT and statistically secure against the receiver
of the OT. Noting that OT can be stored and reversed [1,24,25], we conclude
that in the Seq-OTM hybrid-model, OT can be implemented in both ways (from
the Seq-OTM sender to the Seq-OTM receiver and from the Seq-OTM receiver
to the Seq-OTM sender).

7 The Necessity of Interaction

We will now show that any protocol, which implements a Seq-OTM with 2
or more stages from a single hardware token, requires some interaction between
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sender and receiver. The proof is a variant of the impossibility result of [6], which
states that Bit-Commitments cannot be realized in the plain UC-model. We
show that any non-interactive protocol, realizing Seq-OTM from a single tamper-
proof device, that is secure against a corrupted receiver is necessarily insecure
against a corrupted sender. More precisely, once there exists a simulator against
a corrupted receiver, a corrupted sender can use this simulator to construct a
token that learns the receiver’s inputs. Such a token can make the output of the
second stage dependent on the input of the first stage. However, this behavior
cannot be simulated, because in the ideal experiment, the sender’s inputs to
FSeq−OTM have to be provided before the choice-phase begins, and can thus not
depend on any choice-bits.

Remark 1. This argument assumes that both the receiver and T are equivalent
in their computational resources, as it uses the simulator against a corrupted
receiver to construct a corrupted token. Thus, it only holds if the receiver is
subject to the same computational restrictions as the token. If we allow the
receiver (and thus the simulator against a corrupted receiver) to be computa-
tionally unbounded but require the token to run in polynomial time, there may
exist non-interactive UC-secure protocols for FSeq−OTM from F stateful

wrap relative
to some computational assumption.

Theorem 1. There is no non-interactive protocol which UC-realizes FSeq−OTM

with two or more stages from a single tamper-proof hardware instance F stateful
wrap ,

given that the receiver D and the token T ran by F stateful
wrap are bounded by the

same computational restrictions.

Proof. Assume there exists a protocol Π that UC-realizes a Seq-OTM with two
stages, which requires no further interaction between sender and receiver. For
simplicity, we assume that the Seq-OTM stages are bit-OTMs. As Π is UC-
secure, there exists a receiver-simulator SD which extracts the choice-bits x1 and
x2 from the dummy-adversary ÃD. As Π is non-interactive, ÃD only interacts
with a token T . But that means that SD must be able to extract ÃD’s input from
the messages ÃD has provided to T . Consider the case of a corrupted sender. We
will provide an environment Z ′ that distinguishes real and ideal with probability
≥ 1

2 . Z ′ constructs a token T , which does the following. The token T internally
simulates the simulator SD and some functionality F ′. SD is wired to F ′ instead
of FSeq−OTM. F ′ is a ”corrupted” version of FSeq−OTM, which always gives 0
as its first-stage OTM-output and x1 (its first-stage input) as its second-stage
output. Z ′ instructs ÃG to input T into Fwrap

stateful. In the choice-phase, Z ′ sets
the receiver’s first choice-bit x1 to a uniformly random value and the second
choice-bit x2 to 0. This concludes the description of Z ′. We claim that for every
simulator SG, the statistical distance between ViewA

Π(Z ′) and ViewS
F (Z ′) is

at least 1
2 . In the real experiment, the output s2 that the receiver gets will

always be the same as his first input x1. In the ideal experiment however, the
simulator SG has to guess the choice-bit x1 in advance. As x1 depends solely on
an internal coin-toss of Z ′, the chance of SG guessing x1 correctly is ≤ 1

2 . Thus,
the probability that D gives an incorrect output to Z ′ is ≥ 1

2 .
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8 The David-and-Goliath Sequential-OTM Protocol

In this Section, we will describe our protocol ΠSeq-OTM for David-and-Goliath
Sequential-OTM and give a sketch of the security proof. We will refer to the
sender of the Seq-OTM as Goliath and to the receiver as David. Let n be the
statistical security parameter. We first explain the token program that will be
used in the protocol. The token is created with m affine functions stored in it. It
has a counter t, which is initialized with 1. In the execution phase, if the token is
queried with an input x, it will evaluate its t-th affine function on x and output
the result. After each query the counter t is incremented by 1. When the counter
reaches m, the token stops functioning.

Before we describe in more detail how these tokens can be used to implement
Sequential-OTM, we will explain more precisely which kind of affine functions
are stored on the token. Let a ∈ IF2n

2 , B ∈ IF2n×2n
2 and z ∈ IF2n

2 be an input
vector. The functions have the form V (z) = azT + B. Thus, V (z) is an outer
product azT blinded by a matrix B. See Figure 4.

Program: Seq-OTM Token

Parametrized by a security parameter n.

Hardwired Inputs

– A parameter m ∈ IN, the maximum number of stages.
– (a1, B1), . . . , (am, Bm), where ai ∈ IF2n

2 and Bi ∈ IF2n×2n
2 for i ∈ [m]

Stateful Variables

– A counter variable t that is, upon creation, initialized with t = 1

Execution Upon receiving an input z ∈ IF2n
2

– Check if t ≤ m, if not abort.
– Compute Vt = atz

T + Bt.
– Set t ← t + 1.
– Output Vt and wait for further inputs.

Fig. 4. The program that is run by an honest token for Sequential-One-Time-Memories

We will first give a high-level picture of protocol ΠSeq-OTM. The protocol
realizes a Seq-OTM with m = poly(n) stages, where each stage is an n-bit-string
OTM. It has three phases. In the first phase, Goliath creates a token with random
affine functions stored on it, then sends the wrapped token to David. Hereafter
Goliath is physically committed to the token. The second phase is the only
interactive part of the protocol. It involves the sending of check-values and one-
time-pad-encrypted OTM inputs. In the third phase, which is non-interactive,
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David queries the token to get his desired one-time-pad keys. David’s input to
the token is a randomized value, in which his choice-bit is hidden. After receiving
output from the token, David checks the output with the check-values provided
by Goliath and aborts if the output does not pass the check. If the output passes
the check, David computes a key and decrypts his desired OTM output.

We will now describe the protocol in detail. In the creation-phase, Goliath
programs the token T with uniformly chosen (ai, Bi) ∈ IF2n

2 × IF2n×2n
2 , for i =

1, . . . ,m. Goliath then sends the wrapped token T to David.
The send-phase proceeds as follows. Let (si,0, si,1) ∈ IFn2 × IFn2 be Goliath’s

i-th Seq-OTM input. First, David announces a randomly chosen check-matrix
C ∈ IFn×2n

2 to Goliath. Then for i = 1, . . . ,m, Goliath computes (ãi, B̃i) ∈ IFn2 ×
IFn×2n

2 by ãi = Cai and B̃i = CBi. Goliath further chooses a matrix G ∈ IFn×2n
2

such that G is a complementary-matrix of C (cf. Section 5). Goliath now sends
the (ãi, B̃i)i∈[m] and G to David. The (ãi, B̃i) can be seen as commitments that
commit the token T to a unique output behavior, but reveal no meaningful
information to David. After David has received (ãi, B̃i)i∈[m] and G, he chooses
a random h = (h1, . . . , hm) ∈

(
IF2n

2 \{0}
)m

and sends h to Goliath. Goliath
computes ciphertexts s̃i,0 = si,0 + GBihi and s̃i,1 = si,1 + GBihi + Gai for
i = 1, . . . ,m and sends ((s̃i,0, s̃i,1))i∈[m] to David. This concludes the send-phase.

The choice-phase is non-interactive and has m stages. In stage i David queries
the i-th OTM of the Seq-OTM functionality being implemented. Let xi ∈ IF2
be David’s i-th choice-bit. David uniformly samples an element zi ∈ IF2n

2 such
that zTi hi = xi. That is, if xi = 0 David samples zi from the 2n− 1 dimensional
hyperplane Ai,0 = {z ∈ IF2n

2 : zThi = 0}. Likewise, if xi = 1, then zi is sampled
from the hyperplane Ai,1 = {z ∈ IF2n

2 : zThi = 1}. Let Vi be the output of the
token when input zi in stage i. If the token was created honestly, it holds that
Vi = aiz

T
i +Bi. David checks if CVi

?= ãiz
T +B̃i. If not, then the token computed

a different function than the one Goliath committed to and David aborts the
protocol. If the check is passed, David computes si,xi = s̃i,xi +GVihi and outputs
si,xi . This concludes the description of the protocol. The full protocol is given
in Figure 5.

Discussion. We will shortly sketch the ideas behind this construction. First no-
tice, that from the view of the token, David’s inputs look almost uniform. This
comes from the fact that the token is oblivious of the randomly chosen vector hi,
that defines Ai,0 and Ai,1. In fact, it can be shown, that a complete input history
z = (z1, . . . , zm) ∈

(
IF2n

2
)m

, for adversarially chosen choice-bits of David, is sta-
tistically close to a uniformly chosen input history u = (u1, . . . , um) ∈

(
IF2n

2
)m

.
This, in turn, means that a dishonest token is oblivious of David’s input. The
check-operation is performed to make sure that the token responds to queries in
an unambiguous way and that it does not encode further information into Davids
output. If the token answers dishonestly, David will notice that with overwhelm-
ing probability. The token’s output Vi needs to be projected with the matrix G,
so that David cannot learn anything about Goliath’s inputs si,0 and si,1 from ãi
and B̃i. Notice that Goliath commits to the check-values (ã1, B̃1), . . . , (ãm, B̃m)
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Protocol ΠSeq-OTM: David & Goliath Sequential OTM

Let n be the statistical security parameter and let m = poly(n) be the number of
sequential OTMs. Further let Fstateful

wrap be the wrapper-functionality that models the
tamper-proof hardware.

Creation-Phase: (only Goliath)

– For every index i ∈ [m], choose ai ∈ IF2n
2 and Bi ∈ IF2n×2n

2 uniformly at random.
– Program a Seq-OTM token T with hardwired inputs m and (ai, Bi) for i ∈ [m].
– Send T to Fstateful

wrap .

Send-Phase: Let ((s1,0, s1,1), . . . , (sm,0, sm,1)) ∈ (IFn
2 × IFn

2 )m be Goliath’s Seq-
OTM input.

1. (David) Wait until the ready message from Fstateful
wrap was received. Then, choose

a random matrix C ∈ IFn×2n
2 and send C to Goliath.

2. (Goliath) Compute a matrix G ∈ IFn×2n
2 , such that G is complementary to C.

For all i ∈ [m], set ãi = Cai and B̃i = CBi. Send (G, (ãi, B̃i)i∈[m]) to David.
3. (David) Choose h = (h1, . . . , hm) ∈

(
IF2n

2 \{0}
)m uniformly a random and send

h to Goliath.
4. (Goliath) For each i ∈ [m], set s̃i,0 = si,0 +GBihi and s̃i,1 = si,1 +GBihi +Gai.

Send (s̃i,0, s̃i,1)i∈[m] to David.

Choice-Phase (Stage i ∈ [m]): (only David) Let xi ∈ IF2 be David’s i-th Seq-
OTM input.

– Choose zi ∈ IF2n
2 uniformly at random such that zT

i hi = xi and input zi into
Fstateful

wrap .
– Let Vi be the output of Fstateful

wrap . Check if CVi = ãiz
T
i + B̃i. If not, go to abort

state and output ⊥ for this query and for all further queries.
– If the check is passed, output si,xi = s̃i,xi + GVihi.

Fig. 5. A protocol for sequential OTM from a single stateful token

before he sees the vectors (h1, . . . , hm). Thus, the condition on which David
aborts is independent of the choice of (h1, . . . , hm). The use of the outer-product
operation for the affine functions stems from a subtle issue. We need to ensure
that the environment Z does not see any of the random coins David used to
sample the zi. If a corrupted Goliath could create a token that encodes several
bits of zi in its output, the environment might be able to tell apart real and
ideal model in a later stage. Such a token might, for instance, abort in a later
stage if some of the bits of zi fulfill a certain condition (e.g. have odd parity or
some special hash value). Given that the token actually computes the specified
function (which is enforced by the check-operation), the outer-product form en-
sures that there are only two different outputs an honest David might produce
in each stage. Particularly, let V (z) = azT +B be one of the functions computed
by the token. Basically, the outer product form allows David to derandomize the
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token’s output. If x is such that zTh = x, then the randomness of z is removed
by V (z)h = (azT + B)h = azTh + Bh = ax + Bh. The term ax + Bh is inde-
pendent of the random coins used to sample z. Consequently, David’s outputs
si,xi are (with overwhelming probability) independent of the random coins used
to sample z.

Correctness of the Protocol. If both parties are honest, the correctness of
the protocol can be seen straightforwardly. Let s′i,xi

be one of David’s outputs.

s′i,xi
= s̃i,xi + GVihi = s̃i,xi + G(aizTi + Bi)hi = s̃i,xi + Gaiz

T
i hi + GBihi

= s̃i,xi + Gaixi + GBihi = si,xi

8.1 Security of ΠSeq-OTM

The security of protocol ΠSeq-OTM is summarized in Theorem 2.

Theorem 2. Protocol ΠSeq-OTM UC-realizes the FSeq−OTM functionality, with
perfect security against a corrupted receiver and statistical security against a
corrupted sender.

We will provide the security-proof against a corrupted receiver and outline the
security-proof against a corrupted sender

Corrupted Receiver. We will first consider the case of a corrupted receiver,
as this is the easy case. Let Ã be the dummy adversary for David. We will
provide a simulator SD and show, that for any environment Z the distributions
ViewÃ

ΠSeq−OT M
(Z) and ViewSD

FSeq−OT M
(Z) are identical. Simulator SD runs in

strict polynomial time. The simulator SD is given in Figure 6.
First notice that there is always a solution Vi for CVi = ãiz

T
i +B̃i and GVihi =

s̃i,xi + si,xi , as G is a complementary matrix of C and has rank n. Furthermore,
from Ã’s view, each Vi with CVi = ãiz

T
i + B̃i and GVihi = s̃i,xi + si,xi is

equally likely. Thus we obtain perfect indistinguishability for ViewÃ
ΠSeq−OT M

(Z)
and ViewSD

FSeq−OT M
(Z).

Corrupted Sender. The case of a corrupted sender is the technically chal-
lenging part of this proof. Let Ã be the dummy adversary for Goliath. We will
provide a simulator SG and show, that for any environment Z the distributions
ViewÃ

ΠSeq−OT M
(Z) and ViewSG

FSeq−OT M
(Z) are statistically close. Simulator SG

runs in expected polynomial time. The simulator SG is given in Figure 7.

Remark 2. Let T be a (possibly malicious) token program. Write (V1, . . . , Vm) =
T (z1, . . . , zm) for a token run with inputs (z1, . . . , zm) and outputs (V1, . . . , Vm).

The proof proceeds roughly as follows. In a hybrid argument, we show for each
stage i, that if David does not abort in stage i, then for both inputs xi = 0 and
xi = 1, the simulator can extract outputs V̂i,0 and V̂i,1 from T that David both
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Simulator SD

– Setup a Goliath-machine G and provide G with a random tape.
– Simulate the creation phase with machine G and extract a Seq-OTM token pro-

gram T
– Send the ready message to Ã.
– If Ã queries Fstateful

wrap with a zi, before hi has been received, wire the input to T
and forward T ’s output Vi to Ã.

– Simulate the send phase between G and Ã. For all indices i ∈ [m] such that Ã
has queried Fstateful

wrap before sending hi, upon receiving hi, set xi = zT
i hi. Query

FSeq−OTM with xi and receive si,xi . Set s̃i,xi = si,xi + GVihi. Except for that,
continue the interaction between G and Ã normally.

– For every index i such that Ã queries Fstateful
wrap with input zi after hi has been

received, compute xi = zT
i hi. Query FSeq−OTM with xi and receive si,xi . Uni-

formly sample Vi ∈ IF2n×2n
2 such that CVi = ãiz

T
i + B̃i and GVihi = s̃i,xi + si,xi .

Forward Vi to Ã.

Fig. 6. The simulator for a corrupted receiver

would accept. The extraction is done using a rewind-to-the-beginning technique.
This means, instead of rewinding an existing run to the previous stage, we sample
a completely new run. We can show that the event that the simulator fails
to extract happens only with negligibly small probability. Next, we show that
the token’s output in the hybrid real part matches the corresponding extracted
output with overwhelming probability (over the simulators coins). We can thus
modify the simulator to use the extracted token outputs instead of the token
output from the hybrid real part. After this transformation, David’s outputs
are ideal. Thus, only the stage at which David aborts, supposed that he aborts,
depends on the hybrid real part (and thus on input made by Z). We will call the
random variable that describes at which stage David aborts the stoptime S. To
determine the stage at which to abort in the ideal part, the simulator runs the
token with purely random inputs u∗

1, . . . , u
∗
m. Let (V ∗

1 , . . . , V ∗
m) = T (u∗

1, . . . , u
∗
m).

Let i0 be the first index such that CVi �= ãiu
∗T
i + B̃i. The simulator sets David’s

outputs to be ⊥ for indices i0, . . . ,m. We can show that from Z’s view, the
stoptime S of the hybrid real part is statistically close to the stoptime S′ of the
hybrid ideal part.

Consider the following sequence of games. In game i, the environment Z
interacts with simulator Si. As the send-phase is identical for the real protocol
and the simulation, we only care about the choice-phase. Recall that it has stages
1, . . . ,m.

Game 0. Simulator S0 simulates the real protocol ΠSeq−OTM.

Game i (for i = 1, . . . ,m). Si does the same as Si−1, except for the following.
In stage i, if Vi passes the test CVi = ãiz

T
i + B̃i sample V̂i,0 and V̂i,1 in the

following manner. For both x = 0 and x = 1 repeat for at most 2
n
4 times:



Unconditional and Composable Security 177

Simulator SG

Simulation

– Setup a David-machine D and provide D with a random tape.
– Wait until Ã sends a token T to Fstateful

wrap .
– Simulate the send phase between Ã and D

Extraction. Once the send-phase is complete, proceed as follows. The variables
C, G, hi, ãi, B̃i, s̃i,0, s̃i,1 are taken from the view of D.

– Choose u∗ = (u∗
1 , . . . , u∗

m) ∈
(
IF2n

2

)m uniformly. Compute (V ∗
1 , . . . , V ∗

m) = T (u∗).
– For i = {1, . . . , m}

• If CV ∗
i �= ãiu

∗T
i + B̃i, then set sj,0 = sj,1 = ⊥ for j ≥ i and abort loop.

• Otherwise, for x = 0 and x = 1, try for 2
n
4 times

∗ Choose u ∈
(
IF2n

2

)i−1 uniformly at random.
∗ Choose z ∈ IF2n

2 uniformly at random such that zT hi = x.
∗ Let (V ′

1 , . . . , V ′
i ) = T (u, z). If for all j ∈ [i − 1] it holds that CV ′

j =
ãju

T
j + B̃j and CV ′

i = ãiz
T + B̃i, then set si,x = s̃i,x + GV ′

i hi and exit
loop, otherwise repeat trying.

– Input ((s1,0, s1,1), . . . , (sm,0, sm,1)) into FSeq−OTM.

Fig. 7. The simulator for a corrupted sender

– Uniformly choose input-history (u1, . . . , ui−1) ∈
(
IF2n

2
)i−1

.
– Uniformly choose z ∈ IF2n

2 such that zThi = x.
– Let (V ′

1 , . . . , V
′
i ) = T (u1, . . . , ui, z). If for all j ∈ [i] it holds that CV ′

j =
ãju

T
j + B̃j and CV ′

i = ãiz
T + B̃i, then set V̂i,x = V ′

i and exit loop.

If Si fails to sample either V̂i,0 or V̂i,1 after the 2
n
4 iterations, Si halts.

Game m + i (for i = 1, . . . ,m). The same as game m + i− 1, except that now
David’s i-th output is GV̂i,xihi + s̃i,xi instead of GVihi + s̃i,xi .

Game 2m + 1. The same as game 2m, except that now the stage at which
David aborts is determined differently. S2m+1 samples (u∗

1, . . . , u
∗
m) ∈

(
IF2n

2
)m

uniformly at random. Let (V ∗
1 , . . . , V ∗

m) = T (u∗
1, . . . , u

∗
m). For every stage i ∈ [m],

S2m+1 replaces the abort condition CVi = ãiz
T
i + B̃i by CV ∗

i = ãiu
∗T
i + B̃i. This

is the ideal game.

Proof Techniques. We will briefly sketch the proofs that establish indistin-
guishability between successive games. The indistinguishability of games i − 1
and i, for i = 1, . . . ,m can be established as follows. Once a token T and a
check-matrix C (together with (ã1, B̃1), . . . , (ãm, B̃m)) are fixed, we can define
a set DT ,C of accepting input-histories. That is, DT ,C consists of all input his-
tories (z1, . . . , zi) for which David accepts T ’s corresponding outputs. As hi is
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chosen independently of DT ,C , almost every choice of hi is good, in the sense
that it partitions DT ,C in two sets of almost (up to negligible) the same size,
one for which zTi hi = 0 and zTi hi = 1 for the other. As an analogy, hi can be
thought of as a universal hash function. If we fix hi to be good in the above-
mentioned sense, the chance to find an accepting run that belongs to choice-bit
0 roughly equals the chance to find an accepting run for choice bit 1. It can be
shown that the probability of the hybrid real part producing a run that lies in
DT ,C is statistically close to a uniformly chosen run lying in DT ,C . Hence, the
simulator’s probability of extraction-failure is negligible (over its random coins).

The indistinguishability for games m + i − 1 and m + i, for i = 1, . . . ,m is
proven as follows. We need to show that for a fixed hi and a fixed choice-bit
xi, Davids output s̃i,xi + GVihi in the hybrid real part of game m + i and the
extracted output s̃i,xi + GV̂i,xihi are identical. Assume there was a token T so
that T succeeds to output different Vi and V̂i,xi such that Vihi �= V̂i,xihi, that
are both accepted by David. Let z be the token-input corresponding to V̂i,xi . If
David accepts both runs, it must hold that

CVi = ãiz
T
i + B̃i (1)

CV̂i,xi = ãiz
T + B̃i. (2)

This implies that

CVihi = ãiz
T
i hi + B̃ihi = ãixi + B̃ihi (3)

CV̂i,xihi = ãiz
Thi + B̃ihi = ãixi + B̃ihi, (4)

and thus CVihi = CV̂i,xihi holds. But this means that T could as well form hash-
collisions for the universal hash-function C, of which it is oblivious. However,
this event has only negligible probability.

Finally, in game 2m, all of David’s output values are determined in the hybrid
ideal part. From Z’s view, the probability that either of the simulators S2m or
S2m+1 halts due to an extraction error is negligible. Thus we need to show that
the stoptimes S and S′ for game 2m and game 2m+1 are statistically close from
the view of Z. The proof needs to take into account that all the C and hi are
contained in Z’s view. Again, it can be shown that almost all choices for the hi
are good, which shows that even for fixed C and hi the stoptimes S and S′ in
game 2m and S′ in game 2m + 1 are statistically close.

8.2 A Non-interactive Protocol Using Two Tokens

The send-phase in protocol ΠSeq−OTM (Figure 5) is interactive. We have proven
this interaction to be necessary, given that only one token is issued (Theorem
1). However, if we allow the sender Goliath to issue a second stateful token T ′

to David, then we obtain a non-interactive protocol Π ′
Seq−OTM for Seq-OTM.
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The second token T ′ runs Goliath’s program for the send-phase of ΠSeq−OTM.
Instead of running the send-phase interactively with David, Goliath sends T ′ to
a second instance of Fwrap

stateful in the creation-phase. David then runs the send-
phase with T ′. The security-proof for ΠSeq−OTM still holds for Π ′

Seq−OTM, due
to the following observations. In protocol ΠSeq−OTM, a corrupted sender Goliath
is controlled by the environment Z. In Π ′

Seq−OTM, Z can only control Goliath
during the creation-phase. Afterwards, the tokens T and T ′ cannot communicate
with Z anymore. Thus a corrupted sender in Π ′

Seq−OTM is strictly less powerful
than in ΠSeq−OTM, and we can conclude that Π ′

Seq−OTM is UC-secure against
a corrupted sender. It is also UC-secure against a corrupted receiver David, as
from the view of a corrupted receiver, ΠSeq−OTM and Π ′

Seq−OTM are the same
(it makes no difference if David interacts with Goliath or T ′).

9 Memory Limited Tokens

The protocol presented in the last Section guarantees perfect security against
David. However, to achieve this, the token needs to be able to store O(n2m)
bits of information (for m = poly(n)). For large m, this contradicts the idea of a
tamper-proof hardware token being a small and simple device. Moran and Segev
[22] noted, that if David is computationally bounded, then the functions stored
on the token could be chosen to be pseudorandom [11,16]. The same is true for
our construction. It suffices that the token stores a succinct seed of length O(n)
for a pseudorandom function F . The token can answer queries z by temporarily
computing (at, Bt) = F (t) and outputting Vt = atz

T + Bt.

10 Conclusion

In this paper, we showed that a single (untrusted) tamper-proof hardware to-
ken is sufficient for non-interactive, composable computation. We require no
additional complexity assumptions. As we only need a single device and no zero-
knowledge proofs, our approach is more efficient than previous solutions. Our
new primitive, Sequential-One-Time-Memory, is sufficient to realize uncondition-
ally secure One- and k-Time-Programs. However, Sequential-One-Time-Memory
is restricted to sequential-access, thus it cannot be used directly to implement
several independent One-Time-Programs that can be executed in random order.
We consider it an interesting open problem whether it is possible to implement
multiple random-access One-Time-Memories with a single untrusted tamper-
proof hardware token. However, this seems improbable. Any protocol realizing
multiple random-access One-Time-Memories with a single token needs to effec-
tively hide the order in which the One-Time-Memories are queried from the
token.

Acknowledgments. We would like to thank the anonymous reviewers of TCC
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Abstract. We undertake a general study of hash functions secure under
correlated inputs, meaning that security should be maintained when the
adversary sees hash values of many related high-entropy inputs. Such
a property is satisfied by a random oracle, and its importance is illus-
trated by study of the “avalanche effect,” a well-known heuristic in cryp-
tographic hash function design. One can interpret “security” in different
ways: e.g., asking for one-wayness or that the hash values look uniformly
and independently random; the latter case can be seen as a generalization
of correlation-robustness introduced by Ishai et al. (CRYPTO 2003). We
give specific applications of these notions to password-based login and
efficient search on encrypted data. Our main construction achieves them
(without random oracles) for inputs related by polynomials over the in-
put space (namely Zp), based on corresponding variants of the q-Diffie
Hellman Inversion assumption. Additionally, we show relations between
correlated-input secure hash functions and cryptographic primitives se-
cure under related-key attacks. Using our techniques, we are also able to
obtain a host of new results for such related-key attack secure crypto-
graphic primitives.

1 Introduction

In practice is often useful to view a cryptographic hash function like a random
oracle, as formalized in the random oracle model [6]. However, as random oracles
do not exist in reality (and indeed, in general the random oracle model may lead
to insecure schemes [13]), an important line of research suggested by [13] seeks
to formalize various useful properties satisfied by a random oracle and construct
hash functions meeting them under standard assumptions. In this paper, we
do so for what we call correlated-input security, meaning that (various notions
of) security should be maintained when the adversary sees hash values of many
related high-entropy inputs.

The importance of correlated-input security in practice is illustrated by the
so-called avalanche effect, a well-known heuristic in cryptographic hash function
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design. (The name “avalanche effect” was coined by Feistel [17], although the
idea goes back to Shannon’s notion of diffusion [26].) Roughly, the avalanche
effect states that making any change to an input should result in a drastically
different hash value. Clearly, such a hash function should satisfy a notion of
correlated-input security. Our results help to shed light on whether or not this
is feasible from a theoretical perspective.

1.1 Notions of Correlated-Input Security

We get different specific notions of correlated-input security depending on how
we interpret “security.” We first discuss the different interpretations we consider
and and how we formalize the resulting notions.

Three Notions. The first and most basic interpretation we consider is “one-
wayness.” To formalize one-wayness under correlated-inputs, we consider a hash
function H and circuits C1, . . . , Cn, where each Ci takes as input some random
coins and outputs a point in the domain of H . The adversary is given hash values
H(x1), . . . , H(xn) where each xi is the output of Ci(r) for random coins r. Note
that each Ci is run on the same random coins. Therefore the xi are correlated1.
The adversary’s goal is to output any one of the xi. Informally, we say that H
is one-way under correlated inputs for a class of circuits {C} if for any n and
any choice of C1, . . . , Cn from {C}, any efficient adversary succeeds with at most
negligible probability.

The next interpretation we consider is “unpredictability.” To formalize unpre-
dictabililty under correlated-inputs, we consider a hash function H and circuits
C1, . . . , Cn+1, where each Ci is as before. Now the adversary is given hash values
H(x1), . . . , H(xn) and tries to output H(xn+1), where each xi is the output of
Ci(r) as before. The notion is defined for a class of circuits {C} analogously to
the one-wayness case. It mainly serves as a stepping-stone to our final notion.

Finally, the last interpretation we consider is “pseudorandomness.” To formal-
ize pseudorandomness under correlated-inputs, we consider a hash function H
and circuits C1, . . . , Cn+1, each Ci is as before. Now the adversary is given hash
values H(x1), . . . , H(xn) as well as a “challenge” value that is either H(xn+1)
or a random string of appropriate length, where each xi is the output of Ci(r)
as before. (This of course requires the circuits to have distinct outputs.) Again,
the notion is defined for a class of circuits {C} analogously.

Discussion. We make a few observations about these notions. One is that they
are only achievable for a class of circuits {C} such that C(r) for random r has
sufficient min-entropy for any C in the class. In fact, it is not hard to show that a
random oracle satisfies our notions for the class of all such circuits. However, in
the standard model they are in general only achievable by a keyed hash function
H . To see this, fix an unkeyed hash function H and consider circuits C1, C2 where

1 For example, the xi’s might agree in most bit positions but vary in the others. It
may even be the case that a single input xi completely determines the rest.
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C1(r) outputs r and C1(r) outputs H(r). Clearly, no fixed H is even one-way
under correlated-inputs for these circuits. By a similar argument, the circuits
must not depend on the choice of the hash key. We stress that in our notions
the hash function key is public. Similar counter-examples show that in general
pseudorandom generators and functions do not meet our notions (note that the
latter has a secret key); we give details in the full version.

Another point is that when considering non-uniform inputs, these notions
are non-trivial to achieve even in the case of a single input. However, this can
be done; for example [27] considers one-way functions for a non-uniform input
and [16] considers pseudorandom generators (that expand the input, which we do
not require) for non-uniform seed. Additionally, we note for any a priori bounded
number of circuits, pseudorandomness under correlated-input can be met even
under information-theoretic indistinguishability (where the key-size depends on
the bound). This follows from a generalization of the Leftover Hash Lemma [24,
Lemma 6.1] (which follows [22, Lemma 3.2]). On the other hand, the focus of
our work is on correlations among an unbounded number of inputs.

1.2 Applications

We now discuss some specific practical applications for our new notions.

Password-based login. An application of our notion of one-wayness under
correlated-inputs is password-based login. For example, UNIX maintains a “pass-
word” file that, for each user in the system, stores a hash of their password that
is compared against the hash of a candidate password supplied at login by some-
one claiming to be this user. The goal is to prevent an adversary with access to
the password file from gaining the ability to impersonate a user. Informally, it
is often said that the property of the hash function needed to ensure this is one-
wayness. But the standard notion of one-wayness is obviously insufficient here.
Passwords, while they should contain entropy, are certainly not uniformly ran-
dom. Moreover, passwords are typically correlated, both across different users,
and across the same user on different systems (and the adversary may recover
the password file for multiple systems).

This issue seems to be largely ignored in prior work. A paper (which we already
mentioned) that considers the relevance of one-way functions for high entropy
inputs to this application is [27]; however, they do not consider multiple related
inputs and relations among them. Our notion of one-wayness under correlated
input seems to be an appropriate security notion for this application2.
2 For simplicity, this ignores “salting” the passwords, which can be viewed as consider-

ing a randomized hash function. This may make the problem easier for an approach
based on the Leftover Hash Lemma (using a similar argument to [24, Lemma 6.1]),
but as discussed in [27] such an approach is impractical due to its “entropy loss.”
For our approach it does not make the problem significantly easier, and anyway
it circumvents the core issue that in practice a (deterministic) cryptographic hash
function is assumed to satisfy correlated-input security; indeed, salting passwords is
only meant to slow down dictionary attacks.
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Efficient search on encrypted data. An application of our notion of pseudo-
randomness under correlated-inputs is efficient search on encrypted data. It is
becoming increasingly common for companies to store large amounts of data re-
motely on servers maintained by an untrusted third party. To provide privacy for
the client, the data should be encrypted. However, we still want to allow search
on the data without retrieving and decrypting the entire database. Techniques
like public-key encryption with keyword search [11] make search possible, but it
takes linear time in the database size. On the other hand, practitioners require
search time to be comparable to that for unencrypted data.

This problem was first studied from a cryptographic perspective by Bellare et
al. [2], who introduced deterministic encryption and the more general concept
of efficiently searchable encryption (ESE) as a solution. The basic idea is to
attach a hash of each keyword to an encrypted file. Keywords are obviously not
uncorrelated, and thus our notions are natural to apply. In fact, if a hash function
meets our notion of pseudorandomness under correlated-inputs, then it can be
“bootstrapped” to hide all partial information information by encrypting a hash
value under the one-way trapdoor permutation based deterministic encryption
scheme of [4] (actually, a one-way permutation without a trapdoor suffices here,
since we do not need to decrypt).

1.3 Our Construction and Its Security

Next we turn to whether our security definitions can be achieved and under what
cryptographic assumptions.

Our Construction. We propose the following construction: Letting G be a group
of prime order p, the hash key is a random generator g ∈ G and random c ∈ Zp,
and the evaluation of the hash on input x ∈ Zp is g1/(x+c) where 1/(x + c)
denotes the inverse of x + c modulo p.

Security Analysis. We show that this construction is secure under each of our
three notions of security assuming (appropriate variants of) the q-Diffie-Hellman
inversion assumption (q-DHI). Roughly speaking, this assumption says that
given gα, gα

2
, . . . , gα

q

, it is hard to compute g1/α. An assumption of this form
was first introduced by Boneh and Boyen [9], who considered it in groups with a
a bilinear map (pairing) e and asked that it be hard to compute (or distinguish
from random) e(g, g)1/x instead of g1/x. However, since our hash function is de-
terministic and thus automatically publically verifiable, we do not need bilinear
maps here.

The class of circuits we consider in our proofs are the ones that are (efficiently)
representable by a polynomial over Zp (the input space of the hash function).
In other words, each xi = pi(x, y, z, . . .) where pi is a polynomial over Zp the
x, y, z, . . . are randomly chosen but fixed for all i. In our main theorems, we treat
the case of univariate polynomials pi over Zp, but it is easy to extend our proofs
to multivariate polynomials as well. This is quite a broad class, in particular just
considering univariate polynomials and taking p1 to be the identity polynomial
covers the well-known attacks on RSA [15].
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First, we show that our inversion hash is one-way under correlated inputs for
this class of circuits assuming the q-strong discrete logarithm (q-SDL) assump-
tion (which is weaker than q-DHI in that it need only be hard to compute α
itself)3. For unpredictability and psuedorandomness, we require an additional
assumption that each input to the hash function is individually uniform4. How-
ever we stress that given other inputs, an input may even be fully computable.
For this class of polynomials, we show the inversion hash is unpredictable un-
der correlated inputs assuming q-DHI. Using standard hardcore bit techniques
this already gives a construction with small output length achieving pseudo-
randomness under correlated inputs with the same assumption. However, we
directly show pseudorandomness under correlated inputs of our construction for
the same class of polynomials assuming the decisional version of q-DHI.

Discussion. One may notice the similarity of our construction to the Boneh-
Boyen short signature scheme [10]. Our proof techniques build on those intro-
duced in [10], but note that, as opposed to the latter, we focus on a setting where
there is no secret key, and we use the q-DHI assumption instead of the q-SDH
assumption of [10]. Indeed, our proofs use some new ideas. In particular, the role
of c in our reductions for unpredictability and pseudorandomness is completely
different from that of the message in [10].

We also note that our security proofs are under a notion of “selective” security
where the circuits that sample the inputs do not depend on the public hash key.
As we mentioned, in general this restriction is inherent. However, for restricted
classes of circuits (such as arithmetic circuits we consider) which are not able to
efficiently compute the hash function in question, it may be possible to achieve an
adaptive notion of security even by using an unkeyed hash function. We discuss
a positive result for this case below.

Finally, we note that our construction as defined is not compressing. How-
ever, once we obtain a construction meeting any of our notions, it is easy to
obtain one which is also compressing. In the case of one-wayness we can apply a
collision-resistant hash to the output, and in the case of pseudorandomness we
can truncate the output. It can be shown that the resulting (compressing) hash
function retains correlated-input security.

1.4 Relations to Related-Key Attacks

Security under related-key attacks (RKA), first formalized by [5] in the context
of pseudorandom functions/permutations, is a well-established notion that, like
correlated-input security, asks for security to be maintained under related val-
ues of a “secret” input. We explore elations between pseudorandomness under
3 In fact, for this result the c component of the hash key can be any fixed element in

Zp (for instance, set c = 0).
4 This translates to the requirement that the polynomials individually have uniform

output on uniform input (e.g., this is the case for permutation polynomials). By
making non-standard assumptions, it may be possible to drop this restriction. How-
ever, considering individually uniform but correlated inputs to the hash function is
natural, and we focus on results under standard assumptions.
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correlated-inputs secure hash (which we simply call CI-secure hash below) and
RKA-security of various cryptographic primitives.

Equivalence to One-Input RKA-Scure wPRF. We first observe that a CI-secure
hash is in some sense equivalent to what we call a “one-input RKA-secure weak
pseudorandom function (wPRF).” To define such a wPRF F , the adversary
is given an input-output pair x, F (K,x) for random x and may query for for
other outputs of the form F (φ(K), x) for relations φ of its choosing. (Note that
the same x is re-used each time.) Following [20], we note that as compared to
a CI-secure hash, the role of the key and the input are simply “switched”5.
Note that a one-input RKA-secure wPRF is implied by an RKA-secure PRF;
in fact, if we start with an RKA-secure PRF (rather than wPRF), the resulting
CI-secure hash does not need a public key. The latter is significant because [3]
gives RKA-secure PRFs, in particular one under the decisional Diffie-Hellman
assumption for adaptively chosen, group-induced relations (i.e., multiplication
by a constant). We thus obtain an unkeyed adaptively-secure CI-secure hash for
the corresponding class of circuits.

A General Transformation for RKA Security. Addtionally, we propose a trans-
formation to “bootstrap” any cryptographic primitive to one that is RKA-secure:
simply hash the coins used to generate the secret key for the former. (This can be
seen as replacing a RO in this transformation with a CI-secure hash.) Note, how-
ever, that in the case the CI-secure hash has a public key, an authentic version
of the latter is then needed by any algorithm that uses the secret key (e.g., the
signing algorithm for a signature scheme), which may not always be practical.
Additionally, while our main construction of CI-secure hash is selectively secure,
leading to selective security under RKA (i.e., relations chosen before seeing the
public parameters). However, by using our techniques in a non-blackbox way,
we can sometimes achieve adaptive security instead and without any public key.
In particular, we show how to do this for RKA-secure symmetric encryption, a
primitive introduced concurrently to our work in [1];6. In this case, we are even
able to handle the entire class of (non-zero) polynomial relations.

1.5 Other Related Work

Our work is related to several other lines of research, as we now discuss.

Realizing Random Oracles. As we mentioned, our work can be seen as extending
a research agenda proposed by Canetti, Halevi, and Goldriech [13], in which one
identifies and realizes useful properties of a random oracle (RO). Indeed, by
using the techniques of [2, Theorem 5.1] one can show that a RO meets all
the security definitions we consider (which is why we have sought realizations
under standard cryptographic assumptions). Other useful properties of a RO that

5 Note, however, that CI-input security is more general than RKA-security in that it
considers inputs sampled from a common “history.”

6 We obtained this result after seeing [1], but the rest of our work was concurrent.
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have undergone a similar treatment include perfect one-wayness [12,14] and non-
malleability [7] We note that none of these works address security under multiple
correlated inputs.

In fact, a significant prior work of Ishai et al. [21, Definition 1] considered a no-
tion of “correlation-robustness” for pseudorandom hash functions, with the moti-
vation of instantiatng the RO in their oblivious transfer protocols. Their notion is
more restrictive than our notion of pseudorandomness under correlated-input, as
the former is defined only for hash functions that output a single bit and consid-
ers inputs obtained by computing the exclusive-or’s of a “master” random input
s with public random values.

Finally, we note that while realizing the “avalanche effect” satisfied by a RO
forms a major motivation for considering correlated-input security, it is not the
only way the latter could be formalized. In particular, it talks only about the
change in the output behavior relative to any change to an unknown input. The
notion of “(multiple input) correlation intractability” due to [13] is a possible for-
malization the effect without this restriction. On the other hand, the latter notion
seems harder to work with and more difficult to achieve.
Deterministic Encryption. Our security notions can be viewed as relaxations or
variants of the notions of privacy proposed for deterministic encryption (DE)
in [2,8,4,24] (that seek to hide partial information) in the case of hash functions
rather than encryption schemes. Indeed, the results of of [2,8,4,24] show that in
some sense the “hard part” of realizing DE without random oracles is dealing
with correlations among the inputs. Our work studies this issue at a more basic
level, asking whether it is feasible even without supporting decryption and for
weaker security notions like one-wayness.
Related Security Notions. Recently, Rosen and Segev [25] introduced the no-
tion of correlated-product secure trapdoor functions (TDFs). Correlated-product
security was later considered for hash functions in [20]. Correlated-product se-
curity differs from our notions in that the former refers to security when related
inputs are evaluated under independent instances of the function; in other words,
there does not exist a single function which is evaluated on related inputs (as is
the case for correlated-input security). Indeed, our techniques are quite different
and unrelated to those in [25,20].

The recent work of Goldenberg and Liskov [19] also considers a form of
correlated-input security (which they call “related-secret” security) for various
primitives. While their work has some similarities to ours (for example, they con-
sider “related-secret” one-way functions), there are some important differences.
Namely, they focus on hardcore bits and pseudorandom functions rather than
hash functions, and they follow the definitional framework for RKA-security in-
troduced in [5]. As mentioned above, this definitional framework is less general
than ours. Additionally, their results are mainly negative.

2 Preliminaries

Notations. Let x
$←− X denote the operation of selecting a random element x

from X . Let by x← y denote the assignment of a value y to x. Let |X | denote
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the size of the set X , and |x| denote the length of the string x. Let λ denote
the security parameter. Let FF(K,D,R) be the set of all families of functions
F : K × D −→ R. For sets X,Y , let Fun(X,Y ) be the set of all functions
mapping X to Y . For brevity, we say that an algorithm outputs a set/function
as a shorthand to mean that it outputs their descriptions.

Complexity Assumptions. We first state our complexity assumptions, namely
q-DHI [9,10], which is weaker than q-BDHI [9] as well as q-SDH [10], and we
introduce what we call the q-Strong Discrete Logarithm (q-SDL) assumption
which is weaker than all of q-DHI, q-BDHI, and q-SDH assumptions.

Let GrpGen be a PPT algorithm that takes as input the security parameter
1λ and outputs parameters for some cyclic multiplicative group G, including
the group order p which is a poly(λ)-bit integer, a generator g, and an efficient
algorithm (e.g., circuit) for multiplication (and thus also exponentiation). We
denote it as (G, p, g)← GrpGen(1λ).

q-Strong Discrete Logarithm (q-SDL) Problem. The q-SDL problem in G is de-
fined as follows: given a (q + 1)-tuple (g, gx, gx

2
, . . . , gx

q

) ∈ (G�)q+1 for some
unknown x ∈ Z�p, output x.

An algorithm A solves the q-SDL problem in the group G with advantage ε if

SDL AdvA,q := Pr[A(g, gx, gx
2
, . . . , gx

q

) = x] ≥ ε

where the probability is over the random choice of generator g ∈ G�, the random
choice of x ∈ Z�p, and the random bits consumed by A.

Definition 1. We say that the (q, t, ε)-SDL assumption holds in G (or Grp-
Gen satisfies the (q, t, ε)-SDL assumption) if no probabilistic t-time algorithm
has advantage at least ε in solving the q-SDL problem in G.

It is easy to see that the 1-SDL assumption is equivalent to the standard
Discrete Logarithm assumption.

q-Diffie-Hellman Inversion (q-DHI) Problem. The q-DHI problem [9,10] in G is
defined as follows: given a (q + 1)-tuple (g, gx, gx

2
, . . . , gx

q

) ∈ (G�)q+1 for some
unknown x ∈ Z�p, output g

1
x ∈ G.

An algorithm A solves the q-DHI problem in the group G with advantage ε if

DHI AdvA,q := Pr[A(g, gx, gx
2
, . . . , gx

q

) = g
1
x ] ≥ ε

where the probability is over the random choice of generator g ∈ G�, the random
choice of x ∈ Z�p, and the random bits consumed by A.

Definition 2. We say that the (q, t, ε)-DHI assumption holds in G (or Grp-
Gen satisfies the (q, t, ε)-DHI assumption) if no probabilistic t-time algorithm
has advantage at least ε in solving the q-DHI problem in G.

q-DHI Problem can be equivalently stated as follows [10]: given a (q + 2)-
tuple (g, gx, gx

2
, . . . , gx

q

, c) ∈ (G�)q+1 × Zp\{x} for some unknown x ∈ Z�p,
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output g
1

x+c ∈ G. This definition also clearly points out the distinction between
the q-DHI problem and the q-SDH problem: in case of the q-DHI problem, the
value of c is prescribed in the problem instance itself, whereas in case of the
q-SDH problem, the solver is free to choose c ∈ Zp and output a pair, (c, g

1
x+c ).

Obviously, the q-DHI assumption is weaker than the q-SDH assumption.

Decisional q-Diffie-Hellman Inversion (Decisional q-DHI) Problem. The de-
cisional q-DHI problem in G is defined as follows: given a (q + 1)-tuple
(g, gx, gx

2
, . . . , gx

q

) ∈ (G�)q+1 for some unknown x ∈ Z�p, distinguish between

g
1
x and a random element R

$←− G.
An algorithm A solves the decisional q-DHI problem in G with advantage ε if

DDHI AdvA,q := |Pr[A(g, gx, gx
2
, . . . , gx

q

, g
1
x ) = 1]

−Pr[A(g, gx, gx
2
, . . . , gx

q

, R) = 1]| ≥ ε

where the probability is over the random choice of generator g ∈ G�, the random
choice of x ∈ Z�p, the random choice of R ∈ G�, and the random bits consumed
by A. The distribution on the left is referred to as PDDHI and the distribution
on the right as RDDHI .

Definition 3. We say that the decisional (q, t, ε)-DHI assumption holds in G

(or GrpGen satisfies the decisional (q, t, ε)-DHI assumption) if no probabilistic
t-time algorithm has advantage at ε in solving the decisional q-DHI problem
in G.

3 Our Model: Correlated Input Security

In this section, we define our new notion of security for cryptographic hash func-
tions. We would be interested in preserving various properties of hash functions
(like one-wayness and pseudo-randomness) when the function maybe evaluated
on a tuple of inputs which maybe be correlated in an arbitrary way. Standard
notions of security do not provide any guarantee in such a setting. In the full
version, we discuss examples of functions which are secure in the standard sense
but may be completely insecure when evaluated on multiple inputs which are
correlated.

Before we go further, we first discuss how we represent correlations among a
tuple of inputs (m1, . . . ,mn). In general, such an input tuple maybe generated by
a polynomial-size sampler circuit Samp. In other words, Samp takes a random
tape r (of appropriate length) as input such that (m1, . . . ,mn)← Samp(r). Note
such a sampler circuit can generate the input tuple for any type of polynomial-
time computable correlations. Equivalently, one can generate the (correlated)
tuple of inputs using a tuple of polynomial-size circuits (C1, . . . , Cn) when ini-
tialized on the same random tape. In other words, fix a random string r and set
mi ← Ci(r). It is easy to see that both these sampling procedures are equivalent.
For the rest of the paper, we shall stick to the latter mode of using a tuple of
circuits (for convenience, as will be clear later on).
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Also, it will be understood that the range of every circuit considered is a
subset of the input-space (or keyspace) in question. We refer to an adversary
as {C}-restricted, if its correlated-input circuits are restricted to the class of
circuits {C}.

We first define the syntax for a general function family (or a hash function
family if the functions are compressing). We will then move on to formalize the
various security properties such a function family might satisfy.

Definition 4 (Function Family). A family of deterministic functions H is
specified by a PPT algorithm Gen. The algorithm Gen, given input 1λ, outputs a
parameter set Ih, domain Dh, and range Rh, and outputs c ∈ Ih as a description
of a function hc : Dh −→ Rh. The sizes of the domain and range sets are each
exponential in the security parameter.

Now, we shall discuss our first notion of security called correlated-input one-
wayness. Informally, we consider a function h(·) such that given (h(m1), . . . ,
h(mn)), where inputs (m1, . . . ,mn) maybe correlated, it is hard for any PPT ad-
versary to output any valid preimage mi. This can be viewed as a generalization
of the standard notion of one-way functions. We allow the adversary to specify
the correlations to the challenger by giving a tuple of circuits (C1, . . . , Cn), where
each circuit is from a class of correlated-input circuits {C}. Note that, for this
definition to be satisfiable, each circuit Ci,∈ {C} individually should have high
min-entropy output distribution for uniform random input distribution7. Thus,
we quantify only over such circuits in our definition. We discuss it under both
selective and adaptive security notions. More details follow.

In the following we shall only formalize the selective notion, while we refer
the reader to the full version for definitions of the adaptive notions.

The Selective Correlated-Input Inverting experiment ExpsCI−invA,H,{C}. For a family of
deterministic functionsH, an adversaryA, and a family of efficiently-computable
correlated-input circuits {C}, we define the following game between a challenger
and the adversary A.

– Setup Phase 1. Challenger runs the Gen algorithm of H for a security
parameter input 1λ and gets hc : Dh −→ Rh. Challenger gives Dh to A.

– Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the
challenger n circuits {Ci}i∈[n] ⊂ {C}.

– Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform
random string of appropriate length.

– Response Phase. ∀i ∈ [n], challenger responds via hc(Ci(r)).
– Invert Phase. A outputs (k̂, ŷ) for k̂ ∈ [n] and ŷ ∈ Dh.

The output of the experiment is defined to be 1 if hc(ŷ) = hc(Ck̂(r)) and 0
otherwise.
7 This requirement is similar to one in the standard notion of one-way functions. If

the input does not have sufficient min-entropy, it is easy to see that an adversary
can guess a preimage and succeed with noticeable probability.
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We define the advantage of an adversary A in the above game as:

AdvsCI−invA,H,{C}(λ) = Pr[ExpsCI−invA,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 5. A family of functions H is said to be selective correlated-input
one-way with respect to a family of correlated-input circuits {C}, if for all A ∈
PPT there exists a negligible function negl, such that:

AdvsCI−invA,H,{C}(λ) ≤ negl(λ)

We now consider two more correlated-input security notions where we talk about
the unpredictability of the output as opposed to that of the input. Informally,
we consider a function hc : Dh −→ Rh with the following properties. Consider a
tuple of correlated inputs (m1, . . . ,mn+1). The adversary is given the function
outputs (hc(m1), . . . , hc(mn)) and it tries to compute hc(mn+1). In the first
security notion called correlated-input unpredictability (CI-unpredictability), we
require that it should be hard for the adversary to output hc(mn+1). In the
next notion called correlated-input pseudorandomness (CI-pseudorandomness),
we require that the adversary should not be able to distinguish hc(mn+1) from a
random element in Rh, given (hc(m1), . . . , hc(mn)). It is easy to show that this
notion of CI-pseudorandomness is equivalent to a notion where an adversary gets
either (hc(m1), . . . , hc(mn+1)) or n+1 independent random elements in Rh and
is required to distinguish the two cases. Note that, for any of these notions to
be satisfiable, besides the requirement that each circuit Ci ∈ {C} individually
should have high min-entropy output distribution for uniform random input
distribution, we also require that, for every two distinct circuits Ci and Cj in
{C}, and for a uniform random input r of appropriate length, Ci(r) = Cj(r)
happens only with negligible probability over the choice of r.

In trying to give more power to the adversary (thus making our definition
stronger), we allow the adversary to specify the correlation by giving a tuple
of circuits (C1, . . . , Cn+1), where Ci ∈ {C}, to the challenger, as before. In
addition, for the selective case, for a tuple of inputs (m1, . . . ,mn+1), we allow
the adversary to get outputs on n adaptively chosen input indices of its choice
before trying to predict the remaining output8. More details follow.

The definitions of the selective CI-pseudorandomness and adaptive notions of
all the three notions are given in the full version.

The Selective Correlated-Input Predicting experiment ExpsCI−predA,H,{C} . For a family of
deterministic functionsH, an adversaryA, and a family of efficiently-computable
correlated-input circuits {C}, we define the following game between a challenger
and the adversary A.
8 By incurring a security loss of a factor of n, this definition can actually be shown

to be equivalent to a weaker definition where the adversary is required to predict
the output specifically on input mn+1 fixed after it presents its queries but before it
reveives the responses. However, working directly with this definition might lead to
better concrete security guarantees in the real world.
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– Setup Phase 1. Challenger runs the Gen algorithm of H for a security
parameter input 1λ and gets hc : Dh −→ Rh. Challenger gives Dh to A.

– Query Phase. A chooses a positive integer n (= poly(λ)), and gives to the
challenger n + 1 distinct circuits {Ci}i∈[n+1] ⊂ {C}.

– Setup Phase 2. Challenger gives hc(·) to A and chooses r, a uniform
random string of appropriate length.

– Partially Adaptive Query-Response Phase.A presents n queries, where
an ith query is ki ∈ [n + 1]. Challenger responds to it via hc(Cki(r)).

– Predict Phase. The adversary outputs ŷ ∈ Rh.

Let kn+1 ∈ [n+1] be such that kn+1 �= ki ∀ i ∈ [n]. The output of the experiment
is defined to be 1 if ŷ = hc(Ckn+1(r)) and 0 otherwise.

We define the advantage of an adversary A in the above game as:

AdvsCI−predA,H,{C} (λ) = Pr[ExpsCI−predA,H,{C} = 1]

The probability is over the random bits used by the challenger and the adversary.

Definition 6. A family of functions H is said to be selective correlated-input
unpredictable with respect to a family of correlated-input circuits {C}, if for all
A ∈ PPT there exists a negligible function negl, such that:

AdvsCI−predA,H,{C} (λ) ≤ negl(λ)

4 Proposed Construction

In the sequel, we give the construction of our function and prove that it is
correlated-input secure for a class of polynomials over Zp (where p is a prime
number) in the sense of each of the three selective security models defined above.

Our construction is given in Figure 1.
Our proposed function is extremely simple and efficient to compute. The cost

of computation is dominated by a single exponentiation operation. The construc-
tion can be seen as similar to a short signature scheme by Boneh and Boyen [10].
Our main novelty can be seen in the proofs of security. Indeed, interestingly, our
proofs show that the original signature scheme of Boneh and Boyen is secure even
if an adversary is allowed to obtain messages signed by various correlated secret
signing keys, where the correlations are from a set of polynomials over Zp. We
refer the reader to the full version for a detailed description of this implication.

Gen(1λ). Run GrpGen: (G, p, g) ← GrpGen(1λ), where p is a prime number.
Gen uniformly samples a random element c from Zp and a random generator
g of group G. It outputs g, c and a function h : Zp −→ G defined by,

h(m) := g
1

m+c

for any m ∈ Zp (where 1
m+c

is computed mod p).

Fig. 1. Our Construction
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4.1 Analysis of the above Construction

We prove that our construction is selectively secure against a class of correlations
computable by polynomials over Zp. In what follows, we introduce some more
notations that will be used in the rest of the paper and then discuss the three
security games with correlated-input circuits computing polynomials over Zp.

Notations. Let deg[f(X)] denote the degree of a polynomial f(X) over Zp. If the
output distribution of a polynomial is uniform in Zp (or, in other words, if the
range of the polynomial is Zp itself), then we refer to the polynomial as uniform-
output polynomial. On the other hand, if the output distribution of a polynomial
has high min-entropy in Zp, then we refer to the polynomial as high-min-entropy-
output polynomial (any non-zero polynomial of degree polynomial in the security
parameter has a range of size exponential in the security parameter). We shall
only consider polynomials of degree is at least 1 and polynomial in λ. We only
state our theorems in the following and give the proofs in the full version.

4.2 Selective Correlated-Input One-Wayness

Theorem 1. Suppose that (q, t′, ε)-SDL assumption holds in G. Let {C} be a
set of non-zero polynomials over Zp. Then, for H as in Figure 1, there exists no
probabilistic t-time adversary A for which AdvsCI−invA,H,{C}(λ) is at least ε provided
that

d ≤ q and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees of the polynomials that A
queries upon and τ is the maximum time for an exponentiation in G and Zp.

4.3 Selective Correlated-Input Unpredictability

Theorem 2. Suppose that (q, t′, ε′)-DHI assumption holds in G. Let {C} be a
set of uniform-output polynomials over Zp. Then, for H as in Figure 1, there
exists no probabilistic t-time adversary A for which AdvsCI−predA,H,{C} is at least ε

provided that

d ≤ q + 1, ε ≥ 2(n + 1)ε′ and t ≤ t′ −Θ(nqτ)

where d = d(λ) upper bounds the sum of the degrees the polynomials that A
queries upon and τ is the maximum time for an exponentiation in G and Zp.

The proof for the above theorem and for CI-pseudorandomness is given in the
full version.

5 Relations between CI-Security and RKA-Security

We conclude by examining relations beween correlated-input secure hash func-
tions and security under related-key attacks, whose formal treatement was
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initiated by [5]. The latter asks that security of a cryptographic primitive (e.g.,
a pseudorandom function) maintains security when used with related secret
keys. In this section, we only consider our notion of pseudorandomness under
correlated-inputs, so “CI-security” below refers by default to this notion.

5.1 Relations to RKA-Secure Weak PRFs

We start by showing an equivalence between CI-secure hash functions and some
form of RKA-security for weak PRFs we introduce. The idea, following [20], is
to “switch” the input and key for these primitives.

RKA-Secure Weak PRFs. Recall that weak PRFs [23], as opposed to normal
ones, handle only random inputs. In defining RKA-security for this primitive,
a modeling choice we need to consider is whether, when the adversary queries
for a value of the function under a related key, a new random input is chosen
(or the previous random-input re-used). We give general definitions that capture
the possibilities. ( However, for our results we only use a notion where the same
random input is re-used. ) We also consider both “selective” and “adaptive”
security; in the former, the adversary chooses the relations applied to the secret
key before receiving any responses.

In defining RKA security for various primitives, we use a non-standard for-
malization based on our framework of circuits, which in this case sample keys.
This is for ease of comparison to our notion of CI-security. For example, by
{C}-RKA-PRF we refer to an RKA-PRF where the secret keys are sampled ac-
cording to circuits in {C} (executed on a common random input). Note that, in
this framework, RKA-security corresponds to a special case of CI-security where
the first circuit samples a random key K and and the remaining circuits operate
only on K (and not the coins used to sample it) to produce a related key. (The
latter is sufficient in the context of RKA-security.)

We also note that a PRF function family is specified by an efficient proba-
bilistic parameter-generation algorithm Genprf which takes as input a security
parameter 1λ and outputs the description of a function including a description
of its keyspace, domain and range. However, for simplicity of exposition, we only
consider a single PRF function in most part of the following discussion as long
as there is no ambiguity.

Definition 7 (qinput − {C}-aRKA-wPRF.). Let F : K×D −→ R be an effi-
ciently computable function. Let {C} ⊆ Fun(K,K) be a set of RKD circuits. F
is said to be qinput − {C}-aRKA-wPRF, if, ∀A ∈ PPT:

AdvaRKA−wPRF
A,F,{C},qinput

(λ) := |Pr[k $←− K : AOweak
F (k,·)(·,·) −→ 1] − Pr[k $←− K, G

$←−
FF(K,D,R) : AOweak

G(k,·)(·,·) −→ 1]| is negligible in λ, where the related-key-
wprf oracle Oweakf(k,·)(·) takes as input (indexi, Ci) ∈ ([qinput], {C}), and outputs

(xindexi , f(Ci(k), xindexi)), where xindexi

$←− D.

The definition for selective version appears in the full version.
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Let H be a family of functions specified by Gen. A family of functions {F} is
defined by the following parameter-generation algorithm:
Genprf (1λ). Genprf runs Gen(1λ) that outputs the description of a parameter
set D, c ∈ D, and a function hc : K −→ R. Genprf outputs K, D and R for
keyspace, domain and range, respectively, of a function F defined by,

F (k, x) := hx(k)

for any k ∈ K and x ∈ D.

Fig. 2. Construction of 1 − {C}-(s/a)RKA-wPRF Family from {C}-(s/a)CI-
pseudorandom Function Family

The Equivalence. In the following, for a class of circuits {C} we show an equiv-
alence between a one-input RKA-Secure wPRF for {C} and a CI-secure hash
function for {C}. (The equivalence holds respectively in the cases of selective
and adaptive security notions.) First, we construct a family of functions {F}
from a family of functions H and show that if H is a {C}-aCI-pseudorandom
function family (resp. {C}-sCI-pseudorandom function family) then {F} is a
1− {C}-aRKA-wPRF (resp. 1− {C}-sRKA-wPRF).

Theorem 3. {C}-aCI-pseudorandom function family (resp. {C}-sCI-
pseudorandom function family) implies 1 − {C}-aRKA-wPRF (resp. 1 − {C}-
sRKA-wPRF).

The proof is given in the full version.
In the full version, we also give a construction of 1−{C}-aRKA-wPRF (resp.

1−{C}-sRKA-wPRF) from {C}-aCI-pseudorandom function family (resp. {C}-
sCI-pseudorandom function family).

New CI-Secure Hash Functions. As an application of the above equivalence, we
obtain new CI-secure hash functions. In particular, note that an adaptive one-
input RKA-secure wPRF for a class of circuits {C} is trivially implied by an
RKA-Secure PRF for {C}. (Here, the latter is defined as expected, namely as in
prior work except cast in our framework of circuits; see the full version for more
details.) We can therefore use the recent constructions of RKA-Secure PRFs
by Bellare and Cash [3] to obtain adaptive CI-secure hash functions. Namely,
the latter are secure under the standard DDH assumption for class of circuits
computing multiplication by a group element or under exponential-hardness of
DDH for addition by a group element.

Though the resulting CI-secure hash functions are secure for much weaker
classes of relations as compared to our main construction, they are remarkable
in that they are both adaptively secure and do not need a public key. (They do
not even need any randomly-generated global parameters, as the constructions
of [3] work in a fixed group.) The latter is because in the case that we start with
an RKA-secure PRF (rather than wPRF), our construction of CI-secure hash
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can be modified by applying the PRF to any fixed value in the domain of the
latter (still using the input as the key).

5.2 CI-Secure Functions Imply Other RKA-Secure Primitives

In this section, we discuss a more general technique for building RKA-secure
cryptographic primitives from a CI-secure hash function. The basic idea is to
hash the coins used to generate keys for the the former, using a CI-secure hash
function.

Informally, let Ψ be a scheme for a cryptographic primitive. Let KeyGen be
a PPT algorithm for Ψ , and let l(λ) be the length of the random string used
by it. Our transformation uses a {C}-pseudorandom function family H specified

by Gen, and the transformation involves modifying KeyGen(1λ; r) where r
$←−

{0, 1}l(λ) to KeyGen(1λ;h(r′)) where r′
$←− {0, 1}t(λ) and (h : {0, 1}t(λ) −→

{0, 1}l(λ))← Gen(1λ). The resulting scheme is then expected to be “ {C}-RKA-
secure” besides preserving the security properties of the underlying untrans-
formed scheme.

More concretely, we exemplify the above technique for digital signatures. We
give our formalization of RKA-security for signatures in the full version.

In what follows, we show that {C}-aCI-pseudorandom function family (resp.
{C}-sCI-pseudorandom function family) implies {C}-aRKA-unforgeable scheme
(resp. {C}-sRKA-unforgeable scheme). The transformation is given in Figure 3.

Theorem 4. {C}-aCI-pseudorandom function family (resp. {C}-sCI-
pseudorandom function family) implies {C}-aRKA-unforgeable scheme (resp.
{C}-sRKA-unforgeable scheme).

The proof is given in the full version.

Discussion. In the case that the starting CI-secure hash function has a public
key, the above transformation results in a cryptographic primitive for which al-
gorithms operating on the secret key also need to access an authentic public key.
In some scenarios, e.g. smart cards, this may not always be practical. Moreover,

Let H be a function family specified by Gen. Let Σ′ = (KeyGen′, Sign′, Verify′)
be a signature scheme and let l(λ) be the length of the randomness used in
the KeyGen′. The signature scheme Σ = (KeyGen, Sign, Verify) is defined by:

–– KeyGen(1λ): (h : {0, 1}t(λ) −→ {0, 1}l(λ)) ← Gen(1λ); sk
$←− {0, 1}t(λ);

(sk′, pk′) ← KeyGen′(1λ; h(sk)); output sk as the secret key, and
pk := (h, pk′) as the public key.

– Sign(sk, m): Run KeyGen′(1λ, h(sk)) to obtain sk′. The signature on
message m is set as σ ← Sign′(sk′, m).

– Verify(pk,m, σ): Output valid if Verify′(pk′, m, σ) = valid and output
invalid otherwise.

Fig. 3. Construction of RKA-secure Signature Scheme from CI-secure Pseudorandom
Functions
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our main construction of CI-secure hash is only selectively-secure, resulting in
a selectively RKA-secure the cryptographic primitive. On the other hand, it is
sometimes possible to use our techniques (in a “non-blackbox” way) to design
an RKA-secure scheme without a public key and that is adaptively secure. In
particular, we show this for RKA-secure symmetric-key encryption recently in-
troduced in [1] in the full version. We also mention that using the CI-secure
hash functions derived from the Bellare-Cash RKA-secure PRFs [3] avoid these
issues, but for a much weaker class of relations.

Relation to Tampering Attacks. We also note that RKA-security for a crypto-
graphic primitive can also be used to to protect against tampering attacks [18],
where, for instance, the secret key stored by a smart card is tampered with and
its behavior is observed while it acts using the tampered secret, with an objec-
tive of gaining advantage against the security of the functionality of the smart
card when using the original secret. However, as discussed in [1], security against
tampering attacks is easier to achieve in general, through some kind of “sanity
check” on the secret key (for instance, by including a signature on the secret key
as a part of the public key, which is verified by any algorithm using the former);
although, as discussed above, this approach may not always be practical. This
does not work for RKA-security, since we actually want related secret keys to
function like independently generated ones.
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Abstract. We show how to achieve public-key encryption schemes that
can securely encrypt nonlinear functions of their own secret key. Specif-
ically, we show that for any constant d ∈ N, there exists a public-key
encryption scheme that can securely encrypt any function f of its own
secret key, assuming f can be expressed as a polynomial of total degree d.
Such a scheme is said to be key-dependent message (KDM) secure w.r.t.
degree-d polynomials. We also show that for any constants c, e, there ex-
ists a public-key encryption scheme that is KDM secure w.r.t. all Turing
machines with description size c log λ and running time λe, where λ is
the security parameter. The security of such public-key schemes can be
based either on the standard decision Diffie-Hellman (DDH) assumption
or on the learning with errors (LWE) assumption (with certain parame-
ters settings).

In the case of functions that can be expressed as degree-d polynomials,
we show that the resulting schemes are also secure with respect to key
cycles of any length. Specifically, for any polynomial number n of key
pairs, our schemes can securely encrypt a degree-d polynomial whose
variables are the collection of coordinates of all n secret keys. Prior to
this work, it was not known how to achieve this for nonlinear functions.

Our key idea is a general transformation that amplifies KDM secu-
rity. The transformation takes an encryption scheme that is KDM secure
w.r.t. some functions even when the secret keys are weak (i.e. chosen from
an arbitrary distribution with entropy k), and outputs a scheme that is
KDM secure w.r.t. a richer class of functions. The resulting scheme may
no longer be secure with weak keys. Thus, in some sense, this transfor-
mation converts security with weak keys into amplified KDM security.

1 Introduction

Secure encryption is one of the most fundamental tasks in cryptography, and sig-
nificant work has gone into defining and attaining it. In many classical notions
of secure encryption, it is assumed that the plaintext messages to be encrypted
are independent of the secret decryption keys. However, over the years, it was
observed that in some situations the plaintext messages do depend on the se-
cret keys. This more demanding setting, termed key-dependent message security

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 201–218, 2011.
c© International Association for Cryptologic Research 2011
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(KDM security) by Black, Rogoway and Shrimpton [7], has received much at-
tention in recent years [12, 1, 21, 19, 5, 4, 20, 8, 17, 11, 3, 6, 9].

KDM security w.r.t. a class F of efficiently computable functions is modeled
as follows1. An adversary is given public keys pk1, . . . , pkn and can access an
oracle O that upon receiving a query (i, f), where f is a function in the class F ,
and i ∈ [n] is an index, returns an encryption of f(sk1, . . . , skn) under the public
key pki. The scheme is KDM(n) secure w.r.t. F , where n is the number of public
keys, if the adversary cannot distinguish between the oracle O and an oracle
that always returns an encryption of (say) the all-zero string. In particular, in
KDM(1) security, the adversary is given a single public key pk and can ask for
encryptions (under pk) of functions of the corresponding secret key sk.

Starting with the breakthrough work of Boneh, Halevi, Hamburg and Ostro-
vsky [8] and continuing with the work of Applebaum, Cash, Peikert and Sahai [3],
it is known how to achieve KDM security under a variety of computational as-
sumptions. However, the above works achieve security only w.r.t. affine functions
of the secret key, leaving unanswered the question of achieving security w.r.t.
richer classes of functions.

The motivation to explore beyond affine functions is a straightforward exten-
sion of that provided in [8]: Assume a secret key is stored on a hard drive which
is being encrypted as a part of a backup process. The encrypted contents thus
depend on the secret key in a way that may not necessarily be affine (conditioned
on the file type and the file system used).

Heitner and Holenstein [17] gave impossibility results with regards to black-
box constructions of KDM(1)-secure encryption (even in the symmetric case).
They showed that KDM(1) security w.r.t. poly-wise independent functions is not
black-box reducible to one-way trapdoor permutations, and also that KDM(1)

security w.r.t. all functions is not black-box reducible to essentially any crypto-
graphic assumption.

In a work independent and concurrent to ours, Barak, Haitner, Hofheinz and
Ishai [6] show how to overcome the latter black-box separation of [17]. They give
a very strong positive result, showing that for any polynomial p there exists a
KDM(1)-secure schemes w.r.t. all functions computable by circuits of size at most
p, based on either the DDH or LWE assumptions. They also achieve KDM(n)

security at the cost of having the ciphertext length depend on the number of users
n. Altogether, our work and theirs are complementary and achieve incomparable
results. See a detailed comparison at the end of Section 1.1 below.

1.1 Our Results

Weprovidea general transformation that amplifiesKDM security.Throughout this
work, we restrict our attention to public-key encryption schemes in which the key-
generation algorithm works by first sampling a secret key and then applying some,
possibly randomized, function to produce the public key. Many known encryption

1 We define KDM security in the public-key setting since this is the focus of this work.
A similar definition can be provided for the symmetric setting.
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schemes have this property, e.g. [26, 14, 24, 8, 3] and others. We say that an encryp-
tion scheme is entropy-k KDM-secure if it is KDM-secure even when the secret key
is sampled froman arbitrarydistributionwithmin-entropy k, and the computation
of the public key is performed with perfect randomness2. Our transformation starts
with an encryption scheme E = (G,E,D) that is entropy-k KDM(n)-secure w.r.t.
some class of functions F , and converts it into another scheme E∗ = (G∗, E∗, D∗),
which is KDM(n) secure w.r.t. a larger class of functions F ′.

Theorem 1.1 (informal). Let E=(G,E,D) be a public-key encryption scheme
that is entropy-k KDM(n)-secure w.r.t. a function class F . Let S denote the
space of the secret keys of E, and let K be any set of size at least 2k. Then for
every deterministic, efficiently computable and injective mapping α : K → S
there exists an encryption scheme E∗α = (G∗, E∗, D∗), whose secret key, sk∗, is
chosen at random from K, such that E∗α is KDM(n) secure w.r.t. the function
class F ′ = F ◦ α = {(f ◦ α)(sk∗

1, . . . , sk
∗
n) = f(α(sk∗

1), . . . , α(sk∗
n)) : f ∈ F}.

For example, one can think of α(sk) as the vector of all monomials of degree d;
namely, α(x1, . . . , xk) = (

∏
i∈I xi)|I|≤d, where sk = (x1, . . . , xk) ∈ {0, 1}k. An-

other example is where α(sk) is the vector of all Turing machines with description
length O(log k) and running time at most t (for some polynomial t), applied to
sk. Namely, α(sk) = 〈M(sk)〉M , where M is a Turing machine with description
length O(log k) that runs for at most t steps on sk.

In the first example, if F is the class of all linear functions, then F ′ = F ◦α is
the class of all degree ≤ d polynomials. In the the second example, if F contains
the identity function, then F ′ = F ◦ α contains all the Turing machines with
description length O(log k) and running time at most t.

We emphasize that in Theorem 1.1, we start with a scheme E that is entropy-
k KDM(n)-secure w.r.t. a function class F , and end up with a scheme E∗α that is
not necessarily entropy-k secure anymore. However, it is KDM(n)-secure w.r.t. a
(supposedly richer) function class F ′. Therefore this theorem gives a way to con-
vert security with weak keys, into enhanced KDM security, thus showing a formal
connection between the two notions3. Another connection between these notions
in the symmetric encryption case, was shown by Canetti et. al. [13], in the context
of obfuscation of multi-bit point functions: Loosely speaking, they show that an
encryption scheme that is entropy-k KDM-secure implies a multi-bit point obfus-
cators, and vice versa. However, showing a direct implication between the notions
(or showing that one does not exist) remains an interesting open problem.

We apply Theorem 1.1 to the schemes of [8] and [3] to obtain Theorems 1.2
and 1.3, respectively, presented below. In order to do that, we will argue that
these schemes (or rather, a slight modification thereof) are entropy-k KDM(1)-
secure. In what follows, λ denotes the security parameter.
2 This notion is different from security with key-leakage, where the leakage may depend

on the public key.
3 We stress that our reduction does not yield that leakage resiliency by itself implies

KDM security; rather, we show that leakage resiliency on top of KDM security enables
amplifying the KDM security property.
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Theorem 1.2 (informal). Assume the DDH assumption in a group G of or-
der q, and let g be any generator of G. Then, for any class H = {h1, . . . , h� :
hi ∈ {0, 1}k → {0, 1}} of poly(λ)-time computable functions, with cardinality
� = poly(λ), there exists a KDM(1)-secure encryption scheme w.r.t. the class of
functions

FH =
{
f(gx) = g

∑
i∈[�] tihi(x)+w : x ∈ {0, 1}k, (t, w) ∈ Z�q × Zq

}
.

In this scheme, the secret key is a vector in Gk whose ith coordinate is gxi ∈
{1, g}. Theorem 1.2 is obtained by applying Theorem 1.1 to the public-key en-
cryption scheme of [8], which is KDM secure w.r.t. affine functions in the expo-
nent, using the mapping α(gx) = (gh1(x), . . . , gh�(x)).

In particular, taking H to be the class of all degree-d monomials, we show
that for any constant d ∈ N, there exists a public-key encryption scheme that is
KDM(1)-secure w.r.t. all polynomials of total degree d (in the exponent). This is
because degree-d polynomials over k variables can be viewed as affine functions
applied to the vector of degree-d monomials. A different selection of H implies
that for any polynomial t, there exists a public-key scheme that is KDM(1)-secure
w.r.t. all Turing machines of description length bounded by log t and running
time bounded by t4.

Theorem 1.3 (informal). Under the LWE assumption with modulus q = p2,
for a prime p, for any class H = {h1, . . . , h� : hi ∈ {0, 1}k → {0, 1}} of poly(λ)-
time computable functions, with cardinality � = poly(λ), there exists a KDM(1)-
secure encryption scheme w.r.t. the class of functions

FH =
{
f(x) =

∑
i∈[�]

tihi(x) + w (mod p) : (t, w) ∈ Z�p × Zp

}
.

The secret key space in this scheme is {0, 1}k. The result is obtained by applying
Theorem 1.1 to (a variant of) the public-key encryption scheme of [3], which is
KDM secure w.r.t. affine functions, using the mapping α(x) = (h1(x), . . . , h�(x)).

In a similar manner to the DDH based result, appropriate selections of H
imply a KDM(1)-secure scheme w.r.t. all polynomials of total degree d and a
KDM(1)-secure scheme w.r.t. all Turing machines of description length bounded
by log t and running time bounded by t, for t = poly(λ).

This ability, to tailor an encryption scheme to the required set of functions,
can be useful when, as a part of a cryptographic protocol, encryptions of certain
functions of the secret key need to be transmitted.

We are able to extend the above results, using additional techniques (Theorem
1.1 will not suffice), and show that for the case of degree-d polynomials, both
schemes obtained above are in fact KDM(n)-secure, based on their respective
assumptions. These results are stated in the theorems below.
4 Bear in mind that any uniform function can be represented by a Turing machine

of constant description. This means that for any uniform function f (computable in
time t), our scheme becomes secure asymptotically with the security parameter.
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Theorem 1.4 (informal). Under the DDH assumption, for any constant d ∈
N, there exists a public-key encryption scheme that is KDM(n)-secure w.r.t.
degree-d polynomials in the exponent, for any n = poly(λ).

Theorem 1.5 (informal). Under the LWE assumption, for any constant d ∈
N, there exists a public-key encryption scheme that is KDM(n)-secure w.r.t.
degree-d polynomials, for any n = poly(λ).

Additional Uses for Our Amplification Theorem. While Theorem 1.1 is stated in
terms of public-key encryption, it in fact also works, in a straightforward manner,
for other primitives such as symmetric encryption or pseudo-random functions
(under an appropriate adaptation of the definitions of KDM and entropy-k se-
curity). In this paper, though, we focus on public-key encryption.

One could also consider applying the theorem to the OAEP (i.e. random
oracle) based scheme of Backes, Dürmuth and Unruh [4]. However, in order to
do that, entropy-k secure one-way trapdoor functions are required. Such are
currently not known to exist, to the best of our knowledge, and thus we do not
elaborate on this scheme.

Comparison With [6]. As mentioned above, a recent independent work of [6]
achieves KDM security for a very rich class of functions: the class of functions
computable by circuits of polynomial size p (the polynomial p affects the pa-
rameters of the scheme as we explain below). Their main technique is a non
black-box use of the functions in the class, resulting in the ciphertext’s contain-
ing a garbled circuit corresponding to a size-p circuit. Our implementation, in
contrast, makes black-box use of the functions and does not require garbled cir-
cuits. The downside is that the size of the function class has to be limited (as
demonstrated by the negative result of [17]). Another difference is that in the
KDM(n) scheme of [6], the ciphertext size depends on n, unlike our schemes.

We also note that while the [6] framework applies only for public-key encryp-
tion, ours can be applied to symmetric encryption as well as other primitives.

1.2 Our Techniques

Let us present the intuition behind the KDM amplification theorem (Theo-
rem 1.1). Given an encryption scheme E that is entropy-k KDM(n)-secure w.r.t.
a function class F , we construct the encryption scheme E∗ as follows: The key
generation algorithm G∗, rather than choosing the secret key from S, chooses
sk $← K, and sets pk to be the public key corresponding to the secret key α(sk).
As an example, one can think of K = {0, 1}k, S = {0, 1}� where � =

∑d
i=0

(
k
i

)
,

and α(sk) is the vector of all monomials of degree d; namely, α(x1, . . . , xk) =
(
∏
i∈I xi)|I|≤d, where sk = (x1, . . . , xk) ∈ {0, 1}k. Another example is where

K = {0, 1}k, S = {0, 1}poly(k), and α(sk) as being the vector of all Turing ma-
chines with description length O(log k) and running time at most t (for some
polynomial t), applied to sk. Namely, α(sk) = 〈M(sk)〉M , where M is a Turing
machine with description length O(log k) that runs for at most t steps on sk.
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The encryption algorithm E∗ is identical to E. The decryption algorithm D∗

takes the secret key sk, computes α(sk), and decrypts the ciphertext by applying
the decryption algorithm D with the secret key α(sk)5.

We next exemplify why the scheme E∗ has amplified KDM security. Assume,
for example, that E was entropy-k KDM(1) secure w.r.t. all affine functions.
Consider, as in the example above, α(sk) that is the vector of all monomials of
degree d. Then E∗ is still secure, because it applies the scheme E with a weak
secret key of min-entropy k. Moreover, the fact that E is entropy-k KDM(1)-
secure w.r.t. all affine functions, implies that the scheme E∗ is secure w.r.t.
all affine functions of α(sk), i.e. all degree d polynomials of sk. Similarly, if
α(sk) is the vector of all Turing machines with description length O(log k) and
with running time at most t, applied to sk, then E∗ is KDM(1) secure w.r.t. all
functions computed by these Turing machines.

Thus, Theorem 1.1 provides us with a generic tool to amplify KDM security
of schemes that are entropy-k KDM-secure to begin with. However, the question
that remains is: Do there exist entropy-k KDM-secure schemes?

KDM(1) Security. [8, 3] presented encryption schemes that are KDM(1)-secure
w.r.t. some classes of functions. We argue that these schemes are in fact entropy-
k KDM(1)-secure (for some setting of parameters). This enables us to apply
Theorem 1.1 and amplify KDM(1) security “for free”. Specifically, this implies
KDM(1)-secure schemes w.r.t. degree-d polynomials or bounded description and
bounded running time Turing machines.

KDM(n) security. Two problems arise when trying to utilize Theorem 1.1 to ob-
tain KDM(n) security. First, a direct application of Theorem 1.1 may not produce
the strongest result. Consider, for example, the case of bounded degree polyno-
mials. Even if we had a scheme that was entropy-k KDM(n)-secure w.r.t. affine
functions, Theorem 1.1 would only imply a scheme that is KDM(n)-secure w.r.t.
bounded-degree polynomials where each monomial only contains variables of the
same secret key. Second, we are not able to show entropy-k KDM(n) security for
any scheme and therefore cannot satisfy the conditions of the theorem.

To obtain Theorems 1.4 and 1.5, therefore, additional ideas are required.
Rather than applying Theorem 1.1 directly for KDM(n), we consider the schemes
obtained by Theorems 1.2 and 1.3 for the specific case where H is the class of
all degree-d monomials. We then show that these schemes are not only KDM(1)-
secure w.r.t. degree-d polynomials, but are also KDM(n)-secure w.r.t. the same
class. We emphasize that monomials can contain variables from all secret keys
in the system. This part contains the bulk of technical difficulty of this work.

While the proof for each scheme requires special treatment, the crux of the
idea in both cases is similar. We use the “linear” behavior exhibited by both un-
derlying schemes (in the DDH-based scheme, linearity is in the exponent) which
5 We must require that α is deterministic so that α(sk) evaluates to the same value at

each invocation (and thus is consistent with pk). It is interesting to explore whether
similar techniques can be used when α is a randomized mapping (and thus can even
increase the entropy of α(sk) compared to sk).
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enables the following form of homomorphism: starting from a single public key,
that corresponds to a secret key sk, it is possible to generate a public key that
corresponds to a linearly-related secret key. This is done without knowing the
original secret key sk, only the (linear) relation. We need to be careful in utiliz-
ing this property: as it turns out (and hinted by the intuition of Theorem 1.1
provided above), we need to apply this homomorphism on secret keys whose
coordinates are low-degree monomials. Therefore we cannot use arbitrary linear
transformations to “switch” between secret keys. We solve this problem by pre-
senting a class of linear transformations that do preserve the structure of the
input secret key.

1.3 Other Related Works and Notions

One can consider an “entropy-k” variant for any security measure for public-
key encryption, analogously to our definition of entropy-k KDM security; i.e.,
requiring that the scheme remains secure, in the relative measure, even when
the secret key is sampled from an arbitrary entropy-k distribution. This notion
is incomparable to that of key-leakage resilience, defined by Akavia, Goldwasser
and Vaikuntanathan [2]. On the one hand, the notion of entropy-k security is
weaker since imperfect randomness is only used to generate the secret key, while
the computation of the corresponding public key uses perfect randomness. On the
other hand, key-leakage resilience is weaker since it requires security to hold, with
high probability, over some family of distributions, whereas entropy-k security
requires security to hold for all high min-entropy distributions.

In this work, we restructure the secret key of a public-key encryption scheme
in order to achieve additional properties. Previous works also used a key distri-
bution other than the obvious one to obtain stronger results. In the KDM-secure
scheme of [8], binary vectors in the exponent of a group generator are used as
secret keys, instead of the more natural selection of vectors in Zq. This is done
in order to achieve KDM security w.r.t. the desired function class. In [22], the
secret key distribution of the [8] scheme is again modified, this time using vectors
of higher dimension than required, thus achieving security against key-leakage.
The KDM-secure public-key scheme of [3] is very similar to that of [24], with
one of the changes being that the secret key distribution is selected from a nar-
row Gaussian rather than being uniform. This is done, again, in order for KDM
security to apply w.r.t. the desired set of functions.

In a followup work, Brakerski and Goldwasser [9] present a KDM (and memory
leakage resilient) secure scheme based on the quadratic residuosity assumption.
They then use our techniques to amplify the KDM security of their scheme by
showing that it is entropy-k KDM secure.

1.4 Paper Organization

We provide notation and standard definitions in Section 2, new definitions and
tools appear in Section 3. The KDM amplification theorem (Theorem 1.1) is
formally restated and proven in Section 4, with examples of applying it to specific
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function classes. Due to space limitations, we omit the discussion of our DDH
based solution and refer the reader to the full version [10] for the full details.
Our LWE based construction appears in Section 5, where Theorems 1.3 and 1.5
are formally restated. Many proofs are omitted, see full version [10].

2 Notation and Definitions

We denote scalars in plain lowercase (x ∈ {0, 1}), vectors in bold lowercase
(x ∈ {0, 1}k) and matrices in bold uppercase (X ∈ {0, 1}k×k). All vectors are
column vectors by default. The ith coordinate of x is denoted xi. For a set I, we
use x = 〈xi〉i∈I to denote a vector that is indexed by elements in I.

Vectors in {0, 1}k are treated both as elements in Zkq (for an appropriately
defined q ∈ N) and as elements in Zk2 . We use standard arithmetic notation for
arithmetics over Zkq and use x⊕y to denote the addition in Zk2 (i.e. bitwise XOR
operation).

Let X be a probability distribution. We write x
$← X to indicate that x is

sampled from X . Xn denotes the n-fold product distribution of X . The uniform
distribution over a set S is denoted U(S) but we also denote x

$← S to abbreviate
x

$← U(S). The min entropy of a random variable X is denoted H∞(X). For any
function f , f(X) denotes the random variable (or corresponding distribution)
obtained by sampling x

$← X and outputting f(x).
We write negl(n) to denote an arbitrary negligible function, i.e. one that van-

ishes faster than the inverse of any polynomial.
The statistical distance between two distributions X,Y is denoted SD(X,Y ).

Two ensembles {Xn}n, {Yn}n are statistically indistinguishable if SD(Xn, Yn) =
negl(n), and are computationally indistinguishable if for every poly(n)-time ad-
versary A it holds that |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| = negl(n).

Let M be a deterministic Turing Machine. We use |M | to denote the descrip-
tion length of M and use execute(M, 1t, x) to denote the content of M ’s output
tape after running on x for t computation steps. Clearly execute(M, 1t, x) is
computable in time poly(|M | , t).

2.1 Learning with Errors (LWE)

We use the decisional version of the LWE ([24]) assumption. For any m,n, q ∈ N

such that q > 2, all functions of the security parameter λ, and any probabil-
ity distribution χ on Zq, the LWEq,m,n,χ assumption is that the distributions
(A,As+x) and (A,u) are computationally indistinguishable, where A $← Zm×n

q ,
s $← Znq , x $← χm, u $← Zmq .

We remark that the search version of the assumption, where the challenge is
to find s, is equivalent to the decisional version, for prime q, under poly(q)-time
reductions. It is shown in [3] that this equivalence also holds for q = pe, for
integer constant e and prime p, provided that χ is a distribution over Zq that
produces an element in {− p−1

2 , . . . , p−1
2 } with all but negligible probability.



Black-Box Circular-Secure Encryption beyond Affine Functions 209

Worst-case to average-case reductions ([24, 23]) can be used to obtain a con-
nection between LWE instances and worst case lattice problems, for some (Gaus-
sian like) distribution χ.

Noise Distributions. In our construction, we use distributions that are derived
from Gaussians. For any σ > 0, we denote Dσ(x) = e−π(x/σ)2/σ, the (scaled)
density function of the one dimensional Gaussian distribution. For any q ∈ N

and σ > 0 we define Ψ̄σ to be the distribution over Zq obtained by sampling
y

$← Dσ and outputting q · y! (mod q). We define DZm,σ to be the distribution
over all x ∈ Zm such that Pr[x] is proportional to

∏
i∈[m] Dσ(xi). We note that

this distribution is efficiently sampleable for any σ > 0.

2.2 KDM Security

A public-key encryption scheme E = (G,E,D) is defined by its key generation,
encryption and decryption algorithms. The key generation algorithm G takes as
input the unary vector 1λ, where λ is called the security parameter of the scheme.
All other parameters of the scheme are parameterized by λ. We let S = {Sλ}
denote the space of secret keys and M = {Mλ} denote the message space of
the encryption scheme. We refer the reader to [15] for a formal definition of
encryption schemes and their security.

In the scenario of key-dependent messages, we wish to model the case where
functions of the secret key can be encrypted, and require that the resulting
ciphertexts are indistinguishable from encryptions of 0. We want our definition
to apply also for the case of “key cycles” where a function of one user’s secret key
is encrypted by another’s public key and vice versa. The most inclusive definition,
therefore, is parameterized by the number of users n and allows encrypting a
function of the entire vector of n secret keys under any of the corresponding
public keys (this is sometimes referred to as “clique security”). An additional
parameter to be considered is the set of functions of the secret key that we allow
to encrypt. We use the definition presented in [8].

Formally, let E = (G,E,D) be a public key encryption scheme, n > 0 be an
integer, S = {Sλ} be the space of secret keys, and let F = {Fλ} be a class of
functions such that Fλ ⊆ Snλ →Mλ.

We define the KDM(n) game, w.r.t. the function class F , played between a
challenger and an adversary A, as follows.

– Initialize. The challenger selects b
$← {0, 1} and generates, for all i ∈ [n],

key pairs (ski, pki)
$← G(1λ). The challenger then sends {pki}i∈[n] to A.

– Query. The adversary makes queries of the form (i, f) ∈ [n]×Fλ. For each
query, the challenger computes y ← f(sk1, . . . , skn) and sends the following
ciphertext to A.

c←
{

Epki
(y) if b = 0

Epki
(0) if b = 1.

– Finish. A outputs a guess b′ ∈ {0, 1}.
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Adversary A wins the game if b′ = b. The scheme is secure if the advantage
KDM(n)Adv[A, E ](λ) = |Pr[b′ = b]− 1/2| of any polynomial time A is negligible.

We use KDM(n)
F to denote KDM security w.r.t. the function class F .

3 New Definitions and Tools

3.1 Projective Encryption Schemes and Weak Keys

Projection. Throughout this paper, we only consider encryption schemes that
have a projection between the secret and public key. Namely, the key generation
can be described as first sampling the secret key from some set and then apply-
ing an efficiently computable projection function (which can be randomized) to
generate the public key.

Definition 3.1 (projection). Let E = (G,E,D) be a public-key encryption
scheme. E is projective if G(1λ) = (sk, pk = Proj(sk)) where sk $← S and Proj(·)
is an efficiently computable (possibly randomized) function.

We remark that many known encryption schemes are indeed projective, e.g.
[26, 14, 24, 8, 3] and others. We further remark that any secure scheme can be
modified to be projective by using the randomness of the key generation as the
secret key. However such transformation does not preserve KDM security and
thus we will need to require projection explicitly.

Weak Keys and Entropy-k Security. We are also interested in a more specific
case where a (projective) scheme remains secure even when the key generation is
“improper”: the secret key is sampled from an arbitrary distribution on S that
has min-entropy k. The projection is then applied to the sampled value.

We can think of an “entropy-k variant” of any security notion σ, we thus
provide a general definition. In this work, however, we instantiate this definition
with σ being KDM security.

Definition 3.2 (entropy-k security). Let E = (G,E,D) be a projective public-
key encryption scheme and let σ be some security notion. Consider a distribution
ensemble D = {Dλ} over S = {Sλ}. Let GD denote the following key-generator:
GD(1λ) = (sk,Proj(sk)) where sk← Dλ.

Let k : N→ R+ be some function. E is entropy-k σ-secure if for any ensemble
D with H∞(Dλ) ≥ k(λ) it holds that ED(GD, E,D) is σ-secure.

We stress that entropy-k security, as defined above, is a notion incomparable
to that of key-leakage resilience (as defined in [2, 22]). On the one hand, the
notion of entropy-k security is weaker since imperfect randomness is only used
to generate the secret key, while the projection Proj(·) uses perfect randomness to
compute the corresponding public key. On the other hand, key-leakage resilience
is weaker since it requires security to hold with high probability over some family
of distributions, whereas entropy-k security requires security to hold for all high
min-entropy distributions.
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3.2 Transformations on Expanded Secret Keys

Let q be some modulus. The set of affine functions modulo q on Zkq is

Faff = {ft,w(x) = tTx + w : (t, w) ∈ Zkq × Zq} .

Degree-d polynomials over k variables can be viewed as affine functions applied
to the vector of degree-d monomials. While we consider polynomials over Zq,
we only apply them to binary variables, x ∈ {0, 1}k. We define a mapping γk,d
that maps x ∈ {0, 1}k into the vector containing all monomials of degree d of
the variables of x.

Definition 3.3 (the vector of monomials γk,d). For all k, d ∈ N and x ∈
{0, 1}k, we define the vector of all degree-d monomials in x by

γk,d(x) =
〈∏
j∈J

xj

〉
J⊆[k],
|J|≤d

.

In other words, letting νk,d =
∑d

j=0

(
k
j

)
denote the number of such degree-d

monomials, γk,d : {0, 1}k → {0, 1}νk,d is a mapping between vectors. We denote
its image by Γk,d =

{
γk,d(x) : x ∈ {0, 1}k

}
.

It follows immediately from the definition that γk,d is injective, since (γk,d
(x)){i} = xi, and thus that |Γk,d| = 2k.

Intuitively, in the context of KDM security amplification, x is our “real” secret
key, whereas γk,d(x), the expanded version of x, is used as a “secret key” for a
scheme that is KDM-secure w.r.t. affine functions. This results in a KDM-secure
scheme w.r.t. degree-d polynomials.

We denote the set of all degree-d polynomials over Zq with binary variables
x ∈ {0, 1}k by

Fd = {ft(x) = tT · γk,d(x) : t ∈ Z�q} .

Note that γk,d(x)∅ = 1, i.e. the vector of monomials contains the empty mono-
mial that always evaluates to 1. Therefore there is no need for an additional free
term w as in the definition of affine functions6.

The following lemma states that that given y ∈ {0, 1}k, we can efficiently
compute a matrix T ∈ Z�×�q such that for all x ∈ {0, 1}k it holds that T ·
γk,d(x) = γk,d(x⊕ y). We think of y as the known relation between secret keys
x and x ⊕ y. The transformation T allows us to convert the expanded version
of x to the expanded version of x ⊕ y, i.e. to convert γk,d(x) into γk,d(x ⊕ y).
For proof of the lemma, see the full version [10].
6 We remark, for the interested reader, that for our DDH based scheme, described in

the full version [10], we need to define the analogous sets of affine functions in the
exponent and degree-d polynomials in exponent over Gk:

F̂aff = {ht,w(gx) = gtT x+w : (t, w) ∈ Z
k
q × Zq}

F̂d = {ht(gx) = gtT ·γk,d(x) : t ∈ Z
�
q} ,

where G is a group of order q and g is a generator of G.
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Lemma 3.4. For all k, d, q ∈ N such that q > 2, there exists an efficiently
computable function Tk,d,q : {0, 1}k → Z�×�q , where � = νk,d, such that setting
T = Tk,d,q(y), for all x ∈ {0, 1}k it holds that T·γk,d(x) = γk,d(x⊕y). Moreover
T is an involution, i.e. T2 is the identity matrix.

4 Amplification of KDM Security

In this section we give a general result: We show that an entropy-k KDM-secure
scheme, w.r.t. a certain class of functions, can be converted into various schemes
that are KDM-secure w.r.t. richer classes. We start by stating the general result
in Section 4.1 and then, in Section 4.2, we present corollaries for specific classes
of functions.

4.1 Main Theorem

Before stating our theorem, let us give some intuition for how KDM security can
be amplified for projective entropy-k schemes (as defined in Section 3.1).

Consider, for example, a projective encryption scheme E that is entropy-k
KDM-secure w.r.t. the class of indexing functions I = {hi(s) = si} or, in other
words, a bit by bit encryption of the secret key is secure. Entropy-k security in
particular means that we can sample the secret key sk = s ∈ {0, 1}� as follows:
first, sample the first k bits uniformly, call this part x; then, set the remaining
bits of s to si = fi(x), where {fi}i=k+1,...,� is an arbitrary class of efficiently
computable deterministic functions. The resulting secret key distribution has
min-entropy k and thus E is still KDM-secure w.r.t. I with the resulting secret
key distribution. Namely, E is secure w.r.t. the functions hi(s) = si = fi(x).
Therefore, we can convert E into a scheme E∗ by setting the secret key in E∗ to
be x. This E∗ is KDM-secure w.r.t. indexing functions as well as the functions
{fi}i=k+1,...,�.

Theorem 1.1 (restated). Let E = (G,E,D) be a projective public-key en-
cryption scheme that is entropy-k KDM(n)-secure w.r.t. a function class F . Let
S = {Sλ} be the space of secret keys.

Let K = {Kλ} be a family of sets such that |K| ≥ 2k and let α : K → S be a
deterministic, efficiently computable and injective function. Then there exists a
projective encryption scheme E∗α = (G∗, E∗, D∗) with secret key space K that is
KDM(n) secure w.r.t. F ◦ α = {(f ◦ α)(sk1, . . . , skn) = f(α(sk1), . . . , α(skn)) :
f ∈ F}.

Proof. Consider the ensemble D where Dλ = α(U(Kλ)) and consider the scheme
ED = (GD, E,D) as in Definition 3.2. E∗α is similar to ED with the following mod-
ifications. G∗(1λ) first samples sk∗ $← K and then computes pk = Proj∗(sk∗) =
Proj(α(sk∗)). Note that the distribution of the public keys is identical to that
of ED while the distributions of secret keys differ. The encryption E∗ is per-
formed identically to E. The decryption D∗

sk∗(c) is performed by first computing
sk = α(sk∗) and then outputting Dsk(c).
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Since α is injective, it holds that H∞(Dλ) ≥ k, and thus by definition, ED is
KDM(n)-secure w.r.t. F .

We next show that for any adversary A∗ for the KDM(n) game with E∗α, there
exists an adversary A for the KDM(n) game with ED such that

KDM(n)
F Adv[A, ED](λ) = KDM(n)

F◦αAdv[A∗, E∗α](λ) ,

completing the proof of the theorem. Our adversaryA will simulateA∗ as follows.

– Initialize. Since the public key distributions of ED and E∗α are identical, A
forwards its input pk1, . . . , pkn to A∗.

– Queries. When A∗ sends the query (i, f ◦ α) ∈ [n] × (F ◦ α), A sends
the query (i, f)7. Let sk∗

i denote the secret key corresponding to pki in E∗α,
then by definition ski = α(sk∗

i ) is the secret key corresponding to pki in
ED. Therefore f(sk1, . . . , skn) = (f ◦α)(sk∗

1, . . . , sk
∗
n), and A can forward the

answer to A∗. Thus, A can simulate any query made by A∗ during the game.
– Finish. When A∗ returns b′, A also terminates and returns the same b′.

Since A simulates A∗ exactly, it follows that A achieves the same advantage in
the KDM(n) game with ED as A∗ does with E∗α. 	


4.2 Exemplifying for Specific Function Classes

We demonstrate specific cases where Theorem 1.1 amplifies KDM security. We
restrict our attention to KDM(1) security (see discussion below).

– Bounded description functions. We first show how to amplify the class of in-
dexing functions I = {hi(s) = si} into the class of all functions computable
by a Turing machine with bounded description length and bounded running
time. Let E be an entropy-k KDM(1)-secure encryption scheme w.r.t. the
class of indexing functions, with message space M = {0, 1} and secret key
space S = {0, 1}�. Let K = {0, 1}k and α(x) = 〈execute(M, 1t(λ),x)〉|M|≤log �
where t(·) is some (fixed) polynomial. Then E∗α, defined in the proof of The-
orem 1.1, is KDM(1)-secure w.r.t. all functions computable by a Turing ma-
chine with description length log � and running time t(λ)8.

– Bounded degree polynomials. We now show how to amplify the class of affine
functions into the class of bounded degree polynomials. Let E be an entropy-k
KDM(1)-secure encryption scheme w.r.t. the class of affine functions F� → F,
with M = F and S ⊆ F�, for a finite field F. Let K = {0, 1}k ⊆ Fk and let
d be such that � = νk,d (see Definition 3.3), this implies that d is at least

log �
log(k+1) . Consider α(x) = γk,d(x), i.e. α contains all degree d monomials.

Then E∗α, defined in the proof of Theorem 1.1, is KDM(1)-secure w.r.t. all
degree-d polynomials Fk → F.

7 We represent f ◦ α in such a way that enables to derive f .
8 One has to be careful when showing that α is injective. We can either assume that the

first k coordinates of the output contain the input, or, if � is sufficiently larger than
k, we can rely on the short description and running time of the indexing functions.
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We provided examples only for the case of KDM(1) security for two reasons.
First, while in Section 5.2 we present entropy-k KDM(1)-secure schemes based
on the LWE assumption9, we are unable to obtain entropy-k KDM(n)-secure
schemes for n > 1. Second, even if such exist, the result of applying Theorem 1.1
for the classes above would be weaker than expected. This is because while the
functions in the class F are applied to the vector of n secret keys, the mapping
α is only applied to one secret key at a time. Therefore, the first example above
would imply KDM(n) security w.r.t. Turing machines that only take one of the
secret keys as input; the second would imply KDM(n) security w.r.t. degree-d
polynomials where each monomial only contains variables from one secret key.

5 LWE Based KDM Security

For any constant d, we present a scheme that is KDM(n) secure w.r.t. all degree-
d polynomials, Fd. We also present a scheme that is KDM(1)-secure w.r.t. the
class of all functions computed by Turing machines with description length at
most log t and running time t, for some polynomial t (more generally, w.r.t. any
class of efficiently computable functions of polynomial cardinality). Our starting
point is the LWE based scheme presented in [3], which we denote EACPS, which
is extended using ideas from Section 4.

First, in Section 5.1, we present the relevant previous work, in this case -
the scheme of [3], denoted EACPS. Then, in Section 5.2, we prove the entropy-k
KDM(1) security of EACPS w.r.t. affine functions Faff, and present the conse-
quences of applying Theorem 1.1 to EACPS. Finally, in Section 5.3, we show that
in the special case of degree-d polynomials, we can in fact prove KDM(n) security
of the scheme obtained from Theorem 1.1.

5.1 Scheme EACPS

We present the EACPS[S] scheme which is similar to the scheme presented in [3].
The only difference is that we take the distribution of secret keys as a parameter.
We also use slightly different notation for consistency with the rest of this paper.

– Parameters. Let p be a prime and q = p2. We set �,m ∈ N to be polynomial
functions of λ such that m ≥ 2(�+ 1) log q. Let χ = Ψ̄σ for σ = σ(λ) ∈ (0, 1)
such that σ ≤ 1

p·
√
m·ω(log λ) . We also fix some τ = ω(

√
logλ). Finally, let

S ⊆ Z�p. The secret key space is S and the message space is Zp.
– Key Generation. On input 1λ, sample s $← S and set sk = s10. Then,

sample A $← Zm×�
q and η

$← χm and set pk = (A,A · s + η) ∈ Zm×�
q × Zmq .

– Encryption. Define the distribution EA,b in Z�q × Zq as follows. EA,b

samples r $← DZm,τ , e
$← Ψ̄τ ′ where τ ′ = τ

√
m(σ + 1

2q ) and outputs
(AT · r,bT · r + e) ∈ Z�q × Zq.

9 An additional DDH based example is provided in the full version [10].
10 In [3], s is sampled from the distribution χ�.
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On input a public key pk = (A,b) and a message w ∈ Zp, the encryption
algorithm samples (u, v) $← EA,b and outputs

(u, v + w · p) .

– Decryption. On input a secret key s and a ciphertext (u, c), the decryption
algorithm outputs ⌊(

c− uT · s (mod q)
)
/p
⌉

(mod p) .

When σ ≤ 1
p·
√
m·ω(log λ) , correctness (for any s ∈ Z�p) follows directly from [3].

5.2 Amplification of KDM(1) Security

We use Theorem 1.1 to amplify the KDM(1) security of EACPS. We say that a
finite set of functions, H = {h1, . . . , h�}, with a common domain, is entropy
preserving if αH(x) = (h1(x), · · · h�(x)) is an injective function.

Theorem 1.3 (restated). Let p be a prime number that is super-polynomial
in λ and denote q = p2. Let m, �, σ, χ be as in the parameters of EACPS. Let k ≤ �

and set k′ = k−ω(log λ)
log q . Let β = β(λ) ∈ (0, 1) be such that β

σ = negl(λ) and
denote χ′ = Ψ̄β. Let H = {h1, . . . , h� : hi ∈ {0, 1}k → {0, 1}} be an entropy
preserving class of efficiently computable functions with cardinality � = poly(λ).
Then under the LWEq,m,k′,χ′ assumption, there exists a public-key encryption
scheme that is KDM(1) secure w.r.t. function class

FH =
{
f(x) =

∑
i∈[�]

tihi(x) + w (mod p) : (t, w) ∈ Z�p × Zp

}
.

Before we outline the proof, let us discuss the parameters of our hardness as-
sumption. The decisional LWEq,m,k′,χ′ assumption (see Section 2.1) is equivalent
to the search version under a poly(q)-time reduction. The search version, in turn,
is shown in [24] to correspond to worst-case lattice problems, under quantum
reductions. In [23], a classical reduction from other worst-case lattice problems
to search LWE is shown. Thus, we can set p and q to be quasi-polynomial in λ,
set β ≥ n/q and set σ

β to be quasi-polynomial in λ as well (recall that for correct-
ness we must take σ ≤ 1

p·
√
m·ω(log λ) , so we cannot set σ to be too large, but one

can verify that a proper selection of parameters exists). Using such parameters
we can relate the security of our scheme to either the worst case hardness of
obtaining a quasi-polynomial approximation factor for a lattice problem such as
GapSVP, using quasi-polynomial time quantum algorithms, or to the worst case
hardness of obtaining a classical quasi-polynomial time algorithm for a lattice
problem such as GapSVPζ,γ with quasi-polynomial ζ.

To prove Theorem 1.3, we employ Theorem 1.1. As a precondition, we will
need to establish entropy-k KDM(1) security for EACPS, which is not straight-
forward. We do this in two steps. First, we prove KDM(1) security based on a
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nonstandard assumption. Then, we use a result of Goldwasser, Kalai, Peikert and
Vaikuntanathan [16] that implies that for the parameters of Theorem 1.3, LWE
reduces to our new assumption, thus ultimately basing our scheme on standard
decisional LWE. We remark that it may be possible to achieve better parameters
than stated in Theorem 1.3 using a more efficient reduction, if such exists. See
full version [10] for details and proof.

In the specific case of using the set of all degree-d monomials as the function
class H, we obtain a KDM(1)-secure scheme w.r.t. Fd, all degree-d polynomials
modulo p. We describe this scheme, E211, explicitly. In Section 5.3 we show that
E2 is KDM(n)-secure w.r.t. Fd. (γk,d, νk,d, Γk,d were defined in Definition 3.3.)

Encryption Scheme E2. Let k, d ∈ N and consider p, q,m, σ, χ, τ , as in the defini-
tion of EACPS[Γk,d], specifically let � = νk,d. The secret key space of E2 is {0, 1}k
and the message space is Zp.

– Key Generation. On input 1λ, select x $← {0, 1}k and set sk = x. We
denote s = γk,d(x) and note that s is uniform in Γk,d. The public key pk is
generated as in EACPS[Γk,d]. Namely, pk = (A,A · s+ η) ∈ Zm×�

q ×Zmq . Note
that the distributions of the public keys in E2 and EACPS[Γk,d] are identical.

– Encryption. On inputs a public key pk and message w, the encryption
algorithm runs the encryption algorithm of EACPS[Γk,d] with the same inputs.

– Decryption. On inputs a secret key sk = x ∈ {0, 1}k and a ciphertext
(u, c), the decryption algorithm uses x to obtain s = γk,d(x). Decryption
proceeds as in EACPS[Γk,d], with inputs a secret key s and a ciphertext (u, c).

5.3 KDM(n) Security w.r.t. Degree-d Polynomials

We show that E2 is KDM(n)-secure w.r.t. Fd. For proof, see full version [10].

Theorem 1.5 (restated). Consider the scheme E2 with p being super-polynomial
in λ. Let k′ = k−ω(log λ)

log q and let β = β(λ) ∈ (0, 1) be such that β
σ = negl(λ).

Define χ′ = Ψ̄β. Under the LWEq,m·n,k′,χ′ assumption, E2 is KDM(n)-secure
w.r.t. the class of degree-d polynomials modulo p.

Note that if LWEq,m·n,k′,χ′ is hard for all n = poly(λ), then E2 is KDM(n)-secure
for any polynomial number of “users”. We also note that as in Theorem 1.3,
the LWE assumption we rely on is related to worst-case lattice problems. See
discussion in Section 5.2 for more details.
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Abstract. We show how to transform any additively homomorphic
private-key encryption scheme that is compact, into a public-key encryp-
tion scheme. By compact we mean that the length of a homomorphically
generated encryption is independent of the number of ciphertexts from
which it was created. We do not require anything else on the distribu-
tion of homomorphically generated encryptions (in particular, we do not
require them to be distributed like real ciphertexts).

Our resulting public-key scheme is homomorphic in the following
sense. If the private-key scheme is i+1-hop homomorphic with respect to
some set of operations then the public-key scheme we construct is i-hop
homomorphic with respect to the same set of operations.

1 Introduction

Homomorphic encryption is a paradigm that refers to the ability, given encryp-
tions of some messages, to generate an encryption of a value that is related to the
original messages. Specifically, this ability means that from encryptions of k mes-
sages m1, . . . ,mk it is possible to generate an encryption of m∗ = f(m1, . . . ,mk)
for some (efficiently computable) function f . Ideally, one may want the homo-
morphically generated encryption of m∗ to be distributed identically (or statisti-
cally close) to a standard encryption of m∗ (even given the original ciphertexts).
We call schemes that have this property distribution-preserving homomorphic en-
cryption schemes. Indeed, some proposed homomorphic encryption schemes are
distribution-preserving w.r.t some algebraic operations such as addition or mul-
tiplication (e.g. Goldwasser-Micali [10], El-Gamal [5]).

For some applications, it seems as though distribution-preserving homomor-
phic encryption is an overkill. There are weaker notions of homomorphic en-
cryption that might be easier to construct and still suffice for these applications.
The very minimal requirement is that a homomorphically generated encryption
decrypts correctly to the corresponding message. Alas, this minimalistic require-
ment does not seem to be useful as is, because it captures schemes that we do
� This research was partially supported by the Israel Science Foundation (grant

No. 1041/08).
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not really consider to be homomorphic: Actually, any encryption scheme can
be slightly modified to satisfy this requirement w.r.t any efficient operation1. A
more meaningful notion is obtained by restricting the length of the homomor-
phically generated encryption. Specifically, we call a homomorphic encryption
scheme compact if homomorphically generated encryptions properly decrypt to
the correct message and their lengths depend only on the security parameter
and the message length (and not on the number of input ciphertexts). Note
that every distribution preserving homomorphic scheme is compact whereas the
converse does not hold. Thus, the compactness property is strictly weaker than
being distribution-preserving.

1.1 Private-Key vs. Public-Key

When discussing homomorphic encryption, we did not specify whether we con-
sider private-key or public-key encryption schemes. Indeed, one can define ho-
momorphic encryption in both settings (with only minor differences). The focus
of this paper is showing the connection between public-key and private-key ho-
momorphic encryption.

The easy direction is showing that a public-key homomorphic encryption
scheme can be transformed into a private-key homomorphic scheme. This trans-
formation is quite simple and involves only a minor issue. Intuitively, it seems
as though any public-key homomorphic scheme is a private-key homomorphic
scheme. The only problem is that in the public-key setting (in contrast to
the private-key one), the homomorphic evaluation algorithm is also given the
encryption-key. A simple transformation that addresses this issue is to append
the encryption-key to each ciphertext. The resulting private-key scheme clearly
retains the homomorphic properties of the public-key scheme (this holds for both
distribution-preserving or merely compact homomorphic schemes).

The harder direction is showing that a private-key homomorphic encryption
scheme implies a public-key one. This direction will be addressed by our main
result, Theorem 2, which basically states that any compact additively homo-
morphic private-key encryption scheme can be transformed into a public-key
encryption scheme. We present two such constructions both of which partially
retain the homomorphic properties of the underlying private-key scheme (see
Section 1.2).

We note that it is quite easy to transform a distribution preserving homomor-
phic private-key scheme into a distribution preserving homomorphic public-key
one. In fact, this transformation was used by Barak [1] in his exposition of the
work of van Dijk et al. [3]. For further discussion, see Section 1.4.

1 Consider implementing the homomorphic evaluation algorithm as the identity func-
tion. That is, given ciphertexts and a description of an operation, just output both.
Then, modify the decryption algorithm to first decrypt all the ciphertexts and then
apply the operation to the decrypted messages. Thus, homomorphic evaluation is
delegated to the decryption algorithm that, using the decryption key, can trivially
evaluate the required operation.
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1.2 Homomorphic Properties of the Public-Key Scheme

So far we have described homomorphic evaluation as a one-shot process, however
one can consider repeated applications of the homomorphic evaluation algorithm.
For distribution-preserving homomorphic encryption it is possible to do this
because homomorphically generated values are identical (or statistically close)
to real ciphertexts. For compact homomorphic encryption, the homomorphically
generated encryptions can completely differ from actual ciphertexts, hence it is
unclear that it is possible to keep computing on such homomorphically generated
data. Gentry et al. [7] called a scheme that supports i such repeated applications
an i-hop homomorphic encryption scheme.

The public-key schemes that we construct are homomorphic in the following
sense. If the original private-key scheme is (i + 1)-hop homomorphic w.r.t some
set of operations (which must include addition modulo 2), then the public-key
schemes are i-hop homomorphic w.r.t the same set of operations. That is, we
lose one application of the homomorphic operation in the construction.

1.3 Connection to Prior Work

It is possible to combine previous results to construct a public-key encryption
scheme from a compact additively homomorphic private-key scheme. However,
the resulting public-key scheme does not (necessarily) retain the homomorphic
properties of the private-key scheme. The indirect construction works as follows.

Kushilevitz and Ostrovsky [12] show that a compact additively homomorphic
public-key scheme can be used to construct a two-message private information
retrieval (PIR) protocol but their construction also works when using a private-
key scheme (that is compact additively homomorphic). Di Crescenzo et al. [2]
show that such a PIR protocol implies a two-message oblivious transfer (OT)
protocol which in turn easily implies a public-key encryption scheme.

The public-key scheme constructed by combining these results is not neces-
sarily homomorphic. Our simpler direct constructions retain the homomorphic
properties of the private-key scheme (in the sense outlined in Section 1.2). Ad-
ditionally, our schemes are fairly efficient and do require the amplification step
used in [2] (to construct OT from PIR).

1.4 Technique

The intuition for how to move from private to public-key can be seen in a more
straightforward manner in the case of distribution preserving homomorphic en-
cryption. The following construction was suggested implicitly in [1].

LetE andD be the respective encryption and decryption algorithm of a private-
key encryption scheme. Suppose that the scheme is distribution-preserving homo-
morphic w.r.t the identity function. That is, it is possible to “re-randomize”
ciphertexts2. Such a scheme can be used to construct a public-key bit-encryption
2 This means that there exists an algorithm RR such that for any encryption c of a

bit b, the output of RR(c) is distributed identically to Ee(b).
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scheme3 as follows. The (private) decryption-key is a key k of the private-key
scheme and the (public) encryption-key consists of an encryption of 0 and an
encryption of 1 (i.e. Ek(0) and Ek(1)). To encrypt a bit σ just re-randomize
the ciphertext corresponding to σ. To decrypt, apply the private-key decryption
algorithm using k (i.e. Dk).

The security of this construction follows from the fact that after
re-randomization, all information on the original ciphertext, which was
re-randomized, is completely lost. However, if the private-key scheme is only
compactly homomorphic then we do not have a guarantee on the distribution of
the homomorphically generated ciphertext and the above transformation fails.
Hence, we use more complicated constructions, outlined next.

We present two constructions of public-key bit-encryption schemes based on
any private-key scheme that is compactly homomorphic w.r.t addition modulo
2. The first construction was suggested to us by Yuval Ishai after we discovered
the second construction. Both constructions are fairly straightforward but the
first construction has a very simple proof. The second construction has a more
complex proof based on an information-theoretic theorem, which may be of
independent interest.

For both constructions the basic idea is to run the homomorphic algorithm,
which outputs at most m bits, on more than m ciphertexts, and so forcing
the algorithm to somehow actually compress the input ciphertexts. In the first
construction, the decryption-key is once again a key k of the private-key scheme.
The encryption-key consists of a random � bit string r, where � � m, together
with a sequence of encryptions of the bits of r using the key k. To encrypt a
bit σ, a random vector s ∈ {0, 1}� is selected such that the inner product of r
and s equals σ. The homomorphic operation is then applied to the subset of the
� ciphertexts in the encryption-key, that correspond to coordinates in which s
equals 1. Since the ciphertexts in the public-key are encryptions of the bits of
r, the encryption process produces a homomorphically generated encryption of
the inner product of r and s, which equals σ.

To show that this construction is semantically secure we consider, as a mental
experiment, changing the key generation algorithm to encrypt zeros instead of
the bits of r in the public encryption-key. We then consider an adversary that
is given an encryption of a random bit (under this new scheme) and is asked to
guess the bit. Observe that the encryption process now depends solely on s and
does not contain any information on r. Thus, in essence, the adversary is given
the � bit string r and m bits of information on s, where m � � and is asked
to find 〈r, s〉. Using the Leftover Hash Lemma, we show that it is impossible
to predict 〈r, s〉 with probability that is noticeably greater than 1

2 . Thus, an
adversary for the proposed public-key scheme would imply a distinguisher for
the underlying private-key scheme that distinguishes between � encryptions of
random bits and � encryptions of 0.

3 A bit-encryption scheme is a public-key encryption scheme that only handles single-
bit messages. Such schemes suffice to construct full-fledged public-key encryption
schemes (see [8]).
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The second construction is somewhat similar, however its proof of security is
more complex and is based on an information-theoretic theorem, which may be
of independent interest. Again, the decryption-key is a key k of the private-key
scheme but the public-key consists of two lists of ciphertexts; the first is a list of
� encryptions of 0 and the second is a list of � encryptions of 1. To encrypt a bit
σ we choose a random subset S ⊆ [�] that has parity σ (i.e. |S| ≡ σ mod 2). We
use S to select � ciphertexts from the public-key by selecting the i-th ciphertext
from the first list if i /∈ S (and from the second if i ∈ S). By homomorphically
adding the selected ciphertexts modulo 2, we obtain a ciphertext that correctly
decrypts to σ.

To prove security, once again we consider a mental experiment in which both
lists in the public-key are encryptions of 0. Because the mental experiment is
computationally indistinguishable from the actual scheme, proving that the orig-
inal scheme is secure reduces to showing that when both lists consist of encryp-
tions of 0, it is essentially impossible to find the parity of the random subset
used in the homomorphic encryption process.

We prove the latter via the following information-theoretic theorem: Let X1,
. . . , X� and Y1, . . . , Y� be independent and identically distributed over a finite
set Ω and let S be a random subset of [�]. We consider the list Z, defined as
Zi = Xi for i /∈ S and Zi = Yi for i ∈ S. The theorem states that it is essentially
impossible to guess the parity of S based on X , Y and m bits of information on
Z. That is, any such guess will be correct with probability that is bounded by
(roughly) 1

2 + 2−Ω(�−m). The proof of the information-theoretic theorem makes
use of the Efron-Stein decomposition [4], an extension of Fourier analysis for
product distributions.

Remarks. First we mention that both of our constructions are secure even
if we use a weaker definition of compact homomorphic encryption. Specifically,
when homomorphically adding ciphertexts, the output can be of length that
is a sub-linear function of the number of input ciphertexts (rather than being
independent of it).

We also mention that while our definition of compact homomorphic encryption
considers homomorphic operations over arbitrarily many ciphertexts, one might
instead consider compact homomorphic encryption over just two ciphertexts.
However, this definition can be implemented trivially4 and a more meaningful
notion is obtained by requiring that the homomorphic operation support multiple
hops. Our constructions can be implemented by a scheme that satisfies the new
definition by implementing the homomorphic addition of � ciphertexts using a
logarithmic number of hops.

1.5 Application of Our Construction to Fully-Homomorphic
Encryption

Our generic transformation from private-key to public-key encryption can be used
as a general methodology for constructing (compact) homomorphic public-key
4 As in Footnote 1 while keeping the ciphertexts sufficiently short.
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encryption. One application of this methodology, which actually motivated this
work, is to simplify the presentation of the DGHV fully-homomorphic encryption
scheme [3].

A fully-homomorphic encryption scheme is an encryption scheme that is ho-
momorphic w.r.t any (efficiently computable) function. The concept of fully-
homomorphic encryption was first proposed by Rivest et al. [13] in the 70’s, but
the first concrete proposal was only made recently in the breakthrough work of
Gentry [6].

Building on the work of Gentry [6], van Dijk et al. [3], proposed a simpler
fully-homomorphic public-key scheme. From a high-level view, the DGHV fully
homomorphic scheme is constructed by first proposing a simple private-key ho-
momorphic scheme that is only “somewhat” homomorphic (that is, homomor-
phic w.r.t some restricted functions), and then showing how to modify this
scheme into a somewhat homomorphic public-key scheme. Finally, using the
bootstrapping technique of [6] the somewhat homomorphic public-key scheme is
transformed into a fully-homomorphic public-key scheme.

One way in which our transformation can be used is to replace the afore-
mentioned modification (i.e. from private-key to public-key) that uses specific
properties of the DGHV scheme. The advantage is that our transformation is
generic. Although the somewhat homomorphic public-key scheme constructed
by our transformation is slightly different from the one of [3], the final steps of
bootstrapping (see [6]) and reducing the (multiplicative) depth of the decryption
circuit can still be applied to both of our constructions.

An alternate way to use our transformation is to first construct a compact
fully-homomorphic private-key scheme and then, using our generic transforma-
tion, to obtain a compact fully-homomorphic public-key scheme. We believe that
this approach simplifies the presentation of the scheme because the bootstrap-
ping step is done on the simpler private-key scheme. This approach was suggested
by Barak [1] for one of the variants of DGHV that is actually distribution-
preserving. However, using our transformation, the approach can be extended to
the compact variants as well.

The two approaches to construct fully homomorphic encryption based on the
DGHV scheme are depicted in Figure 1.

2 Preliminaries

For a set S, we denote by x ∈R S a random element uniformly distributed in
S. Similarly, we denote by X ⊆R S a uniformly distributed random subset of S.
For a vector X = X1, . . . , X� and a set I ⊆ [�], we denote by XI the projection
of X to coordinates in I; i.e. if I = {i1, . . . , im}, where i1 < · · · < im, then
XI = Xi1 , . . . , Xim .

Non-Standard Notation. For every � ∈ N, random variables X = X1, . . . , X�

and Y = Y1, . . . , Y� and set S ⊆ [�], we denote by XSYS , the random variable
Z = Z1, . . . , Z� where Zi = Xi for i /∈ S and Zi = Yi for i ∈ S.
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Somewhat Homomorphic
Private-Key Scheme

Somewhat Homomorphic
Public-Key Scheme

Fully-Homomorphic
Private-Key Scheme

Fully-Homomorphic
Public-Key Scheme

By modification [3]
or generically by Theorem 2

[6] + [3]

[6] + [3] Generically
by Theorem 2

Fig. 1. Constructing the compact homomorphic variant of the DGHV fully-
homomorphic public-key scheme

2.1 Encryption Schemes

We follow notations and definitions of [8]. In particular we use their definition
of semantically secure encryption schemes, both in the private-key and public-
key settings. Throughout this paper we restrict our attention to bit-encryption
schemes, i.e., schemes that encrypt a single bit. For simplicity, we say public-key
(resp. private-key) encryption when we actually mean public-key (resp. private-
key) bit-encryption.

When discussing private-key schemes, we consider schemes with multiple-
message security, i.e., semantic security w.r.t to an adversary that gets en-
cryptions of polynomially many messages. Recall that in the private-key setting
(in contrast to public-key one), multiple-message security does not follow from
single-message security (see [8, Chapter 5]).

2.2 Homomorphic Encryption

Since we only consider compact homomorphic encryption, from here on, when
we say homomorphic we always mean in the compact sense as defined next.

Definition 1. (G,E,D,H) is a homomorphic public-key encryption scheme
with respect to a set of families of polynomial-sized circuits C if (G,E,D) are a
public-key encryption scheme, H is a probabilistic polynomial-time algorithm and
there exists a polynomial5 m(·) such that for every circuit family {Ck}k∈N ∈ C,
polynomial �(·), for every n ∈ N, keys (e, d) ← G(1n), and � = �(n) single bit
messages b1, . . . , b� ∈ {0, 1} the following holds:

– Correct decryption of homomorphically generated encryptions:

Dd (H (e, C�, Ee(b1), . . . , Ee(b�))) = C� (b1, . . . , b�) . (1)

5 For convenience we assume that m is at least linear.
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– The length of homomorphically generated encryptions is independent of �:

|H (e, C�, Ee(b1), . . . , Ee(b�))| ≤ m(n). (2)

Homomorphic private-key encryption is defined analogously (with the modifica-
tion that H does not get the encryption key as part of its input).

2.3 i-Hop Homomorphic Encryption

The homomorphic evaluation algorithm in Definition 1 is only required to op-
erate on ciphertexts that were output by the encryption algorithm. The defini-
tion does not specify what happens if the homomorphic evaluation algorithm is
applied to its own output. Gentry et al. [7] defined an i-hop homomorphic en-
cryption scheme as a scheme for which it is possible to apply the homomorphic
evaluation algorithm consecutively i times.

Let G,E,D,H be a homomorphic encryption scheme w.r.t to a set of circuit
families C. For a given encryption key e, we denote by W0(e) the set of all valid
ciphertexts of the encryption scheme, i.e., all possible outputs of the encryption
algorithm Ee applied to a single bit message. For j ≥ 1, we define Wj(e) to be
the set of all possible outputs of the homomorphic evaluation algorithm H when
applied to a sequence of ciphertexts in Wj−1(e) and any circuit C ∈ C. We say
that elements in Wj(e) are j-th level ciphertexts and define i-hop homomorphic
encryption (in both the public and private-key settings) by requiring that Equa-
tions (1) and (2) of Definition 1 hold not only for standard ciphertexts (i.e., in
W0(e)) but also for j-th level ciphertexts for j ≤ i (i.e., in Wj(e)).

3 Constructing a Public-Key Scheme from a
Homomorphic Private-Key Scheme

In this section we prove our main theorem:

Theorem 2. Any multiple-message semantically secure private-key encryption
scheme that is compactly homomorphic with respect to addition modulo 2 can be
transformed into a semantically secure public-key encryption scheme. Further-
more, if the private-key scheme is (i + 1)-hop homomorphic w.r.t to a set of
circuit families, then the constructed public-key scheme is i-hop homomorphic
w.r.t to the same set.

We present two alternate constructions. Both constructions are fairly straight-
forward but the proof of the first construction (Construction 3) is more simple.
However, the tools used in the proof of the second construction (Construction 7)
may be of independent interest.

To prove Theorem 2, we assume the existence of a private-key scheme (G,E,
D,H) that is compactly homomorphic with respect to addition modulo 2 and
the polynomial m(·) as in Definition 1. We denote by H⊕ the algorithm H when
applied to the circuit family that computes addition modulo 2. The discussion
on the homomorphic properties of the schemes (i.e. the furthermore part of
Theorem 2) is presented in Section 4.
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3.1 First Construction

Construction 3. The public-key encryption scheme (G′, E′, D′, H ′) is defined
as follows:

Key Generation - G′(1n) :
Select k← G(1n) and r ∈R {0, 1}� where � = 4m(n).
Set X = (X1, . . . , X�) where Xi ← Ek(ri).
Output (X, r) as the public-key and k as the private-key.

Encryption - E′
X,r(σ) :

Select at random a vector s ∈ {0, 1}� such that 〈s, r〉 = σ.6 At convenience,
we identity the set S with the natural representation of the vector s as a set,
i.e., S = {i : si = 1}.
Output H⊕(XS) where XS is the projection of X to coordinates in S.

Decryption - D′
k(c) :

Output Dk(c).

Homomorphic Evaluation - H ′(C, (X, r), c1, . . . , c�):
Output H(C, c1, . . . , c�).

We start by showing that the decryption algorithm correctly decrypts proper
ciphertexts. We then proceed to the main part of the proof, showing that Con-
struction 3 is indeed semantically secure. In Section 4 we discuss the homomor-
phic properties of the scheme.

Proposition 4. For every n ∈ N, σ ∈ {0, 1} and ((X, r) , k) ← G′(1n) it holds
that

D′
k

(
E′
X,r(σ)

)
= σ.

Proof. Based on the first property of homomorphic encryption (Definition 1),

D′
k

(
E′
X,r(σ)

)
= Dk (H⊕ (XS)) =

⊕
i∈S

Dk(Xi) =
⊕
i∈S

Dk(Ek(ri))

where S is the random subset selected in the encryption algorithm E′ and
⊕

denotes addition modulo 2. Since D decrypts correctly, Dk(Ek(ri) = ri. There-
fore, D′

k

(
E′
X,r (σ)

)
=
⊕

i∈S ri = 〈s, r〉 = σ. 	


We proceed to the main part of the proof, showing that Construction 3 is se-
mantically secure.

Proposition 5. If (G,E,D) is a multiple-message semantically secure private-
key scheme, then (G′, E′, D′) is a semantically secure public-key scheme.
6 If r = 0� then such a vector s does not necessarily exist. However, this case only

happens with exponentially vanishing probability and can be handled by choosing
r �= 0� in the key-generation process.
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Proof. Suppose toward a contradiction that there exists a probabilistic
polynomial-time adversary A that can predict the value of a random bit σ based
on an encryption of σ. That is, there exists a polynomial p(·) and infinitely many
n ∈ N for which:

Pr
(X,r),k←G′(1n)

σ∈R{0,1}

[A
(
(X, r), E′

X,r(σ)
)

= σ] >
1
2

+
1

p(n)
(3)

where the probability is also over the coin tosses of A and E′. Based on the
definitions of G′ and E′ this implies that:

Pr
s,r∈R{0,1}�, k←G(1n)

Xi←Ek(ri)

[A (X, r,H⊕ (XS)) = 〈s, r〉] > 1
2

+
1

p(n)
(4)

where S = {i : si = 1}.
Consider X ′ which is distributed as � encryptions of 0 under k (in contrast

to X which is distributed as an encryption of the bits of r). We claim that for
every (computationally unbounded) algorithm A and for every n ∈ N,

Pr
s,r∈R{0,1}�, k←G(1n)

X′
i←Ek(0)

[A (X ′, r,H⊕ (X ′
S)) = 〈s, r〉] ≤ 1

2
+ 3 · 2− �

2+m(n) . (5)

Equation (5) implies a simple distinguisher for the private-key scheme. Specifi-
cally, we refer to a distinguisher that gets r ∈R {0, 1}� and Y which is either an
encryption of the bits of r or � encryptions of zero. The distinguisher chooses a
random vector s ∈R {0, 1}�, computes A(Y, r,H⊕(YS)) and outputs 1 if it equals
〈s, r〉 and 0 otherwise. Based on Equations (4) and (5), this distinguisher dis-
tinguishes between the two cases with a noticeable gap. Thus, we only need to
show that Eq. (5) holds.

To prove that Eq. (5) holds, we first view it as follows:

Pr
s,r∈R{0,1}�, k←G(1n)

X′
i←Ek(0)

[AX′ (r,HX′(s)) = 〈s, r〉] ≤ 1
2

+ 3 · 2− �
2+m(n) . (6)

Observe that since HX′ does not depend on r, the adversary AX′ needs to predict
〈s, r〉 based on r and m bits of information on s. The following proposition shows
that AX′ can only succeed with a negligible advantage, for every k and X ′ (hence,
also for k and X ′ distributed as above):

Proposition 6. For every function f : {0, 1}� → {0, 1}m and every (computa-
tionally unbounded) algorithm A,

Pr
r,s∈{0,1}�

[A(r, f(s)) = 〈s, r〉] ≤ 1
2

+ 3 · 2− �
2+m. (7)
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Proof. By the Leftover Hash Lemma7 [11], because hr(s) = 〈s, r〉 is a universal
hash function family, for every α ∈ {0, 1}m the distribution (r, 〈r, s〉) conditioned
on f(s) = α and the distribution (r, σ) for σ ∈R {0, 1} are 2

√
2

|f−1(α)| -close in
statistical distance. Thus:

Pr
r,s∈R{0,1}�

[A(r, f(s)) = 〈r, s〉]

=
∑

α∈{0,1}m

Pr
s∈R{0,1}�

[f(s) = α] · Pr
r,s∈R{0,1}�

[A(r, α) = 〈r, s〉|f(s) = α]

≤
∑

α∈{0,1}m

|f−1(α)|
2�

·

⎛⎜⎝ Pr
r∈R{0,1}�

σ∈R{0,1}

[A(r, α) = σ] + 2 ·
√

2
|f−1(α)|

⎞⎟⎠
≤ 1

2
·
∑

α∈{0,1}m

|f−1(α)|
2�

+
∑

α∈{0,1}m

2
√

2|f−1(α)|
2�

≤ 1
2

+ 3 · 2− �
2+m .

	


3.2 Second Construction

We proceed to present the second construction. Recall that (G,E,D,H) is a
homomorphic private-key scheme with respect to addition modulo 2 and the
polynomial m(·) as in Definition 1.

Construction 7. The public-key encryption scheme (G′′, E′′, D′′, H ′′) is de-
fined as follows:

Key Generation - G′′(1n) :
Select k ← G(1n), X = (X1, . . . , X�) and Y = (Y1, . . . , Y�) where � =
10m(n), such that Xi ← Ek(0) and Yi ← Ek(1) (with fresh random coins
for each i).
Output (X,Y ) as the public-key and k as the private-key.

Encryption - E′′
X,Y (σ) :

Select at random a subset S ⊆ [�] that has size of parity σ (i.e. |S| ≡
σ mod 2).
Output H⊕(XSYS) (recall that XSYS is a list of � ciphertexts that are en-
cryptions of 1 for coordinates in S and encryptions of 0 elsewhere).

Decryption - D′′
k(c) :

Output Dk(c).
7 The Leftover Hash Lemma states that if h is selected at random from a universal

hash function family from {0, 1}� to {0, 1}k and t is selected uniformly from a set T ⊆
{0, 1}� then the distribution h, h(t) and the distribution h, u, where u is distributed

uniformly in {0, 1}k are 2
√

2k

|S| -close (see, e.g. [9, Appendix D]).
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Homomorphic Evaluation - H ′′(C, (X,Y ), c1, . . . , c�):
Output H(C, c1, . . . , c�).

As in Construction 3, we first show that the decryption algorithm works and then
move on to the main part, showing that the construction is indeed semantically
secure.

Proposition 8. For every n ∈ N, σ ∈ {0, 1} and ((X,Y ) , k)← G′′(1n):

D′′
k

(
E′′
X,Y (σ)

)
= σ.

Proof. Based on the first property of homomorphic encryption (Definition 1),

D′′
k

(
E′′
X,Y (σ)

)
= Dk (H⊕ (XSYS)) =

�⊕
i=1

Dk(Zi)

where S is the random subset selected in the encryption process, Zi = Yi for
i ∈ S and Zi = Xi otherwise. Since D decrypts correctly, Dk(Xi) = 0 and
Dk(Yi) = 1. Therefore, D′′

k

(
E′′
X,Y (σ)

)
=
⊕

i∈S 1 = |S| mod 2 = σ. 	


We proceed to the main part of the proof, showing that Construction 7 is se-
mantically secure.

Proposition 9. If (G,E,D) is a multiple-message semantically secure private-
key scheme then (G′′, E′′, D′′) is a semantically secure public-key scheme.

Proof. Assume toward a contradiction that (G′′, E′′, D′′) is not semantically
secure. This means that there exists a probabilistic polynomial-time adversary
A′′ and a polynomial p(·) such that for infinitely many n ∈ N:

Pr
(X,Y ),k←G′′(1n)

σ∈R{0,1}

[
A′′ (X,Y,E′′

X,Y (σ)
)

= σ
]
>

1
2

+
1

p(n)
. (8)

To derive a contradiction, we consider n from this infinite set and construct a
probabilistic polynomial-time adversary A for the underlying private-key scheme.
The adversary A receives 2� ciphertexts (α1, . . . , α�, β1, . . . , β�) and will be shown
to distinguish between the following two cases:

– α1, . . . , α� are encryptions of 0 and β1, . . . , β� are encryptions of 1.
– α1, . . . , α�, β1, . . . , β� are encryptions of 0.

Algorithm A operates as follows:

1. Set X = (α1, . . . , α�) and Y = (β1, . . . , β�).
2. Select S ⊆R [�].
3. Output 1 if A′′(X,Y,H⊕(XSYS)) = |S| mod 2 and 0 otherwise.
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Accordingly,

Pr
k←G(1n)

αj ,βj

[A (α1, . . . , α�, β1, . . . , β�)=1]= Pr
k←G(1n)

X,Y,S

[
A′′ (X, Y, H⊕ (XSYS))= |S| mod 2

]
.

We proceed by analyzing A’s behavior in the two different cases. In the first case,
αi = Ek(0) and βi = Ek(1). Consequently, H⊕(XSYS) is distributed identically
to an encryption of a random bit under E′′ and so, by Eq. (8), it holds that

Pr
k←G(1n)

X,Y,S

[
A′′ (X, Y, H⊕ (XSYS))= |S| mod 2

]
= Pr

(X,Y ),k←G′′(1n)
σ∈R{0,1}

[
A′′ (X, Y, E′′

X,Y (σ)
)
=σ
]

>
1
2

+
1

p(n)
.

In the second case, αi = βi = Ek(0). We argue that in this case for every n ∈ N

and even for an unbounded adversary A′,

Pr
k←G(1n)
X,Y,S

[A′′ (X,Y,H⊕ (XS , YS)) = |S| mod 2] <
1
2

+ 2−0.2�+m(n)+1. (9)

Equation (9) follows from an information-theoretic theorem (Theorem 10) that
will be stated next. See the full version of this paper [14] for the proof of Theo-
rem 10.

Using Theorem 10, we conclude that A distinguishes between the two cases
with non-negligible probability, in contradiction to the multiple-message security
of (G,E,D), 	


Information-Theoretic Theorem. Let Ω be a finite non-empty set and � ∈ N.
Let μ1, . . . , μ� be distributions over Ω and μ = μ1 × · · · × μ� be a product
distribution over Ω�. Let X and Y be independent random variables identically
distributed according to μ over Ω�.

Theorem 10. For any �,m ∈ N and any functions h : Ω� → {0, 1}m and
g : Ω� ×Ω� × {0, 1}m → {0, 1}, it holds that

Pr
X,Y,S⊆R[�]

[g (X,Y, h(XSYS)) = |S| mod 2] <
1
2

+ 2−0.2�+m+1.

Equation (9) seems to follow immediately from Theorem 10 by setting A′′ as
g, H⊕ as h and having X and Y distributed as � independent encryptions of 0
each. However, there is a small subtlety - Theorem 10 addresses g and h that
are deterministic functions, in contrast to A′′ and H that are probabilistic algo-
rithms. Additionally, since X and Y are distributed w.r.t to the same randomly
chosen key, they are not product distributions as required by Theorem 10.

Both issues are resolved by an averaging argument. If Eq. (9) does not hold for
some n ∈ N, then there exist random coins for A′′, H and a fixed private-key k for
which it does not hold. Once we fix these coins, A′′ and H become deterministic
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functions. Additionally, we set X and Y to each be distributed as � encryptions
of 0 under the fixed key k, which is in particular a product distribution. Thus,
the hypothesis that Eq. (9) does not hold contradicts Theorem 10. The proof
of Theorem 10 uses the Efron-Stein decomposition [4], an extension of Fourier
analysis for general product distributions and appears in the full version of this
paper [14] (see an outline next).

Outline of the Proof of Theorem 10. Theorem 10 considers a game in which
a computationally unbounded adversary sees X , Y and m bits of information
on XSYS and needs to decide whether S is of even or odd cardinality. That is,
the adversary specifies a function h : Ω� → {0, 1}m and based on X,Y, h(XSYS)
needs to find |S| mod 2. Theorem 10 states that winning this game with proba-
bility noticeably better than 1

2 is impossible as long as m is sufficiently smaller
than �. Note that winning the game becomes easy if m is sufficiently larger8 than
� (as long as the probability of a collision in each coordinate, i.e. Pr[Xi = Yi], is
sufficiently small).

To prove Theorem 10, we would like to that show that for a typical γ ∈
{0, 1}m, the number of odd S that map to γ (i.e., h(XSYS) = γ) and the number
of even S are roughly the same. This would imply that any adversary, which sees
only X , Y and γ, cannot guess whether γ was produced from an odd or even S,
which is exactly what we are looking to prove.

The proof is composed of two lemmas. The main lemma states that for every
γ ∈ {0, 1}m, w.h.p, the number of odd S that map to γ is fairly close to the
number of even S (in absolute terms). We prove this lemma by showing that
the probability of a collision of two random sets S and T of the same parity
(i.e. the probability that h(XSYS) = h(XTYT ) where |T | = |S|) is roughly
the same as the collision probability of two sets of different parity. We use the
Efron-Stein decomposition to express the collision probability and bound it. The
second lemma is more straightforward and states that for a typical γ the total
number of S that map to it is very large. Combining these two lemmas we prove
Theorem 10. See the full version of the paper for details.

4 Homomorphic Properties of the Public-Key Scheme

In this section, we discuss the homomorphic properties of the public-key schemes
presented in Section 3. We show that if the underlying private-key scheme sup-
ports i + 1 repeated homomorphic operations then both Construction 3 and
Construction 7 support i such operations. Intuitively, this follows by the fact
that in both constructions, the encryption algorithm applies a single homomor-
phic operation (see Fact 12), thus exactly one hop is lost.

Proposition 11. Suppose G,E,D,H are an (i + 1)-hop homomorphic private-
key scheme w.r.t to a set of circuit families C that includes addition modulo
2. Then Constructions 3 and Construction 7 are i-hop homomorphic w.r.t the
set C.
8 If m ≥ � log(|Ω|) just take h to be the identity function.
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We prove that Proposition 11 holds for Construction 3 while noting that the
proof for Construction 7 is completely analogous. Thus, we refer to G′, E′, D′, H ′

as in Construction 3.
Let (X, r), k be a pair of encryption/decryption keys for Construction 3 (w.r.t

to the security parameter n). We denote the j-th level ciphertexts of the private-
key scheme by Wj(k) and the j-th level ciphertexts of the public-key scheme by
W ′
j(X, r).

Fact 12. For every j ∈ N, W ′
j(X, r) ⊆Wj+1(k).

Proof. By induction on j.

Let {Ck}k ∈ C, 0 ≤ j ≤ i, � = �(n) and w1, . . . , w� be j-th level ciphertexts of the
public-key scheme (i.e., in W ′

j(X,Y )). We proceed by showing that it j-th level
ciphertexts decrypt properly. By Fact 12, it holds that w1, . . . , w� ∈ Wj+1(k)
and thus,

H ′(C�, (X, r), w1, . . . , w�) = H(C�, w1, . . . , w�)
= C�(Dk(w1), . . . , Dk(w�))
= C�(D′

k(w1), . . . , D′
k(w�)).

where the first and third equalities follow from the definition of H ′ and D′

respectively and the second equality follows from the fact that (G,E,D,H) are
i+1-hop homomorphic and that w1, . . . , w� are ciphertexts of level j +1 ≤ i+1
of the private-key scheme.

A similar argument shows that the scheme is also compact. Indeed, since
w1, . . . , w� ∈ W ′

j(X,Y ) ⊆Wj+1(k) it holds that,

|H ′(C�, (X, r), w1, . . . , w�)| = |H(C�, w1, . . . , w�)| ≤ m(n)

for every 0 ≤ j ≤ i.
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Abstract. We present the first IBE schemes that are proven secure
against selective opening attack (SOA). This means that if an adversary,
given a vector of ciphertexts, adaptively corrupts some fraction of the
senders, exposing not only their messages but also their coins, the privacy
of the unopened messages is guaranteed. Achieving security against such
attacks is well-known to be challenging and was only recently done in
the PKE case. We show that IBE schemes having a property we call
1-sided public openability (1SPO) yield SOA secure IBE schemes and
then provide two 1SPO IBE schemes, the first based on the Boyen-Waters
anonymous IBE and the second on Waters’ dual-system approach.

1 Introduction

Security against selective-opening attack (SOA) is arguably the most paradox-
ical and vexing open question in the theory of encryption. Recently (and 10
years after the problem was identified), we have seen solutions [2]. These and
followups [24,22], however, have been for the case of Public-Key Encryption
(PKE). Another domain where the problem arises, and is important for appli-
cations, is Identity-Based Encryption (IBE). The techniques used for PKE do
not yield solutions here.This paper initiates a treatment of IBE secure under
SOA, providing definitions of security and the first schemes achieving them. Our
schemes do not use random oracles.

Background. A selective-opening attack on a PKE scheme imagines n senders
and receivers. Sender i encrypts a message m[i] under fresh, random coins r[i] and
the public key pk[i] of the i-th receiver to get a ciphertext c[i]. An adversary given
the vector c corrupts some subset of the senders and learns not only their mes-
sages but also their coins. SOA-security requires that the remaining, unopened
messages retain their privacy. SOA-security is required when implementing the
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assumed secure channels in an adaptively-secure multi-party computation proto-
col. More pragmatically, it would be required to distribute shares in a distributed
file-system that is using secret-sharing for privacy.

IND-CPA and IND-CCA, widely-accepted as the “right” notions of encryption
privacy, are not known to imply security under SOA. The difficulty of establish-
ing SOA-security stems from the fact that the adversary gets the coins and also
that the messages m[1], . . . ,m[n] may be related. Constructions of SOA secure
schemes also remained elusive, the area colored by negative results for commit-
ment schemes [21,2,28]. Finally, Bellare, Hofheinz, and Yilek (BHY) [2] showed a
large class of encryption schemes, which they call lossy [2,25,30], are SOA secure.
Schemes they show to be lossy include variants of El Gamal [27], the IND-CPA
scheme built from lossy trapdoor functions by Peikert and Waters [31], and even
the original Goldwasser-Micali encryption scheme [23]. Hemenway, Libert, Os-
trovsky and Vergnaud [24] showed that re-randomizable encryption and statis-
tically hiding, two-round oblivious transfer imply lossy encryption, yielding still
more examples of SOA secure PKE schemes via the lossy-implies-SOA-secure
connection of BHY. Fehr, Hofheinz, Kiltz, and Wee (FHKW) [22] use a deniable
encryption [13] approach to achieve CC-SOA (Chosen-Ciphertext SOA) secure
PKE.

SOA for IBE. We can adapt the SOA framework to IBE in a natural way.
A vector id of adversarially-chosen target receiver identities replaces the vector
pk of public receiver keys. Sender i encrypts message m[i] under coins r[i] for
identity id[i] to get a ciphertext c[i]. As before the adversary, given c, corrupts
a subset of the senders and learns their messages and coins, and SOA-security
requires that the unopened messages are secure. At any time, the adversary can
query Extract with any identity not in the vector id and obtain its decryption
key.

There are two elements here, new compared to PKE, that will be central to
the technical challenges in achieving the goal. The first is the Extract oracle,
a feature of IBE security formalizations since the pioneering work of Boneh and
Franklin [9], that allows the adversary to obtain the decryption key of any (non-
target) receiver of its choice. The second is that the target identities are chosen
by the adversary. (We will achieve full, rather than selective-id security [15].)

IBE can conveniently replace PKE in applications such as those mentioned
above, making its SOA-security important. Beyond this, we feel that determin-
ing whether SOA-secure IBE is possible is a question of both foundational and
technical interest.

Contributions in brief. We provide a simulation-based, semantic security for-
malization of SOA-secure IBE. (This means our results do not need to assume con-
ditional re-samplability of message spaces, in contrast to some of the results of [2]
for IND-style notions.) We provide a general paradigm to achieve SOA-secure IBE
based on IBE schemes that are IND-CPA and have a property we call 1-Sided Pub-
lic Openability (1SPO). We discuss why obtaining 1SPO IND-CPA IBE schemes
without random oracles is not immediate and then illustrate two ways to do it.
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Scheme Pars Ctxt Keys Enc Dec F/S Assumption

LoR n + 6 5 5 5 exp 5 pr F DLIN

BBoR 4 2 2 2 exp 2 pr F GSD

Fig. 1. Our 1SPO IND-CPA IBE schemes. These encrypt 1-bit messages. Bit-by-bit
encryption yields SOA-secure IBE schemes encrypting full messages. “Pars” is the
size of the public parameters, “Ctxt” of the ciphertext and “Keys” of the decryption
keys, all in group elements, with n the length of identities. (In practice n = 160 by
hashing identities.) “Enc” and “Dec” are the encryption and decryption costs with
“exp” standing for an exponentiation or multi-exponentiation and “pr” for a pairing.
“F/S” indicates whether we get Full or Selective-id security. “GSD” stands for the
General Subgroup Decision assumption.

The first, adapting the anonymous IBE scheme of Boyen and Waters [12], yields
a SOA-secure IBE scheme based on the DLIN (Decision Linear) assumption of [7].
The second, using the dual-system approach of [32], yields a SOA-secure IBE
scheme in the Boneh-Boyen style [6] based on a subgroup decision assumption
in composite order groups. Attributes of the schemes are summarized in Figure 1.
We now expand on these contributions.

1SPO IBE implies SOA-secure IBE. There are fundamental obstacles to ex-
tending BHY’s lossy-implies-SOA-secure approach, that worked for SOA-secure
PKE, to the IBE setting. (Briefly, we cannot make the encryption undetectably
lossy on all challenge identities because the adversary has an Extract oracle
and we wish to achieve full, not selective-id [15] security.) Instead we return
to ideas from non-committing [14] and deniable [13] encryption. We define IBE
schemes that have a property we call one-sided public openability (1SPO) and is
an IBE-analogue of a weak form of deniable PKE [13]. In short, an IBE scheme
for 1-bit messages is 1SPO if it is possible, given the public parameters par, an
identity id, and the encryption c of message 1 under par and id, to efficiently
open the encryption, meaning find correctly-distributed randomness r such that
encrypting a 1 using par, id, r results in the ciphertext c. We emphasize that
this opening must be done without the aid of any secret information. Bit-by-bit
encryption then results in a scheme that can encrypt long messages. We show in
Theorem 1 that if the starting 1-bit 1SPO scheme is also IND-CPA secure then
the constructed IBE scheme is SOA-secure. This reduces the task of obtaining
SOA-secure IBE schemes to obtaining IND-CPA secure 1SPO schemes.

FHKY [22] develop a similar approach in the PKE setting. Their work and
ours are concurrent and independent. (Both were submitted to Eurocrypt 2010
but only theirs was accepted.)

Finding 1SPO IBE schemes. Known Random Oracle (RO) model IBE schemes
[9,19] can be adapted to be 1SPO secure, yielding SOA-secure IBE in the RO
model. Achieving it without ROs, however, turns out not to be straightforward.
The natural approach, extending that used for PKE [13,22], is to build IBE
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schemes that are what we call 1SIS (1-sided invertibly samplable). Here, encryp-
tions of 0 to a certain identity would have a certain structure. This structure
should be detectable with the secret key associated to the identity, but not with-
out it, and thus not by an attacker. On the other hand, encryptions of 1 would
be random, but in a special way, namely there is a public procedure that given
an encryption c of a 1 can compute randomness (coins) under which the en-
cryption algorithm applied to 1 would produce c. Any such scheme is 1SPO.
The challenge that emerges is to find 1SIS IND-CPA IBE schemes. Existing
IBE schemes do not have the property, and nor do direct adaptations work.
The Boneh-Boyen approach [6] is probably the most widely used in IBE design.
(Waters’ IBE scheme [33] is one instance.) However, ciphertexts in BB-schemes
contain group elements that obey relations an attacker can test and thus cannot
be undetectably replaced with random group elements. We will obtain our first
solution by a different approach. Then, however, we will go back to show how
the dual-system approach can be used to make a BB-style scheme work if we
use composite order groups.

The linear scheme. In our “Linear or Random” (LoR) scheme, an encryption
of 0 to a given identity, id, is done using (a modification of) the Boyen-Waters
(BW) encryption algorithm [12]. This output of the encryption will be five group
elements that share a certain structure that is only detectable to a user with the
private key for id. To encrypt a 1 we simply choose five random group elements.
This, however, must be done using what we call a publicly invertible process (see
below). The main feature of this encryption scheme is that an encryption of 0 can
always be claimed as just five random group elements, and thus as an encryption
of 1. This reveals why we choose to build of the BW anonymous IBE scheme
as opposed to other simpler IBE systems without random oracles. The main
feature of the BW ciphertexts is that they have no detectable structure from an
attacker that does not have a private key for id. In contrast, in BB-style IBE
systems [6,33] the attacker can test for structure between two group elements in
well formed ciphertexts. Therefore we cannot create a secure encryption system
simply by replacing these with random group elements.

We prove LoR is 1SPO directly. We must also, however, prove it is IND-CPA.
We adapt techniques from [12,3] to do this under the DLIN assumption. The
proof technique of [3] allows us to avoid Waters’ artificial abort step [33] thereby
resulting in a more efficient reduction.

The dual-system scheme. Waters introduced a new approach to IBE called
the dual system approach in which both the challenge ciphertext and keys are
replaced in the proof by “semi-functional” versions [32]. We adapt this approach
to get a 1SIS (and thus 1SPO) IND-CPA IBE scheme and thus a SOA-secure
IBE scheme. An interesting feature of the scheme is that ciphertexts have a BB-
form, showing that the dual-system approach can surmount the above-mentioned
difficulties in making BB-style systems 1SIS. We accordingly call the scheme
BBoR (BB or Random). In addition this is interesting because it illustrates a
quite different technique and yields a scheme based on a different assumption
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(subgroup decision in a composite group, not known to imply or be implied by
DLIN in a prime-order group). As Figure 1 shows, the main pragmatic difference
compared to LoR is short public parameters. (Those of LoR are long due to the
Waters’ hash function [33] which is required to get full security.) Others costs
have dropped as well (from 5 to 2) but the group is larger so a closer analysis
would be needed to determine whether this translates to actual efficiency gains.

Our starting points are the dual-system based Lewko-Waters (LW) IBE
scheme [26] and its anonymous extension by De Caro, Iovino and Persiano
(DIP) [17]. We modify these to get a 1SIS scheme where an encryption of a 0 is
BB-ciphertext but in a subgroup while an encryption of a 1 is a pair of random
points in the full group. While extending these schemes we manage simultane-
ously to make the assumptions simpler, more natural and fewer. Specifically, all
these schemes rely on a pairing e : G × G → GT where G,GT have composite
order N . LW make three different assumptions (numbered 1,2,3), the first two
being about subgroup decision in G and the third in GT . DIP also make three
assumptions, with the third being quite ad hoc and tailored to the scheme. We
eliminate the third assumption in both cases and unify the rest, formulating
what we call the general subgroup decision assumption, which is only in G, and
basing the proof solely on this single assumption.

Publicly invertible sampling. We have said that encryptions of a 1 in our
1SIS schemes are random group elements. This, however, is not enough. They
have to be invertibly sampled. As we explained above, this means there is a
public procedure that given an encryption c of a 1 can compute randomness
(coins) under which the encryption algorithm applied to 1 would produce c. To
illustrate the subtleties of the notion, consider a scheme in which the encryption
c of a 1 is computed by picking an exponent x at random and returning gx

where g is a generator of a group G. Although the ciphertext is random, this is
not invertibly samplable since we cannot recover x from c. Instead, a ciphertext
must be sampled “directly” as c←$ G. The difficulty is that whether or not this
is possible depends on the group. In the PKE case, it is possible to stay within
simple groups such as Z∗

p for prime p, where such sampling is easy. (Pick a a
random integer in the range 1, . . . , p− 1.) In our case, however, G is a complex
group, namely a subgroup of the points on an elliptic curve. We show how to
sample invertibly nonetheless, relying on the structure of the elliptic curve groups
in question. Specifically, we modify some methods used to implement the hash
function of the BLS signature scheme [11].

Extensions and open problems. After seeing a preliminary version of our
work, Peikert [29] has said that the lattice-based IBE schemes of [18,1] adapt
to yield 1SPO schemes, whence, by our results, SOA-secure IBE. One interest-
ing direction for further work is to define SOA-secure HIBE and then extend
our schemes (the second in particular) as well as the lattice ones to achieve it.
Another direction is to define deniable IBE and then fuse our approaches with
those of [13] to achieve it. We remark that even given SOA-secure HIBE, we
do not directly achieve CC-SOA (Chosen-ciphertext SOA) secure IBE because
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the BCHK transform [8] does not work in the SOA setting. (The problem is
opening the randomness used in creating the one-time-signature key.) Achieving
CC-SOA secure IBE is another interesting open question.

Related work. Canetti, Feige, Goldreich and Naor [14] introduced non com-
mitting encryption (NCE) to achieve adaptively secure multi-party computation
in the computational (as opposed to secure channels) setting without erasures.
In their treatment, NCE is an interactive protocol, and their definition of secu-
rity is in the MPC framework. The model allows corruption of both senders and
receivers. They show how to achieve NCE but, viewed as a public-key system,
they would have keys larger than the total number of message bits that may be
securely encrypted. Damg̊ard and Nielsen [20] introduced more efficient schemes
but this restriction remained, and Nielsen [28] showed it was necessary. With
partial erasures, more efficient solutions were provided by Canetti, Halevi and
Katz [16].

Dwork, Naor, Reingold and Stockmeyer [21] extracted out a stand-alone no-
tion of commitment secure against selective opening defined directly by a game
rather than via the MPC framework. Corruptions allow the adversary to obtain
the committer’s coins along with its message. This was adapted to public-key
encryption in [2], who focused on sender (as opposed to receiver) corruptions
and were then able to obtain solutions based on lossy encryption.

Canetti, Dwork, Naor and Ostrovsky [13] introduced deniable encryption,
where a sender may open a ciphertext to an arbitrary message by providing
coins produced by a faking algorithm. The authors explain that this is stronger
than NCE because in the latter only a simulator can open in this way. A weak
form of their requirement is that encryptions of 1 can be opened as encryptions
of 0 even if not vice versa. 1SPO IBE is an IBE analogue of this notion.

Sender versus receiver corruptions. We clarify that our model and re-
sults are for adaptive sender corruptions, not adaptive receiver corruptions. (The
latter would correspond to being allowed to query to Extract identities in the
challenge vector id.) Security against adaptive receiver corruptions seems out of
reach of current techniques for PKE let alone for IBE. (Without either erasures
or keys as long as the total number of messages bits ever encrypted.) We do
allow receiver corruptions via the Extract oracle but these are non-adaptive.
We view this as retaining (meaning neither weakening nor strengthening) the
guarantees against receiver corruption already provided by the basic definition
of IND-CPA-secure IBE [9]. Our notion, security against adaptive sender and
non-adaptive receiver corruptions, is still very strong.

2 Preliminaries

Notation. We use boldface to denote vectors, i.e., m. For vector m, we let
|m| denote the number of components in the vector. When m[i] ∈ {0, 1}∗, we
denote by m[i][j] the jth bit of the ith component of m, i.e., the jth bit of m[i].
On the other hand, when c[i] is a sequence, we let c[i][j] denote the jth value
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in the sequence c[i]. We sometimes abuse notation and treat vectors as sets.
Specifically, if S is a set we may write S ∪m to denote S ∪ {m[1]} ∪ {m[2]} . . ..
If two adversaries A and B have access to different oracles with the same name
(e.g., NewMesg) we sometimes write NewMesgB to mean B’s version of the
oracle. For n ∈ N we denote by [n] the set {1, . . . , n}.

We fix pairing parameters GP = (G,GT , p, e) where G,GT are groups of order
prime p and the map e : G×G→ GT is an efficiently computable non-degenerate
bilinear map. We let Texp(G) be the time to compute an exponentiation in the
group G. We let Top(G) be the time to compute a group operation in G. For
any group G, let G∗ denote the generators of G.

Code-Based Games. We use code based games [4] for our security defini-
tions. A game consists of numerous procedures including an Initialize proce-
dure and a Finalize procedure. When an adversary A executes with the game,
the Initialize procedure is executed first and its outputs are the initial inputs
to adversary A. Then A executes and its oracle queries are answered by the cor-
responding procedures of the game. When the adversary halts with some final
output, this output is given as input to the Finalize procedure. The output
of the Finalize procedure is then considered the output of the game. We let
GA ⇒ y be the event that game G, when executed with adversary A, has out-
put y. We abbreviate “GA ⇒ true” by “GA”. The running time of the adversary
while playing the game is considered to be the running time of the adversary
while playing the game plus the time to execute all of the game procedures
during the execution.

Randomized Algorithms and Sampling from Groups. We have to model
randomized algorithms carefully and in a particular way to define invertible
sampling. We assume that all algorithms have access to a RNG Rand that is
the only source of randomness in the system. On input a positive integer n,
function Rand returns a value uniformly distributed in Zn. We stress that Rand
is not viewed as having an underlying source of coins in the form of bits as
in complexity-theoretic/Turing machine models. Rather, its operation is atomic
and its outputs are the coins.

When we write a←$ G we mean that we run i←$ Rand(p), where p = |G|, and
let a = gi where g is a generator of G. However, we also want to use publicly
reversible sampling. A publicly reversible (PR) sampler Samp takes no input
and, via access to Rand, outputs a point in G or the failure symbol ⊥. It has
sampling failure probability ζ if the probability that it outputs ⊥ is at most ζ.
We require that Pr[a′ = a | a′ �= ⊥] = 1/|G| for all a ∈ G, where the probability
is over a′←$ Samp.

If (r1, . . . , rs) is a sequence of non-negative integers, we let Samp[r1, . . . , rs] be
the result of running Samp with Rand replaced by the subroutine that returns ri
in response to the i-th query made to it, for 1 ≤ i ≤ s. We require that there is
an algorithm Samp−1 which on input a ∈ G outputs a sequence (r1, . . . , rs) such
that Samp[r1, . . . , rs] = a. (Samp−1, as with any other algorithm, has access to
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Rand.) Samp−1 also might fail (and output ⊥). We call this the reverse sampling
failure probability and denote it with θ.

Identity-Based Encryption. An Identity-based encryption scheme (IBE) is
a tuple of algorithms Π = (Pg,Kg,Enc,Dec) with identity space IdSp, message
space MsgSp, and the following properties. The parameter generation algorithm
Pg takes no input and outputs a public parameter string par and a master secret
key msk. The identity key generation algorithm Kg takes as input the public
parameter string par, the master secret key msk, and an identity id, and outputs
a secret key sk for identity id. The encryption algorithm Enc takes as input the
public parameters par, an identity id, and a message M , and outputs a ciphertext
C. Lastly, the decryption algorithm Dec takes as input the public parameters
par, an identity secret key sk, and a ciphertext C, and outputs either a message
M or a failure symbol ⊥. We say that an IBE scheme has completeness error
ε if the probability that Dec(par, sk, id,Enc(par, id,M)) = M is ≥ 1 − ε for all
id ∈ IdSp, all M ∈ MsgSp, all (par,msk) ∈ [Pg], and all sk ∈ [Kg(par,msk, id)],
where the probability is taken over the coins used in encryption.

A one-bit IBE scheme Π = (Pg,Kg,Enc,Dec) is one with MsgSp = {0, 1},
while an �-bit IBE scheme has MsgSp = {0, 1}�. We will build �-bit IBE schemes
from one-bit IBE schemes as follows. Given one-bit IBE scheme Π as above, let
Π� = (Pg�,Kg�,Enc�,Dec�) be an �-bit IBE scheme defined as follows: parameter
and key generation are unchanged, i.e., Pg� = Pg and Kg� = Kg. The encryption
algorithm Enc�, on input par, id, M ∈ {0, 1}�, outputs Enc(par, id,M [1]) ‖ . . .
‖ Enc(par, id,M [�]), where M [i] is the ith bit of M . In other words, encryption
encrypts each bit separately and concatenates the resulting ciphertexts. Decryp-
tion works in the obvious way: decrypt each ciphertext component separately to
learn individual bits. It is easy to see that if Π has ε completeness error, then
the resulting �-bit scheme has completeness error at most � · ε.

The standard notion of security for IBE schemes is indistinguishability under
chosen plaintext attack (IND-CPA) [9]. We define the IND-CPA advantage of
an IND-CPA adversary A against IBE scheme Π to be Advind-cpa

Π (A) = 2 ·
Pr
[
INDCPAA

Π ⇒ true
]
− 1 , where game INDCPA can be found in Figure 2.

An IND-CPA adversary interacts with game INDCPA, querying LR only once
and on an identity id∗ ∈ IdSp that is never queried to Extract and on equal
length messages M0,M1 ∈ MsgSp. We note that adversaries may query the same
identity id to Extract multiple times, since key generation is randomized.

We associate to encryption algorithm Enc the set Coins(par,m). This is the set
from which Enc draws its coins when encrypting message m using parameters par.
Similarly, we let Coins(par, id, c, 1) be the set of coins {r | c = Enc(par, id, 1; r)}.

3 Security against Selective Opening Attacks

In this section we formalize SOA security for IBE, closely following the formal-
izations from [2]. Before proceeding, we need two definitions. A (k, �)-message
sampler is a randomized algorithm M that on input string α ∈ {0, 1}∗ outputs
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proc. Initialize:
(par,msk)←$ Pg ; b←$ {0, 1}
Return par

proc. Extract(id):
Return Kg(par,msk, id)

proc. LR(id,M0,M1): INDCPAΠ

Return Enc(par, id,Mb)

proc. Finalize(b′):
Return (b = b′)

Fig. 2. The IBE IND-CPA Game

a vector of messages m such that |m| = k and each m[i] ∈ {0, 1}�. A relation R
is any randomized algorithm that outputs a single bit.

An soa-adversary is one that runs with game REAL making one query to
NewMesg before making one query to Corrupt; it may make one or more
queries to Extract at any time during the game. An soa-simulator is an ad-
versary that runs with game SIM, makes one query to NewMesg and later
makes one query to Corrupt. It makes no Extract queries. We define the
soa-advantage of soa-adversary A against an IBE scheme Π with respect to a
(k, �)-message sampler M, relation R, and soa-simulator S as

Advsoa
Π,k,S,M,R(A) = Pr

[
REALA

Π,k,M,R ⇒ 1
]
− Pr
[
SIMS

Π,k,M,R ⇒ 1
]

.

Discussion. In game REAL (shown in Figure 3), the Initialize procedure runs
the parameter generation algorithm and returns the scheme parameters to the
adversary. The adversary then runs with oracles NewMesg, Corrupt, and
Extract. The adversary may never query an identity to Extract that appears
in a query to NewMesg.

The adversary may query the NewMesg oracle once with a vector of identities
id and a string α that is meant to capture state to pass on to the message
sampler. Procedure NewMesg, on input id and α, samples a vector of messages
from the message sampling algorithm M and encrypts the entire vector using
independent coins to the identities specified in id. This means that the ith
component of the resulting ciphertext vector c is Enc(par, id[i],m[i]; r[i]), the
encryption of the ith message to the ith identity with the ith coins.

After querying the NewMesg oracle, the adversary may make one query to
Corrupt with a set of indices I ⊆ [k]. These indices specify which ciphertexts
from the vector c returned by NewMesg the adversary would like opened. The
Corrupt procedure returns the messages and randomness used in NewMesg
corresponding to indices in I. Additionally, at any time the adversary may query
the Extract oracle on an identity of its choice and learn a secret key for that
identity. We do not allow the adversary to query Extract on any identity ap-
pearing in the vector id queried to NewMesg.

Finally, the adversary halts with output out and the output of the game is
the relation R applied to the message vector m, the set of challenge IDs ChID,
the corrupt set I, and the output out.

In game SIM (shown in Figure 4), the Initialize procedure does nothing and
returns⊥ to the simulator. The simulator then runs with two oracles, NewMesg
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proc. Initialize:
(par,msk)←$ Pg
Return par

proc. NewMesg(id, α):
If id ∩ ExID �= ∅ then return ⊥
ChID← ChID ∪ id ; m←$M(α)
For i in 1 to k

r[i]←$ Coins(par,m[i])
c[i]← Enc(par, id[i],m[i]; r[i])

Return c

proc. Extract(id):
If id ∈ ChID then return ⊥
ExID← ExID ∪ {id}
sk←$ Kg(par,msk, id)
Return sk

proc. Corrupt(I):
Return r[I], m[I]

proc. Finalize(out):
Return R(m,ChID, I, out)

Fig. 3. Game REALΠ,k,M,R

proc. Initialize:
Return ⊥

proc. NewMesg(id, α):
ChID← ChID ∪ id ; m←$M(α)
Return ⊥

proc. Corrupt(I):
Return m[I]

proc. Finalize(out):
Return R(m,ChID, I, out)

Fig. 4. Game SIMΠ,k,M,R

and Corrupt. On input an identity vector id and a string α, oracle NewMesg
samples a vector m of messages using the message sampling algorithmM applied
to the state string α. Nothing is returned to the simulator. The simulator is only
allowed one NewMesg query. At a later time, the simulator may then make a
single query to oracle Corrupt with a set of indices I and as a result will learn
the messages in m corresponding to I. Finally, the simulator halts with output
out and the output of the game is the relation R applied to the message vector
m, the set of challenge IDs ChID, the corrupt set I, and the output out.

As noted at the end of Section 1, we model adaptive sender corruptions
while retaining standard IBE security against non-adaptive receiver corruptions.
(Adaptive receiver corruptions would correspond to removing the restriction that
Extract return ⊥ when queried on a challenge identity.) Security against adap-
tive receiver corruptions seems out of reach of current techniques for PKE let
alone IBE.

4 SOA Secure IBE from 1SPO IBE

A perfect one-sided public (1SP) opener for one-bit IBE scheme Π = (Pg,Kg,
Enc,Dec) is an algorithm OpToOne that takes input parameters par, identity id,
and ciphertext c, and has the following property: for all par ∈ [Pg], all id ∈ IdSp,
every c ∈ [Enc(par, id, 1)], and every r̄ ∈ Coins(par, id, c, 1),
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Pr [ r←$ OpToOne(par, id, c) : r = r̄ ] =
1

|Coins(par, id, c, 1)| .

We can weaken this definition slightly by considering opening algorithms that can
fail with some probability δ, but in the case of success their output distribution
is identical to the actual coin distribution. This is reflected as for all par ∈ [Pg],
all id ∈ IdSp, every c ∈ [Enc(par, id, 1)], and every r̄ ∈ Coins(par, id, c, 1),

Pr [ r←$ OpToOne(par, id, c) : r = r̄ | r �= ⊥ ] =
1

|Coins(par, id, c, 1)| .

Notice that the probability is only over the coins used by OpToOne. We call such
an OpToOne algorithm a δ-1SP opener and we also call an IBE scheme with a
δ-1SP opener δ-one-sided publicly openable (δ-1SPO).

The idea of constructing encryption schemes with such one-sided opening orig-
inates with Canetti, Dwork, Naor, and Ostrovsky [13], who used PKE schemes
with this property to build deniable PKE schemes. From translucent sets they
get PKE schemes where an encryption of a 1 is pseudorandom while an en-
cryption of a 0 is random. It is then possible to claim the encryption of a 1
was random and thus open it to a 0. More recently, in independent work, Fehr,
Hofheinz, Kiltz, and Wee [22] used PKE schemes with a 1SPO property as a
building block to achieve CC-SOA public-key encryption security. Of course,
both of these works focus on PKE while we focus on IBE.

From 1SPO to SOA. We now state our main result: IND-CPA 1SPO one-bit
IBE schemes lead to many-bit SOA-secure IBE schemes. Let Π = (Pg,Kg,Enc,
Dec) denote a one-bit IBE scheme that is δ-one sided openable and let Π� = (Pg�,
Kg�,Enc�,Dec�) the �-bit IBE scheme built from Π as described in Section 2.

Theorem 1. Let Π be a one-bit IBE scheme with a δ one-sided opener OpToOne,
and let Π� be the �-bit scheme built from it. Let k be an integer, A an
soa-adversary making at most q queries to Extract, R a relation, and M a
(k, �)-message sampler. Then there exists an soa-simulator S and an IND-CPA
adversary B such that

Advsoa
Π�,k,M,R,S(A) ≤ k� ·Advind-cpa

Π (B) + k� · δ ,

where T(S) = O(T(A) + k� · T(OpToOne) + q · T(Kg�) + k · T(Enc�) + T(Pg�))
and T(B) = O(T(A) + T(M) + k� · T(Enc) + k� · T(OpToOne) + T(R)). 	


The full proof is in [5]. We briefly sketch the ideas here. Simulator S runs A
and gives it encryptions of all 0s. When A asks for some of the ciphertexts to be
opened, S queries its own Corrupt oracle, learns the messages it needs to open
the ciphertexts to, and then opens bit-by-bit. If it needs to open a ciphertext
component to a 0, it simply gives A the coins it used when originally creating the
ciphertext. If it needs to open a ciphertext to a 1, it uses the scheme’s OpToOne
algorithm to find the coins. The simulator then outputs the same output as A.
The IND-CPA security of the scheme will allow us to argue that the simulator
is successful. We will do a hybrid over the � individual components of the k
messages sampled fromM, where in the ith hybrid game the first i bits sampled
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fromM are ignored and 0s are encrypted in their place. Thus, in the first hybrid
game all bits sampled fromM are accurately encrypted, while in the last hybrid
game only 0s are encrypted. This hybrid causes the loss of a factor k · � in the
theorem.

A natural question is why not prove Theorem 1 for � = 1 (meaning, show that
any 1-bit 1SPO IBE scheme is SOA-secure) and then prove the general result
that if 1-bit Π is SOA-secure then so is Π� for any �? The answer is that we do
not know how to prove this general result.

5 A First Attempt

As a first attempt at constructing a 1SPO IBE scheme, we try to adapt tech-
niques from deniable PKE [13], in particular the idea that an encryption of a 0
should be “pseudorandom” while the encryption of a 1 is “random”. A typical
IBE scheme has ciphertexts consisting of a tuple of group elements with some
structure. To make such a scheme 1SPO, a natural idea is to make the honestly-
generated ciphertext tuple the encryption of a 0, and a tuple of random group
elements an encryption of a 1. The secret key for an identity then contains infor-
mation which helps test for this structure. Let us see what happens if we apply
this idea to the IBE scheme of Boneh and Boyen (BB) [6], which has been the
basis for many other IBE schemes including the Waters (W) IBE [33].

Recall in the BB scheme (and its variants) a ciphertext has the form (C1,
C2, C3) = (e(g1, g2)s ·M, gs, H(u, id)s), where different variants define the hash
function H differently, g, g1, g2,u are part of the parameters, and s is chosen
randomly by the encryptor. Now, if we follow the ideas described above for
making the scheme 1SPO, encryptions of 0 would be (C,C′) = (gs, H(u, id)s),
while encryptions of 1 would be a pair of group elements chosen uniformly at
random from G×G.

Syntactically the scheme works, but it is unfortunately not IND-CPA secure.
The reason is that distinguishing an encryption of a 0 from an encryption of a
1 is exactly the DDH problem in G and hence easy given the pairing. Given a
ciphertext (C,C′), we can output 0 if e(g, C′) = e(C,H(u, id)) and 1 otherwise.
This is (with high probability) a correct decryption.

The fundamental issue is that in the BB scheme, the structure of the cipher-
texts can be detected given only public parameters. The key idea in our two
schemes is to destroy any structure that is publicly detectable.

6 A 1SPO IBE Scheme Based on the DLIN Assumption

The security of our first scheme will rely on the Decisional Linear Assump-
tion [7]. The decisional linear game DLIN is found in Figure 5. We say the
DLIN-advantage of an adversary A against GP is

Advdlin
GP (A) = 2 · Pr

[
DLINA

GP ⇒ true
]
− 1 .
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proc. Initialize:
g, g1, g2 ←$ G∗ ; a1, a2 ←$ Zp ; d←$ {0, 1}
h1 ← ga1

1 ; h2 ← ga2
2

If d = 1 then W = ga1+a2 Else W ←$ G

Return (g, g1, g2, h1, h2,W )

DLING

proc. Finalize(d′):
Return (d = d′)

Fig. 5. The DLIN game for the decisional linear assumption

Scheme Description. Our IBE scheme LoR = (Pg,Kg,Enc,Dec) is a one-bit
version of the anonymous IBE scheme from Boyen and Waters [12] but using the
Waters’ hash function [33] for adaptive security. The name is short for “Linear
or Random” to represent the fact that the encryption of a 0 consists of five
group elements whose relationship is similar to that of the group elements in the
decisional linear assumption, while an encryption of a 1 consists of five random
group elements. The scheme will use a cyclic group G of prime order p with
an efficiently computable pairing e : G × G → GT . We also require the group
has a PR sampler Samp with failure probability ζ and corresponding inverse
sampler Samp−1 with reverse failure probability θ. (The full version [5] gives
details on how to instantiate such groups.) Let G∗ denote the generators of G.
Let 1GT be the identity element of the target group GT . Define hash function
H : Gn+1 × {0, 1}n → G as H(u, id) = u[0]

∏n
i=1 u[i]id[i], where id[i] is the ith

bit of string id. This is the Waters’ hash function [33]. The scheme LoR, shown
in Figure 6, has message space {0, 1} and identity space {0, 1}n. The scheme has
completeness error 1/p2.

We claim the scheme is δ-1SPO where δ ≤ 5θ. The algorithm OpToOne simply
runs Samp−1 on each of the five ciphertext components with independent failure
probabilities θ.

The following says LoR is IND-CPA-secure based on DLIN. The proof com-
bines techniques from [12,33,3] and can be found in the full version [5].

Theorem 2. Fix pairing parameters GP = (G,GT , p, e) and an integer n ≥ 1,
and let LoR = (Pg,Kg,Enc,Dec) be the one-bit IBE scheme associated to GP
and IdSp = {0, 1}n. Assume G is PR-samplable with sampling failure proba-
bility ζ. Let A be an IND-CPA adversary against LoR which has advantage
ε = Advind-cpa

LoR (A) > 2n+1/p + 5ζ and makes at most q ∈ [1 .. pε/9n] queries to
its Extract oracle. Let

δ =
1
2

(
ε

2
− 2n

p
− 5ζ
)

.

Then there is a DLIN-adversary B such that

Advdlin
GP (B) ≥ δ2

9qn + 3δ
and T(B) = T(A) + Tsim(n, q) (1)

where Tsim(n, q) = O(qn + (n + q)Texp(G)) . 	




248 M. Bellare, B. Waters, and S. Yilek

Alg. Pg:

g←$ G∗ ; u←$ Gn+1

t1, t2, t3, t4 ←$ Z∗
p

v1 ← gt1 ; v2 ← gt2

v3 ← gt3 ; v4 ← gt4

par← (g,u, v1, v2, v3, v4)
msk← (t1, t2, t3, t4)
Return (par,msk)

Alg. Kg(par,msk, id):
(g,u, v1, v2, v3, v4)← par
(t1, t2, t3, t4)← msk
r1, r2 ←$ Zp ; d0 ← gr1t1t2+r2t3t4

d1 ← H(u, id)−r1t2
d2 ← H(u, id)−r1t1
d3 ← H(u, id)−r2t4
d4 ← H(u, id)−r2t3
Return (d0, d1, d2, d3, d4)

Alg. Enc(par, id,M):
(g,u, v1, v2, v3, v4)← par
If M = 0 then

s, s1, s2←$ Zp ; C0 ← H(u, id)s

C1 ← vs−s11 ; C2 ← vs12
C3 ← vs−s23 ; C4 ← vs24

Else
For i = 0 to 4 do Ci←$ SampG()

Return (C0, C1, C2, C3, C4)

Alg. Dec(par, sk, C):
(g,u, v1, v2, v3, v4)← par
(d0, d1, d2, d3, d4)← sk
(C0, C1, C2, C3, C4)← C

If
∏4
i=0 e(Ci, di) = 1GT then

Return 0
Else return 1

Fig. 6. Scheme LoR based on Boyen-Waters IBE

7 A Scheme Based on Dual System IBE

General Subgroup Decision. We introduce the general subgroup decision
problem and assumption as a generalization of several assumptions in the litera-
ture. An order-n group generator with security parameter k is an algorithm Gen
that returns a pair (π, π̄), where π = (〈G〉, 〈GT 〉, 〈e〉, N) and π̄ = (p1, . . . , pn)
with p1 < . . . < pn primes; G,GT groups and e : G×G→ GT a non-degenerate
bilinear map; pi ∈ {2k−1, . . . , 2k − 1} for 1 ≤ i ≤ n; N = p1 · · · pn = |G| = |GT |.
For S ⊆ [n] we let G(S) denote the unique subgroup of G of order

∏
i∈S pi. By

H∗ we denote the set of generators of a cyclic group H.
The orthogonality property is that if S1, S2 ⊆ [n] are disjoint and gi ∈ G(Si)

(i = 1, 2), then e(g1, g2) = 1GT . Now suppose S0, S1 ⊆ [n] and given T ∈ G(Sb)
we wish to determine b ∈ {0, 1}. Orthogonality makes this easy if we possess
g ∈ G(S) where one of S ∩S0, S ∩S1 is empty and the other is not. The general
subgroup decision assumption is that it is hard without such a g, even if we
possess elements of any G(S) for which S ∩ S0, S ∩ S1 are both empty or both
not empty. Our formalization uses game GSDGen of Figure 7. Adversary A must
make exactly one Ch query, consisting of a pair S0, S1 ⊆ [n], and this must be
its first oracle query. Subsequently it can query Gen(S) on any S ⊆ [n] and is
allowed multiple queries to this oracle. It terminates by outputting a bit b′ and
its advantage is

Advgsd
Gen(A) = 2 · Pr

[
GSDA

Gen ⇒ true
]
− 1 .
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proc. Initialize:
(π, π̄)←$ Gen ; b←$ {0, 1}
(〈G〉, 〈GT 〉, 〈e〉, N)← π
(p1, . . . , pn)← π̄
Return π

proc. Ch(S0, S1):
If (S0 = ∅ or S1 = ∅) then return ⊥
T ←$ G(Sb)
Return T

proc. Gen(S):
If (S ∩ S0 = ∅) ∧ (S ∩ S1 �= ∅)

then return ⊥
If (S ∩ S0 �= ∅) ∧ (S ∩ S1 = ∅)

then return ⊥
g←$ G(S)
Return g

proc. Finalize(b′):
Return (b = b′)

Fig. 7. Game GSDGen

Discussion. Lewko and Waters [26] make several different subgroup decision
assumptions about order-n group generators with n = 3, and [17] do the same
with n = 4. Each of these corresponds to a particular choice of S0, S1 queried to
Ch, and particular queries to Gen, in our game. (And hence can be formulated
without these oracles. We note these papers also make other assumptions, some
pertaining to GT , that we will not need or consider.) Although the authors make
only a few specific assumptions, it is apparent that they would be willing to make
any “allowed” one in the family, where “allowed” means that the adversary can
get elements of G(S) only as long as S ∩ S0, S ∩ S1 are both empty or both not
empty. Our aim in formulating GSD has been to make this more transparent,
namely, to make the full family of potential choices explicit, thereby generalizing,
unifying and explaining subgroup decisions assumptions from [10,26,17].

GSD may at first glance look like an “interactive” assumption. It isn’t. The
value n will be a fixed constant, eg. n = 3 for [26] and n = 4 for us. The GSD
assumption is then just a compact way of stating a constant number —one for
each subset {S0, S1} of 2[n] with S0, S1 �= ∅— of non-interactive assumptions. (By
non-interactive we mean the game has only Initialize and Finalize procedures,
no oracles.)

We don’t really need the full strength of GSD. As in previous works, we only
need a few special cases, namely a few particular choices of queries S0, S1 to Ch
and queries S to Gen. But we feel that stating GSD better elucidates the source
of the assumptions, and it will allow more compact assumption and theorem
statements.

Scheme Description. For our scheme we require a 4 group generator Gen
with the property that the group G described by the first output of Gen has a
PR sampler Samp with failure probability ζ and corresponding inverse sampler
Samp−1 with reverse failure probability θ. (The full version [5] describes how we
can instantiate such groups.) The scheme BBoR = (Pg,Kg,Enc,Dec) associated
to a order 4 group generator Gen is shown in Figure 8, where IdSp = Z24k−4 and
MsgSp = {0, 1}. (We use identity space Z24k−4 since N will vary but will always
be at least 24k−4.) If (C,C′) ∈ [Enc(par, id, 0)] and (K,K ′) ∈ [Kg(par,msk, id)],
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Alg. Pg:
(π, π̄)←$ Gen
(〈G〉, 〈GT 〉, 〈e〉, N)← π
(p1, p2, p3, p4)← π̄
g1←$ G({1})∗
g3←$ G({3})∗ ; g4←$ G({4})∗
u1←$ ZN ; U1 ← gu1

1
u4←$ ZN ; U4 ← gu4

4
x1 ←$ ZN ; X1 ← gx1

1
x4 ←$ ZN ; X4 ← gx4

4
w4 ←$ ZN ; W4 ← gw4

4 ; U14 ← U1U4
W14 ← g1W4 ; X14 ← X1X4
par← (π, U14, X14,W14, g4)
msk← (g1, U1, X1, g3)

Alg. Dec(par, (K,K ′), (C,C′)):
(π, U14, X14,W14, g4)← par
If e(C,K) = e(C′,K ′) then return 0
Else return 1

Alg. Kg(par,msk, id):
// id ∈ Z24k−4 ⊆ ZN

(π, U14, X14,W14, g4)← par
(g1, U1, X1, g3)← msk
r, r3, r

′
3 ←$ ZN

K ← gr1g
r3
3 ; K ′ ← (U id

1 X1)rg
r′3
3

Return (K,K ′)

Alg. Enc(par, id,M):
(π, U14, X14,W14, g4)← par
If M = 0 then

s←$ ZN ; t4, t
′
4 ←$ ZN

C ← (U id
14X14)sgt44

C′ ←W s
14g

t′4
4

Else C,C′←$ SampG()
Return (C,C′)

Fig. 8. Scheme BBoR based on composite order pairing groups

then decryption always succeeds. On the other hand, if (C,C′)←$ Enc(par, id, 1)
and (K,K ′)←$ Kg(par,msk, id) then Pr [ e(C,K) = e(C′,K ′) ] ≤ 8 · 2−2k where
k is the security parameter associated to Gen.

We claim the scheme is δ-1SPO with δ ≤ 2θ. The algorithm OpToOne runs
Samp−1 on each of the two ciphertext components. Each component will give
independent reverse sample failure probability of θ. The IND-CPA security of
the scheme is captured by the following theorem, proven in our full version [5].

Theorem 3. Let Gen be an order 4 group generator and let the resulting group
G be PR-samplable with sampling failure probability ζ. Let BBoR = (Pg,Kg,Enc,
Dec) the associated IBE scheme defined above. For all adversaries A′ making q
Extract queries there exists an adversary B such that

Advind-cpa
BBoR (A′) ≤ (9 + 2q) ·Advgsd

Gen(B) + 4 ·ζ .

Adversary B makes at most 5 queries to Gen and runs in time at most T(B) =
T(A′) +O(q ·Texp(G) + q ·T(gcd)). 	
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Functional Encryption: Definitions and Challenges
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Abstract. We initiate the formal study of functional encryption by giving precise
definitions of the concept and its security. Roughly speaking, functional encryp-
tion supports restricted secret keys that enable a key holder to learn a specific
function of encrypted data, but learn nothing else about the data. For example,
given an encrypted program the secret key may enable the key holder to learn the
output of the program on a specific input without learning anything else about the
program.

We show that defining security for functional encryption is non-trivial. First,
we show that a natural game-based definition is inadequate for some function-
alities. We then present a natural simulation-based definition and show that it
(provably) cannot be satisfied in the standard model, but can be satisfied in the
random oracle model. We show how to map many existing concepts to our for-
malization of functional encryption and conclude with several interesting open
problems in this young area.

1 Introduction

Encryption is a method for a user to securely share data over an insecure network or
storage site. Before the advent of public key cryptography, a widely held view was that
for two users to communicate data confidentially they would need to a priori establish
a mutually held secret key k. While this might be acceptable for some small or tightly
knit organizations, such a solution was clearly infeasible for larger networks such as
today’s Internet consisting of billions of users. Over thirty years ago, Diffie and Hell-
man [DH76a, DH76b] put forth a radically new idea in the concept of public key cryp-
tography, where two parties can securely communicate with each other without having
an a prior mutual secret — radically challenging the conventional wisdom of the time.

Today public key encryption is an invaluable tool and its use is ubiquitous in building
tools from secure web communication (e.g., SSH, SSL), to disk encryption, and secure
software patch distribution. However, there is an ingrained view that: (1) Encryption
is a method to send a message or data to a single entity holding a secret key, and (2)
Access to the encrypted data is all or nothing – one can either decrypt and read the
entire plaintext or one learns nothing at all about the plaintext other than its length.
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For many emerging applications such as “cloud” services this notion of public-key
encryption is insufficient. For example, there is often a need to specify a decryption
policy in the ciphertext and only individuals who satisfy the policy can decrypt. More
generally, we may want to only give access to a function of the plaintext, depending
on the decryptor’s authorization. As a concrete example, consider a cloud service stor-
ing encrypted images. Law enforcement may require the cloud to search for images
containing a particular face. Thus, the cloud needs a restricted secret key that decrypts
images that contain the target face, but reveals nothing about other images. More gen-
erally, the secret key may only reveal a function of the plaintext image, for example
an image that is blurred everywhere except for the target face. Traditional public-key
cryptography cannot help with such tasks.

We believe that it is time to adopt a new broad vision of encryption systems. To this
end, we explore the concept of functional encryption. In a functional encryption sys-
tem, a decryption key allows a user to learn a function of the encrypted data. Briefly,
in a functional encryption system for functionality F (·, ·) (modeled as a Turing Ma-
chine) an authority holding a master secret key can generate a key skk that enables
the computation of the function F (k, ·) on encrypted data. More precisely, using skk
the decryptor can compute F (k, x) from an encryption of x. Intuitively, the security of
the system guarantees that one cannot learn anything more about x, but as we shall see,
capturing this rigorously is quite challenging.

We can now see the power of functional encryption. Let us consider what can be
achieved if we could realize functional encryption for any polynomial-time Turing Ma-
chine F (·, ·). In applications of access control, one could let x = (ind,m) encode a
message m as well as an arbitrarily complex access control program ind that will act
over the description of a user’s credentials. The functionality F would interpret the
program ind over k and output the message m if and only if ind accepts on input k.
Moreover, the program ind would be hidden and thus one would not necessarily know
why decryption was successful or what other keys would satisfy ind. We give many
more examples in Section 3.

Our Contributions. Recently, there have been multiple systems that suggest moving
beyond the traditional boundaries of encryption. Some examples include Identity-Based
Encryption [Sha84, BF03, Coc01], searchable encryption [BCOP04] and Attribute-Based
Encryption [SW05]. These and other related works such as [BW07, KSW08] propose
specific new systems for problems ranging from expressive access control to searching
on encrypted data. In the last few years, the term “functional encryption1” was adopted
to describe this new area [LOS +10, OT10, AL10].

While these results contain special cases of functional encryption, the general con-
cept has never been formally defined or studied. In this paper we put forth a formal
treatment of the subject and discuss many of the remaining challenges. We begin with a
general framework and syntax for functional encryption and show how existing

1 We note that both the term “functional encryption” and its underlying concept were introduced
by the authors of this paper. This term was first publicly used to describe the line of work starting
with [SW05] in a talk “Functional Encryption: Beyond Public Key Cryptography” [Wat08] in
2008, given by one of the authors of this paper.
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encryption concepts, such as attribute based encryption and many others, can be ele-
gantly expressed as particular functionalities of functional encryption.

Defining security of abstract functional encryption turns out to be highly non-trivial.
We begin with a natural indistinguishability game-based definition (based on a defini-
tion of secure predicate encryption from [BW07, KSW08]). Unfortunately, we show
that this simple definition is inadequate for certain functionalities since trivially inse-
cure constructions may satisfy it.

Given the inadequacy of game-based definitions we move to simulation-based def-
initions in the spirit of the original notion of semantic security of Goldwasser and
Micali [GM84]. The goal is to capture the notion that the adversary learns nothing
about the plaintext other than functions F (k, ·) of the plaintext for which he has a
secret key. Somewhat surprisingly, we show a connection to non-committing encryp-
tion [CFGN96, Nie02] which proves that our definition cannot be satisfied for the
same reason that non-interactive non-committing encryption is impossible. However,
we show that our definition can be satisfied in the random oracle model, and we ex-
hibit constructions for interesting functionalities that can be shown to be secure. (Inde-
pendently, O’Neill [O’N10] also observed a gap between simulation and game-based
definitions and a connection to non-committing encryption.)

Functional encryption is still in its infancy and many fascinating open problems re-
main. We conclude with several directions for future work. The key challenge is the
construction of functional encryption for more general functionalities. Another impor-
tant question is understanding the relative power of functionalities: when does one func-
tionality imply another and when can functionalities be black-box separated?

2 Functional Encryption Syntax

We begin by describing the syntactic definition of functional encryption (FE) for a func-
tionality F . The functionality F describes the functions of a plaintext that can be learned
from the ciphertext. More precisely, a functionality is defined as follows.

Definition 1. A functionalityF defined over (K,X) is a function F : K×X → {0, 1}∗
described as a (deterministic) Turing Machine. The set K is called the key space and
the set X is called the plaintext space. We require that the key space K contain a special
key called the empty key denoted ε.

A functional encryption scheme for the functionality F enables one to evaluate F (k, x)
given the encryption of x and a secret key skk for k. The algorithm for evaluation
F (k, x) using skk is called decrypt. More precisely, a functional encryption scheme is
defined as follows.

Definition 2. A functional encryption scheme (FE) for a functionality F defined over
(K,X) is a tuple of four PPT algorithms (setup, keygen, enc, dec) satisfying the fol-
lowing correctness condition for all k ∈ K and x ∈ X:

(pp,mk)← setup(1λ) (generate a public and master secret key pair)

sk ← keygen(mk, k) (generate secret key for k)
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c← enc(pp, x) (encrypt message x)

y ← dec(sk, c) (use sk to compute F (k, x) from c)

then we require that y = F (k, x) with probability 1.

We define security of a functional encryption scheme in Section 4. For now, we briefly
show that standard public-key encryption is a simple example of functional encryption.
Let K := {1, ε} and consider the following functionality F defined over (K,X) for
some plaintext space X :

F (k, x) :=

{
x if k = 1
len(x) if k = ε

A secret key for k = 1 fully decrypts valid ciphertexts, while the empty key k = ε
simply returns the bit length of the plaintext. Hence, this functionality syntactically
defines standard public-key encryption.

The empty key ε: The special key ε in K captures all the information about the plaintext
that intentionally leaks from the ciphertext, such as the length of the encrypted plaintext.
The secret key for ε is empty and also denoted by ε. Thus, anyone can run dec(ε, c) on
a ciphertext c

R← enc(pp, x) and obtain all the information about x that intentionally
leaks from c.

Further parametrization. In some cases the key space K and plaintext space X are
further parametrized by quantities generated by the setup algorithm. For example, setup
may output an RSA modulus N in which case the sets K and X and the functionality
F are defined as tuples over ZN . More generally, we allow setup to output a third
parameter π and we denote the key and plaintext space by Kπ and Xπ. The functionality
F is the defined as

Fπ : Kπ ×Xπ → {0, 1}∗ .

When π is clear from context, we avoid writing it as an explicit subscript.

2.1 Sub-classes of Functional Encryption

So far we defined the most general syntax for a functional encryption scheme. For the
applications we have in mind it is convenient to define two sub-classes of functional
encryption where the plaintext space X has additional structure.

Predicate encryption [BW07, KSW08]. In many applications a plaintext x ∈ X is
itself a pair (ind,m) ∈ I ×M where ind is called an index and m is called the payload
message. For example, in an email system the index might be the sender’s name while
the payload is the email contents.

In this context, an FE scheme is defined in terms of a polynomial-time predicate
P : K × I → {0, 1} where K is the key space. More precisely, the FE functionality
over (K ∪ {ε}, (I ×M) ) is defined as

F
(
k ∈ K, (ind,m) ∈ X

)
:=

{
m if P (k, ind) = 1, and

⊥ if P (k, ind) = 0
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Consequently, let c be an encryption of (ind,m) and let skk be a secret key for k ∈ K .
Then dec(skk, c) reveals the payload in c when P (k, ind) = 1 and reveals nothing new
about m otherwise.

Predicate encryption with public index. A sub-class of predicate encryption makes
the plaintext index easily readable from the ciphertext. In particular, in this type of FE
the empty key ε explicitly reveals the index ind, namely

F
(
ε, (ind,m)

)
= (ind, len(m) )

Hence, dec(ε, c) gives anyone the index component of the plaintext as well as the bit
length of m.

3 Capturing Cryptosystems in the Context of Functional
Encryption

Many recent encryption concepts and constructions can be viewed as special cases of
Functional Encryption. In this section we give a few examples to show how functional
encryption captures these encryption concepts. Security of these schemes is captured
by the general security definitions of functional encryption in the next section.

3.1 Predicate Encryption Systems with Public Index

The first class of systems that we consider are Predicate encryption schemes with public
index2. We begin our study with the simplest interesting case of Identity-Based Encryp-
tion and then advance to more expressive methods of access formulas. We will describe
these systems using the notation for predicate encryption defined in Subsection 2.13.

Identity-Based Encryption. In Identity-Based Encryption (IBE) [Sha84] ciphertexts
and private keys are associated with strings (a.k.a identities) and a key can decrypt a
ciphertext if the two strings are equal. IBE represents the first functionality that is not
directly realizable from public key encryption [BPR+08]. IBE is formally described as
a Predicate Encryption scheme where:

1. The key space K is K := {0, 1}∗ ∪ {ε}.
2. The plaintext is a pair (ind,m) where the index space I := {0, 1}∗.
3. The predicate P on K × I is defined as

P
(
k ∈ K � {ε}, ind ∈ I

)
:=

{
1 if k = ind, and

0 otherwise

2 This class has also been informally referred to as “payload hiding” [BW07, KSW08] in the
literature.

3 Recall that for all predicate encryption schemes with public index we have that
F
(
ε, (ind, m)

)
= (ind, len(m) ).
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Boneh and Franklin [BF03] and Cocks [Coc01] construct the first practical IBE sys-
tems, which were proven secure according to an indistinguishability definition that is
a special case of our definition of functional encryption security (Definition 3 in Sec-
tion 4). These first schemes were proven secure in the random oracle model. Subsequent
schemes were proven secure in the standard model, but under a weaker notion known as
selective security [CHK03, BB04a], and further subsequent systems were proven adap-
tively secure [BB04b, Wat05, Gen06]. Recently, there have been multiple lattice-based
constructions of IBE systems [GPV08, CHKP10, ABB10].

For these systems to properly support the empty key ε function, the ciphertext must
explicitly include ind and the length of the message in the clear.

Attribute-Based Encryption. Sahai and Waters [SW05] proposed a notion of encryp-
tion, called Attribute-Based Encryption (ABE), where one could express complex ac-
cess policies. Subsequently, Goyal, Pandey, Sahai and Waters [GPSW06] refined this
concept into two different formulations of ABE: Key Policy ABE and Ciphertext-Policy
ABE.

We first describe Key-Policy ABE for boolean formulas, as was realized by Goyal
et. al. [GPSW06]4. A Key-Policy ABE system over n variables can be described as a
predicate encryption scheme (with public index) for the predicate Pn : K× I → {0, 1}
where:

1. The key space K is the set of all poly-sized boolean formulas φ in n variables
z = (z1, . . . , zn) ∈ {0, 1}n. We let φ(z) denote the value of the formula φ at z.

2. The plaintext is a pair (ind = z, m) where the index space is I := {0, 1}n, and
where we interpret z as a bit vector representing the boolean values z1, . . . zn.

3. The predicate Pn on K × I is defined as

Pn
(
φ ∈ K � {ε}, ind = z ∈ I

)
:=

{
1 if φ(z) = 1, and

0 otherwise

In these systems the key provides an access formula that operates over a set of n at-
tributes that must evaluate to true for decryption to yield the message m. Goyal et al.
also describe how to construct a “Large Universe” construction where ind can be viewed
as a set of strings. Then K consists of all monotone boolean formulas over strings. To
evaluate φ(ind) we evaluate a leaf labeled with string x in φ as ‘0’ if x /∈ ind.

Ciphertext-Policy ABE. A dual concept of Attribute-Based Encryption is Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), where the roles of the ciphertext and
key are essentially reversed. A Ciphertext-Policy ABE system over n variables can be
described as predicate encryption scheme (with public index) for the predicate Pn :
K × I → {0, 1} where:

1. The key space K := {0, 1}n is the set of all n bit strings representing n boolean
variables z = (z1, . . . , zn) ∈ {0, 1}n.

4 The ABE solutions of Goyal et. al. and others [BSW07, OSW07, GJPS08, Wat11] actually
extend to formulas over threshold gates and to Monotone Span Programs; however, we restrict
our description to Boolean formulas for simplicity.
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2. The plaintext is a pair (ind = φ, m) where the index space I is the set of all
poly-sized boolean formulas φ over n variables.

3. The predicate Pn on K × I is defined as

Pn
(
z ∈ K � {ε}, ind = φ ∈ I

)
:=

{
1 if φ(z) = 1, and

0 otherwise

CP-ABE systems are constructed in [BSW07, GJPS08, Wat11]. Most constructions of
ABE (both Ciphertext-Policy and Key-Policy) were proven secure in a weaker selective
model of security. Recently Lewko et. al. [LOS +10] showed how to give fully secure
realizations meeting our security definition.

3.2 Predicate Encryption Systems

While the previous systems described allow for expressive forms of access control, they
are limited in two ways. First, the policy ind is given in the clear as part of the empty
functionality — often this in itself can be considered sensitive. Second, it does not allow
for computation on the encrypted data, which might include such applications as search.
Here we describe current Predicate Encryption systems that do not leak the index ind.

Anonymous Identity-Based Encryption. The problem of Anonymous Identity-Based
Encryption was first proposed by Boneh et. al. [BCOP04] and later formalized by Ab-
dalla et. al. [ABC+08]. Other constructions include [BW06, Gen06, CHKP10, ABB10].
The functionality of Anonymous IBE is similar to IBE except that the string represent-
ing the ciphertext identity is hidden and one can only determine it if they have the
corresponding private key. Therefore, we can describe Anonymous IBE in the exact
same manner as above, except we have that F

(
ε, (ind,m)

)
= len(m). The empty

functionality only gives the message length, but ind stays hidden.

Hidden Vector Encryption. Boneh and Waters [BW07] proposed what they called a
hidden vector encryption system. In such a system a ciphertext contains a vector of n
elements in {0, 1}∗ and a private key contains of a vector of n elements in {∗}∪{0, 1}∗
where we refer to ∗ as a wildcard character. More precisely,

1. The key space K is all (v1, . . . vn) where each vi ∈ {∗} ∪ {0, 1}∗.
2. The plaintext is a pair (ind = (w1, . . . , wn), m) where each wi ∈ {0, 1}∗. The

index space in I := ({0, 1}∗)n.
3. The predicate Pn on K × I is defined as

Pn
(

(v1, . . . , vn) ∈ K � {ε}, ind = (w1, . . . , wn)
)

:={
1 if vi = wi whenever vi �= ∗, and

0 otherwise

Applications of the predicate include conjunctive and range searches. Independently,
Shi et. al. [SBC+07] proposed a related system in a weaker security model. Again we
note that F

(
ε, (ind,m)

)
= len(m) so that ciphertexts do not reveal ind.
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Inner Product Predicate. The previous system was limited to conjunctive searches.
Katz, Sahai and Waters [KSW08] proposed a system for testing if a dot product oper-
ation over the ring ZN is equal to 0, where N is the product of three random primes
chosen by the setup algorithm. This enabled more complex evaluations on disjunctions,
polynomials, and CNF/DNF formulae. Subsequently, Okamoto and Takashima [OT09]
and Lewko et. al. [LOS +10] gave constructions over the field Fp. We describe this
predicate for vectors of length n.

1. The setup algorithm defines a randomly chosen prime p of length κ, where κ is the
security parameter.

2. The key space K is all v = (v1, . . . vn) where each vi ∈ Fp.
3. The plaintext is a pair (ind = (w1, . . . , wn), m) where each wi ∈ Fp. The index

space is I := (Fp)n.
4. The predicate Pn,p on K × I is defined as

Pn,p
(

(v1, . . . , vn) ∈ K � {ε}, ind = (w1, . . . , wn)
)

:={
1 if
∑

i=1,...,n vi · wi = 0
0 otherwise

3.3 Other Systems and Combinations

Different researchers have realized different combinations of the above core systems.
Examples of these include combinations of: Attribute-Based Encryption and Broad-
cast Encryption [AI09], Identity-Based Broadcast Encryption [Del07, DPP07, SF07,
GW09], broadcast HIBE [BH08], and Inner-Product Encryption and ABE [OT10]. All
are captured as special cases of functional encryption.

4 Security Definitions

Given the syntactic definitions of Functional Encryption (FE) from Section 2 we now
turn to defining security of an FE scheme. In this section we give game based defini-
tions. In Section 5 we discuss simulation-based definitions.

Let E be an FE scheme for functionality F defined over (K,X). Our goal is to define
security against an adaptive adversary that repeatedly asks for secret keys skk for keys
k ∈ K of the attacker’s choice. As we shall see, defining security against such attackers
is more delicate than one might first expect. The problem is how to define the challenge
ciphertext in a semantic security game. As usual, once the attacker obtains all the secret
keys he desires, he outputs two challenge messages m0,m1 ∈ X and expects to get
back an encryption c of m0 or m1 chosen at random by the challenger. Clearly, if the
attacker has a secret key skk for some k ∈ K for which F (k,m0) �= F (k,m1) then he
can easily answer the challenge c by outputting{

0 if dec(skk, c) = F (k,m0), and

1 otherwise
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Hence, for the definition to be satisfiable we must severely restrict the attacker’s choice
of m0,m1 and require that they satisfy

F (k,m0) = F (k,m1) for all k for which the attacker has skk. (1)

Since the empty key ε reveals the plaintext length, condition (1) ensures that |m0| =
|m1|, as in the standard PKE definition of semantic security.

Security definition. With requirement (1) in place we obtain a natural game for defining
security of an FE scheme E . For b = 0, 1 define experiment b for an adversary A as
follows:

– Setup: run (pp,mk)← setup(1λ) and give pp to A.
– Query: A adaptively submits queries ki in K for i = 1, 2, . . . and is given ski ←

keygen(mk, ki).
– Challenge: A submits two messages m0,m1 ∈ X satisfying (1) and is given

enc(pp,mb).
– A continues to issue key queries as before subject to (1) and eventually outputs a

bit in {0, 1}.

For b = 0, 1 let Wb be the event that the adversary outputs 1 in Experiment b and define

FEadv[E ,A](λ) :=
∣∣Pr[W0]− Pr[W1]

∣∣
Definition 3. An FE scheme E is secure if for all PPTA the function FEadv[E ,A](λ) is
negligible.

Definition 3 is a generalization of related definitions from [BW07, KSW08].

4.1 A “Brute Force” Construction

We briefly show that any functionality F where the key space K has polynomial size
can be easily realized. Write s = |K| − 1 and K = {ε, k1, . . . , ks}. In this brute force
construction, the size of public parameters, secret key, and ciphertext are all propor-
tional to s. A closely related construction is given in [BW07].

The brute force FE scheme realizing F uses a semantically secure public-key en-
cryption scheme (G,E,D) and works as follows:

– setup(1λ): for i = 1, . . . , s run (ppi,mki)← G(1λ).

output: pp := (pp1, . . . , pps) and mk := (mk1, . . . ,mks)

– keygen(mk, ki): output ski := mki.
– enc(pp, x): output c :=

(
F (ε, x), E

(
pp1, F (ki, x)

)
, . . . , E

(
pps, F (ks, x)

) )
.

– dec(ski, c): output c0 if ski = ε, and output D(ski, ci) otherwise.

Clearly, a ciphertext c leaks the bit lengths of F (ki, x) for i = 1, . . . , s. Therefore, for
this construction to be secure we must assume that this information is already leaked
by the empty functionality F (ε, ·), namely that |F (ki, x)| for i = 1, . . . , s is contained
in F (ε, x). If so then we say that F reveals functional bit lengths.
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Theorem 1. Let F be a functionality that reveals functional bit lengths. If (G,E,D)
is a semantically secure public-key encryption scheme then the brute force FE system
implementing F is secure.

Proof (Proof Sketch). The proof is by a standard hybrid argument across the s compo-
nents of the challenge ciphertext.

4.2 Insufficiency of the Game-Based Security Definition

We will now show that for certain complex functionalities Definition 3 is too weak. For
these functionalities we construct systems that are secure under Definition 3, but should
not be considered secure. Nevertheless, for functionalities such as predicate encryption
with public index we show in Section 5 that Definition 3 is adequate.

We give a simple example of a functionality for which the game-based Definition 3
is insufficient. Let π be a one-way permutation and consider the functionality F that
only admits the trivial key ε, defined as follows:

F (ε, x) = π(x)

It is clear that the “right” way to achieve functional encryption for this very simple
functionality is to have the functional encryption algorithm itself simply output π(x)
on input x, namely enc(pp, x) = π(x). This scheme would also clearly achieve the
simulation-based definition of security presented in Section 5.

However, consider an “incorrect” realization of this functionality where the func-
tional encryption algorithm outputs x on input x, namely enc(pp, x) = x. Clearly this
system leaks more information about the plaintext than needed. Nevertheless, it is easy
to verify that this construction satisfies the game-based definition from Section 4. This
is because for any two values x and y, it is the case that F (ε, x) = F (ε, y) if and only
if x = y and therefore the attacker can only issue challenge messages m0,m1 where
m0 = m1.

This problematic system, however, would clearly not achieve the simulation-based
definition of security presented in Section 5, since if x is chosen at random, the real-life
adversary would be able to recover x always, while the simulator would not be able to
recover x without breaking the one-wayness of the permutation π.

While the simple example above may seem to be “abusing” the role of the trivial
key ε, it is easy to modify the functionality example F above so that there is exactly
one non-trivial key k ∈ K that outputs π(x). The only difference to the construction
above would be that the functional encryption algorithm would output a public-key
encryption5 of either π(x) (in the “correct” implementation) or x (in the “incorrect”
implementation), and the secret key for key k would be the secret key of the public-key
encryption scheme. Again, it is easy to verify that the incorrect implementation satisfies
the game-based definition.

Discussion. What does this separation show? While this is a subjective question, our
view is that it shows that if the output of the functionality is supposed to have some

5 The public-key encryption would need to be non-committing to achieve the simulation-based
definition of security for the good case.
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computational hiding properties – that is, security of your application is not only based
on the information-theoretic properties of the function, but also on the computational
properties of the function – then there is a real problem with the game-based formulation
of security. The game-based formulation essentially ignores any computational hiding
properties of the function, and therefore offers no security guarantees that could be
meaningfully combined with such computational considerations.

5 Simulation Based Definitions

In this section, we explore security definitions for functional encryption that arise from
the simulation paradigm [GM84, GMR85, GMW86] that has served us so well, espe-
cially in the closely related context of secure computation protocols.

We begin by considering a simulation-based definition6 of security for functional
encryption that captures the most basic intuition we have: That getting the secret key skk
corresponding to the key k ∈ K should only reveal F (k, x) when given an encryption
of x.

It turns out that we can achieve this simulation-based definition for natural function-
alities in the random oracle model, where in the ideal model the random oracle would
also be simulated. We argue that in fact this (very strong) random oracle model seems
necessary for a meaningful simulation-based definition of security for functional en-
cryption: we show that even in the non-programmable random oracle model (where the
simulator, too, only has oracle access to the same random oracle that is provided to
the distinguisher), simulation-secure functional encryption (for a seemingly “minimal”
formulation of simulation-security) even just for the IBE functionality is impossible to
achieve. At a high level, this is because any simulation-based definition that allows the
adversary to query for secret keys after seeing the challenge ciphertext must achieve
something very similar in spirit to non-interactive non-committing encryption, where
exactly these kinds of impossibility and possibility results are known [Nie02].

In our main definition below (that we will achieve in our positive results), we will use
some non-standard syntax for representing a stateful oracle7. When we write AB(·)[[x]],
we mean that the algorithm A can issue a query q to its oracle, at which point B(q, x)
will be executed and output a pair (y, x′). The value y is then communicated to A as
the response to its query, and the variable x is set to x′, and this updated value is fed
to the algorithm B the next time it is queried as an oracle, and fed to any algorithms
executed later in an experiment that want x as an input. Also, if we write AB◦(·), we
mean that A can send a query q to its oracle, at which point B◦(q) is executed, and any
oracle queries that B makes are answered by A.

Definition 4. An FE scheme E is simulation-secure if there exists an (oracle) PPT
algorithm Sim = (Sim1, SimO, Sim2) such that for any (oracle) PPT algorithms

6 We note that there are several natural variants possible for such a definition. We have chosen
a definition that is strong in the sense that it requires a universal black-box simulator. We will
later discuss some weaker formulations.

7 The more standard way to formalize this communication structure would be through interactive
Turing Machines, but we find this notation to be simpler to parse.
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Message and Adv, we have that the following two distribution ensembles (over the
security parameter λ) are computationally indistinguishable:

Real Distribution:
1. (pp,mk)← setup(1λ)
2. (x, τ)←Messagekeygen(mk,·)(pp)
3. c← enc(pp,x)
4. α← Advkeygen(mk,·)(pp, c, τ)
5. Let y1, . . . , y� be the queries to keygen made by Message and Adv in the

previous steps.
6. Output (pp,x, τ, α, y1, . . . , y�)

Ideal Distribution:
1. (pp, σ)← Sim1(1λ)
2. (x, τ)←MessageSimO(·)[[σ]](pp)
3. α← Sim

F (·,x), Adv◦(pp,·,τ)
2 (σ, F (ε,x))

4. Let y1, . . . , y� be the queries to F made by Sim in the previous steps8.
5. Output (pp,x, τ, α, y1, . . . , y�)

We note that this definition can be extended further to allow the adversary to receive
challenge ciphertexts adaptively (instead of as a single vector), and all our positive
results below would extend to this setting. We omit this generalization due to the nota-
tional complexity that would be required to formulate such a definition.

5.1 Impossibility of Simulation-Secure Functional Encryption

In this section, we briefly sketch the impossibility result for simulation-secure func-
tional encryption, even for a quite simple functionality (the functionality corresponding
to IBE), in the non-programmable random oracle model. As the proof closely mirrors
the argument of Nielsen [Nie02] for non-interactive non-committing encryption, we
give only a high-level overview of the proof.

We note that our impossibility result in fact holds for much less stringent formu-
lations of simulation security for functional encryption. In particular, we consider the
following weaker version of our main definition:

Definition 5. An FE scheme E is weakly simulation-secure if for any (oracle) PPT
algorithms Message and Adv, there exists an (oracle) PPT algorithm Sim such that
we have that the following two distribution ensembles (over the security parameter λ)
are computationally indistinguishable:

Real Distribution:
1. (pp,mk)← setup(1λ)
2. (x, τ)←Message(1λ)

8 Note that Sim does not need to query the oracle for F (ε, x), as this is provided as an explicit
input to Sim2. We choose this formulation since in the real distribution, the Adversary does
not explicitly need to ask keygen for the key corresponding to ε in order to gain knowledge
about F (ε,x).
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3. c← enc(pp,x)
4. α← Advkeygen(mk,·)(pp, c, τ)
5. Let y1, . . . , y� be the queries to keygen made by Adv in the previous steps.
6. Output (x, τ, α, y1, . . . , y�)

Ideal Distribution:
1. (x, τ)←Message(1λ)
2. α← SimF (·,x)(1λ, τ, F (ε,x))
3. Let y1, . . . , y� be the queries to F made by Sim in the previous step.
4. Output (x, τ, α, y1, . . . , y�)

We note another weakening of the definition above would be to have the distributions
output the queries y1, . . . , y� as an unordered set, instead of an ordered tuple. Our im-
possibility proof can be extended to this weakening as well. We now sketch the proof
of the following theorem.

Theorem 2. Let F be the functionality for IBE. There does not exist any weakly
simulation-secure FE scheme for F in the non-programmable random oracle model.

Proof (Brief Proof Sketch). The overall idea of this proof is almost identical to the im-
possibility proof of Nielsen [Nie02] for non-interactive non-committing encryption. Let
H represent the random oracle. Consider the following concrete adversary algorithms:

Message(1λ) works as follows: Let lensk be the maximum bit length produced by
the keygen algorithm for the key 0 for security parameter λ. Then the vector x consists
of the following elements: for i = 1, . . . , lensk + λ, the element (ri, 0) where ri is a
randomly and independently chosen bit for each i. The value τ is empty.

Advkeygen(mk,·)(pp, c, τ) works as follows: Call the random oracle H on the input
(pp, c) to obtain a string w of length λ. Now request the secret key for the identity
(w) first, and then for the identity 0. Use the key for identity 0 to decrypt the entire
ciphertext. Output a full transcript of the entire computation done by Adv, including all
calls to the random oracle and the interaction with the keygen oracle.

Now consider what Sim must do in order to output a distribution indistinguishable
from the real interaction. Because Adv only makes a single key query of the form (w),
it is the case that Sim must make exactly one query – its first query – to F of this
form as well. Furthermore, the distinguisher can check if this w is the output of H
applied to some string of the form (pp, c). Thus, the simulator must perform this query
to H before making any queries to F . The simulator at this point has no information
whatsoever about the plaintexts ri (which is only revealed when the simulator queries
F for identity 0 afterwards). Thus, this fixed string z = (pp, c) has the (impossible)
property that after receiving only lensk bits of information, it can deterministically
“decode” z to be a an arbitrary string of length lensk + λ.

We remark that the proof above made use of the fact that the simulator’s queries to
F are recorded in order. However, we note that the same impossibility result would
hold even if the security definition only recorded the unordered set of queries to F , but
using a slightly more involved adversary and message distribution. Roughly speaking,
the only identities in the system would be of the form (i, 0) and (i, 1) for i = 1, . . . , λ,
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and the messages to be encrypted would be random long messages for each identity.
The adversary would apply the random oracle to (pp, c) to obtain a single string w
of length λ exactly as above, but it would now use this string to obtain keys (i, wi)
for i = 1, . . . , λ. The argument would now proceed by looking at the point when the
simulator has made at least λ/2 queries to F . By now with overwhelming probability,
a single query (pp, c) to H would be compatible with these queries, and that could be
used to define the “impossible string” needed above.

5.2 A Simulation-Based Brute Force Scheme

We now consider FE schemes that are simulation-secure in the random oracle model
(where the scheme algorithms and the Message and Adv algorithms all have oracle
access to a random oracle, but the simulator algorithms can emulate the random oracle
itself). We note that this is the standard formulation of the random oracle model, more
recently called the “full” or “programmable” random oracle model.

The modified “brute-force” construction. We first consider the following slight mod-
ification of the brute-force construction given earlier. The modification just uses the
random oracle to randomly mask the output values of the function.

We will make use of a random oracle H : {0, 1}∗ → {0, 1}. Note that we will
abuse notation and also write H(x) to produce strings of arbitrary length (which will
be clear from context). This can be accomplished by interpreting H(x) to mean the
concatenation of H((x, 1)), . . . , H((x, �)) to produce strings of length �.

Recall that we write s = |K|−1 andK = {ε, k1, . . . , ks}. The brute force FE scheme
realizing F uses a semantically secure public-key encryption scheme (G,E,D), and
works as follows:

– setup(1λ): for i = 1, . . . , s run (ppi,mki)← G(1λ).

output: pp := (pp1, . . . , pps) and mk := (mk1, . . . ,mks)

– keygen(mk, ki): output ski := mki.
– enc(pp, x): choose random values r1, . . . , rs ∈R {0, 1}λ. output

c :=
(

F (ε, x), E
(
pp1, r1

)
, H(r1)⊕ F (k1, x), . . . ,

E
(
pps, rs

)
, H(rs)⊕ F (ks, x)

)
.

– dec(ski, c): output c0 if ski = ε, and output H
(
D(ski, c2i−1)

)
⊕ c2i otherwise.

A proof sketch of the following theorem is given in the full version of the paper [BSW10].

Theorem 3. Let F be a functionality that reveals functional bit lengths. If (G,E,D)
is a semantically secure public-key encryption scheme then the modified brute force FE
system above implementing F is simulation-secure in the random oracle model.
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5.3 An Equivalence for Public Index Schemes

We show that any predicate encryption system with public index that is secure under the
game-based Definition 3 also satisfies the simulation based Definition 4 in the random
oracle model. This result shows equivalence (in the random oracle model) for the large
class of public index schemes including various forms of Attribute-Based encryption.

Let E := (setup, keygen, enc, dec) be an FE predicate encryption system with public
index for predicate P : K × I → {0, 1}. We convert the system into a scheme EH :=
(setup, keygen, encH , decH) where encryption is done using a random oracle H :

– encH(pp, (ind,m) ): choose a random value r ∈ {0, 1}λ and output

c :=
(

enc(pp, (ind, r) ), H(r) ⊕m
)

.

– decH(sk, (c1, c2) ): if dec(sk, c1) = ⊥ output⊥, otherwise output dec(sk, c1)⊕c2.

The following theorem shows that this construction is simulation secure.

Theorem 4. If the system E is game-secure (Definition 3) then EH is simulation secure
(Definition 4) in the random oracle model.

Proof (sketch). We construct the universal simulators Sim1, SimO, and Sim2 needed
for simulation security. These algorithms work as follows:

– Sim1(1λ) simply executes setup(1λ) to obtain pp and mk. It outputs pp unmodi-
fied, and outputs σ = (mk, O, κ), where O and κ are empty lists. This list O will
keep track of the simulated random oracle, and κ will keep track of key queries.

– SimO(·)[[σ]] works as follows: It responds to random oracle queries and keygen
queries the adversary Message makes as follows:

• Random Oracle Queries: On query q, the simulator first checks to see if a
pair (q, y) already exists in the list O. If so, it provides y as the response to the
adversary’s query. If not, the simulator chooses a fresh random string y, adds
the pair (q, y) to the list O, and provides y as the response to the adversary’s
query. This list O is updated in the state variable σ.

• Key Queries: When the adversary asks for the key k, the simulator sends the
secret key sk ← keygen(mk, k) to the adversary. The simulator adds k to the
list κ. This list κ is updated in the state variable σ.

– Sim
F (x,·), Adv◦(pp,·,τ)
2 (σ, F (x, ε)) works as follows:

1. The algorithm begins by preparing a “fake” vector of ciphertexts as follows:
Let n be the number of elements in x and let ind1, . . . , indn be the indices in
x. Sim2 obtains n and these indices by querying its F oracle at F (ε,x).

Now, for i = 1 . . .n, it chooses random strings r1, . . . , rn and R1, . . .Rn,
and creates the ciphertext components

ci,1 := enc
(
pp, (indi, ri)

)
and ci,2 = Ri for i = 1, . . . , n.

Let c be the vector of n ciphertexts c := (ci,1, ci,2)i=1,...,n .
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2. For each key k in the list κ of keys already queried, the simulator does the
following:
(1) it invokes the F oracle and obtains F (k,x) = (z1, . . . , zn),
(2) for i = 1, . . . , n if zi �= ⊥ it adds the pair (ri, Ri ⊕ zi) to the list O. If any
of these ri values were already in the list O, the simulation aborts.

3. Then it invokes Adv(pp, c, τ) using this “fake” ciphertext vector c created
above.

4. It now monitors which random oracle queries and keygen queries the adversary
Adv makes. It responds to these queries as follows:

• Random Oracle Queries: On query q, the simulator first checks to see if a
pair (q, y) already exists in the list O. If so, it provides y as the response to
the adversary’s query. If not, the simulator chooses a fresh random string
y, adds the pair (q, y) to the list O, and provides y as the response to the
adversary’s query.

• Key Queries: If the adversary asks for the key k, then the simulator in-
vokes the F oracle and obtains F (k,x) = (z1, . . . , zn). For i = 1, . . . , n
if zi �= ⊥ it adds the pair (ri, Ri ⊕ zi) to the list O. If for any i there
is already a pair (ri, R) in the list O with R �= Ri ⊕ zi then the simu-
lation aborts. Finally, it sends the secret key sk ← keygen(mk, k) to the
adversary. It is easy to confirm that the decryption procedure will work as
it should after we have modified the random oracle as detailed above.

5. When the adversary terminates and outputs α, then the simulator outputs this
α as well, finishing the simulation.

The same argument as in the proof of Theorem 3 shows that the simulator aborts with
negligible probability and that the distribution generated by these simulators is statis-
tically close to the real distribution. In particular, the negligible probability of abort
follows from the game-based security of E , since game-based security implies one-way
security for encrypting random values, which implies that the adversary is extremely
unlikely to query the random oracle on the ri values prior to obtaining a secret key that
can open the i’th ciphertext.

Other Simulation-Secure Functional Encryption Schemes. Since the above equiva-
lence only applies to public index schemes, an interesting question is whether we can
achieve simulation security for more general systems. Intuitively this is more challeng-
ing, since it goes beyond just hiding a payload, to “hiding a computation” and is ar-
guably closer to our counter example of Section 4.2.

In the full version of the paper [BSW10] we prove the simulation security of the
Boneh-Franklin construction for the anonymous IBE functionality. An interesting di-
rection is to prove simulation security for systems with more functionality. One chal-
lenge is that it is not completely clear how to apply the random oracle heuristic to these
systems, as the correctness of such schemes typically relies on structure that a hash
function might break.
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6 Extending Functional Encryption

In this work, we focus on the “core” case of functional encryption. However, there are
multiple ways to extend the concept. We briefly outline these here. We hope future work
will develop these extensions and give precise definitions of security and constructions.

Delegation. Delegation is the ability of an algorithm to transform a key k in a func-
tional encryption system to another key k′. For example, one might want to share the
ability to decrypt all messages of a certain subject to another user. Typically, we think
of the resulting key k′ as being more restricted than the source key k. We observe
that the set of allowed delegations must respect the security definition of the system.
Delegation in functional encryption systems is typically associated with Hierarchical
Identity-Based Encryption [HL02, GS02], but was also considered in Attribute-Based
Encryption [GPSW06] and other predicate encryption systems [SW08].

Encryption over Multiple Parameters and Multiple Systems. Our functional encryp-
tion systems allow for functionalities F : K × X → {0, 1}∗ that take in a single key
and plaintext as inputs. However, we could extend our system to allows for functionali-
ties that take in multiple keys F : (K1, . . . ,Kn)×X → {0, 1}∗. This can be useful in
applications where we want users to combine their capabilities in a specified manner or
when one of the keys can represent an event such as a certain time period arriving, or
publication of a revocation list [BGK08].Another interesting direction is to allow for a
functional encryption system that operates over multiple ciphertexts.

Taking things further we could consider an encryption system where encryption takes
in multiple public parameters each from different authorities and where the functional-
ity is evaluated over private keys generated by different master secret keys. One no-
table application of this is Attribute-Based Encryption where multiple authorities are
used [Cha07, CC09].

Hiding Information about capabilities of the key. One consistent feature of all sys-
tems is that there do not exist any security notions about the attacker’s inability to
distinguish what type of key k he is given a secret key for. A natural reason for this is
that in a public key system, he can distinguish whether he has the capability for k0, k1
by simply encrypting an x ∈ X such that F (k0, x) �= F (k1, x). However, one might
try to consider such a problem when encryption is not public key [SSW09, BIP10].

7 Future Directions in Functional Encryption

The results to date scratch the surface of functional encryption and only implement rel-
atively simple functionalities. Here we list a few fascinating open problems that remain.

– The grand challenge is to construct a secure functional encryption scheme for all
polynomial-time functionalities. A more modest goal is to do the same for predi-
cate encryption for all polynomial-time predicates. Currently, the best we can do
is predicates defined by inner products [KSW08]. The inner product construction
uses bilinear maps and our inability to move beyond inner products is due to the
“bi” in bilinear maps. Other tools, perhaps borrowing from fully homomorphic en-
cryption [Gen09], may lead to a more general class of predicates.
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– If not all polynomial time functionalities, can we realize complex interesting ones
such as data-mining functionalities? That is, can we build a secret key that given an
encrypted data set will produce a cleartext model (e.g. a decision tree) for the data
set, but reveal nothing else about the data? Nothing in this vain is currently known.

– Are there black box separations between different functionalities? Currently, the
only result in this direction separates IBE from public-key encryption [BPR+08].
Is there a generic separation result that separates any two functionalities that are
not trivially implied one by the other?
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Abstract. Concurrent non-malleable zero-knowledge (CNMZK) con-
siders the concurrent execution of zero-knowledge protocols in a setting
where the attacker can simultaneously corrupt multiple provers and ver-
ifiers. We provide the first construction of a CNMZK protocol that,
without any trusted set-up, remains secure even if the attacker may
adaptively select the statements to receive proofs of; previous works only
handle scenarios where the statements are fixed at the beginning of the
execution, or chosen adaptively from a restricted set of statements.

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are fundamental constructs
that allow the Prover to convince the Verifier of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Con-
current ZK, first introduced and achieved by Dwork, Naor and Sahai [DNS04],
considers the execution of zero-knowledge protocols in an asynchronous and con-
current setting. In this model, an adversary acts as verifiers in many concurrent
executions of the zero-knowledge protocol, and launches a coordinated attack
on multiple independent provers to gain knowledge. Non-malleable ZK, first in-
troduced and achieved by Dolev, Dwork and Naor [DDN00], also considers the
concurrent execution of zero-knowledge protocols, but in a different manner.
In this model, an adversary concurrently participates in only two executions,
but plays different roles in the two executions; in the first execution (called the
left execution), it acts as a verifier, whereas in the second execution (called the
right execution) it acts as a prover. The notion of Concurrent Non-malleable ZK
(CNMZK) considers both of the above attacks; the adversary may participate
in an unbounded number of concurrent executions, playing the role of a prover
in some, and the role of a verifier in others. Despite the generality of such an
attacks scenario, this notion of security seems most appropriate for modeling
the execution of cryptographic protocols in open networks, such as the Internet.
Barak, Prabhakaran and Sahai (BPS) [BPS06] provided the the first CNMZK
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argument for NP in the plain model (i.e., without any set-up assumptions); see
also the more efficient instantiation of Ostrovsky, Pandey and Visconti [OPV10].
More recently, Lin, Pass, Tseng and Venkitasubramaniam (LPTV) [LPTV10]
provided a somewhat different approach to constructing CNMZK protocols,
improving the round-complexity of the BPS construction, as well as providing a
construction of a CNMZK proof.

Adaptive Inputs Selection. All the above-mentioned feasibility results for
CNMZK, however, consider a quite restricted form of input selection: More pre-
cisely, whereas the attacker is allowed to adaptively select the statements it gives
proofs of (on the right), the statements to receive proofs of (on the left) are assumed
to be fixed before the execution begins.

Indeed, there is a sense in which this is necessary: as argued by Lindell [Lin03], if
we consider a scenario where the left statement are chosen adaptively by an “envi-
ronment” (think of this as some other arbitrary protocol running in the network),
then the notion of CNMZK collapses down to the notion of Universally Compos-
able ZK [Can01], which is known to be unachievable without set-up [CKL03].

We here focus on the simpler case of just “self-composition”: that is, we only
consider the security of the ZK protocols (and thus we do not allow them to
interact with other protocols in the network; this is similar to the original setting
studied in the context of Concurrent ZK). Yet, we want to capture a notion of
security where also the statements in the left executions are adaptively chosen.
The natural way to do this is to (just as in the definition of security of signature
schemes [GMR89]) allow the attacker to adaptively select the statements it wants
to hear proofs of on the left (as well as the statements it gives proofs of on the
right); additionally we must restrict the attacker to only ask to hear proofs of
statements that are true (or else we can never expect the conversation with
the provers to be ZK—if the statement is false, then the prover on the left
will not be able to provide a proof, which thus reveals information). Once we
consider such adaptive instance selection, we also need to specify where the
witnesses for the left interaction come from; to make the definition as general as
possible, we consider an arbitrary (potentially unbounded) witnesses selecting
machine that receives as input the views of all parties (i.e., the honest prover, the
honest verifiers, and the adversary) and outputs a witness w for any statement
x requested by the adversary.

We call a ZK protocol that is secure in this setting a CNMZK with Adaptive
Input Selection, or for short Adaptive CNMZK (ACNMZK). More precisely, a
ZK protocol is ACNMZK if for every adversary A, there exists a computation-
ally efficient simulator-extractor that can simulate both the left and the right
interactions for A, while outputting a witness for every statement proved by the
adversary in the right interactions. Our main result is the construction of an
ACNMZK proof:

Theorem 1. Assume the existence of collision-resistant hash functions. Then
there exists a ω(log2 n)-round concurrent non-malleable zero-knowledge proof
with adaptive input selection (and with a black-box simulator) for all of NP.
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Weaker Notions of Adaptive Input Selection. Our definition of adaptive
input selection is strong in the sense that we allow the adversary to select any
instance x (as long as it is true), and somehow “magically” it receives a proof of
this statement. Often, it suffices to restrict to adversaries that only are allowed
to request statements x for which there is an efficient way to recover a witness if
having some auxiliary information. We may consider two ways of formalizing this.

– We may restrict the witness selecting machine to be a computationally
bounded non-uniform algorithm that upon receiving a statement x (and
potentially also the view of the adversary), but not the view of the honest
provers and verifiers, outputs a witness w. This models a scenario where the
adversary is restricted to only requesting proofs of statements x for which a
witness can be efficiently computed using a “super witness”. This is a natural
extension of the fixed input scenario (again we have a witness—namely the
“super witness”—that is fixed before the interaction) and indeed the result
of [BPS06, LPTV10] handle also such a notion of adaptive input selection.

– A less restrictive method is to simply restrict the witness selecting machine to
be a computationally bounded non-uniform algorithm (which still receives
the views of all parties). In particular, this allows us to model a scenario
where the adversary may request a proof about earlier proofs (e.g., a proof
that the prover has behaved honestly in an earlier proof)—in such a scenario,
the honest prover may be able to efficiently find a witness, but there might
not exists an efficient algorithm without having access to the prover’s random
tape. As far as we know, none of the earlier results handle even such a
restricted notion of adaptive input selection.

Other Related Work. We mention that there are several works construct-
ing CNMZK protocols in various trusted set-up models. For instance, previous
works [SCO+01, CF01, DN02]) provide constructions of Universally Composable
ZK in the Common Reference String (CRS) model; these protocol are thus also
ACNMZK.

An interesting recent work by Yao, Yung and Zhao [YYZ09] provide a con-
struction of a CNMZK protocol in the Bare Public Key Model; their protocol
is not UC secure but satisfies a notion CNMZK with adaptive inputs selection
(for both the left and the right interaction); our definition of ACNMZK in the
plain model is heavily inspired by their work.

Techniques. Our protocol is a close variant of the LPTV protocol; let us start
by reviewing it. The protocol uses two main components. The first component
is the notion of concurrently extractable commitments (CECom) introduced by
Micciancio, Ong, Sahai, and Vadhan [MOSV06]. Informally, values committed
to using a CECom can be extracted by a rewinding simulator even in the concur-
rent setting. In our protocol (as in most concurrent ZK protocols), the verifier
commits to a random trapdoor using CECom, so that our ZK simulator may ex-
tract this trapdoor to perform simulation. The second component is the notion
of robust non-malleable commitments (an extension due to Lin and Pass [LP09]
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of the notion of non-malleable commitments as defined by Dolev, Dwork, and
Naor [DDN00]); roughly speaking these are non-malleable commitment schemes
with an additional robustness property that makes them convenient to compose
with other protocols.

The high-level idea behind the LPTV protocol (just as in the protocol of
[BPS06]) is to start off with a preamble phase where the verifier uses a CECom
to commit to a trapdoor; next in a commit phase, the prover commits to a
witness of the proof statement using both a CECom and robust non-malleable
commitments; and finally during a proof phase, the prover proves using a (stand-
alone) ZK protocol that it has either committed to a valid witness, or a valid
trapdoor in the commit phase. To prove security, LPTV provides a simulator
that uses rewindings to extract out trapdoors (from the CECom in the preamble
phase) to simulate the commit and proof phases of the left interactions, and uses
rewindings again to extract the witnesses committed to by the adversary (from
the CECom in the commit phase) on the right. The crux of the proof is then to
show that even during the simulation, when the simulator commits to trapdoors
(instead of real witnesses) in left interactions, the adversary still cannot commit
to a trapdoor in right interactions, so that the values extracted out from the
right interactions must be real witnesses. Very roughly speaking, this follows
from the security guarantees of robust non-malleable commitments.

When considering adaptive input selection (for the left executions) a problem
arises. First, proving indistinguishability of the simulation becomes problematic:
in fact, getting a concurrent ZK protocol with adaptive input selection is already
non-trivial (we call it Adaptive Concurrent Zero-Knowledge (ACZK)); our core
technical contribution is to provide a solution to this problem. The reason for
this is that proving indistinguishability of the simulation requires performing a
hybrid argument, where we switch the witness used in the left interactions from
the trapdoors (used by the simulator) to the real witness (used by the prover).
More precisely, we consider a hybrid Hi, where the first i left interactions are
simulated using the trapdoors, and the later ones use the real witnesses. The
problem is that the real witnesses might not be efficiently recoverable since the
statements are chosen adaptively by the adversary (it is computed by a compu-
tationally unbounded witness-selecting machine); so the hybrid is not efficiently
computable!

Our idea for circumventing this problem can be described as follows:

– First, we switch the order of the hybrids. We consider hybrids Hi where the
first i left interactions are emulated using real witness and the later ones
are simulated using trapdoors. The reason for doing this is that we can now
non-uniformly fix the real witnesses of the first i left interactions by hard-
coding the “prefix” of hybrid Hi before the ith left interaction; and then the
remaining execution can be efficiently emulated using the real witnesses.

– But now the obstacle is that arguing indistinguishability of Hi and Hi+1
becomes problematic. To show indistinguishability we need to show that
simulating the ith left interaction using a real witness or trapdoor is indis-
tinguishable (other interactions are simulated identically in the two hybrids).
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It seems that this should just follow from the hiding and ZK property of
the commit and proof phases of the left interaction. However, the problem is
that (when trying to extract the trapdoors of the latter left interactions), we
might be rewindings the ith left interaction. Our way around this problem
is to add more CECom to the preamble phase; the idea is to show that there
exists some alternative simulator, that generates a statistically close distri-
bution, but is able to avoid rewinding the messages in the commit and proof
phases of the left interaction that we want to violate indistinguishability of.

To also complete the proof of non-malleability, a second (very related problem)
arises: namely, we need to argue that the witness committed to by the adversary
on the right are valid even in simulation; this is usually done through a hybrid
argument as well and relies on the robust non-malleability of the commitment
scheme used in the commit phase (instead of the hiding and ZK properties).
When doing this, we again run into the same problem as when showing indistin-
guishability of the simulation. Here the issue is that we need to ensure that the
robust non-malleability property holds even under rewindings. We use the same
idea to overcome this problem: as long as there are sufficiently many CECom
in the preamble phase, we can describe an alternative simulator that produces
a statistically close distribution without rewinding these commitments that we
want to violate robust non-malleability of.

Overview. Section 2 contains the basic notations and definitions of ACNMZK
and other primitives. In Section 3, we present our main result, a ω(log2 n)-round
ACNMZK proof system for all of NP , from collision resistant hash functions.
In Section 4.2, we first focus on showing the ACZK property of the protocol,
which contains the main technical content of this paper; then in Section 5 we
sketch how to extend this proof to also show the ACNMZK property.

2 Preliminaries

Let N denote the set of all positive integers. For any integer n ∈ N , let [n] denote
the set {1, 2, . . . , n}, and let {0, 1}n denote the set of n-bit strings, and ε the
empty string. We assume familiarity with interactive Turing machines, interac-
tive protocols, statistical/computational indistinguishability, notions of interac-
tive proofs, zero-knowledge, (strong) witness-indistinguishability, and notions of
statistically binding/hiding commitments. (See [Gol01] for formal definitions.)

2.1 Adaptive Concurrent Non-Malleable Zero-Knowledge

Our definition of adaptive concurrent non-malleable zero-knowledge is very sim-
ilar to that of concurrent non-malleable zero-knowledge from [BPS06] (which in
turn closely follows the definition of simulation extractability of [PR05]), with
the only difference that now the adversary is allowed to adaptively select the
statements it receives proofs to, subject to that they are true statements.

Let 〈P, V 〉 be an interactive proof for a language L ∈ NP with witness relation
RL, and let n be the security parameter. Consider a man-in-the-middle adversary
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A that participates in many left and right interactions in which
m = m(n) proofs take place. In the left interactions, the adversary A verifies the
validity of statements x1, . . . , xm by interacting with an honest prover P , using
identities id1, . . . , idm. In the right interactions, A proves the validity of state-
ments x̃1, . . . , x̃m to an honest verifier V , using identities ĩd1, . . . , ĩdm. Prior to
the interactions, all parties in the system receives as common input the security
parameter in unary 1n, and A receives as auxiliary input z ∈ {0, 1}∗. Further-
more, at the beginning of each left (respectively right) interaction, the adversary
adaptively selects the statement xi (respectively x̃i) and the identity idi (respec-
tively ĩdi), with the only restriction that all the statements x1, . . . , xm chosen
in the left interactions have to be true. Additionally in each left interaction, the
prover P receives as local input a witness wi ∈ RL(xi), chosen adaptively by
a witness-selecting machine M . More specifically, M is a (randomized) Turing
machine that runs in exponential time, and whenever the adversary chooses a
statement xi for a left interaction, M on inputs the statement xi and the cur-
rent view of all parties (including the adversary, provers, and receivers), picks
a witness wi ∈ RL(xi) as the private input of the prover P . Let viewA,M (n, z)
denote a random variable that describes the view of A in the above experiment.
Loosely speaking, an interactive proof is adaptive concurrent non-malleable zero-
knowledge (ACNMZK) if for all man-in-the-middle adversary A, there exists
a probabilistic polynomial time machine (called the simulator-extractor) that
can simulate both the left and the right interactions for A, while outputting a
witness for every statement proved by the adversary in the right interactions.

Definition 1. An interactive proof (P, V ) for a language L with witness rela-
tion RL is said to be adaptive concurrent non-malleable zero-knowledge if for every
polynomial m, and every probabilistic polynomial-time man-in-the-middle adver-
sary A that participates in at most m = m(n) concurrent executions, there exists
a probabilistic polynomial time machine S, such that, for every input-selecting
machine M :

1. The following ensembles are computationally indistinguishable over n ∈ N

– {viewA,M (n, z)}n∈N,z∈{0,1}∗

– {S1(1n, z)}n∈N,z∈{0,1}∗

where S1(1n, z) denotes the first output of S(1n, z).
2. Let z ∈ {0, 1}∗ and (view,w) denote the output of S(1n, z). Let x̃1, . . . , x̃m

be the statements of the right-interactions in view, and let id1, . . . , idm and
ĩd1, . . . , ĩdm be the identities of the left-interactions and right-interactions in
view. Then for every i ∈ [m], if the ith right-interaction is accepting and
ĩdi �= idj, w contains a witness wi such that RL(x̃i, wi) = 1.

We also consider concurrent ZK with adaptive input selection. We say that an
interactive proof (P, V ) is adaptive concurrent ZK (ACZK) if it satisfies the
above definition with respect to adversaries that only receive proofs (and do not
give proofs).
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Remark 1. As mentioned before, the security proof in [BPS06, LPTV10] can be
extended to show that their constructions of CNMZK protocols satisfy a no-
tion of CNMZK with “weak” adaptive input selection, where the adversary can
only choose to hear proofs of statements for which a witness can be computed
efficiently without knowing the random coins of the honest provers and veri-
fiers. Formally, the witness-selecting machine is restricted to be computationally
bounded (i.e., a non-uniform PPT ) and only receive as input a statement x
and the view of the adversary (but not the views of the left provers and right
receivers.)

Remark 2. Universal Composability (UC) [Can01] considers a more generalized
form of adaptive input selection, where both the statements and witnesses are
chosen adaptively by a separate entity called the “environment”, which may
communicate with the adversary in an arbitrary way. In contrast, our definition
of ACNMZK only allows the witnesses to be selected by a separate entity,
whereas the statements are chosen directly by the adversary. It has been shown
that UC ZK is unachievable without set-up [CKL03]. We mention that our
construction actually satisfies a slight strengthening of the above definition of
ACNMZK, where the statements are adaptively chosen by a stateless non-
uniform PPT machine that both the adversary and the simulator have oracle
accesses to. Such a notion bring us closer to the definition of UC ZK—in essence,
the difference is that in UC ZK the statement selecting machine is not necessarily
stateless; we defer the details to the full version.

Non-Malleable Commitment Schemes. We recall the definition of non-
malleability from [LPV08] (which builds upon the definition of [DDN00, PR05]).
Let 〈C,R〉 be a tag-based statistically binding commitment scheme, and let
n ∈ N be a security parameter. Consider a man-in-the-middle adversary A that,
on auxiliary inputs n and z, participates in one left and one right interaction
simultaneously. In the left interaction, the man-in-the-middle adversary A inter-
acts with C, receiving a commitment to value v, using identity id of its choice.
In the right interaction A interacts with R attempting to commit to a related
value ṽ, again using identity ĩd of its choice. If the right commitment is invalid,
or undefined, its value is set to ⊥. Furthermore, if ĩd = id, ṽ is also set to ⊥—i.e.,
a commitment where the adversary copies the identity of the left interaction is
considered invalid. Let nmcA〈C,R〉(v, z) denote a random variable that describes
the value ṽ and the view of A, in the above experiment.

Definition 2. A statistically binding commitment scheme 〈C,R〉 is said to be
non-malleable (with respect to itself) if for every polynomial p(·), and every proba-
bilistic polynomial-time man-in-the-middle adversary A, the following ensembles
are computationally indistinguishable.{

nmcA〈C,R〉(v, z)
}
n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗{

nmcA〈C,R〉(v
′, z)
}
n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗
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Non-Malleable Commitment Robust w.r.t. k-Round Protocols. The
notion of non-malleability w.r.t. arbitrary k-round protocols is introduced in
[LP09]. Unlike traditional definitions of non-malleability, which only consider
man-in-the middle adversaries that participate in two (or more) executions
of the same protocol, non-malleability w.r.t. arbitrary protocols considers a
class of adversaries that can participate in a left interaction of any arbitrary
protocol. Below we recall the definition. Consider a one-many man-in-the-middle
adversary A that participates in one left interaction—communicating with a ma-
chine B—and one right interaction—acting as a commiter using the commitment
scheme 〈C,R〉. As in the standard definition of non-malleability, A can adap-
tively choose the identity in the right interaction. We denote by nmcB,A〈C,R〉(y, z)
the random variable consisting of the view of A(z) in a man-in-the-middle ex-
ecution when communicating with B(y) on the left and an honest receiver on
the right, combined with the value A(z) commits to on the right. Intuitively, we
say that 〈C,R〉 is non-malleable w.r.t. B if nmcB,A〈C,R〉(y1, z) and nmcB,A〈C,R〉(y2, z)
are indistinguishable, whenever interactions with B(y1) and B(y2) cannot be
distinguished.

Definition 3. Let B be a probabilistic polynomial time machine. We say the
statistically binding commitment scheme 〈C,R〉 is non-malleable w.r.t. B, if for
every probabilistic polynomial-time man-in-the-middle adversary A, and every
two sequences {y1

n}n∈N and {y2
n}n∈N such that, for all probabilistic polynomial-

time machine Ã, it holds that{
〈B(y1

n), Ã(z)〉(1n)
}
n∈N,z∈{0,1}∗

≈
{
〈B(y2

n), Ã(z)〉(1n)
}
n∈N,z∈{0,1}∗

where 〈B(y), Ã(z)〉(1n) denotes the view of Ã in interaction with B on common
input 1n, and private inputs z and y respectively, then it holds that:{

nmcB,A〈C,R〉(y
1
n, z)
}
n∈N,z∈{0,1}∗

≈
{

nmcB,A〈C,R〉(y
2
n, z)
}
n∈N,z∈{0,1}∗

We say that 〈C,R〉 is non-malleable w.r.t. k-round protocols if 〈C,R〉 is non-
malleable w.r.t. any PPT machine B that interacts with the man-in-the-middle
adversary in k rounds. Below, we focus on commitment schemes that are non-
malleable w.r.t. itself and arbitrary �(n)-round protocols, where � is a super-
logarithmic function. We say that such a commitment scheme is robust w.r.t.
�(n)-round protocols. The following result was shown in [LPV08].

Lemma 1 ([LPV08]). Let �(n) be a super-logarithmic function. Then there
exists a O(�(n))-round statistically binding commitment scheme that is robust
w.r.t. �(n)-round protocols, assuming that one-way functions exist.

Concurrently Extractable Commitment Schemes. Micciancio, Ong, Sa-
hai and Vadhan introduce and construct concurrently extractable commitment
schemes, CECom, in [MOSV06]. The commitment scheme is an abstraction of the
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preamble stage of the concurrent zero-knowledge protocol of [PRS02]. Informally,
values committed by CECom can be extracted by a rewinding extractor (e.g.,
the zero-knowledge simulator of [KP01, PRS02, PTV08]), even in the concurrent
setting. In this work, we use the same construction as in [PRS02, MOSV06], but
are unable to employ their analysis.

3 An ACNMZK Proof

In this section we construct an adaptive concurrent non-malleable zero-knowledge
proof based on collision-resistant hash-functions. The construction is almost iden-
tical to the CNMZK proof system in [LPTV10], except that, the verifier is asked to
provide more CECom commitments to its trapdoor at the beginning of the proto-
col, which, in the proof, facilitates the simulator-extractor to extract the trapdoor
while strategically avoiding rewinding certain messages.

Let �(n) be any super logarithmic function. Our adaptive concurrent
non-malleable zero-knowledge protocol, ACNMZKProof, employs several com-
mitment protocols. Let Comsh be a 2-round statistically hiding commitment
(based on collision-resistant hash-functions), Comsb be a 2-round statistically
binding commitment (based on one-way functions), and NMCom be an O(�(n))-
round statistically binding commitment scheme that is robust w.r.t. �(n)-round
protocols (based on one-way functions).

Our protocol also employs �(n)-round statistically hiding (respectively sta-
tistically binding) concurrently-extractable commitment schemes, CEComsh (re-
spectively CEComsb). These schemes are essentially instantiations of the PRS
preamble [PRS02], and can be constructed given Comsh and Comsb. Below we
repeat their definitions.

To commit a n-bit string v, the commiter chooses n× �(n) pairs of random n-
bit strings (α0

i,j , α
1
i,j), i ∈ [n], j ∈ [�(n)], such that α0

i,j ⊕ α1
i,j = v for every i and

j. The sender then commits to v and each of the 2n�(n) strings in parallel using
Comsh. This is followed by �(n) rounds of interactions. In the jth interaction,
the receiver sends a random n-bit challenge bj = b1,j . . . bn,j, and the commiter
decommits the commitments of α

b1,j

1,j , . . . , α
bn,j

n,j according to the challenge.
A valid decommitment of CEComsh requires the commiter to decommit all

initial commitments under scheme Comsh (i.e., reveal the randomness of the
commitments), and that the decommitted values satisfy α0

i,j ⊕α1
i,j = v for every

i and j.
A �(n)-round statistically binding concurrently-extractable commitment

scheme, CEComsh, is defined analogously as CEComsh with the initial commit-
ment Comsh replaced by Comsb. Additionally, we say a transcript of CEComsh

is valid if there exists a valid decommitment.
We now describe ACNMZKProof, our adaptive concurrent non-malleable zero-

knowledge protocol. Protocol ACNMZKProof for a language L ∈ NP proceeds in
six stages given a security parameter n, a common input statement x ∈ {0, 1}n,
an identity id, and a private input w ∈ RL(x) to the Prover.
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Stage 1: The Verifier chooses a random string r ∈ {0, 1}n and commits to r
using k(n) + 1 invocations of CEComsh, where k(n) is the number of rounds
in Stage 2-6 of the protocol; r is called the “fake witness”.

Stage 2: The Prover commits to the witness w using CEComsb.
Stage 3: The Prover commits to the witness w using NMCom with identity id.
Stage 4: The Prover commits to the witness w using NMCom with identity id,

again.
Stage 5: The Verifier decommits the Stage 1 commitment to value r′.
Stage 6: The Prover using a ω(1)-round ZK proof (e.g., [Blu86]), proves that

the commitments in Stages 2, 3 and 4 all commit to the same value w̃ (with
identity id), and that either w̃ ∈ RL(x) or w̃ = r′.

A formal description of the protocol can be found in Figure 1.

Protocol ACNMZKProof

Common Input: an instance x of a language L with witness relation RL,
an identifier id, and a security parameter n.

Auxiliary Input for Prover: a witness w, such that (x, w) ∈ RL(x).
Stage 1:

V uniformly chooses r ∈ {0, 1}n (the “fake witness”).
V commits to r using k+1 invocations of the protocol CEComsh, where

k is the number of rounds in Stage 2-6 of the protocol. Let T1 be
the commitment transcript.

Stage 2:

P commits to w using protocol CEComsb. Let T2 be the commitment
transcript.

Stage 3:

P commits to w using protocol NMCom and identity id. Let T3 be the
commitment transcript.

Stage 4:

P commits to w using protocol NMCom and identity id. Let T4 be the
commitment transcript.

Stage 5:

V decommits T1 to value r; P aborts if no valid decommitment is
given.

Stage 6:

P ↔ V: a ω(1)-round ZK proof [Blu86] of the statement: There exists
w̃ such that
– w̃ is a valid decommitment of T2,
– and w̃ is a valid decommitment of T3 and T4 under identity id,
– and w̃ ∈ RL(x) or w̃ = r.

Fig. 1. An Adaptive Concurrent Non-Malleable ZK Proof for NP
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On Round Complexity: Since the protocol NMCom has O(�(n)) rounds, we
have that k(n) = O(�(n)). Therefore, the round complexity of the protocol
ACNMZKProof is O(�2(n)) = ω(log2 n).

The above protocol is an extension of the Goldreich-Kahan protocol [GK96].
Completeness and Soundness follows using stand techniques; since the protocol is
essentially the same as the CNMZK protocol in [LPTV10] (except that Stage 1
now contains many CECom’s), we refer the reader to [LPTV10] for more details.

4 Proof of Security

The definition of ACNMZK requires a simulator-extractor S that is able to
simulate the view of a man-in-the-middle adversary A (including both left and
right interactions), while simultaneously extracting the witnesses to statements
proved in the right interactions. We describe the construction of our simulator in
Section 4.1, show that it is a correct ACZK simulator in Section 4.2, and extend
this proof to show the ACNMZK property in Section 5.

4.1 Our Simulator-Extractor

Our simulator-extractor, S, is almost identical to the simulator extractor of the
CNMZK protocol in [LPTV10], except that now, given more CEComsh’s in
Stage 1 of the protocol, S tries to extract a “fake” witness from every CEComsh

from the adversary in the left interactions, and aborts if the extraction fails for
any of the commitment or the extracted value does not equal to the value that
the adversary decommitment to later. Roughly speaking, S follows this strategy:

Simulating the view of the right interactions. S simply follows the hon-
est verifier strategy.

Simulating the view of the left interactions. In each protocol execution,
S first extracts the “fake witness” r from the k(n)+1 CEComsh’s committed
by A in Stage 1, then commits to r in Stage 2, 3, and 4, and finally simulates
the ZK proof using r as a witness in Stage 6.

Extracting the witnesses. In each right interaction that completes success-
fully, S extracts a witness w from CEComsb committed by A in Stage 2 of
the protocol.

Thus, the main task of S is to extract the values committed by A, using CECom,
in Stage 1 and 2 of the protocol. This is done by rewinding A during each CE-
Com. To that end, we employ the “lazy KP” simulator of [PTV08], an oblivious
simulator that is nearly identical to the Killian-Petrank (KP) simulator [KP01].
We also follow the analysis of [PTV08], which is in turn based on the analysis
of [PRS02].

On a very high-level, S attempts to simulate the view of A (with “fake wit-
nesses”) in one continuous, straight-line manner (so as to not skew the output
distribution); this is aided by numerous auxiliary rewinds that allows S to ex-
tract the “fake witnesses” in time. As implied by our simulation strategy, the
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view of A generated by S depends on the extracted “fake witnesses”, but is
otherwise independent of the interaction in auxiliary rewinds. (The simulator S
is essentially identical to the simulator of the CNMZK protocol in [LPTV10];
we refer the reader to [LPTV10] for a more detailed description.)

It is useful to know that S may abort in two manners. At the end of a CECom,
if S is unable to extract the committed value (the rewinds were unhelpful), S
outputs ⊥ext. Or, in Stage 5 of a left interaction, if A decommits its Stage 1
CEComsh’s to a value that is different from any of the k(n)+1 extracted values,
S outputs ⊥bind. Conversely if S does not abort, then it must have extracted
the committed value from every Stage 1 CEComsh that it has encountered, and
A must decommit to the extracted values (if A decommits at all). The following
claim bounds the abort probability of S.

Claim 2. S outputs ⊥ext and ⊥bind with negligible probability.

The proof is identical to the proof of Claim 2 in [LPTV10], which in turn follow
directly from the analysis of [PTV08] in the setting of concurrent ZK; we refer
the reader to [LPTV10] for a formal proof.

4.2 Proof of ACZK
We first show that S is a valid ACZK simulator for the protocol ACNMZKProof,
that is, the view generated by S is indistinguishable from the real view of A.

Lemma 3. For every witness-selecting machine M , the following ensembles are
computationally indistinguishable over n ∈ N:

{S1(1n, z)}n∈N,z∈{0,1}∗

{viewA,M (1n, z)}n∈N,z∈{0,1}∗

To show Lemma 3, we introduce a series of hybrid simulators; the same hy-
brid simulators will also be helpful later in showing the ACNMZK property in
Section 5. Hybrids hybi, 0 ≤ i ≤ m + 1 proceed in three steps.

Real Execution Phase: Run the honest man-in-the-middle execution with A
until the ith left interaction starts: in left iteration j < i, run the witness-
selecting machine M (on input the statement xj of this interaction, and
the current view of the adversary, prover and verifier) to compute a valid
witnesses wj and execute the honest prover strategy. Note that the Real
Execution Phase may take exponential time. Let VA be the view of A, and
VP , VV the view of the prover and verifier produced in this phase.

Simulation Phase: Feed A with VA. Run the following simulation strategy
with A to complete the partial execution defined by (VA,VP ,VV ).
– For every right interaction, emulate the interaction by following the hon-

est verifier strategy from VV .
– For left interaction j < i, emulate the interaction by following the honest

prover strategy from VP .
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– For left interaction j ≥ i, simulate the interaction using a “fake” witness,
as S does.

Formally, this simulation strategy can be implemented as follows: construct
another machine A′ that internally incorporates A and simulates the first
i − 1 left and all right interactions for A honestly from VP and VV , and
forwards the rest m − i + 1 left interactions externally. Then simply run S
on A′ and outputs the embedded view of A in the view of A′ produced by
S.

Output Phase: Output ⊥ext or ⊥bind if S returns ⊥ext or ⊥bind; otherwise,
output the view V of A embedded in the view of A′ produced by S.

We also define hybrids hybi+ that proceed identically to hybi except that, in the
Simulation Phase, the ith left interaction is simulated using a real witness (rather
than the “fake” witness). This can be done as the Real Execution Phase runs
till the ith left interaction starts, and can also compute the real witness of the
ith interaction. Note that these hybrids

{
hybi
}
,
{
hybi+
}

are only concerned with
producing a view of A, and do not extract the witnesses of the right interactions.

By construction, hybi and hybi+ abort only when S aborts. Hence by Claim
2, we have,

Claim 4. For all i, hybi and hybi+ output ⊥ with negligible probability.

By Claim 4, the output of hyb1 is statistically close to the output of S running
with A in its entirety. (They only differ when S aborts due to trying to extract
witnesses of the right interactions from the CEComsb’s committed by A.) The
output of hybm+1, on the other hand, is identical to the real view of A. Therefore
Lemma 3 directly follows from the next two claims:

Lemma 5. The outputs of hybi+ and hybi+1 are statistically close.

Proof. Ignoring the fact that hybi+ and hybi+1 may abort, their outputs are
identical. This is because hybi+ differs from hybi+1 only in that when generating
the output view, from the beginning of the ith left interaction until the beginning
of the i + 1st left interactions, hybi+ employs rewinds. However, these rewinds
do not extract any new “fake witnesses” for use in the output view, and do not
skew the output distribution because the rewinding schedule (including which
rewind determines the output view) is oblivious. Since both machines abort at
most with negligible probability by Claim 4, their outputs are statistically close.

Lemma 6. The outputs of hybi and hybi+ are computationally indistinguishable.

Proof. Assume for contradiction that there exists an adversary A and a polyno-
mial p, such that, for infinitely many n ∈ N , hybi and hybi+ are distinguishable
with probability 1/p(n). Towards reaching a contradiction, note that hybi and
hybi+ differ only in how the ith left interaction is simulated (fake or real witness)
in the rewindings. We thus want to violate the computational hiding property
of Stage 2-4 of the protocol, or the strongly witness-indistinguishable property
(implied by the ZK property) of Stage 6. However, two problems arise: (1) the
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Real Execution Phase of the two hybrids takes exponential steps, and (2) Stage
2-6 of the ith left interaction maybe rewound by the simulator S. Fix a n ∈ N for
which our hypothesis holds. To overcome the first problem, by our hypothesis,
there must exist an execution of the Real Execution Phase—defined by the views
of the adversary VA, the left prover VP and the right verifier VV produced in this
phase—such that, conditioned on (VA,VP ,VV ) occurring in the two hybrids, hybi

and hybi+ are still distinguishable with probability 1/p(n). Given (VA,VP ,VV ),
the rest of the hybrids (i.e., the Simulation Phase and Output Phase) can be
generated efficiently.

Now it only remains to handle the second problem, that is, Stage 2-6 of
the ith left interaction may be rewound in the Simulation Phase. We consider
another two hybrids ˜hyb

i
and ˜hyb

i

+, which proceed identically to hybi and hybi+
respectively, except that, in the Simulation Phase, they employ the following
alternative simulation strategy that avoids rewinding Stage 2-6 of the ith left
interactions.

The Alternative Simulation Strategy of ˜hyb
i
: The goal of this simulation

strategy is to complete the partial execution (VA,VP ,VV ) produced by the Real
Execution Phase, without rewinding Stage 2-6 of the ith left interaction. Let
{m1, . . . ,mt} for t = k(n)/2, be the messages that A sends in Stage 2-6 of
the ith left interaction; and ai the reply to mi from the left prover. Then the
execution of A continuing from VA is “equivalent” to the sequential execution of
the following t + 1 machines A1, . . . , At+1.

Machine Ai on input a partial view Vi−1 of A up until the message mi−1 is
sent and the reply ai−1 (V0 = VA and a0 = ε), continues the execution of
A from Vi−1, by feeding Vi−1 and ai−1 to A, and forwarding every message
from A externally; finally, it aborts when A terminates or sends the message
mi, and output the newly generated view Vi of A.

The alternative simulation strategy, instead of producing a simulated view of
A “in one shot”, produces the view “progressively” by simulating the view of
A1, . . . , At+1 in sequence. Furthermore, the simulation strategy remembers all
the “fake witnesses” it has extracted so far, and to simulate the view of Ai, it
can use the “fake” witnesses extracted when simulating the views of Aj ’s with
j < i. More precisely, let Si (S0 = ∅) denote the set of “fake witnesses” extracted
after simulating the views of the first i machines A1, . . . , Ai, and (VjA,V

j
P ,V

j
V )

((V0
A,V0

P ,V0
V ) = (VA,VP ,VV )) the partial execution produced after simulating

the first i machines. In step j ∈ [t + 1],

1. Simulate the view of Aj continuing from (Vj−1
A ,Vj−1

P ,Vj−1
V ) as in hybi—that

is, emulate the first i − 1 left and all the right interactions honestly from
Vj−1
P and Vj−1

V , and simulate the rest m− i+1 left interactions using “fake”
witnesses—except that now the “fake” witnesses can be obtained through
extracting from some CEComsh’s in this step, or in previous steps, found
in S. (Output ⊥ext if no such fake witness is available, and ⊥bind, if Ai

decommits to a value different from any of the “fake” witnesses extracted.)
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2. Set VjA to the view of A embedded in the simulated view of Ai (set VjP and
VjV appropriately as well); add all the “fake” witnesses extracted in this step
to S.

Finally, ˜hyb
i
outputs V = Vt+1

A .
We remark that in step j, the only message that Aj receives belonging to Stage

2-6 of the ith left interaction is aj−1. This is because A in Aj starts its execution
from Vj−1

A , after messages m1 to mj−1 are sent, and is cutoff immediately after
mj is sent. Therefore, during the simulation with Ai, in every rewinding, A never
sends m1 to mj−1 again, and never receives a reply to mj (as every time it does
send mj , it is cutoff immediately). Hence the only message it receive is aj−1.
Therefore, overall, the alternative simulation strategy never rewinds Stage 2-6
of the ith left interaction.

The Alternative Simulation Strategy of ˜hyb
i

+: Define ˜hyb
i

+ analogously

for hybi+. ˜hyb
i

+ proceeds identically to ˜hyb
i
, except that in the simulation with

Aj ’s, messages in Stage 2-6 of the ith left interaction are emulated using the

real witness (as in hybi+). As ˜hyb
i
, ˜hyb

i

+ never rewinds Stage 2-6 of the ith left
interaction.

Claim 7. For all i, ˜hyb
i
and ˜hyb

i

+ output ⊥ with negligible probability.

Proof. It essentially follows from Claim 4 that the probabilities that ˜hyb
i

and
˜hyb outputs ⊥bind are negligible.
On the other hand, ˜hyb

i
(respectively ˜hyb

i

+) outputs ⊥ext only if it fails to
extract a “fake” witness for some left interaction j ≥ i (respectively j > i).
Fix one such j. Since left interaction j starts completely after VA (the view
generated in the Real Execution Phase), the execution of this interaction occurs
completely inside machines A1, . . . , At+1, where t = k/2. Then since the number
of CEComsh’s in Stage 1 of the left interaction is k + 1 > t + 1, there exists
a machine Aj′ , such that, during its execution, a complete CEComsh from A

is sent. Then in Step j′ of ˜hyb
i

(respectively ˜hyb
i

+), the alternative simulation
strategy must try to extract a “fake” witness from this CEComsh, and by Claim 4,
it succeeds except with negligible probability. Therefore, by union bound, the
probability that ˜hyb

i
(respectively ˜hyb

i

+) outputs ⊥ext is negligible.

Furthermore, ignoring the fact that ˜hyb
i

and hybi (resp., ˜hyb
i

+ and hybi+) may

abort, their outputs are identical, since the views of A in ˜hyb
i

and hybi are
simulated identically. (This is because that the simulated view of A depends
only on the value of the “fake” witnesses extracted, and is otherwise oblivious
of the extraction strategy. Following from the same proof as in Claim 2, we have
that for every left interaction in which the adversary successfully decommits
the Stage 1 commitment (in Stage 5), the “fake” witnesses extracted in the
two hybrids are identical, except from negligible probability. For the rest left
interactions, the extracted “fake” witnesses are never used in the simulation.)
Therefore,
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Claim 8. For all i, it holds that the outputs of ˜hyb
i

and hybi are statistically
close, and the outputs of ˜hyb

i

+ and hybi+ are statistically close.

Combining Claim 8 with our hypothesis, we have that conditioned on (VA,VP ,VV )
occurring in the two hybrids, ˜hyb

i
and ˜hyb

i

+ are distinguishable with probability at
least 1/2p(n). Note that continuing from (VA,VP ,VV ) the rest of the two hybrids
can be efficiently generated, and the only difference between the two hybrids lies in
howStage 2-6 of the ith left interaction are simulated (using a fake or a real witness),
which are never rewound in the two hybrids. Then it follows directly from the com-
putational hiding property ofStage 2-4, and the stronglywitness-indistinguishable
property (impliedby theZKproperty)ofStage6 that conditionedon (VA,VP ,VV ),
˜hyb
i
and ˜hyb

i

+ are indistinguishable. This gives a contradiction.

5 Proof of ACNMZK
As shown in the last section, the simulator constructed in Section 4.1 is a correct
ACZK simulator; that is, the first output of S (i.e., view = S1(1n, z)) is com-
putationally indistinguishable from the real view of the adversary. To further
show that S is also a correct ACNMZK simulator-extractor, it remains to show
that the second output of S contains the valid NP witnesses of the statements
proved in the right interactions (in view).

By construction, the witnesses that S outputs are just values it extracts out
from the CEComsb’s in Stage 2 of the right interactions. Therefore, if A always
commits to valid witnesses using CEComsb in the right interactions, by Claim 2
the simulator S would extract the valid witnesses except with negligible proba-
bility. Therefore, the following lemma establishes the correctness of the output
witnesses:

Lemma 9. For every PPT adversary A, there exists a negligible function ν,
such that for every n ∈ N and z ∈ {0, 1}∗, the probability that A fails to commit
to a valid witness in Stage 2 of a right interaction that is accepting and uses a
different identity from all left interactions in view = S1(1n, z), is less than ν(n).

Proof. Assume for contradiction that there exists a man-in-the-middle adversary
A that participates in m = m(n) left and right interactions, and a polynomial
function p, such that for infinitely many n ∈ N and z ∈ {0, 1}∗, A cheats in an
outcome of S1(1n, z) with probability 1/p(n); by cheating, we mean that A fails
to commit to a valid witness in Stage 2 of any right interaction that is accepting
and uses a different identity from all the left interactions. (Note that A is not
considered cheating if the simulator fails to output a view of A).

Consider again the series of hybrids, hybi and hybi+, defined in section 4.2.
Since the output of hyb1 is statistically close to the output of S, by our hypoth-
esis, the probability that A cheats in hyb1 is non-negligible. On the other hand,
in hybm+1, it follows from the soundness of Stage 6 that, except with negligible
probability, in every accepting right interaction, A commits to either a real or a
“fake” witness; it further follows from the statistically hiding property of Stage
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1 and the (stand-alone) extractability of Stage 2 that, except with negligible
probability, A never commits to a “fake” witness in any accepting right interac-
tions. Hence, by union bound, except with negligible probability, A never cheats
in hybm+1. It follows from Claim 6 that the probabilities of A cheating in hybi+
and hybi+1 differ by at most a negligible amount. Therefore, for infinitely many
n, there must exist an i = i(n), such that, the probabilities of A cheating in hybi

and hybi+ differ by at least a polynomial amount. Since the total number of right
interactions is bounded by a polynomial, this implies that the probabilities that
A cheats in a randomly chosen right interaction in the two hybrids differ by a
polynomial amount.

Notice that the hybrids hybi and hybi+ proceed identically up until the ith

left interaction starts. After that, the only difference between the two experi-
ments lies in how the ith left interaction is simulated (using either the fake or
real witnesses). Towards reaching a contradiction, we want to claim that, by
the non-malleability and �(n)-robustness of NMCom, the value A commits to
in a randomly chosen right interaction is “computationally independent” from
how Stage 2-6 of the ith left interaction are simulated. However, (as in proof
of Lemma 5) two problems arise: one is that the Real Execution Phase of the
two hybrids can not be generated efficiently, and the other is that both Stage
2-6 of the ith left and the randomly chosen right interactions might be rewound
by S. We solve the two problem in the same way as in proof of Lemma 5: to
overcome the first problem, we fix one execution of the Real Execution Phase
(VA,VP ,VV ) such that conditioned on it occurring, the two hybrids are still dis-
tinguishable with high probability; to overcome the second problem, we again
consider two alternative hybrids ˆhyb

i
and ˆhyb

i

+, which proceed identically to hybi

and hybi+ respectively, except that, in the Simulation Phase, they employ an al-
ternative simulation strategy that avoids rewinding Stage 2-6 of the ith left and
the randomly picked right interactions. More precisely, ˆhyb

i
and ˆhyb

i

+ proceed

almost identically to ˜hyb
i
and ˜hyb

i

+ in the proof of Lemma 5, except that now it
“chops” up the execution of A into k(n) + 1 phases A1, . . . , Ak+1, according to
messages in Stage 2-6 of the ith left and the randomly picked right interactions,
and simulates the views of A1, . . . , Ak+1 sequentially. It follows using the same
argument that the outputs of ˆhyb

i
and hybi, as well as that of ˆhyb

i

+ and hybi+,
are statistically close.

Therefore by our hypothesis, the probabilities that A cheats in a randomly
chosen right interaction in ˆhyb

i
and ˆhyb

i

+ differ by a polynomial amount. How-
ever, the only difference between the two hybrids lies in how Stage 2-6 of the ith

left interaction are simulated (using a fake or a real witness), and the Stage 2-6
of the ith left and the randomly chosen right interactions are never rewound in
the two hybrids. Then it follows using the same proof of Lemma 7 in [LPTV10]
that, essentially by the non-malleability and �(n)-robustness of NMCom that
the probability that A commits to a “fake” witness in Stage 2 of the randomly
chosen right interaction differ by at most a negligible amount, which gives a
contradiction.
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Abstract. We show a general framework for constructing password-
based authenticated key exchange protocols with optimal round com-
plexity — one message per party, sent simultaneously — in the standard
model, assuming a common reference string. When our framework is
instantiated using bilinear-map cryptosystems, the resulting protocol is
also (reasonably) efficient. Somewhat surprisingly, our framework can be
adapted to give protocols in the standard model that are universally
composable while still using only one (simultaneous) round.

1 Password-Based Authenticated Key Exchange

Protocols for authenticated key exchange enable two parties to generate a shared,
cryptographically strong key while communicating over an insecure network un-
der the complete control of an adversary. Such protocols are among the most
widely used and fundamental cryptographic primitives; indeed, agreement on
a shared key is necessary before “higher-level” tasks such as encryption and
message authentication become possible.

Parties must share some information in order for authenticated key exchange
to be possible. It is well known that shared cryptographic keys — either in the
form of public keys or a long, uniformly random symmetric key — suffice, and
several protocols in this model, building on the classic Diffie-Hellman proto-
col [16] (which protects only against an eavesdropping adversary and provides
no authentication at all) are known; see, e.g., [7,4].

Password-based protocols allow users to “bootstrap” even a very weak (e.g.,
short) shared secret into a (much longer) cryptographic key. The canonical ap-
plication here is authentication using passwords, though protocols developed in
this context can be useful even when the shared secret has high min-entropy
(but is not uniform) [9]. The security guaranteed by password-based protocols
(roughly speaking) is that if the password is chosen uniformly1 from a dictionary
� Work done in part while visiting IBM. Research supported by NSF grant #0627306

and NSF CAREER award #0447075.
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1 Although the usual presentation of PAK assumes a uniform password, known pro-
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of size D then an adversary who initiates Q “on-line” attacks — i.e., who actively
interferes in Q sessions — has “advantage” at most Q/D. (This is inherent, as
an adversary can always carry out Q impersonation attempts and succeed with
this probability.) In particular, “off-line” dictionary attacks where an adversary
enumerates passwords from the dictionary of potential passwords, and tries to
match observed protocol executions to each one, are of no use.

Early work [20, 24] considered a “hybrid” setting where users share public
keys in addition to a password. In the setting where only a password is shared,
Bellovin and Merritt [6] proposed the first protocols for password-based authen-
ticated key exchange (PAK) with heuristic arguments for their security. Several
years later, provably secure PAK protocols were constructed [3,10,31] in the ran-
dom oracle/ideal cipher models, and many improvements and generalizations of
these protocols are known. In contrast, only a handful of PAK protocols are
known in the so-called “standard model” (i.e., without random oracles):

– General assumptions: Goldreich and Lindell [19] gave the first PAK proto-
col in the standard model. Subsequent work of Barak et al. [2] shows a general
feasibility result for computation over unauthenticated networks which im-
plies a solution for PAK as a special case. These approaches gives the only
PAK protocols for the plain model where there is no setup. (Nguyen and
Vadhan [33] show efficiency improvements to the Goldreich-Lindell protocol,
but achieve a weaker notion of security.) These approaches are impractical
in terms of communication, computation, and round complexity. Moreover,
they do not tolerate concurrent executions by the same party (unless addi-
tional setup is assumed). A recent protocol of Goyal et al. [21] addresses the
issue of concurrent executions, but is still far from practical.

– Efficient protocols: Katz, Ostrovsky, and Yung [28] demonstrated the first
efficient PAK protocol with a proof of security based on standard assump-
tions; extensions and improvements of their protocol were given in [18,13,27,
17,30]. Different constructions of efficient PAK protocols are given in [26,22].
In contrast to the works mentioned earlier, these approaches are secure even
under concurrent executions by the same party. On the other hand, they
require a common reference string (CRS). In practice, however, a CRS does
not appear to be a serious drawback in the context of PAK where the CRS
can be hard-coded into an implementation of the protocol. We note also that
reliance on a CRS (or some other setup) is inherent for achieving universally
composable PAK [13].

Round/message complexity of existing protocols. We distinguish between
rounds and messages. Differing somewhat from the usual convention in the two-
party setting (but matching the usual convention in the multi-party setting), we
let a round consist of one message sent by each party simultaneously; note that
in a one-round protocol each honest party’s message (if any) cannot depend on
the other party’s message. We stress, however, that even for one-round protocols
the adversary is always assumed to be rushing; i.e., the adversary may wait to
receive an honest party’s first-round message before sending its own.
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Determining the optimal round complexity of key-exchange protocols is of
both theoretical and practical interest, and has been studied in various set-
tings. The original Diffie-Hellman protocol [16], which provides security against
a passive eavesdropper, can be run in one round; one-round authenticated key
exchange based on shared public/symmetric keys is also possible [25, 34]. One-
round protocols for PAK are also known (e.g., [3]) in the random oracle model.
All prior PAK protocols based on standard assumptions, though, require three
or more rounds. We remark that the protocols in [26, 22] achieve explicit au-
thentication in three rounds (whereas the protocols of [28,18,17,30] achieve only
implicit authentication in three rounds, and require an additional round for ex-
plicit authentication), but the round complexity of these protocols cannot be
reduced even if only implicit authentication is desired.

1.1 Our Results

We show a new framework for constructing one-round PAK protocols in the
standard model (assuming a CRS), where each party may send their message
simultaneously. (Once again, we stress that our security model allows for a “rush-
ing” adversary who waits to see the message sent by a party before sending its
response.) Our protocols achieve implicit authentication but can be extended
to give explicit authentication using one additional round; it is not hard to see
that explicit authentication is impossible in one round without stronger setup
assumptions (e.g., a global clock).

Our framework relies on non-interactive zero-knowledge proofs (NIZK) and
so, in general, may be computationally inefficient. When instantiating our frame-
work using bilinear maps, however, we obtain a reasonably efficient solution (e.g.,
communicating a constant number of group elements).

Somewhat surprisingly, we can extend our framework to give a universally
composable PAK protocol [12] without increasing the round complexity at all
(and still without relying on random oracles). In contrast, the work of [13] shows
a method (used also by [22]) for obtaining universal composability that requires
additional messages/rounds. Abdalla et al. [1] show a universally composable
PAK protocol, proven secure in the random oracle model, that requires three
rounds. To the best of our knowledge, no prior universally composable protocol
(whether in the random oracle model or not) can be run in only one round.

1.2 Our Techniques

At a basic level, we rely on smooth projective hash functions [14], as used in [18]
(and implicitly in [28]); see Section 2.2 for a definition. The basic structure of
previous protocols [28, 18], omitting many important details, is as follows:

First round: The client sends an encryption C of the password pw.
Second round: The server sends an encryption C′ of pw, and a projected

key s′ = α(k′, C, pw).
Third round: The client sends a projected key s = α(k, C′, pw).
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The client computes the session key as Hk(C′, pw) ·Hs′ (C, pw, r), and the server
computes the session key as Hs(C′, pw, r′)·Hk′(C, pw). (Here, r, r′ is the random-
ness used to compute C,C′, respectively.) Properties of the smooth projective
hash function ensure that these are equal.

Two difficulties must be overcome in order to collapse a protocol of the above
form to one round:

– In the smooth projective hash functions used in prior work, the “projection
function” α was adaptive, and depended on both the hash key k and the
element being hashed (i.e., (C, pw) in the above example). This leads to
protocols requiring three rounds just to ensure correctness.

Here we show a construction of CCA-secure encryption schemes with as-
sociated smooth projective hash functions whose projection function is non-
adaptive, and depends only on the hash key k. This allows us to obtain the
functionality of PAK in a single round, by having the client send (α(k), C)
and the server send (α(k′), C′) simultaneously.

– The above addresses correctness, but says nothing about security. The tech-
nical difficulty here is that an honestly generated client message msg = (s, C)
might be forwarded by an adversary to multiple server instances (and vice
versa), and it is required that the session keys computed in all these instances
look random and independent to the adversary. (This issue does not arise in
prior work because, roughly speaking, messages are bound to a single session
by virtue of a signature verification key sent in the first round [28, 18] or a
MAC derived from the shared session key [17]. Neither approach is viable if
we want the entire protocol to take place in a single round.)

Due to the above difficulty, the proof of security is the most technically
challenging part of our work. Our proof relies on a technical lemma related
to re-using both the hash keys and the inputs to the smooth projective hash
function, and may be of independent interest.

Additional ideas are needed to obtain a universally composable protocol with-
out increasing the number of rounds. We refer the reader to Section 5.1 for an
overview of the techniques used there.

1.3 Outline of the Paper

In Section 2 we present a standard definition of security for PAK due to Bellare
et al. [3]. We also review there the notion of smooth projective hashing, and
prove a technical lemma regarding its usage. In Section 3 we describe our basic
framework for constructing one-round PAK protocols, and prove security of this
approach according to the definition of [3]. We discuss in Section 4 two instanti-
ations of our framework: one based on the decisional Diffie-Hellman assumption,
and a second, more efficient instantiation based on bilinear maps. In Section 5
we describe an extension of our framework that yields one-round, universally
composable password-based authenticated key-exchange protocols.
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2 Definitions and Background

Throughout, we denote the security parameter by n.

2.1 Password-Based Authenticated Key Exchange

Here we present a definition of security for PAK due to Bellare, Pointcheval,
and Rogaway [3], based on prior work of [4, 5]. The text here is taken almost
verbatim from [28].

Participants, passwords, and initialization. Prior to any execution of the
protocol there is an initialization phase during which public parameters and a
CRS are established. We assume a fixed set User of protocol participants (also
called principals or users). For every distinct U,U ′ ∈ User, users U and U ′

share a password pwU,U ′ . We assume that each pwU,U ′ is chosen independently

and uniformly from the set [D] def= {1, . . . , D} for some integer D. (Our proof
of security extends to more general cases, and we implicitly consider arbitrary
password distributions in the setting of universal composability.)

Execution of the protocol. In the real world, a protocol determines how
principals behave in response to input from their environment. In the formal
model, these inputs are provided by the adversary. Each principal can execute
the protocol multiple times (possibly concurrently) with different partners; this
is modeled by allowing each principal to have an unlimited number of instances
with which to execute the protocol. We denote instance i of user U as Πi

U . Each
instance may be used only once. The adversary is given oracle access to these
different instances; furthermore, each instance maintains (local) state which is
updated during the course of the experiment. In particular, each instance Πi

U is
associated with the following variables:

– sidiU , pidiU , and skiU denote the session id, partner id, and session key for an
instance, respectively. The session id is simply a way to keep track of different
executions; we let sidiU be the (ordered) concatenation of all messages sent
and received by Πi

U . The partner id denotes the user with whom Πi
U believes

it is interacting. (Note that pidiU can never equal U .)
– acciU and termi

U are boolean variables denoting whether a given instance has
accepted or terminated, respectively.

The adversary’s interaction with the principals (more specifically, with the var-
ious instances) is modeled via access to oracles that we describe now:

– Send(U, i,msg) — This sends message msg to instance Πi
U . This instance

runs according to the protocol specification, updating state as appropriate.
The message output by Πi

U is given to the adversary.
The adversary can “prompt” instance Πi

U to initiate the protocol with
partner U ′ by querying Send(U, i, U ′). In response to this query, instance
Πi
U outputs the first message of the protocol.
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– Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle
executes the protocol between these instances and gives the transcript of this
execution to the adversary. This oracle call represents passive eavesdropping
of a protocol execution.

– Reveal(U, i) — This outputs the session key skiU , modeling leakage of session
keys due to, e.g., improper erasure of session keys after use, compromise of
a host computer, or cryptanalysis.

– Test(U, i) — This oracle does not model any real-world capability of the
adversary, but is instead used to define security. A random bit b is chosen;
if b = 1 the adversary is given skiU , and if b = 0 the adversary is given a
session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if: (1) sidiU =
sidjU ′ �= null; and (2) pidiU = U ′ and pidjU ′ = U .

Correctness. To be viable, a key-exchange protocol must satisfy the following
notion of correctness: if Πi

U and Πj
U ′ are partnered then acciU = accjU ′ = true

and skiU = skjU ′ , i.e., they both accept and conclude with the same session key.

Advantage of the adversary. Informally, the adversary succeeds if it can guess
the bit b used by the Test oracle. To formally define the adversary’s success, we
first define a notion of freshness. An instance Πi

U is fresh unless one of the follow-
ing is true at the conclusion of the experiment: (1) at some point, the adversary
queried Reveal(U, i); or (2) at some point, the adversary queried Reveal(U ′, j),
where Πj

U ′ and Πi
U are partnered. We allow the adversary to succeed only if

its Test query is made to a fresh instance; this is necessary for any reasonable
definition of security.

An adversaryA succeeds if it makes a single query Test(U, i) to a fresh instance
Π i
U , and outputs a bit b′ with b′ = b (recall that b is the bit chosen by the Test

oracle). We denote this event by Succ. The advantage of A in attacking protocol
Π is given by AdvA,Π(k) def= 2 ·Pr[Succ]− 1, where the probability is taken over
the random coins used by the adversary and the random coins used during the
course of the experiment (including the initialization phase).

It remains to define a secure protocol. A probabilistic polynomial-time (ppt)
adversary can always succeed with probability 1 by trying all passwords one-by-
one; this is possible since the size of the password dictionary is small. Informally,
a protocol is secure if this is the best an adversary can do. Formally, an instance
Π i
U represents an on-line attack if both the following are true at the time of

the Test query: (1) at some point, the adversary queried Send(U, i, ∗); and (2) at
some point, the adversary queried Reveal(U, i) or Test(U, i). The number of on-
line attacks represents a bound on the number of passwords the adversary could
have tested in an on-line fashion.

Definition 1. Protocol Π is a secure protocol for password-based authenticated
key exchange if, for all dictionary sizes D and for all ppt adversaries A making
at most Q(n) on-line attacks, it holds that AdvA,Π(n) ≤ Q(n)/D + negl(n).
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2.2 Smooth Projective Hash Functions

We provide a self-contained definitional treatment of smooth projective hash
functions. These were introduced by Cramer and Shoup [14], and our discussion
here is based on that of Gennaro and Lindell [18]. Rather than aiming for utmost
generality, we tailor the definitions to our application.

Hard subset membership problems. Fix some integer D. Let (Gen,Enc,Dec)
be a CCA-secure labeled encryption scheme. For a given public key pk, we let
Cpk denote the set of pairs of valid labels and valid ciphertexts with respect
to pk, and require that this set be efficiently recognizable. For a given public key
pk, define sets X and {Lpw}pw∈[D] as follows:

1. X
def= {(label, C, pw)}, where (label, C) ∈ Cpk and pw ∈ {1, . . . , D}.

2. Lpw
def= {(label,Encpk(label, pw), pw)}, where label ∈ {0, 1}∗.

Let L =
⋃D
pw=1 Li, and note that L ⊂ X . It follows from CCA security of

(Gen,Enc,Dec) that the following is negligible for any polynomial-time A:∣∣∣∣∣∣Pr

⎡⎣ (pk, sk)← Gen(1n);
(label, pw)← ADecsk(·,·)(pk);

C ← Encpk(label, pw)
: ADecsk(·,·)(C) = 1

⎤⎦
− Pr

⎡⎣ (pk, sk)← Gen(1n);
(label, pw)← ADecsk(·,·)(pk);

C ← Encpk(label, 0)
: ADecsk(·,·)(C) = 1

⎤⎦∣∣∣∣∣∣ , (1)

where A is disallowed from querying (label, C) to its decryption oracle.

Smooth projective hash functions. Fix pk and sets X, {Li} as above. A
smooth projective hash function H = {Hk}k∈K is a keyed function mapping
elements in X to elements in some group G, along with a projection function
α : K → S. Informally, if x ∈ L then the value of Hk(x) is uniquely determined
by s = α(k) and x, whereas if x ∈ X \ L then the value of Hk(x) is statistically
close to uniform given α(k) and x (assuming k was chosen uniformly in K).
A smooth projective hash function is formally defined by a sampling algorithm
that, given pk, outputs (K,G,H = {Hk : X → G}k∈K , S, α : K → S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) com-
puting Hk(x) for k ∈ K and x ∈ X , and (3) computing α(k) for k ∈ K.

2. For all (label, C, pw) ∈ L, the value of Hk(label, C, pw) is uniquely deter-
mined by α(k). Moreover, there is an efficient algorithm that takes as in-
put s = α(k) and (label, C, pw, r) for which C = Encpk(label, pw; r), and
outputs Hk(label, C, pw). (In other words, when (label, C, pw) ∈ L then
Hk(label, C, pw) can be computed in two ways: either using k itself, or using
α(k) and the randomness used to generate C.)

3. For any (even unbounded) function f : S → X\L, the following distributions
have statistical difference negligible in n:{
k ← K; s := α(k) :

(
s,Hk(f(s))

)}
and {k← K; s := α(k); g ← G : (s, g)}
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We stress that in the above we modify the definition from [18] in two ways: first,
α is non-adaptive, and depends on k only (rather than both k and x); second,
we require the above to hold even for adaptive choice of f(s) �∈ L. Intuitively,
the first modification helps us compress the number of rounds to one, whereas
the second is necessary for proving security.

A technical lemma. We now prove a technical lemma regarding smooth pro-
jective hash functions. Somewhat informally, Gennaro and Lindell [18] showed
that, for randomly generated pk and any label, pw, the distribution{

k ← K; s := α(k);C ← Encpk(label, pw) :
(
s, C,Hk(label, C, pw)

)}
is computationally indistinguishable from the distribution

{k ← K; s := α(k);C ← Encpk(label, pw); g ← G : (s, C, g)} .

(Note this holds even though Hk(label, C, pw) is uniquely determined by s and C)
Here we show that this continues to hold even if hash keys and ciphertexts are
re-used multiple times. That is, at a high level (ignoring labels and technical
details), we show that the distribution{

k1, . . . , k� ← K; ∀i : si := α(ki);
C1, . . . , C� ← Encpk(pw) :

(
{si}, {Ci}, {Hki(Cj , pw)}�i,j=1

)}
is computationally indistinguishable from the distribution{

k1, . . . , k� ← K; ∀i : si := α(ki);
C1, . . . , C� ← Encpk(pw); gi,j ← G

:
(
{si}, {Ci}, {gi,j}�i,j=1

)}
.

Formally, fix a function � = �(n), let A be an adversary, and let b ∈ {0, 1}.
Consider the following experiment Exptb:

1. Compute (pk, sk) ← Gen(1n) and let (K,G,H = {Hk : X → G}k∈K , S,
α : K → S) be a smooth projective hash function for pk. Give pk to A.

2. Sample k1, . . . , k� ← K, and let si := α(ki) for all i. Give s1, . . . , s� to A.
3. A may adaptively query a (modified) encryption oracle that takes as input

(label, pw) and outputs a ciphertext C ← Encpk(label, pw) along with
(a) If b = 0, the values Hki(label, C, pw) for i = 1 to �.
(b) If b = 1, random values g1, . . . , g� ← G.

4. A can also query a decryption oracle Decsk(·, ·) at any point, except that it
may not query any pair (label, C) where C was obtained from the encryption
oracle on query (label, pw).

5. At the end of the experiment, A outputs a bit b′. We say A succeeds if b′ = b.

A proof of the following appears in the full version of this work [29]:

Lemma 1. Let (Gen,Enc,Dec) be a CCA-secure labeled encryption scheme. For
any polynomial � and polynomial-time A, we have Pr[A succeeds ] ≤ 1

2 +negl(n).
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Public parameters: pk

User U User U ′

k ← K; s := α(k)

label := (U, U ′, s)

C ← Encpk(label, pw)

k′ ← K; s′ := α(k′)

label′ := (U ′, U, s′)

C′ ← Encpk(label′, pw)s, C �

s′, C′
�

label′ := (U ′, U, s′)

skU := Hk(label′, C′, pw)

·Hk′(label, C, pw)

label := (U, U ′, s)

skU′ := Hk(label′, C′, pw)

·Hk′(label, C, pw)

Fig. 1. A one-round protocol for password-based authenticated key exchange

3 A Framework for One-Round PAK Protocols

Our protocol uses a chosen ciphertext-secure (CCA-secure) labeled public-key
encryption scheme (Gen,Enc,Dec), and a smooth projective hash function as
described in Section 2.2.

Public parameters. The public parameters consist of a public key pk generated
by Gen(1n). No one need know or store the associated secret key. (For the specific
instantiations given in Section 4, a public key can be derived from a common
random string.) Let (K,G,H = {Hk : X → G}k∈K , S, α : K → S) be a smooth
projective hash function for pk.

Protocol execution. Consider an execution of the protocol between users U
and U ′ �= U holding a shared password pw. Our protocol is symmetric, and so
we describe the execution from the point of view of U ; see also Figure 1.

First, U chooses random hash key k ← K and computes s := α(k). It then
sets label := (U,U ′, s) and computes the ciphertext C ← Encpk(label, pw). It
sends the message (s, C).

Upon receiving the message (s′, C′), user U does the following. If C′ is not
a valid ciphertext or s′ �∈ S, then U simply rejects. Otherwise, U sets label′ :=
(U ′, U, s′) and computes

skU := Hk(label′, C′, pw) ·Hk′(label, C, pw).

U computes Hk(label′, C′, pw) using k, and can compute Hk′(label, C, pw) us-
ing s′ = α(k′) and the randomness it used to generate C. Correctness follows
immediately from the definition of smooth projective hashing.

Theorem 1. If (Gen,Enc,Dec) is a CCA-secure labeled encryption scheme and
(K,G,H = {Hk : X → G}k∈K , S, α : K → S) is a smooth projective hash
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function, then the protocol in Figure 1 is a secure protocol for password-based
authenticated key exchange.

The proof is in the full version of this work [29].

4 Instantiating the Building Blocks

We now discuss two possible instantiations of the building blocks required by
the protocol of the previous section. Our first instantiation is based on the de-
cisional Diffie-Hellman (DDH) assumption and (generic) simulation-sound non-
interactive zero-knowledge (NIZK) proofs. (It could be based on the quadratic
residuosity assumption or the Paillier assumption as well, much like in [18]. We
omit further details.) Our second, more efficient construction is based on the
decisional linear assumption [8] in groups with a bilinear map.

4.1 A Construction Based on the DDH Assumption

We first describe an encryption scheme and then the associated smooth projec-
tive hash function.

A CCA-secure encryption scheme. We construct a CCA-secure encryption
scheme by applying the Naor-Yung/Sahai paradigm [32, 35] to the El Gamal
encryption scheme. Briefly, the public key defines a group G of prime order p
along with generators g1, h1, g2, h2 ∈ G. The public key also contains a common
random string crs for a (one-time) simulation-sound NIZK proof system [35].

Fixing G, let ElGamalg,h(m) denote an El Gamal encryption of m ∈ G with
respect to (g, h); namely, ElGamalg,h(m) → (gr, hr ·m), where r ∈ Zp is chosen
uniformly at random. To encrypt a message m ∈ G in our CCA-secure scheme,
the sender outputs the ciphertext (ElGamalg1,h1(m), ElGamalg2,h2(m), π), where
π is a simulation-sound NIZK proof that the same m is encrypted in both cases.
Labels can be incorporated by including the label in the proof π; we omit the
standard details.

Decryption of the ciphertext (c1, d1, c2, d2, π) rejects if c1, d1, c2, d2 �∈ G or if
the proof π is invalid. (Note that the space of valid label/ciphertext pairs is effi-
ciently recognizable without the secret key.) If the ciphertext is valid, then one
of the two component ciphertexts is decrypted and the resulting message is out-
put. The results of [35] show that this yields a CCA-secure (labeled) encryption
scheme based on the DDH assumption and simulation-sound NIZK.

A smooth projective hash function. Fix a group G and a public key pk =
(g1, h1, g2, h2, crs) as above, and define sets X and {Li} as in Section 2.2. Define
a smooth projective hash function as follows. The set of keys K consists of all
four-tuples of elements in Zp. Given a valid label/ciphertext pair (label, C =
(c1, d1, c2, d2, π)) and key k = (x1, y1, x2, y2), the hash function is defined as:

H(x1,y1,x2,y2)
(
label, (c1, d1, c2, d2, π), pw

)
= cx1

1 · (d1/pw)y1 · cx2
2 · (d2/pw)y2 .
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(Thus, the range of H is the group G.) The projection function α is defined as:

α(x1, y1, x2, y2) = (gx1
1 · hy11 , gx2

2 · hy22 ) .

A proof of the following is given in the full version of this work [29].

Lemma 2. (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective
hash function for the hard subset membership problem (X, {Li}).

4.2 A Construction Based on the Decisional Linear Assumption

We now present a more efficient construction based on bilinear maps. The ef-
ficiency advantage is obtained by using a specific simulation-sound NIZK proof
system, built using techniques adapted from [23,11]. Our construction here relies
on the decisional linear assumption as introduced by Boneh et al. [8]; we refer
the reader there for a precise statement of the assumption.

A CPA-secure encryption scheme. We start by describing a semantically
secure encryption scheme, due to Boneh et al. [8], based on the decisional linear
assumption; we then convert this into a CCA-secure encryption scheme via the
same paradigm as above, but using an efficient simulation-sound NIZK proof
system. The bilinear map itself is used only in the construction of the simulation-
sound NIZK.

Fix groups G,GT of prime order p, and a bilinear map e : G×G→ GT . The
public key is pk = (f, g, h) ∈ G3, and the secret key is (α, β) such that f = h1/α

and g = h1/β . A message m ∈ G is encrypted by choosing random r, s ∈ Zp
and computing the ciphertext (f r, gs, hr+s ·m). Given a ciphertext (c1, c2, c3),
we can recover m as c3/c

α
1 c
β
2 .

A simulation-sound NIZK proof of plaintext equality. We can construct a
(one-time) simulation-sound NIZK proof of plaintext equality for the encryption
scheme described above using the techniques of [23,11]. Details of the construc-
tion (which, while not entirely straightforward, are not the focus of this work)
are given in Appendix A.

A CCA-secure encryption scheme. We obtain a CCA-secure encryption
scheme by using the Naor-Yung/Sahai paradigm, as described previously. (The
following discussion relies on the results of Appendix A.) The public key consists
of group elements (f1, g1, f2, g2, h) used for encryption, in addition to any group
elements needed for the CRS of the simulation-sound NIZK proof. Encryption
of m, as described in Appendix A, is done by choosing r1, s1, r2, s2 ∈ Zp and
computing the ciphertext

(f r11 , gs11 , hr1+s1 ·m, f r22 , gs22 , hr2+s2 ·m, π),

where π denotes a simulation-sound NIZK proof that the same m was encrypted
both times. (Once again, the space of valid label/ciphertext pairs is efficiently
recognizable without the secret key.) It follows from [32, 35] that this yields a



304 J. Katz and V. Vaikuntanathan

CCA-secure scheme under the decisional linear assumption. Ciphertexts consist
of 66 group elements altogether.

A smooth projective hash function. Fix G,GT , and a public-key pk =
(f1, g1, f2, g2, h) as above, and define sets X and {Li} as in Section 2.2. We de-
fine a smooth projective hash function as follows. The set of keys K is the set
of six-tuples of elements in Zp. Given a valid label/ciphertext pair (label, C =
(c1, d1, e1, c2, d2, e2, π)) and a key k = (x1, y1, z1, x2, y2, z2) ∈ Z6

p, the hash func-
tion is defined as

H(x1,y1,z1,x2,y2,z2)(label, C, pw) = cx1
1 · d

y1
1 · (e1/pw)z1 · cx2

2 · d
y2
2 · (e2/pw)z2 .

(The range of H is G itself.) The projection function α : K → G4 is defined as:

α(x1, y1, z1, x2, y2, z2) = (fx1
1 hz1 , gy11 hz1 , fx2

2 hz2 , gy22 hz2) .

In Appendix B we show:

Lemma 3. (K,G,H = {Hk}k∈K , S, α) as defined above is a smooth projective
hash function for the hard subset membership problem (X, {Li}).

5 A One-Round, Universally-Composable PAK Protocol

Canetti et al. [13] gave a definition of security for password-based authenticated
key exchange in the universal composability (UC) framework [12]. Their defini-
tion guarantees a strong, simulation-based notion of security that, in particular,
guarantees that security is maintained even when multiple protocols are run con-
currently in an arbitrary network. For the specific case of password-based key
exchange, the definition also has the advantage of automatically handling arbi-
trary (efficiently sampleable) distributions on passwords, and even correlations
between passwords of different users. We refer to [13] for a more complete discus-
sion, and a description of the password-based key-exchange functionality FpwKE.
We let F̂pwKE denote the multi-session extension of FpwKE.

5.1 Overview of the Construction

We do not know how to prove that the protocol from Section 3 is universally
composable. The main difficulty is that the definition of PAK in the UC frame-
work requires simulation even if the adversary guesses the correct password. (In
contrast, in the proof of security in Section 3 we simply “give up” in case this
ever occurs.) To see the problem more clearly, consider what happens in the UC
setting when the simulator sends the first message of the protocol to the adver-
sary, before the simulator knows the correct password. The simulator must send
some ciphertext C as part of the first message, and this “commits” the simulator
to some password pw. When the adversary sends the reply, the simulator can
extract the adversary’s “password guess” pw′ and submit this guess to the ideal
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functionality. If this turns out to be the correct password, however, the simu-
lator is stuck: it needs to compute a session key that matches the session key
the adversary would compute, but the simulator is (information-theoretically!)
unable to do so because it sent an incorrect ciphertext in the first message.

In prior work [13], the issue above was resolved by having one party send a
“pre-commitment” to the password, and then running a regular PAK protocol
along with a proof that the password being used in the protocol is the same as
the password to which it “pre-committed”. (The proof is set up in such a way
that the simulator can equivocate this proof, but the adversary cannot.) This
requires at least one additional round.

We take a different approach that does not affect the round complexity at all.
Roughly, we modify the protocol from Figure 1 by having each party include
as part of its message an encryption C1 of its hash key k, along with a proof
that C1 encrypts a value k for which α(k) = s. Now, even if the simulator is
wrong in its guess of the password it will still be able to compute a session key
by extracting this hash key from the adversary’s message. A full description of
the protocol is given in the following section.

While we do not describe in detail any instantiation of the components, we
remark that it should be possible to use the same techniques as in Appendix A to
construct (reasonably) efficient realizations of the necessary components using
bilinear maps. We leave this for future work.

5.2 Description of the Protocol

In addition to the building blocks used in Section 3, here we also rely on an
unbounded simulation-sound [15] NIZK proof system (CRSGen,P ,V) for a lan-
guage L∗ defined below.

Public parameters. The public parameters consist of two public keys pk1, pk2
generated by Gen(1n) and a common random string crs for the simulation-sound
NIZK proof system. Let (K,G,H = {Hk : X → G}k∈K , S, α : K → S) be a
smooth projective hash function for pk2.

Protocol execution. Consider an execution of the protocol between users U
and U ′ �= U holding a shared password pw and a common session identifier ssid.
(The ssid is an artifact of the UC framework, and it is guaranteed that (1) parties
communicating with each other begin holding matching ssids, and (2) each ssid
is used only once. Existence of these ssids is not essential to our proof of security,
though it does make the proof somewhat simpler.) Our protocol is symmetric,
and so we describe the execution from the point of view of U ; see Figure 2.

First, U chooses a random hash key k ← K and computes s := α(k). It then
computes an encryption of k, namely C1 ← Encpk1(k). Define a language L∗ as
follows.

L∗ def= {(s, C1) : ∃k ∈ K and ω s.t s = α(k) and C1 = Encpk1(k;ω)}.
U computes an NIZK proof π that (C1, s) ∈ L∗, using crs. It then sets label :=
(ssid, U, U ′, s, C1, π) and computes the ciphertext C2 ← Encpk2(label, pw). The
message it sends is (s, C1, π, C2).
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Public Parameters: (pk1, pk2, crs)

User U User U ′

k ← K; s := α(k)

C1 ← Encpk1(k)

π := Pcrs((s,C1) ∈ L∗)

label := (ssid, U, U ′, s, C1, π)

C2 ← Encpk2(label, pw)

k′ ← K; s′ := α(k′)

C′
1 ← Encpk1(k′)

π′ := Pcrs((s′, C′
1) ∈ L∗)

label′ := (ssid, U ′, U, s′, C′
1, π

′)

C′
2 ← Encpk2(label′, pw)s, C1, π, C2 �

s′, C′
1, π

′, C′
2�

label′ := (ssid, U ′, U, s′, C′
1, π

′)

skU := Hk(label′, C′
2, pw)

·Hk′(label, C2, pw)

label := (ssid, U,U ′, s, C1, π)

skU′ := Hk(label′, C′
2, pw)

·Hk′(label, C2, pw)

Fig. 2. A universally composable protocol for password-based authenticated key
exchange

Upon receiving the message (s′, C′
1, π

′, C′
2), user U does the following. If the

message is invalid (i.e., if verification of π′ fails, or C′
2 is not a valid ciphertext, or

s′ �∈ S), then U simply rejects. Otherwise, U sets label′ := (ssid, U ′, U, s′, C′
1, π

′)
and computes skU := Hk(label′, C′

2, pw) ·Hk′ (label, C2, pw). Note U can compute
Hk(label′, C′

2, pw) since it knows k, and can compute Hk′ (label, C2, pw) using
s′ = α(k′) and the randomness used to generate C2. Correctness follows from
the definition of smooth projective hashing. A proof of the following is given the
full version of this work [29].

Theorem 2. If (Gen,Enc,Dec) is a CCA-secure public-key encryption scheme,
(CRSGen,P ,V) is an unbounded simulation-sound NIZK proof system, and fur-
thermore (K,G,H = {Hk : X → G}k∈K , S, α : K → S) is a smooth projective
hash family, then the protocol in Figure 2 securely realizes F̂pwKE in the Fcrs-
hybrid model.
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A A Simulation-Sound NIZK Proof of Plaintext Equality

Fix groups G,GT of prime order p, and a bilinear map e : G × G → GT as in
Section 4.2. Fix also two public keys pk1 = (f1, g1, h) and pk2 = (f2, g2, h). We
encrypt a message m with respect to pk1 by choosing random r, s and computing
the ciphertext (f r1 , g

s
1, h

r+s ·m). We encrypt a message m with respect to pk2 by

http://eprint.iacr.org/2010/368


Round-Optimal Password-Based Authenticated Key Exchange 309

choosing random r, s ∈ Zp and computing the ciphertext (f r2 , g
s
2, h

r+s ·m). We
stress that the public keys use the same value h.

We first describe a (potentially malleable) NIZK proof of plaintext equality.
That is, given two ciphertexts (F1, G1, H1) and (F2, G2, H2) encrypted with re-
spect to pk1, pk2, respectively, we describe a proof that these ciphertexts encrypt
the same message. The observation is that plaintext equality is equivalent to the
existence of r1, s1, r2, s2 ∈ Zp such that:

F1 = f r11 (2)
G1 = gs11 (3)
F2 = f r22 (4)
G2 = gs22 (5)

H1/H2 = hr1+s1−r2−s2 . (6)

As shown in [23] (see also [11, Section 4.4] for a self-contained description), NIZK
proofs of satisfiability (with a CRS) can be constructed for a system of equations
as above; since, in our case, we have 5 (linear) equations in 4 variables, proofs
contain 22 group elements2.

Camenisch et al. [11] show a construction of an unbounded simulation-sound
NIZK. For our purposes, a simpler construction that is one-time simulation
sound [35] suffices. Let (Gen, Sign,Vrfy) be a one-time signature scheme, where
for simplicity we assume verification keys are elements of G (this can always
be achieved using an extra step of hashing). To make the above (one-time)
simulation-sound, we add group elements (f, g, h, F,G,H) to the CRS. Roughly,
proofs of plaintext equality now contain:

1. A fresh signature verification key vk.
2. A proof that either there exists a satisfying assignment to Equations (2)–(6),

or that the given tuple (f, g, h, F,G,H) is an encryption of vk. I.e., there
exist r, s such that:

F = f r, G = gs, H/vk = hr+s. (7)

3. A signature σ (with respect to vk) on the proof from the previous step.

Noting that Equation (7) describes a system of 3 (linear) equations in 2 variables,
and using the techniques from [11, Appendix A.2], an NIZK proof as required
in step 2 can be done using 58 group elements, for a total of 60 group elements
for the entire simulation-sound NIZK proof (assuming signatures are one group
element for simplicity). See also footnote 2.

B Proof of Lemma 3

Sampling a uniform k ∈ K, computing Hk(x) given k ∈ K and x ∈ X and
computing α(k) for k ∈ K are all easy.
2 Our calculations here are based on the decisional linear assumption (the 2-linear as-

sumption in the terminology of [11]). If we are willing to use the 1-linear assumption,
the efficiency of our proofs can be improved.
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We show that if (label, C, pw) ∈ L, then Hk(label, C, pw) can be computed
efficiently given α(k) and the randomness that was used to generate C. Since
(label, C, pw) ∈ L, we have that C = (f r11 , gs11 , hr1+s1fpw1 , f r22 , gs22 , hr2+s2fpw2 )
for some r1, s1, r2, s2 ∈ Zp. For k = (x1, y1, z1, x2, y2, z2) we have

Hk(label, C, pw) = cx1
1 dy11 · (e1/f

pw
1 )z1 · cx2

2 · dy22 · (e2/f
pw
2 )z2

= (fx1
1 hz1)r1 · (gy11 hz1)s1 · (fx2

2 hz2)r2 · (gy22 hz2)s2 .

This can be computed easily given r1, s1, r2, s2, and

α(k) def= (fx1
1 hz1 , gy11 hz1 , fx2

2 hz2 , gy22 hz2) .

Next, we show that if (label, C, pw) ∈ X \L, then the value of Hk(label, C, pw)
is uniform conditioned on α(k). (This holds even if (label, C, pw) are chosen
adaptively depending on α(k).) Fix any α(k) = (S1, S2, S3, S4). Letting αi =
logh fi and βi = logh gi, this value of α(k) constrains k = (x1, y1, z1, x2, y2, z2)
to satisfy

⎛⎜⎜⎝
α1 0 1 0 0 0
0 β1 1 0 0 0
0 0 0 α2 0 1
0 0 0 0 β2 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

x1
y1
z1
x2
y2
z2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
γ1
γ2
γ3
γ4

⎞⎟⎟⎠ , (8)

where γi = logh Si. For any (label, C, pw) ∈ X \ L, we can write

C = (f r11 , gs11 , hr1+s1fpw
′

1 , f r22 , gs22 , hr2+s2fpw
′

2 , π)

for some pw′ �= pw. (We assume for simplicity that the same pw′ is encrypted
twice; since π is valid, this is the case with all but negligible probability.) We
then have

Hk(label, C, pw)
= f r1x1

1 · gs1y11 · h(r1+s1)z1 ·
(
fΔ1
)z1 · f r2x2

2 · gs2y22 · h(r2+s2)z2 ·
(
fΔ2
)z2

= Sr11 Ss12 Sr23 Ss24 · (fz11 fz22 )Δ , (9)

where Δ = pw′ − pw �= 0. For any g ∈ G, we have fz11 fz22 = g iff

α1 · z1 + α2 · z2 = logh g. (10)

Since the system of equations given by (8) and (10) is under-defined, the prob-
ability that fz11 fz22 = g is exactly 1/|G| even conditioned on the value α(k).
Looking at Equation (9), and noting that Sr11 Ss12 Sr23 Ss24 is determined by α(k)
and C, we conclude that the distribution of Hk(label, C, pw) is uniform in G.
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Abstract. Known constructions of UC secure protocols are based on the
premise that different parties collectively agree on some trusted setup.
In this paper, we consider the following two intriguing questions: Is it
possible to achieve UC if the parties do not want to put all their trust
in one entity (or more generally, in one setup)? What if the parties have
a difference of opinion about what they are willing to trust? The first
question has been studied in only a limited way, while the second has
never been considered before.

In this paper, we initiate a systematic study to answer the above
questions. We consider a scenario with multiple setup instances where
each party in the system has some individual belief (setup assumption in
terms of the given setups). The belief of a party corresponds to what it is
willing to trust and its security is guaranteed given that its belief “holds.”
The question considered is: “Given some setups and the (possibly) dif-
ferent beliefs of all the parties, when can UC security be achieved?” We
present a general condition on the setups and the beliefs of all the par-
ties under which UC security is possible. Surprisingly, we show that when
parties have different beliefs, UC security can be achieved with a more
limited “trust” than what is necessary in the traditional setting (where
all parties have a common belief).

1 Introduction

Suppose Alice and Bob want to execute a UC-secure [4] protocol. They know
that they will need to rely on some trust assumptions [6,7] in order to achieve UC
security. Unfortunately, Alice and Bob have different beliefs about who is trust-
worthy: Suppose that Microsoft, Intel, Google, and Yahoo have all published
common reference strings (CRS). Alice believes that either both Microsoft and
Intel are trustworthy, or both Google and Yahoo are trustworthy. Bob, however,
has a different view: Bob believes that either both Microsoft and Google are
trustworthy, or both Intel and Yahoo are trustworthy. This seems like a horrible
situation. Indeed, even if both Alice and Bob shared Alice’s trust belief (or if
they both shared Bob’s trust belief), most UC-secure protocols would be impos-
sible [13]. We show, surprisingly, that nevertheless in the situation above with

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 311–328, 2011.
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asymmetric beliefs, Alice and Bob can execute a protocol that will guarantee
UC security for all parties whose trust beliefs turn out to be valid. This paper
is a systematic study of this problem – when can we guarantee UC security (in
this sense) even when different parties have different trust beliefs.

Background. The last decade has seen a push towards obtaining secure compu-
tation protocols in the demanding network setting where there might be multiple
concurrent protocol executions. The framework of universal composability (UC)
was introduced by Canetti [4] to capture the security requirements in such a set-
ting. However unfortunately, soon after the introduction of the UC framework,
impossibility results were shown ruling out the existence of UC secure protocol
for most functionalities of interest [6,7]. These results were further generalized
[18,2] to rule out the existence of secure protocol even in various less demand-
ing settings. These impossibility results refer to the “plain model” where the
participating parties do not trust any external entity and they have no prior
communication among themselves, etc.

To overcome these deep impossibility results and obtain secure protocols in
the modern network setting, a number of different “setup assumptions” were
introduced. A few examples follow. Canetti and Fischlin [6] and Canetti, Lindell,
Ostrovsky and Sahai [8] consider the model where a trusted party publishes a
“common reference string” (CRS). Canetti, Pass and Shelat [9] generalized these
results by considering reference strings coming from an unknown distribution.
Barak, Canetti, Nielsen and Pass [1] introduced the so called “registered public
key” model; a variant of this model was considered by Canetti, Dodis, Pass
and Walfish [5]. Katz [14] (and subsequently [10,11,19]) studied a model where
the parties exchange tamper proof hardware tokens with each other. Under all
of these settings, general positive results for all ppt computable functionalities
have been shown in the UC framework. In addition, such positive results can
also be obtained in the setting where a majority of the participants are assumed
to be honest [3,4,15]1.

Now that there are a number of different options in what one might “assume
about the world” to obtain UC protocols, the parties (or the system designer)
would be forced to choose one. In some situation, such a choice would be natural
from the environment where the protocols would be run. However in many other
scenarios, it would be unclear which setup assumption is the right one: should
the parties trust a CRS published by an authority or should they each register
a public key with an authority? Should they assume that a majority of them
are honest or should they not trust anyone and instead rely on tamper proof
hardware tokens? Making such a choice can be non-trivial since a wrong choice
could lead to a complete compromise of the system security.

In light of the above, we can consider the following two lines of thought. First,
given the importance of making a correct choice, it is not unreasonable to imagine
1 We slightly abuse the terminology and consider the honest majority setting as just

another setup. Our study is targeted at assumptions which allow one to obtain UC
protocols but can go wrong leading to a security compromise. Honest majority is
one such assumption.
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that in certain scenarios, the parties in the system cannot agree on a common
choice, i.e., it is plausible that each party may have a different choice about
what setup to use. For example, one party may want to use a CRS published
by Microsoft while another may want to register keys with Google. Yet another
party might want to place more trust in tamper-proofness of certain hardware
tokens and not so much in any entity, and so on. In essence, each party may
have a different trust assumption (referred to as the “belief” of the party) about
the setups available. This gives rise to the following question:

Is it possible to construct UC protocols when parties have different beliefs about
setups?

An orthogonal line of thought is that since a wrong choice could lead to a
compromise of the system security, it might be desirable to diversify the risks
involved and avoid a single point of failure. In other words, how about basing the
protocol on a combination of setups rather than a single one? As an example,
the parties might have access to a published CRS as well as have registered
public keys with an authority. The protocol should retain its security even if one
of these setup assumptions “breaks down” (for example, if the published CRS
turned out to be adversarially chosen) but the other turned out to be “honestly
chosen.” Going a little further, there might be n instances of various setups and
the protocol security should hold as long as (e.g.) either one of the first two or
a majority of the rest were honestly done. More generally, we can consider the
following question:

Is it possible to construct UC protocols using multiple setups when the parties
share an arbitrary belief about the setups?

In this paper, we answer both the above questions in the affirmative. We re-
mark that a general perception following the prior work on UC security is that
a common trusted setup is necessary for achieving UC. As our results show, this
is in fact not necessary. We further note that one would expect UC to be harder
to achieve when parties may have asymmetric beliefs. On the contrary, we show
that the level of trust needed to obtain UC can be significantly weakened in such
a setting.

Related Work. There have been two previous works in the direction of basing
UC secure protocols based on multiple setups. However the works have been
much narrower in scope. Groth and Ostrovsky [13] consider the question of bas-
ing cryptography on multiple CRS. They showed how to construct UC protocols
under the assumption that a majority of the given reference strings were hon-
estly generated. Subsequently, Goyal and Katz [12] considered basing UC secure
protocol under a combination of a CRS and the honest majority assumption.

These questions can be viewed as two special cases of our general question
(in particular, the case of common belief). Our work subsumes these works and
provides answers to a host of other such interesting questions.
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Our Results. In this paper, we initiate a systematic study of the question of
basing UC protocols on multiple different setups in a setting where each party
has its own belief (setup assumption in terms of the given setups) about these
setups. An informal problem statement is as follows. Consider a system with
multiple setups and parties. Each party has a belief expressed as an arbitrary
monotonic formula expressed in disjunctive normal form in terms of the setups,
e.g. (A ∧B) ∨ (C ∧D) where A,B,C and D are some setups. We interpret this
belief as– “Either setup A and setup B hold, or setup C and setup D hold.” We
ask the following question: “Given these setups and the different beliefs of all the
parties, when can UC security be achieved?” In answering this question, we give
a very general condition on the setups and the different beliefs of all the parties
under which UC security is possible. This result is presented in Section 5.

Towards the goal of answering the above question, we first look at a simpler
scenario in which all the parties have a “common belief,” i.e., all the parties
share the same belief about the setups in the system. We give a very general
condition on the setups and the common belief of all the parties under which
UC security is possible. This result is presented in Section 4.

As we discuss later in Section 2, a setup may be “corruptible” in multiple
ways; as such, parties might be willing to put trust in the “extent” of corruption
of a particular setup. Furthermore, different parties might be willing to put
different levels of trust in the same setup. The results of Section 4 and 5 handle
this case to some extent, but this scenario is handled in its full generality in
Appendix B. We advise the reader to look at some of the interesting examples
presented there.

In order to argue about security of a system with arbitrary setups, we abstract
formal properties that essentially capture what “extra powers” a setup provides
to a simulator over an adversary. These abstract properties allow us to cate-
gorize setups and argue UC security of protocols that can be constructed from
them. We note that all known setups fit these definitions very well. We further
note that our results generalize the previously known tight results of Groth and
Ostrovsky [13] and Goyal and Katz [12]. Finally, we leave it as an open problem
to study the tightness of our results in the general case.

Overview of Main Ideas. In past, UC protocols for different setups have been
designed with very different techniques. Here, we wish to design a single protocol
that simultaneously uses a combination of a number of different setups. Our
starting point is the recent work of Lin, Pass and Venkitasubramaniam [16] which
puts forward a unified framework for designing UC secure protocols. In the UC
framework, to obtain positive results, the simulator is required to obtain some
“extra power” over the adversary. Lin, Pass and Venkitasubramaniam observe
that a general technique for constructing UC secure protocols is to have the
simulator obtain a “trapdoor string” which is hard to compute for the adversary.
This is formalized in the form of (two party) UC-puzzle protocols that enable
the simulator to obtain such a trapdoor string (but prevent the adversary from
doing so). Such a trapdoor string is already available to the simulator in the CRS
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model and hence designing a UC-puzzle is trivial in that case. However, even in
case of other setup assumptions, Lin, Pass and Venkitasubramaniam show that
generally it is possible to easily design such a UC-puzzle at the end of which the
simulator obtains a trapdoor string (but the adversary does not).

Once we have a unified construction for UC protocols under different setup
assumptions, we come to our main question: how do we fruitfully use multiple
setups in a single protocol? Different setups might compose very differently with
each others. A priori, it might seem that each pair of setups may compose in a
unique way. Hence, considering the general question that we wish to study, it
seems unclear how to proceed at all.

A key conceptual contribution of our work is a classification of the setup
assumptions used to construct UC protocols. We observe that almost all setups
can be classified among three types. To understand these different types, recall
that in this work, we are concerned with unreliable setup assumptions that may
actually turn out to be false. Coming back to the framework of Lin et al [16], our
simulator would obtain a trapdoor string which would be hard to compute for the
adversary (this is of course if the setup was “honest”). However what happens if
the setup assumption was actually false (i.e., setup was “malicious”)? We could
have any one of the following three cases: (I) the adversary is able to obtain
the trapdoor string (associated with the UC-puzzle) but not the simulator, (II)
none of them are able to obtain the trapdoor string, and, (III) both the adversary
and the simulator are able to obtain the trapdoor string2. Intuitively, the first
case corresponds to complete corruption of the setup, while the other two cases
correspond to partial corruption of the setup.

We are able to show that the above classification of setups solely decides the
composability properties of different setups. In general, Type II and Type III
setups have better composability properties than the Type I ones. For instance,
in the special case where we have multiple instances of the same setup, a majority
of them should be “honest” if the setup is of Type I. However if it is either of
Type II or Type III, it is sufficient to have a single “honest” setup.

Going further, we note that following the work of Lin et al [16], the task of
constructing UC secure protocols from any setup assumption reduces to the task
of constructing a UC-puzzle (in the hybrid model of the corresponding setup).
Then, in a scenario where all the parties share a common belief about the setups
in the system, the task of constructing UC protocols reduces to task of construct-
ing a UC-puzzle in the hybrid model of the multiple setups in the system. But
what of the scenario where the parties have different beliefs about the setups?
In this case, we show how to construct a family of UC-puzzles that in turn can
be used to construct a family of “concurrent simulation-sound” zero knowledge
protocols with “UC-simulation” property. For reasons discussed later in section
3 and 5, this is sufficient to construct UC protocols in such a setting.

Organization. We start by describing our model in Section 2. In Section 2.1,
we recall the notion of UC-puzzles [16] and give their classification into various

2 The fourth case is uninteresting as we argue later.
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types. In Section 2.2, we give a classification of setups into types. We then present
our positive result for the case where parties share a common belief in Section
4. Next, in Section 5, we present our positive result for the case where parties
have different beliefs. Finally, in Appendix A and B, we extend our results to
cover some more involved settings.

2 Our Model

Traditionally, protocols that utilize a single instance of a setup have been con-
structed, and proven to be universally composable as long as the setup is “hon-
est” (i.e., the setup assumption holds). We, however, consider settings where a
protocol may utilize more than one setup; in such a setting, one or more setups
may in fact be “corrupted” (i.e., the setup assumption corresponding to a setup
no longer holds because of possible control of the setup by an adversary). We
wish to investigate when UC-security can be realized in such settings. To this
end, we first consider an augmented modeling for setups (that could either be
“honest” or “corrupted”).

Modeling Setup Failure. Typically, a setup is modeled as a “trusted” ideal
functionality that interacts with the parties in the system. Let G denote such an
ideal functionality. In order to account for the scenario that a setup could in fact
be corrupted by an adversary, we augment this model by considering another
ideal functionality mG that represents a “malicious” version of G. We refer to
mG as a failure mode of G. Then, we will model a setup as a pair (G,mG) of
ideal functionalities, where G represents to the honest version of the setup while
mG represents its failure mode.

For example, consider the common reference string (CRS) setup [6,8]. In pre-
vious works, the CRS setup is modeled as a trusted ideal functionality that
samples a CRS from a specified distribution. A party in the system can query
the ideal functionality, who in response, will return the CRS to the party. In our
setting, we will model the CRS setup as a pair (GCRS ,mGCRS) of ideal function-
alities. Here GCRS corresponds to the case where the CRS is generated honestly
by the ideal functionality, such that no adversary can obtain any “trapdoor”
information for the CRS. On the other hand, mGCRS corresponds to the case
where the functionality returns an adversarially chosen CRS; in particular, an
adversary may be able to obtain some “trapdoor” information for the CRS.

It should be implicit that we only consider setups that are “sufficient” to
realize UC-secure protocols. That is, we assume that given any setup (G,mG), it
is possible to construct UC-secure protocols in the G-hybrid model. We further
assume that constructing UC-secure protocols is impossible in the mG-hybrid
model.

Multiple Failure Modes. The above modeling of setups is not quite complete,
in that it is too restrictive to imagine that a setup may only have a single failure
mode. Specifically, one could imagine a setup failing in multiple ways depending
upon how it is corrupted by an adversary. For instance, let us consider the
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tamper-proof hardware token setup of Katz [14]. In the model of Katz, it is
assumed that (a) parties can exchange tamper-proof hardware tokens with each
other (b) a token “creator” cannot send messages to the token after giving the
token to another party. This is modeled in the form of a wrapper functionality
that takes a program code as an input from a party and then uses that code
to “emulate” a token that interacts with the intended receiver. In this case, one
can consider different possible corruptions of the wrapper functionality (each
corresponding to a different failure mode mG) where either or both of the above
assumptions fail. In general, for a given honest version G of a setup, there may
be multiple failure modes mG1,mG2, . . . ,mGk.

In the sequel, for simplicity of exposition, we will first restrict ourselves to
the case where a setup only has a single failure mode. The results presented in
Section 4 and 5 are obtained under this restriction. Later in Appendix B, we
discuss how to extend our modeling to incorporate multiple failure modes and
then explain how our results can be extended to this case.

Setup Types. Now recall that one of the main goals of this paper is to provide
a way to construct UC secure protocols that utilize multiple different setups. A
priori, it might seem that different setups may compose very differently with each
other depending upon their specific properties, and that in the worst case, each
pair of setups might compose in a unique way. However, we show that this is not
the case; specifically, we give a classification of setups into different “Types,” and
then show that the Type of any setup solely decides the composability properties
of that setup. We then study composition of setup types and give positive results
for the feasibility of constructing UC-secure protocols in the presence of multiple
setups (of possibly different Types).

Our classification of a setup into Types is based on the feasibility of construct-
ing a specific primitive called “UC-puzzle” (in the hybrid model of the setup).
We first recall the notion of UC puzzles in Section 2.1. Later, in Section 2.2, we
give a classification of setups into Types.

2.1 UC Puzzles and Their Classification

Lin et al [16] introduced the notion of UC-puzzles, where, informally speaking,
a UC-puzzle is a two-party protocol in a G-hybrid model (where G is a trusted
ideal functionality)3 such that no real world adversary can complete the puzzle
and also obtain a “trapdoor,” while there exists a simulator that can “simulate”
a puzzle execution (with the “correct” distribution) and also obtain a trapdoor.
Looking ahead, our positive results rely crucially on UC-puzzles; therefore, we
discuss them below in detail.

Recall that in our setting, setups are “corruptible.” For instance, in the above
example, the setup functionality in the system may in fact be mG (instead of
G) which is controlled by an adversary. Clearly, there may be no guarantee that

3 We note that in the original definition of Lin et al [16], the existence of a an ideal
functionality G is not compulsory. However, in such cases, one can imagine G to be
an empty functionality.
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the aforementioned properties of a UC-puzzle still hold in this case; as such,
the original definition of [16] does not suffice for our purposes. To this end, we
extend the original definition of UC-puzzles to account for such a scenario. We
give an informal definition of a UC-puzzle as follows. Part of the definition below
is taken almost verbatim from [16].

UC-puzzle. Let (G,mG) be a setup. A UC-puzzle is a pair (〈S,R〉,R), where
〈S,R〉 is a protocol between two parties—a sender S, and a receiver R—in the
F -hybrid model (where F is either G or mG), and R ⊆ {0, 1}∗ × {0, 1}∗ is an
associated ppt computable relation.

I. If F is the “honest” ideal functionality G, i.e., the puzzle is in the G-hybrid
model, then it must satisfy the following two properties.

Soundness. No ppt adversarial receiver R∗ after an execution with an hon-
est sender S can find (except with negligible probability) a trapdoor σ ∈
R(trans), where trans is the transcript of the puzzle execution.

Statistical Simulatability. Let A be a real world adversary (in an environment
Z) that participates as a sender in multiple concurrent executions of a UC-
puzzle. Then, for every such A, there exists a simulator S interacting only
with Z such that no (possibly unbounded) Z can distinguish between an ex-
ecution with A from an execution with S, except with negligible probability.
Further, for every completed puzzle execution, except with negligible prob-
ability, S outputs a trapdoor σ ∈ R(trans), where trans is the transcript
of that puzzle execution.

II. Otherwise, if F is the “malicious” functionality mG, i.e., the puzzle is in the
mG-hybrid model, then we consider three sub-cases and define different “types”
for UC-puzzles. In order to describe these cases, we first define two properties
that can be seen as “strong” negations of the two aforementioned properties of
UC-puzzles4.

Unsound. A UC-puzzle (〈S,R〉,R) is said to be Unsound in the mG-hybrid
model if there exists a ppt adversarial receiver R∗ that can find (except
with negligible probability) a trapdoor σ ∈ R(trans), for a puzzle execution
(with a transcript trans) with an honest sender S.

Unsimulatable. Further, we say that the UC-puzzle is Unsimulatable in the mG-
hybrid model if there exists an adversarial sender A such that no simulator
S can obtain (except with negligible probability) a trapdoor σ ∈ R(trans)
for a completed puzzle execution (where trans is the transcript of the puzzle
execution).

4 An intuitive explanation of the two new properties can be seen as follows. Informally
speaking, we wish to say that a UC-puzzle in the mG-hybrid model is Unsound if an
adversary in the mG-hybrid model enjoys the same power as any simulator in the
G-hybrid model. Similarly, a UC-puzzle in the mG-hybrid model is Unsimulatable
if a simulator in the mG-hybrid model enjoys no extra power as compared to an
adversary in the G-hybrid model.
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We now consider the following cases.

Type I. We say that a UC-puzzle is of Type I if it is Unsound and Unsimulatable
in the mG-hybrid model.

Type II. We say that a UC-puzzle is of Type II if it satisfies Soundness but is
Unsimulatable in the mG-hybrid model.

Type III. We say that a UC-puzzle is of Type III if it is Unsound but satisfies
Statistical Simulatability in the mG-hybrid model.

Finally, we can consider the case where both Soundness and Statistical Simulata-
bility are satisfied in the mG-hybrid model. We discard this case for the following
reasons. Note that this case implies that we can construct UC-puzzles even in the
mG-hybrid model. Then, from the result of [16], it would follow that we can con-
struct UC-secure protocols even in the mG-hybrid model. Informally speaking,
this means that the setup was not corrupted in any “interesting” way.

This completes our definition of UC-puzzles and their classification into Types.

2.2 Classification of Setups

Having defined different Types of UC-puzzles, we are now ready to define the
Type of a setup based on the feasibility of constructing UC-puzzles in the hybrid
model of that setup.

Definition 1 (Setup Types). A setup (G,mG) is said to be of Type X if it is
possible to construct a UC-puzzle of Type X in the F-hybrid model, where F is
either G or mG, and X ∈ {I, II, III}.

Setups with multiple Types. Note that it may be possible to construct mul-
tiple UC-puzzles of different Types in the hybrid model of a setup (G,mG); as
such, the above definition allows a setup (G,mG) to have multiple Types. For
simplicity of exposition, in the sequel, we will first assume that each setup has a
unique Type. The results presented in Section 4 and 5 are obtained under this
restriction. Later, in Appendix A, we give an example of a custom setup that
has multiple types, and then explain how to extend our results to incorporate
setups with multiple Types.

Classification of known setups. We now briefly discuss some known setups
such as CRS [CF01, CLOS02, CPS07], tamper-proof hardware [Kat07], and key
registration [BCNP04]. We first note that the only “natural” failure mode for
the CRS setup corresponds to “complete corruption,” where the CRS is chosen
by the adversary. Then, it is not difficult to see that the CRS setup is of Type I.
In contrast, the key registration setup and the hardware-token setup naturally
allow “partial corruption”. Let us first consider the key registration setup. Recall
that in the key registration setup, it is assumed that parties can register their
public keys in such a way that: (a) the public keys of the honest parties are
“safe” (in the sense that the secret keys were chosen at random and kept secret
from the adversary), and (b) the public keys of the corrupted parties are ‘well-
formed” (in the sense that the functionality has seen the corresponding secret
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keys). Then, an adversary may be able to corrupt the setup in multiple ways
(each corresponding to a different failure mode) such that either or both of these
assumptions are violated. The first failure mode corresponds to the complete
corruption of the setup (i.e., both the above assumptions fail); in this case, the
setup is of Type I. The second failure mode corresponds to the case where the
public keys of corrupt parties may not be “well-formed”; however, the secret
keys of the honest parties are still “safe.” In this case, the setup is of Type II.
Finally, in the third failure mode, the secret keys of honest parties may not be
“safe”; however, the public keys of corrupted parties are still “well-formed.” In
this case, the setup is of Type III. In a similar way, one can consider different
failure modes for the hardware token setup, each leading to a different Type. We
refer the reader to the full version of the paper for details.

3 UC Security via UC-Puzzles

As observed by Lin et al [16], it is implicit from prior works [8,17,21,20] that
the task of constructing UC-secure protocols for any well-formed5 functionality
reduces to the task of constructing a “concurrent simulation-sound” zero knowl-
edge protocol (ssZK) with “UC simulation” property6. Very informally, these
properties can be described as follows (the text is taken almost verbatim from
[16]):

UC simulation: For every ppt adversary A receiving “honest” proofs of state-
ments x using witness w, where (x,w) are chosen by the environmentZ, there
exists a simulator S (that only gets statements x as input) such that no Z
can distinguish (except with negligible probability) whether it is interacting
with A or S.

Concurrent simulation-soundness: Anadversarywho receivesanunbounded
number of concurrent simulated proofs, of statements chosen by Z, cannot
prove any false statements (except with negligible probability).

Lin et al [16] gave a unified framework for constructing UC-secure protocols from
known setup assumptions like CRS [6,8], tamper-proof hardware tokens [14], key
registration [1], etc. Specifically, Lin et al [16] gave a construction for an ssZK
protocol from a UC-puzzle in a G-hybrid model (where G is a “trusted” ideal
functionality that may correspond to, for instance, a CRS setup), and a strongly
non-malleable witness indistinguishable (SNMWI) argument of knowledge (see
[16] for details).

We note that following the work of [16], the task of constructing UC secure
protocols from any setup assumption reduces to the task of constructing a UC-
puzzle (in the hybrid model of the corresponding setup)7. Then, looking ahead,
the positive results in this paper crucially rely on the framework of [16].
5 We refer the reader to [8] for a definition of “well-formed” functionalities.
6 Formally, this can be modeled as implementing a specific “zero knowledge proof of

membership” functionality.
7 Note that [16] gave a construction of an SNMWI protocol based on one-way functions.
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4 Common Belief about the Setups

We first consider the setting where all the parties in the system share a common,
though arbitrary, belief about the setups present in the system. For instance,
consider an example where there are three CRS setups in the system. In this
case, all the parties may share a common belief that either (a) the first CRS
is honestly generated, or (b) both the second and the third CRSs are honestly
generated. Ideally, given any function f , we would like to construct a protocol Π
(in the hybrid model of the three CRSs) that securely realizes f when either of
the above two cases is actually true. In this section, we investigate the possibility
of constructing such protocols. In particular, we will give a condition that takes
into account the setups present in the system and the common belief shared
by the parties; we then show that constructing secure protocols (where security
is defined in the above sense) is possible if our condition is satisfied. We first
introduce some notation and definitions.

Belief Set. In the above example, we can express the common belief of the
parties in the form of a DNF formula written as CRS1 or (CRS2 and CRS3),
where CRSi denotes the ith CRS. The DNF formula, in turn, can be represented
as a set Σ = {T1, T2} where T1 is a set that consists of CRS1, and T2 is a set
that consists of the CRS2 and CRS3.

We generalize this in the following manner. Let U be the set of all the setups
present in the system. Then, we will represent the common belief of the parties
as a set Σ = {T1, . . . , Tk} (where k is an arbitrary, possibly exponential, value),
where each member Ti is a subset of U . The common belief of the parties is
expressed as follows: ∃Ti ∈ Σ such each setup in Ti holds8. We will refer to this
set Σ as the belief set.

Σ-secure protocols. We would like to construct secure computation protocols
that realize UC security if the common belief of the parties about the setups in
the system is actually true. We formalize this in following definition of Σ-secure
protocols.

Definition 2 (Σ-secure protocols). Let there be n setups in the system de-
noted by (G1,mG1), . . . , (Gn,mGn). Let F1, . . . ,Fn be n ideal functionalities,
where ∀i,Fi is either Gi or mGi. Let Σ = {T1, . . . , Tk} be a belief set over the n
setups that represents the common belief of the parties. We say that a protocol
Π Σ-securely realizes a functionality f in the (F1, . . . ,Fn)-hybrid model if Π
UC-securely realizes f in the (F1, . . . ,Fn)-hybrid model whenever ∃Ti ∈ Σ such
that each setup in Ti holds (i.e., Fj is the ideal functionality Gj , for each setup
(Gj ,mGj) ∈ Ti).

Remark. We note that our security definition does not immediately comply
with the traditional UC framework where setups are “incorruptible”. To this

8 Here, and throughout the text, it should be implicit that whenever we say a setup X
holds, what we actually mean is that the setup assumption corresponding to setup
X holds.
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end, we consider a simple modification to the UC framework where the adver-
sary is allowed to choose (before the start of the protocol) the setups that she
wishes to corrupt. Of course, this information is not known to the protocol de-
signer, since in that case, achieving UC security is easy – the parties could simply
ignore the corrupt setups and use only the honest ones.

UC-compatible Belief Sets. Before we discuss our positive result on con-
structing Σ-secure protocols, we first define the notion of a UC-compatible belief
set, that is central to our result.

Definition 3 (UC-compatible belief set). A belief set Σ = {T1, T2 . . .Tk},
where ∀i ∈ [k], Ti �= ∅, is said to be UC-compatible if ∀i, j ∈ [k], at least one of
the following conditions hold:

– Ti ∩ Tj �= ∅.
– Both Ti and Tj contain at least one (not necessarily the same) Type II setup.
– Both Ti and Tj contain at least one (not necessarily the same) Type III setup.
– Either Ti or Tj contains at least one Type II setup as well as at least one

Type III setup.

We are now ready to state our main result for the common belief case.

Theorem 1 (Main result for common belief case). Let there be n setups
in the system denoted by (G1,mG1), . . . , (Gn,mGn). Let F1, . . . ,Fn be n ideal
functionalities, where ∀i,Fi is either Gi or mGi. Let Σ be a belief set over the n
setups that represents the common belief of the parties. If Σ is UC-compatible,
then for every well-formed functionality f , there exists a non-trivial protocol Π
that Σ-securely realizes f in the (F1, . . . ,Fn)-hybrid model.

Proof (Sketch). As noted in Section 3, it follows from the work of [16] that the
task of constructing UC secure protocols from any setup assumption reduces to
the task of constructing a UC-puzzle (in the hybrid model of the corresponding
setup). Then, we note that in order to prove Theorem 1, it suffices to construct a
puzzle 〈S,R〉 with an associated relation R such that (〈S,R〉,R) is a UC-puzzle
in the (F1, . . . ,Fn)-hybrid model if the belief set Σ is UC-compatible. We now
briefly explain the puzzle construction.

Consider the n setups in the system. Recall that if a setup is of type ti, then
there exists a UC-puzzle (in the hybrid model of that setup) of type ti. Then,
our new puzzle protocol 〈S,R〉 is simply a sequential composition of the n puzzle
protocols obtained from the n setups. Defining the associated relation R (and
hence the trapdoor) is more tricky. Let Σ = {T1, . . . , Tk}, where Σ is the belief
set. Recall that as per definition 2, our (final) protocol should be UC-secure
whenever there exists Ti ∈ Σ such that each setup in Ti holds (in this case, we
say that set Ti is good). To this end, we define k trapdoors σi, one corresponding
to each set Ti; here, the main requirement is that if a set Ti is good, then (a) the
simulator can obtain the trapdoor σi, but (b) no adversary can obtain any of the
k trapdoors. We make the following observations: (a) the simulator can obtain
the trapdoor for the UC-puzzle corresponding to each setup present in a good
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set (but the adversary cannot), (b) the simulator can obtain the trapdoor for
a Type III UC-puzzle even if the corresponding setup does not hold (hence,
these trapdoors are for “free”). In light of these observations, we define σi to
contain the trapdoor for the UC-puzzle corresponding to each setup present in
Ti; additionally, σi contains the trapdoor for each Type III UC-puzzle.

Now suppose that ∃i ∈ [k] such that Ti is good. Further, (in the worst case)
suppose that each Tj �= Ti is such that none of the setups in Tj holds (we will call
such a set Tj to be bad). By definition, the simulator can obtain the trapdoor
σi. Further, no adversary can obtain the trapdoor σi. In order to argue that no
adversary can obtain any of the remaining k − 1 trapdoors (corresponding to
the bad sets), we make use of the fact that Σ is UC-compatible. That is, since
Σ is UC-compatible, for each bad set Tj, at least one of the four conditions (c.f.
Definition 3) must hold. The proof follows by a case analysis. Here, in addition to
the earlier observations, we use the fact that no adversary can obtain a trapdoor
for a Type II UC-puzzle (even if the corresponding setup does not hold). Due
to lack of space, we defer the details to the full version.

5 Different Beliefs about the Setups

In this section, we consider the setting where the parties in the system have dif-
ferent and independent beliefs about the setups in the system. Note that in such
a scenario, depending upon the reality of how all the setups are implemented (for
e.g., a third party that publishes a CRS may or may not be honest), the beliefs of
some parties about the setups may turn out to be true, while that of other parties
may turn out to be false. Then let us consider what would be an appropriate se-
curity definition for secure computation protocols in such a setting. Ignoring for
a moment whether the definition is actually realizable, note that an acceptable
security definition must provide standard security guarantees for at least those
parties whose beliefs about the setups turn out to be true. But what of the parties
whose belief about the setups turns out to be false? Note that a party would not
expect the protocol to be secure if its belief about the setups turns out to be false.
In light of this observation, below we consider a security definition that provides
security for only those honest parties whose belief about the setups turns out to
be true; any other party is considered to be adversarial, and therefore, no security
is provided for such a party. As we show later, our definition is actually realizable
when the beliefs of the parties about the setups satisfy a specific property (see
below for more details). We now give more details.

Let P1, . . . , Pm denote the parties in the system. We will use the notion of a
belief set (as defined in Section 4) to represent the independent belief of each
party about the setups in the system. Specifically, let Σi = {Ti,1, . . . , Ti,ki}
denote the belief set of Pi.

(Σ1, . . . , Σm)-secure protocols. As mentioned above, we would like to construct
protocols that realize UC security with the (natural) condition that security is
provided only for those (honest) parties whose beliefs about the setups turn out to
be true. To formally capture the fact that no security provided for a specific set of
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parties, we consider a minor modification in the standard model of UC security [4].
Specifically, let U = {P1, . . . , Pm} denote the set of parties in the system. Let H ⊆
U be a set of parties for whom we wish to provide standard security guarantees.
We stress that H is not an a-priori fixed set of parties. Specifically, in our setting,
H is determined once the adversary decides which setups in the system it wishes
to corrupt. Then, in the modified UC framework, at the beginning of the protocol,
the adversary A is required to corrupt each party Pi ∈ U \H . The adversary can
then further corrupt parties in H depending upon the corruption model (static or
adaptive). We wish to provide security for the honest parties in H . We are now
ready to define (Σ1, . . . , Σm)-secure protocols.

Definition 4 ((Σ1, . . . , Σm)-secure protocols). Let there be n setups in the
system denoted by (G1,mG1), . . ., (Gn,mGn). Let F1, . . . ,Fn be n functionalities,
where ∀i,Fi is either Gi or mGi. Let U = {P1, . . . , Pm} denote the set of parties
in the system. For every i, let Σi = {Ti,1, . . . , Ti,ki} be a belief set over the
n setups that represents the independent belief of Pi. We say that a protocol Π
(Σ1, . . . , Σm)-securely realizes a functionality f in the (F1, . . . ,Fn)-hybrid model
if ∀H ⊆ {P1, . . . , Pm}, Π UC-securely realizes f in the (F1, . . . ,Fn)-hybrid model
against all adversaries that initially corrupt all parties in U \H, when ∀Pi ∈ H,
∃j ∈ [ki] such that each setup in Ti,j ∈ Σi holds (i.e., F� = G� for each setup
(G�,mG�) ∈ Ti,j).

UC-compatibility for Collection of Belief Sets. The notion of UC-
compatibility (as defined in Section 4) is central to our results. Here, we ex-
tend this notion to a collection of belief sets.

Definition 5 (UC-compatible collection of belief sets). A collection of
belief sets Σ1, . . . , Σm where Σi = {Ti,1, . . . , Ti,ki} and Ti,� �= ∅ ∀i ∈ [m], � ∈ [ki],
is said to be UC-compatible if ∀i, j ∈ [m] and ∀� ∈ [ki], �̂ ∈ [kj ], at least one of
the following conditions hold:

– Ti,� ∩ Tj,�̂ �= ∅.
– Both Ti,� and Tj,�̂ contain at least one (not necessarily the same) Type II

setup.
– Both Ti,� and Tj,�̂ contain at least one (not necessarily the same) Type III

setup.
– Either Ti,� or Tj,�̂ contains at least one Type II setup as well as at least one

Type III setup.

Remark. Note that it is possible that given two belief sets Σ1, Σ2, neither of
them is UC-compatible but the collection {Σ1, Σ2} is UC-compatible.

We are now ready to state our main result for the different beliefs case.

Theorem 2 (Main result for different beliefs case). Let there be n setups
in the system denoted by (G1,mG1), . . . , (Gn,mGn). Let F1, . . . ,Fn be n ideal
functionalities, where ∀i,Fi is either Gi or mGi. Let P1, . . . , Pm be m parties. For
every i, let Σi be a belief set over the n setups that represents the independent
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belief of Pi. If the collection of belief sets Σ1, . . . , Σm is UC-compatible, then
for every well-formed functionality f , there exists a non-trivial protocol Π that
(Σ1, . . . , Σm)-securely realizes f in the (F1, . . . ,Fn)-hybrid model.

Proof (Idea). As noted earlier in Section 3, the task of constructing UC-secure
protocols for any well-formed functionality reduces to the task of constructing
an ssZK protocol. Intuitively, this is because given a functionality f , we can start
with a semi-honest secure computation protocol Π for f , and then “compile” Π
with an ssZK protocol to obtain a UC-secure protocol against active adversaries.
Furthermore, following the result of [16], given any setup assumption (such as
CRS), the above task is further reduced to the task of constructing a UC-puzzle
in the hybrid model of the corresponding setup.

Now recall that in light of the above, we proved our positive result in the
common belief case by simply constructing a UC-puzzle if the belief set (that
represents the common belief of the parties) is UC-compatible. In the different
beliefs case, however, instead of constructing a single UC-puzzle, we will con-
struct a family of UC-puzzles if the collection of belief sets Σ1, . . . , Σm (where
Σi represents the belief of party Pi) is UC-compatible. Specifically, for each pair
of parties Pi and Pj , we will construct two different UC-puzzles, (a) one where
Pi (resp., Pj) acts as the sender (resp., receiver) and (b) the other where the
roles of Pi and Pj are reversed. Then, given such a family of UC-puzzles, we
can construct a family of ssZK protocols where the protocols in the family are
concurrent simulation-sound with respect to each other. Specifically, for each
pair of parties Pi and Pj , we can construct two different ssZK protocols, (a) one
where Pi (resp., Pj) acts as the prover (resp., verifier), and (b) the other, where
the roles of Pi and Pj are reversed. Finally, in order to construct a UC-secure
protocol for any well-formed functionality f , we can start with a semi-honest
protocol Π for f , and then “compile” Π with the above family of ssZK proto-
cols in the following manner. Whenever a party Pi sends a protocol message to
Pj , it proves that it has “behaved honestly so far in the protocol” by running
an execution of the “appropriate” ssZK protocol (i.e., where Pi and Pj play the
roles of the prover and verifier respectively) from the above family.

Due to lack of space, the details of the proof are deferred to the full version.
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A Setups with Multiple Types

In the preceding text, for simplicity of exposition, we first restricted ourselves
to the setting where each setup has a unique type. In this section, we discuss
how our results can be extended to incorporate setups with multiple Types. Due
to lack of space, we only provide an informal treatment of the results here. We
refer the reader to the full version for more details.

Extending our results of Section 4 and 5. For simplicity of exposition, we
will only consider the case where a setup is of all three types – Type I, Type
II and Type III (other cases can be handled in a similar manner). The main
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idea that allows to handle setups with multiple types is that we can think of a
setup (G,mG) as three separate setups of unique type. If (G,mG) “holds”, then
each of the three setups must “hold,” while if it is “corrupt”, then each of the
three setups are “corrupt.” Then, roughly speaking, simply replacing (G,mG)
with these three setups of unique types allows us to directly use the results of
Section 4 and Section 5.

More specifically, recall that a belief set (as defined in Section 4) is expressed
in terms of setups with unique types. If, instead, a belief set has a setup with
multiple types, then we can modify the belief set and express it in terms of
setups with unique types by following the above trick. Once we reduce all the
setups in the system into setups of unique types and the belief set of parties
are expressed in terms of these setups, then we can directly apply Theorem 1
to obtain a possibility result in the common belief case. In case parties have
different belief sets as in Section 5, then we will need to express belief sets of all
parties in terms of setups of unique types. Then we can directly apply Theorem 2
to obtain a possibility result for the distinct belief case.

B Setups with Multiple Failure Modes

In the preceding text, for simplicity of exposition, we first restricted ourselves to
the setting where a setup has only a single failure mode. We now briefly discuss
how to handle setups with multiple failure modes. Due to lack of space, our discus-
sion will be informal and brief. We refer the reader to the full version for details.

Example. We first discuss a motivating example to highlight the importance
of handling setups with multiple failure modes. Consider a system with three
instances of the key registration setup. Recall that a key registration setup is
based on the following two assumptions: (1) the secret keys of honest parties are
“safe”, and (2) the public keys of corrupted parties are “well-formed.” Then, the
parties in the system may have the following common belief: either

– the first key registration functionality is “honest”, but in case it fails, then
either (1) or (2) still holds (i.e., it never fails completely), or

– the second and third key registration functionalities are “honest”, but in
case the second functionality fails, then (1) still holds, while if the third
functionality fails, then (2) still holds.

We stress that the above example is very “natural”, and that in a real-world
scenario, the parties may be willing to put trust into the “extent” of corruption
of a setup. (In some scenarios, this may be due to some physical constraints
imposed upon an adversary because of how the setup is done.) It is interesting
to note that UC is indeed possible in the above example. We now briefly explain
how to extend our model and our earlier results to accommodate setups with
multiple failure modes.

Extending our model to accommodate multiple failure modes. Consider
a setup modeled by an ideal functionality G with failure modes mG1,mG2, . . . ,
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mG�. For lack of a better terminology, we will refer to each pair (G,mGi) (that
was originally referred to as a setup) as a setup mode. Then, we can define Types
for a setup mode in the same manner as we defined Types as in Definition 1.
A setup mode (G,mG) is said to be of Type X if it is possible to construct a
UC-puzzle of Type X in (G,mG) hybrid model. Note that the above definition
allows a setup mode to have multiple Types. For simplicity of exposition, in this
subsection, we will restrict ourselves to the case where a setup mode has only
a single Type. We stress that this restriction can be easily removed by using
techniques from Appendix A.

Extending our results of Section 4 and Section 5. Due you lack of space,
we informally explain how our results in the common belief case can be extended.
We refer the reader to the full version of the paper for details on the different
beliefs case.

We note that the key issue that arises because of multiplicity of failure modes is
in the definition of UC-compatible belief set (c.f. Definition 3). We start by giving
a more general definition of UC-compatible belief set (see below) which takes
into account the multiplicity of failure modes for setups. We then briefly argue
that given this more general definition of UC-compatible belief set, Theorem 1
is still applicable.

Definition 6 (Generalization of Definition 3). A belief set Σ = {T1, T2 . . .
Tk}, where ∀i ∈ [k], Ti �= ∅, is said to be UC-compatible if ∀i, j ∈ [k], at least
one of the following conditions hold:

– There exists a setup G such that both Ti and Tj contain a setup mode (G, ").
– Both Ti and Tj contain at least one (not necessarily the same) Type II

setup mode.
– Both Ti and Tj contain at least one (not necessarily the same) Type III

setup mode.
– Either Ti or Tj contains at least one Type II setup mode as well as at least

one Type III setup mode.

Definition 6 differs from Definition 3 in two ways: (a) The first condition of
Definition 6 ignores the failure mode of the setups when taking intersection.
However, we note that this is not really a fundamental difference because the
failure modes of the setups were irrelevant in the first condition of Definition 3
as well. This is because we earlier restricted setups to exhibit only a single failure
mode. Intuitively, this condition captures the case when the sets Ti and Tj share
a setup and that setup holds. Hence, the failure mode is of no consequences.
(b) The remaining three conditions in Definition 6 differ from the corresponding
conditions in Definition 3 in the usage of setup modes instead of setups. We note,
however, that these conditions in Definition 3 (resp., Definition 6) rely only on
the types of the setup (resp., setup mode), and disregard the actual setups
themselves. Hence, intuitively, the fact the same setup is leading to different
types is of no consequences. Due to the above reasons, the proof of Theorem 1
easily extends to the general case with multiple failure modes.
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Abstract. Protocols for secure two-party computation enable a pair
of parties to compute a function of their inputs while preserving secu-
rity properties such as privacy, correctness and independence of inputs.
Recently, a number of protocols have been proposed for the efficient con-
struction of two-party computation secure in the presence of malicious
adversaries (where security is proven under the standard simulation-
based ideal/real model paradigm for defining security). In this paper,
we present a protocol for this task that follows the methodology of using
cut-and-choose to boost Yao’s protocol to be secure in the presence of
malicious adversaries. Relying on specific assumptions (DDH), we con-
struct a protocol that is significantly more efficient and far simpler than
the protocol of Lindell and Pinkas (Eurocrypt 2007) that follows the
same methodology. We provide an exact, concrete analysis of the effi-
ciency of our scheme and demonstrate that (at least for not very small
circuits) our protocol is more efficient than any other known today.

1 Introduction

1.1 Background

Protocols for secure two-party computation enable a pair of parties P1 and P2
with private inputs x and y, respectively, to compute a function f of their inputs
while preserving a number of security properties. The most central of these prop-
erties are privacy (meaning that the parties learn the output f(x, y) but nothing
else), correctness (meaning that the output received is indeed f(x, y) and not
something else), and independence of inputs (meaning that neither party can
choose its input as a function of the other party’s input). The standard way of
formalizing these security properties is to compare the output of a real protocol
execution to an “ideal execution” in which the parties send their inputs to an
incorruptible trusted party who computes the output for the parties. Informally
speaking, a protocol is then secure if no real adversary attacking the real proto-
col can do more harm than an ideal adversary (or simulator) who interacts in
the ideal model [13,14,26,2,3]. An important parameter when considering this
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problem relates to the power of the adversary. The two most studied models are
the semi-honest model (where the adversary follows the protocol specification
exactly but tries to learn more than it should by inspecting the protocol tran-
script) and the malicious model (where the adversary can follow any arbitrary
polynomial-time strategy).

In the 1980s powerful feasibility results were proven, showing that any proba-
bilistic polynomial-time functionality can be securely computed in the presence
of semi-honest adversaries [33] and in the presence of malicious adversaries [13].
These results showed that it is possible to achieve such secure protocols, but
did not demonstrate how to do so efficiently (where by efficiency we mean a
protocol that can be implemented and run in practice). To be more exact, the
protocol of [33] for semi-honest adversaries is efficient. However, achieving secu-
rity efficiently for the case of malicious adversaries is far more difficult. In fact,
until recently, no efficient general protocols were known at all, where a general
protocol is one that can be used for computing any functionality.

This situation has changed in the past few years, possibly due to increasing
interest from outside the cryptographic community in secure protocols that are
efficient enough to be used in practice. The result has been that a number of
secure two-party protocols were presented that are secure in the presence of
malicious adversaries, where security is rigorously proven according to the afore-
mentioned ideal/real model paradigm [20,24,28,18]. Interestingly, these protocols
all take novel, different approaches and so the secure-protocol skyline is more di-
verse than before, providing the potential for taking the protocols a step closer to
very high efficiency. These protocols are discussed in more detail in Section 1.3.

We remark that the protocol of [24] has been implemented for the non-trivial
problem of securely computing the AES block cipher (pseudorandom function),
where one party’s input is a secret key and the other party’s input is a value to
be “encrypted” [31]. A Boolean circuit for computing this function was designed
with approximately 33,000 gates, and the protocol of [24] was implemented for
this circuit. Experiments showed that the running-time of the protocol was be-
tween 18 and 40 minutes, depending on the assumptions taken on the primitives
used to implement the protocol. Although this is quite a long time, for some
applications it can be reasonable. In addition, it demonstrates that it is possible
to securely compute functions with large circuits, and motivates the search for
finding even more efficient protocols that can widen the applicability of such
computations in real-world settings.

1.2 Our Results

In this paper, we follow the construction paradigm of [24] and significantly sim-
plify and improve the efficiency of their construction. The approach of [24] is to
carry out a basic cut-and-choose on the garbled circuit construction of Yao [33]
(we assume familiarity with Yao’s protocol). That is, party P1 constructs s copies
of a garbled circuit and sends them to P2, who then asks P1 to open half of them
in order to verify that they are correctly constructed. If all of the opened circuits
are indeed correct, then it is guaranteed that a majority of the unopened half
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are also correct, except with probability that is negligible in a statistical security
parameter s. Thus, P1 and P2 evaluate the remaining s/2 circuits, and P2 takes
the output that appears in most of the evaluated circuits. As discussed in [24],
P2 cannot abort in the case that not all of the s/2 circuits evaluate to the same
value, even though in such a case it knows that P1 is cheating. The reason for
this is that P1 may construct a circuit that computes f in the case that P2’s first
bit equals 0, and otherwise it outputs random garbage. Now, with probability
1/2 this faulty circuit is not opened and so is one of the circuits to be evaluated.
In this case, if P2 would abort when it saw random garbage then P1 would know
that P2’s first input bit equals 1. For this reason, P2 takes the majority output
and ignores minority values without aborting.

Although intuitively appealing, the cut-and-choose approach introduces a
number of difficulties which significantly affect the efficiency of the protocol
of [24]. First, since the parties need to evaluate s/2 circuits rather than one,
there needs to be a mechanism to ensure that they use the same input in all
evaluations (the solution for this for P2’s inputs is easy, but for P1’s inputs turns
out to be hard). The mechanism used in [24] required constructing and sending
s2� commitments. In the implementation by [31], they set s = 160 and � = 128.
Thus, the overhead due to these consistency proofs is the computation and trans-
mission of 3, 276, 800 commitments! Another problem that arises in the protocol
of [24] is that a malicious P1 can input an incorrect key into one of the oblivious
transfers used for P2 to obtain the keys associated with its input wires in the
garbled circuit. For example, it can set all the keys associated with 0 for P2’s
first input bit to be garbage, thereby making it impossible for P2 to decrypt any
circuit if its first input bit indeed equals 0. In contrast, P1 can make all of the
other keys be correct. In this case, P1 is able to learn P2’s first input bit, merely
by whether P2 obtains an output or not. The important observation is that the
checks on the garbled circuit carried out by P2 do not detect this because there
is a separation between the cut-and-choose checks and the oblivious transfer.
The solution to this problem in [24] requires making the circuit larger and sig-
nificantly increasing the size of the inputs by replacing each input bit with the
exclusive-or of multiple random input bits. Finally, the analysis of [24] yields an
error of 2−s/17. Thus, in order to obtain an error level of 2−40 the parties need
to exchange 680 circuits. We remark that it has been conjectured in [31] that
the true error level of the protocol is 2−s/4; however, this has not been proven.

Our protocol. We solve the aforementioned problems in a way that is far sim-
pler and far more efficient than in [24]. In addition, we reduce the error probability
to 2−0.311s and thus for an error of 2−40 it suffices to send only 128 circuits. This
is an important improvement because the experiments of [31] demonstrate that
the bottleneck in efficiency is not the exponentiations, but rather the number of
circuits and the commitments for proving consistency. Thus, in our protocol we
moderately increase the number of exponentiations, while reducing the number
of circuits, completely removing the commitments, and also removing the need
to increase the size of the inputs. We remark that the price for these improve-
ments is that our protocol relies heavily on the decisional Diffie-Hellman (DDH)
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assumption, while the protocol of [24] used general assumptions only. We now pro-
ceed to describe our two main techniques:
1. Our solution for ensuring consistency of P1’s inputs is to have P1 determine

the keys associated with its own input bits via a Diffie-Hellman pseudo-
random synthesizer [27]. That is, P1 chooses values ga

0
1 , ga

1
1 , . . . , ga

0
� , ga

1
� and

gr1 , . . . , grs and then sets the keys associated with its ith input bit in the jth
circuit to be ga

0
i ·rj , ga

1
i ·rj . Given all of the {ga0

i , ga
1
i , grj} values and any sub-

set of keys of P1’s input generated in this way, the remaining keys associated
with its input are pseudorandom by the DDH assumption. Furthermore, it
is possible for P1 to efficiently prove that it is using the same input in all
circuits when the keys have this nice structure.

2. As we have described, the reason that the inputs and circuits were needed
to be made larger in [24] is due to the fact that the cut-and-choose cir-
cuit checks were separated from the oblivious transfer. In order to solve this
problem, we introduce a new primitive called cut-and-choose oblivious trans-
fer. This is an ordinary oblivious transfer with the sender inputting many
pairs (x0

1, x
1
1), . . . , (x

0
s, x

1
s), and the receiver inputting bits σ1, . . . , σs. How-

ever, the receiver also inputs a set J ⊂ [s] of size exactly s/2. Then, the
receiver obtains xσi

i for every i (as in a regular oblivious transfer) along with
both values (x0

j , x
1
j ) for every j ∈ J . The use of this primitive in our pro-

tocol intertwines the oblivious transfer and the circuit checks and solves the
aforementioned problem. We also show how to implement this primitive in a
highly efficient way, under the DDH assumption. We believe that this prim-
itive is of independent interest, and could be useful in many cut-and-choose
scenarios.

Efficiency analysis. Our entire protocol, including all subprotocols, is explic-
itly written and analyzed in a concrete and exact way for efficiency. Considerable
effort has been made to optimize the constructions and reduce the constants
throughout. We believe that this is of great importance when the focus of a
result is efficiency. See Section 1.3 for a summary of the exact complexity of our
protocol, and Section 3 for a complete analysis, with optimizations in Section 3.3.

Variants. Another advantage of our protocol over that of [24] is that we ob-
tain a universally composable [4] variant that is only slightly less efficient than
the stand-alone version. This is because our simulator only rewinds during zero-
knowledge protocols. These protocols are also Σ protocols and so can be ef-
ficiently transformed into universally composable zero-knowledge. As with our
basic protocol, we provide an explicit description of this transformation and an-
alyze its exact efficiency. Finally, we also show how our protocol yields a more
efficient construction for security in the presence of covert adversaries [1], when
high values of the deterrent factor ε are desired.

1.3 Comparison to Other Protocols

We provide an analysis of the efficiency of recent protocols for secure two-party
computation. Each protocol takes a different approach, and thus the approaches
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may yield more efficient instantiations in the future. Nevertheless, as we will
show, our protocol is significantly more efficient than the current best instanti-
ations of the other approaches (at least, for not very small circuits).

– Committed input method (Jarecki-Shmatikov [20]): The secure two-
party protocol of [20] works by constructing a single circuit and proving that
it is correct. The novelty of this protocol is that this can be done with only a
constant number of (large modulus) exponentiations per gate of the circuit.
Thus, for circuits that are relatively small, this can be very efficient. However,
an exact count gives that approximately 720 exponentiations are required
per gate. Thus, even for small circuits, this protocol is not yet practical. For
large circuits like AES with 33,000 gates, the number of exponentiations is
very large (23, 760, 000 for AES), and is not realistic. (The authors comment
that if efficient batch proofs can be found for the languages they require then
this can be significantly improved. However, to the best of our knowledge,
no such improvements have yet been made. Furthermore, for a large circuit
we believe it unlikely that this method will yield a highly efficient protocol).

– LEGO (Nielsen-Orlandi [28]): The LEGO protocol [28] follows the cut-
and-choose methodology in a completely different way. Specifically, the cir-
cuit constructor first sends the receiver many gates, and the receiver checks
that they are correctly constructed by asking for some to be opened. After
this stage, the parties interact in a way that enables the gates to be securely
soldered (like Lego blocks) into a correct circuit. Since it is not guaranteed
that all of the gates are correct, but just a vast majority, a fault tolerant
circuit of size O(s · |C|/ log |C|) is constructed, where s is a statistical secu-
rity parameter. The error as a function of s is 2−s and the constant inside
the “O” notation for the number of exponentiations is 32 [29]. Thus, for an
error of 2−40 we have that the overall number of exponentiations carried out
by the parties is 1280 · |C|/ log |C|. For large circuits, like that of AES, this
is unlikely to be practical. (For example, for the AES circuit with 33,000
gates we have that the parties need to carry out 2, 816, 000 exponentiations.
Observe that due to the size of the circuit, the log |C| factor is significant
in making the protocol more efficient than [20], as predicted in [28]. This
protocol also relies on the DDH assumption. It is worthy to note that expo-
nentiations in this protocol are in a regular “Diffie-Hellman” group and so
Elliptic curves can be used, in contrast to [20] who work in Z∗

N ).
– Virtual multiparty method (Ishai et al. [18,19]): This method works

by having the parties simulate a virtual multiparty protocol with an honest
majority. The cost of the protocol essentially consists of the cost of running
a semi-honest protocol for computing the multiplication of additive shares,
for every multiplication carried out by a party in a multiparty protocol with
honest majority. Thus, the actual efficiency of the protocol depends heavily
on the multiparty protocol to be simulated, and the semi-honest protocols
used for simulating the multiparty protocol. An asymptotic analysis demon-
strates that this method may be competitive. However, no concrete analysis
has been carried out, and it is currently an open question whether or not it
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is possible to instantiate this protocol in a way that will be competitive with
other known protocols.

– Cut-and-choose on circuits (Lindell-Pinkas [24]): Since this protocol
has been discussed at length above, we just briefly recall that the complexity
of the protocol is O(�) oblivious transfers for input-length � (where the con-
stant inside here is not small because of the need to increase the number of
P2’s inputs), and the construction and computation of s garbled circuits and
of s2� commitments. In addition, the proven error of the protocol is 2−s/17

and its conjectured error is 2−s/4. The actual value has a significant impact
on the efficiency.

In contrast to the above, the complexity of our protocol is as follows. The parties
need to compute 15s� + 39� + 10s + 6 exponentiations, where � is the input
length and s is a statistical security parameter discussed below. We further
show that with optimizations the 15s� component can be brought down to just
5.66s� full exponentiations, and if preprocessing can be used then only s�/2
full exponentiations need to be computed after the inputs become known. In
addition, the protocol requires the exchange of 7s� + 22� + 7s + 5 group
elements, and has 12 rounds of communication. Finally, there are 6.5|C|s
symmetric encryptions for constructing and decrypting the garbled circuits
and 4|C|s ciphertexts sent for transmitting these circuits. An important factor
here is the value of s needed. The error of our protocol is 2−0.311s and so
for an error of 2−40 it suffices to set s = 128. (The overhead of computing
an AES circuit, after preprocessing, with |C| = 33, 000, and s = � = 128,
is therefore about 93, 000 exponentiations, 27, 500, 000 symmetric encryptions,
and communicating 28.6 Mbytes, where about 95% of the communication is
spent on sending the garbled circuits). Finally, we stress also that all of our
exponentiations are of the basic Diffie-Hellman type and so can be implemented
over Elliptic curves, which is much cheaper than RSA-type operations.

Full version. In this extended abstract we do not have space to present the
proofs of security of our protocols. A full version of this paper appears in the
Cryptology ePrint Archive (report 2010/284).

2 Cut-and-Choose Oblivious Transfer

2.1 The Functionality and Construction Overview

Our protocol for secure two-party computation uses a new primitive that we
call cut-and-choose oblivious transfer. Loosely speaking, a cut-and-choose OT is
a batch oblivious transfer protocol (meaning an oblivious transfer for multiple
pairs of inputs) with the additional property that the receiver can choose a subset
of the pairs (of a predetermined size) for which it learns both values. This is a
very natural primitive which has clear applications for protocols that are based
on cut-and-choose, as is our protocol here for general two-party computation.
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The cut-and-choose OT functionality, denoted Fccot, with parameter s, is
formally defined in Figure 1, together with a variant functionality that we will
need, which considers the case that R is forced to use the same choice σ in every
transfer. This variant is denoted FS

ccot.

FIGURE 1 (The cut-and-choose OT functionalities)

The cut-and-choose OT functionality Fccot:

– Inputs:
• S inputs a vector of pairs x = {(xi

0, x
i
1)}s

i=1

• R inputs σ1, . . . , σs ∈ {0, 1} and a set of indices J ⊂ [s] of size exactly
s/2.

– Output: If J is not of size s/2 then S and R receive ⊥ as output. Oth-
erwise,
• For every j ∈ J the receiver R obtains the pair (xj

0, x
j
1).

• For every j /∈ J the receiver R obtains xj
σj

.

The single-choice cut-and-choose OT functionality FS
ccot:

– Inputs: The same as above, but with R having only a single input bit σ.
– Output: As above, but with R obtaining the value xj

σ for every j /∈ J .

In order to motivate the usefulness of this functionality, we describe its use
in our protocol. Oblivious transfer is used in Yao’s protocol so that the party
computing the garbled circuit (call it P2) can obtain the keys (garbled values)
on the wires corresponding with its input while keeping its input secret. It is
crucial that P2 obtain only a single key for each wire, since this is what ensures
that it can only obtain a single output. When applying cut-and-choose, many
circuits are constructed and then half of them are opened, where opening means
that P2 receives all of the input keys to the circuit, enabling it to decrypt all
garbled gates and check that they were correctly constructed. By using cut-and-
choose OT, P2 receives all of its keys in the circuits to be opened directly, in
contrast to having P1 send them separately after the indices of the circuits to be
opened are sent from P2 to P1. The advantage of this approach is that P1 cannot
use different keys in the OT and when opening the circuit. See Section 3.1 for
discussion on why this is important.

In cut-and-choose on Yao’s protocol, one oblivious transfer is needed for every
bit of P2’s input (equivalently, every wire on the circuit), and P2 should receive
the keys associated with this fixed bit in all of the circuits. In order to ensure
that P2 uses the same input in all circuits, we devised a single-choice variant of
cut-and-choose OT. In the full version, we separately present the basic variant
since it is of independent interest and may be useful in other applications.

2.2 Constructing a Single-Choice Cut-and-Choose OT Protocol

The starting point for our construction of cut-and-choose OT is the universally
composable protocol of Peikert et al. [30]; we refer only to the instantiation of
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their protocol based on the DDH assumption because this is the most efficient.
However, our protocol can use any of their instantiations. The protocol of [30]
is cast in the common reference string (CRS) model, where the CRS is a tuple
(g0, g1, h0, h1) where g0 is a generator of a group of order q (in which DDH is
assumed to be hard), g1 = (g0)y for some random y, and it holds that h0 = (g0)a

and h1 = (g1)b where a �= b. We first observe that it is possible for the receiver
to choose this tuple itself, as long as it proves that it indeed fulfills the property
that a �= b. Furthermore, this can be proven very efficiently by setting b = a+1;
in this case, the proof that b = a+1 is equivalent to proving that (g0, g1, h0,

h1
g1

)
is a Diffie-Hellman tuple (note that the security of [30] is based only on a �= b
and not on these values being independent of each other). We thus obtain a
highly efficient version of the protocol of [30] in the stand-alone model.

Next, observe that the protocol of [30] has the property that if (g0, g1, h0, h1)
is a Diffie-Hellman tuple (i.e., if a = b) then it is possible for the receiver to
learn both values (of course, in a real execution this cannot happen because the
receiver proves that a �= b). This property is utilized by [30] to prove universal
composability; in their case the simulator can choose the CRS so that a = b
and then learn both inputs of the sender, something that is needed for proving
simulation-based security. However, in our case, we want the receiver to be able
to sometimes learn both inputs of the sender. We can therefore utilize this exact
property and have the receiver choose s pairs {(hj0, h

j
1)}sj=1 such that for s/2 of

the pairs (hj0, h
j
1) it holds that a �= b (ensuring that it learns only one input)

and for s/2 of the pairs (hj0, h
j
1) it holds that a = b (enabling it to learn both

inputs by actually running the UC simulator). This therefore provides the exact
cut-and-choose property in the OT that is needed. Of course, the receiver must
also prove that it behaved in this way. Specifically, it proves in zero-knowledge
that s/2 out of s pairs are such that a �= b. This proof too can be computed at
low cost using the technique of Cramer et al. [7]; see the full version of the paper
for a full description and efficiency analysis of the zero-knowledge protocol.

In the oblivious transfer protocol, the receiver with an input σ chooses a ran-
dom r and sends (gσ)r and (h1

σ)r, . . . , (hsσ)r to the sender, using the g0, g1, (h
j
0, h

j
1)

values sent previously. In order to ensure that the single-choice property holds,
the receiver R must prove that it used the same σ in every computation of
(hjσ)r. The protocol has been carefully designed so that the way that R chooses
the values enables this proof to be carried out efficiently. Specifically, the required
zero-knowledge proof is that there exists an r ∈ Zq such that either g′ = (g0)r

and hj = (hj0)
r for every 1 ≤ j ≤ s, or g′ = (g1)r and hj = (hj1)

r for every
1 ≤ j ≤ s, which is just a proof that one of two sets of tuples are all of the
Diffie-Hellman type; see the protocol specification below and the full version for
details. The cost of this proof is s + 18 exponentiations and the exchange of 10
group elements.

PROTOCOL 2 (Single-Choice Cut-and-Choose Oblivious Transfer)

– Inputs: The sender’s input is a vector of s pairs (xj0, x
j
1) and the receiver’s

input is a single bit σ ∈ {0, 1} and a set J ⊂ [s] of size exactly s/2.
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– Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0),
where G is an efficient representation of a group of order q with a generator
g0, and q is of length n.

– Setup phase:

1. R chooses a random y ← Zq and sets g1 = (g0)y.
2. For every j ∈ J , R chooses a random αj ← Zq and computes hj0 = g

αj

0
and hj1 = g

αj

1 .
3. For every j /∈ J , R chooses random αj ← Zq and computes hj0 = g

αj

0

and hj1 = g
αj+1
1 .

4. R sends (g1, h
1
0, h

1
1, . . . , h

s
0, h

s
1) to S

5. R proves using a zero-knowledge proof of knowledge to S that s/2 of the

tuples (g0, g1, h
j
0,

hj
1
g1

) are DH tuples (and through this, that the tuples

(g0, g1, h
j
0, h

j
1) are not DH tuples). If S rejects the proof then it outputs

⊥ and halts.
– Transfer phase (for every j):

1. The receiver chooses a random value r ← Zq and computes g′ = (gσ)r.
Then, for every j, it computes hj = (hjσ)r. It sends (g′, h1, . . . , hs) to the
sender.

2. The receiver proves in zero knowledge that either all {(g0, h
j
0, g

′, hj)}sj=1

or all {(g1, h
j
1, g

′, hj)}sj=1 are Diffie-Hellman tuples.
3. The sender operates in the following way:

• Define the function RAND(w, x, y, z) = (u, v), where u = (w)s · (y)t

and v = (x)s · (z)t, and the values s, t← Zq are random.
• S computes the pairs (uj0, v

j
0) = RAND(g0, gj, h

j
0, hj) and (uj1, v

j
1) =

RAND(g1, gj , h
j
1, hj).

• S sends the receiver the values (uj0, w
j
0) where wj0 = vj0 · x

j
0, and

(uj1, w
j
1) where wj1 = vj1 · x

j
1, for every j.

– Output:

1. For every j ∈ {1, . . . , s}, the receiver computes xjσ = wjσ/(u
j
σ)
r.

2. For every j ∈ J , the receiver also computes xj1−σ = wj1−σ/(u
j
1−σ)

r·z

where z = y−1 mod q if σ = 0, and z = y if σ = 1.

The fact that the output obtained is correct follows from the correctness (and
simulation strategy) of the protocol of [30]. We prove the following:

Proposition 3. If the Decisional Diffie-Hellman assumption holds in the group
G, then Protocol 2 securely realizes the FSccot functionality in the presence of
malicious adversaries.

The proof of Proposition 3 is based on the following ideas. Suppose first that the
adversary controls the receiver; we briefly describe an ideal-model simulator “in-
teracting” with the adversary. The simulator receives from the adversary the val-
ues (g0, g1) and (h1

0, h
1
1, . . . , h

0
s, h

1
s) of the setup phase, and then runs the extractor
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of the zero-knowledge proof of knowledge to learn the witness set. The extracted
witnesses identify exactly the set J of s/2 indices for which (g0, g1, h

j
0, h

j
1) is a

Diffie-Hellman tuple, and in addition provides the simulator with the set of val-
ues αj for all j /∈ J . Next, in the transfer phase, given g′ and hj , the simulator can
extract the value of σ by simply checking if (g′)αj = hj; alternatively, it can run
the extractor for the zero-knowledge proof of the transfer phase. The simulator
then sends the set J and bit σ to the trusted party and obtains the correspond-
ing outputs. Now, for every j ∈ J , the simulator received both values xj0 and xj1
and so can compute (uj0, w

j
0) and (uj1, w

j
1) just like the honest sender. In contrast,

for every j /∈ J , the simulator received only xjσ. In this case, it can still compute
(ujσ, wjσ) like the honest sender. Regarding (uj1−σ, w

j
1−σ), these can just be taken as

uniformly distributed values in G, by the property of the RAND transformation
when applied to non-Diffie-Hellman tuples.

Next consider the case that the adversary controls the sender. In this case, the
simulator chooses the (hj0, h

j
1) values such that (g0, g1, h

j
0, h

j
1) is a Diffie-Hellman

tuple for all j. The simulator then “cheats” in the zero-knowledge proof by
generating a simulated zero-knowledge proof with the adversary. Given that
now all (g0, g1, h

j
0, h

j
1) are Diffie-Hellman tuples, the simulator can extract both

inputs (xj0, x
j
1) for every j = 1, . . . , s, using the same computation as an honest

receiver would for j ∈ J . Finally, the simulator sends the values {(xj0, x
j
1)}sj=1

to the trusted party, outputs whatever the adversary outputs, and halts. The
fact that this is indistinguishable from a real execution follows directly from the
indistinguishability of simulated zero-knowledge proofs from real proofs, and
from the DDH assumption.

Exact efficiency. In the full version, we present an exact analysis of this pro-
tocol, including the cost of all zero-knowledge proofs. The result is that the pro-
tocol requires 20.5s + 24 exponentiations, the exchange of 11s + 15 group
elements, and 6 rounds of communication.

2.3 Batch Single-Choice Cut-and-Choose OT

In our protocol we need to carry out cut-and-choose oblivious transfers for all
wires in the circuit (where for each wire the input used is P2’s input bit). How-
ever, the subset of indices for which the receiver obtains both pairs must be the
same in all transfers. This is due to the fact that this determines which of the
circuits are checked and which are evaluated, and it is crucial that in all of the
evaluated circuits P2 only receives one value on every wire. We call a functionality
that achieves this “batch single-choice cut-and-choose OT” and denote it FS,Bccot.

In order to realize this functionality it suffices to run the setup phase of Pro-
tocol 2 once (this ensures that the set J is the same in all executions). Then,
the transfer phase of the single-choice protocol is run � times in parallel (with
the single choice in the ith execution being some σi). We remark that paral-
lel composition holds here because the simulation only rewinds in the transfer
phase for the zero-knowledge protocol, which is zero-knowledge under parallel
composition. We have the following:
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Proposition 4. Assuming that the Decisional Diffie-Hellman assumption holds
in G, the above-described protocol securely realizes FS,Bccot in the presence of ma-
licious adversaries.
Exact efficiency. The setup phase here remains the same, and including the
zero-knowledge proof it costs 9s+ 5 exponentiations and the exchange of 5s+ 5
group elements. The transfer phase is repeated � times, where each transfer
incurs a cost of 11.5s + 19 exponentiations and the exchange of 6s + 10 group
elements. We conclude that there are 11.5s�+19�+9s+5 exponentiations,
6s�+10�+5s+5 group elements sent and 6 rounds of communication.
In Section 3.3 we observe that 10.5s� of the exponentiations are “fixed-base”
and thus the overall effective cost is about 4.5s� exponentiations.

3 The Protocol for Secure Two-Party Computation

3.1 Protocol Description

Before describing the protocol in detail, we first present an intuitive explanation
of the different steps, and their purpose:
Step 1: P1 constructs s copies of a Yao garbled circuit for computing the func-

tion. The keys (garbled values) on the wires of the s copies of the circuit are
all random, except for the keys corresponding to P1’s input wires, which are
chosen in a special way. Namely, P1 chooses random values a0

1, a
1
1, . . . , a

0
� , a

1
�

(where the length of P1’s input is �) and r1, . . . , rs, and sets the keys on
the wire associated with its ith input in the jth circuit to be ga

0
i ·rj and

ga
1
i ·rj . Note that the 2� + s values ga

0
1 , ga

1
1 , . . . , ga

0
� , ga

1
� , gr1 , . . . , grs consti-

tute commitments to all 2�s keys1. (The keys are actually a pseudorandom
synthesizer [27], and therefore if some of the keys are revealed, the remaining
keys remain pseudorandom).

Step 2: The parties execute batch single-choice cut-and-choose OT. P1 inputs
the key-pairs for all wires associated with P2’s input, and P2 inputs its
input and a random set J ⊂ [s] of size s/2. The result is that P2 learns all
the keys on the wires associated with its own input for s/2 of the circuits
as indexed by J (called check circuits), and in addition learns the keys
corresponding to its actual input in these wires in the remaining circuits
(called evaluation circuits).

Step 3: P1 sends P2 the garbled circuits, and the values ga
0
1 , ga

1
1 , . . . , ga

0
� , ga

1
� ,

gr1 , . . . , grs which are commitments to all the keys on the wires associated
with P1’s input. Observe that at this stage P1 is fully committed to all s
circuits, but does not yet know which circuits are to be opened.

1 The actual symmetric keys used are derived from the ga0
i ·rj , ga1

i ·rj values using a
randomness extractor; a universal hash function suffices for this [6,16]. The only
subtlety is that P1 must be fully committed to the garbled circuits, including these
symmetric keys, before it knows which circuits are to be checked. However, random-
ness extractors are not 1− 1 functions. This is solved by having P1 send the seed for
the extractor before Step 4 below. Observe that the {ga0

i , ga1
i , grj} values and the

seed for the extractor fully determine the symmetric keys, as required.
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Step 4: P2 reveals to P1 its choice of check circuits and proves that was indeed
its choice by sending, for each check circuit, both values on the wire associated
with P2’s first input bit. Note that P2 can know both these values only for
circuits that are check circuits.

Step 5: To completely decrypt the check circuits in order to check that they
were correctly constructed, P2 also needs to obtain all the keys on the wires
associated with P1’s input. Therefore, if the jth circuit is a check circuit,
then P1 sends rj to P2. Given all of the ga

0
i , ga

1
i values and rj , party P2

can compute all of the keys ga
0
i ·rj , ga

1
i ·rj in the jth circuit by itself (and P1

cannot change the values). Furthermore, this reveals nothing about the keys
in the evaluation circuits.

Step 6: Given all of the keys on all of the input wires, P2 checks the valid-
ity of the s/2 check circuits. This ensures that P2 will catch P1 with high
probability if many of the garbled circuits generated by P1 do not compute
the correct function. Thus, unless P2 detects cheating, it is assured that a
majority of the evaluation circuits are correct.

Step 7: All that remains is for P1 to send P2 the keys associated with its actual
input, and then P2 will be able to compute the evaluation circuits. This raises
a problem as to how P2 can be sure that P1 sends keys that correspond to the
same input in all circuits. This brings us to the way that P1 chose these keys
(via the Diffie-Hellman pseudorandom synthesizer). Specifically, for every
wire i and evaluation-circuit j, party P1 sends P2 the value ga

xi
i ·rj where xi

is the ith bit of P1’s input. P1 then proves in zero-knowledge that the same
axi

i exponent appears in all of the values sent. Essentially, this is a proof
that the values constitute an “extended” Diffie-Hellman tuple and thus this
statement can be proven very efficiently.

Step 8: Finally, given the keys associated with P1’s inputs and its own inputs,
P2 evaluates the evaluation circuits and obtains their output values. Recall,
however, that the checks above only guarantee that a majority of the circuits
are correct, and not that all of them are. Therefore, P2 outputs the value that
is output from the majority of the evaluation circuits. We stress that if P2 sees
different outputs in different circuits, and thus knows for certain that P1 has
tried to cheat, it must ignore this observation and output the majority value
(or otherwise it might leak information to P1, as in the example described
in Section 1.2).

We remark on one type of attack discussed in [21,24]. The concern there was
that P1 would use correct keys for all of P2’s input bits when opening the check
circuit, but would use incorrect keys in some of the oblivious transfers. This is
problematic because if P1 input incorrect keys for the zero value of P2’s first
input bit, and correct keys for all other values, then P2 would not detect any
misbehavior if its first input bit equals 1. However, if its first input bit equals 0
then it would have to abort (because it would not be able to decrypt any of
the evaluation circuits). This results in P1 learning P2’s first input bit with
probability 1. In order to solve this problem in [24] it was necessary to split
P2’s input bits into random shares, thereby increasing the size of the input to



Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer 341

the circuit and the size of the circuit itself. In contrast, this attack does not
arise here at all because P2 obtains all of the keys associated with its input bits
in the cut-and-choose oblivious transfer, and the values are not sent separately
for check and evaluation circuits. Thus, if P1 attempts a similar attack here
for a small number of circuits then it will not be the majority and so does not
matter, and if it does so for a large number of circuits then it will be caught
with overwhelming probability. We now proceed to the full protocol description.

PROTOCOL 5 (Computing f(x, y))
Inputs: P1 has input x ∈ {0, 1}� and P2 has input y ∈ {0, 1}�.
Auxiliary input: a statistical security parameter s, the description of a circuit
C such that C(x, y) = f(x, y), and (G, q, g) where G is a cyclic group with
generator g and prime order q, and q is of length n.
The protocol:

1. Input key choice and circuit preparation:

(a) P1 chooses random values a0
1, a

1
1, . . . , a

0
� , a

1
� ∈R Zq and r1, . . . , rs ∈R Zq.

(b) Let w1, . . . , w� be the input wires corresponding to P1’s input in C, and
denote by wi,j the instance of wire wi in the jth garbled circuit, and by
kbi,j the key associated with bit b on wire wi,j. Then, P1 sets the keys for
its input wires to: k0

i,j = H(ga
0
i ·rj) and k1

i,j = H(ga
1
i ·rj ), where H is a

suitable randomness extractor [6,16]; see also [10].
(c) P1 constructs s independent copies of a garbled circuit of C, denoted

GC1, . . . , GCs, using random keys except for wires w1, . . . , w� for which
the keys are as above.

2. Oblivious transfers: P1 and P2 run batch single-choice cut-and-choose
oblivious transfer with parameters � (the number of parallel executions) and
s (the number of pairs in each execution):
(a) P1 defines vectors z1, . . . z� so that zi contains the s pairs of random

symmetric keys associated with P2’s ith input bit yi in all garbled circuits
GC1, . . . , GCs.

(b) P2 inputs a random subset J ⊂ [s] of size exactly s/2 and bits σ1, . . . ,
σ� ∈ {0, 1}, where σi = yi for every i.

(c) P2 receives all the keys associated with its input wires in all circuits GCj
for j ∈ J , and receives the keys associated with its input y on its input
wires in all other circuits.

3. Send circuits and commitments: P1 sends P2 the garbled circuits (i.e.,
the gate and output tables), the “seed” for the randomness extractor H, and
the following “commitment” to the garbled values associated with P1’s input

wires:
{
(i, 0, ga

0
i ), (i, 1, ga

1
i )
}�
i=1

and
{

(j, grj )
}s
j=1

.

4. Send cut-and-choose challenge: P2 sends P1 the set J along with the
pair of keys associated with its first input bit y1 in every circuit GCj for
j ∈ J . If the values received by P1 are incorrect, it outputs ⊥ and aborts.
Circuits GCj for j ∈ J are called check-circuits, and for j /∈ J are called
evaluation-circuits.
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5. Send all input garbled values in check-circuits: For every check-
circuit GCj , party P1 sends the value rj to P2, and P2 checks that these are
consistent with the pairs {(j, grj)}j∈J received in Step 3. If not, P2 aborts
outputting ⊥.

6. Correctness of check circuits: For every j ∈ J , P2 uses the ga
0
i , ga

1
i

values it received in Step 3, and the rj values it received in Step 5, to compute
the values k0

i,j = H(ga
0
i ·rj ), k1

i,j = H(ga
1
i ·rj) associated with P1’s input in

GCj . In addition it sets the garbled values associated with its own input in
GCj to be as obtained in the cut-and-choose OT. Given all the garbled values
for all input wires in GCj, party P2 decrypts the circuit and verifies that it
is a garbled version of C.

7. P1 sends its garbled input values in the evaluation-circuits:

(a) P1 sends the keys associated with its inputs in the evaluation circuits:
For every j /∈ J and every wire i = 1, . . . , �, party P1 sends the value
k′
i,j = ga

xi
i ·rj ; P2 sets ki,j = H(k′

i,j).
(b) P1 proves that all input values are consistent: For every input wire i =

1, . . . , �, party P1 proves in parallel that there exists a value σi ∈ {0, 1}
such that for every j /∈ J , k′

i,j = ga
σi
i ·rj . If any of the proofs fail, then

P2 aborts and outputs ⊥.
8. Circuit evaluation: P2 uses the keys associated with P1’s input obtained

in Step 7a and the keys associated with its own input obtained in Step 2c to
evaluate the evaluation circuits GCj for every j /∈ J . If a circuit decryption
fails, then P2 sets the output of that circuit to be ⊥. Party P2 takes the output
that appears in most circuits, and outputs it.

3.2 Properties

The security of the protocol is expressed in the following theorem, which is
proved in the full version of the paper:

Theorem 6. Assume that the decisional Diffie-Hellman assumption is hard in
G, that the protocol used in Step 2 securely computes the batch single-choice cut-
and-choose oblivious transfer functionality, that the protocol used in Step 7b is
a zero-knowledge proof of knowledge, and that the symmetric encryption scheme
used to generate the garbled circuits is secure. Then, Protocol 5 securely computes
the function f in the presence of malicious adversaries.

We remark here on one aspect of the proof that is crucial to the concrete efficiency
of the protocol. Party P1 can successfully cheat if it manages to pass the cut-and-
choose test with a majority of the evaluation circuits being incorrect. To do this,
at least s/4 circuits must be incorrect. In the proof of security we show that the
probability that at least this many circuits are incorrect without P2 catching P1
is approximately 2−0.311s where the approximation is due to Stirling’s formula.
Based on this, it suffices to use 128 garbled circuits in order to obtain an error of
2−40. (We also compared the exact bound to this approximation on the concrete
value of s = 128, to verify that the approximation is good for s of this size).
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Exact efficiency. An exact analysis of the protocol yields that there are 15s�+
39� + 10s + 5 exponentiations (of which 11.5s� are for Step 2, performing
the OTs), 7s� + 22� + 7s + 5 group elements sent and 12 rounds of
communication. In addition, there are 6.5|C|s symmetric encryptions,
of which 4|C|s encryptions for constructing all s garbled circuits, and 2|C|s
encryptions for P2 to check s/2 of them. Finally, there are 4|C|s ciphertexts
sent for transmitting these circuits. The overhead of the protocol can be improved
by different optimizations, as shown in Section 3.3 below.

3.3 Optimizations

Fixed-base exponentiations. Exponentiations are commonly computed by
repeated squaring, which for a group of order q of length m bits requires on av-
erage 1.5m multiplications for a full exponentiation. If multiple exponentiations
of the same base are computed, then the repeated binary powers of the base
can be computed once for all exponentiations, reducing the amortized overhead
of an exponentiation on average to 0.5m multiplications. All but s� of the ex-
ponentiations in our protocol are fixed-based, and thus taking this into account
the effective overhead of the exponentiations is equivalent to that of just 5.66s�
full exponentiations.

Reducing the computation of P2 in Step 6. In Step 6 of Protocol 5, P2
performs s� exponentiations in order to compute the garbled values associated
with P1’s input in the check circuits. Namely, given the (i, 0, ga

0
i ), (i, 1, ga

1
i ) tuples

and rj for every j ∈ J , party P2 computes ga
0
i ·rj , ga

1
i ·rj for all i = 1 . . . � and

j ∈ J . This step costs s� exponentiations (2� exponentiations for each of the
s/2 check circuits). We can reduce this to about a quarter by having P1 send the
ga

0
i ·rj , ga

1
i ·rj values to P2 and prove that they are correct (not in zero-knowledge).

The protocol is modified by changing Step 6 as follows (recall that P2 already
has all of the (i, 0, ga

0
i ), (i, 1, ga

1
i ) tuples and rj values):

1. P1 sends P2 all of the values k′0
i,j = ga

0
i ·rj and k′1

i,j = ga
1
i ·rj for i = 1, . . . , �

and j ∈ J .
2. P2 chooses random values γ0

i , γ
1
i ∈ [1, 2L] for i = 1, . . . , �.

3. For every j∈J , party P2 computes the values αj =
(∏�

i=1(g
a0

i )γ
0
i · (ga1

i )γ
1
i

)rj

and βj =
∏�
i=1(k

′0
i,j)

γ0
i ·(k′1

i,j)
γ1

i Note that computing αj requires only a sin-
gle full exponentiation since the value (ga

0
i )γ

0
i ·(ga1

i )γ
1
i can be computed once

for all j.
4. P2 accepts P1’s input if and only if αj = βj for all j ∈ J .

Claim 7. The probability that P2 accepts if there exists an i ∈ {1, . . . , �} and
j ∈ J such that k′0

i,j �= ga
0
i ·rj or k′1

i,j �= ga
1
i ·rj is at most s

2 · 2−L.

Preprocessing. The bulk of the exponentiations performed in the protocol can
be precomputed. Step 1 of the protocol, where P1 computes its input keys, can
clearly be computed before P1 receives its inputs. Step 2 executes the oblivious
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transfers. It can be slightly changed to be run before P2 receives its inputs: P2
can execute this step with random inputs σ1, . . . , σ�. Then, when it receives its
input bits y1, . . . , y�, it sends to P1 a string of correction bits y1⊕σ1, . . . , y�⊕σ�.
P1 exchanges the roles of the two keys of input wires of P2 for which it receives
a correction bit with the value 1. (The security proof can be easily adapted
for this variant of the protocol). Given this change, both Steps 1 and 2 can be
precomputed. These steps account for 13.5s� of the 15s� exponentiations of the
protocol, where the remaining 1.5s� exponentiations are fixed base. This means
that if preprocessing is used, then after receiving their inputs the parties need
to effectively compute only s�/2 full exponentiations.

4 Universal Composability and Covert Adversaries

4.1 Universally Composable Two-Party Computation

The simulators in the proof of Theorem 6 carry out no rewinding, and likewise
the intermediate simulators used to prove the reductions. Thus, if the protocols
used to compute the batch cut-and-choose oblivious transfer functionality and
the zero-knowledge proof of knowledge of Step 7b are universally composable,
then so is Protocol 5. In order to obtain this property, we simply need to apply a
transformation from Sigma protocols to universally-composable zero knowledge,
which can be achieved efficiently using universally-composable commitments.
Details of how this can be achieved are given in the full version of the paper. We
have the following:

Theorem 8. Assume that the decision Diffie-Hellman assumption holds. Then,
for every efficiently computable two-party function f with inputs of length �,
there exists a universally composable protocol that securely computes f in the
commitment-hybrid model in the presence of malicious adversaries, with 8 rounds
of computation and O(s� + s2) exponentiations.

4.2 Covert Security

In the model of security in the presence of covert adversaries [1], the requirement
is that any cheating by an adversary will be caught with some probability ε. The
value of ε taken depends on the application, the ramifications to an adversary
being caught, the value to an adversary of successfully cheating (if not caught)
and so on. The analysis of our protocol shows that for every value of s (even
if s is very small) the probability that an adversary can cheat without being
caught is at most 2−

s
4+1. This immediately yields a protocol that is secure in

the presence of covert adversaries, as stated in the following theorem.

Theorem 9. Assume that the decisional Diffie-Hellman assumption is hard in
G, that the protocol used in Step 2 securely computes the batch single-choice cut-
and-choose oblivious transfer functionality, that the protocol used in Step 7b is
a zero-knowledge proof of knowledge, and that the symmetric encryption scheme
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used to generate the garbled circuit is secure. Then, for any integer s > 4, Proto-
col 5 securely computes the function f in the presence of covert adversaries with
ε-deterrent (under the strong explicit cheat formulation), for ε = 1− 2−

s
4+1.

We stress that our protocol is significantly more efficient than the protocols of [1]
and [15] when values of ε that are greater than 1/2 are desired. For example,
in order to obtain an ε-deterrent of 0.98, the protocol of [1] requires using 50
garbled circuits. However, taking s = 50 in our protocol here yields an ε-deterrent
of 1− 2−11.5 which is much much larger.
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Abstract. In an adaptive oblivious transfer (OT) protocol, a sender
commits to a database of messages and then repeatedly interacts with a
receiver in such a way that the receiver obtains one message per inter-
action of his choice (and nothing more) while the sender learns nothing
about any of the choices. Recently, there has been significant effort to
design practical adaptive OT schemes and to use these protocols as a
building block for larger database applications. To be well suited for
these applications, the underlying OT protocol should: (1) support an
efficient initialization phase where one commitment can support an ar-
bitrary number of receivers who are guaranteed of having the same view
of the database, (2) execute transfers in time independent of the size of
the database, and (3) satisfy a strong notion of security under a simple
assumption in the standard model.

We present the first adaptive OT protocol simultaneously satisfying
these requirements. The sole complexity assumption required is that
given (g, ga, gb, gc, Q), where g generates a bilinear group of prime or-
der p and a, b, c are selected randomly from Zp, it is hard to decide if
Q = gabc. All prior protocols in the standard model either do not meet
our efficiency requirements or require dynamic “q-based” assumptions.

Our construction makes an important change to the established “as-
sisted decryption” technique for designing adaptive OT. As in prior
works, the sender commits to a database of n messages by publishing an
encryption of each message and a signature on each encryption. Then,
each transfer phase can be executed in time independent of n as the re-
ceiver blinds one of the encryptions and proves knowledge of the blinding
factors and a signature on this encryption, after which the sender helps
the receiver decrypt the chosen ciphertext. One of the main obstacles to
designing an adaptive OT scheme from a simple assumption is realizing
a suitable signature for this purpose (i.e., enabling signatures on group
elements in a manner that later allows for efficient proofs.) We make
the observation that a secure signature scheme is not necessary for this
paradigm, provided that signatures can only be forged in certain ways.
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We then show how to efficiently integrate an insecure signature into a
secure adaptive OT construction.

1 Introduction

Oblivious transfer OT [35,39] is a two-party protocol, where a Sender with mes-
sages M1, . . . ,MN and a Receiver with indices σ1, . . . , σk ∈ [1, N ] interact in
such a way that at the end the Receiver obtains Mσ1 , . . . ,Mσk

without learn-
ing anything about the other messages and the Sender does not learn anything
about the choices σ1, . . . , σk. In the adaptive OT setting [33], the Receiver may
obtain Mσi−1 before deciding on σi [33].

Our Goals. Adaptive OT is an interesting primitive. Like non-adaptive OT, it is
a key building block for secure multi-party computation [40,19,28]. More practi-
cally, it captures the way an oblivious medical, financial or patent database would
be accessed. Recently, there has been a focus on designing practical, privacy-
preserving databases with access controls [15,8] or pricing mechanisms [36] based
on adaptive OT. Unfortunately, researchers trying to design more-complex sys-
tems on top of current adaptive OT protocols do not have any ideal choices. For
a database with N messages supporting U Receivers with security parameter λ,
such a protocol must be:

1. Extremely efficient, even when N , the database size, is large. In particular,
the cost to transfer one message to one Receiver should depend only on the
security parameter and not on N . I.e., a Receiver should not have to do work
proportional to the size of the database to download one file. (This rules out
a number of naive approaches as discussed below.)

2. Furthermore, since few databases serve only one user, it should be possible
to extend the protocol to the case where there are many Receivers, each
of whom receives a consistent view of the database. In particular, the ideal
situation, which we achieve in this work, is to have a non-interactive initial-
ization phase, where the Sender can do O(λN) work to form a commitment
that can then be used for an arbitrary number of receivers. Several prior
works (e.g., [10,22,27,36]) support a relatively efficient initialization phase
with O(λ(N + U)) total work. By adding a CRS and making some mod-
ifications, this can likely be reduced to O(λN) (although the complexity
assumptions will still be an issue.) What one wishes to avoid, however, is an
initialization phase that requires O(λNU) total work. I.e., the sender should
not have to set up a unique database containing all of its files for each of its
users. (This also rules out some basic approaches.)

3. Finally, since this protocol is designed to be a building block of larger
applications, it is critical that it be a solid one. In particular, it should
satisfy a strong notion of security (i.e., full-simulatability or UC) under a
mild complexity assumption in the standard model. Unfortunately, while
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sufficiently practical protocols exist, they either require random oracles
[10,22], dynamic1 assumptions [10,22,27,36] or interactive assumptions [38].

Thus, a new construction based on new techniques is needed.

From Non-Adaptive to Adaptive OT for Single Receivers. Since it is known how to
build non-adaptive OT protocols based on simple assumptions [21,32,34] such as
Decisional Diffie-Hellman and Quadratic Residuosity, it is natural to ask why con-
structing adaptive protocols has proven so difficult. Given any fully-simulatable
1-out-of-N non-adaptive OT protocol, one can build a fully-simulatable k-out-of-
N adaptive OT protocol for a single Receiver by sequentially executing k instances
of the non-adaptive protocol and, before each execution, having the sender prove
in zero-knowledge that the sequence of N messages used in execution i is the same
as the sequence of N messages used in execution i− 1 [10]. Unfortunately, for se-
curity parameter λ, this protocol requires a total of O(Nkλ) work to transfer k
messages for (only) one Receiver and is thus impractical for any application in-
volving large databases.

Thus, when Camenisch, Neven and shelat [10] began to reinvestigate this
problem in 2007, they stressed that the real challenge was to build an OT scheme
where the sender makes an initial commitment to the database (which is assumed
to be broadcast to all receivers), and then the two parties only exchange a
constant number of group elements per transfer.

Our Contributions. We present an efficient, adaptive oblivious transfer protocol
which is fully-simulatable under a simple, static assumption. The sole complexity
assumption required is that given (g, ga, gb, gc, Q), where g generates a bilinear
group of prime order p and a, b, c are selected randomly from Zp, it is hard to
decide if Q = gabc. This assumption called Decisional 3-Party Diffie-Hellman has
been used in prior works [31,5,25]. Our protocol is practical, although more costly
than the very efficient Camenisch et al. protocol [10] by a constant factor. The
database commitment in our scheme requires roughly (9 + 7N) group elements,
whereas the commitment in [10] required roughly (3 + 2N) group elements. By
including the mild Decision Linear assumption [4], we can efficiently make this
initialization phase non-interactive as we discuss in Section 3.

Our construction introduces a twist on the assisted decryption approach to
OT design, where the underlying signatures need not be existentially unforgeable
provided that certain forgeries are not permitted. As we discuss, these techniques
may be useful in simplifying the complexity assumptions in schemes beyond OT
such as F -signatures and anonymous credentials [1].

1 These are also called parametric or q-based assumptions. An example is q-Strong
Diffie-Hellman [3] (q-SDH): given (g, gx, gx2

, gx3
, . . . , gxq

), where g generates a group
of prime order p and x is a random value in Zp, it is hard to compute (g1/(x+c), c)
for any c ∈ Z∗

p. Typically, when q-SDH is used as the foundation of an adaptive OT
scheme, q must dynamically adjust to the number of files in the database. Thus, the
assumption required actually changes based on how the protocol is used.
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Protocol Initialization Transfer Assumption Security
Cost Cost Defn

Folklore · O(λN) general assumptions Full Sim
KN [29] O(λ(N + U)) O(λN) Decisional nth Residuosity/DDH Full Sim
NP [33] · O(λ lg(N)) DDH + OT2

1 Half Sim
KNP [30] O(λNU) O(λ) DDH Full Sim∗

CNS [10] O(λ(N + U)) O(λ) q-Power DDH + q-Strong DH Full Sim
GH [22] O(λ(N + U)) O(λ) Decision Linear + q-Hidden LRSW UC
JL [27] O(λ(N + U)) O(λ) Comp. Dec. Residuosity + q-DDHI Full Sim
RKP [36] O(λ(N + U)) O(λ) DLIN + q-Hidden SDH + q-TDH UC
§2.1 O(λ(N + U)) O(λ) Decision 3-Party DH Full Sim
§3 O(λN) O(λ) Decision 3-Party DH + DLIN Full Sim

Fig. 1. Survey of adaptive k-out-of-N Oblivious Transfer protocols secure in the stan-
dard model. Let λ be the security parameter, N the size of the database and U the
number of receivers. The horizontal lines separate the schemes into efficiency categories,
which improve as one scans down the table. While the least efficient categories can be
realized using assumptions such as DDH, all prior attempts to achieve practicality
have required a dynamic q-based complexity assumption. A ∗ denotes the construction
meets a strictly weaker notion than the standard used in the other works.

Intuition behind our OTNk×1 Construction. As with most previous OTNk×1 con-
structions, our construction uses a technique known as assisted decryption. For
i = 1 to N , the Sender commits to his database by encrypting each message as
Ci = Enc(Mi), and publishes a public key and ciphertexts (pk , C1, . . . , CN ). The
Receiver then checks that each ciphertext is well-formed. To obtain a message,
the Sender and Receiver engage in a blind decryption protocol, i.e., an interac-
tive protocol in which the Sender does not view the ciphertext he decrypts, but
where the Receiver is convinced that decryption was done correctly.

The difficulty here is to prevent the Receiver from abusing the decryption
protocol, e.g., by requesting decryptions of ciphertexts which were either not
produced by the Sender or have been mauled. The folklore solution is to have
the Receiver provide a proof that his request corresponds to C1 ∨C2 ∨ ... ∨CN .
Of course, the cost of each transfer is now dependent on the total database size
and thus this solution is no (asymptotically) better than the trivial solution
mentioned above.

In Eurocrypt 2007, Camenisch, Neven and shelat [10] were the first to propose
a method for executing “assisted decryption” efficiently. The sender signed each
ciphertext value. The receiver was required to prove knowledge of a correspond-
ing signature before the sender would assist him in decrypting a ciphertext. This
clever approach reduced the O(Nλ) work per transfer required above, to only
O(λ) work, where λ is a security parameter.

More specifically, Camenisch, Neven and shelat [10] used a deterministic en-
cryption scheme and a signature with a particular structure: for pk = (g, gx, H =
e(g, h)) and sk = h, let Ci =

(
g

1
x+i ,Mi · e(g, h)

1
x+i

)
. Recall that g1/(x+i) is a

weak Boneh-Boyen signature [3] on i under gx, and here only a polynomial
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number of “messages” (1 to N) are signed. While this scheme supports an el-
egant and efficient blind decryption protocol, it also requires strong q-based
assumptions for both the indistinguishability of the ciphertexts as well as the
unforgeability of the weak Boneh-Boyen signature. It is based on the q-Strong
Diffie-Hellman and the q-Power Decisional Diffie-Hellman assumptions. The lat-
ter assumption states that given (g, gx, gx

2
, . . . , gx

q

, H), where g ∈ G and H ∈
GT , it is hard to distinguish the vector of elements (Hx, Hx2

, . . . , Hxq

) from a
vector of random elements in GT . In essence, the rigid structure of this (and
all prior) constructions appear to require a similarly structured complexity as-
sumption, which grows with the database size.

To move past this, we will “loosen” the structure of the ciphertext and sig-
nature enough to break the dependence on a structured assumption, but not
so much as to ruin our ability to perform efficient proofs. Finding this balance
proved highly non-trivial.

We now turn to how our construction works. We will encrypt using the Boneh-
Boyen IBE [2], which has a public key pk = (g, g1 = ga, g2, h) and encrypts M
as (gr, (gi1h)r, e(g1, g2)rM) for identity i and randomness r ∈ Zp. Then we will
sign r. To do this, we need a standard model signature scheme from a simple
assumption (which is itself somewhat rare.) We choose the stateful signatures
of Hohenberger-Waters [26], which has a public key pk = (g, gb, u, v, d, w, z, h)
and signs M as (σ1, σ2, s, i) for state i and randomness s, t ∈ Zp, where σ1 =
gt, σ2 = (uMvsd)b(w�lg(i)�zih)t.

Attempt 1. Now, consider the construction obtained by combining the BB IBE,
secure under Decisional Bilinear Diffie-Hellman, with the HW signature, secure
under the Computational Diffie-Hellman assumption. Here we will encrypt the
ith message using identity i (in the BB IBE) and state i (in the HW signature),
with an extra ur term to allow the Receiver to verify well-formedness:

gr, (gi1h)r, e(g1, g2)rM, gt, (urvsd)b(w�lg(i)�zih)t, ur, s

The Receiver can verify the well-formedness of the ith ciphertext (c1, . . . , c7) by
checking that e((gi1h), c1) = e(g, c2), e(g, c6) = e(c1, u) and

e(g, c5) = e(c6vc7d, gb)e(w�lg(i)�zih, c4).

It is important that the Receiver can verify the well-formedness of the ciphertext-
signature pair, so that the simulator can properly extract the messages from a
cheating Sender during the proof of security. It is a nice additional feature that
our verification is public and non-interactive.

Attempt 2. However, the above construction still has a lot of problems. Recall
that we want the Receiver to ask for a blind decryption of a given ciphertext by
(somehow) sending in blinded portions of the ciphertext, proving that these por-
tions are linked to r and proving that he knows a signature on r. Unfortunately,
efficiently proving knowledge of the HW signature is problematic due to the
&lg(i)! exponent. We could do this using a range proof [13,9,6,7], however, this
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would require that we introduce stronger assumptions such as Strong RSA or
q-Strong Diffie-Hellman. We could instead do a bit-by-bit proof, but this would
severely hurt our efficiency. Instead, our solution is to drop this term entirely
from the HW signature to obtain the ciphertext:

gr, (gi1h)r, e(g1, g2)rM, gt, (urvsd)b(zih)t, ur, s

One major issue is that dropping this term breaks the unforgeability of the
signature scheme. Indeed, it is now possible for anyone to efficiently compute a
signature on any index over a certain polynomial threshold as set in the proof of
security. However, we specifically chose to encrypt with the Boneh-Boyen IBE
for this purpose. We will set our parameters so that an adversary is free to forge
signatures with states of N + 1 and higher, where N is the size of our database.
The key idea is that asking for decryptions on different identities will not help a
malicious Receiver obtain information about the database messages; indeed, we
could even hand him the secret key for those identities. This makes our proof
much more efficient, however, there is still a large problem.

Attempt 3. To argue, in the proof of security, that no malicious Receiver can
forge signatures on a state i ∈ [1, N ], we must extract this signature and its
forgery message from the proof of knowledge. However, we cannot extract the
“message” r from a cheating Receiver, because an honest Receiver will not know
the randomness used in the ciphertexts created by the Sender. The most we
can ask a Receiver to prove knowledge of is the signature on r comprised of
(c4, c5, c6, c7) and the value gr. Thus, we cannot extract from the Receiver a
valid forgery of the HW signatures.

Moreover, we need a stronger security guarantee than HW signatures gave us
(i.e., existential unforgeability under adaptive chosen message attack [20].) We
need that: it is not only the case that an adversary cannot produce a pair (m,σ)
for a new m; now the adversary cannot even produce the pair (gm, σ) for a new
m, where σ is a signature on m. Do such powerful signatures exist?

Indeed, this security notion was formalized as F -signatures by Belenkiy, Chase,
Kohlweiss and Lysyanskaya [1], where they also required q-based complexity as-
sumptions for their construction. Fortunately, we are able to show that the HW
signatures (and our mangled version of them without the w�lg(i)� term) remain
F -unforgeable for F (m) = gm under a simple static assumption. (See [26] or the
full version of this work [23] for the full details on HW; the mangled version is
proven as part of the OT system in Section 2.2.) We tie both this version of the
signature scheme and the Boneh-Boyen IBE together under a single assumption:
given (g, ga, gb, gc), it is hard to decide if Q = gabc.

Comparison to Prior Work. Let us briefly compare our approach to prior
works; see Figure 1 for more. As we mention above, Camenisch, Neven and
shelat [10] gave the first efficient, fully-simulatable construction for adaptive
(and non-adaptive) OT. It is secure in the standard model under the q-Strong
Diffie-Hellman and the q-Power Decisional Diffie-Hellman assumptions.
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They also provided a scheme in the random oracle model from unique blind
signatures.

Green and Hohenberger [21] provided an adaptive OT construction in the ran-
dom oracle model based on the Decisional Bilinear Diffie-Hellman assumption,
namely, that given (g, ga, gb, gc, Q), it is hard to decide if Q = e(g, g)abc. In their
construction, the Sender encrypted each message i under identity i using a IBE
system. Then they provided a blind key extraction protocol, where the Receiver
could blindly obtain a secret key for any identity of her choice.

In the assisted decryption setting, Green and Hohenberger [22] took an ap-
proach similar to [10] to achieve UC security. It was based on the Decision
Linear and q-Hidden LRSW assumptions, in the asymmetric setting. The latter
assumption implies that DDH must hold in both G1 and G2.

Jarecki and Liu [27] took an alternative view: for pk = gx, let Ci = Mi ·
g1/(x+i). Recall that g1/(x+i) is also the Dodis-Yampolskiy pseudorandom func-
tion on input i [18]. This essentially simplifies the Camenisch et al. construc-
tion and allows a fully-simulatable scheme based on the Composite Decisional
Residuosity and q-Decisional Diffie-Hellman Inversion assumptions. The blind
decryption protocol involves obliviously evaluating the PRF on input i, which
requires some costly zero knowledge proofs. However, this protocol is interesting
as the only efficient and fully-simulatable protocol that does not require bilinear
groups.

Rial, Kohlweiss and Preneel [36] presented a priced version of UC-secure adap-
tive OT using the assisted decryption approach. In priced OT, the obliviousness
property must hold, even though the items being sold may have unique prices.
The scheme is secure in the standard model under the Decision Linear, q-Triple
Diffie-Hellman, and q-Hidden Strong Diffie-Hellman assumptions.

Unfortunately, all of these constructions have a rigid structure and seem to
require a structured complexity assumption. We show that this structure can
be enforced, not on the message itself, but rather through the identity of the
encryption and the state of the signature. This provides us with enough glue to
keep the security of the scheme together without overdoing it.

Recently, Kurosawa and Nojima [29] and Chen, Chou and Hou [14] gave adap-
tive OT constructions which purported to improve the underlying complexity as-
sumptions of the schemes above, but which actually resorted to O(Nλ) transfer
cost. It was already known how to achieve this level of (in)efficiency from gen-
eral assumptions, including those of [29,14], by following the folklore method for
building adaptive OT from any non-adaptive OT system, as described in [17,10]
and the opening of our introduction. Moreover, [14] is set in the random oracle
model.

Very recently2, Kurosawa, Nojima and Phong [30] gave an adaptive OT con-
struction from DDH with O(λ) transfers. However, their work has several techni-
cal issues. First, their construction does not satisfy the standard full simulation
definition used in [10,21,22,27,36] and this work. In [30], if a receiver ever re-
quests the same file twice (say, she downloads a patent one day, deletes it, then

2 The work of [30] appeared after the initial posting of this work [23].
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downloads it again a month later), then this can be detected by the sender. This
is at odds with the full simulation definition where the adversarial sender is only
told by the ideal functionality that a file has been requested and thus cannot
detect a repeated download. Second, it is not obvious how to modify their con-
struction to satisfy the full simulation notion. One approach might be to make
the receiver stateful and store every file she ever requests. This has the obvi-
ous drawback of requiring permanent storage of the decrypted messages, which
may not be practical and is not a requirement in other works. Moreover, sub-
tle technical issues arise as to what the receiver sends during a repeated query
round. Third, their construction requires a very expensive initialization proce-
dure where the sender must transmit, then receive back and store O(Nλ) bits
for each receiver. In contrast, all prior practical work [10,21,22,27,36] and our
results only require that the sender publish and store one O(Nλ) bit database
for all receivers.

Thus, we build on this body of prior work to present the first efficient scheme
satisfying the standard notion of full simulation from a simple assumption in the
standard model.

2 Technical Preliminaries

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the
parameters for a bilinear mapping as γ = (p, g,G,GT , e), where g generates G,
the groups G,GT have prime order p ∈ Θ(2κ), and e : G × G → GT . Two
algebraic properties required are that: (1) if g generates G, then e(g, g) �= 1 and
(2) for all a, b ∈ Zp, it holds that e(ga, gb) = e(g, g)ab.

Assumption 1 (Decisional 3-Party Diffie-Hellman (3DDH) [31,5,25])
Let G be a group of prime order p ∈ Θ(2λ). For all p.p.t. adversaries A, the fol-
lowing probability is 1/2 plus an amount negligible in λ:

Pr[g, z0 ← G; a, b, c← Zp; z1 ← gabc; d← {0, 1}; d′ ←A(g, ga, gb, gc, zd) : d=d′].

Proofs of Knowledge. We use known zero-knowledge and witness indistinguish-
able techniques for proving statements about discrete logarithms and their nat-
ural extensions to proving statements about bilinear groups, such as (1) proof
of knowledge of a discrete logarithm modulo a prime [37] and (2) proof of the
disjunction or conjunction of any two statements [16]. These are typically inter-
active, 4-round protocols. We discuss further implementation details in the full
version [23].

When referring to the proofs above, we will use the notation of Camenisch and
Stadler [11]. For instance, ZKPoK{(x, h) : y = gx ∧H = e(y, h) ∧ (1 ≤ x ≤ n)}
denotes a zero-knowledge proof of knowledge of an integer x and a group element
h ∈ G such that y = gx and H = e(y, h) holds and 1 ≤ x ≤ n. All values not
enclosed in ()’s are assumed to be known to the verifier.
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2.1 The Construction

Our OTNk×1 protocol appears in Figure 2. This protocol follows the assisted (or
blind) decryption paradigmpioneered by [10,22,27]. The Sender begins the OT pro-
tocol by encrypting each message in the database and publishing these values to the
Receiver. The Receiver then checks that each ciphertext is well-formed. For each
of k transfers, the two parties co-operatively execute a protocol following which
(1) the Receiver obtains the decryption of at most one ciphertext, while (2) the
Sender learns nothing about which ciphertext was decrypted. We require that the
interactive decryption protocol run in time independent of the size of the database.

The encryption scheme that we use is a novel combination of the Boneh-Boyen
IBE scheme [2] and a (insecure) version of the Hohenberger-Waters signatures [26].
We presentmethods for proving knowledge of such signatures and obtaining a blind
decryption. Of course, in an adaptive OT scheme, the difficulty is always in getting
all elements of the fully-simulatable proof of security to work out. There are many
subtle details in basing the security for any database of sizeN under the one simple
assumption that given (g, ga, gb, gc), it is hard to decide if Q = gabc.

Ciphertext Structure. In Figure 2, we reference a VerifyCiphertext algorithm
for verifying the well-formedness of a ciphertext. Let us explain that now. The
Sender’s public parameters pk include γ = (p, g,G,GT , e) and generators (g1, g2,
h, g3, g4, u, v, d) ∈ G8. For message M ∈ GT , identity j ∈ Zp, and random values
r, s, t ∈ Zp we can express a ciphertext as:

C =
(
gr, (gj1h)r, M · e(g1, g2)r, gt, (urvsd)b(gj3h)t, ur, s

)
Given only pk , j, the VerifyCiphertext function validates that the ciphertext has
this structure. We define it as follows.

VerifyCiphertext(pk , C, j). Parse C as (c1, . . . , c7) and pk to obtain g, g1, h, g3, g4,
u, v, d. This routine outputs 1 if and only if the following equalities hold:

e(gj1h, c1) = e (g, c2) ∧
e (g, c6) = e (c1, u) ∧
e (g, c5) = e (g4, c6v

c7d) e(c4, g
j
3h)

This function will always output 1 when input a properly-formed ciphertext.

2.2 Security Analysis

We now show that the OTNk×1 protocol above is sender-secure and receiver-
secure in the full-simulation model under the Decisional 3-Party Diffie-Hellman
assumption (3DDH). We will address Sender and Receiver security separately.

A note on the PoK protocols. For generality, our security proofs use the terms
εZK , εWI to indicate the maximal advantage that every p.p.t. distinguisher has
in distinguishing simulated ZKPoKs from real ones (resp. WI proofs on different
witnesses). We additionally use εExt to indicate the maximum probability that
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SI(M1, . . . , MN ) RI()

1. Select γ = (p, g,G, GT , e) ← BMsetup(1κ) and a, b
$← Zp,

choose g2, g3, h, u, v, d
$← G and set g1 ← ga, g4 ← gb.

Let pk = (γ, g1, g2, g3, g4, h, u, v, d) and sk = (a, b).

2. For j = 1 to N , select rj , sj , tj
$← Zp and set:

Cj ← [grj , (gj
1h)rj , Mje(g1, g2)rj , gtj , (urj vsj d)b(gj

3h)tj , urj , sj ].
3. Send (pk , C1, . . . , CN ) to Receiver.
4. Conduct ZKPoK{(a) : g1 = ga}.

5. Verify pk and the proofa.
Check for j = 1 to N :

VerifyCiphertext(pk , Cj , j) = 1.
If any check fails, output ⊥.

Output S0 = (pk , sk). Output R0 = (pk , C1, . . . , CN ).

ST(Si−1) RT(Ri−1, σi)

1. Parse Cσi as (c1, . . . , c7), select x, y
$← Zp

and compute v1 ← gxc1.
2. Send v1 to Sender, and conduct:

WIPoK{(σi, x, c2, c4, c5, c6, c7) :
e(v1/gx, (gσi

1 h)) = e(c2, g) ∧
e(c6, g) = e(v1/gx, u) ∧
e(c5, g) = e(c6v

c7d, g4)e(c4, g
σi
3 h)}.

3. Set R ← e(v1, g
a
2 ).

4. Send R to Receiver and conduct:
ZKPoK{(a) : R = e(v1, g

a
2 ) ∧ g1 = ga}.

5. If the proof does not verify, output ⊥.
Else output M ′

σi
← c3·e(g1,g2)x

R
.

Output Si = Si−1. Output Ri = (Ri−1, M
′
σi

).

a By verify pk , we mean check that γ contains parameters for a bilinear map,
where p is prime and g generates G with order p. Also, verify that the remaining
pk elements are members of G.

Fig. 2. Our adaptive OTN
k×1 protocol. VerifyCiphertext is described above.

the extractor for a PoK fails (soundness). We propose to use four-round Schnorr
proofs which are zero-knowledge/WI (εWI = εZK = 0) and computationally
sound under the Discrete Logarithm assumption (which is naturally implied by
3DDH). Our security proofs employ the knowledge extractors for these proofs-
of-knowledge, which we will define as E1,E2,E3

3.

3 These correspond respectively to the proofs ZKPoK{(a) : g1 = ga},
WIPoK{(σi, x, y, z, c4, c5, c6, c7) : . . . }, and ZKPoK{(a) : R = e(v1, g

a
2 )∧g1 = ga}.
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Sender security. Given a (possibly cheating) real-world receiver R̂, we show
how to construct an ideal-world receiver R̂′ such that all p.p.t. distinguishers
have at most negligible advantage in distinguishing the distribution of an honest
real-world sender S interacting with R̂ (RealS,R̂) from that of R̂′ interacting with
the honest ideal-world sender S′ (IdealS′,R̂′). Let us now describe the operation
of R̂′, which runs R̂ internally, interacting with it in the role of the Sender:

1. To begin, R̂′ selects a random collection of messages M̄1, . . . , M̄N
$← GT and

follows the SI algorithm (from Figure 2) with these as input up to the point
where it obtains (pk , C1, . . . , CN ).

2. It sends (pk , C1, . . . , CN ) to R̂ and then simulates the interactive proof
ZKPoK{(a) : g1 = ga}. (Even though R̂′ knows sk = a, it ignores this
value and simulate this proof step.)

3. For each of k transfers initiated by R̂,
(a) R̂′ verifies the received WIPoK and uses the knowledge extractor E2 to

obtain the values σi, x, y, c1, c2, c3, c4 from it. R̂′ aborts and outputs error
when E2 fails.

(b) When σi ∈ [1, N ], R̂′ queries the trusted party T to obtain Mσi , parses
Cσi as (c1, . . . , c7) and responds with R = c3e(g1,g2)x

Mσi
(if T returns ⊥, R̂′

aborts the transfer). When σi /∈ [1, N ], R̂′ follows the normal protocol.
In both cases, R̂′ simulates ZKPoK{(a) : R = e(v1, g

a
2) ∧ g1 = ga}.

4. R̂′ uses R̂’s output as its own.

Theorem 2. Let εZK be the maximum advantage with which any p.p.t. algo-
rithm distinguishes a simulated ZKPoK, and εExt be the maximum probability
that the extractor E2 fails (with εZK and εExt both negligible in κ). If all p.p.t.
algorithms have negligible advantage ≤ ε at solving the 3DDH problem, then:

Pr
[
D(RealS,R̂(N, k,M1, . . . ,MN , Σ)) = 1

]
−

Pr
[
D(IdealS′,R̂′(N, k,M1, . . . ,MN , Σ)) = 1

]
≤

(k + 1)εZK + kεExt + Nε

(
1 +

p

p− 1

)
.

A proof of Theorem 2 is sketched in Appendix A.1 and detailed in [23].

Receiver Security. For any real-world cheating sender Ŝ we can construct an
ideal-world sender Ŝ′ such that all p.p.t. distinguishers have negligible advantage
at distinguishing the distribution of the real and ideal experiments. Let us now
describe the operation of Ŝ′, which runs Ŝ internally, interacting with it in the
role of the Receiver.

1. To begin, Ŝ′ runs the RI algorithm, with the following modification: when
Ŝ proves knowledge of a, Ŝ′ uses the knowledge extractor E1 to extract a,
outputting error if the extractor fails. Otherwise, it has obtained the values
(pk , C1, . . . , CN ).
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2. For i = 1 to N , Ŝ′ decrypts each of Ŝ’s ciphertexts C1, . . . , CN using the
value a as a decryption key,4 and sends the resulting M∗

1 , . . . ,M
∗
N to the

trusted party T .
3. Whenever T indicates to Ŝ′ that a transfer has been initiated, Ŝ′ runs the

transfer protocol with Ŝ on the fixed index 1. If the transfer succeeds, Ŝ′

returns the bit 1 (indicating success) to T , or 0 otherwise.
4. Ŝ′ uses Ŝ’s output as its own.

Theorem 3. Let εWI be the maximum advantage that any p.p.t. algorithm has
at distinguishing a WIPoK, and let εExt be the maximum probability that the
extractor E1 fails. Then ∀ p.p.t. D:

Pr
[
D(RealŜ,R(N, k,M1, . . . ,MN , Σ)) = 1

]
−

Pr
[
D(IdealŜ′,R′(N, k,M1, . . . ,MN , Σ)) = 1

]
≤ (k + 1)εExt + kεWI .

A proof of Theorem 3 is sketched in Appendix A.2 and detailed in [23].

3 Efficiently Supporting Multiple Receivers

Adaptive Oblivious Transfer (OTNk×1) is traditionally defined as a protocol be-
tween a Sender and a single Receiver. However, the way it is typically used in
practical works such as Coull et al. [15] and Camenisch et al. [8] is that U ≥ 1
distinct Receivers all interact with a single Sender.

Extending the full simulation definition to cover this explicitly is rather
straightforward. We do so in the full version [23]. The main technical concern is
that every Receiver should have the same view of the database. That is, if two
Receivers make a request on index i and neither transfer resulted in an error,
then those Receivers must have obtained the same message. In [23] we explain
why our construction would satisfy such a notion – namely, that all Receivers
share the same database and a Receiver does not accept a message unless the
Sender can prove that it correctly corresponds to this database. For simplicity,
we assume secure channels for the transfer phase.

Eliminating the O(λU) term. Interestingly, we can also improve the effi-
ciency of our initialization protocol when multiple Receivers are present. In the
current protocol of Figure 2, the Sender must conduct the proof of knowledge
ZKPoK{(a) : g1 = ga} with each Receiver. This can be accomplished using a
very inexpensive interactive four-round proof in the standard model.

Fortunately even this minimal per-user initialization can be eliminated by
assuming a Common Reference String shared by the Sender and all Receivers
and using an NIZKPoK to broadcast this proof to all Receivers. To instanti-
ate this proof, we suggest the efficient proof system of Groth and Sahai [24],
4 Parse Ci as (c1, . . . , c7) and decrypt as M∗

i = c3/e(c1, g
a
2 ). As noted in Section 3,

one can modify the protocol so that the Sender conducts a PoK of the value ga
2 .
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which permits proofs of pairing-based statements under the Decision Linear as-
sumption [4]. One wrinkle in this approach is that our proof of Receiver security
assumes that the simulator can extract the trapdoor a ∈ Zp from the ZKPoK,
in order to decrypt the ciphertext vector C1, . . . , CN . However, the knowledge
extractor for the Groth-Sahai proof system is limited in that it can only ex-
tract elements of the bilinear image group G. Fortunately for our purposes, the
value ga2 ∈ G can be used as an alternative trapdoor (see Section 2.2 for de-
tails). Thus when using the Groth-Sahai system we must re-write the proof as
NIZKPoK{(ga2) : e(g1, g2) = e(ga2 , g)}5.

4 Conclusions and Open Problems

We presented the first efficient, adaptive oblivious transfer protocol which is
fully-simulatable under simple, static assumptions. Our protocol is practical and
can be used as a building block in larger database applications, such as [15,36,8],
as a step to reducing the overall assumptions on the system.

We leave open several interesting problems. First, we use standard zero-
knowledge proof and extraction techniques which require rewinding, and thus,
our scheme is not UC-secure. A natural question is whether one can obtain
UC-security by replacing our interactive proofs with the non-interactive Groth-
Sahai proofs [24]. Unfortunately, this is not an easy substitution. Our secu-
rity proofs use techniques from the Boneh-Boyen cryptosystem that depend
fundamentally on the ability to extract integers from the Receiver’s proof of
knowledge during the Transfer phase. The Groth-Sahai proof system is only
F -extractable, meaning that one can obtain only group elements from the ex-
tractor (even when the proof is over integer witnesses). One can easily substitute
a bit-by-bit proof of each integer, but we would hope to identify a more practical
approach.

It would be interesting to know if the observations about and manipulations
of the Hohenberger-Waters signatures [26] identified in this work could be ex-
tended to applications such as anonymous credentials and electronic cash, where
most efficient constructions still require random oracles or strong complexity
assumptions. One of the main difficulties is that many interesting protocols re-
quire an F -signature together with an efficient range proof (i.e., method for
proving in zero-knowledge that a committed value lies within a public range.)
Currently, the only efficient techniques for doing the latter require either the
Strong RSA assumption [13,9,6] or (more recently) the q-Strong Diffie-Hellman
assumption [7,12]. (Here q need only be linked to a security parameter, e.g.,
q = 256.) It would be interesting if range proofs under weaker assumptions
could be devised.

5 As mentioned by Groth and Sahai, statements of this form must be slightly re-
written to enable full zero knowledge. The equivalent statement is ZKPoK{(ga

2 , g′
1) :

e(ga
2 , g)e(g′

1, g
−1
2 ) = 1 ∧ e(g′

1, g) = e(g1, g)}.
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A Proof Sketches of Sender and Receiver Security

Complete proofs of sender and receiver security appear in the full version [23].

A.1 Proof Sketch of Sender Security (Theorem 2)

Proof. We will begin with RealS,R̂, then modify the distribution via a series
of hybrid games until we arrive at a distribution identical to that of IdealS′,R̂′ .
Let us define these hybrids as follows:

Game 0. The real-world experiment conducted between S and R̂ (RealS,R̂).
Game 1. This game modifies Game 0 as follows: (1) each of S’s ZKPoK exe-
cutions is replaced with a simulated proof of the same statement,6 and (2) the
knowledge extractor E2 is used to obtain the values (σi, x, y, z, c̄4, c̄5, c̄6, c̄7)
from each of R̂’s transfer queries. Whenever the extractor fails, S terminates
the experiment and outputs the distinguished symbol error.
Game 2. This game modifies Game 1 such that, whenever the extracted
value σi ∈ [1, N ], S’s response R is computed using the following approach:
parse Cσi = (c1, . . . , c7) and set R = c3e(g1,g2)x

Mσi
. When σi /∈ [1, N ], the

response is computed using the normal protocol.
Game 3. This game modifies Game 2 by replacing the input to SI with
a dummy vector of random messages M̄1, . . . , M̄N ∈ GT . However when S
computes a response value using the technique of Game 2, the response
is based on the original message vector M1, . . . ,MN . We claim that the
distribution of this game is equivalent to that of IdealS′,R̂′ .

Let us now consider the following Lemmas. For notational convenience, define:

Adv [Game i ] = Pr [D(Game i) = 1 ]−Pr [D(Game 0) = 1 ].

Lemma 1. If all p.p.t. algorithms D distinguish a simulated ZKPoK with ad-
vantage at most εZK and the extractor E2 fails with probability at most εExt,
then Adv [Game 1 ] ≤ (k + 1) · εZK + k · εExt.
6 This includes at most k+1 PoK executions, including the initial ZKPoK{(a) : g1 =

ga} and each subsequent proof ZKPoK{(a) : R = e(v1, g
a
2 ) ∧ g1 = ga}.
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Lemma 2. If no p.p.t. algorithm has advantage > ε in solving the 3DDH prob-
lem, then

Adv [Game 2 ]−Adv [Game 1 ] ≤ Np

p− 1
· ε.

Lemma 3. If no p.p.t adversary has advantage > ε at solving the 3DDH prob-
lem, then

Adv [Game 3 ]−Adv [Game 2 ] ≤ N · ε.

Proof of the above lemmas is in [23]. By summing over hybrids Game 0 to
Game 3, we obtain Adv [Game 3 ] ≤ (k + 1)εZK + kεExt + Nε(1 + p

p−1 ). For
the Schnorr proofs we use, εZK = 0. This concludes the proof of Sender security.

A.2 Proof Sketch of Receiver Security (Theorem 3)

Proof. We again arrive at the ideal-world sender via a series of hybrid games:

Game 0. The real-world experiment conducted between Ŝ and R (RealŜ,R).
Game 1. A modification of Game 0 in which R applies the knowledge ex-
tractor E1 to Ŝ’s proof ZKPoK{a : g1 = ga}. If this extraction fails, R aborts
and outputs ⊥. Further, for transfers i = 1 through k, R uses the knowledge
extractor E3 on Ŝ’s proof ZKPoK{(a) : R = e(v1, g

a
2) ∧ g1 = ga} to extract

the values a, aborting if the extractor fails (or returns inconsistent values).
Game 2. For transfer i = 1 to k, modify R’s request such that σi = 1. The
distribution of this game is identical to that of IdealŜ′,R′ .

Lemma 4. If the extractor E1 and E3 fail with probability at most εExt, then
Adv [Game 1 ] ≤ (k + 1)εExt.

Lemma 5. If the Receiver’s WIPoK is distinguishable with maximum advantage
εWI , then

Adv [Game 2 ]−Adv [Game 1 ] =≤ k · εWI .

Proof of the above lemmas is in [23]. Summing the differences, we have

Adv [Game 2 ]−Adv [Game 0 ] = (k + 1)εExt + kεWI .

For the Schnorr proofs we use, εWI = 0. This concludes the proof of Receiver
security.
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Abstract. In this paper we present simple but comprehensive combina-
torial criteria for completeness of finite deterministic 2-party functions
with respect to information-theoretic security. We give a general protocol
construction for efficient and statistically secure reduction of oblivious
transfer to any finite deterministic 2-party function that fulfills our cri-
teria. For the resulting protocols we prove universal composability. Our
results are tight in the sense that our criteria still are necessary for any
finite deterministic 2-party function to allow for implementation of obliv-
ious transfer with statistical privacy and correctness.

We unify and generalize results of Joe Kilian (1991, 2000) in two
ways. Firstly, we show that his completeness criteria also hold in the UC
framework. Secondly, what is our main contribution, our criteria also
cover a wide class of primitives that are not subject of previous criteria.
We show that there are non-trivial examples of finite deterministic 2-
party functions that are neither symmetric nor asymmetric and therefore
have not been covered by existing completeness criteria so far.

As a corollary of our work, every finite deterministic 2-party function
is either complete or can be considered equivalent to a non-complete
symmetric 2-party function—this assertion holds true with respect to
active adversaries as well as passive adversaries. Thereby known results
on non-complete symmetric 2-party functions are strengthened.

Keywords: oblivious transfer, complete primitives, information-
theoretic security, universal composability, secure function evaluation.

1 Introduction

Oblivious transfer in the sense of a trusted erasure channel (Rabin-OT) was
introduced in [27] and later in [4] proven to be equivalent to

(2
1

)
-OT, where a re-

ceiver Bob may learn only one of two bits sent by Alice. Oblivious transfer turned
out to be complete in the sense that every secure multiparty computation can be
implemented using OT [14,10,7,13]. Thereby, enduring interest in OT arised in
cryptography and for numerous primitives it has been investigated, whether they
allow for implementation of OT. In our work we exhaustively treat this question
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for the class of “finite deterministic 2-party functions”, sometimes also referred
to as “crypto gates”. Such primitives are characterized by some finite alphabetes
ΥA, ΥB, ΩA, ΩB and some mappings fA ∈ ΩΥA×ΥB

A , fB ∈ ΩΥA×ΥB
B , such that on

input x ∈ ΥA from Alice and y ∈ ΥB from Bob the primitive outputs fA(x, y) to
Alice and fB(x, y) to Bob.

1.1 Related Work

In the literature one finds OT protocols for the bounded-classical-storage model
[2] and the bounded-quantum-storage model [8] as well as noisy classical [6,30]
and quantum channels [24,25], the latter taking commitments for granted. Fur-
ther, there are reductions of

(2
1

)
-OT to weaker OT versions that leak additional

information [5,9,29] and to Rabin-OT [4]. OT-combiners implement OT from
granted sets of OTs with faulty members [26,11]. For reversing the direction
of
(2
1

)
-OT a protocol is known with optimal number of OT calls [28]. Relative

to complexity assumptions all-or-nothing laws have been shown [1,12,23], i.e.
all non-trivial primitives are complete. Our work has several, nowadays folklore
reduction techniques in common with all the aforementioned literature.

We unify and generalize the results of [15,16], where completeness criteria
for symmetric (i.e. both parties receive the same output) and asymmetric (i.e.
only one party learns the function output) 2-party functions were provided with
respect to information-theoretic security. We import a main argument for the
necessity of our criteria from [15]. Our sufficiency proof is independent from
[15,16], since our results are more general and we use a very strict notion of
security.

There are also results regarding whether various symmetric 2-party functions
can be reduced to each other [22] and what can be implemented from scratch
when there is only a passive adversary [21,20]. A corollary of our work extends
all these results to non-symmetric primitives; some results of [20] already build
on an early manuscript of our work [18].

1.2 Our Contribution

We expose a wide class of complete finite deterministic 2-party functions that
are essentially neither symmetric nor asymmetric and hence are not subject of
statistical completeness criteria in the literature so far. Further, by surprisingly
simple combinatorial criteria to the respective function tables we give a pre-
cise characterization of all finite deterministic 2-party functions that allow for
statistically secure implementation of OT. We provide an efficient and univer-
sally composable protocol scheme for OT from any finite deterministic 2-party
function fulfilling our criteria. Our results are tight, as the necessity of our cri-
teria still holds when only correctness and privacy of the implemented OT are
required.

As a remarkable corollary of our work all non-complete finite deterministic
2-party functions turn out symmetric. This strengthens several known results
for non-complete symmetric 2-party functions [21,22,20].



366 D. Kraschewski and J. Müller-Quade

2 Presentation of Our Results

In this section we briefly present our results. Thereto, we first refer to the se-
curity notion that we use (Sec. 2.1), then introduce and motivate the notations
needed for formulation of our results (Sec. 2.2) and, last but not least, state our
completeness criteria in form of a Classification Theorem (Sec. 2.3).

2.1 Notion of Security

We prove our classification results in the UC framework [3] with static corruption
and statistical security, i.e. the adversarial entities A,S and the environment Z
are computationally unbounded. Nonetheless, in our case the running time of
a simulator S will always be polynomial in the running time of the according
adversary A. Since we implement

(2
1

)
-OT from given 2-party functions, in the

real model there always is a hybrid functionality that provides access to the
latter (see Fig. 1). Since

(2
1

)
-OT can be considered a special 2-party function

that on input (b0, b1) ∈ {0, 1}2 from Alice and c ∈ {0, 1} from Bob outputs bc to
Bob and a special “nothing” symbol ⊥ to Alice, we omit an explicit definition
of the ideal functionality FOT.

Functionality: F(F )
SFE

Let F be characterized by the output functions fA : ΥA×ΥB → ΩA and fB : ΥA×ΥB →
ΩB, where ΥA, ΩA are Alice’s input and output alphabet and ΥB, ΩB are Bob’s input
and output alphabet.

– Upon receiving input (x, i) from Alice, verify that (x, i) ∈ ΥA×IN and that there
is no recorded tuple (x̃, i, Alice); else ignore that input. Next, record (x, i, Alice)
and send (processing, Alice, i) to the adversary.

– Upon receiving input (y, i) from Bob, verify that (y, i) ∈ ΥB×IN and that there
is no recorded tuple (ỹ, i, Bob); else ignore that input. Next, record (y, i, Bob) and
send (processing, Bob, i) to the adversary.

– Upon receiving a message (Delivery, Alice, i) from the adversary, verify that
there are recorded tuples (x, i, Alice) and (y, i, Bob) and the former is not marked;
else ignore that input. Next, mark the recorded tuple (x, i, Alice), compute a ←
fA(x, y) and output (a, i) to Alice.

– Upon receiving a message (Delivery, Bob, i) from the adversary, verify that there
are recorded tuples (x, i, Alice) and (y, i, Bob) and the latter is not marked; else
ignore that input. Next, mark the recorded tuple (y, i, Bob), compute b ← fB(x, y)
and output (b, i) to Bob.

When a party is corrupted, the adversary is granted unrestricted access to the channel
between F(F )

SFE and the corrupted party, including the ability of deleting and/or forging
arbitrary messages.

Fig. 1. The ideal functionality for secure evaluation of a 2-party function F . Adapted
and simplified version of the Secure Function Evaluation functionality in [3]. Note that
via the parameter i only the same multi-session ability is achieved as in [3] by multiple
session IDs.
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0 1 2
0 0/0 0/0 0/0
1 0/0 1/1 0/1
2 0/0 0/1 1/1

0 1 2
0 0/0 1/1 0/1
1 0/0 0/0 0/0
2 �/0 �/1 ⊥/1

Fig. 2. Function tables of two 2-party functions that are consistent renamings of each
other (Alice’s inputs label the rows, Bob’s inputs label the columns; outputs are denoted
a/b, meaning that Alice learns a and Bob learns b). We just interchanged the first two
rows and applied an injective function to Alice’s outputs in the third row; i.e. σA(0) = 1,
σA(1) = 0, ρA(2, 0) = (2,�), ρA(2, 1) = (2,⊥), everything else just is mapped to itself.

2.2 Basic Concepts

A finite deterministic 2-party function can be characterized by its input and
output alphabets and output functions (q.v. Fig. 1). By Ffin,det we denote the
set of all tuples (ΥA, ΥB, ΩA, ΩB, fA, fB), where ΥA, ΥB, ΩA, ΩB are non-empty
finite alphabets and fA, fB are mappings from ΥA×ΥB to ΩA and from ΥA×ΥB
to ΩB respectively. For convenience we will not always differentiate pedantically
between the mathematical object F ∈ Ffin,det and the corresponding primitive
F (F )

SFE, but from the context should be always clear what is meant.
Our notion of Ffin,det turns out a bit too detailed, since Alice and Bob can

always relabel their input-output tuples of a given 2-party function without any
side effects. There is no need for distinguishing between some F ∈ Ffin,det and
any relabelled version of F . By the following definition we can abstract from
those irrelevant details (q.v. Fig. 2).

Definition 1 (Consistent renamings). Let F := (ΥA, ΥB, ΩA, ΩB, fA, fB) ∈
Ffin,det and F ′ := (Υ ′

A, Υ ′
B, Ω′

A, Ω′
B, f

′
A, f ′

B) ∈ Ffin,det. Then F and F ′ are con-
sistent renamings of each other, if there exist some injective mappings ρA :
ΥA×ΩA → Υ ′

A×Ω′
A and ρB : ΥB×ΩB → Υ ′

B×Ω′
B and some bijective mappings

σA : ΥA → Υ ′
A and σB : ΥB → Υ ′

B, such that for all x ∈ ΥA, y ∈ ΥB it holds:

ρA
(
x, fA(x, y)

)
=
(
σA(x), f ′

A(σA(x), σB(y))
)

ρB
(
y, fB(x, y)

)
=
(
σB(y), f ′

B(σA(x), σB(y))
)

Moreover, there may exist input symbols that are kind of “redundant” in the
sense that an actively corrupted party can always input some corresponding
“dominating” input symbols and at the same time perfectly simulate honest
behaviour. This concept plays an important role in our proofs and results. We
formally grasp it by the following definition.

Definition 2 (Redundancy). Given F = (ΥA, ΥB, ΩA, ΩB, fA, fB) ∈ Ffin,det,
an input symbol y′ ∈ ΥB is redundant, if there exists some corresponding domi-
nating input symbol y ∈ ΥB\{y′}, such that the following two conditions hold:

1. For all x ∈ ΥA we have that fA(x, y) = fA(x, y′), i.e. from her own output
Alice does never learn whether Bob did input y or y′.
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0 1
0 0/0 0/0
1 0/0 0/1

0 1
0 0/0 0/0
1 0/0 1/0

0 1
0 0/0 0/0
1 0/0 1/1

Fig. 3. Function tables of the three different types of OT-cores (up to consistent
renaming)

2. For all x, x′ ∈ ΥA with fB(x, y′) �= fB(x′, y′) we have that fB(x, y) �=
fB(x′, y), i.e. by inputting y instead of y′ Bob gets exactly the same or strictly
more information.

For input symbols x ∈ ΥA redundancy is defined analogously. If neither ΥA nor
ΥB contains any redundant input symbols, F is called redundancy-free.

W.l.o.g. actively corrupted parties always use dominating input symbols instead
of the corresponding redundant ones. Also, there is no need to constrain what
honest parties may learn. Therefore, in presence of an active adversary we can
consider any 2-party functions equivalent when they only differ in some redun-
dant input symbols.

Definition 3 (Equivalence). Let F := (ΥA, ΥB, ΩA, ΩB, fA, fB) ∈ Ffin,det and
F ′ := (Υ ′

A, Υ ′
B, Ω′

A, Ω′
B, f

′
A, f ′

B) ∈ Ffin,det. Then F and F ′ are called equivalent, if
they can be transformed into consistent renamings of each other by successive1

removal of redundant input symbols from ΥA, ΥB, Υ ′
A, Υ ′

B and according adjust-
ment of fA, fB, f

′
A, f ′

B. Let [F ] denote the resulting equivalence class.

Given F ∈ Ffin,det, one can show quite easily that all redundancy-free F̄ , F̄ ′ ∈ [F ]
are consistent renamings of each other, i.e. the redundancy-free version of F is
unique up to consistent renaming.

2.3 The Classification Theorem

With the concepts from Sec. 2.2 we can now formulate our completeness criteria.

Definition 4 (Symmetric 2-party functions). Let F ′ ∈ Ffin,det. If F ′ is a
consistent renaming of some F = (ΥA, ΥB, ΩA, ΩB, fA, fB) ∈ Ffin,det with ΩA =
ΩB and fA = fB, then F ′ is called symmetric.

Definition 5 (OT-cores). Let F := (ΥA, ΥB, ΩA, ΩB, fA, fB) ∈ Ffin,det. Then
a quadruple (x, x′, y, y′) ∈ Υ 2

A×Υ 2
B is an OT-core of F , if the following three

conditions are met (q.v. Fig. 3):

1. We have that fA(x, y) = fA(x, y′).
1 Note that a step-by-step removal of one symbol at a time is crucial here. There may

exist distinct input symbols that dominate each other but must not be removed
both.
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1
0 0/0
1 0/1

0 1
1 0/0 1/0

0 1
0 0/0 0/0
1 0/0 1/1

Fig. 4. Redundancy-free versions of the three different types of OT-cores (cf. Fig. 3),
when there are no other input symbols around

2. We have that fB(x, y) = fB(x′, y).
3. We have that fA(x′, y) �= fA(x′, y′) or fB(x, y′) �= fB(x′, y′) (or both).

Theorem 1 (Classification theorem). For each F ∈ Ffin,det it holds:

1. For the F (F )
SFE-hybrid model there exists an OT protocol that is statistically

secure against passive adversaries, iff F has an OT-core.
2. If for the F (F )

SFE-hybrid model there does not exist any OT protocol that is
statistically secure against passive adversaries, then F is symmetric.

3. For the F (F )
SFE-hybrid model there exists an OT protocol that is statistically

secure against active adversaries, iff the redundancy-free version of F has
an OT-core.

4. If for the F (F )
SFE-hybrid model there does not exist any OT protocol that is sta-

tistically secure against active adversaries, then the redundancy-free version
of F is symmetric.

Note that, when there is an active adversary, only the third function in Fig. 3
is complete on its own. The redundancy free versions of the other two functions
just collapse to simple binary channels (q.v. Fig. 4). This collapsing can be
prevented by additional input symbols. In Fig. 5 one can see, how OT-cores can
be complemented to redundancy-free 2-party functions of minimum size.

For symmetric and asymmetric 2-party functions our completeness criteria
coincide with the criteria from [15,16]. More concretely, we can directly translate
the completeness criteria of [15,16] to our notations as follows.

Completeness criteria of [15]: A symmetric 2-party function F is complete,
iff it has an OT-core. This holds true, regardless whether the adversary is
active or passive.

Completeness criteria of [16]: Given an active adversary, an asymmetric 2-
party function F ′ (with Bob being the receiver) is complete, iff for every
input symbol y ∈ ΥB there exists some other input symbol y′ ∈ ΥB that is
not dominated by y; in other words, F ′ is complete, iff its redundancy-free
version is non-trivial in the sense that both input alphabets have cardinality 2
or more. Given only a passive adversary, an asymmetric 2-party function F ′

is complete, iff it has an OT-core.

However, our criteria are much more comprehensive than that of [15,16], since
ours also cover 2-party functions that are neither symmetric nor asymmetric.
An illustrating example is the third function in Fig. 5, which is complete but
not subject of the criteria in [15,16].
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0 1
0 0/0 0/0
1 0/0 0/1
2 0/1 0/0

0 1
0 0/0 0/0
1 0/0 0/1
2 0/1 0/2
3 0/2 0/2

0 1
0 0/0 0/0
1 0/0 0/1
2 0/1 1/2

0 1
0 0/0 0/0
1 0/0 1/1

Fig. 5. Function tables of the four minimal complete 2-party functions. Up to consis-
tent renaming and interchanging the roles of Alice and Bob every function table of
a complete 2-party function F ∈ Ffin,det contains at least one of these examples as a
submatrix.

3 How to Prove the Classification Theorem

In this section we give an intuitive exposition of how we prove our Classification
Theorem. Due to space limitations we can only sketch the main ideas; for formal
proofs we refer to the full version [19].

A fundamental tool in our proof strategy is the connection between presence
of OT-cores and the question whether a 2-party function is symmetric.

Lemma 1 (Symmetrization lemma). Each F ∈ Ffin,det that does not have
any OT-core is symmetric (in the sense of Definition 4).

One way to prove this lemma can be sketched as follows. Given a 2-party function
F := (ΥA, ΥB, ΩA, ΩB, fA, fB) ∈ Ffin,det, we can define an equivalence relation on
(ΥA×ΩA) ∪ (ΥB×ΩB) induced as follows:

(x, a) ∼ (y, b) :⇐ fA(x, y) = a ∧ fB(x, y) = b

Let the according equivalence classes be denoted by [x, a] or [y, b]. For all x, x′ ∈
ΥA, a, a′ ∈ ΩA some simple induction yields the following implication (else F
would have an OT-core):

(x, a) ∼ (x′, a′) ⇒
{
y ∈ ΥB

∣∣ fA(x, y) = a
}

=
{
y ∈ ΥB

∣∣ fA(x′, y) = a′
}

Thereby, we cannot find any x ∈ ΥA, a, a′ ∈ ΩA with a �= a′ and (x, a) ∼ (x, a′);
the analog holds for y ∈ ΥA, b, b′ ∈ ΩA. Hence, via the mappings ρA : (x, a) (→(
x, [x, a]

)
and ρB : (y, b) (→

(
y, [y, b]

)
we get a consistent renaming of F and this

consistent renaming is obviously symmetric.
By the Symmetrization Lemma and some results in the literature we can

already argue for the assertions 1 and 2 of our Classification Theorem. On the
one hand, when F has no OT-core, F can be considered symmetric by our
Symmetrization Lemma. However, in [15] it has been shown that no reduction
of OT to a symmetric 2-party function without OT-core can yield correctness
and privacy at the same time, even if there is only a passive adversary—Alice can
always exactly determine Bob’s information about her inputs to the underlying
2-party function and vice versa.
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0 1 2 3
0 0/0 0/0 0/0 0/0
1 0/0 1/0 0/1 1/1
2 0/1 1/1 1/2 0/2

Fig. 6. A complete 2-party function that needs some carefully chosen, non-symmetric
input distribution

On the other hand, when F has an OT-core and there is only a passive adver-
sary, we can trivially implement one of the 2-party functions in Fig. 3. However,
each of them can be transformed into a non-trivial noisy channel (shown to be
complete in [6]) by the following protocol with expected 4 function calls. Alice
first inputs a random bit b and then the inverse ¬b; Bob inputs independent
random bits in both steps. The protocol is restarted until nowhere output “1”
occurs. Afterwards Alice uses the last value of b as a one-time pad, which Bob
knows with probability 2

3 .
Once assertion 1 of the Classification Theorem is shown, assertion 2 follows by

the Symmetrization Lemma. Analogously assertion 4 follows from assertion 3, so
all we have to do is proving assertion 3. One direction, the necessity of OT-cores,
already follows from the passive case. Proving sufficiency for the active case is
much more challenging and can be seen as our main contribution.

Our overall strategy for reducing OT in presence of an active adversary to a
finite deterministic 2-party function having an OT-core proceeds in two steps.
First, Alice and Bob generate some amount of correlated data by repeated invo-
cation of the 2-party function with randomized input. Within a subsequent test
step each party has to partially unveil its data, so that significant cheating can
be detected. Then, on top of the remaining data an invocation of OT is built.
In Sec. 3.1 we examine what input distributions are adequate and how the test
step has to be performed. In Sec. 3.2 we construct a protocol for OT from such
correlated data and we examine its security.

3.1 Secure Generation of Correlated Data

We start our examination with some negative example (see Fig. 6), which shows
that choosing an adequate input distribution is not trivial. In the first place, the
example in Fig. 6 shows that letting Alice and Bob use uniformly random input
is not necessarily secure. In our example there would be an undetectable cheating
strategy2 for a corrupted Bob: He picks a uniformly random input symbol from
{2, 3} instead of {0, 1, 2, 3} and after each invocation of the 2-party function with
probability 1

2 locally relabels his input-output tuple by (2, 0) (→ (0, 0), (2, 1) (→
(0, 0), (2, 2) (→ (1, 1), (3, 0) (→ (1, 0), (3, 1) (→ (1, 0), (3, 2) (→ (0, 1). Thereby he
can perfectly simulate honest behaviour, but at the same time does learn all of
Alice’s inputs to the 2-party function.
2 Note that such an undetectable cheating strategy cannot exist for symmetric 2-party

functions, as there Alice will notice any change in Bob’s output distribution.
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We circumvent this problem by more asymmetric input distributions: We pick
an OT-core and let the corresponding input symbols be input with relatively high
probability, while all other input symbols have a relatively low probability and
are only needed for the test step. However, the example in Fig. 6 also shows
that we must choose the OT-core carefully. E.g. the OT-core in the upper left
corner would be a bad choice, since the abovementioned cheating strategy can be
adjusted to every protocol that assigns equal probability to Bob’s input symbols
“0” and “1”. Still, significant cheating is possible for any input distribution with
high probability for “0” and “1”, as inputting “0” and “1” each once can be
perfectly simulated by inputting “2” and “3” each once.

Actually, a main part of our work consists in proving that there always exists
a “good” OT-core, if only the redundancy-free version of the considered 2-party
function has any OT-core at all. In Fig. 6 one “good” OT-core corresponds to
inputs {0, 1} from Alice and {1, 2} from Bob: By occasionally inputting “2” Alice
can check that Bob does not too often use other input symbols than {1, 2} (on
input “2” she must not get output “0” too often) and that he does input “1” and
“2” each with the right frequency (on input “1” she must get output “1” and “0”
with according frequency), while Bob also sees Alice’s actual input distribution
(it is close to Bob’s output distribution on input “2”). However, as the first
function in Fig. 5 shows, in general it will not suffice that the participants only
pay attention to their own input-output distributions. Since in this example
Alice’s output always is “0”, only by unveiling some random subset of his input-
output tuples Bob can prove that he did use a prescribed input distribution; e.g.
he will be caught cheating with high probability when he claims to have input
“0” sufficiently often but can never distinguish whether Alice did input “0” or
“2”. Again, for a meaningful test it is necessary that Alice uses her complete
input alphabet.

These examples motivate that always all input symbols should be used with
some non-zero probability. In the following we first sketch our protocol for gen-
eration of correlated data, then we introduce some algebraic structure that ab-
stractly represents how a corrupted party can deviate from the protocol; finally
we argue that there always is an OT-core that is “robust” against all such cheat-
ing strategies.

Our protocol for generating correlated data basically proceeds as follows:

1. Invocation of F : Alice and Bob call the underlying 2-party function F
with randomized input for k times (k being the security parameter) and
record their respective input-output tuples. A protocol parameter assigns
what probability mass functions are to be used.

2. Control A: Alice challenges Bob on some polynomial subset of the recorded
data, where he has to reveal his input-output tuples. Alice aborts the proto-
col if Bob obviously lies (i.e. his announcement is inconsistent with Alice’s
recorded input-output tuples) or his input distribution appears faulty. The
test set is then removed from the recorded data.

3. Control B: This step equals the previous one with interchanged roles of
Alice and Bob.
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4. Output: Both parties announce where they have used input symbols that
were only for test purposes. All corresponding elements are removed from
the recorded input-output tuples by both parties. When too much of the
recorded data has been deleted, the protocol is aborted; else each party
outputs its remaining string of recorded input-output tuples.

We call this scheme offline protocol, since after the protocol step Invocation of
F never again access to F is needed.

At this point we want to emphasize that although offline protocols are not
completely symmetric in Alice and Bob, all of our arguments are. This convenient
circumstance is predicated on the fact that a corrupted party only can get some
polynomially small advantage by adversarial choice of the test set in protocol step
Control A or Control B respectively. Our protocol in Sec. 3.2 for reduction
of OT to correlated data is robust against such polynomially small advantages.

Now we define and investigate a class of functions η : ΥA×Υ 2
B → IR≥0 that

characterize how a corrupted Bob may cheat in an offline protocol. For symmetry
reasons our results will directly carry over to the case that Alice is corrupted. Our
intuition is that η(x, y, y′) quantifies the relative frequency of events in protocol
step Control A, where F was invoked with input (x, y), but Bob successfully
claims that he did input y′. We call such functions cheating situations. For con-
venience we use the notation η(X,Y, Y ′) :=

∑
x∈X,y∈Y,y′∈Y ′ η(x, y, y′) for any

X ⊆ ΥA, Y, Y ′ ⊆ ΥB. Also for convenience, we speak of a situation (x, y)F when
we mean that F was called with input x from Alice and input y from Bob. We
have the following six conditions to cheating situations:

1. It holds that η(ΥA, ΥB, ΥB) = 1.
2. For all x ∈ ΥA it holds that η(x, ΥB, ΥB) > 0, i.e. Alice did use her complete

input alphabet.
3. For all x ∈ ΥA, y ∈ ΥB it holds that η(x, y, ΥB) = η(x, ΥB, ΥB) · η(ΥA, y, ΥB),

i.e. Bob’s actual input distribution is independent of Alice’s input
distribution.

4. For all x ∈ ΥA, y′ ∈ ΥB it holds that η(x, ΥB, y′) = η(x, ΥB, ΥB)·η(ΥA, ΥB, y′),
i.e. Bob’s claimed input distribution appears independent of Alice’s input
distribution.

5. (a) For all x ∈ ΥA, y, y′ ∈ ΥB with fA(x, y) �= fA(x, y′) it holds that
η(x, y, y′) = 0; else in the test step Control A Bob would be caught
cheating immediately.

(b) For all x, x′ ∈ ΥA, y, y′ ∈ ΥB that fulfill fB(x, y) = fB(x′, y) and
fB(x, y′) �= fB(x′, y′), it holds that η(x, y, y′) = η(x′, y, y′) = 0; else
Bob would run an overwhelming risk of being caught cheating, since he
cannot distinguish between situations (x, y)F and (x′, y)F but must per-
fectly distinguish between these situations in the test step Control A.

Given some 2-party function F ∈ Ffin,det, the set NF of all according cheating
sitations has a very handy algebraic structure. On the one hand, cheating situa-
tions can be considered independent of (honest) Alice’s input distribution, since
they can canonically be rescaled to every input distribution that has non-zero
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probability for all x ∈ ΥA. On the other hand, when we fix Alice’s input distri-
bution, i.e. for all x ∈ ΥA the η(x, ΥB, ΥB) are fixed, then our six conditions can
be subsumed by a linear equation system, i.e. the set of all remaining cheating
situations is a convex and bounded polytope in the linear space IRΥA×Υ 2

B .
Also the abovementioned conditions 5a and 5b play a fundamental role in our

proofs. Therefore we sum them up by an extra notation. Given F = (ΥA, ΥB, ΩA,

ΩB, fA, fB) ∈ Ffin,det and x ∈ ΥA, y, y′ ∈ ΥB, let (x, y) F� (x, y′) denote that the
following two conditions are fulfilled:

– It holds that fA(x, y) = fA(x, y′).
– For all x̃ ∈ ΥA with fB(x, y) = fB(x̃, y) it holds that fB(x, y′) = fB(x̃, y′).

The intuition behind that notation is that Bob can claim a situation (x, y)F to
be a situation (x, y′)F , iff (x, y) F� (x, y′). At least he cannot do so too often,
if (x, y) � F� (x, y′). For all cheating situations η and all x ∈ ΥA, y, y′ ∈ ΥB with
(x, y) � F� (x, y′) it holds that η(x, y, y′) = 0.

Note that the “ F�”-relation links cheating situations to redundancy matters,
since an input symbol y′ ∈ ΥB is redundant, iff there exists some y ∈ ΥB\{y′}
with (x, y) F� (x, y′) for all x ∈ ΥA. In other words, the “ F�”-relation describes
some kind of “local redundancy”.

Given that Alice is uncorrupted, for every non-aborted run of an offline pro-
tocol there exists with overwhelming probability some cheating situation η, such
that up to some polynomially small error the mappings (x, y) (→ η(x, ΥB, y) and
(x, y) (→ η(x, y, ΥB) describe the prescribed and the actual joint input distri-
bution to the underlying 2-party function respectively. Thus we have to look
for some kind of “robust” OT-cores (x̃, x̃′, ỹ, ỹ′), so that there does not ex-
ist any essentially non-trivial cheating situation η with η(ΥA, ΥB, {ỹ, ỹ′}) = 1.
More concretely, we will show that whenever a redundancy-free 2-party function
F ∈ Ffin,det has any OT-core (x̃, x̃′, ỹ, ỹ′), then F also has an OT-core (x̃, x̃′, ȳ, ȳ′),
such that for every cheating situation η with η(ΥA, ΥB, {ȳ, ȳ′}) = 1 it holds that
η(ΥA, ΥB, y) = η(ΥA, y, ΥB) for all y ∈ ΥB, i.e. Bob practically cannot lie about
his actual input distribution when he is demanded to use no other input symbols
than ȳ, ȳ′.

Note that Alice’s input symbols x̃, x̃′ have remained the same; hence in a
second step we can analogously find an OT-core (x̄, x̄′, ȳ, ȳ′) that is also “robust”
against all relevant cheating attempts of Alice and stays “robust” against a
possibly malicious Bob.

Given an OT-core (x̃, x̃′, ỹ, ỹ′) of a redundancy-free 2-party function F ∈
Ffin,det, we can find an OT-core with the desired “robustness” by just picking
some ȳ, ȳ′ ∈ ΥB, such that (x̃, x̃′, ȳ, ȳ′) is an OT-core and the following set has
minimum size (q.v. Fig. 7):

Φ(ȳ, ȳ′) :=
{
y ∈ ΥB

∣∣ ∀x ∈ ΥA : (x, y) F� (x, ȳ) ∨ (x, y) F� (x, ȳ′)
}

Intuitively spoken, within an offline protocol that assigns high input probability
only to ȳ, ȳ′ Bob cannot use any input symbol y ∈ ΥB \Φ(ȳ, ȳ′) too often; at
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0 1 2 3 4 5
0 0/0 0/0 0/0 0/0 0/0 1/∗
1 0/0 1/0 1/0 0/0 0/1 ∗/∗
2 0/1 0/1 0/1 0/1 0/2 ∗/∗
3 0/1 0/1 0/1 0/2 0/2 ∗/∗
4 0/2 0/1 0/1 0/2 0/2 ∗/∗
5 0/3 0/2 0/2 0/3 0/3 ∗/∗
6 0/3 0/2 0/3 0/3 0/3 ∗/∗
7 0/3 0/3 0/3 0/3 0/3 ∗/∗

Fig. 7. Example for illustration of the construction of Φ and Y, Y ′. From the first two
rows one can infer that (0, 1, 0, 1) is an OT-core and Φ(0, 1) ⊆ {0, 1, 2, 3, 4}, regardless of
the wildcards “∗”. The other six rows just make the function redundancy-free, but still
allow that Φ(0, 1) ⊇ {0, 1, 2, 3, 4}. Thereby, for the OT-core in the upper left corner we
have that Φ(0, 1) = {0, 1, 2, 3, 4} and Y = {0, 3} and Y ′ = {1, 2, 4}. However, we would
not pick this OT-core but (0, 1, 0, 4) or (0, 1, 3, 4) instead, since Φ(0, 4) = Φ(3, 4) =
{0, 3, 4} � Φ(0, 1), as Alice can distinguish between {0, 3, 4} and {1, 2} by her output
in the second row. Note that analogously Φ(1, 2) = {1, 2}, but (0, 1, 1, 2) is not an
OT-core.

least for some specific x ∈ ΥA he practically cannot claim a situation (x, y)F
to be (x, ȳ)F or (x, ȳ′)F without being caught cheating. In general it will not
necessarily hold that Φ(ȳ, ȳ′) = {ȳ, ȳ′}, nonetheless we can show now that the
chosen OT-core (x̃, x̃′, ȳ, ȳ′) is “robust” in the abovementioned sense. So, let
some arbitrary cheating situation η with η(ΥA, ΥB, {ȳ, ȳ′}) = 1 be given. By the
following eight steps we show that η(ΥA, ΥB, y) = η(ΥA, y, ΥB) for all y ∈ ΥB.

1. Since the “ F�”-relation is transitive, we observe that Φ(y, y′) ⊆ Φ(ȳ, ȳ′) for
all y, y′ ∈ Φ(ȳ, ȳ′).

2. We want to exploit the minimality of Φ(ȳ, ȳ′), but it yields that
∣∣Φ(ȳ, ȳ′)

∣∣ ≤∣∣Φ(y, y′)
∣∣ only in case that (x̃, x̃′, y, y′) is an OT-core. However, note that

fA(x̃, ȳ) = fA(x̃, ȳ′), since (x̃, x̃′, ȳ, ȳ′) is an OT-core. Furthermore, for all
y ∈ Φ(ȳ, ȳ′) by definition of Φ we especially have that (x̃, y) F� (x̃, ȳ) or
(x̃, y) F� (x̃, ȳ′), what in turn implies that fA(x̃, y) = fA(x̃, ȳ) or fA(x̃, y) =
fA(x̃, ȳ′). Putting things together, we can conclude that fA(x̃, y) = fA(x̃, y′)
for all y, y′ ∈ Φ(ȳ, ȳ′). Therefore, by the following construction we can split
Φ(ȳ, ȳ′) into disjoint subsets Y, Y ′, such that (x̃, x̃′, y, y′) actually is an OT-
core for all y ∈ Y , y′ ∈ Y ′. We define (q.v. Fig. 7):

Y :=
{
y ∈ Φ(ȳ, ȳ′)

∣∣ fA(x̃′, ȳ) = fA(x̃′, y) ∧ fB(x̃, y) = fB(x̃′, y)
}

Y ′ :=
{
y′ ∈ Φ(ȳ, ȳ′)

∣∣ fA(x̃′, ȳ) �= fA(x̃′, y′) ∨ fB(x̃, y′) �= fB(x̃′, y′)
}

Now, by the minimality of Φ(ȳ, ȳ′) and our observation in step 1 it follows
that Φ(ȳ, ȳ′) = Φ(y, y′) for all y ∈ Y , y′ ∈ Y ′.
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3. Now, for each (x, ŷ) ∈ ΥA×Φ(ȳ, ȳ′) at least one of the following assertions
must hold true:

∀y ∈ Y : (x, ŷ) F� (x, y) ∀y′ ∈ Y ′ : (x, ŷ) F� (x, y′)

Otherwise we had some x ∈ ΥA, ŷ ∈ Φ(ȳ, ȳ′), y ∈ Y , y′ ∈ Y ′, such that
(x, ŷ) � F� (x, y) and (x, ŷ) � F� (x, y′) and thereby ŷ /∈ Φ(y, y′), what would be
a contradiction to ŷ ∈ Φ(ȳ, ȳ′) = Φ(y, y′) (cf. the final sentence of step 2).

4. For every ŷ ∈ Φ(ȳ, ȳ′) \ {ȳ} we find some x ∈ ΥA, such that (x, ŷ) � F� (x, ȳ)
and ∀y′ ∈ Y ′ : (x, y′) � F� (x, ȳ).

This follows from our observation in step 3, F being redundancy-free and
the transitivity of the “ F�”-relation. Since F is redundancy-free, we find
some x ∈ ΥA, such that (x, ŷ) � F� (x, ȳ). This not only is one part of the
claim above, but it also yields by step 3 that (x, ŷ) F� (x, y′) for all y′ ∈ Y ′,
since ȳ ∈ Y by construction of Y . Now, if we could find any y′ ∈ Y ′ with
(x, y′) F� (x, ȳ), in contradiction to our choice of x this would imply that
(x, ŷ) F� (x, ȳ), due to the transitivity of the “ F�”-relation.

5. For all ŷ ∈ Φ(ȳ, ȳ′) \ {ȳ} we have that η(ΥA, Y \{ŷ}, ΥB) ≥ η(ΥA, ΥB, ȳ), i.e.
Bob’s claimed input frequency of ȳ cannot be greater than his actual overall
input frequency of symbols in Y \{ŷ}.

Otherwise we could find some ŷ ∈ Φ(ȳ, ȳ′) \ {ȳ}, such that η(x, ΥB, ȳ) >
η(x, Y \ {ŷ}, ΥB) for all x ∈ ΥA (cf. the conditions 3 and 4 to cheating
situations). However, by step 4 we can choose x such that Bob cannot
claim any situation (x, y′)F with y′ ∈ Y ′ ∪ {ŷ} to be a situation (x, ȳ)F ;
the same holds for y′ ∈ ΥB \Φ(ȳ, ȳ′) by definition of Φ. He may do so
only for situations (x, y′)F with y′ ∈ Y \ {ŷ}, but these are too few, as
η(x, ΥB, ȳ) > η(x, Y \{ŷ}, ΥB).

6. We observe that η(ΥA, ΥB\Φ(ȳ, ȳ′), ΥB) = 0, since η(ΥA, ΥB, {ȳ, ȳ′}) = 1 by
assumption, i.e. η(ΥA, ΥB, ΥB\{ȳ, ȳ′}) = 0, and η(ΥA, ΥB\Φ(ȳ, ȳ′), {ȳ, ȳ′}) = 0
by construction of Φ.

7. For every ŷ′ ∈ Φ(ȳ, ȳ′)\{ȳ′} we have that η(ΥA, Y ∪{ŷ′}, ΥB) ≤ η(ΥA, ΥB, ȳ),
i.e. Bob’s claimed input frequency of ȳ cannot be less than his actual overall
input frequency of symbols in Y ∪ {ŷ′}.

Since the assertion of step 3 is symmetric in Y and Y ′, analogously to step 4
for every ŷ′ ∈ Φ(ȳ, ȳ′)\{ȳ′} we find some x ∈ ΥA, such that ∀y ∈ Y ∪ {ŷ′} :
(x, y) � F� (x, ȳ′). We can use that to prove the analog of step 5: For every ŷ′ ∈
Φ(ȳ, ȳ′)\ {ȳ′} we have that η(ΥA, Y ′\{ŷ′}, ΥB) ≥ η(ΥA, ΥB, ȳ′). Moreover, we
have that η(ΥA, Φ(ȳ, ȳ′), ΥB) = 1 by step 6 and that η(ΥA, ΥB, {ȳ, ȳ′}) = 1 by
assumption. Conclusively, for all ŷ′ ∈ Φ(ȳ, ȳ′)\{ȳ′} we get that η(ΥA, ΥB, ȳ) =
1− η(ΥA, ΥB, ȳ′) ≥ 1− η(ΥA, Y ′\{ŷ′}, ΥB) = η(ΥA, Y ∪ {ŷ′}, ΥB).

8. By combination of step 5 and step 7, for all ŷ, ŷ′ ∈ Φ(ȳ, ȳ′) with ŷ′ �= ȳ′ and
ŷ �= ȳ we can now conclude that η(ΥA, Y ∪ {ŷ′}, ΥB) ≤ η(ΥA, Y \{ŷ}, ΥB).
This can be exploited as follows. On the one hand, we can choose ŷ = ȳ′, i.e.
Y \{ŷ} = Y , whereby for all ŷ′ ∈ Y ′\{ȳ′} it follows that η

(
ΥA, ŷ′, ΥB

)
≤ 0,

i.e. η
(
ΥA, Y ′\{ȳ′}, ΥB

)
= 0. On the other hand, we can choose ŷ′ = ȳ, i.e.
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Y ∪{ŷ′} = Y , whereby for all ŷ ∈ Y \{ȳ} it follows that η
(
ΥA, ŷ, ΥB

)
≤ 0, i.e.

η
(
ΥA, Y \{ȳ}, ΥB

)
= 0. Conclusively, using that η(ΥA, ΥB\Φ(ȳ, ȳ′), ΥB) = 0 by

step 6, we get that η
(
ΥA, ΥB\{ȳ, ȳ′}, ΥB

)
= 0, i.e. η

(
ΥA, {ȳ, ȳ′}, ΥB

)
= 1. Now,

since η
(
ΥA, ΥB, {ȳ, ȳ′}

)
= 1 by assumption and neither ȳ nor ȳ′ is redundant,

one can infer rather straightforwardly that η(ΥA, ΥB, y) = η(ΥA, y, ΥB) for all
y ∈ ΥB, as claimed.

3.2 Reduction of OT to Correlated Data

We now sketch a protocol that implements OT from the correlated data produced
by an appropriate offline protocol. Within this sketch we also informally argue
for the protocol’s security. Given a redundancy-free 2-party function F that has
some OT-core (x̃, x̃′, ỹ, ỹ′), the protocol proceeds as follows:

0. W.l.o.g. we may assume that the OT-core (x̃, x̃′, ỹ, ỹ′) is of the first or last
type in Fig. 3; else we interchange the roles of Alice and Bob. W.l.o.g. we
also assume that Alice’s and Bob’s actual input and output symbols coincide
with that of Fig. 3, i.e. x̃ = ỹ = 0 and so on. Furthermore, w.l.o.g. we assume
that (x̃, x̃′, ỹ, ỹ′) is a “robust” OT-core, whose existence we have shown in
Section 3.1.

1. Alice and Bob execute an offline protocol (as sketched in Section 3.1), where
the probability mass functions nA and nB that stand for Alice’s and Bob’s
prescribed input distribution respectively, are such that nA(0) ≈ 1

3 and
nA(1) ≈ 2

3 and nB(0) ≈ nB(1) ≈ 1
2 . Note that in general these will not be the

exact input probabilities, as for meaningful tests in the protocol steps Con-
trol A and Control B we still need all other inputs to be used with some
polynomial frequency. However, for growing security parameter the relative
frequency of the other inputs may polynomially converge to zero. Further
note that even if a party is corrupted, its actual input distribution in non-
aborted protocol runs must be polynomially close to honest behaviour, since
(x̃, x̃′, ỹ, ỹ′) was chosen to be a “robust” OT-core.

2. We want to handle all possible types of OT-cores analogously, therefore we
let Alice announce where she got output “1”. All corresponding input-output
tuples are deleted from the recorded data by both parties. When Alice tries
to delete too little, Bob aborts the protocol. He also aborts the protocol when
he has to delete some input-output tuple other than

(
1, fB(1, 1)

)
. Since Alice

cannot distinguish between situations (0, 0)F and (0, 1)F , this forces her to
play honestly up to some polynomially small fraction of the recorded data.

3. Now most of the remaining input-output tuples belong to situations (0, 0)F ,
(0, 1)F , (1, 0)F . Since all according outputs are “0”, it suffices that Alice and
Bob henceforth only keep track of their recorded input strings. Note that
at this stage about one quarter of the remaining recorded data belongs to
situations (0, 0)F , one quarter to (0, 1)F and one half to (1, 0)F .

4. Alice deletes some elements from her recorded input string, such that af-
terwards the string is balanced (i.e. it contains the same number of “0”s
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and “1”s). She annonces the corresponding indices to Bob, who deletes the
according elements from his recorded data. If Alice tries to delete too much,
Bob aborts the protocol.

5. Alice randomly permutes her recorded input string, such that afterwards
each element at an odd possition is different from its subsequent element.
She announces the permutation to Bob, who permutes his input string ac-
cordingly. Thereby their input strings become strings of pairs (each starting
at an odd position), such that a pair “01” or “10” on Bob’s side indicates
the respective inverted pair “10” or “01” on Alice’s side and a pair “00” on
Bob’s side gives him no information about the pair on Alice’s side. If Bob
finds a pair “11” (starting at an odd position), he aborts the protocol. Note
that about half of Bob’s pairs are “00”, one quarter is “01” and one quarter
is “10”.

Further note that primarily there is only one way Alice may get some
additional information about where Bob has “00”-pairs: She chooses the
permutation adversarially, so that some “11”-pairs are produced on her side.
However, since her input string is roughly balanced since the beginning of
step 3, she must produce roughly as much “00”-pairs as “11”-pairs on her side
and for each “00”-pair she is caught cheating by Bob with probability 1

2 . So
even a corrupted Alice may know at most polynomially few positions where
Bob has “00”-pairs.

6. Since Bob now can reconstruct about half of Alice’s input string and Alice
has only few information about where exactly Bob can do that, we can
treat the recorded data like the result of Rabin-OT calls and adapt standard
reduction techniques3. To that effect we rename Alices input string into a
string of half length over the alphabet {0, 1} and accordingly for Bob over
the alphabet {0, 1,⊥}; in particular the renaming is “01” (→“0”, “10” (→“1”
on Alice’s side and “10” (→“0”, “01” (→“1”, “00” (→“⊥” on Bob’s side. When a
party cheated, we can represent that by a special symbol “)” in that party’s
string. However, the symbol “)” may occur only with some polynomial
relative frequency, say less than k−γ . Let κ := &k1−γ!.

7. Now, let b0, b1 ∈ {0, 1} be Alice’s
(2
1

)
-OT input and let c ∈ {0, 1} be

Bob’s choice bit. Alice chooses two random bit strings b̃0, b̃1 ∈ {0, 1}κ with⊕κ
j=1 b̃0[j] = b0 and b̃0[j] ⊕ b̃1[j] = b0 ⊕ b1 for j = 1, . . . , κ. Bob chooses a

random bit string c̃ ∈ {0, 1}κ with
⊕κ

j=1 c̃[j] = c.
8. Alice and Bob respectively partition their recorded input strings into κ con-

secutive substrings of equal length l with l as large as possible; remaining
elements are just discarded. Let s̃

(j)
A denote Alices j-th substring and s̃

(j)
B

Bob’s j-th substring. Note that by our choice of κ at least one of the s̃
(j)
A does

not contain the symbol “)”. Further note that for each s̃
(j)
B about half of the

3 Note that due to a subtle issue we cannot directly apply the results of [5,9,29] for
reduction of OT to weak OT; e.g. in our case a corrupted Alice can choose to learn
some prefix of Bob’s string. In contrast, weak OT does not allow the adversary to
influence when exactly additional information is leaked.
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contained elements equal “⊥”, because of the permutation at the beginning
of step 3.

For j = 1, . . . , κ now the following subprotocol is executed:
(a) Bob chooses some disjoint random sets K

(j)
0 ,K

(j)
1 ⊆ {1, . . . , l} of equal

cardinality
⌈
l
3

⌉
, such that no element of s̃

(j)
B indexed by K

(j)
c̃[j] is “⊥”.

He announces
(
K

(j)
0 ,K

(j)
1

)
to Alice. Note that Alice does not get any

information about at least one of the c̃[j], since the corresponding s̃
(j)
A

does not contain the symbol “)”. Hence she stays ignorant of Bob’s
choice bit c.

(b) For i = 0, 1 Alice uses the XOR of the elements in s̃
(j)
A indexed by K

(j)
i

as a one-time pad for b̃i[j]. She sends the according cyphertexts to Bob,
who learns b̃c̃[j][j] by reconstructing the needed one-time pad from s̃

(j)
B .

Note that for each j Bob cannot get some information about both bits
b̃0[j], b̃1[j] at the same time, since more than one third of the elements
in s̃

(j)
B equals “⊥”. Hence he may learn at most one of Alice’s

(2
1

)
-OT

inputs b0, b1.
9. Alice outputs the nothing symbol “⊥” and Bob computes and outputs bc =⊕κ

j=1 b̃c̃[j][j]. Correctness of Bob’s output can be shown by induction on the
Hamming weight of c̃.

We conclude our work with some remarks about how one can prove universal
composability of this protocol, i.e. that it is simulatable in the ideal model (q.v.
Section 2.1). Access to the underlying 2-party function F is in the ideal model
only simulated, so the simulator can compute all the s̃

(j)
A or s̃

(j)
B respectively and

hence extract the OT input of a corrupted Alice or Bob. Moreover, when Bob
is corrupted, the simulator can fake a real protocol run that matches the ideal
Alice’s inputs b0, b1 as follows: Just before step 8b is entered the κ-th time, the
simulator inputs the extracted choice bit c into the ideal functionality FOT, thus
learning bc, and then revises b̃0[κ] and b̃1[κ] accordingly.

4 Conclusion

In this paper we showed that there is a wide class of primitives that have not
been covered by existing completeness criteria, namely all 2-party functions that
are essentially neither symmetric nor asymmetric. We solved this open problem
by presenting simple but comprehensive criteria that combinatorially classify all
complete deterministic 2-party functions with finite input and output alphabets.
We proved constructively that our criteria are sufficient in the UC framework,
which is the most restrictive common notion of security we know. Our crite-
ria also turn out necessary even with respect to very weak notions of security.
Therefore we consider them valid for virtually all reasonable security notions.

A remarkable corollary of our work is that every non-complete deterministic
2-party function with finite input and output alphabets is essentially symmetric.
Thereby we extended the results of [21,22,20] to non-symmetric 2-party func-
tions. The questions treated there become trivial for complete primitives and
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we have shown that every essentially non-symmetric 2-party function actually is
complete.

Acknowledgements. We want to thank Mike Rosulek and the anonymous
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Abstract. There are protocols to privately evaluate any function in
the passive (honest-but-curious) setting assuming that the honest nodes
are in majority. For some specific functions, protocols are known which
remain secure even without an honest majority. The seminal work by
Chor and Kushilevitz [7] gave a complete characterization of Boolean
functions, showing that each Boolean function either requires an honest
majority, or is such that it can be privately evaluated regardless of the
number of colluding nodes.

The problem of discovering the threshold for secure evaluation of more
general functions remains an open problem. Towards a resolution, we pro-
vide a complete characterization of the security threshold for functions
with three different outputs. Surprisingly, the zero-one law for Boolean
functions extends to Z3, meaning that each function with range Z3 either
requires honest majority or tolerates up to n colluding nodes.

1 Introduction

Multi-party secure function evaluation (SFE) is a cornerstone of modern cryp-
tography, and has been extensively studied since it was introduced by Yao [15].
In this work we consider the joint evaluation by n parties of a public n-ary func-
tion f in such a way that no collusion of parties learns anything more than what
they do by knowing their own inputs and seeing the output. We consider the
symmetric case where all participants receive the same output.

Several models of adversaries occur in the SFE literature. A first distinction
is whether the adversary has limited computational power (computational se-
curity) or not (information-theoretic security). A second important distinction
is whether the parties corrupted by the adversary must still follow the protocol
(passive) or not (active). In the present work, we are concerned with information-
theoretic security and all adversaries considered are passive. We assume that the
parties communicate over a complete network with private channels, meaning
that the adversary cannot see messages sent between two honest parties.

Another important limitation put upon the adversary is which parties she can
corrupt. The most common adversary is allowed to corrupt up to a threshold
t ≤ n participants for some t which is typically a function of n. We say that a
function for which there is a protocol tolerating up to t corruptions is t-private. In
this paper, we will only consider threshold adversaries. More general adversarial
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models have also been studied, both in terms of a more general specification of
the parties the adversary can corrupt by Hirt and Maurer [10] and considering a
mix active and passive adversarial corruptions by Beerliová-Trubíniová et al. [2].

There exist protocols to securely evaluate any function (n− 1)/2�-privately
in our setting by Ben-Or, Goldwasser, and Wigderson [3], and Chaum, Crépeau,
and Damgård [4]. For some functions, in particular Boolean disjunction, this
has been proved to be an upper bound meaning that there are no protocols
to evaluate them which remain secure against more than (n − 1)/2� colluding
parties. For other functions, in particular summation over a finite Abelian group,
there are n-private protocols. This raises the question of determining the privacy
threshold of functions.

Chor and Kushilevitz [7] completely answered the question for Boolean func-
tions. They proved a zero-one law showing that each Boolean function is either
(n− 1)/2�-private (and not &n/2!-private) or n-private. Their work presents a
proof that a function containing an OR-like substructure (an embedded OR) is
(n− 1)/2�-private and that all Boolean functions without such a substructure
can be computed by a single Boolean summation.

Proving that a function f cannot be t-privately computed is often done by a
partition argument, reducing to the two-party case. In these proofs, the parties
are partitioned into two parts of size ≤ t and we think of f as a two-party
function with each party supplying all inputs for one set of the partition. If the
two-party function is not 1-private, then f is not t-private. Chor and Ishai [6]
analyzed partition arguments and gave a generalization partitioning the parties
into k > 2 sets which increases the power of the framework. However, in this
paper, we will only need partitioning arguments with two sets.

Chor, Geréb-Graus, and Kushilevitz [5] showed that for every t, &n/2! ≤ t ≤
n− 2 there exists a function such that it is t-private but not (t + 1)-private. We
remark that the functions they construct in their proofs have very large ranges
which grow exponentially with t.

The privacy of symmetric1 functions with Boolean arguments has been studied
by Chor and Shani [9]. For such functions, they prove a necessary condition on
the preimages of outputs for the function to be &n/2!-private. They also define
a class called dense symmetric functions where this necessary condition is also
sufficient for n-privacy. Thus, they also prove a zero-one law where for a class
of functions, where each function in the class is either n-private or not &n/2!-
private.

For two-party computation, a complete characterization of the 1-private func-
tions was made independently by Beaver [1] and Kushilevitz [14]. They both
show that a function f is 1-private if and only if it is decomposable, and for
decomposable functions, there is a straightforward 1-private protocol. One of
our protocols, Protocol 3, can be viewed as a generalization of the protocol for
decomposable functions to the multi-party case.

1 Here, symmetric means the standard notion of a symmetric function, not the SFE-
specific notion that all parties receive the same output.
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Künzler, Müller-Quade, and Raub [13] give a combinatorial classification
of functions computable in several different adversarial models, including the
information-theoretic passive model which we work with in this paper. However,
in this setting, they consider the broadcast model of communication which gives
different results from private channels. For instance, summation is not n-private
in the broadcast channel model.

1.1 Our Contribution

In this work, we extend the zero-one law of Boolean privacy to functions with
three outputs. For notational convenience, we talk about functions with range
Z3, but we would like to emphasize our results do not depend on any algebraic
structure over the range of the function. More formally, we prove the following
statement:

Theorem 1 (Main theorem). For every n-argument function f : A1 × . . .×
An → Z3, f is either n-private, or it is (n−1)/2�-private and not &n/2!-private.

The core part of our proof is a structure lemma (Lemma 8) showing that every
function f with range Z3 must have at least one of three properties (which we
define more formally later):

– f has an embedded OR
– f is a permuted sum
– f is collapsible.

We provide protocols for n-privately evaluating those functions of the two latter
types which do not contain an embedded OR.

Our definition of an embedded OR is a generalization of the one commonly
found in the literature, but the presence of one implies that there is no protocol
which can securely evaluate f and tolerate more than t colluding parties for some
t (but potentially for a t > &n/2!).

Finally, we prove (Theorem 22) that the existence of an embedded OR (in our
generalized sense) also implies the existence of a “small” embedded OR, giving
t = &n/2!. By combining this result with our structure lemma and the result
from [7] that a function with an embedded OR of size at most &n/2! cannot be
&n/2!-privately computed, our main theorem follows. We state the proof more
formally in Section 6.

We remark that while our statements are true for n = 2, there are complete
classifications [1,14] for the 2-party case which are simpler than ours (for n = 2,
our protocols reduce to decomposition) and not limited to functions with range
Z3. Our contribution lies in the case when n ≥ 3.

The proof of our theorems are significantly more involved than the analogous
proofs for Boolean functions. In several of our proofs we need to apply a fairly
extensive case analysis.

Our result answers in part a question raised by Chor and Ishai [6] by showing
that partition reductions (with only two sets) are universal for proving non-
privacy of functions mapping to Z3.
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2 Notation and Preliminary Theorems

We use boldface letters to refer to vectors, like: x, y. We work with functions
with range Z3, and use the three Greek letters α, β, and γ to denote the three
different outputs of the function. We take as convention that the three represent
distinct outputs (so α �= β �= γ). Sometimes we need to discuss an output as
being not α, which we denote by � α.

In the proceeding discussion, we often need to discuss the behavior of a sub-
function when keeping some subset of its arguments fixed. To simplify this dis-
cussion, we introduce some notation. For disjoint S1, S2, S3 ⊆ [n] we define

fa
{S1}(x) def= f({xi}i∈S1 , {ai}i∈SC

1
)

fa
{S1,S2}(x,y) def= f({xi}i∈S1 , {yi}i∈S2 , {ai}i∈(S1∪S2)C )

fa
{S1,S2,S3}(x,y, z) def= f({xi}i∈S1 , {yi}i∈S2 , {zi}i∈S3 , {ai}i∈(S1∪S2∪S3)C ) .

We sometimes consider singleton sets S1, S2, S3 and then denote them simply by
their only element, with some abuse of notation. That is,

fa
{i}(x) def= f(a1, . . . , ai−1, x, ai+1, . . . , an)

fa
{i,j}(x, y) def= f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an) ,

and analogously for fa
{i,j,k}(x, y, z) and fa

{i,j,k,l}(x, y, z, w).
We need to describe details of functions’ behaviors, and adopt a geometric

viewpoint. In the proofs, we speak of inputs as being neighbors and of rows, di-
agonals, and rectangles and induced rectangles in the function table. By neigh-
bors we mean points at Hamming distance 1. By a row, we mean the values
taken by the function fixing all but one values, i.e. the values fa

{i}(x) for all
x ∈ A1 with a fixed i and a which are clear from the context. By a rectangle, we
mean the values fe

{S1,S2}(a, c), fe
{S1,S2}(a,d), fe

{S1,S2}(b, c), fe
{S1,S2}(b,d). Note

that a rectangle by this definition is a high-dimensional structure. By induced
rectangle, we mean a rectangle as before but where |S1| = |S2| = 1, thus looking
like a rectangle in the function table. We only use the concept of a diagonal of
a 2 × 2 induced rectangle. For fixed inputs a and dimensions i, j we say that
fa
{i,j}(x1, y1), fa

{i,j}(x2, y2) is a diagonal for x1 �= x2 and y1 �= y2.

Definition 1 (Redundant inputs). For an n-argument function f , we say
that inputs x, y, x �= y are redundant for player k if for all a it holds that
fa
{k}(x) = fa

{k}(y).

Definition 2 (Normalized function). An n-argument function f with no re-
dundant inputs for any player is said to be normalized.

We take as convention that all functions are normalized. This assumption is
without loss of generality as a function can easily be normalized by for each
set of redundant inputs removing all but one. A protocol for evaluating the
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normalized function can be used to evaluate the original function as well by
performing the same procedure.

To prove Theorem 1, we make use of a theorem by Chor and Kushilevitz [7]
which states that there is no 1-private protocol for a 2-party computation of
disjunction. Through standard simulation techniques, this gives impossibility
results for multi-party protocols of functions containing an OR-like substructure.
This is commonly referred to as an embedded OR, or a corner. We formally
define an embedded OR and then restate their result. For a two-party function,
the definition is straightforward:

Definition 3 (Embedded OR (2 parties)). We say that a two-argument
function f contains an embedded OR if there exists inputs x1, x2, y1, y2 (x1 �=
x2, y1 �= y2) such that f(x1, y1) = f(x1, y2) = f(x2, y1) �= f(x2, y2).

However, when considering the n-party case, the definition of an embedded OR
becomes slightly more complex. In particular, we need our definition to capture
the size of the collusion required to realize an embedded OR, as that size also
limits the impossibility result that follows from the existence of such an em-
bedded OR. To this end, we define an embedded OR as having a degree k. We
remark that Kilian et al. [11] define an embedded OR as one of degree 1. Much of
the previous literature has mostly been concerned with Boolean functions, and
then, the existence of an embedded OR (of any degree) implies the existence of
one of degree 1, as proved in [11]. However, for functions with larger ranges, the
situation is more complex, as shown by our Theorem 22.

Definition 4 (Embedded OR (n parties, induced, generalized), corner-
free). We say that an n-argument function f contains an embedded OR of degree
k if there exists disjoint subsets S1, S2 ⊂ [n] where |S1|, |S2| ≤ k, and values
a such that the two-argument function f ′(x,y) = fa

{S1,S2}(x,y) contains an
embedded OR. We refer to an embedded OR of degree 1 as an induced embedded
OR, and one of degree greater than 1 as a generalized embedded OR. A function
without an embedded OR (of any degree) is said to be corner-free.

With the definitions in place, we are ready to restate a result by Chor and
Kushilevitz [7]. The result we need was not presented as a separate lemma in
their paper, but instead follows as a corollary from two of their lemmas which
we restate in simplified form.

Lemma 2 (Partition lemma, [7]). Let f : A1×. . .×An → R be &n/2!-private.
Then for every subset S1 of size &n/2!, the two-argument function f ′(x,y) =
f{S1,SC

1 }(x,y) is 1-private.

Lemma 3 (Corners lemma, [7]). A two-argument function is not 1-private
if it contains an embedded OR.

Corollary 4. A function containing an embedded OR of degree at most &n/2!
is not &n/2!-private.

We also make use of [7, Theorem 4] which states that a corner-free Boolean
function can be expressed as a Boolean sum:
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Theorem 5 ([7]). For a corner-free Boolean function f there are functions fi
such that f(x1, . . . , xn) =

∑n
i=1 fi(xi) where the sum is computed modulo 2.

We formally restate the theorem from [11] showing that a generalized embedded
OR in a Boolean function implies an induced embedded OR. In our terminology:

Theorem 6 ([11]). A Boolean function f containing an embedded OR contains
an embedded OR of degree 1.

We show functions and subfunctions which depend on up to 4 arguments. To be
able to draw them, we show 2-dimensional projections separated by lines with
vertical lines indicating a 3rd dimension and horizontal lines indicating a 4th

dimension. We present sample function in Figure 1, showing a function which
contains an embedded OR of degree 2 but does not contain an embedded OR of
degree 1. The highlighted embedded OR occurs with the subsets S1 = {P1, P3}
and S2 = {P2, P4} with inputs (2, 1) and (1, 2) for S1 and (1, 1) and (2, 2) for
S2. As the function is drawn, the coalition S1 in the embedded OR controls the
horizontal position, and S2 controls the vertical position.

0 1 1 2
1 0 2 1
2 0 0 1
0 2 1 0

Fig. 1. An example function containing an embedded OR of degree 2 (highlighted)

We use the following lemma which we believe is well-known. A proof is in-
cluded in the full version of this paper [12].

Lemma 7. If an n-argument function f : A1 × . . . × An → G, where G is an
Abelian group, has the property that for every pair of dimensions j, k and inputs
x1, x2, y1, y2,a the following equality holds:

fa
{j,k}(x1, y1) + fa

{j,k}(x2, y2) = fa
{j,k}(x1, y2) + fa

{j,k}(x2, y1), (1)

then f can be rewritten as f(x1, . . . , xn) =
∑n

i=1 fi(xi).

3 A Structure Lemma

The main step towards proving Theorem 1 is the establishment of a structure
lemma for functions with range Z3. Thus, we turn toward some global properties
of functions (as opposed to the comparatively local property of the existence
of an embedded OR). The first such property captures the case when we can
split the range of a function into two parts, and compute a Boolean sum to
discover which part the output lies in. If we can then proceed with further
such subdivisions until we arrive at a single possible output, this immediately
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gives a protocol to compute f . We prove that this further subdivision is always
possible for corner-free f with range Z3 in Lemma 21. We remark that this is a
further generalization of the multi-party decomposability defined in [13], which
in turn was a generalization of 2-party decomposability defined in [14]. We show
a collapsible function and the generalized decomposition of it in Figure 2.

Definition 5 (Collapsible). We say that a function f : A1 × . . .An → R is
collapsible if there is a subset R′, ∅ ⊂ R′ ⊂ R such that the Boolean function

f ′(x) =
{

1 if f(x) ∈ R′

0 otherwise

does not contain an embedded OR and can thus be n-privately computed. We
refer to f ′ as being collapsed.

For a collapsible function f with range Z3 if f is collapsible we can choose R′

with two elements α, β and say that f is collapsible by collapsing α and β.

0 1 2 2 2 0
1 0 2 2 2 1
2 2 0 1 0 2

(a) Collapsible f

1 1 0 0 0 1
1 1 0 0 0 1
0 0 1 1 1 0

(b) f collapsed

Fig. 2. An example collapsible function and the collapsed function

Summation in a finite Abelian group is a function which is known to be n-
private [8]. In a summation, the effect of one party’s input can be thought of as
applying a permutation to the sum of the other parties’ inputs. We generalize
this by defining a permuted sum where we give one of the parties a special role
and let her input select an arbitrary permutation to be applied to the sum of
the other parties’ inputs. All functions which are sums, i.e. can be rewritten as∑n

i=1 fi(xi), are also permuted sums. In our applications, the sum may be a
Boolean sum or over Z3. We show two example functions which are permuted
sums in Figure 3

Definition 6 (Permuted sum). We say that a function is a permuted sum
if it can be written as πxi(

∑
j �=i fj(xj)) where πx is a permutation. We refer to

party i as the permuter.

With these definitions, we are now ready to state and prove our structure lemma:

Lemma 8 (Structure lemma). For every normalized n-argument function
f : A1 × . . .×An → Z3, at least one of the following holds:

– f has an embedded OR
– f is a permuted sum
– f is collapsible
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0 0 1 1 2 2
1 2 0 2 0 1

(a) f

0 1 2 0 2 1 1 0 2
1 2 0 2 1 0 0 2 1
2 0 1 1 0 2 2 1 0

(b) g

Fig. 3. Two example permuted sums. In f , party 2 (selecting column) is the permuter
selecting one of the 6 permutations. The function g = πx3(x1 + x2) where π1 is the
identity permutation, π2 = (12) and π3 = (01).

We present protocols for n-privately evaluating permuted sums (Protocol 2) and
collapsible functions (Protocol 3) which do not contain an embedded OR. In
Theorem 22 we show that if f contains an embedded OR, it also contains a
small embedded OR. This, together with Corollary 4 concludes the proof of our
Theorem 1.

To prove the structure lemma, we perform a case-analysis based on a property
of f we call a link:

Definition 7 (Link, link-free). We say that an n-argument function has a
link ( over output α) in dimension k if there exists inputs x, y, x �= y, and a
such that α = fa

{k}(x) = fa
{k}(y). We say that f has links in c dimensions if

there are precisely c distinct k such that f has a link in dimension k. We say
that a function is link-free if it has no links.

Lemma 9. In a corner-free n-argument function f : A1 × . . . × An → Z3, if
there are links between inputs x and y in dimension k over two distinct outputs,
then x and y are redundant for player k.

Proof. Let f have links over α and β between inputs x and y in dimension k.
That is, there exists values a, b such that fa

{k}(x) = fa
{k}(y) = α, and fb

{k}(x) =
fb
{k}(y) = β. Suppose that for some c we have fc

{k}(x) �= fc
{k}(y) . Then one of

fc
{k}(x) and fc

{k}(y) equals α or β. If one of them is α then f has an embedded
OR with S1 = {k}, S2 = {k}C using inputs (x, y) and (a, c). If one is β then f
has an embedded OR with S1 = {k}, S2 = {k}C using inputs (x, y) and (b, c).

	


Looking at the proof of Lemma 9 we begin to see the importance of the small
range of the function to the analysis. It also highlights the added complexities
compared to the Boolean case, as for a Boolean function any link implies that
two inputs are redundant. From the lemma and its proof follow two corollaries
about normalized functions with range Z3:

Corollary 10. For a normalized n-argument function f : A1 × . . . × An →
Z3 with a link over α in dimension k for inputs x, y, for all a, we have that
fa
{k}(x) uniquely determines fa

{k}(y). More specifically, the possible combinations
of values are (α, α); (β, γ); (γ, β).

Proof. Follows from the proof of Lemma 9. 	
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Corollary 11. A normalized n-argument function f : A1 × . . . × An → Z3
cannot have links over α in dimension k for inputs x, y, and x, z.

Proof. By Corollary 10 the value at x determines the value at both y and z and
hence inputs y and z are redundant. 	


Analogously to an embedded OR, we introduce notation for the various 2 × 2
substructures in a function. Apart from the embedded OR, two of them feature
prominently in our proofs. Firstly, a 2×2 substructure with one output occurring
on the diagonal, and the two other values occurring once each on the opposite
diagonal is called Aff3. Secondly, a 2 × 2 substructure where one output is on
one diagonal, and another is on the other is referred to as an XOR. For the XOR,
we also define the type of an XOR as the pair (without order) of outputs in the
XOR. All the substructures which can occur (up to symmetries) are depicted in
Figure 4. A 2× 2 substructure where only one output occurs is called constant,
and if we want to emphasize that it is the output α which occurs, we write
(α)-constant.

α α
α α

(a) Constant

α α
α β

(b) OR

α α
β β

(c) 2-link

α α
β γ

(d) Link

α β
β α

(e) XOR

α β
γ α

(f) Aff3

Fig. 4. The six 2 × 2 substructures

Definition 8 (Type of an XOR). If an XOR consists of outputs α and β we
say that it is an XOR of type (α, β), denoted (α, β)-XOR. The order of elements
is not important, so for functions to Z3 there are three possible types of XOR:
(α, β), (α, γ), (β, γ).

Our name Aff3 comes from the fact that it can be expressed as an affine function
modulo 3, analogously to the fact that XOR can be expressed as a sum modulo
2. We do not need that it is affine, but we make use of the fact that a function
where all subfunctions are of the form Aff3 can be written as a sum on the form∑n

i=1 fi(xi) with summation in Z3.

Lemma 12. An n-argument corner-free function f : A1 × . . .× An → Z3 such
that all 2× 2 subfunctions are of the form Aff3 can be expressed as

∑n
i=1 fi(xi)

with summation in Z3.

Proof. By Lemma 7 we need to verify that (1) holds for all 2× 2 subfunctions,
which are all of the form Aff3. For all ways of assigning 0, 1 and 2 (distinctly) to
α, β, γ we have that 2α ≡ β + γ (mod 3). As 2 ≡ −1 (mod 3) this is equivalent
to α + β + γ ≡ 0 (mod 3). 	


In our proof of Lemma 8 we consider the substructures occurring in f . We begin
by establishing three preliminary lemmas. The lemmas come into play primarily
in cases when f contains links in few dimensions (none or one), and if f has
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an XOR spanned by dimensions i, j and f is link-free in those dimensions, then
|Ai| = |Aj | = 2, giving some intuition for the condition on the size of the two
inputs in the lemmas. We highlight the proof idea for each of the lemmas and
give full proofs in the appendix.

Lemma 13. Let f be an n-argument corner-free function f : A1×. . .×An → Z3
with i, j such that |Ai| = |Aj | = 2 such that for all a, fa

{i,j} is an XOR. If all
three types of XOR’s occur then there is a dimension k such that the input in
dimension k determines the type of XOR.

Proof (Idea). We show that if no such k exists then f contains an embedded
OR. Full proof in Section A.1. 	

Lemma 14. Let f be an n-argument corner-free function f : A1×. . .×An → Z3
with i, j such that |Ai| = |Aj | = 2 and an output α such that for all a precisely
one diagonal of fa

{i,j} has two α’s. Then f is collapsible.

Proof (Idea). If f is not collapsible then the collapsed function contains an em-
bedded OR. We show that this implies an embedded OR in f as well. Full proof
in Section A.2. 	

Lemma 15. An n-argument corner-free function f : A1 × . . .× An → Z3 with
i, j such that |Ai| = |Aj | = 2 and such that for some a, fa

{i,j} is an Aff3 and for
some b, fb

{i,j} is an XOR is collapsible.

Proof (Idea). We prove that f fulfills the conditions of Lemma 14. Full proof in
Section A.3. 	

Our proof of Lemma 8 proceeds in three separate lemmas, depending on whether
the function f is link-free (Lemma 16), has links in one dimension (Lemma 17),
or if it has links in two or more dimensions (Lemma 18). As the proofs are long
and consist mainly of case analysis, we simply state the lemmas here. The proof
of the first lemma is given in the appendix, and the two others in the full version
of this paper [12].

Lemma 16. Every n-argument link-free, corner-free function f : A1 × . . . ×
An → Z3 is collapsible or a permuted sum.

Proof (Idea). Case analysis showing we can apply one of Lemma 13, Lemma 14
and Lemma 15. Full proof in Section A.4 	

Lemma 17. Every n-argument function f : A1 × . . .×An → Z3 with links in 1
dimension and without an embedded OR is collapsible or a permuted sum.

Proof (Idea). Case analysis showing we can apply one of Lemma 13, Lemma 14
and Lemma 15. Proof in the full version of this paper [12]. 	

Lemma 18. Every n-argument function f : A1 × . . .×An → Z3 with links in 2
or more dimensions and without an embedded OR is collapsible.

Proof (Idea). We show that all links must be over the same output. This gives
some implications for the substructures of f which we use to show f must be
collapsible. Proof in the full version of this paper [12]. 	
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4 Protocols

With the structure lemma established, we can now turn to the question of n-
private protocols for collapsible functions and permuted sums. From the defi-
nitions of the two classes, we have two natural and easy protocols. The main
problem we need to address in this section is proving the existence of a protocol
for collapsible functions. For a function which is collapsible by collapsing β and
γ it is clear from the definition that we can n-privately evaluate if the output is
α or if it is one of β and γ. The key issue is to prove that we can then proceed
with a second step where we can n-privately evaluate whether the output is β
or if it is γ.

The construction of this second step relies on the passive model of adversaries
and the knowledge that the output of the function is not α. Thus, in our second
step we compute a sum which may have different outputs at points where the
original function had α’s. Such a construction is inherently insecure with active
adversaries, as they may switch inputs between the first step of the decompo-
sition and the second and would then learn some information about the other
parties’ inputs.

In both of our protocols we use a subprotocol by Chor and Kushilevitz [8]
for n-private summation over any finite Abelian group. For completeness, we
include a description of their protocol as Protocol 1. When used in our protocol
for a permuted sum, the summation is either Boolean or in Z3 depending on the
function f (but not on the inputs).

Protocol 1 (Summation [8]). The protocol for summation where party Pi
participates with input xi proceeds as follows:

1. In round 1 ≤ i ≤ n − 2, party Pi sums all its received messages, wi =∑i−1
j=1 zj,i. Then, it chooses random group elements zi,i+1, zi,i+2, . . . , zi,n−1.

Finally, it computes zi,n such that xi + wi =
∑n

j=i+1 zi,j and sends zi,j to
Pj (j > i).

2. In round n−1, party Pn−1 computes zn−1,n = xn−1+
∑n−2

j=1 zj,n−1 and sends
zn−1,n to Pn.

3. In round n, party Pn computes the sum s as s = xn +
∑n−1

j=1 zj,n.

All sums are computed over some fixed finite Abelian group.

Protocol 2 (Permuted sum). The protocol for evaluating a permuted sum
f , where party Pi (without loss of generality we assume the permuter is party
n) participates with input xi proceeds as follows:

1. Use Protocol 1 to privately compute s =
∑n−1

j=1 fj(xj) such that only the
permuter learns s.

2. The permuter computes the output as πxn(s) and sends it to the other
parties.

The sum is computed modulo 2, or 3, depending on f .
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Protocol 3 (Collapsible). The protocol for evaluating a function f collapsible
with partition R′ = {γ}, where party Pi participates with input xi proceeds as
follows:

1. Use Protocol 1 to compute s =
∑n

i=1 fi(xi) (mod 2), with fi such that s = 1
iff f(x) = γ

2. If s = 0, compute s′ =
∑n

i=1 gi(xi) (mod 4), with gi such that f(x) = α
implies s′ = 0, and f(x) = β implies s′ = 2.

The correctness of Protocol 2 follows immediately from the definition of a per-
muted sum. In Protocol 3, since f is collapsible, the functions fi exist by the
definition of a collapsible function. However, the existence of appropriate gi is
not as straightforward. We prove, constructively, in Lemma 21 that they always
exist for corner-free collapsible functions with range Z3. We stress that the choice
of gi does not depend on the input x, but only on the function f .

The privacy of both these protocols is straightforward, and we only sketch the
arguments.

Theorem 19. Protocol 2 is n-private.

Proof. The subprotocol used for summation was proven to be n-private in [8].
Due to the structure of the function, we see that the permuter, Pn, learns the
sum s from f(x) and xn, since s = π−1

xn
(f(x)). 	


Theorem 20. Protocol 3 is n-private.

Proof. The subprotocol used for summation was proven to be n-private in [8].
When the output is γ then, by the privacy of the summation sub-protocol,
the protocol is private. Furthermore, when the output is one of α, β, then the
privacy of the composed protocol also follow directly from the privacy of the
subprotocols. The first sum only reveals that the output is one of α, β, and then,
the condition on gi is sufficient to guarantee that the sum s′ reveals nothing but
whether the output is α or β, as with a passive adversary we are guaranteed
that s′ is either 0 or 2. 	


While the privacy is straightforward, the proof that there are functions gi as
required by Protocol 3 is rather involved and we simply state the lemma here
and give the proof in [12]. One may intuitively expect that such functions could
simply be Boolean, but it turns out that for some f we do need the full range
of Z4.

Lemma 21. Protocol 3 can evaluate all corner-free, collapsible functions with
range Z3.

Proof (Idea). We construct a function g such that f(x) = α =⇒ g(x) = 0
and f(x) = β =⇒ g(x) = 2. By case analysis on the induced rectangles in g,
we show that g satisfies the conditions of Lemma 7 and hence there are gi as
required by Protocol 3. Proof in the full version of this paper [12]. 	




394 G. Kreitz

5 An Embedded OR Implies a Small Embedded OR

Previously, we have often assumed that functions are free of embedded OR’s
of any degree (i.e., that they are corner-free). However, to be able to apply
Corollary 4 we need to show that a sufficiently small embedded OR exists.

For Boolean functions f , if f has an embedded OR of any degree, then it
also has an embedded OR of degree 1, as proved in [11], explaining the zero-one
nature of Boolean privacy.

It turns out that for functions with range Z3, similarly to the Boolean case,
the presence of a large embedded OR implies that the function also contains a
small one. We state the theorem here and give the proof in [12].

Theorem 22. Every n-argument function f : A1× . . .An → Z3 that has an em-
bedded OR of any degree has an embedded OR of degree at most 3. Furthermore,
every 4-argument function f : A1 × A2 × A3 × A4 → Z3 that has an embedded
OR, also has one of degree at most 2.

Proof (Idea). The basic idea is similar to that used in the proof of Theorem 6.
However, while the boolean case is fairly straightforward, our proof results in a
fairly extensive case analysis. Proof in the full version of this paper [12]. 	


6 Proof of the Main Theorem

We now conclude by re-stating our main theorem and presenting the proof.

Theorem 23 (Main theorem). For every n-argument function f : A1× . . .×
An → Z3, f is either n-private, or it is (n−1)/2�-private and not &n/2!-private.

Proof. If f is corner-free, then by Lemma 8 it is a permuted sum, collapsible, or
both. Thus, it can be n-privately computed by Protocol 2 or Protocol 3.

If f is not corner-free, then by Theorem 22 it contains an embedded OR of
degree at most &n/2!. Thus, by Corollary 4, f is not &n/2!-private. 	
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A Proofs

A.1 Proof of Lemma 13

Lemma 24. Let f be an n-argument corner-free function f : A1×. . .×An → Z3
with i, j such that |Ai| = |Aj | = 2 such that for all a, fa

{i,j} is an XOR. If all
three types of XOR’s occur then there is a dimension k such that the input in
dimension k determines the type of XOR.

Proof. We assume that there is an (α, β)-XOR and an (α, γ)-XOR at Hamming
distance 1. We denote the dimension by which they differ by k and relabel the
inputs in dimension k such that fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR and fa
{i,j,k}(·, ·, 2)

is an (α, γ)-XOR.
We proceed to show that there is no b such that fb

{i,j,k}(·, ·, 1) or fb
{i,j,k}(·, ·, 2)

is a (β, γ)-XOR. Assume to the contrary that there is a b such that fb
{i,j,k}(·, ·, 1)

is a (β, γ)-OR (the case if it occurs at input 2 in dimension k is analogous). We

http://www.eprint.iacr.org/
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α β α γ
β α γ α

γ β
β γ

Fig. 5. Illustration of a contradiction in the proof of Lemma 13

illustrate this case in Figure 5 where we for simplicity show b as differing from
a in only one dimension, which is not something we assume in the proof.

What values can the function take at fb
{i,j,k}(1, 1, 2)? We claim that any output

at that position would violate the assumption that f is corner-free. In Figure 5
we can see why this is true for a simple function (writing α, β or γ anywhere
in the missing 2 × 2 field can be verified to result in an embedded OR). For
brevity, we only discuss the case when fb

{i,j,k}(1, 1, 2) = α here (the other cases
are almost identical and the core idea is captured by Figure 5). Proofs of all
three cases are given in the full version of this paper [12].

Assume fb
{i,j,k}(1, 1, 2) = α. Then we can find y (equal to 1 or 2) such that

fa
{i,j,k}(1, y, 2) = α as fa

{i,j,k}(·, ·, 2) is an (α, γ)-XOR. We can also find x such that
fa
{i,j,k}(x, y, 1) = α as fa

{i,j,k}(·, ·, 1) is an (α, β)-XOR. However, as fb
{i,j,k}(·, ·, 1)

is a (β, γ)-XOR we are guaranteed that fb
{i,j,k}(x, 1, 1) �= α. Thus, f contains an

embedded OR with S1 = {i, k} and S2 = SC1 using (1, 2); (x, 1) on S1 and y; 1
or j and a; b on the rest of S2.

We now conclude that there is no b such that fb
{i,j,k}(·, ·, 1) or fb

{i,j,k}(·, ·, 2)
is a (β, γ)-XOR. As f has all types of XOR’s, there must still be a (β, γ)-XOR in
the function. Thus, we see that |Ak| ≥ 3, and we can assume there is a b such
that fb

{i,j,k}(·, ·, 3) is a (β, γ)-XOR.
We claim that fa

{i,j,k}(·, ·, 3) must be a (β, γ)-XOR. To see this we observe that
if it was another type of XOR, then by the same proof that showed that there is
no (β, γ)-XOR for k = 1, 2 we could have shown that there was not (β, γ)-XOR
for k = 3, but we know that fb

{i,j,k}(·, ·, 3) is a (β, γ)-XOR. We now see that for
a given xk, all XOR’s must be of the same type as that at fa

{i,j,xk}(·, ·, k) which
concludes our proof. 	


A.2 Proof of Lemma 14

Lemma 25. Let f be an n-argument corner-free function f : A1×. . .×An → Z3
with i, j such that |Ai| = |Aj | = 2 and an output α such that for all a precisely
one diagonal of fa

{i,j} has two α’s. Then f is collapsible.

Proof. We claim that f is collapsible by collapsing β and γ. To prove this we
show that the collapsed function

g(x) =
{

1 if f(x) ∈ {β, γ}
0 if f(x) = α
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does not contain an embedded OR of degree 1. Then by Theorem 6 we have
that g is corner-free and Theorem 5 implies that the collapsed function can be
written as a Boolean sum.

We begin by observing that as each 2 × 2 plane spanned by dimensions i, j
contains exactly one diagonal with α’s, each such 2× 2 plane contains two α’s,
as if it had three α’s it would be an embedded OR and if it had four α’s both
diagonals would have two α’s. We further make the observation that a pair of
neighboring outputs in dimension i (and analogously in j) are such that exactly
one of them is α. More formally, for all c if fc

{i}(1) = α then fc
{i}(2) �= α and if

fc
{i}(1) �= α then fc

{i}(2) = α.
As g is Boolean, by Theorem 6 we know that if g has an embedded OR (of any

degree), it also has an embedded OR of degree 1. We assume by contradiction that
there is an embedded OR of degree 1 in g. We reorder inputs and dimensions such
that the embedded OR is spanned by dimensions 1, 2 using inputs (1, 2); (1, 2),
with other inputs as a. We say that ga

{1,2} is an embedded OR with slight abuse
of notation (as |A1| or |A2| could be greater than 2). We see that the embedded
OR cannot have three 1’s as g takes the value 0 where f takes the value α, so
an embedded OR with three 0’s corresponds to an embedded OR with three α
in f , which is corner-free. Thus, the embedded OR must have three 1’s.

From our observation we know that each 2× 2 plane in g spanned by i, j has
two 0’s, so there cannot be an OR in g with three 1’s spanned by dimensions i, j.
Thus, at least one of i and j must be different from both 1 and 2. We assume
i �= 1, 2 and reorder inputs such that the embedded OR occurs when xi = 1. Let
b be a with the value at xi removed.

We now consider what values occur at fb
{1,2,i}(·, ·, 2). We know that of the

four outputs of fb
{1,2,i}(·, ·, 1) one is α and three are different from α. But by our

observation, this implies that of the four outputs of fb
{1,2,i}(·, ·, 2) three are α and

one is different from α. This concludes our proof as it shows that an embedded
OR in g implies an embedded OR in f which we assumed to be corner-free. 	


A.3 Proof of Lemma 15

Lemma 26. An n-argument corner-free function f : A1 × . . .× An → Z3 with
i, j such that |Ai| = |Aj | = 2 and such that for some a, fa

{i,j} is an Aff3 and for
some b, fb

{i,j} is an XOR is collapsible.

Proof. Let the output that appears twice in fa
{i,j} be α, and reorder inputs such

that fa
{i,j}(1, 1) = fa

{i,j}(2, 2) = α.
We now claim that fb

{i,j}(1, 2) = fb
{i,j}(2, 1) = α. As fb

{i,j} is an XOR we know
that fb

{i,j}(1, 2) = fb
{i,j}(2, 1). If fb

{i,j}(1, 2) = fb
{i,j}(2, 1) ∈ {β, γ} then there is

an embedded OR with S1 = {i, j} and S2 = SC1 as using inputs (1, 2); (2, 1) on
S1 and a; b on S2. We assume the other diagonal of the XOR consists of β’s,
i.e. fb

{i,j}(1, 1) = fb
{i,j}(2, 2) = β, and that fa

{i,j}(1, 2) = β, fa
{i,j}(2, 1) = γ. This

is without loss of generality as we can relabel outputs and switch the roles of
parties 1 and 2.
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α β
γ α

(a) fa
{i,j}

β α
α β

(b) fb
{i,j}

Fig. 6. An XOR and Aff3 in f . The outputs involved in proving that f has no links in
dimension i are highlighted.

We claim that the function f cannot have any links in dimensions i or j. To
see this for dimension i, we see that fa

{i,j}(1, 1) = α and fa
{i,j}(2, 1) = γ but also

fb
{i,j}(1, 2) = α and fb

{i,j}(2, 2) = β. Thus, the value of fc
{i}(2) is not a function

of the value of fc
{i}(1) for all c and the contrapositive form of Corollary 10 gives

that f cannot have a link between inputs 1 and 2 in dimension i. Similarly
for dimension j, we have that fa

{i,j}(2, 2) = α and fa
{i,j}(2, 1) = γ, but also

fb
{i,j}(1, 2) = α and fb

{i,j}(1, 1) = β. This demonstrates that fc
{j}(1) is not a

function of fc
{j}(2) for all c, and by the contrapositive form of Corollary 10,

there is no link between inputs 2 and 1 in dimension j.
We proceed by proving that for all c precisely one of the two diagonals of fc

{i,j}
contains two α’s. What are the possible values for (fc

{i,j}(1, 2), fc
{i,j}(2, 1))? We

proved (when c = b but we made no use of any properties of b) that they cannot
be (β, β) or (γ, γ). Furthermore, as fb

{i,j}(1, 2) = fb
{i,j}(2, 1) = α it cannot be

that precisely one of the values is α, as then f would have an embedded OR
with S1 = {i, j} and S2 = SC1 using inputs (1, 2); (2, 1) on S1 and b; c on S2.
Thus the only remaining possibilities are (α, α); (β, γ); (γ, β). As f has no links in
dimension i or j we see that in the first case neither fc

{i,j}(1, 1) nor fc
{i,j}(2, 2) can

equal α. In the two latter cases we have again by the link-freeness in dimensions
i and j that fc

{i,j}(1, 1) = fc
{i,j}(2, 2) = α. By Lemma 14 we have that f is

collapsible as claimed. 	


A.4 Proof of Lemma 16

Lemma 27. Every n-argument link-free, corner-free function f : A1 × . . . ×
An → Z3 is collapsible or a permuted sum.

Proof. For a link-free and corner-free function, only two types of induced rect-
angles are possible: XOR and Aff3. If f contains an XOR spanned by dimensions
i and j, then |Ai| = |Aj | = 2 since f is link-free.

We proceed with a case analysis. If f does not contain an XOR, then we select
the first case. Otherwise, we pick an arbitrary XOR occurring in f and fix the
dimensions i and j spanning it, and denote by a a set of inputs such that fa

{i,j}
is an (α, β)-XOR (if f has an XOR, we can relabel outputs such that there is an
(α, β)-XOR). When we have fixed dimensions i, j we select among the four last
cases of our proof based only on the 2× 2-planes spanned by dimensions i, j.

Case 1: Only Aff3 (all dimensions). If all induced rectangles of f are of the form
Aff3, then f satisfies the condition of Lemma 12 and is a (permuted) sum.
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Case 2: Both XOR and Aff3 (spanned by i, j). By Lemma 15, f is collapsible.
Case 3: Only XOR, one type of XOR (spanned by i, j). If only one type of XOR’s

occur, then f is a Boolean corner-free function and by Theorem 5 we have that
f is a sum, and thus also a permuted sum.

Case 4: Only XOR, two types of XOR (spanned by i, j). We assume that f
contains XOR’s of types (α, β) and (α, γ). Then α occurs on exactly one diagonal
of all 2× 2 planes spanned by dimensions i, j and by Lemma 14 f is collapsible
by collapsing β and γ.

Case 5: Only XOR, three types of XOR (spanned by i, j). By Lemma 13 we see
that there must be a dimension k such that the input in dimension k determines
the type of the XOR. Reorder inputs such that for input 1 in dimension k the
2×2-planes spanned by i and j are (α, β)-XOR’s. We let a = (1) and S1 = {k}C
and see that fa

{S1} is a Boolean corner-free function. Thus, Theorem 5 implies
that fa

{S1}(x1, . . . , xk−1, xk+1, . . . , xn) =
∑

i�=k fi(xi) with the sum computed
modulo 2.

We claim that f is a permuted sum with Pk as the permuter and the sum
computed modulo 2. To see this, we prove that for all xk ∈ Ak and for all inputs
b we have fb

{k}(xk) = πxk
{fb

{k}(1)}. As f is link-free, we have that fb
{k}(xk) �=

fb
{k}(1). If xk is such that the 2× 2-planes spanned by dimensions 1 and 2 when

the input in dimension k is xk are (α, β)-XOR then this means that fb
{k}(1) =

α =⇒ fb
{k}(xk) = β and fb

{k}(1) = β =⇒ fb
{k}(xk) = α. Similarly if the XOR’s

are (α, γ)-XOR’s fb
{k}(1) = α =⇒ fb

{k}(xk) = γ, and as the 2 × 2-planes are
XOR’s we have fb

{k}(1) �= α =⇒ fb
{k}(xk) = α. The case for xk with (β, γ)-

XOR’s is analogous, concluding the proof. 	
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Abstract. Assuming the existence of one-way functions, we show that there
is no polynomial-time, differentially private algorithm A that takes a database
D ∈ ({0, 1}d)n and outputs a “synthetic database” D̂ all of whose two-way
marginals are approximately equal to those of D. (A two-way marginal is the
fraction of database rows x ∈ {0, 1}d with a given pair of values in a given pair
of columns). This answers a question of Barak et al. (PODS ‘07), who gave an
algorithm running in time poly(n, 2d).

Our proof combines a construction of hard-to-sanitize databases based on dig-
ital signatures (by Dwork et al., STOC ‘09) with encodings based on probabilis-
tically checkable proofs.
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1 Introduction

There are many settings in which it is desirable to share information about a database
that contains sensitive information about individuals. For example, doctors may want
to share information about health records with medical researchers, the federal gov-
ernment may want to release census data for public information, and a company like
Netflix may want to provide its movie rental database for a public competition to de-
velop a better recommendation system. However, it is important to do this in way that
preserves the “privacy” of the individuals whose records are in the database. This pri-
vacy problem has been studied by statisticians and the database security community for
a number of years (cf., [1,8,15]), and recently the theoretical computer science com-
munity has developed an appealing new approach to the problem, known as differential
privacy. (See the surveys [10,9]).
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Differential Privacy. A randomized algorithm A is defined to be differentially pri-
vate [11] if for every two databases D = (x1, . . . , xn), D′ = (x′

1, . . . , x
′
n) that differ on

exactly one row, the distributionsA(D) andA(D′) are “close” to each other. Formally,
we require thatA(D) andA(D′) assign the same probability mass to every event, up to
a multiplicative factor of eε ≈ 1 + ε, where ε is typically taken to be a small constant.
(In addition to this multiplicative factor, it is often allowed to also let the probabilities
to differ by a negligible additive term). This captures the idea that no individual’s data
has a significant influence on the output of A (provided that data about an individual
is confined to one or a few rows of the database). Differential privacy has several nice
properties lacking in previous notions, such as being agnostic to the adversary’s prior
information and degrading smoothly under composition.

With this model of privacy, the goal becomes to design algorithms A that simul-
taneously meet the above privacy guarantee and give “useful” information about the
database. For example, we may have a true query function c in which we’re interested,
and the goal is to designA that is differentially private (with ε as small as possible) and
estimates c well (e.g. the error |A(D) − c(D)| is small with high probability). For ex-
ample, if c(D) is the fraction of database rows that satisfy some property — a counting
query — then it is known that we can take A(D) to equal c(D) plus random Laplacian
noise with standard deviation O(1/(εn)), where n is the number of rows in the database
and ε is the measure of differential privacy [5]. A sequence of works [7,13,5,11] has pro-
vided a very good understanding of differential privacy in an interactive model in which
real-valued queries c are made and answered one at a time. The amount of noise that
one needs when responding to a query c should be based on the sensitivity of c, as well
as the total number of queries answered so far.

However, for many applications, it would be more attractive to do a noninteractive
data release, where we compute and release a single, differentially private “summary”
of the database that enables others to determine accurate answers to a large class of
queries. What form should this summary take? The most appealing form would be
a synthetic database, which is a new database D̂ = A(D) whose rows are “fake”,
but come from the same universe as those of D and are guaranteed to share many
statistics with those of D (up to some accuracy). Some advantages of synthetic data are
that it can be easily understood by humans, and statistical software can be run directly
on it without modification. For example, these considerations led the German Institute
for Employment Research to adopt synthetic databases for the release of employment
statistics [25].

Previous Results on Synthetic Data. The first result on producing differentially private
synthetic data came in the work of Barak et al. [3]. Given a database D consisting of n
rows from {0, 1}d, they show how to construct a differentially private synthetic database
D̂, also of n rows from {0, 1}d, in which the full “contingency table,” consisting of all
conjunctive counting queries, is approximately preserved. That is, for every conjunction
c(x1, . . . , xn) = xi1 ∧ xi2 ∧ · · · ∧ xik for i1, . . . , ik ∈ [d], the fraction of rows in D̂
that satisfy c equals the fraction of rows in D that satisfy c up to an additive error
of 2O(d)/n. The running time of their algorithm is poly(n, 2d), which is feasible for
small values of d. They pose as an open problem whether the running time of their
algorithm can be improved for the case where we only want to preserve the k-way
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marginals for small k (e.g. k = 2). These are the counting queries corresponding to
conjunctions of up to k literals. Indeed, there are only O(d)k such conjunctions, and we
can produce differentially private estimates for all the corresponding counting queries
in time poly(n, dk) by just adding noise O(d)k/n to each one. Moreover, a version of
the Barak et al. algorithm [3] can ensure that even these noisy answers are consistent
with a real database1.

A more general and dramatic illustration of the potential expressiveness of syn-
thetic data came in the work of Blum, Ligett, and Roth [6]. They show that for ev-
ery class C = {c : {0, 1}d → {0, 1}} of predicates, there is a differentially pri-
vate algorithm A that produces a synthetic database D̂ = A(D) such that all count-
ing queries corresponding to predicates in C are preserved to within an accuracy of
Õ((d log(|C|)/n)1/3), with high probability. In particular, with n = poly(d), the syn-
thetic data can provide simultaneous accuracy for an exponential-sized family of queries
(e.g. |C| = 2d). Unfortunately, the running time of the BLR mechanism is also expo-
nential in d.

Dwork et al. [12] gave evidence that the large running time of the BLR mechanism
is inherent. Specifically, assuming the existence of one-way functions, they exhibit an
efficiently computable family C of predicates (e.g. consisting of circuits of size d2) for
which it is infeasible to produce a differentially private synthetic database preserving
the counting queries corresponding to C (for databases of any n = poly(d) number
of rows). For non-synthetic data, they show a close connection between the infeasibil-
ity of producing a differentially private summarization and the existence of efficient
“traitor-tracing schemes.” However, these results leave open the possibility that for nat-
ural families of counting queries (e.g. those corresponding to conjunctions), producing
a differentially private synthetic database (or non-synthetic summarization) can be done
efficiently. Indeed, one may have gained optimism by analogy with the early days of
computational learning theory, where one-way functions were used to show hardness
of learning arbitrary efficiently computable concepts in computational learning theory
but natural subclasses (like conjunctions) were found to be learnable [29].

Our Results. We prove that it is infeasible to produce synthetic databases preserving
even very simple counting queries, such as 2-way marginals:

Theorem 1. Assuming the existence of one-way functions, there is a constant γ > 0
such that for every polynomial p, there is no polynomial-time, differentially private
algorithm A that takes a database D ∈ ({0, 1}d)p(d) and produces a synthetic database
D̂ ∈ ({0, 1}d)∗ such that |c(D)− c(D̂)| ≤ γ for all 2-way marginals c.

(Recall that a 2-way marginal c(D) computes the fraction of database rows satisfying
a conjunction of two literals, i.e. the fraction of rows xi ∈ {0, 1}d such that xi(j) = b
and xi(j′) = b′ for some columns j, j′ ∈ [d] and values b, b′ ∈ {0, 1}). In fact, our
impossibility result extends from conjunctions of 2 literals to any family of constant
arity predicates that contains a function depending on at least two variables, such as
parities of 3 literals.

1 Technically, this “real database” may assign fractional weight to some rows.
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As mentioned earlier, all 2-way marginals can be easily summarized with non-
synthetic data (by just adding noise to each of the (2d)2 values). Thus, our result shows
that requiring a synthetic database may severely constrain what sorts of differentially
private data releases are possible. (Dwork et al. [12] also showed that there exists a
poly(d)-sized family of counting queries that are hard to summarize with synthetic
data, thereby separating synthetic data from non-synthetic data. Our contribution is to
show that such a separation holds for a very simple and natural family of predicates,
namely 2-way marginals).

This separation between synthetic data and non-synthetic data seems analogous to
the separations between proper and improper learning in computational learning the-
ory [24,16], where it is infeasible to learn certain concept classes if the output hypoth-
esis is constrained to come from the same representation class as the concept, but it
becomes feasible if we allow the output hypothesis to come from a different represen-
tation class. This gives hope for designing efficient, differentially private algorithms
that take a database and produce a compact summary of it that is not synthetic data
but somehow can be used to accurately answer exponentially many questions about the
original database (e.g. all marginals). The negative results of [12] on non-synthetic data
(assuming the existence of efficient traitor-tracing schemes) do not say anything about
natural classes of counting queries, such as marginals.

To bypass the complexity barrier stated in Theorem 1, it may not be necessary
to introduce exotic data representations; some mild generalizations of synthetic data
may suffice. For example, several recent algorithms [6,27,14] produce several synthetic
databases, with the guarantee that the median answer over these databases is approxi-
mately accurate. More generally, we can consider summarizations of a database D that
that consist of a collection D̂ of rows from the same universe as the original database,
and where we estimate c(D) by applying the predicate c to each row of D̂ and then ag-
gregating the results via some aggregation function f . With standard synthetic data, f is
simply the average, but we may instead allow f to take a median of averages, or apply
an affine shift to the average. For such relaxed synthetic data, we prove the following
results:

– There is a constant k such that counting queries corresponding to k-juntas (func-
tions depending on at most k variables) cannot be accurately and privately sum-
marized as relaxed synthetic data with a median-of-averages aggregator, or with a
symmetric and monotone aggregator (that is independent of the predicate c being
queried).

– For every constant k, counting queries corresponding to k-juntas can be accurately
and privately summarized as relaxed synthetic data with an aggregator that applies
an affine shift to the average (where the shift does depend on the predicate being
queried).

Techniques. Our proof of Theorem 1 and our other negative results are obtained by
combining the hard-to-sanitize databases of Dwork et al. [12] with PCP reductions.
They construct a database consisting of valid message-signature pairs (mi, σi) under a
digital signature scheme, and argue that any differentially private sanitizer that preserves
accuracy for the counting query associated with the signature verification predicate can
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be used to forge valid signatures. We replace each message-signature pair (mi, σi) with
a PCP encoding πi that proves that (mi, σi) satisfies the signature verification algo-
rithm. We then argue that if accuracy is preserved for a large fraction of the (constant
arity) constraints of the PCP verifier, then we can “decode” the PCP either to violate pri-
vacy (by recovering one of the original message-signature pairs) or to forge a signature
(by producing a new message-signature pair).

We remark that error-correcting codes were already used in [12] for the purpose
of producing a fixed polynomial-sized set of counting queries that can be used for
all verification keys. Our observation is that by using PCP encodings, we can reduce
not only the number of counting queries in consideration, but also their computational
complexity.

Our proof has some unusual features among PCP-based hardness results:

– As far as we know, this is the first time that PCPs have been used in conjunction with
cryptographic assumptions for a hardness result. (They have been used together
for positive results regarding computationally sound proof systems [21,22,4]). It
would be interesting to see if such a combination could be useful in, say, com-
putational learning theory (where PCPs have been used for hardness of “proper”
learning [2,17] and cryptographic assumptions for hardness of representation-
independent learning [29,20]).

– While PCP-based inapproximability results are usually stated as Karp reductions,
we actually need them to be Levin reductions — capturing that they are reductions
between search problems, and not just decision problems. (Previously, this prop-
erty has been used in the same results on computationally sound proofs mentioned
above).

2 Preliminaries

2.1 Sanitizers

Let a databaseD ∈ ({0, 1}d)n be a matrix of n rows, x1, . . . , xn, corresponding to peo-
ple, each of which contains d binary attributes. A sanitizer A : ({0, 1}d)n → R takes
a database and outputs some data structure inR. In the case whereR = ({0, 1}d)n̂ (an
n̂-row database) we say that A outputs a synthetic database.

We would like such sanitizers to be both private and accurate. In particular, the
notion of privacy we are interested in is as follows

Definition 2 (Differential Privacy). [11] A sanitizer A : ({0, 1}d)n → R is (ε, δ)-
differentially private if for every two databases D1, D2 ∈ ({0, 1}d)n that differ on
exactly one row, and every subset S ⊆ R

Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S] + δ

In the case where δ = 0 we say that A is ε-differentially private.

Since a sanitizer that always outputs 0 satisfies Definition 2, we also need to define what
it means for a database to be accurate. In this paper we consider accuracy with respect
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to counting queries. Consider a set C consisting of boolean predicates c : {0, 1}d →
{0, 1}, which we call a concept class. Then each predicate c induces a counting query
that on database D = (x1, . . . , xn) ∈ ({0, 1}d)n returns

c(D) =
1
n

n∑
i=1

c(xi)

If the output of A is a synthetic database D̂ ∈ ({0, 1}d)∗, then c(A(D)) is simply the
fraction of rows of D̂ that satisfy the predicate c. However, ifA outputs a data structure
that is not a synthetic database, then we require that there is an evaluator function
E : R × C → R that estimates c(D) from the output of A(D) and the description of
c. For example, A may output a vector Z = (c(D) + Zc)c∈C where Zc is a random
variable for each c ∈ C, and E(Z, c) is the c-th component of Z ∈ R = R|C|. Abusing
notation, we will write c(A(D)) as shorthand for E(A(D), c).

We will say thatA is “accurate” for the concept class C if the estimates c(A(D)) are
close to the fractional counts c(D). Formally

Definition 3 (Accuracy). An output Z of sanitizer A(D) is α-accurate for a concept
class C if

∀c ∈ C, |c(Z)− c(D)| ≤ α.

A sanitizer A is (α, β)-accurate for a concept class C if for every database D,

Pr
A′s coins

[∀c ∈ C, |c(A(D)) − c(D)| ≤ α] ≥ 1− β

In this paper we say f(n) = negl(n) if f(n) = o(n−c) for every c > 0 and say that
f(n) is negligible. We use |s| to denote the length of the string s, and s1‖s2 to denote
the concatenation of s1 and s2.

2.2 Hardness of Sanitizing

Differential privacy is a very strong notion of privacy, so it is common to look for hard-
ness results that also apply to weaker notions of privacy. These hardness results show
that every sanitizer must be “blatantly non-private” in some sense. In this paper our
notion of blatant non-privacy roughly states that there exists an efficient adversary who
can find a row of the original database using only the output from any efficient sani-
tizer. Such definitions are also referred to as “row non-privacy.” We define hardness-of-
sanitization with respect to a particular concept class, and want to exhibit a distribution
on databases for which it would be infeasible for any efficient sanitizer to give accurate
output without revealing a row of the database. Specifically, following [12], we define
the following notions

Definition 4 (Database Distribution Ensemble). Let D = Dd be an ensemble of dis-
tributions on d-column databases with n+1 rows D ∈ ({0, 1}d)n+1. Let (D,D′, i)←R

D̃ denote the experiment in which we choose D0 ←R D and i ∈ [n] uniformly at ran-
dom, and set D to be the first n rows of D0 and D′ to be D with the i-th row replaced
by the (n + 1)-st row of D0.
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Definition 5 (Hard-to-sanitize Distribution). Let C be a concept class, α ∈ [0, 1] be
a parameter, and D = Dd be a database distribution ensemble.

The distribution D is (α, C)-hard-to-sanitize if there exists an efficient adversary T
such that for any alleged polynomial-time sanitizer A the following conditions hold:

1. WheneverA(D) is α-accurate, then T (A(D)) outputs a row of D:

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[(A(D) is α-accurate for C) ∧ (T (A(D)) ∩D = ∅)] ≤ negl(d).

2. For every efficient sanitizer A, T cannot extract xi from the database D′:

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[T (A(D′)) = xi] ≤ negl(d)

where xi is the i-th row of D.

In [12], it was shown that every distribution that is (α, C)-hard-to-sanitize in the sense
of Definition 5, is also hard to sanitize while achieving even weak differential privacy.

Claim 6. [12] If a distribution ensemble D = Dd on n(d)-row databases is (α, C)-
hard-to-sanitize, then for every constant a > 0 and every β = β(d) ≤ 1 − 1/poly(d),
no efficient sanitizer that is (α, β)-accurate with respect to C can achieve (a log(n), (1−
8β)/2n1+a)-differential privacy.

In particular, for all constants ε, β > 0, no polynomial-time sanitizer can achieve
(α, β)-accurateness and (ε, negl(n))-differential privacy.

We could use a weaker definition of hard-to-sanitize distributions, which would still
suffice to rule out differential privacy, that only requires that for every efficientA, there
exists an adversary TA that almost always extracts a row of D from every α-accurate
output of A(D). In our definition we require that there exists a fixed adversary T that
almost always extracts a row of D from every α-accurate output of any efficient A.
Reversing the quantifiers in this fashion only makes our negative results stronger.

In this paper we are concerned with sanitizers that output synthetic databases, so
we will relax Definition 5 by restricting the quantification over sanitizers to only those
sanitizers that output synthetic data.

Definition 7 (Hard-to-sanitize Distribution as Synthetic Data). A database distribu-
tion ensemble D is (α, C)-hard-to-sanitize as synthetic data if the conditions of Defini-
tion 5 hold for every sanitizer A that outputs a synthetic database.

3 Relationship with Hardness of Approximation

The objective of a privacy-preserving sanitizer is to reveal some properties of the under-
lying database without giving away enough information to reconstruct that database. This
requirement has different implications for sanitizers that produce synthetic databases and
those with arbitrary output.
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The SuLQ framework of [5] is a well-studied, efficient technique for achieving (ε, δ)-
differential privacy, with non-synthetic output. To get accurate, private output for a fam-
ily of counting queries with predicates in C, we can release a vector of noisy counts
(c(D) + Zc)c∈C where the random variables (Zc)c∈C are drawn independently from a
distribution suitable for preserving privacy. (e.g. a Laplace distribution with standard
deviation O(|C| /εn)).

Consider the case of an n-row database D that contains satisfying assignments to
a 3CNF formula ϕ, and suppose our concept class includes all disjunctions on three
literals (or, equivalently, all conjunctions on three literals). Then the technique above
releases a set of noisy counts that describes a database in which every clause of ϕ is
satisfied by most of the rows of D. However, sanitizers that output accurate synthetic
databases are required to produce a database that consists of rows that satisfy most of
the clauses of ϕ.

Because of the noise added to the output, the requirement of a synthetic database
does not strictly force the sanitizer to find a satisfying assignment for the given 3CNF.
However, it is known to be NP-hard to find even approximate satisfying assignments for
many constraint satisfaction problems. In our main result, Theorem 14, we will show
that there exists a distribution over databases that is hard-to-sanitize with respect to
synthetic data for any concept class that is sufficient to express a hard-to-approximate
constraint satisfaction problem.

3.1 Hard to Approximate CSPs

We define a constraint satisfaction problem to be the following.

Definition 8 (Constraint Satisfaction Problem (CSP)). For a function q = q(d) ≤ d,
a family of q(d)-CSPs, denoted Γ = (Γd)d∈N, is a sequence of sets Γd of boolean
predicates on q(d) variables. If q(d) and Γd do not depend on d then we refer to Γ as a
fixed family of q-CSPs.

For every d ≥ q(d), let C(d)
Γ be the class consisting of all predicates c : {0, 1}d → R

of the form c(u1, . . . , ud) = γ(ui1 , . . . , uiq(d)) for some γ ∈ Γd and i1, . . . , iq(d) ∈ [d].

We call CΓ = ∪∞
d=0C

(d)
Γ the class of constraints of Γ . Finally, we say a multiset ϕ ⊆ C(d)

Γ

is a d-variable instance of CΓ and each ϕi ∈ ϕ is a constraint of ϕ.
We say that an assignment x satisfies the constraint ϕi if ϕi(u) = 1. For ϕ =

{ϕ1, . . . , ϕm}, define

val(ϕ, u) =
∑m

i=1 ϕi(u)
m

and val(ϕ) = max
u∈{0,1}d

val(ϕ, u).

Our hardness results will apply to concept classes C(d)
Γ for CSP families Γ with certain

additional properties. Specifically we define,

Definition 9 (Nice CSP). A family Γ = (Γd)d∈N of q(d)-CSPs nice if

1. q(d) = d1−Ω(1),
2. for every d ∈ N, Γd contains a non-constant predicate ϕ∗ : {0, 1}q(d) → {0, 1}.

Moreover, ϕ∗ and two assignments u∗
0, u

∗
1 ∈ {0, 1}q(d) such that ϕ∗(u0) = 0 and

ϕ∗(u1) = 1 can be found in time poly(d).
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We note that any fixed family of q-CSP that contains a non-constant predicate is a nice
CSP. Indeed, these CSPs (e.g. conjunctions of 2 literals) are the main application of in-
terest for our results. However it will sometimes be useful to work with generalizations
to nice CSPs with predicates of non-constant arity.

For our hardness result, we will need to consider a strong notion of hard constraint
satisfaction problems, which is related to probabilistically checkable proofs. First we
recall the standard notion of hardness of approximation under Karp reductions. (stated
for additive, rather than multiplicative approximation error)

Definition 10 (inapproximability under Karp reductions). For functions α, γ : N→
[0, 1]. A family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Karp reduc-
tions if there exists a polynomial-time computable function R such that for every circuit
C with input size d, if we set ϕC = R(C) ⊆ C(d)

Γ for some d = poly(d), then

1. if C is satisfiable, then val(ϕC) ≥ γ(d), and
2. if C is unsatisfiable, then val(ϕC) < γ(d)− α(d).

For our hardness result, we will need a stronger notion of inapproximability, which
says that we can efficiently transform satisfying assignments of C into solutions to ϕC
of high value, and vice-versa.

Definition 11 (inapproximability under Levin reductions). For functions α, γ : N→
[0, 1]. A family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Levin re-
ductions if there exist polynomial-time computable functions R,Enc,Dec such that for
every circuit C with input of size d if we set ϕC = R(C) ⊆ C(d)

Γ for some d = poly(d),
then

1. for every u ∈ {0, 1}d such that C(u) = 1, val(ϕC ,Enc(u,C)) ≥ γ(d),
2. and for every π ∈ {0, 1}d such that val(ϕC , π) ≥ γ(d)−α(d), C(Dec(π,C)) = 1,

3. and for every u ∈ {0, 1}d, Dec(Enc(u,C)) = u

When we do not wish to specify the value γ we will simply say that the family Γ is
α-hard-to-approximate under Levin reductions to indicate that there exists such a γ ∈
(α, 1]. If we drop the requirement that R is efficiently computable, then we say that Γ
is (α, γ)-hard-to-approximate under inefficient Levin reductions.

The notation Enc,Dec reflects the fact that we think of the set of assignments π such
that val(ϕC , π) ≥ γ as a sort of error-correcting code on the satisfying assignments to
C. Any π′ with value close to γ can be decoded to a valid satisfying assignment.

Levin reductions are a stronger notion of reduction than Karp reductions. To see
this, let Γ be α-hard-to-approximate under Levin reductions, and let R,Enc,Dec be
the functions described in Definition 11. We now argue that for every circuit C, the
formula ϕC = R(C) satisfies conditions 1 and 2 of Definition 10. Specifically, if there
exists an assignment u ∈ {0, 1}d that satisfies C, then Enc(u,C) satisfies at least a γ
fraction of the constraints of ϕC . Conversely if any assignment π ∈ {0, 1}d satisfies at
least a γ−α fraction of the constraints of ϕC , then Dec(π,C) is a satisfying assignment
of C.
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Variants of the PCP Theorem can be used to show that essentially every class of
CSP is hard-to-approximate in this sense. We restrict to CSP’s that are closed under
complement as it suffices for our application.

Theorem 12 (variant of PCP Theorem). For every fixed family of CSPs Γ that is
closed under negation and contains a function that depends on at least two variables,
there is a constant α = α(Γ ) > 0 such that Γ is α-hard to approximate under Levin
reductions.

It seems likely that optimized PCP/inapproximability results (like [19]) are also Levin
reductions, which would yield fairly large values for α for natural CSPs (e.g. α =
1/8 − ε if Γ contains all conjunctions of 3-literals, because then CΓ contains MAX
3-SAT).

For some of our results we will need CSPs that are very hard to approximate (un-
der possibly inefficient reductions), which we can obtain by “sequential repetition” of
constant-error PCPs.

Theorem 13 (variant of PCP Theorem with subconstant error). There is a constant
C such that for every ε = ε(d) > 2−poly(d), the constraint family Γ = (Γd)d∈N

of k(d)-clause 3-CNF formulas is (1 − ε(d), 1)-hard-to-approximate under inefficient
Levin reductions, for k(d) = C log(1/ε(d)).

Further discussion of these theorems can be found in the full version of this paper.

4 Hard-to-Sanitize Distributions from Hard CSPs

In this section we prove that to efficiently produce a synthetic database that is accu-
rate for the constraints of a CSP that is hard-to-approximate under Levin reductions,
we must pay constant error in the worst case. Following [12], we start with a digital
signature scheme, and a database of valid message-signature pairs. There is a verifying
circuit Cvk and valid message-signature pairs are satisfying assignments to that circuit.
Now we encode each row of database using the function Enc, described in Defini-
tion 11, that maps satisfying assignments to Cvk to assignments of the CSP instance
ϕCvk

= R(Cvk) with value at least γ. Then, any assignment to the CSP instance that
satisfies a γ − α fraction of clauses can be decoded to a valid message-signature pair.
The database of encoded message-signature pairs is what we will use as our hard-to-
sanitize distribution.

4.1 Main Hardness Result

We are now ready to state and prove our hardness result. Let Γ = (Γd)d∈N be a family

of q(d)-CSPs and let CΓ = ∪∞
d=1C

(d)
Γ be the class of constraints of Γ , which was

constructed in Definition 8. We now state our hardness result.

Theorem 14. Let Γ = (Γd)d∈N be a family of nice q(d)-CSPs such that Γd ∪ ¬Γd is
α(d)-hard-to-approximate under (possibly inefficient) Levin reductions for α = α(d) ∈
(0, 1/2). Assuming the existence of one-way functions, for every polynomial n(d), there

exists a distribution ensembleD = Dd on n(d)-row databases that is (α(d), C(d)
Γ )-hard-

to-sanitize as synthetic data.
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Proof. Let Π = (Gen,Sign ,Ver) be a digital signature scheme where it is even hard
to produce a new signature for a previously signed message2. and let Γ be a family
of CSPs that is α-hard-to-approximate under Levin reductions. Let R,Enc,Dec be the
polynomial-time functions and γ = γ(d) ∈ (α, 1] be the parameter from Definition 11.
Let κ = dτ for a constant τ > 0 to be defined later.

Let n = n(d) = poly(d). We define the database distribution ensemble D = Dd to
generate n+1 random message-signature pairs and then encode them as PCP witnesses
with respect to the signature-verification algorithm. We also encode the verification key
for the signature scheme using the non-constant constraint ϕ∗ : {0, 1}q(d) → {0, 1} in
Γd and the assignments u∗

0, u
∗
1 ∈ {0, 1}q(d) such that ϕ∗(u∗

0) = 0 and ϕ∗(u∗
1) = 1, as

described in the definition of nice CSPs (Definition 9).

Database Distribution Ensemble D = Dd:
(sk, vk)←R Gen(1κ), let vk = vk1vk2 . . . vk�, where � = |vk| = poly(κ)
(m1, . . . ,mn+1)←R ({0, 1}κ)n+1

for i = 1 to n + 1 do
xi := Enc(mi‖Signsk(mi), Cvk)‖u∗

vk1
‖u∗

vk2
‖ . . . ‖u∗

vk�
, padded with zeros to be

of length exactly d
end for
return D0 := (x1, . . . , xn+1)

Recall that s1‖s2 denotes the concatenation of the strings s1 and s2. Note that the
length of xi before padding is poly(κ) + q(d)poly(κ) ≤ d1−Ω(1)poly(dτ ), so we can
choose the constant τ > 0 to be small enough that the length of x before padding is at
most d and the above is well defined.

Every valid pair (m,Signsk(m)) is a satisfying assignment of the circuit Cvk, hence
every row of D0 constructed in this way will satisfy at least a γ fraction of the clauses
of the formula ϕCvk

= R(Cvk). Additionally, for every bit of the verification key,
there is a block of q(d) bits in each row that contains either a satisfying assignment
or a non-satisfying assignment of ϕ∗, depending on whether that bit of the key is 1
or 0. Specifically, let L = |Enc(mi‖Signsk(mi))| in the construction of D0 and for
j = 1, 2, . . . , �, let ϕ∗

j (x) = ϕ∗(xL+(j−1)q+1, xL+(j−1)q+2, . . . , xL+jq). Then, by

construction, ϕ∗
j (D0) = vkj , the j-th bit of the verification key. Note that ϕ∗

j ∈ C
(d)
Γ

for j = 1, 2, . . . , �, by our construction of C(d)
Γ (Definition 8).

We now prove the following two lemmas that will establish D is hard-to-sanitize:

Lemma 15. There exists a polynomial-time adversaryT such that for every polynomial-
time sanitizerA,

Pr
(D,D′,i)←RD̃

A′s and T ′s coins

[
(A(D) is α-accurate for C(d)

Γ ) ∧ (T (A(D)) ∩D = ∅)
]
≤ negl(d)

(1)

2 These digital signature schemes are defined formally in the full version of this paper. In [18]
it is shown how to modify known constructions [23,26] to obtain a such a digital signature
scheme from any one-way function.
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Proof. Our privacy adversary tries to find a row of the original database by trying to
PCP-decode each row of the “sanitized” database and then re-encoding it. In order to
do so, the adversary needs to know the verification key used in the construction of
the database, which it can discover from the answers to the queries ϕ∗

j , defined above.
Formally, we define the privacy adversary by means of a subroutine that tries to learn
the verification key and then PCP-decode each row of the input database:

Subroutine K(D̂):

Let d be the dimension of rows in D̂, κ = dτ , � = |vk| = poly(κ).
for j = 1 to � do

v̂kj =
[
ϕ∗
j (D̂) rounded to {0, 1}

]
end for
return v̂k1‖v̂k2‖ . . . ‖v̂k�

Subroutine T0(D̂):

Let n̂ be the number of rows in D̂, v̂k = K(D̂)
for i = 1 to n̂ do

if C
v̂k

(Dec(x̂i, Cv̂k)) = 1 then
return Dec(x̂i, Cv̂k)

end if
end for
return ⊥

Privacy Adversary T (D̂):

Let v̂k = K(D̂).
return Enc(T0(D̂), C

v̂k
)

Let A be a polynomial-time sanitizer, we will show that Inequality (1) holds.

Claim 16. If D̂ = A(D) is α-accurate for C(d)
Γ , then T0(D̂) outputs a pair (m,σ) s.t.

Cvk(m,σ) = 1.

Proof. First we argue that if D̂ is α-accurate for C(d)
Γ for α < 1/2, then K(D̂) =

vk, where vk is the verification key used in the construction of D0. By construction,
ϕ∗
j (D) = vkj . If vkj = 0 and D̂ is α-accurate for D then ϕ∗

j (D̂) ≤ α < 1/2, and

v̂kj = vkj . Similarly, if vkj = 1 then ϕ∗
j (D̂) ≥ 1 − α > 1/2, and v̂kj = vkj . Thus,

for the rest of the proof we will be justified in substituting vk for v̂k.
Next we show that if D̂ is α-accurate, then T0(D̂) �= ⊥. It is sufficient to show there

exists x̂i ∈ D̂ such that val(ϕCvk
, xi) ≥ γ−α, which implies Cvk(Dec(x̂i, Cvk)) = 1.

Since every (mi,Signsk(mi)) pair is a satisfying assignment to Cvk , the definition
of Enc (Definition 11) implies that each row xi of D has val(ϕCvk

, xi) ≥ γ. Thus if
ϕCvk

= {ϕ1, . . . , ϕm}, then

1
m

m∑
j=1

ϕj(D) =
1
m

m∑
j=1

(
1
n

n∑
i=1

ϕj(xi)

)
=

1
n

n∑
i=1

val(ϕCvk
, xi) ≥ γ.



412 J. Ullman and S. Vadhan

Since D̂ is α-accurate for C(d)
Γ , and for every constraint ϕj , either ϕj ∈ Γ or ¬ϕj ∈ Γ ,

then for every constraint ϕj ∈ ϕCvk
, we have ϕj(D̂) ≥ ϕj(D)− α. Thus

1
n̂

n̂∑
i=1

val(ϕCvk
, x̂i) =

1
m

m∑
j=1

ϕj(D̂) ≥ 1
m

m∑
j=1

ϕj(D)− α ≥ γ − α.

So for at least one row x̂ ∈ D̂ it must be the case that val(ϕCvk
, x̂) ≥ γ − α. The

definition of Dec (Definition 11) implies Cvk(Dec(x̂, Cvk)) = 1.

Now notice that if T0(A(D)) outputs a valid message-signature pair but T (A(D)) ∩
D = ∅, then this means T0(A(D)) is forging a new signature not among those used
to generate D, violating the security of the digital signature scheme. Formally, we con-
struct a signature forger as follows:

Forger F(vk) with oracle access to Signsk:
Use the oracle Signsk to generate an n-row database D just as in the definition of
Dd (consisting of PCP encodings of valid message-signature pairs and an encoding
of vk).
Let D̂ := A(D)
return x̂∗ := T0(D̂)

Notice that running F in a chosen-message attack is equivalent to running T in the
experiment of inequality (1), except that F does not re-encode the output of T0(A(D)).
By the super-security of the signature scheme, if the x̂∗ output by F is a valid message-

signature pair (as holds if A(D) is α-accurate for C(d)
Γ , by Claim 16), then it must

be one of the message-signature pairs used to construct D (except with probability
negl(κ) = negl(d)). This implies that T (A(D)) = Enc(x̂∗, Cvk) ∈ D (except with
negligible probability). Thus, we have

Pr
(D,D′,i)←RD̃

A′s coins

[A(D) is α-accurate for C(d)
Γ ⇒ T (A(D)) ∈ D] ≥ 1− negl(d),

which is equivalent to the statement of the lemma.

Lemma 17
Pr

(D,D′,i)←RD̃
A′s and T ′s coins

[T (A(D′)) = xi] ≤ negl(d)

Proof. Since the messages mi used in D0 are drawn independently, D′ contains no
information about the message mi, thus no adversary can, on input A(D′) output the
target row xi except with probability 2−κ = negl(d).

These two claims suffice to establish that D is (α, CΓ )-hard-to-sanitize as synthetic
data.

Theorem 1 in the introduction follows by combining Theorems 12 and 14.
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5 Relaxed Synthetic Data

The proof of Theorem 14 requires that the sanitizer output a synthetic database. In this
section we present similar hardness results for sanitizers that produce other forms of
output, as long as they still produce a collection of elements from {0, 1}d, that are in-
terpreted as the data of (possibly “fake”) individuals. More specifically, we consider
sanitizers that output a database D̂ ∈ ({0, 1}d)n̂ but are evaluated by applying a
predicate c to each row and then applying a function f to the resulting bits and the
predicate c. For example, when the sanitizer outputs a synthetic database, we have
f(b1, . . . , bn̂, c) = (1/n̂)

∑n̂
i=1 bi, which is just the fraction of rows that get labeled

with a 1 by the predicate c (independent of c).
We now give a formal definition of relaxed synthetic data

Definition 18 (Relaxed Synthetic Data). A sanitizer A : ({0, 1}d)n → ({0, 1}d)n̂
with evaluator E outputs relaxed synthetic data for a family of predicates C if there
exists f : {0, 1}n̂ × C → [0, 1] such that for every c ∈ C

E(D̂, c) = f(c(x̂1), c(x̂2), . . . , c(x̂n̂), c),

and f is monotone3 in the first n̂ inputs.

This relaxed notion of synthetic data is of interest because many natural approaches
to sanitizing yield outputs of this type. In particular, several previous sanitization al-
gorithms [6,27,14] produce a set of synthetic databases and answer a query by taking
a median over the answers given by the individual databases. We view such databases
as a single synthetic database but require that f have a special form. Unfortunately,
the sanitizers of [14] and [27] run in time exponential in the dimension of the data, d,
and the results of the next subsection show this limitation is inherent even for simple
concept classes.

We now give an informal description of our hardness results for different forms of re-
laxed synthetic data. Our proofs use the same construction of hard-to-sanitize databases
as Theorem 14 with a modified analysis and parameters to show that the output must
still contain a PCP-decodable row. Formal statements and proofs of all of the following
statements can be found in the full version of this paper.

– We say that a sanitizer outputs medians of synthetic data if it satisfies Definition 18
with

E(x̂1, . . . , x̂n̂, c) = median

{
1
|S1|
∑
i∈S1

c(x̂i), . . . ,
1
|S�|
∑
i∈S�

c(x̂i)

}

for some partition [n̂] = S1∪S2 · · ·∪S�. We rule out efficient sanitizers with medi-
ans of synthetic data for CSPs that are hard-to-approximate under Levin reductions
within a multiplicative factor larger than 2. By Theorem 13, these CSPs include
k-clause 3-CNF formulas for some constant k.

3 Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) we say b � a iff bi ≥ ai for every
i ∈ [n]. We say a function f : {0, 1}n → [0, 1] is monotone if b � a =⇒ f(b) ≥ f(a).
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– We say that a sanitizer outputs symmetric relaxed synthetic data if it satisfies Def-
inition 18 with E(x̂1, . . . , x̂n̂, c) = g((1/n̂)

∑n̂
i=1 c(x̂i)) for a monotone function

g : [0, 1] → [0, 1]. These evaluators are symmetric both in that g does not depend
on the predicate and that g only depends on the fraction of rows that satisfy the
predicate. We rule out efficient sanitizers with symmetric relaxed synthetic data for
CSPs that are hard-to-approximate under Levin reductions within an additive factor
larger than 1/2. By Theorem 13, these CSPs include k-clause CNF formulas, for
some constant k.

– We show that no efficient sanitizer can produce accurate relaxed synthetic data for
a sequence of CSPs that is (1 − negl(d))-hard-to-approximate under inefficient
Levin reductions. By Theorem 13, these CSPs include 3-CNF formulas of ω(log d)
clauses.

5.1 Positive Results for Relaxed Synthetic Data

We also show that there exists an efficient sanitizer for the family of all constant-arity
predicates. As an intermediate step, we also show there exists an efficient sanitizer as
symmetric relaxed synthetic data for any family of parity predicates. Our results show
that relaxed synthetic data allows for more efficient sanitization than standard synthetic
data, since Theorem 14 rules out an accurate, efficient sanitizer with standard synthetic
data, even for 3-literal parity predicates. Our result for parities also shows that our
hardness result for symmetric relaxed synthetic data is tight with respect to the required
hardness of approximation, since the class of 3-literal parity predicates is (1/2 − ε)-
hard-to-approximate [19].

A function f : {0, 1}d → {0, 1} is a k-junta if it depends on at most k variables. Let
Jd,k be the set of all k-juntas on d variables.

Theorem 19. There exists an ε-differentially private sanitizer that runs in time poly
(n, d) and produces relaxed synthetic data and is (α, β)-accurate for Jd,k when

n ≥
C
(
d
≤k
)
log
((

d
≤k
)
/β
)

αε

for a sufficiently large constant C, where
(
d
≤k
)

=
∑k

i=0

(
d
i

)
.

To prove Theorem 19, we start with a sanitizer for parity predicates. A function χ :
{0, 1}d → {−1, 1} is a parity predicate4 if there exists a vector s ∈ {0, 1}d s.t. χ(x) =
χs(x) = (−1)〈x,s〉.

Theorem 20. Let P be a family of parity predicates such that χ0d �∈ P . There exists
an ε-differentially private sanitizerA(D,P) that runs in time poly(n, d) and produces
symmetric relaxed synthetic data that is (α, β)-accurate for P when

n ≥ 2|P| log (2|P|/β)
αε

.

4 In the preliminaries we define a predicate to be a {0, 1}-valued function but our definition
naturally generalizes to {−1, 1}-valued functions. For c : {0, 1}d → {−1, 1} and database
D = (x1, . . . , xn) ∈ ({0, 1}d)n, we define c(D) = 1

n

∑n
i=1 c(xi).
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Without relaxed synthetic data, Theorems 19 and 20 can be achieved by simply releas-
ing a vector of noisy answers to the queries [11]. Our sanitizer begins with this vector
of noisy answers and constructs relaxed synthetic data from those answers. Our tech-
nique is similar to that of Barak et. al. [3], which also begins with noisy answers and
constructs a (standard) synthetic database that gives approximately the same answers.
However, they construct their synthetic database by solving a linear program over a
set of 2d variables, each of which represents the frequency of one of the possible rows
x ∈ {0, 1}d. Thus their sanitizer runs in time exponential in d.

Our sanitizer also starts with a vector of noisy answers to parity queries and efficiently
constructs symmetric relaxed synthetic data that gives answers to each query that are
close to the initial noisy answers after applying a fixed linear scaling. To construct each
row of the synthetic database, D̂, we select a random parity query in χ ∈ P and then
sample a row x ∈ {0, 1}d such that the expectation of χ(x) is equal to the initial noisy
estimate of χ(D); it can be shown that for every χ′ �= χ (except χ0d), the expectation of
χ′(x) is zero. Thus we can estimate the value of χ(D) by taking χ(D̂) and multiplying
by |P|. We then show that if we apply our sanitizer to the family Pd,k containing all
parity predicates on d variables that depend on at most k variables, the result is also
accurate for the family Jd,k of k-juntas after applying an affine shift that depends on
the average value of the junta of interest.

A complete discussion of these results is deferred to the full version of this paper.
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Abstract. Differential privacy is a well established definition guaran-
teeing that queries to a database do not reveal “too much” information
about specific individuals who have contributed to the database. The
standard definition of differential privacy is information theoretic in na-
ture, but it is natural to consider computational relaxations and to ex-
plore what can be achieved with respect to such notions. Mironov et al.
(Crypto 2009) and McGregor et al. (FOCS 2010) recently introduced and
studied several variants of computational differential privacy, and show
that in the two-party setting (where data is split between two parties)
these relaxations can offer significant advantages.

Left open by prior work was the extent, if any, to which computational
differential privacy can help in the usual client/server setting where the
entire database resides at the server, and the client poses queries on
this data. We show, for queries with output in Rn (for constant n) and
with respect to a large class of utilities, that any computationally private
mechanism can be converted to a statistically private mechanism that is
equally efficient and achieves roughly the same utility.

1 Introduction

A statistical database holds data representing some population. It is often desir-
able to allow clients to query this database to learn properties of the underlying
population. However, it is also important to protect the privacy of the individ-
ual users whose data is contained in the database. This conflict between utility
and privacy has motivated a significant amount of research in recent years, and
several definitions of privacy as well as techniques for achieving these definitions
have appeared in the literature.

The foundational definition of privacy in this setting is that of differential pri-
vacy [6,5,3]. Very coarsely, this definition can be viewed as limiting the amount
of information the answer to some query reveals about any particular user in
the database. The standard definition of differential privacy is very strong, re-
quiring unconditional privacy guarantees against computationally unbounded
adversaries. Despite this fact, there has been a good amount of success in de-
signing differentially private mechanisms for many types of queries and in various
settings [1,5,12,2,9].
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c© International Association for Cryptologic Research 2011



418 A. Groce, J. Katz, and A. Yerukhimovich

Recently, Mironov et al. [11] introduced various notions of computational dif-
ferential privacy and explored relations between them. There are several reasons
to consider such relaxations of differential privacy. In practice a computational
notion of security suffices, yet the stringent notion of (statistical) differential
privacy rules out some mechanisms that are intuitively secure: e.g., a differ-
entially private mechanism implemented using pseudorandom noise in place of
truly random noise, or a differentially private mechanism implemented using
secure multi-party computation [4,11]. One might hope that by considering a
relaxed definition we can circumvent limitations or impossibility results that
arise in the information-theoretic setting, in the same way that computationally
secure notions of encryption allow bypassing known bounds for perfectly secure
encryption. Recent results [11,10] show that this is the case in the two-party set-
ting where the database is partitioned between two parties who wish to evaluate
some query over their joint data. Specifically, McGregor et al. [10] show a strong
separation between the accuracy that can be obtained when using differential
privacy as opposed to using computational differential privacy.

McGregor et al. [10], however, leave open the analogous question in the more
widely studied client/server setting where a server holds the entire database on
which a client may pose queries. Indeed, they explicitly remark [10, Section 1]:

[Our] strong separation between (information-theoretic) differential pri-
vacy and computational differential privacy . . . stands in sharp contrast
with the client-server setting where. . . there are not even candidates for
a separation.

It is this question we address in this paper.

1.1 Summary of Our Results

There are (at least) two notions of computational privacy that can be considered:
IND-CDP and SIM-CDP. These notions are introduced in [11], where it is shown
that any SIM-CDP mechanism is also IND-CDP (the other direction is not
known); thus, SIM-CDP is a possibly stronger definition. (Mironov et al. also
define the notion of SIM∀∃-CDPbut this notion is equivalent to IND-CDP.) We
review these definitions in Section 2.

There are two measures one could hope to improve upon when moving from
the setting of (statistical) differential privacy to the setting of computational
differential privacy: the best possible utility (or accuracy) that can be achieved,
and the efficiency of implementing a mechanism that achieves some level of util-
ity. With respect to the definitions given by Mironov et al., it is not hard to see
that the best achievable utility cannot be improved as long as the utility is an ef-
ficiently computable function of the database and the output of the mechanism.
(This is an immediate consequence of the SIM-CDP and SIM∀∃-CDP defini-
tions, since otherwise the utility function itself serves as a distinguisher.) The
interesting question is therefore to look for improvements in the efficiency, e.g.,
to show that the best possible utility for polynomial-time mechanisms is better
in the computational case, or even to show a polynomial factor improvement
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in the efficiency in moving from one case to the other. Unfortunately, we show
two negative results indicating that such improvements are unlikely in certain
natural settings:

1. Our first result concerns black-box constructions of computationally secure
mechanisms from a wide range of cryptographic primitives including trap-
door permutations, collision-resistant hash functions, and/or random oracles.
Roughly, we show that for any black-box construction of a computationally
private mechanism there exists a corresponding statistically private mecha-
nism that performs just as well in terms of both efficiency and utility (with
respect to any utility measure).

2. Our main results rules out improvements by arbitrary mechanisms, for a
specific (but large) class of queries and utility measures. That is, for queries
with output in Rn (for constant n) and a natural class of utilities, we show
that any computationally private mechanism can be converted to a statisti-
cally private mechanism that is roughly as efficient and achieves almost the
same utility.

Each result applies to both the IND-CDP and SIM-CDP definitions.
We believe our results represent an important step in understanding the ben-

efits and limitations of computational notions of privacy. Although we show
negative results, they may point toward specific situations where computational
differential privacy gives some advantage. We leave it as an open question to find
utility measures or query classes with respect to which computational differen-
tial privacy can help in the client/server setting, or to extend our impossibility
results to show that no such improvements can be hoped for.

Limitations of our results. There are several types of queries to which our
results do not apply. The most important are queries with outputs that cannot
naturally be thought of as tuples of real numbers. This includes, e.g., queries
that return classifiers (as in [9]), graphs, or synthetic databases.

Our results also do not apply, in general, to queries that return output in Rn

for “large” n (i.e., n that grows with the security parameter k). In particular,
this means that our results are somewhat limited when it comes to analyzing
differential privacy of multiple queries. (Note that n queries with outputs in R

can be viewed as a single query with output in Rn.) Our results do apply to any
constant number of queries. In addition, using composition properties of differ-
ential privacy, our results apply to the case where arbitrarily many queries are
answered, and all queries are answered independently (i.e., the server maintains
no state). However, in some cases it is known that answering many queries at the
same time can be done with better privacy than would be achieved by answering
each query independently; in such cases our results do not apply.

Our results also hold only for restricted classes of utility functions. For exam-
ple, they do not apply when there is no polynomial bound on the error.
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2 (Computational) Differential Privacy

We begin by reviewing definitions for the various notions of differential privacy
that will be discussed in this paper. All have roughly the same underlying intu-
ition, but the technical differences are crucial. We begin by defining “adjacent”
databases.

Definition 1. Two databases D,D′ ∈ D are adjacent if they differ in at most 1
entry.

Differential privacy guarantees that the results of queries on two adjacent
databases cannot be distinguished very well. This is a very strong privacy guar-
antee, that in particular ensures that the presence or absence of any one user in
the database cannot affect the results very much.

One way to formalize this notion is to require that no set of answers can be
significantly more likely to result from D than from D′. Formalizing this yields
the by-now-standard notion of (statistical) differential privacy:

Definition 2. A randomized function f : D → R is ε-differentially private (ε-
DP) if for all adjacent databases D,D′ ∈ D and all subsets S ⊂ R:

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S].

This is the strongest definition of differential privacy. It can, in fact, be criticized
as too strong. For example, consider a set of responses that are possible outputs
when querying D but impossible when querying D′. The existence of such re-
sponses violates differential privacy, even if the probability of outputting one
of these responses is small. To allow for this sort of situation one can consider
a slightly weaker notion of differential privacy, called (ε, δ)-differential privacy,
that allows a small additive factor in the inequality [4].

Definition 3. A randomized function f : D → R is (ε, δ)-differentially private
((ε, δ)-DP) if for all adjacent databases D,D′ ∈ D and all subsets S ⊂ R:

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S] + δ.

It is worth noting that while for ε-DP it is sufficient to require the inequality in
the definition to hold pointwise, for (ε, δ)-differential privacy it is important to
explicitly consider all subsets S.

We say a family of mechanisms {fk} is efficient if the running time of fk(D) is
at most poly(|D|, k). A family {fk} is uniform if there is a Turing machine f such
that f(k,D) = fk(D). It is reasonable even in the information-theoretic setting
to consider a family of mechanisms {fk} indexed by a security parameter k, and
to require that δ become negligible in k.

Definition 4. Let ε be an arbitrary function. A family of randomized functions
{fk}k∈N is (ε, negl)-DP if there exists a negligible function δ such that each fk
is (ε(k), δ(k))-DP.
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The above definitions are all information-theoretic in nature, but it is natural
to consider computational variants. Mironov et al. [11] propose two definitions
of computational differential privacy, SIM-CDP and IND-CDP. Roughly, one
can view IND-CDP as an “indistinguishability-based” relaxation whereas SIM-
CDP is a “simulation-based” notion. SIM-CDP is at least as strong as IND-
CDP [11], but the converse is not known. All the definitions can be presented
for either uniform or non-uniform adversaries; for consistency with [11], we give
non-uniform definitions here. While we state our results for the case of non-
uniform adversaries, our results all carry over to the uniform setting as well.

IND-CDP provides perhaps the most natural relaxation of differential privacy.

Definition 5 (IND-CDP). Let ε be an arbitrary function. A family of func-
tions {fk}k∈N is ε-IND-CDP if for every non-uniform polynomial-time A and
every sequence {(Dk, D

′
k)}k∈N of (ordered pairs of) polynomial-size, adjacent

databases, there is a negligible function negl such that

Pr[A(fk(Dk)) = 1] ≤ eε(k) × Pr[A(fk(D′
k)) = 1] + negl(k).

The notion of SIM-CDP requires that there be a statistically private mechanism
that is indistinguishable from the mechanism under consideration.

Definition 6 (SIM-CDP). Let ε be an arbitrary function. A family of functions
{fk}k∈N is ε-SIM-CDP if there exists a family of functions {Fk}k∈N that is (ε, negl)-
DP and is computationally indistinguishable from {fk}. The latter means there is
a negligible function negl such that for any non-uniform polynomial-time A and
any database D:∣∣∣Pr[A(fk(D)) = 1]− Pr[A(Fk(D)) = 1]

∣∣∣ ≤ negl(k).

In [11] it is required that {Fk}k∈N be ε-DP (rather than (ε, negl)-DP). Thus our
definition is slightly weaker, which makes our impossibility results stronger.

We also recall the notion of SIM∀∃-CDP, which weakens SIM-CDP by revers-
ing the order of quantifiers in the definition: here, the statistically private mech-
anism F is allowed to be different for each pair of databases (D,D′). Crucially
for our purposes, this definition is known to be equivalent to IND-CDP [11].

Definition 7 (SIM∀∃-CDP). Let ε be an arbitrary function. A family of func-
tions {fk}k∈N is ε-SIM∀∃-CDP if for all sequences of (unordered pairs of) adja-
cent databases {{Dk, D

′
k}}k∈N there is a family of functions {Fk}k∈N such that:

1. {Fk} is ε-DP on {{Dk, D
′
k}}k∈N; i.e., for all subsets S ⊂ R we have

Pr[Fk(Dk) ∈ S] ≤ eε(k) × Pr[Fk(D′
k) ∈ S].

2. fk(Dk) and fk(D′
k) are indistinguishable from Fk(Dk) and Fk(D′

k) respec-
tively. Formally, for any non-uniform, polynomial-time adversary A∣∣∣Pr[A(fk(Dk)) = 1]− Pr[A(Fk(Dk)) = 1]

∣∣∣ ≤ negl(k),

and similarly for D′
k.
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Thus far we have only discussed privacy but have not mentioned utility. In
general, we assume a utility measure U that takes as input a database D and
the output of some mechanism f(D) and returns a real number. In Section 4 we
consider a specific class of utilities.

3 Limitations on Black-Box Constructions

Here we show that black-box constructions (of a very general sort) cannot help in
the setting of computational differential privacy. (We refer the reader to [13] for
further discussion and definitional treatment of black-box constructions.) For
concreteness, in the technical discussion we focus on black-box constructions
from one-way functions, but at the end of the section we discuss generalizations
of the result.

Roughly, a fully black-box construction of an ε-IND-CDP mechanism from a
one-way function is a family of polynomial-time oracle machines {f (·)

k }k∈N such
that for every A and every O that is one-way against A it holds that {fO

k }k∈N

is ε-IND-CDP against A. It would make sense also to impose a utility condition
on the construction (which could be viewed as a correctness requirement on the
constructions), but we do not do so here.

Theorem 1. If there exists a fully black-box construction {fk}k∈N of an ε-IND-
CDP mechanism from one-way functions, then there exists an (ε, negl)-DP family
{f ′
k}k∈N that is roughly as efficient and such that, for all databases D and utility

measures U , ∣∣∣E [U(D, fO
k (D))

]
−E
[
U(D, f ′

k(D))
]∣∣∣ ≤ negl(k),

where the expectations are both taken over the randomness of the mechanism,
and the expectation on the left is additionally taken over random choice of a
function O.

Proof. The key idea behind the proof is as follows: a random function is one-way
with overwhelming probability [8,7]; thus, the mechanism fO

k with O chosen at
random is also ε-IND-CDP. Since the construction is fully black-box (and hence
relativizing), one-wayness ofO (and hence indistinguishability of the mechanism)
holds even for an unbounded adversary as long as the adversary makes only
polynomially many queries to O. We construct f ′

k by having it simply run fk
as a subroutine, simulating a random function O on behalf of fk. This idea is
motivated by analogous techniques used in [7].

Let Func denote the set of length-preserving functions from {0, 1}∗ to {0, 1}∗,
and let f ′

k be as just described. Then for any adjacent databases D,D′ and any
(unbounded) A:

Pr[A(f ′
k(D)) = 1] = PrO←Func[A(fO

k (D)) = 1]

and
Pr[A(f ′

k(D
′)) = 1] = PrO←Func[A(fO

k (D′)) = 1].
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Letting OWF denote the event that O is one-way, we have

Pr[A(f ′
k(D)) = 1] ≤ Pr

[
A(fO

k (D)) = 1 | OWF
]
+ negl(k)

≤ eε(k) × Pr
[
A(fO

k (D′)) = 1 | OWF
]
+ negl′(k)

≤ eε(k) × Pr[A(f ′
k(D

′)) = 1] + negl′′(k).

The second inequality holds since {fk} is a fully black-box construction of an ε-
IND-CDP mechanism from one-way functions. (Note that, above, A is not given
access to O at all.) But the condition that

Pr[A(f ′
k(D)) = 1] ≤ eε(k) × Pr[A(f ′

k(D
′)) = 1] + negl′′(k)

for an unbounded A is equivalent to (ε, negl)-differential privacy.
The claim regarding the utility of {f ′

k} follows by a similar argument. (Note
that we do not require that U be efficiently computable.)

Note that the above proof holds not just for constructions based on one-way
functions, but for any black-box construction from a primitive P that can be
instantiated with a random object. This includes, e.g., ideal ciphers, collision-
resistant hash functions, and trapdoor permutations [7].

4 Limitations for Computational Differential Privacy

In the previous section we ruled out black-box constructions from general as-
sumptions, but with regard to arbitrary measures of utility and arbitrary mech-
anisms. Here, we focus on arbitrary mechanisms with output in Rn (for con-
stant n), and a large, but specific, class of efficiently computable utilities. Specif-
ically, we look at utilities defined by (a generalization of) the Lp norm.

Definition 8 (Lp-norm). The Lp-norm of a vector x ∈ Rn, denoted ||x||p, is
defined as

||x||p
def= (|x1|p + |x2|p + . . . + |xn|p)1/p

for p ∈ N+, where xi is the ith coordinate of x. (We do not deal with the L0
norm in this paper.) We also allow p =∞, where

||x||∞
def= max(|x1|, |x2|, . . . , |xn|).

A natural notion of utility would be to look at the average distance (in some Lp
norm) from the true answer to the output of the mechanism. We broaden this
to include things like mean-squared error that are commonly used in statistics.

Definition 9 (Average (p, v)-error). Let fk : D → Rn be a mechanism for
answering a query q : D → Rn. The average (p, v)-error (also called the vth
moment of the Lp error) of this mechanism (p > 0, v ≥ 1) on database D is

σp,v(q,D, fk)
def= E
[
||fk(D)− q(D)||vp

]
.
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We often refer to the above as “error” rather than “utility”; lower error values
are good, whereas lower utility values are bad. We remark that we can handle
utility measures beyond the above, as long as they satisfy a technical requirement
that follows from our proof. Since we do not currently have any clean way to
state this requirement, we do not discuss it further.

Given a mechanism {fk : D → Rn}k∈N for answering a query q : D → Rn,
we say the average (p, v)-error of {fk} is polynomially bounded if there is a
polynomial err such that, for all D and k, we have

σp,v(q,D, fk) ≤ err(k).

Theorem 2, below, shows that nothing can be gained by using computational
differential privacy rather than statistical differential privacy, as long as we con-
sider mechanisms whose error is polynomially bounded. Before giving the formal
theorem statement and proof in the following section, we give an intuitive ex-
planation here.

Let fk be a polynomial-time ε-SIM-CDP mechanism for answering some query
q : D → Rn, where we assume that fk also has output in Rn (and n is indepen-
dent of k). Let p > 0, v ≥ 1 be arbitrary, and assume the average (p, v)-error of
fk is polynomially bounded with error bound err. We claim there is an (ε, negl)-
DP mechanism f̂k with essentially the same running time1 as fk, and such that
σp,v(q,D, f̂k) < err(k) + negl(k).

Let {Fk} be a mechanism that is (ε, negl)-DP and indistinguishable from {fk}.
Such a mechanism is guaranteed to exist by definition of SIM-CDP. Note that
{Fk} may be much less efficient than {fk}, and may not even be implementable
in polynomial time. On the other hand, Fk and fk must induce distributions
over Rn that are, in some sense, very close. Intuitively, in any “box” in Rn of
noticeable size, the probabilities with which the outputs of Fk or fk lie in that
cell must be roughly equal; if not, the difference in probabilities could be used
to distinguish Fk and fk (since membership in the box can be efficiently tested).

We derive f̂k by adding a small amount of uniform noise to the output of fk.
Carefully setting the amount of noise to be sufficiently small, we can bound the
error introduced in moving from fk to f̂k. To analyze privacy of the resulting
mechanism, we look at the mechanism F̂k where a small amount of uniform
noise is added to Fk. For any particular value x, the probability with which
f̂k (resp., F̂k) outputs x is proportional to the probability that fk (resp., Fk)
outputs a value within a box centered at x. This box is sufficiently big so that
F̂k and f̂k have similar probabilities of outputting any particular value.

While F̂k and f̂k have similar probabilities of outputting any particular value,
these small differences could, in principle, compound and become unacceptably
large when summed over all values in some set S ⊂ Rn. To show that such
differences do not grow too large, we use the fact that fk has polynomially
bounded error. This allows us to break our analysis into two parts: one focusing
on a region Sc “close” to the correct answer q(D), and the other focusing on
Sf = S \ Sc. We show that

1 Specifically, f̂k runs fk and adds a random number to its output.
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∣∣∣

is small, using the argument discussed above; we also show that

max{Pr[f̂k(D) ∈ Sf ],Pr[F̂k(D) ∈ Sf ]}

is small by the polynomial bound on the error. Combined, this shows that for
every S, the difference ∣∣∣Pr[f̂k(D) ∈ S]− Pr[F̂k(D) ∈ S]

∣∣∣
is small, as required. Since Fk, and hence F̂k, is statistically differentially private,
this means that f̂k is also.

Formal details are given in the following section.

4.1 Statement and Proof of the Main Result

We first present a proof that applies to the (stronger) SIM-CDP definition. We
then outline the changes needed to prove the result for the case of IND-CDP.

Theorem 2. Fix p > 0, v ≥ 1. Let {fk : D → Rn} be an efficient ε-SIM-CDP
mechanism whose average (p, v)-error is polynomially bounded by err. Then there
is an efficient (ε, negl)-DP mechanism {f̂k} with σp,v(q,D, f̂k) < err(k)+negl(k).

Moreover, f̂k has essentially the same running time as fk; specifically, f̂k only
adds uniform noise to fk.

Proof. Let {Fk} be an (ε, negl)-DP family of mechanisms that is indistinguish-
able from {fk}. Let negl1 be a negligible function such that for any non-uniform
polynomial-time A and any database D,∣∣∣Pr[A(fk(D)) = 1]− Pr[A(Fk(D)) = 1]

∣∣∣ ≤ negl1(k).

(Such a function exists by definition of SIM-CDP.)
Since {fk} is efficient, its output must have some polynomial length. We

assume that fk (and hence Fk) give output in fixed-point notation with k bits
of precision. Formally, let Rk be the set

Rk = {x ∈ R | ∃j ∈ Z : x = j · 2−k};

then we assume that fk gives output in Rn
k . (More generally, the proof given here

works when the precision is any polynomial in k. Moreover, fixed-point notation
is not essential; in particular, the proof can be modified for the case when the
output of fk is given in floating-point notation.) For x ∈ R and k ∈ N, define
&x!k def= &x · 2k! · 2−k to be the value x “rounded up” so that it lies in Rk.

A set B ⊂ Rn is a box if it a Cartesian product of closed intervals in R.
Abusing notation, we call a sequence {Bk} of boxes Bk ⊂ Rn

k a box as well. The
following is an immediate consequence of the SIM-CDP definition (recall the
definition requires indistinguishability against non-uniform adversaries):
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Lemma 1. For any box {Bk} and any database D:

|Pr[fk(D) ∈ Bk]− Pr[Fk(D) ∈ Bk]| ≤ negl1(k).

We next define two mechanisms {F̂k} and {f̂k} that are “noisy” versions of
F (D) and f(D), respectively. Because we are dealing with discrete rather than
continuous values, the definition is more complicated than simply adding uniform
noise in some range.

Set c(k) =
⌈

4n
√

negl1(k)
⌉
k

For x ∈ Rn
k , let Bc,k(x) denote the box with radius

c(k) (in the L∞ norm) centered at x; that is,

Bc,k(x) = {y ∈ Rn
k : ||y − x||∞ ≤ c(k)} .

Mechanism {f̂k} is defined as follows: f̂k(D) computes fk(D), and then outputs a
uniform value in Bc,k(f(D)). (This is equivalent to adding uniform, independent,
discretized noise from [−c(k), c(k)] to each coordinate of f(D).) Mechanism {F̂k}
is defined to be the analogous mechanism that adds noise to F instead of f .

Bc,k(x) contains
(
c(k) · 2k+1 + 1

)n points and thus, for any D and x ∈ Rn
k :

Pr[F̂k(D) = x] =
(
c(k) · 2k+1 + 1

)−n · Pr[Fk(D) ∈ Bc,k(x)]

and

Pr[f̂k(D) = x] =
(
c(k) · 2k+1 + 1

)−n · Pr[fk(D) ∈ Bc,k(x)].

Taking Bk = Bc,k(xk) (for an arbitrary sequence {xk} with xk ∈ Rn
k ) in Lemma 1,

we obtain:∣∣∣Pr[F̂k(D) = xk]− Pr[f̂k(D) = xk]
∣∣∣

=
(
c(k) · 2k+1 + 1

)−n · ∣∣∣Pr[Fk(D) ∈ Bc,k(xk)]− Pr[fk(D) ∈ Bc,k(xk)]
∣∣∣

≤
(
c(k) · 2k+1 + 1

)−n · negl1(k). (1)

The above holds for an arbitrary database D, and so it also holds for any adjacent
database D′.

F̂k applies post-processing to the output of Fk, so {F̂k} is also (ε, negl)-DP.
Let negl2 be a negligible function such that for all sets S and adjacent databases
D and D′ it holds that

Pr[F̂k(D) ∈ S] ≤ eε(k) × Pr[F̂k(D′) ∈ S] + negl2(k). (2)

Our goal is to prove that f̂k(D) is statistically close to F̂k(D), for any D, which
will then imply the theorem. We have already shown (cf. Equation (1)) that the
distributions of f̂k(D) and F̂k(D) are pointwise negligibly close. We need to show
that this is true also for arbitrary subsets. To do this, we first use the polynomial
error bound on fk to argue that fk (and hence f̂k) must put relatively low weight
on outputs that are far from the correct output. Formally:
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Lemma 2. There is a polynomial b such that, for any D, we have

σp,v(q,D, f̂k) ≤ err(k) + c(k) · b(k).

The lemma follows from the observation that, for any fixed output y = fk(D),
the output ŷ = f̂k(D) satisfies

||ŷ − q(D)||p ≤ ||y − q(D)||p + n · c(k).

The proof of the lemma is tedious, and so we defer it to Appendix A.
Fix an arbitrary D. We now show that with high probability the output of

f̂k(D) is close to the true answer q(D). Set z(k) =
⌈

1
4n
√

negl1(k)

⌉
k

, and define

Closek
def= {x ∈ Rd

k : ||x− q(D)||vp ≤ z(k)};

i.e., these are the points close to q(D). Let Fark
def= Rn

k \ Closek. Because the
average error of f̂k is at most err(k) + b(k) · c(k), we have

Pr[f̂k(D) ∈ Fark] ≤
(
err(k) + b(k) · c(k)

)
/z(k). (3)

Indistinguishability of {fk} and {Fk}, and the manner in which {f̂k} and {F̂k}
are constructed, implies that {f̂k} and {F̂k} are indistinguishable as well. As in
the proof of Lemma 1, this means that∣∣∣Pr[f̂k(D) ∈ Fark]− Pr[F̂k(D) ∈ Fark]

∣∣∣ ≤ negl1(k).

Combining this with Equation (3) yields

Pr[F̂k(D) ∈ Fark] ≤
(
err(k) + b(k) · c(k)

)
/z(k) + negl1(k).

We now use the above results to relate the probabilities that F̂k(D) or f̂k(D)
lie within some arbitrary set. The number of points in Closek is bounded from
above by (z(k) · 2k+1 + 1)n, since its size is largest (for fixed z(k)) when p =∞
and v = 1. For any Sk ⊂ Rn

k , we can thus lower-bound Pr[F̂k(D) ∈ Sk] via

Pr[F̂k(D) ∈ Sk] =
∑
x∈Sk

Pr[F̂k(D) = x]

≥
∑

x∈Sk∩Closek

Pr[F̂k(D) = x]

≥
∑

x∈Sk∩Closek

(
Pr[f̂k(D) = x]−

(
c(k) · 2k+1 + 1

)−n · negl1(k)
)
,
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using Equation (1), which bounds the difference in probabilities between f̂k and
F̂k pointwise. Continuing, we have

Pr[F̂k(D) ∈ Sk]

≥ Pr[f̂k(D) ∈ Sk ∩ Closek]−
(
z(k) · 2k+1 + 1

)n · (c(k) · 2k+1 + 1
)−n · negl1(k)

≥ Pr[f̂k(D) ∈ Sk ∩ Closek]−
(
z(k) + 1

c(k)

)n
· negl1(k)

+
(
Pr[f̂k(D) ∈ Sk ∩ Fark]−

(
err(k) + b(k) · c(k)

)
/z(k)
)

≥ Pr[f̂k(D) ∈ Sk]−
(
z(k) + 1

c(k)

)n
· negl1(k)−

(
err(k) + b(k) · c(k)

)
/z(k). (4)

Similarly, we can upper-bound Pr[F̂k(D) ∈ Sk] via

Pr[F̂k(D) ∈ Sk]

≤
∑

x∈Sk∩Closek

Pr[F̂k(D) = x] + Pr[F̂k(D′) ∈ Fark]

≤
∑

x∈Sk∩Closek

(
Pr[f̂k(D) = x] +

(
c(k) · 2k+1 + 1

)−n · negl1(k)
)

+ Pr[F̂k(D) ∈ Fark]

≤ Pr[f̂k(D) ∈ Sk] +
(
z(k) + 1

c(k)

)n
· negl1(k)

+
(
err(k) + b(k) · c(k)

)
/z(k) + negl1(k). (5)

Equations (4) and (5) hold for an arbitrary database D, and thus also hold for
any adjacent database D′. Substituting into Equation (2) and simplifying, we
obtain

Pr[f̂k(D) ∈ Sk]

≤ eε(k) × Pr[f̂k(D′) ∈ Sk]

+
(
eε(k) + 1

)
×
((

z(k) + 1
c(k)

)n
negl1(k) +

(
err(k) + b(k) · c(k)

)
/z(k)
)

+ eε(k) · negl1(k) + negl2(k) .

We show that the additive terms are all negligible. Note first that

(
z(k) + 1

c(k)

)n
· negl1(k) ≤

⎛⎝ 1
4n
√

negl1(k)
+ 2

4n
√

negl1(k)

⎞⎠n · negl1(k)

≤
(

3
2n
√

negl1(k)

)n
negl1(k)

≤ 3n ·
√

negl1(k),
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which is negligible in k (recall n is constant). To bound
(
err(k)+b(k) · c(k)

)
/z(k),

take k large enough so that b(k) · c(k) ≤ err(k) (this is always possible, since c
is negligible while err and b are polynomial). We then have

err(k) + b(k) · c(k)
z(k)

≤ 2 · err(k) · 4n
√

negl1(k),

which is negligible. We conclude that {f̂k} is (ε, negl)-DP.

The case of IND-CDP. A result analogous to the above holds also for the
case of IND-CDP. This follows fairly easily using the equivalent formulation
of IND-CDP in terms of SIM∀∃-CDP. The difference between SIM-CDP and
SIM∀∃-CDP is with respect to the order of quantifiers, but this has no real effect
on our proof. Note, in particular, that our construction of {f̂k} does not depend,
either explicitly or implicitly, on {Fk}.
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A Proof of Lemma 2

Let Yk be the set of possible distances between two points in Rn
k ; i.e.,

Yk
def= {y ∈ R | y = ||x1 − x2||p for some x1,x2 ∈ Rn

k}.

Let py,k
def= Pr

[
y − 2−k < ||fk(D)− q(D)||p ≤ y

]
. Then, by the assumption of

our theorem,
σp,v(q,D, fk) ≤

∑
y∈Yk

py,k · yv ≤ err(k).

We can upper-bound σp,v(q,D, f̂k) by assuming that the noise added by f̂k
moves the output further away from the correct answer q(D). In the worst case
(when p = 1), this increases the distance between the output and q(D) by at
most c′(k) def= n · c(k). Therefore,

σp,v(q,D, f̂k) ≤
∑

y∈Yk
py,k · (y + c′(k))v.

Using Taylor’s theorem, (y + c′(k))v ≤ yv + v · (y + c′(k))v−1 · c′(k). Thus, for k
sufficiently large it holds that

σp,v(q,D, f̂k) ≤
∑

y∈Yk
py,k ·
(
yv + v · (y + c′(k))v−1 · c′(k)

)
≤ err(k) +

∑
y∈Yk

py,k ·
(
v · (y + c′(k))v−1 · c′(k)

)
≤ err(k) + v · c′(k) ·

∑
y∈Yk

py,k · (y + n)v−1,

using for the last inequality the fact that c′(k) ≤ n for k large enough.
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If y ≤ n then (y +n)v−1 ≤ (2n)v−1, while if y ≥ n then (y+n)v−1 ≤ (2y)v−1.
As a result, we can bound the expression above as

σp,v(q,D, f̂k)

≤ err(k) + v · c′(k) ·
∑
y∈Yk

py,k · 2v−1 · (nv−1 + yv−1)

≤ err(k) + v · c′(k) ·

⎛⎝∑
y∈Yk

py,k · 2v−1nv−1 +
∑
y∈Yk

py,k · 2v−1yv−1

⎞⎠
≤ err(k) + v · c′(k) ·

⎛⎝2v−1nv−1 + 2v−1
∑
y∈Yk

py,k · yv−1

⎞⎠ .

Since y > 0, we have yv−1 ≤ yv + 1. Then:

σp,v(q,D, f̂k) ≤ err(k) + v · c′(k) ·

⎛⎝2v−1nv−1 + 2v−1
∑
y∈Yk

py,k · (yv + 1)

⎞⎠
≤ err(k) + v · c′(k) ·

(
2v−1nv−1 + 2v−1 · (err(k) + 1)

)
≤ err(k) + c(k) ·

(
2v−1v · nv + 2v−1v · n · (err(k) + 1)

)
.

Since err is polynomial and n, v are constants, this completes the proof.
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Abstract. We put forward a zero-knowledge based definition of privacy.
Our notion is strictly stronger than the notion of differential privacy and
is particularly attractive when modeling privacy in social networks. We
furthermore demonstrate that it can be meaningfully achieved for tasks
such as computing averages, fractions, histograms, and a variety of graph
parameters and properties, such as average degree and distance to con-
nectivity. Our results are obtained by establishing a connection between
zero-knowledge privacy and sample complexity, and by leveraging recent
sublinear time algorithms.

1 Introduction

Data privacy is a fundamental problem in today’s information age. Enormous
amounts of data are collected by government agencies, search engines, social
networking systems, hospitals, financial institutions, and other organizations,
and are stored in databases. There are huge social benefits in analyzing this
data; however, it is important that sensitive information about individuals who
have contributed to the data is not leaked to users analyzing the data. Thus,
one of the main goals is to release statistical information about the population
who have contributed to the data without breaching their individual privacy.

Many privacy definitions and schemes have been proposed in the past (see [4]
and [11] for surveys). However, many of them have been shown to be insuffi-
cient by describing realistic attacks on such schemes (e.g., see [19]). The notion
of differential privacy [8,7], however, has remained strong and resilient to these
attacks. Differential privacy requires that when one person’s data is added or re-
moved from the database, the output of the database access mechanism changes
very little so that the output before and after the change are “ε-close” (where
a specific notion of closeness of distributions is used). This notion has quickly
become the standard notion of privacy, and mechanisms for releasing a variety of
functions (including histogram queries, principal component analysis, learning,
and many more (see [6] for a recent survey)) have been developed.
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As we shall argue, however, although differential privacy provides a strong
privacy guarantee, there are realistic social network settings where these guar-
antees might not be strong enough. Roughly speaking, the notion of differential
privacy can be rephrased as requiring that whatever an adversary learns about
an individual could have been recovered about the individual had the adver-
sary known every other individual in the database (see the appendix of [8] for
a formalization of this statement). Such a privacy guarantee is not sufficiently
strong in the setting of social networks where an individual’s friends are strongly
correlated with the individual; in essence, “if I know your friends, I know you”.
(Indeed, a recent study [17] indicates that an individual’s sexual orientation can
be accurately predicted just by looking at the person’s Facebook friends.) We
now give a concrete example to illustrate how a differentially private mechanism
can violate the privacy of individuals in a social network setting.

Example 1 (Democrats vs. Republicans). Consider a social network of n people
that are grouped into cliques of size 200. In each clique, either at least 80% of
the people are Democrats, or at least 80% are Republicans. However, assume
that the number of Democrats overall is roughly the same as the number of
Republicans. Now, consider a mechanism that computes the proportion (in [0, 1])
of Democrats in each clique and adds just enough Laplacian noise to satisfy ε-
differential privacy for a small ε, say ε = 0.1. For example, to achieve ε-differential
privacy, it suffices to add Lap( 1

200ε ) noise1 to each clique independently, since
if a single person changes his or her political preference, the proportion for the
person’s clique changes by 1

200 (see Proposition 1 in [8]).
Since the mechanism satisfies ε-differential privacy for a small ε, one may think

that it is safe to release such information without violating the privacy of any
particular person. That is, the released data should not allow us to guess correctly
with probability significantly greater than 1

2 whether a particular person is a
Democrat or a Republican. However, this is not the case. With ε = 0.1, Lap( 1

200ε)
is a small amount of noise, so with high probability, the data released will tell us
the main political preference for any particular clique. An adversary that knows
which clique a person is in will be able to correctly guess the political preference
of that person with probability close to 80%.

Remark 1. In the above example, we assume that the graph structure is known
and that the adversary can identify what clique an individual is in. Such infor-
mation is commonly available: Graph structures of (anonymized) social networks
are often released; these may include a predefined or natural clustering of the
people (nodes) into cliques. Furthermore, an adversary may often also figure out
the identity of various nodes in the graph (see [1,16]); in fact, by participating
in the social network before the anonymized graph is published, an adversary
can even target specific individuals of his or her choice (see [1]).

Differential privacy says that the output of the mechanism does not depend
much on any particular individual’s data in the database. Thus, in the above ex-
ample, a person has little reason not to truthfully report his political preference.

1 Lap(λ) is the Laplace distribution with probability density function fλ(x) = 1
2λ

e
|x|
λ .
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However, this does not necessarily imply that the mechanism does not violate
the person’s privacy. In situations where a social network provides auxiliary in-
formation about an individual, that person’s privacy can be violated even if he
decides to not have his information included!

It is already known that differential privacy may not provide a strong enough
privacy guarantee when an adversary has specific auxiliary information about an
individual. For example, it was pointed out in [7] that if an adversary knows the
auxiliary information “person A is two inches shorter than the average Amer-
ican woman”, and if a differentially private mechanism accurately releases the
average height of American women, then the adversary learns person A’s height
(which is assumed to be sensitive information in this example). In this example,
the adversary has very specific auxiliary information about an individual that
is usually hard to obtain. However, in the Democrats vs. Republicans example,
the auxiliary information (the graph and clique structure) about individuals is
more general and more easily accessible. Since social network settings contain
large amounts of auxiliary information and correlation between individuals, dif-
ferential privacy is usually not strong enough in such settings.

One may argue that there are versions of differential privacy that protect
the privacy of groups of individuals, and that the mechanism in the Democrats
vs. Republicans example does not satisfy these stronger definitions of privacy.
While this is true, the main point here is that differential privacy will not protect
the privacy of an individual, even though the definition is designed for individual
privacy. Furthermore, even if we had used a differentially private mechanism that
ensures privacy for groups of size 200 (i.e., the size of each clique), it might still
be possible to deduce information about an individual by looking at the friends
of the friends of the individual; this includes a significantly larger number of
individuals2.

1.1 Towards a Zero-Knowledge Definition of Privacy

In 1977, Dalenius [5] stated a privacy goal for statistical databases: anything
about an individual that can be learned from the database can also be learned
without access to the database. This would be a very desirable notion of privacy.
Unfortunately, Dwork and Naor [7,9] demonstrated a general impossibility re-
sult showing that a formalization of Dalenius’s goal along the lines of semantic
security for cryptosystems cannot be achieved, assuming that the database gives
any non-trivial utility.

Our aim is to provide a privacy definition along the lines of Dalenius, and
more precisely, relying on the notion of zero-knowledge from cryptography. In
this context, the traditional notion of zero-knowledge says that an adversary
gains essentially “zero additional knowledge” by accessing the mechanism. More
precisely, whatever an adversary can compute by accessing the mechanism can
essentially also be computed without accessing the mechanism. A mechanism

2 The number of “friends of friends” is usually larger than the square of the number
of friends (see [23]).
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satisfying this property would be private but utterly useless, since the mecha-
nism provides essentially no information. The whole point of releasing data is to
provide utility; thus, this extreme notion of zero-knowledge, which we now call
“complete zero-knowledge”, is not very applicable in this setting.

Intuitively, we want the mechanism to not release any additional information
beyond some “aggregate information” that is considered acceptable to release.
To capture this requirement, we use the notion of a “simulator” from zero-
knowledge, and we require that a simulator with the acceptable aggregate infor-
mation can essentially compute whatever an adversary can compute by accessing
the mechanism. Our zero-knowledge privacy definition is thus stated relative to
some class of algorithms providing acceptable aggregate information.

Aggregate Information. The question is how to define appropriate classes of
aggregate information. We focus on the case where the aggregate information
is any information that can be obtained from k random samples/rows (each of
which corresponds to one individual’s data) of the database, where the data of
the person the adversary wants to attack has been concealed. The value of k can
be carefully chosen so that the aggregate information obtained does not allow
one to infer (much) information about the concealed data. The simulator is given
this aggregate information and has to compute what the adversary essentially
computes, even though the adversary has access to the mechanism. This ensures
that the mechanism does not release any additional information beyond this “k
random sample” aggregate information given to the simulator.

Differential privacy can be described using our zero-knowledge privacy defini-
tion by considering simulators that are given aggregate information consisting of
the data of all but one individual in the database; this is the same as aggregate
information consisting of “k random samples” with k = n, where n is the num-
ber of rows in the database (recall that the data of the individual the adversary
wants to attack is concealed), which we formally prove later. For k less than n,
such as k = logn or k =

√
n, we obtain notions of privacy that are stronger

than differential privacy. For example, we later show that the mechanism in the
Democrats vs. Republicans example does not satisfy our zero-knowledge privacy
definition when k = o(n) and n is sufficiently large.

We may also consider more general models of aggregate information that
are specific to graphs representing social networks; in this context we focus on
random samples with some exploration of the neighborhood of each sample.

1.2 Our Results

We consider two different settings for releasing information. In the first setting,
we consider statistical (row) databases in a setting where an adversary might
have auxiliary information, such as from a social network, and we focus on re-
leasing traditional statistics (e.g., averages, fractions, histograms, etc.) from a
database. As explained earlier, differential privacy may not be strong enough
in such a setting, so we use our zero-knowledge privacy definition instead. In
the second setting, we consider graphs with personal data that represent social
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networks, and we focus on releasing information directly related to a social net-
work, such as properties of the graph structure.

Setting #1. Computing functions on databases with zero-knowledge privacy: In
this setting, we focus on computing functions mapping databases to Rm. Our
main result is a characterization of the functions that can be released with zero-
knowledge privacy in terms of their sample complexity—i.e., how accurate the
function can be approximated using random samples from the input database.
More precisely, functions with low sample complexity can be computed accu-
rately by a zero-knowledge private mechanism, and vice versa. It is already
known that functions with low sample complexity can be computed with dif-
ferential privacy (see [8]), but here we show that the stronger notion of zero-
knowledge privacy can be achieved. In this result, the zero-knowledge private
mechanism we construct simply adds Laplacian noise appropriately calibrated
to the sample complexity of the function.

Many common queries on statistical databases have low sample complexity,
including averages, sum queries, and coarse histogram queries. (In general, it
would seem that any “meaningful” query function for statistical databases should
have relatively low sample complexity if we think of the rows of the database
as random samples from some large underlying population). As a corollary of
our characterization we get zero-knowledge private mechanisms for all these
functions providing decent utility guarantees. These results can be found in
Section 3.

Setting #2. Releasing graph structure information with zero-knowledge privacy:
In this setting, we consider a graph representing a social network, and we fo-
cus on privately releasing information about the structure of the graph. We
use our zero-knowledge privacy definition, since the released information can be
combined with auxiliary information such as an adversary’s knowledge and/or
previously released data (e.g., graph structure information) to breach the privacy
of individuals.

The connection between sample complexity and zero-knowledge privacy high-
lights an interesting connection between sublinear time algorithms and privacy.
As it turns out, many of the recently developed sublinear algorithms on graphs
proceed by picking random samples (and next performing some local explo-
ration); we are able to leverage these algorithms to privately release graph
structure information, such as average degree and distance to properties such
as connectivity and cycle-freeness. We discuss these results in Section 4.

2 Zero-Knowledge Privacy

2.1 Definitions

Let D be the class of all databases whose rows are tuples from some rela-
tion/universe X . For convenience, we will assume that X contains a tuple ⊥,
which can be used to conceal the true value of a row. Given a database D, let
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|D| denote the number of rows in D. For any integer n, let [n] denote the set
{1, . . . , n}. For any database D ∈ D, any integer i ∈ [|D|], and any v ∈ X , let
(D−i, v) denote the database D with row i replaced by the tuple v.

In this paper, mechanisms, adversaries, and simulators are simply randomized
algorithms that play certain roles in our definitions. Let San be a mechanism
that operates on databases in D. For any database D ∈ D, any adversary A,
and any z ∈ {0, 1}∗, let OutA(A(z) ↔ San(D)) denote the random variable
representing the output of A on input z after interacting with the mechanism
San operating on the database D. Note that San can be interactive or non-
interactive. If San is non-interactive, then San(D) sends information (e.g., a
sanitized database) to A and then halts immediately; the adversary A then tries
to breach the privacy of some individual in the database D.

Let agg be any class of randomized algorithms that provide aggregate infor-
mation to simulators, as described in Section 1.1. We refer to agg as a model of
aggregate information.

Definition 1. We say that San is ε-zero-knowledge private with respect
to agg if there exists a T ∈ agg such that for every adversary A, there exists
a simulator S such that for every database D ∈ Xn, every z ∈ {0, 1}∗, every
integer i ∈ [n], and every W ⊆ {0, 1}∗, the following hold:

– Pr[OutA(A(z)↔ San(D)) ∈ W ] ≤ eε · Pr[S(z, T (D−i,⊥), i, n) ∈W ]
– Pr[S(z, T (D−i,⊥), i, n) ∈ W ] ≤ eε · Pr[OutA(A(z)↔ San(D)) ∈W ]

The probabilities are over the random coins of San and A, and T and S,
respectively.

Intuitively, the above definition says that whatever an adversary can compute
by accessing the mechanism can essentially also be computed without accessing
the mechanism but with certain aggregate information (specified by agg). The
adversary in the latter scenario is represented by the simulator S. The definition
requires that the adversary’s output distribution is close to that of the simulator.
This ensures that the mechanism essentially does not release any additional
information beyond what is allowed by agg. When the algorithm T provides
aggregate information to the simulator S, the data of individual i is concealed
so that the aggregate information does not depend directly on individual i’s data.
However, in the setting of social networks, the aggregate information may still
depend on people’s data that are correlated with individual i in reality, such as
the data of individual i’s friends. Thus, the role played by agg is very important
in the context of social networks.

To measure the closeness of the adversary’s output and the simulator’s output,
we use the same closeness measure as in differential privacy (as opposed to,
say, statistical difference) for the same reasons. As explained in [8], consider a
mechanism that outputs the contents of a randomly chosen row. Suppose agg is
defined so that it includes the algorithm that simply outputs its input (D−i,⊥)
to the simulator (which is the case of differential privacy; see Section 1.1 and 2.2).
Then, a simulator can also choose a random row and then simulate the adversary
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with the chosen row sent to the simulated adversary. The real adversary’s output
will be very close to the simulator’s output in statistical difference (1/n to be
precise); however, it is clear that the mechanism always leaks private information
about some individual.

Remark 2. Our ε-zero-knowledge privacy definition can be easily extended to
(ε, δ(·))-zero-knowledge privacy, where we also allow an additive error of δ(n) on
the RHS of the inequalities. We can further extend our definition to (c, ε, δ(·))-
zero-knowledge privacy to protect the privacy of any group of c individuals si-
multaneously. To obtain this more general definition, we would change “i ∈ [n]”
to “I ⊆ [n] with |I| ≤ c”, and “S(z, (D−i,⊥), i, n)” to “S(z, (D−I ,⊥), I, n)”.
We use this more general definition when we consider group privacy.

Remark 3. In our zero-knowledge privacy definition, we consider computation-
ally unbounded simulators. We can also consider PPT simulators by requiring
that the mechanism San and the adversary A are PPT algorithms, and agg is
a class of PPT algorithms. All of these algorithms would be PPT in n, the size
of the database. With minor modifications, the results of this paper would still
hold in this case.

The choice of agg determines the type and amount of aggregate information
given to the simulator, and should be decided based on the context in which the
zero-knowledge privacy definition is used. The aggregate information should not
depend much on data that is highly correlated with the data of a single person,
since such aggregate information may be used to breach the privacy of that per-
son. For example, in the context of social networks, such aggregate information
should not depend much on any person and the people closely connected to that
person, such as his or her friends. By choosing agg carefully, we ensure that
the mechanism essentially does not release any additional information beyond
what is considered acceptable. We first consider the model of aggregate informa-
tion where T in the definition of zero-knowledge privacy chooses k(n) random
samples. Let k : N→ N be any function.

– RS(k(·)) = k(·) random samples: the class of algorithms T such that on
input a database D ∈ Xn, T chooses k(n) random samples (rows) from D
uniformly without replacement, and then performs any computation on these
samples without reading any of the other rows of D. Note that with such
samples, T can emulate choosing k(n) random samples with replacement, or
a combination of without replacement and with replacement.

k(n) should be carefully chosen so that the aggregate information obtained does
not allow one to infer (much) information about the concealed data. For k(n) =
0, the simulator is given no aggregate information at all, which is the case of
complete zero-knowledge. For k(n) = n, the simulator is given all the rows of
the original database except for the target individual i, which is the case of
differential privacy (as we prove later). For k(n) strictly in between 0 and n, we
obtain notions of privacy that are stronger than differential privacy. For example,
one can consider k(n) = o(n), such as k(n) = logn or k(n) =

√
n.
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In the setting of a social network, k(n) can be chosen so that when k(n) ran-
dom samples are chosen from (D−i,⊥), with very high probability, for (almost)
all individuals j, very few of the k(n) chosen samples will be in individual j’s
local neighborhood in the social network graph. This way, the aggregate infor-
mation released by the mechanism depends very little on data that is highly
correlated with the data of a single individual. The choice of k(n) would depend
on various properties of the graph structure, such as clustering coefficient, edge
density, and degree distribution. The choice of k(n) would also depend on the
amount of correlation between the data of adjacent or close vertices (individuals)
in the graph, and the type of information released by the mechanism. In this
model of aggregate information, vertices (individuals) in the graph with more
adjacent vertices (e.g., representing friends) may have less privacy than those
with fewer adjacent vertices. However, this is often the case in social networks,
where having more links/connections to other people may result in less privacy.

In the remainder of this section, we focus primarily on the RS(k(·)) model
of aggregate information. In Section 4, we consider other models of aggregate
information that take more into consideration the graph structure of a social
network. Note that zero-knowledge privacy does not necessarily guarantee that
the privacy of every individual is completely protected. Zero-knowledge privacy
is defined with respect to a model of aggregate information, and such aggregate
information may still leak some sensitive information about an individual in
certain scenarios.

Composition: Just as for differentially private mechanisms, mechanisms that are
ε-zero-knowledge private with respect to RS(k(·)) also compose nicely.

Proposition 1. Suppose San1 is ε1-zero-knowledge private with respect to
RS(k1(·)) and San2 is ε2-zero-knowledge private with respect to RS(k2(·)). Then,
the mechanism obtained by composing San1 with San2 is (ε1+ε2)-zero-knowledge
private with respect to RS((k1 + k2)(·)).

See the full version of this paper ([12]) for the proof.

Graceful Degradation for Group Privacy: A nice feature of differential privacy
is that ε-differential privacy implies (c, cε)-differential privacy for groups of size
c (see [7] and the appendix in [8]). However, the cε appears in the exponent of e
in the definition of (c, cε)-differential privacy, so the degradation is exponential
in c. Thus, the group privacy guarantee implied by ε-differential privacy is not
very meaningful unless the group size c is small. We do not have a group privacy
guarantee for pure ε-zero-knowledge privacy; however, we do have a group pri-
vacy guarantee for (ε, δ(·))-zero-knowledge privacy with respect to RS(k(·)) that
does not degrade at all for ε, and only degrades linearly for δ(·) with increasing
group size.

Proposition 2. Suppose San is (ε, δ(·))-zero-knowledge private with respect to
RS(k(·)). Then, for every c ≥ 1, San is also (c, ε, δc(·))-zero-knowledge private
with respect to RS(k(·)), where δc(n) = δ(n) + eε(c− 1) · k(n)

n .
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See the full version of this paper for the proof. Intuitively, for k(n) sufficiently
smaller than n, (ε, δ(·))-zero-knowledge privacy with respect to RS(k(·)) actually
implies some notion of group privacy, since the algorithm T (in the privacy
definition) chooses each row with probability k(n)/n. Thus, T chooses any row
of a fixed group of c rows with probability at most ck(n)/n. If this probability
is very small, then the output of T and thus the simulator S does not depend
much on any group of c rows.

2.2 Differential Privacy vs. Zero-Knowledge Privacy

In this section, we compare differential privacy to our zero-knowledge privacy
definition. We first state the definition of differential privacy in a form similar to
our zero-knowledge privacy definition in order to more easily compare the two.
For any pair of databases D1, D2 ∈ Xn, let H(D1, D2) denote the number of
rows in which D1 and D2 differ, comparing row-wise.

Definition 2. We say that San is ε-differentially private if for every adver-
sary A, every z ∈ {0, 1}∗, every pair of databases D1, D2 ∈ Xn with H(D1, D2)≤
1, and every W ⊆ {0, 1}∗, we have

Pr[OutA(A(z)↔ San(D1)) ∈ W ] ≤ eε · Pr[OutA(A(z)↔ San(D2)) ∈W ],

where the probabilities are over the random coins of San and A. For (c, ε)-
differential privacy (for groups of size c), the “H(D1, D2) ≤ 1” is changed to
“H(D1, D2) ≤ c”.

Proposition 3. Suppose San is ε-zero-knowledge private with respect to any
class agg. Then, San is 2ε-differentially private.

Proposition 4. Suppose San is ε-differentially private. Then, San is ε-zero-
knowledge private with respect to RS(n).

See the full version of this paper for the proof of Propositions 3 and 4.

Remark 4. If we consider PPT simulators in the definition of zero-knowledge
privacy instead of computationally unbounded simulators, then we require San
in Proposition 4 to be PPT as well.

Combining Propositions 3 and 4, we see that our zero-knowledge privacy defini-
tion includes differential privacy as a special case (up to a factor of 2 for ε).

2.3 Revisiting the Democrats vs. Republicans Example

Recall the Democrats vs. Republicans example in the introduction. The mecha-
nism in the example is ε-differentially private for some small ε, even though the
privacy of individuals is clearly violated. However, the mechanism is not zero-
knowledge private in general. Suppose that the people’s political preferences are
stored in a database D ∈ Xn.
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Proposition 5. Fix ε > 0, c ≥ 1, and any function k(·) such that k(n) = o(n).
Let San be a mechanism that on input D ∈ Xn computes the proportion of
Democrats in each clique and adds Lap( c

200ε ) noise to each proportion indepen-
dently. Then, San is (c, ε)-differentially private, but for every sufficiently large
n, San is not ε′-zero-knowledge private with respect to RS(k(·)) for any constant
ε′ > 0.

See the full version of this paper for the proof. Intuitively, the last part of the
proposition holds because for sufficiently large n, with high probability there ex-
ists some clique such that an adversary having only k(n) = o(n) random samples
would not have any samples in that clique. Thus, with high probability, there ex-
ists some clique that the adversary knows nothing about. Therefore, the adversary
does gain knowledge by accessing the mechanism, which gives some information
about every clique since the amount of noise added to each clique is constant.

Remark 5. In the Democrats vs. Republicans example, even if San adds Lap(1
ε )

noise to achieve (200, ε)-differential privacy so that the privacy of each clique
(and thus each person) is protected, the mechanism would still fail to be ε′-
zero-knowledge private with respect to RS(k(·)) for any constant ε′ > 0 when
n is sufficiently large (see Proposition 5). Thus, zero-knowledge privacy with
respect to RS(k(·)) with k(n) = o(n) seems to provide an unnecessarily strong
privacy guarantee in this particular example. However, this is mainly because
the clique size is fixed and known to be 200, and we have assumed that the only
correlation between people’s political preferences that exists is within a clique.
In a more realistic social network, there would be cliques of various sizes, and
the correlation between people’s data would be more complicated. For example,
an adversary knowing your friends’ friends may still be able to infer a lot of
information about you.

3 Characterizing Zero-Knowledge Privacy

In this section, we focus on constructing zero-knowledge private mechanisms that
compute a function mapping databases in Xn to Rm, and we characterize the
set of functions that can be computed with zero-knowledge privacy. These are
precisely the functions with low sample complexity, i.e., can be approximated
(accurately) using only limited information from the database, such as k random
samples.

We quantify the error in approximating a function g : Xn → Rm using L1 dis-
tance. Let the L1-sensitivity of g be defined by Δ(g) = max{||g(D′)− g(D′′)||1 :
D′, D′′ ∈ Xn s.t. H(D′, D′′) ≤ 1}. Let C be any class of randomized algorithms.

Definition 3. A function g : Xn → Rm is said to have (δ, β)-sample com-
plexity with respect to C if there exists an algorithm T ∈ C such that for every
input D ∈ Xn, we have T (D) ∈ Rm and

Pr[||T (D)− g(D)||1 ≤ δ] ≥ 1− β.

T is said to be a (δ, β)-sampler for g with respect to C.
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Remark 6. If we consider PPT simulators in the definition of zero-knowledge
privacy instead of computationally unbounded simulators, then we would require
here that C is a class of PPT algorithms (PPT in n, the size of the database).
Thus, in the definition of (δ, β)-sample complexity, we would consider a family
of functions (one for each value of n) that can be computed in PPT, and the
sampler T would be PPT in n.

It was shown in [8] that functions with low sample complexity with respect to
RS(k(·)) have low sensitivity as well.

Lemma 1 ([8]). Suppose g : Xn → Rm has (δ, β)-sample complexity with re-
spect to RS(k(·)) for some β < 1−k(n)/n

2 . Then, Δ(g) ≤ 2δ.

As mentioned in [8], the converse of the above lemma is not true, i.e., not all func-
tions with low sensitivity have low sample complexity (see [8] for an example).
This should be no surprise, since functions with low sensitivity have accurate
differentially private mechanisms, while functions with low sample complexity
have accurate zero-knowledge private mechanisms. We already know that zero-
knowledge privacy is stronger than differential privacy, as illustrated by the
Democrats vs. Republicans example.

We now state how the sample complexity of a function is related to the amount
of noise a mechanism needs to add to the function value in order to achieve a
certain level of zero-knowledge privacy.

Proposition 6. Suppose g : Xn → [a, b]m has (δ, β)-sample complexity with
respect to some C. Then, the mechanism San(D) = g(D)+ (X1, . . . , Xm), where
Xj ∼ Lap(λ) for j = 1, . . . ,m independently, is ln((1 − β)e

Δ(g)+δ
λ + βe

(b−a)m
λ )-

zero-knowledge private with respect to C.

The intuition is that the sampling error gets blurred by the noise added.

Proof. Let T be a (δ, β)-sampler for g with respect to C. Let A be any ad-
versary. Let S be a simulator that, on input (z, T (D−i,⊥), i, n), first checks
whether T (D−i,⊥) is in [a, b]m; if not, S projects T (D−i,⊥) onto the set [a, b]m

(with respect to L1 distance) so that the accuracy of T (D−i,⊥) is improved and
||g(D)−T (D−i,⊥)||1 ≤ (b−a)m always holds, which we use later. From here on,
T (D−i,⊥) is treated as a random variable that reflects the possible modification
S may perform. The simulator S computes T (D−i,⊥)+(X1, . . . , Xm), which we
will denote using the random variable S′(z, T (D−i,⊥), i, n). S then simulates
the computation of A(z) with S′(z, T (D−i,⊥), i, n) sent to A as a message, and
outputs whatever A outputs.

Let D ∈ Xn, z ∈ {0, 1}∗, i ∈ [n]. Fix x ∈ T (D−i,⊥) and s ∈ Rm. Then, we
have
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max
{
fλ(s− g(D))
fλ(s− x)

,
fλ(s− x)

fλ(s− g(D))

}
= max

{
e( 1

λ ·(||s−x||1−||s−g(D)||1)), e( 1
λ ·(||s−g(D)||1−||s−x||1))

}
≤ e( 1

λ ·||g(D)−x||1) ≤ e( 1
λ ·(||g(D)−g(D−i,⊥)||1+||g(D−i,⊥)−x||1))

≤ e( 1
λ ·(Δ(g)+||g(D−i,⊥)−x||1)). (1)

Since ||g(D)− x||1 ≤ (b− a)m always holds, we also have

max
{
fλ(s− g(D))
fλ(s− x)

,
fλ(s− x)

fλ(s− g(D))

}
≤ e( 1

λ ·||g(D)−x||1) ≤ e
(b−a)m

λ . (2)

Since T is a (δ, β)-sampler for g, we have Pr[||g(D−i,⊥) − T (D−i,⊥)||1 ≤ δ] ≥
1− β. Thus, using (1) and (2) above, we have

ln

(∑
x∈T (D−i,⊥) fλ(s − x) · Pr[T (D−i,⊥) = x]

fλ(s − g(D))

)
≤ ln((1 − β)e

Δ(g)+δ
λ + βe

(b−a)m
λ ).

Now, using (1) and (2) again, we also have

ln

(
fλ(s− g(D))∑

x∈T (D−i,⊥) fλ(s− x) · Pr[T (D−i,⊥) = x]

)

= − ln

(∑
x∈T (D−i,⊥) fλ(s− x) · Pr[T (D−i,⊥) = x]

fλ(s− g(D))

)
≤ − ln((1 − β)e−

Δ(g)+δ
λ + βe−

(b−a)m
λ ) = ln(((1 − β)e−

Δ(g)+δ
λ + βe−

(b−a)m
λ )−1)

≤ ln((1 − β)e
Δ(g)+δ

λ + βe
(b−a)m

λ ),

where the last inequality follows from the fact that the function f(x) = x−1 is
convex for x > 0. Then, for every s ∈ Rn, we have∣∣∣∣ln( Pr[San(D) = s]

Pr[S′(z, T (D−i,⊥), i, n) = s]

)∣∣∣∣
=

∣∣∣∣∣ln
(

fλ(s− g(D))∑
x∈T (D−i,⊥) fλ(s− x) · Pr[T (D−i,⊥) = x]

)∣∣∣∣∣
≤ ln((1 − β)e

Δ(g)+δ
λ + βe

(b−a)m
λ ).

Thus, for every W ⊆ {0, 1}∗, we have
∣∣∣ln(Pr[OutA(A(z)↔San(D))∈W ]

Pr[S(z,T (D−i,⊥),i,n)∈W ]

)∣∣∣ ≤ ln((1−

β)e
Δ(g)+δ

λ + βe
(b−a)m

λ ). 	


Corollary 1. Suppose g : Xn → [a, b]m has (δ, β)-sample complexity with re-
spect to RS(k(·)) for some β < 1−k(n)/n

2 . Then, the mechanism San(D) =
g(D) + (X1, . . . , Xm), where Xj ∼ Lap(λ) for j = 1, . . . ,m independently, is
ln((1 − β)e

3δ
λ + βe

(b−a)m
λ )-zero-knowledge private with respect to RS(k(·)).
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Proof. This follows from combining Proposition 6 and Lemma 1.

Using Proposition 6, we can recover the basic mechanism in [8] that is ε-
differentially private.

Corollary 2. Let g : Xn → [a, b]m and ε > 0. A mechanism San for g that
adds Lap(Δ(g)

ε ) noise to g(D) is ε-zero-knowledge private with respect to RS(n).

Proof. We note that every function g : Xn → Rm has (0, 0)-sample complexity
with respect to RS(n). The corollary follows by applying Proposition 6.

We now show how the zero-knowledge privacy and utility properties of a mech-
anism computing a function is related to the sample complexity of the function.
A class of algorithms agg is said to be closed under postprocessing if for any
T ∈ agg and any algorithm M , the composition of M and T (i.e., the algorithm
that first runs T and then runs M on the output of T ) is also in agg. We note
that RS(k(·)) is closed under postprocessing.

Proposition 7. Let agg be any class of algorithms that is closed under postpro-
cessing, and suppose a function g : Xn → Rm has a mechanism San such that
the following hold:

– Utility: Pr[||San(D)− g(D)||1 ≤ δ] ≥ 1− β for every D ∈ Xn

– Privacy: San is ε-zero-knowledge private with respect to agg.

Then, g has (δ, β+(eε−1)
eε )-sample complexity with respect to agg.

See the full version of this paper for the proof. The intuition is that the zero-
knowledge privacy of San guarantees that San can be simulated by a simulator
S that is given aggregate information provided by some algorithm T ∈ agg.
Thus, an algorithm that runs T and then S will be able to approximate g with
accuracy similar to that of San.

3.1 Some Simple Examples of Zero-Knowledge Private Mechanisms

Example 2 (Averages). Fix n > 0, k = k(n). Let avg : [0, 1]n → [0, 1] be
defined by avg(D) =

∑n
i=1Di

n , and let San(D) = avg(D)+Lap(λ), where λ > 0.
Let T be an algorithm that, on input a database D ∈ [0, 1]n, chooses k random
samples from D (uniformly), and then outputs the average of the k random
samples. By Hoeffding’s inequality, we have Pr [|T (D)− avg(D)| ≤ δ] ≥ 1 −
2e−2kδ2 . Thus, avg has (δ, 2e−2kδ2)-sample complexity with respect to RS(k(·)).
By Proposition 6, San is ln(e

1
λ ( 1

n +δ) + 2e
1
λ−2kδ2 )-zero-knowledge private with

respect to RS(k(·)).
Let ε ∈ (0, 1]. We choose δ = 1

k1/3 and λ = 1
ε (

1
n + δ) = 1

ε (
1
n + 1

k1/3 ) so

that ln(e
1
λ ( 1

n +δ) + 2e
1
λ−2kδ2) = ln(eε + 2e

ε

1/n+k−1/3 −2k1/3

) ≤ ln(eε + 2e−k
1/3

) ≤
ε + 2e−k

1/3
. Thus, we have the following result:
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– By adding Lap(1
ε (

1
n + 1

k1/3 )) = Lap(O( 1
εk1/3 )) noise to avg(D), San is (ε +

2e−k
1/3

)-zero-knowledge private with respect to RS(k(·)).

Example 3 (Fraction of rows satisfying some property P ). Let P : X →
{0, 1} be the predicate representing some property of a row. Let g : Xn → [0, 1]
be defined by g(D) =

∑n
i=1 P (Di)

n , which is the fraction of rows satisfying property
P . Since g(D) can be viewed as the average of the numbers {P (Di)}ni=1, we can
get the same result as in the example for averages.

Example 4 (Histograms). We can easily construct a zero-knowledge private
mechanism (with respect to RS(k(·))) that computes a histogram with m bins
by estimating each bin count separately using k(n)/m random samples each
and then applying Proposition 6. Alternatively, we can construct a mechanism
by composing Sani for i = 1, . . . ,m, where Sani is any zero-knowledge private
mechanism (with respect to RS( 1

mk(·))) for estimating the number of rows in
the ith bin, and then applying our composition result (Propsition 1).

Example 5 (Sample and DP-Sanitize). Our example mechanism for comput-
ing averages comes from the general connection between sample complexity and
zero-knowledge privacy (Proposition 6), which holds for any model of aggregate
information. For computing averages, we can actually construct a mechanism
with (usually) better utility by choosing k(n) random samples without replace-
ment from the input database D ∈ Xn and then running a differentially private
mechanism on the chosen samples. It is not hard to show that such a mechanism
is zero-knowledge private with respect to RS(k(·)). In general, this “sample and
DP-sanitize” method works for query functions that can be approximated us-
ing random samples (e.g., averages, fractions, and histograms), and allows us to
convert differentially private mechanisms to zero-knowledge private mechanisms
with respect to RS(k(·)). (See the full version of this paper for more details.)

3.2 Answering a Class of Queries Simultaneously

In the full version of this paper, we generalize the notion of sample complexity
(with respect to RS(k(·)) to classes of query functions and show a connection
between differential privacy and zero-knowledge privacy for any class of query
functions with low sample complexity. In particular, we show that for any class
Q of query functions that can be approximated simultaneously using random
samples, any differentially private mechanism that is useful for Q can be con-
verted to a zero-knowledge private mechanism that is useful for Q, similar to
the “Sample and DP-sanitize” method. We also show that any class of fraction
queries (functions that compute the fraction of rows satisfying some property
P ) with low VC dimension can be approximated simultaneously using random
samples, so we can use the differentially private mechanisms in [2] and [10] to
obtain zero-knowledge private mechanisms (with respect to RS(k(·)) for any
class of fraction queries with low VC dimension.
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4 Zero-Knowledge Private Release of Graph Properties

In this section, we first generalize statistical (row) databases to graphs with
personal data so that we can model a social network and privately release in-
formation that is dependent on the graph structure. We then discuss how to
model privacy in a social network, and we construct a sample of zero-knowledge
private mechanisms that release certain information about the graph structure
of a social network.

We represent a social network using a graph whose vertices correspond to peo-
ple (or other social entities) and whose edges correspond to social links between
them, and a vertex can have certain personal data associated with it. There are
various types of information about a social network one may want to release,
such as information about the people’s data, information about the structure of
the social network, and/or information that is dependent on both. In general,
we want to ensure privacy of each person’s personal data as well as the person’s
links to other people (i.e., the list of people the person is linked to via edges).

To formally model privacy in social networks, let Gn be a class of graphs on
n vertices where each vertex includes personal data. (When we refer to a graph
G ∈ Gn, the graph always includes the personal data of each vertex.) The graph
structure is represented by an adjacency matrix, and each vertex’s personal data
is represented by a tuple in X . For the privacy of individuals, we use our zero-
knowledge privacy definition with some minor modifications:

– ε-zero-knowledge privacy is defined as before except we change “database
D ∈ Xn” to “graph D ∈ Gn”, and we define (D−i,⊥) to be the graph D
except the personal data of vertex i is replaced by ⊥, and all the edges
incident to vertex i are removed (by setting the corresponding entries in
the adjacency matrix to 0); thus (D−i,⊥) is essentially D with person i’s
personal data and links removed.

We now consider functions g : Gn → Rm, and we redefine the L1-sensitivity
of g to be Δ(g) = max{||g(D′) − g(D′′)||1 : D′, D′′ ∈ Gn s.t. (D′

−i,⊥) =
(D′′

−i,⊥) for some i ∈ [n]}. We also redefine RS(k(·)) so that the algorithms
in RS(k(·)) are given a graph D ∈ Gn and are allowed to choose k(n) random
vertices without replacement and read their personal data; however, the algo-
rithms are not allowed to read the structure of the graph, i.e., the adjacency
matrix. It is easy to verify that all our previous results still hold when we con-
sider functions g : Gn → Rm on graphs and use the new definition of Δ(g) and
RS(k(·)).

Since a social network has more structure than a statistical database contain-
ing a list of values, we consider more general models of aggregate information
that allow us to release more information about social networks:

– RSE(k(·), s) = k(·) random samples with exploration: the class of algorithms
T such that on input a graph D ∈ Gn, T chooses k(n) random vertices
uniformly without replacement. For each chosen vertex v, T is allowed to
explore the graph locally at v until s vertices (including the sampled vertex)
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have been visited. The data of any visited vertex can be read. (RSE stands
for “random samples with exploration”.)

– RSN(k(·), d) = k(·) random samples with neighborhood: same as RSE(k(·),
s) except that while exploring locally, instead of exploring until s vertices
have been visited, T is allowed to explore up to a distance of d from the
sampled vertex. (RSN stands for “random samples with neighborhood”.)

Note that these models of aggregate information include RS(k(·)) as a special
case. We can also consider variants of these models where instead of allowing the
data of any visited vertex to be read, only the data of the k(n) randomly chosen
vertices can be read. (The data of the “explored” vertices cannot be read.)

Remark 7. In the above models, vertices (people) in the graph with high degree
may be visited with higher probability than those with low degree. Thus, the
privacy of these people may be less protected. However, this is often the case
in social networks, where people with very many friends will naturally have less
privacy than those with few friends.

We now show how to combine Proposition 6 (the connection between sample
complexity and zero-knowledge privacy) with recent sublinear time algorithms
to privately release information about the graph structure of a social network.
For simplicity, we assume that the degree of every vertex is bounded by some
constant dmax (which is often the case in a social network anyway)3.

Let Gn be the set of all graphs on n vertices where every vertex has degree
at most dmax. We assume that dmax is publicly known. Let M = dmaxn

2 be an
upper bound on the number of edges of a graph in Gn. For any graph G ∈ G, the
(relative) distance from G to the some property Π , denoted dist(G,Π), is the
least number of edges that need to be modified (added/removed) in G in order
to make it satisfy property Π , divided by M .

Theorem 1. Let Conn, Eul, and CycF be the property of being connected,
Eulerian4, and cycle-free, respectively. Let d̄(G) denote the average degree of a
vertex in G. Then, for the class of graphs Gn, we have the following results:

1. The mechanism San(G) = dist(G,Conn)+Lap(2/n+δ
ε ) is ε+e−(K−ε/δ)-zero-

knowledge private with respect to RSE(k(·), s), where k(n) = O( K
(δdmax)2 )

and s = O( 1
δdmax

).

2. The mechanism San(G) = dist(G,Eul)+Lap(4/n+δ
ε ) is ε+ e−(K−ε/δ)-zero-

knowledge private with respect to RSE(k(·), s), where k(n) = O( K
(δdmax)2 )

and s = O( 1
δdmax

).
3. The mechanism San(G) = dist(G,CycF ) + Lap(2/n+δ

ε ) is ε + e−(K−ε/δ)-
zero-knowledge private with respect to RSE(k(·), s), where k(n) = O(Kδ2 )
and s = O( 1

δdmax
).

3 Weaker results can still be established without this assumption.
4 A graph G is Eulerian if there exists a path in G that traverses every edge of G

exactly once.
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4. The mechanism San(G) = d̄(G) + Lap(2dmax/n+δL
ε ) is ε + e−(K−ε/δ)-zero-

knowledge private with respect to RSN(k(·), 2), where k(n) = O(K
√
n log2 n·

1
δ9/2 log(1

δ )). (Here, we further assume that every graph in G has no isolated
vertices and the average degree of a vertex is bounded by L.)

The results of the above theorem are obtained by combining Proposition 6 (the
connection between sample complexity and zero-knowledge privacy) with sub-
linear time algorithms from [22] (for results 1, 2, and 3) and [15] (for result 4).
Intuitively, the sublinear algorithms give bounds on the sample complexity of the
functions (dist(G,Conn), etc.) with respect to RSE(k(·), s) or RSN(k(·), d).

There are already many (non-private) sublinear time algorithms for com-
puting information about graphs whose accuracy is proved formally (e.g., see
[15,3,22,13,18,14,24]) or demonstrated empirically (e.g, see [21,20]). We leave for
future work to investigate whether these (or other) sublinear algorithms can be
used to get zero-knowledge private mechanisms.
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Abstract. A fair two-party coin tossing protocol is one in which both
parties output the same bit that is almost uniformly distributed (i.e., it
equals 0 and 1 with probability that is at most negligibly far from one
half). It is well known that it is impossible to achieve fair coin tossing
even in the presence of fail-stop adversaries (Cleve, FOCS 1986). In fact,
Cleve showed that for every coin tossing protocol running for r rounds,
an efficient fail-stop adversary can bias the output by Ω(1/r). Since this
is the best possible, a protocol that limits the bias of any adversary to
O(1/r) is called optimally-fair. The only optimally-fair protocol that is
known to exist relies on the existence of oblivious transfer, because it
uses general secure computation (Moran, Naor and Segev, TCC 2009).
However, it is possible to achieve a bias of O(1/

√
r) in r rounds relying

only on the assumption that there exist one-way functions. In this paper
we show that it is impossible to achieve optimally-fair coin tossing via
a black-box construction from one-way functions for r that is less than
O(n/ log n), where n is the input/output length of the one-way function
used. An important corollary of this is that it is impossible to construct
an optimally-fair coin tossing protocol via a black-box construction from
one-way functions whose round complexity is independent of the security
parameter n determining the security of the one-way function being used.
Informally speaking, the main ingredient of our proof is to eliminate
the random-oracle from “secure” protocols with “low round-complexity”
and simulate the protocol securely against semi-honest adversaries in the
plain model. We believe our simulation lemma to be of broader interest.

Keywords: black-box separations, coin tossing, optimally-fair coin
tossing, round-complexity, lower-bound.

1 Introduction

We study the fundamental problem of (two-party) coin tossing, where two mu-
tually distrustful parties wish to generate a common random bit. Ideally, this

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 450–467, 2011.
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bit should be almost completely unbiased (namely be equal to 1 with probabil-
ity that is at most negligibly far from 1/2). Furthermore, by the definition of
a secure coin tossing protocol, if the two parties follow the protocol then they
must both output the same random bit. Unfortunately, however, as shown in a
classic result by Cleve [c86], if one of the parties may deviate from the proto-
col (even if the deviation is only “fail-stop” meaning that the adversary merely
aborts early), then secure coin tossing cannot be achieved. In fact, Cleve proved
that for any coin tossing protocol running for r rounds there exists an efficient
fail-stop adversary that can bias the resulting bit by at least Ω(1/r).

On the positive side, an early result by Blum [b82] uses one-way functions to
construct a coin tossing protocol in a weaker model, where an unbiased output
is achieved if both parties complete the protocol, but if a malicious party aborts
early, the honest party does not output any bit. This protocol was used by
Cleve [c86] to construct a coin tossing protocol that runs for r rounds and for
which no efficient adversary can bias the output bit by more than O(1/

√
r)

assuming that one-way functions exist1.
This gap between the lower and upper bounds in [c86] remained open for

more than two decades. Recently, it was closed by Moran et al. [mns09], who
constructed a protocol for coin tossing that matches the lower-bound of [c86].
Specifically, they constructed an O(r)-round protocol with the property that no
adversary can bias the output by more than O(1/r). Thus, they demonstrated
that the Ω(1/r) lower-bound is tight. We call such a protocol optimally-fair
because no protocol can achieve lower bias.

Interestingly, the protocol of [mns09] uses general secure computation and
thus requires the assumption that oblivious transfer exists (or any assumption
implying it, like enhanced trapdoor permutations). In contrast, the coin tossing
protocol of Blum [b82] and the protocol of [c86] achieving bias of O(1/

√
r)

can be constructed from any one-way function. This disparity was observed
by [mns09] who state: “A challenging problem is to either achieve the optimal
bias based on seemingly weaker assumptions (e.g., one-way functions), or to
demonstrate that oblivious transfer is in fact essential.”

In this paper we take a step toward answering this question, and show that
one-way functions are not sufficient for achieving optimally-fair coin tossing via
black-box reductions when the number of rounds r is o(n/ logn) for security
parameter n (i.e., the input/output length of the one-way function). We note
that the protocols mentioned above of [c86, mns09] are indeed black-box

Theorem 1 (Main Theorem, Informal). Let Π be a black-box construction
for two-party optimally-fair coin tossing based on one-way functions with input
and output length n. Then the number of rounds r of interaction in Π is at least
r = Ω(n/ logn).

1 Essentially, this protocol works by running Blum’s protocol r times sequentially and
outputting the bit that appeared in most executions. (If one of the parties halts
prematurely, then the other party takes locally chosen uniformly distributed bits as
the output bits for the remaining Blum executions.)
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In fact, we prove something even stronger: – Stronger primitives. The same
result holds even if the primitive used in the construction is an exponentially-
hard one-way function or an exponentially hard collision resistant hash function
h : {0, 1}n (→ {0, 1}θ(n) (or in fact any primitive which can be derived in a black-
box manner from a random oracle). The result holds also for more structured
primitives such as one-way permutation. The latter extension is based on the
simple observation that a random function and a random permutation can not
be distinguished with “few” queries asked by the construction. We refer the
reader for the full proof of these extensions to the full version of the paper.
– Optimality of the bias. The same result holds even when Π achieves any
o(1/

√
r) bias (not only for optimally-fair protocols with a bias of O(1/r)).

Our main technical lemma in order to prove Theorem 1 is to show how to
remove random oracles from certain secure protocols in the random oracle models
which we believe to be of independent interest.

Lemma 1 (Simulation Lemma, Informal). Let Π be a two-party protocol
in the random oracle model in which the parties query a (random) oracle of
input/output length n, ask a total of m = poly(n) queries and communicate for
o(n/ logn) rounds. Then there are two protocols: ΠE (the extended protocol) and
ΠT (the threshold-simulation protocol) such that the following holds. (a) In ΠE

the parties act as Π but the ask up to 2o(n) extra queries from the oracle. (b) ΠT

is performed in the plain model without the random oracle. (c) The joint views of
the parties in ΠE and ΠT are λ-close for an arbitrary parameter λ = 1/ poly(n).

The high level structure of the proof of Theorem 1 is to use the simulation lemma
and the result of [ci93] which breaks any coin-tossing protocol in the plain model
with “few” rounds. See Section 1.1 for more details.

We also observe that our simulation lemma can be used to derive impossibility
results in the context of secure two-party computation of non-trivial functions.
Kushilevitz [k92] classified the finite functions that have perfectly secure two-
party protocols against semi-honest adversaries and called them “decomposable
functions”. Maji, Prabhakaran and Rosulek [mpr09] extended this result to the
regime of statistical security and showed that only decomposable functions can
have (randomized) two-party protocols which are statistically secure against
semi-honest parties. The latter result together with our simulation lemma imply
that if a function is not decomposable, it can not have a black-box secure protocol
based on one-way function (or based on the other primitives mentioned above)
with o(n/ logn) rounds of communication. The steps of the proof of this result
are very similar to the case of coin-tossing described in Theorem 1. See Section
1.1 for more details and see the full version of the paper for the complete proof.

Discussion and Implications. Our lower-bound proves that either there is no
black-box construction of optimally-fair coin tossing from any of the primitives
mentioned in Theorem 2, or if there is any such construction it will suffer from
an almost linear Ω̃(n) lower-bound on its round-complexity (which arguably is
the main efficiency measure) depending on the security parameter of the primi-
tive used. Such a construction, where the number of rounds, and thus the bias,
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depends on the security parameter, seems counter-intuitive (yet see the compar-
ison below with statistically hiding commitments which do have constructions
with the number of rounds depending on the security parameter).

In particular, our negative result implies that the use of oblivious transfer (as
an assumption stronger than one-way function) in the construction of [mns09],
achieving O(1/r) bias for any r, is inherent. Moreover, the construction of [c86],
using commitments (that can be constructed in a black-box way from one-way
functions) and achieving O(1/

√
r) bias for any r, is actually optimal (as Theo-

rem 2 holds for any o(1/
√
r) bias).

It is also interesting to contrast our lower bound with the original impossibility
result of Cleve [c86]. One way to view the result of [c86] is as a proof that in
order to achieve O(1/r) bias any protocol must have at least Ω(r) rounds of
interaction. Our lower bound then says that it is only possible to achieve O(1/r)
bias with r rounds when relying on one-way functions (or any of the primitives
mentioned in Theorem 2) for r = Ω(n/ logn) which is very large. In particular, it
is not possible to construct a protocol (using a black-box reduction) whose round
efficiency depends only on the desired bias and is independent of the security
parameter n used to determine the input length to the one-way function. This
has the ramification that increasing the security parameter in order to obtain a
stronger guarantee of invertibility of the one-way function (to get a more secure
protocol) has an effect also on the round complexity of the protocol.

Black-Box Separations. One of the main goals of modern cryptography has been
to identify the minimal assumptions necessary to construct secure cryptographic
primitives. For example, [y82, gm84, r90, hill99, ggm86, lr88, il89, ny89,
n91] have shown that private key encryption, pseudorandom generators, pseu-
dorandom functions and permutations, bit commitment, and digital signatures
exist if and only if one-way functions exist. On the other hand, some crypto-
graphic primitives such as public key encryption, oblivious transfer, and key
agreement are not known to be equivalent to one way functions. Thus, it is nat-
ural to ask whether the existence of one-way functions implies these primitives.
However, it seems unclear how to formalize such a question; since it is widely
believed that both one-way functions and public key encryption exist, this would
imply in a trivial logical sense that the existence of one-way functions implies the
existence of public key encryption. Thus, we can only hope to rule out restricted
types of constructions that are commonly used to prove implications in cryp-
tography. Impagliazzo and Rudich [ir89] were the first to develop a technique
to rule out the existence of an important class of reductions between primitives
known as black-box reductions. Intuitively, this is a reduction where the primi-
tive is treated as an oracle or a “black-box”. There are actually several flavors
of black-box reductions (fully black-box, semi black-box and weakly black-box
[rtv04]). In our work, we only deal with fully black-box reduction, and so we
will focus on this notion here. Informally, a fully black-box reduction from a
primitive Q to a primitive P is a pair of oracle ppt Turing machines (G,S) such
that the following two properties hold:
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Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A,
if A breaks Gf (as an implementation of Q) then SA,f breaks f . (Thus, if f is
“secure”, then so is Gf .)

We remark that an implementation of a primitive is any specific scheme that
meets the requirements of that primitive (e.g., an implementation of a public-
key encryption scheme provides samplability of key pairs, encryption with the
public-key, and decryption with the private key). Correctness thus states that
when G is given oracle access to any valid implementation of P , the result is
a valid implementation of Q. Furthermore, security states that any adversary
breaking Gf yields an adversary breaking f . The reduction here is fully black-
box in the sense that the adversary S breaking f uses A in a black-box manner.

Comparison to Similar Lower-Bounds on the Round-Complexity. The only simi-
lar lower-bound on the round-complexity of black-box constructions that we are
aware of is the result of Haitner, Hoch, Reingold, and Segev [hhrs07] which deals
with the round-efficiency of statistically hiding commitment schemes. Interest-
ingly, our lower-bound is exactly the same as that of [hhrs07] which also is based
on the security parameter of the one-way function used in the construction . It
seems that the techniques used in [hhrs07] and our techniques explained below
are quite different. This raises the question of whether there are more connec-
tions between the two results. For instance, is it possible to simplify any of these
arguments using ideas from the other work? More importantly, this suggests
the intriguing possibility that perhaps a positive solution for optimally-fair coin
tossing from one-way functions can be achieved with O(n/ logn) rounds, using
the techniques which are used in constructing the positive results of O(n/ logn)-
round statistically hiding commitments [novy98, hr07, hno

+
09].

1.1 Our Technique

We recall a result of Cleve and Impagliazzo [ci93] which shows that for any coin
tossing protocol with r rounds, there exists a computationally unbounded adver-
sary who can achieve bias of at least Ω(1/

√
r). Moreover, this adversary follows

the protocol as specified, except that it may abort prematurely; as such the
adversary is fail-stop. We show that a black-box construction of an o(n/ logn)-
round coin tossing from own-way functions with input/output length n (or in
fact any primitive which is implied by a random-function in a black-box way)
will essentially suffer from the same attack of [ci93] and thus cannot guarantee
any bias below Ω(1/

√
r) through a black-box proof of security.

We start by assuming that there is a black-box construction Π of optimally-
fair coin tossing from one-way function with r = o(n/ logn) rounds. A ran-
dom function is one-way with overwhelming probability, so informally speaking,
if we feed the construction Π with a random function it should still be an
optimally-fair coin tossing protocol. In fact, something stronger happens when a
construction based on one-way function is fed with a random function: Such a
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construction will now be secure even against computationally unbounded adver-
saries who are allowed to ask 2o(n) oracle queries to the random oracle. The
reason for this is that if there were such an adversary, then the security reduc-
tion will imply that there is an adversary inverting a random function with 2o(n)

number of queries (see the proof of Theorem 2 for more details) which is not
possible. We will take advantage of this stronger property to derive the con-
tradiction by presenting a 2o(n)-query attack whenever the round complexity is
o(n/ logn). The idea of feeding a black-box construction with a random-function
and enhancing its security, and then deriving contradiction by a simple counting
argument (rather than refuting the relativizing reductions [ir89]—which is a
much harder task) is also employed in previous works such as [ggkt05, bm07].

Our main technical step will be to show that the round-complexity of o(n/ logn)
for the black-box construction of coin tossing implies the existence of a 2o(n)-
query adversary who is able to bias the output bit by ω(1/r). In fact we show
how to achieve bias Ω(1/

√
r) = ω(1/r). The existence of such an attack implies

the result because by the security reduction the ability to bias the protocol
yields an adversary inverting the one-way function. Our 2o(n)-query attacker
runs the protocol (of the corresponding party) honestly except that it gathers
more information about the random oracle along the execution of the protocol by
asking poly(n, r)r (which is 2o(n) for r = o(n/ logn)) more queries and achieves
bias of Ω(1/

√
r) by deciding to stop at some point during the protocol.

We shall emphasize that the reason that we can not directly use the attack
of [ci93] in the presence of a random oracle is that, even conditioned on the
transcript of the interaction, the random oracle builds dependencies between the
views of Alice and Bob. However the attack of [ci93] essentially uses the fact
that conditioned on the transcript the views of Alice and Bob are independent
in a plain protocol (where no random oracle is used). Thus we need to find a
way to “kill” this dependency to be able to use their attack.

Our 2o(n)-query attacker uses special properties of an attack given by Barak
and Mahmoody [bm09] to break any key-agreement protocol with an optimal
number of queries to the random oracle. The attacker of [bm09]—which here we
call the “independence learning algorithm”, or the simply the learning algorithm
for short—gets as input a threshold parameter ε which controls its efficiency
and accuracy at the same time. Roughly speaking if Alice and Bob ask m oracle
queries in their execution, it will lead to O(m/ε) queries asked by the learner
and the error of mε. This learning algorithm can be described more naturally
as an online algorithm which learns certain oracle queries during the interaction
between Alice and Bob (despite the fact that passive adversaries can always
wait till the end of the interaction). Our attacker uses this learning algorithm
internally and feeds it with different values for the threshold parameter ε for
each round; the parameter ε taken grows exponentially with the round numbers.
Due to the heavy use of the threshold parameter of the learning algorithm in
our attack, we call it the “threshold attacker” TA. Note that since the learning
algorithm only requires the knowledge of the public transcripts, both Alice and
Bob can run the learning algorithm in any two-party protocol (e.g., a coin tossing
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protocol rather than a key-agreement protocol). Thus our threshold attacker
TA, which is in fact executed by either Alice or Bob, can also run the learning
algorithm during the coin tossing protocol.

The Threshold Attacker—More Details. For an arbitrary two-party protocol Π
in the random oracle model (or any other oracle model) we can think of “curious”
parties who run the protocol honestly but will ask more oracle queries along
their execution of the protocol2. We use the terminology of [gims10] and call
such a game a curious extension of the original protocol Π . To get the threshold
attacker, Alice or Bob (whoever is performing the attack) will need to play a
curious extension of the original protocol by asking up to 2o(n) oracle queries.
Here we will only deal with an extension based on the learning algorithm of
[bm09]. That is, the attacking party runs the learning algorithm along the honest
execution of the original coin-tossing protocol and decides to abort prematurely.
We let the parties take turn in simulating the learning algorithm in the following
way: Whenever Alice (or Bob) is sending a message wi, they attach to it the set
of query/answer pairs that the learning algorithm would learn after wi is sent
across the channel. For brevity we call this specific curious extension in which
both Alice and Bob run the learning algorithm along the original game (and
attach the learner’s view of each round to their messages) simply “the extended
execution” of the original protocol (without referring to the learning algorithm
explicitly). We show how our threshold attacker can perform their attack in the
extended execution.

We prove that the extended protocol has the interesting property that now
Alice and Bob can in fact “simulate” the random oracle on their own (using their
private randomness) in a way that their views are statistically close to those in
the execution of the original extended game in the random oracle model. To
perform the simulation, Alice and Bob will answer their queries to the random
oracle using fresh randomness unless they have asked this query at some point
before (and thus chose the answer already) or that they are told by the other
party what the answer to this query should be (through the extra messages
simulating the learner’s view).

To prove that the above simple simulation is indeed a statistically-close simu-
lation of the extension game we need to show that (unless with small probability)
there is no inconsistencies between the oracle answers chosen by Alice and Bob
for their oracle queries. Here we crucially use the fact that the learning algorithm
provides enough information along the game so that Alice and Bob will always
choose consistent oracle answers for their queries. Suppose that Alice is sending
a message wi and is also attaching a list of k ≈ m/εi simulated learning queries
to the message wi where εi is the learner’s threshold used in round i by Alice and
m is the total number of queries in the original protocol. For any query q among
these k queries which are being asked by Alice from the random oracle (and thus

2 This is slightly different from the semi-honest parties who run the protocol hon-
estly without asking more oracle queries and only later analyze their view of the
interaction.
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being simulated) for the first time, we want that q is not among Bob’s “private”
queries which was simulated at some point before (yet is not announced through
the learner’s simulation). The learner’s algorithm has the property that if Bob
uses threshold εi−1 to simulate the learner in the previous round i − 1 then
any such query q has chance of at most εi−1 to be a “private” query of Bob.
Therefore, by a union bound, the probability that any of these k queries cause
an inconsistency is at most ≈ kεi−1 = mεi−1/εi. By taking εi−1 � εi/m, we can
control the probability of such event to be arbitrary small. This clarifies why we
end up using exponentially smaller thresholds for smaller rounds.

Finally, since we could simulate the extended execution through a plain pro-
tocol, we can use the inefficient attack of [ci93], which can be applied to any
plain protocol and apply it to the simulation of the extension game. Since the
extended execution and its simulation are statistically close experiments, we
conclude that almost the same bias would be achieved by the attacker in the
extension execution with only 2o(n) queries and so we are done.

A Parallel Work. The threshold simulation technique was discovered indepen-
dently in a parallel work by Maji and Prabhakaran [mp10] in the context of
using random oracle for the aim of achieving statistically secure protocols.

2 Definitions and Useful Lemmas

Definition 1 (coin tossing from one-way function). For (interactive) ora-
cle algorithms A,B we call Π = (A,B) a black-box construction of coin tossing
with bias at most δ based on exponentially-hard one-way functions with security
parameter n, if the following properties hold:

– A and B have their own private randomness RA, RB. They take as input 1n

and run in time poly(n) and interact for r(n) = poly(n) number of rounds.
– Completeness: For any function f : {0, 1}n (→ {0, 1}n, when A and B

are given oracle access to f , then at the end of the protocol A’s output a
and B’s output b are such that a = b and b is considered the output of the
protocol. Also if during the protocol A (resp., B) receives the special message
⊥ (denoting that the other party has stopped playing in the protocol) then A
(resp., B) outputs a bit a (resp b) on their own which is considered as the
output of the protocol.

– Security (against bias δ): There is an oracle algorithm S running in time
2o(n) with the following property. For any f : {0, 1}n (→ {0, 1}n given as
oracle, if Â (resp., B̂) is a malicious interactive algorithm interacting with
B (resp., A) which makes the output bit b to be δ(n)-biased, then Sf,Â (given
oracle access to f and Â) breaks the security of f (as an exponentially-hard
one-way function).

We denote by (a|b) ← 〈Â, B〉 (resp. (a|b) ← 〈A, B̂〉) the joint output of Â and
B (resp. A and B̂) generated by an interaction of Â and B (resp. A and B̂).
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The proof of the following two lemmas can be verified by inspection.

Lemma 2 (Inverting Random Functions). Let A be a computationally un-
bounded oracle algorithm given oracle access to a random function f : {0, 1}n (→
{0, 1}n (the randomness of f is chosen after A is fixed). Then if A asks at most
2αn queries from f , the probability that A can successfully invert a given input
y = f(Un) (to any preimage of y) is at most 2 · 2(α−1)n+ 2−n which is negligible
for any constant α < 1.

Lemma 3 (Inverting Random Functions with a Fixed Subdomain). Let
S ⊂ {0, 1}n be of size |S| ≤ 2βn for β < 1, and let fS : S (→ {0, 1}n be a fixed
function. Let F be the set of all functions f : {0, 1}n (→ {0, 1}n which are equal to
fS over S. Now, let A be a computationally unbounded oracle algorithm which
can depend on fS and is given oracle access to a random function f

R← F (the
randomness of f is chosen after A is fixed). Then if A asks at most 2αn queries
from f , the probability that A can successfully invert a given input y = f(Un)
(to any preimage of y) is at most 2 · (2(α−1)n+2(β−1)n)+2−n which is negligible
for any constants α < 1 and β < 1.

3 Simulation Lemma

In this section, we present a general lemma that holds for any two-party protocol
in the random oracle model. This lemma will be useful for proving our result on
coin tossing, but also has applications to general two-party computation as we
describe below.

Lemma 4 (Simulation Lemma). Let Π be a two-party protocol between Alice
and Bob in the random oracle model where they ask at most m oracle queries
and interact for r rounds. Then there exist protocols ΠT and ΠE called the λ-
threshold simulation and λ-extended execution of Π such that the views of Alice
and Bob (as a jointly distributed random variable) in ΠT and ΠE are λ-close.
Moreover, the following properties hold:

– ΠT makes no oracle queries.
– For λ = 1/ poly(n), r = o(n/ logn) and m = poly(n), ΠE makes at most

2o(n) queries.
– Let WΠ = [wΠ1 , . . . , wΠi ] be the sequence of messages sent between Alice and

Bob so far in an execution of protocol Π relative to oracle f with random
tapes RA, RB respectively. For λ = 1/ poly(n), r = o(n/ logn) and m =
poly(n), both Alice and/or Bob can make at most 2o(n) queries and produce
the transcript WΠE = [wΠE

1 , . . . , wΠE

i ] that is generated by an execution of
the protocol ΠE relative to oracle f with random tapes RA, RB.

The above lemma implies the following corollary:

Corollary 1. Let p = 1/ poly(n) and let Q be some two-party cryptographic
task such that for every implementation Πplain in the plain model with r =
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o(n/ logn) rounds, there is a computationally-unbounded, semi-honest adversary
which breaks the security of Πplain with probability p. Let Π be a black-box con-
struction of Q with r rounds based on exponentially-hard one-way functions with
security parameter n (i.e. the input/output length of f). Then r = Ω(n/ logn).

The corollary follows from Lemma 4 due to the following: Assume such a con-
struction Π exists with r = o(n/ logn) rounds. Now consider ΠT , the λ-threshold
simulation of Π . Since ΠT also has r = o(n/ logn) rounds and does not make
calls to the oracle, we have by hypothesis that there is an unbounded attacker
Â (resp. B̂) which breaks the security of ΠT with probability p = 1/ poly(n).
Now, for λ ≤ p/2 = 1/ poly(n), we have that the views of Alice and Bob (as a
jointly distributed random variable) in ΠT and in the λ-extended exection, ΠE ,
are λ-close. Moreover, given the transcript generated by Π , Alice (resp. Bob)
can make at most 2o(n) queries and produce the corresponding transcript of ΠE .
Thus, there is a threshold attacker TA which plays the part of Alice (resp. Bob)
in Π , makes at most 2o(n) queries to compute the messages of ΠE , runs Â (resp.
B̂) internally while simulating the view of Â (resp. B̂) using the λ-close view
produced by ΠE and finally outputs whatever Â (resp. B̂) outputs. So TA breaks
the security of ΠE (and thus of Π) with probability p/2, where the probability
is computed over the randomness of f . Having the threshold attacker TA the
proof can be concluded as follows:

(a) Since the attacker TA breaks security with probability p/2 = 1/ poly(n),
by an averaging argument, for at least p/4 fraction of the functions f : {0, 1}n (→
{0, 1}n, the attacker TAf breaks security with probability p/4. We call such
function f , a good function. (b) Using the security reduction S, for all good
functions f , Sf,TAf

inverts y = f(Un) with probability at least 2−o(n). (c) We
can combine the algorithms S and TA to get a single oracle algorithm T f which
inverts f(Un) with probability 2−o(n) when f is a good function by asking only
2o(n) queries to f . Which means that in this case T asks only 2o(n) oracle queries
and inverts a random f with probability at least p/4 ·2−o(n) = 2−o(n) (because f
is a good function with probability at least p/4). The latter contradicts Lemma 2.

Before we prove Lemma 4, we review relevant previous work.

The Independence Learner of [bm09]. Here we describe the properties of the
attacker of Barak and Mahmoody [bm09] presented in the context of breaking
any key agreement protocol with optimal number of queries to the random oracle.
Since the main property of the learning algorithm is that conditioned on the
learner’s information Alice and Bob’s views are almost independent, we call this
attack the independence learning algorithm.

Lemma 5 (The Independence Learner of [bm09]). Let Σ be any two-party
protocol in the random oracle model (with arbitrary number of rounds) between
Alice and Bob in which Alice and Bob ask at most m queries from the ran-
dom oracle H. Then there is a universal constant c and a (computationally un-
bounded) independence learning algorithm which is given a parameter ε (called
the threshold) as input and has the following properties. For brevity we denote
the independence learning algorithm by Eve.
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– Eve only has access the public messages sent between Alice and Bob and can
ask queries from the random oracle.

– (cm/ε)-Efficiency: Eve is deterministic and, over the randomness of the
oracle and Alice and Bob’s private randomness, the expected number of Eve
queries from the oracle H is at most cm/ε.

– Eve asks its queries along the game. Namely, although Eve can wait till the
end and then ask all of her queries, her description defines which queries to
be asked right after each message is sent across the public channel. So the
learning algorithm is divided into the same number of rounds as the protocol.

– (c
√
mε)-Security: Let W = [w1, . . . , wi] be the sequence of messages sent

between Alice and Bob so far, and let I be the list of oracle query/answer
pairs that Eve has asked till the end of the i’th round, and let AB = (A,B)
be the joint distribution over the views of Alice and Bob only conditioned
on (W, I). By A and B we refer to the projections of AB over its first or
second components (referring to the view of either Alice or Bob only) as
random variables. For a specific view A← A for Alice, by Q(A) we refer to
the set of oracle queries that A contains. We also use the notation Q(I) to
refer to the queries denoted in I.

With probability at least 1 − c
√
mε over the randomness of Alice, Bob,

and the random oracle H the following holds at all moments during the
protocol when Eve is done with her learning phase in that round: There are
independent distributions Â, B̂ such that:
1. The statistical distance between Â × B̂ and AB is at most Δ(Â ×

B̂,AB) ≤ c
√
mε.

2. For every oracle query q �∈ Q(I), it holds that Pr[q ∈ Q(Â)∪Q(B̂)] ≤ ε.
– Robustness. The learning algorithm is robust to the input parameter ε in

the following sense. If the parameter ε changes in the interval ε ∈ [ε1, ε2]
arbitrarily during the learner’s execution (even inside a learning phase of a
specific round), it still preserves O(cm/ε1)-efficiency and (c

√
mε2)-security.

Lemma 5 is implicit in [bm09], and we show how to derive it from the explicit
results of [bm09] in the full version of the paper.

Given a protocol Π , we now describe the λ-extended execution, ΠE , and the
λ-threshold simulation, ΠT , of Π that were mentioned in Lemma 4.

Definition 2 (Extended Execution). Let Π be a two-party protocol between
Alice and Bob in the random oracle model where they ask at most m oracle
queries and interact for r rounds. The extended execution ΠE of Π gets as input
a parameter λ and simulates the original protocol Π in the random oracle model
as follows.

– Let εr = 1
m ·
(
λ

9rc

)2
and for j ∈ {r, r − 1, . . . , 2} define εj−1 = εj · λ2

90r2m .
Note that if r, λ,m are ≤ poly(n), then εr = 1/ poly(n) and ε1 = poly(n)−r.

– Now imagine an Eve who runs the independence learner of Lemma 5 and
uses εi as its learning parameter in the learning phase after the i’th round.
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– In round i, the party who is sending the message wi, also runs the i’ih round
of the learning phase of Eve and attaches to wi the list of all the query/answer
pairs that are the result of this learning algorithm. Note that since Eve’s
algorithm is only depending on the messages being sent and her previous
knowledge about the oracle, the parties are able to do this job.

Definition 3 (Threshold Simulation). Let Π be a two-party protocol between
Alice and Bob in the random oracle model where they ask at most m oracle
queries and interact for r rounds. A threshold simulation ΠT of Π gets as input
a parameter λ and simulates the original protocol Π plainly as follows.

– The parameters εi for i ∈ [r] are defined similar to the extended execution.
– In the i’th round the party who sends the i’th message tries to simulate the

i’th round of the extended execution but without using a random oracle. The
way the simulation is done is as follows: To compute the message wi, suppose
q is a query to be asked from the oracle. Now if q is in the set of queries
learned by Eve so far or if q was asked previously by the same party, the
same answer will be returned which was used before. But, if the query q is
new, a fresh random answer will be used. The same is also done to answer
any query that the learning algorithm Eve tries to learn.

The following lemma explains why a threshold simulation is indeed a good sim-
ulation of the extended execution.

Lemma 6 (Properties of the Threshold Simulation). Let Π be a two-
party protocol between Alice and Bob in the random oracle model where they
ask at most m oracle queries and let ΠT and ΠE be in order its λ-threshold
simulation and λ-extended execution. Then the views of Alice and Bob (as a
jointly distributed random variable) in ΠT and ΠE are λ-close.

Proof. It is easy to see that the extended execution and the threshold simulation
will be exactly the same games until the following happens: A party, say Alice
sends a message wi along with the simulation of Eve’s i’th round, but one of
these queries (which are asked in this round either for her own protocol or to
simulate Eve) will hit one of Bob’s “private” queries which are not announced
through Eve’s previous simulated query/answers. We show that this “bad” event
happens with probability at most λ.

Note that by the robustness of the independence learner Eve and by the
choice of the (largest) parameter εr = 1

m ·
(
λ

9rc

)2
, Eve’s algorithm remains at

least c
√
mε = λ/(9r) secure in round i. So, except with probability at most

r · λ/(9r) = λ/9 we can pretend (as a mental experiment) that at all moments
the security requirement of the learning algorithm holds with probability 1 rather
than 1 − c

√
mε. In the following we show that (up to the bad event mentioned

above which happens with probability at most λ/9) the probability that an
“inconsistency” happens in round i is at most λ/(3r), and thus we will be done
by a union bound. By inconsistency we mean that Alice announces (a different)
answer for an oracle query that is privately asked by Bob already (or vice versa).
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Suppose Alice is sending the message in the i’th round and suppose no incon-
sistency has happened so far. Let fix W = [w1, . . . , wi−1] to be the sequence of
the messages sent till this moment and let I be the union Eve’s simulated queries
till the end of the (i − 1)’th round. An inconsistency in round i can happen as
follows: one of the queries asked by Alice (either to run her own protocol or
to simulate Eve) hits one of Bob’s private queries. We bound this probability
conditioned on any fixed (W, I) over which the security property of the learner
holds (as we said this property will hold with probability at least 1− λ/9).

As a mental experiment we can continue the game (after fixing (W, I)) by
sampling from the random variable (A,B)← AB for the views of Alice and Bob
so far conditioned on (W, I) and then continue Alice’s simulation. Let assume
for a moment that we sample (A,B)← Â× B̂ rather than from AB. We bound
the probability of any inconsistency in the former case to be 2λ/(9r), and since
the distributions AB and Â× B̂ are λ/(9r) close, it follows that the probability
of any inconsistency in this round is bounded by 2 · λ/(9r) + λ/(9r) = λ/(3r)
which is small enough for us.

But now we use the security property of the independence learner. Note that
when we get the sample (A,B)← Â×B̂, A and B are sampled independently. So,
we can sample A first, continue Alice’s computation, and then sample B ← B̂ at
the end (and we will abort if the private queries collide). The number of queries
that Alice will ask to run her own protocol is at most m. By the efficiency
property of the learning algorithm applied to round i, the number of Eve’s
simulated queries in this round are, on average, at most cm/εi. By a Markov
bound, this number is at most cm

εi
· 9r
λ with probability at least 1 − λ/(9r). So

except with probability λ/(9r) the total number of queries asked by Alice in
this round is at most m+9cmr/(εjλ) < 10cmr/(εjλ). Note that the probability
that any of these 10cmr/(εjλ) queries are among the private queries of a sample
from B̂ (sampled as Bob’s view) is at most εj−1. So, by a union bound, the
probability that at least one of these queries hits B̂’s private queries is at most
10cmr
εjλ

· εj−1 = λ/(9r) and this finishes the proof.

So, all left to do is to count how many queries are asked by our λ-extended
execution ΠE and show that it is (say on average) at most 2o(n). This is indeed
the case because of the robustness and the efficiency properties of the learning
algorithm. The smallest threshold used in our attack is ε1 = poly(n)−r because
λ = 1/r and r = poly(n),m = poly(n). Therefore our attacker asks at most
O(m/ε1) number of queries on average which for r = o(n/ logn) is at most
O(m/ε1) = poly(n)r = 2o(n).

4 Proof of the Main Theorem

In this section we first prove our main theorem for the case of exponentially-
hard one-way function as the primitive used. Extending the proof to stronger
primitives implied by a random oracle is discussed at the end.
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Theorem 2 (Main Theorem, Formal). Let Π be a black-box construction
for two-party coin tossing (between Alice and Bob) with bias at most o(1/

√
r)

(where r is the number of rounds in Π) based on exponentially-hard one-way
functions with security parameter n (i.e., the input/output length of f). Then
r = Ω(n/ logn).

Proof. For sake of contradiction let assume that such construction exists with
r = o(n/ logn) round complexity. The proof goes through the following steps.
We first feed Alice and Bob’s protocols in the construction Π with a random
function f : {0, 1}n (→ {0, 1}n. We show that in that setting at least one of the
parties can ask nO(r) queries to f and bias the output by at least Ω(1/

√
r) by a

fail-stop attack. The probability over which the bias is computed also includes
the randomness of f . As in Section 3, we call this attacker the threshold attacker,
TA. Having the threshold attacker TA the proof can be concluded as follows.

(a) Since the attacker TA achieves bias δ = Ω(1/
√
r) and since the bias is

always δ < 1, therefore by an averaging argument, for at least δ/2 fraction
of the functions f : {0, 1}n (→ {0, 1}n, the attacker TAf achieves bias at least
δ/2 = Ω(1/

√
r). We call such function f , a good function. (b) Using the security

reduction S, for all good functions f , Sf,TAf

inverts y = f(Un) with probability
at least 2−o(n). (c) We can combine the algorithms S and TA to get a single
oracle algorithm T f which inverts f(Un) with probability 2−o(n) when f is a
good function by asking only 2o(n) poly(n)r queries to f . For r = o(n/ logn), it
holds that poly(n)r = 2o(n), which means that in this case T asks only 2o(n) ·
2o(n) = 2o(n) oracle queries and inverts a random f with probability at least
δ
2 · 2−o(n) = 2−o(n) (because f is a good function with probability at least δ/2).
The latter contradicts Lemma 2.

In the following we first describe the results that we borrow or derive from
previous work needed for our threshold attacker TA, and then will describe and
prove the properties of TA.

The Fail Stop Attacker of [ci93]. Cleve and Impagliazzo [ci93] showed that when
computationally unbounded parties participate in any coin tossing protocol, at
least one of them can bias the output bit by following the protocol honestly and
aborting at some point based on the information provided to them by their view.

Lemma 7 (The Attacker of [ci93]). Let Σ be any two-party protocol for
coin tossing between Alice and Bob with r rounds of interaction. Then either
Alice or Bob can bias the output bit by Ω(1/

√
r) in the fail-stop model through

a computationally unbounded attack.

4.1 Our Threshold Attacker

In this section we use the attack of Lemma 7 as well as the results of Section 3 to
finish the proof of Theorem 2 by presenting our threshold attacker. We will do
so first in a special case where the protocol Π is of a special form which we call
instant. The case of instant constructions carries the main ideas of the proof.
Later we prove Theorem 2 for constructions which are not necessarily instant.
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Definition 4 (Instant Constructions). A black-box construction of coin toss-
ing is an instant construction if whenever a party aborts the protocol, the other
party decides on the output bit without asking any additional queries to its
oracle.

We note that the protocol of Cleve [c86] which achieves bias at most O(1/
√
r)

based on one-way function is in fact an instant construction.
Given an instant coin-tossing protocol Π , we apply Lemma 4 to obtain the λ-

threshold simulation and λ-extended execution of Π , ΠT , ΠE . Since the thresh-
old simulation, ΠT , is a plain protocol we can apply Lemma 7 to get an attack of
bias Ω(1/

√
r) by either Alice or Bob. Now if we take the simulation parameter λ

to be at most 1/r = o(1/
√
r), then the same exact attack will also give a bias of

Ω(1/
√
r)−o(1/

√
r) = Ω(1/

√
r) in the extended execution. Here we crucially rely

on the instant property because of the following: As soon as Alice or Bob (who
is the attacker) stops continuing the game, the other party in the threshold sim-
ulation will decide on the final output bit by looking at their current view. But
this last step will not be statistically close between the extended execution and
the threshold execution if in the extended execution the deciding party chooses
the output after asking more queries. In other words, if the party who announces
the output bit (not the attacker) wants to ask more oracle queries to compute
the output bit, there should be some simulated random answers chosen by the
corresponding party in the threshold simulation to on behalf of these queries,
but that step is not taken care of by Lemma 6 (because the aborted party is not
given the learning algorithm’s queries for the aborted round). By Lemma 4, our
attacker asks at most 2o(n) queries.

Before going over how to handle the non-instant constructions we clarify that
extending Theorem 2 to stronger primitives such as exponentially-hard collision
resistant hash function is immediate. All one has to do is to substitute the
collision resistant hash functions h : {0, 1}n (→ {0, 1}n/2 used in the construction
by a random function f : {0, 1}n (→ {0, 1}n/2 (which is in fact a 2Ω(n)-secure
hash function). To provide access to a family of hash functions one can use the
random oracle over larger domains of input/output length 3n and use the first
n bits of the input as the index to the hash family and simply throw away the
last 5n

2 bits of the output. The rest of the proof remains the same.

Handling Non-instant Constructions. It is instructing to recall that given
a random oracle there is indeed a one-round protocol which is optimally-fair:
Alice asks H(0) (assuming that the random oracle is Boolean) and then sends
H(0) to Bob which is the final output bit. If Alice aborts and does not send
H(0), Bob will go ahead and ask H(0) himself and takes that as the final output
bid. It is clear that this trivial protocol is completely fair because H(0) is an
unbiased bit. Also note that the proof of the previous section handing the instant
constructions works just as well for protocols which use a truly random oracle
(rather than a one-way function) as their primitive used. So it should be of
no surprise that the proof of the instant case does not immediately generalize
to cover all the black-box constructions (the trivial coin-tossing protocol based
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on random oracle is clearly a non-instant protocol). To handle the non-instant
constructions we inherently need to use the fact that the constructions we deal
with are optimally-fair protocols given any one-way function as the primitive
used. In the following we show how this stronger requirement of the construction
gives us what we need in Theorem 2.

Making constructions almost instant. It is easy to see that any construction for
coin tossing can be changed into an equivalent protocol which is “almost” an
instant one. Namely, whenever a party A is sending a message m, it can also
consider the possibility that the other party B will abort the game right after
A sends his message. So, during the computation of m, A can go ahead and
ask whatever query from the oracle which is needed to compute the final bit in
case B aborts. This way, A will not need to ask any oracle queries in case B
aborts in this round. By doing this change (which clearly does not affect the
security of the protocol) the construction becomes “almost” instant. The point
is that the receiver of the first message can not follow the change suggested here
because they do not send any message before the first round. Therefore, in the
following we only consider constructions which are “almost-instant” (i.e., the
only moment that a party might violate the instant property is when the sender
of the first message aborts the protocol, and the receiver might still need to ask
oracle queries before deciding on the output.)

Handling almost-instant constructions. Suppose Π is an almost-instant con-
struction. Suppose ΠE and ΠT be in order Π ’s extended execution and the
threshold simulation games. The proof of Lemma 6 shows that if no party aborts
the experiments ΠE and ΠT are λ-close. The discussion following the proof of
Lemma 6 shows that if one of the parties runs the same fail-stop attack in ΠE

and ΠT the experiments are still λ-close conditioned on the assumption that the
round in which the abort happens is any round other than the first one. So, all
we need to handle is the case in which the sender of the first message (which we
assume to be Alice) aborts the game in the first round (after asking some oracle
queries). In the following we focus on this specific cease.

Note that when aborted in the first round Bob can not simply simulate the
extended execution by using fresh randomness to answer his oracle queries in
order to decide the output bit. If he does so it might not be consistent with
Alice’s queries asked before aborting and thus it will not be a good simulation3.
Despite this issues, if we are somehow magically guaranteed that when aborted
in the first round, none of Bob’s queries to compute the output bit collides with
Alice’s queries asked before, then we can still use fresh random answers to answer
Bob’s queries to compute the output bit.

Suppose after Alice computes her message but right before she sends this
message we run the independence learning algorithm with parameter λ/(10m).
3 This will be more clear if one consider the trivial protocol mentioned above which

uses a truly random oracle. If Alice aborts whenever H(0) = 0, and if Bob uses a
fresh random answer whenever he gets aborted by Alice, then the final output will
be equal to 1 with probability 3/4 which is clearly a huge bias!
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This learning algorithm will announce a set of O(10m2/λ) queries and answers
conditioned on which any other query has a chance of at most λ/(10m) of being
asked by Alice in her computation of the first message. Let the set S be the set
of all these O(10m2/λ) queries and let f(S) be their answers. By the security
property of the learning algorithm, conditioned on S and f(S), an aborted Bob
will not ask any query out of S which collides with Alice’s private queries out of
S before aborting (unless with probability at most O(λ)).

The idea is to sample the set S and f(S) once for all, and hardwire them
into the random oracle and Alice and Bob’s algorithms. This way, simulating
Bob’s queries with random answers after being aborted will not lead to any
inconsistency with Alice’s queries unless with probability at most O(λ). But if
we fix the answer of such queries that might hurt the protocol’s fairness. At
this point we use the fact that the construction is supposed to be fair given any
one-way function (and not necessarily a random function). Any random oracle is
one-way with overwhelming probability even if we fix a subdomain S ⊆ {0, 1}n,
|S| ≤ poly(n) of its domain and this idea is formalized in Lemma 3. Namely, if
we hardwire the random function over a subdomain S ⊆ {0, 1}n, |S| ≤ poly(n)
we can still use the same exact proof as the case of instant constructions for
Theorem 2 with the only difference that now we will use Lemma 3 rather than
Lemma 2.
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Abstract. Coin flipping is a cryptographic primitive for which strictly
better protocols exist if the players are not only allowed to exchange
classical, but also quantum messages. During the past few years, several
results have appeared which give a tight bound on the range of imple-
mentable unconditionally secure coin flips, both in the classical as well as
in the quantum setting and for both weak as well as strong coin flipping.
But the picture is still incomplete: in the quantum setting, all results con-
sider only protocols with perfect correctness, and in the classical setting
tight bounds for strong coin flipping are still missing.

We give a general definition of coin flipping which unifies the notion
of strong and weak coin flipping (it contains both of them as special
cases) and allows the honest players to abort with a certain probability.
We give tight bounds on the achievable range of parameters both in the
classical and in the quantum setting.

1 Introduction

Coin flipping (or coin tossing) as a cryptographic primitive has been intro-
duced by Blum [5] and is one of the basic building blocks of secure two-party
computation [21].

Coin flipping can be defined in several ways. The most common definition,
sometimes called strong coin flipping, allows two honest players to receive a
uniform random bit c ∈ {0, 1}, such that a dishonest player cannot increase the
probability of any output. A dishonest player may, however, abort the protocol,
in which case the honest player gets the erasure symbol Δ as output1. A weaker
definition, called weak coin flipping, only requires that each party cannot increase
the probability of their preferred value.

Without any additional assumptions, unconditionally secure weak coin flip-
ping (and therefore also strong coin flipping) cannot be implemented by a classi-
cal protocol. This follows from a result by Hofheinz, Müller-Quade and Unruh [9],
1 The dishonest player may abort after receiving the output bit, but before the hon-

est player gets the output bit. This allows cases where the honest player gets, for
example, 0 with probability 1/2 and Δ otherwise. There exists also a definition of
coin flipping where a dishonest player does not have this unfair advantage, and the
honest player must always get a uniformly random bit, no matter what the other
player does. See [7,12,16].
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which implies that if two honest players always receive the same uniform bit,
then there always exists one player that can force the bit to be his preferred
value with certainty.

If the players can communicate using a quantum channel, unconditionally
secure coin flipping is possible to some extent. The bounds of the possibilities
have been investigated by a long line of research. Aharanov et al. [1] presented
a strong coin flipping protocol where no quantum adversary can force the out-
come to a certain value with probability larger than 0.914. This bound has been
improved by Ambainis [2] and independently by Spekkens and Rudolph [18] to
0.75 (see also [8] for a different protocol). For weak coin flipping, Spekkens and
Rudolph [19] presented a protocol where the dishonest player cannot force the
outcome to its preferred value with probability larger than 1/

√
2 ≈ 0.707. (Inde-

pendently, Kerenidis and Nayak [10] showed a slightly weaker bound of 0.739).
This bound has further been improved by Mochon, first to 0.692 [13] and finally
to 1/2 + ε for any constant ε > 0 [15], therefore getting arbitrarily close to the
theoretical optimum. For strong coin flipping, on the other hand, this is not
possible, since it has been shown by Kitaev [11] (see [3] for a proof) that for
any quantum protocol there is always a player able to force an outcome with
probability at least 1/

√
2. Chailloux and Kerenidis [6] showed that a bound of

1/
√

2 + ε for any constant ε > 0 can be achieved, by combining two classical
protocols with Mochon’s result: They first showed that an unbalanced weak coin
flip can be implemented using many instances of weak coin flips, and then that
one instance of an unbalanced weak coin flip suffices to implement a strong coin
flip with optimal achievable bias.

1.1 Limits of Previous Results

In all previous work on quantum coin flipping, honest players are required to
output a perfect coin flip, i.e., the probability of both values has to be exactly 1/2,
and the players must never disagree on the output or abort. However, in practice
the players may very well be willing to allow a small probability of error even if
both of them are honest. Furthermore, a (quantum) physical implementation of
any protocol will always contain some noise and, therefore, also some probability
to disagree or abort. This requirement is, therefore, overly strict and raises the
question how much the cheating probability can be reduced when allowing an
error of the honest players.

It is well-known that there exist numerous cryptographic tasks where allowing
an (arbitrarily small) error can greatly improve the performance of the protocol.
For example, as shown in [4], the amount of secure AND gates (or, alternatively,
oblivious transfers) needed between two parties to test equality of two strings is
only O(log 1/ε) for any small error ε > 0, while it is exponential in the length
of the inputs in the perfect case. Considering reductions from oblivious transfer
to different variants of oblivious transfer where the players can use quantum
communication, it has recently been shown that introducing a small error can
reduce the amount of oblivious transfer needed by an arbitrarily large factor [20].
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It can easily be seen that some improvement on the achievable parameters
must be possible also in the case of coin flipping: In any protocol, the honest
players can simply flip the output bit with some probability. This increases the
error, but decreases the bias. In the extreme case, the two players simply flip
two independent coins and output this value. This prohibits any bias from the
adversary, at the cost of making the players disagree with probability 1/2.

The only bounds on coin flipping we are aware of allowing for an error of the
honest players have been given in the classical setting. An impossibility result for
weak coin flipping has been given in [9]. Nguyen, Frison, Phan Huy and Massar
presented in [17] a slightly more general bound and a protocol that achieves the
bound in some cases.

1.2 Contribution

We introduce a general definition of coin flipping, characterized by 6 parameters,
which we denote by

CF(p00, p11, p0∗, p1∗, p∗0, p∗1) .

The value pii (where i ∈ {0, 1}) is the probability that two honest players output
i and the value p∗i (pi∗) is the maximal probability that the first (second) player
can force the honest player to output i. With probability 1 − p00 − p11, two
honest players will abort the protocol and output a dummy symbol2. This new
definition has two main advantages:

– It generalizes both weak and strong coin flipping, but also allows for addi-
tional types of coin flips which are unbalanced or lay somewhere between
weak and strong.

– It allows two honest players to abort with some probability.

We will first consider classical protocols (Section 3), and give tight bounds for all
parameters. The impossibility result (Lemma 5) uses a similar proof technique
as Theorem 7 in [9]. In combination with two protocols showing that this bound
can be reached (Lemma 4), we obtain the following theorem.

Theorem 1. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. There exists a classical pro-
tocol that implements an unconditionally secure CF(p00, p11, p0∗, p1∗, p∗0, p∗1) if
and only if

p00 ≤ p0∗p∗0 ,

p11 ≤ p1∗p∗1 , and
p00 + p11 ≤ p0∗p∗0 + p1∗p∗1 −max(0, p0∗ + p1∗ − 1)max(0, p∗0 + p∗1 − 1) .

2 Similar to [9], we can require that two honest players always output the same values,
since the players can always add a final round to check if they have the same value
and output the dummy symbol if the values differ.
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For weak coin flipping, i.e., p∗1 = 1 and p0∗ = 1, the bound of Theorem 1
simplifies to the condition that p00 ≤ p∗0, p11 ≤ p1∗, and

1− p00 − p11 ≥ (1− p∗0)(1 − p1∗) ,

which is the bound that is also implied by Theorem 7 in [9].
In Section 4, we consider the quantum case, and give tight bounds for all

parameters. The quantum protocol (Lemma 10) bases on one of the protocols
presented in [6], and is a classical protocol that uses an unbalanced quantum
weak coin flip as a resource. The impossibility result follows from the proof of
Kitaev’s bound on quantum strong coin flipping (Lemma 11).

Theorem 2. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. For any ε > 0, there exists a
quantum protocol that implements an unconditionally secure CF(p00, p11, p0∗ +
ε, p1∗ + ε, p∗0 + ε, p∗1 + ε) if

p00 ≤ p0∗p∗0 ,

p11 ≤ p1∗p∗1 , and
p00 + p11 ≤ 1 .

If these bounds are not satisfied then there does not exist a quantum protocol for
ε = 0.

Our results, therefore, give the exact trade-off between weak vs. strong coin
flipping, between bias vs. abort-probability, and between classical vs. quantum
coin flipping. (Some of these trade-offs are shown in Figures 1 and 2). They
imply, in particular, that quantum protocols can achieve strictly better bounds

3
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16

3

4

9

16

p11

p00

Quantum

Classical

Defined

Fig. 1. For values p0∗ = p∗0 = p1∗ = p∗1 = 3/4, this figure shows the achievable values
of p00 and p11 in the classical and the quantum setting. The light grey area is the set
of all coin flips that can be defined. (See Definition 1).
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Fig. 2. This graph shows the optimal bounds for symmetric coin flipping of the form
CF((1 − a)/2, (1 − a)/2, p∗, p∗, p∗, p∗). The value p∗ is the maximal probability that
any player can force the coin to be a certain value, and a is the abort probability.
Therefore, the smaller p∗ for a fixed value of a, the better is the protocol. The definition
of coin flipping (Definition 1) implies that p∗ ≥ (1 − a)/2. Hence, the theoretically
optimal bound is p∗ = (1−a)/2. In the quantum case, the optimal achievable bound is
p∗ =
√

(1 − a)/2. In the classical case the optimal achievable bound is p∗ = 1−
√

a/2
for a < 1/2 and the same as the quantum bound for a ≥ 1/2. The best previously
known classical lower bounds from [9,17] was p∗ ≥ 1 −

√
a.

if p0∗ + p1∗ > 1 and p∗0 + p∗1 > 1. Outside this range classical protocols attain
the same bounds as quantum protocols.

Since the optimal quantum protocol is a classical protocol using quantum
weak coin flips as a resource, the possibility to do weak coin flipping, as shown
by Mochon [15], can be seen as the crucial difference between the classical and
the quantum case.

2 Preliminaries

In a classical protocol, the two players (Alice and Bob) are restricted to classical
communication. Both players are given unlimited computing power and memory,
and are able to locally sample random variables from any distribution. In a
quantum protocol, the two players may exchange quantum messages. They have
unlimited quantum memory and can perform any quantum computation on it.
All operations are noiseless. At the beginning of the protocol, the players do not
share any randomness or entanglement. While honest players have to follow the
protocol, we do not make any assumption about the behaviour of the malicious
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players. We assume that the adversary is static, i.e., any malicious player is
malicious from the beginning. Furthermore, we require that the protocol has a
finite number of rounds.

Definition 1. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1], such that p00 + p11 ≤ 1,
p00 ≤ min{p0∗, p∗0} and p11 ≤ min{p1∗, p∗1} holds3. A protocol implements a
CF(p00, p11, p0∗, p1∗, p∗0, p∗1), if the following conditions are satisfied:

– If both players are honest, then they output the same value i ∈ {0, 1} with
probability pii and Δ with probability 1− p00 − p11.2

– For any dishonest Alice, the probability that Bob outputs 0 is at most p∗0,
and the probability that he outputs 1 is at most p∗1.

– For any dishonest Bob, the probability that Alice outputs 0 is at most p0∗,
and the probability that she outputs 1 is at most p1∗.

Definition 1 generalizes the notion of both weak and strong coin flips and en-
compasses, in fact, the different definitions given in the literature.

– A perfect weak coin flip is a

CF
(

1
2
,
1
2
, 1,

1
2
,
1
2
, 1
)

.

– A perfect strong coin flip is a

CF
(

1
2
,
1
2
,
1
2
,
1
2
,
1
2
,
1
2

)
.

– The weak coin flip with error ε > 0 of [15] is a

CF
(

1
2
,
1
2
, 1,

1
2

+ ε,
1
2

+ ε, 1
)

.

– The unbalanced weak coin flip WCF(z, ε) of [6] is a

CF (z, 1− z, 1, 1− z + ε, z + ε, 1) .

– The strong coin flip of [6] is a

CF
(

1
2
,
1
2
,

1√
2

+ ε,
1√
2

+ ε,
1√
2

+ ε,
1√
2

+ ε

)
.

Note that CF(p00, p11, p0∗, p1∗, p∗0, p∗1) can also be defined as an ideal function-
ality that is equivalent to the above definition. Such a functionality would look
like this: If there is any corrupted player, then the functionality first asks him to
send a bit b ∈ {0, 1} that indicates which value he prefers. The functionality then
3 The last two conditions are implied by the fact that a dishonest player can always

behave honestly. Hence, he can always bias the coin to i ∈ {0, 1} with probability
pii.
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flips a coin c ∈ {0, 1, Δ}, where the probabilities depend on b and on which player
is corrupted. For example, if the first player is corrupted and b = 0, then c = 0
will be chosen with probability p∗0, c = 1 with probability min(p∗1, 1− p∗0) and
Δ otherwise. The functionality then sends c to the adversary, and the adversary
chooses whether he wants to abort the protocol or not. If he does not abort, the
honest player receives c (which might already be Δ), and Δ otherwise. If none of
the players are corrupted, the functionality chooses a value c ∈ {0, 1, Δ} which
takes on i ∈ {0, 1} with probability pii and sends c to the two players.

3 Classical Coin Flipping

3.1 Protocols

Protocol CoinFlip1:
Parameters: p0∗, p1∗, p∗0, p∗1 ∈ [0, 1], p0∗ + p1∗ ≤ 1.

1. Alice flips a three-valued coin a such that the probability that a = i is
pi∗ for i = {0, 1}, and a = Δ otherwise. She sends a to Bob.

2. If a = Δ, Bob outputs b = Δ. If a �= Δ, Bob flips a coin b such that
b = a with probability p∗a and b = Δ otherwise. Bob sends b to Alice
and outputs b.

3. If b = a Alice outputs b, otherwise Δ.

Lemma 1. If either p0∗ + p1∗ ≤ 1 or p∗0 + p∗1 ≤ 1, then there exists a classical
coin-flipping protocol with p00 = p0∗p∗0 and p11 = p1∗p∗1.

Proof. If p0∗ + p1∗ ≤ 1, they use Protocol CoinFlip1. (If p∗0 + p∗1 ≤ 1, they
exchange the role of Alice and Bob). By construction, a malicious Bob cannot
bias Alice’s output by more than pi∗, and a malicious Alice cannot bias Bob’s
output by more than p∗i. Honest players output the value 0 with probability
p0∗p∗0 and 1 with probability p1∗p∗1. 	


Protocol CoinFlip2:
Parameters: p, x0, x1, y0, y1 ∈ [0, 1].

1. Alice flips a coin a ∈ {0, 1} such that a = 0 with probability p and sends
it to Bob.

2. Bob receives the coin a and flips a coin b ∈ {0, 1} such that the proba-
bility that b = a is xa. He sends b to Alice. If b = a he outputs b.

3. If b = a, then Alice outputs b. If a �= b, then Alice flips a coin c, such
that with probability yb, c = b and else c = Δ. She sends c to Bob and
outputs it.

4. If c = b Bob outputs c, else Δ.
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Lemma 2. If p0∗ + p1∗ > 1, p∗0 + p∗1 > 1, p00 ≤ p0∗p∗0, p11 ≤ p1∗p∗1, and

p00 + p11 = p0∗p∗0 + p1∗p∗1 − (p0∗ + p1∗ − 1)(p∗0 + p∗1 − 1) (1)

then there exists a classical protocol implementing CF(p00, p11, p0∗, p1∗, p∗0, p∗1).

Proof. We use Protocol CoinFlip2 and choose the parameters

xi := p∗i , y0 :=
p0∗ − p

1− p
, y1 :=

p1∗ + p− 1
p

, p :=
p00 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
.

Note that if p = 1 then y0 is undefined (and the same holds for y1 if p = 0),
but this does not cause any problem since in this case the parameter y0 is never
used in the protocol.

We now verify that these parameters are between 0 and 1. We have y0, y1 ∈
[0, 1], if p ∈ [1− p1∗, p0∗]. To see that p lies indeed in this interval, note that the
upper bound follows from

p =
p00 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
≤ p0∗p∗0 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
=

p0∗(p∗0 + p∗1 − 1)
p∗0 + p∗1 − 1

= p0∗ .

For the lower bound, note that

1− p =
p∗0 + p∗1 − 1
p∗0 + p∗1 − 1

− p00 − p0∗ + p0∗p∗1
p∗0 + p∗1 − 1

=
p∗0 + p∗1 − 1− p00 + p0∗ − p0∗p∗1

p∗0 + p∗1 − 1

=
p1∗p∗0 − p1∗ + p11

p∗0 + p∗1 − 1
, (2)

where we have used that

p∗0 + p∗1 − 1− p00 + p0∗ − p0∗p∗1

(1)
= p∗0 + p∗1 − 1− (p0∗p∗0 + p1∗p∗1 − (p0∗ + p1∗ − 1)(p∗0 + p∗1 − 1)− p11)

+ p0∗ − p0∗p∗1

= p∗0 + p∗1 − 1− p0∗p∗0 − p1∗p∗1 + p0∗p∗0 + p0∗p∗1 − p0∗ + p1∗p∗0 + p1∗p∗1

− p1∗ − p∗0 − p∗1 + 1 + p11 + p0∗ − p0∗p∗1

= p1∗p∗0 − p1∗ + p11 .

Therefore

p = 1− p11 − p1∗ + p1∗p∗0
p∗0 + p∗1 − 1

≥ 1− p∗1p1∗ − p1∗ + p1∗p∗0
p∗0 + p∗1 − 1

= 1− p1∗ .

It follows that p, x0, x1, y0, y1 ∈ [0, 1].
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If both players are honest, then the probability that they both output 0 is

px0 + (1− p)(1− x1)y0 = px0 + (1− p)(1− x1)
p0∗ − p

1− p

= pp∗0 + (1− p∗1)(p0∗ − p)
= pp∗0 − p(1− p∗1) + p0∗(1− p∗1)

=
p00 − p0∗ + p0∗p∗1

p∗0 + p∗1 − 1
(p∗0 + p∗1 − 1) + p0∗(1 − p∗1)

= p00 .

The probability that they both output 1 is

p(1− x0)y1 + (1− p)x1 = p(1− p∗0)
p1∗ + p− 1

p
+ (1 − p)p∗1

= (1 − p∗0)(p1∗ + p− 1) + (1− p)p∗1
= p1∗(1 − p∗0)− (1 − p)(1− p∗0) + (1− p)p∗1
= p1∗(1 − p∗0) + (1 − p)(p∗1 + p∗0 − 1)
(2)
= p1∗(1− p∗0) +

p1∗p∗0 − p1∗ + p11

p∗0 + p∗1 − 1
(p∗1 + p∗0 − 1)

= p11 .

If Alice is malicious, she can bias Bob to output value i either by sending i as
first message hoping that Bob does not change the value, which has probability
xi = p∗i; or by sending the value 1− i hoping that Bob changes the value, which
occurs with probability 1 − x1−i = 1 − p∗1−i ≤ p∗i. Hence, she succeeds with
probability p∗i.

Bob can bias Alice to output value i by sending b = i independently of what
Alice had sent as first message. For i = 0, Alice will accept this value with
probability

p + (1− p)y0 = p + (1 − p)
p0∗ − p

1− p
= p0∗

and for i = 1 with probability

1− p + py1 = 1− p + p
p1∗ + p− 1

p
= p1∗ . (3)

	


In order to show that all values with p00 + p11 below the bound given in (1) can
be reached, we will need additionally the following lemma.

Lemma 3. If there exists a protocol P that implements a coin flip
CF(p00, p11, p0∗, p1∗, p∗0, p∗1), then, for any p′00 ≤ p00 and p′11 ≤ p11, there exists
a protocol P ′ that implements a coin flip CF(p′00, p′11, p0∗, p1∗, p∗0, p∗1).
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Proof. P ′ is defined as follows: The players execute protocol P . If the output is
i ∈ {0, 1}, then Alice changes to Δ with probability 1− p′ii/pii. If Alice changes
to Δ, Bob also changes to Δ. Obviously, the cheating probabilities are still
bounded by p0∗, p1∗, p∗0, p∗1, which implies that that protocol P ′ implements a
CF(p′00, p

′
11, p0∗, p1∗, p∗0, p∗1). 	


Combining Lemmas 1, 2 and 3, we obtain Lemma 4.

Lemma 4. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1]. There exists a classical protocol
that implements CF(p00, p11, p0∗, p1∗, p∗0, p∗1) if

p00 ≤ p0∗p∗0 ,

p11 ≤ p1∗p∗1 , and
p00 + p11 ≤ p0∗p∗0 + p1∗p∗1 −max(0, p0∗ + p1∗ − 1)max(0, p∗0 + p∗1 − 1) .

Proof. If p0∗+p1∗ > 1 and p∗0+p∗1 > 1, then Lemmas 2 and 3 imply the bound.
Otherwise, i.e., if either p0∗ + p1∗ ≤ 1 or p∗0 + p∗1 ≤ 1, then max(0, p0∗ + p1∗ −
1)max(0, p∗0 + p∗1 − 1) = 0 and the bound is implied by Lemmas 1 and 3. 	


3.2 Impossibilities

The following lemma shows that the bounds obtained in Lemma 4 are optimal.
The proof uses the same idea as the proof of Theorem 7 in [9].

Lemma 5. Let the parameters p00, p11, p0∗, p1∗, p∗0, p∗1 be ∈ [0, 1]. A coin flip
CF(p00, p11, p0∗, p1∗, p∗0, p∗1) can only be implemented by a classical protocol if

p00 ≤ p0∗p∗0 ,

p11 ≤ p1∗p∗1 , and
p00 + p11 ≤ p0∗p∗0 + p1∗p∗1 −max(0, p0∗ + p1∗ − 1)max(0, p∗0 + p∗1 − 1) .

Proof. We can assume that the output is a deterministic function of the tran-
script of the protocol. This can be enforced by adding an additional round at
the end of the protocol where the two players tell each other what they are going
to output. Since we do not require the protocol to be efficient, Lemma 7 in [9]
implies that we can also assume that the honest parties maintain no internal
state except for the list of previous messages.

For any partial transcript t of a protocol, we define pt0∗ as the maximum over
all transcripts starting with t, i.e., the maximum probability with which Bob can
force Alice to output 0, given the previous interaction has given t. In the same
way, we define pt1∗, p

t
∗0, p

t
∗1. We define pt00 and pt11 as the probabilities that the

output of the honest players will be 00 and 11, respectively, given the previous
interaction has given t. We will now do an induction over all transcripts, showing
that for all t, we have

pt00 ≤ pt0∗p
t
∗0 ,

pt11 ≤ pt1∗p
t
∗1 , and

pt00 + pt11 ≤ pt0∗p
t
∗0 + pt1∗p

t
∗1 −max(0, pt0∗ + pt1∗ − 1)max(0, pt∗0 + pt∗1 − 1) .
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For complete transcripts t, each honest player will output either 0, 1 or Δ with
probability 1 and we always have pt0∗ + pt1∗ − 1 ≤ 0 and pt∗0 + pt∗1 − 1 ≤ 0.
Therefore, we only need to check that pt00 ≤ pt0∗p

t
∗0 and pt11 ≤ pt1∗p

t
∗1. For

j ∈ {0, 1}, if ptjj = 1, then ptj∗ = pt∗j = 1, so the condition is satisfied. In all the
other cases we have ptjj = 0, in which case the condition is satisfied as well.

Let t now be a partial transcript, and let Alice be the next to send a message.
Let M be the set of all possible transcripts after Alice has sent her message. For
the induction step, we now assume that the statement holds for all transcript in
M , and show that then it must also hold for t. Let ri be the probability that an
honest Alice will choose message i ∈M . By definition, we have

pt00 =
∑
i∈M

rip
i
00, pt11 =

∑
i∈M

rip
i
11, pt0∗ =

∑
i∈M

rip
i
0∗, pt1∗ =

∑
i∈M

rip
i
1∗ ,

pt∗0 = max
i∈M

pi∗0, pt∗1 = max
i∈M

pi∗1 .

For j ∈ {0, 1} it holds that

ptjj =
∑
i∈M

rip
i
jj ≤
∑
i∈M

rip
i
j∗p

i
∗j ≤
∑
i∈M

rip
i
j∗p

t
∗j = ptj∗p

t
∗j ,

which shows the induction step for the first two inequalities. To show the last
inequality, let

f(a, b, c, d) := ac + bd−max(0, a + b− 1)max(0, c + d− 1) ,

where a, b, c, d ∈ [0, 1]. If we fix the values c and d, we get the function fc,d(a, b) :=
f(a, b, c, d). It consists of two linear functions: If a + b ≤ 1, we have

fc,d(a, b) = ac + bd ,

and if a + b ≥ 1 we have

fc,d(a, b) = ac + bd− (a + b− 1)max(0, c + d− 1) .

Note that these two linear functions are equal if a+ b = 1, and we have (a+ b−
1)max(0, c+d−1) ≥ 0 if a+ b ≥ 1. It follows that fc,d(a, b) is concave, meaning
that for all γ, a, b, a′, b′ ∈ [0, 1], we have

γfc,d(a, b) + (1− γ)fc,d(a′, b′) ≤ fc,d(γa + (1− γ)a′, γb + (1− γ)b′) . (4)

Since for any a + b �= 1 and c + d �= 1

∂

∂c
f(a, b, c, d) ≥ 0 and

∂

∂d
f(a, b, c, d) ≥ 0 , (5)
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we have f(a, b, c′, d) ≥ f(a, b, c, d) for c′ ≥ c and f(a, b, c, d′) ≥ f(a, b, c, d) for
d′ ≥ d. Hence,

pt00 + pt11

=
∑
i∈M

ri(pi00 + pi11)

≤
∑
i∈M

ri
(
pi0∗p

i
∗0 + pi1∗p

i
∗1 −max(0, pi0∗ + pi1∗ − 1)max(0, pi∗0 + pi∗1 − 1)

)
≤
∑
i∈M

ri
(
pi0∗p

t
∗0 + pi1∗p

t
∗1 −max(0, pi0∗ + pi1∗ − 1)max(0, pt∗0 + pt∗1 − 1)

)
(4)
≤ pt0∗p

t
∗0 + pt1∗p

t
∗1 −max(0, pt0∗ + pt1∗ − 1)max(0, pt∗0 + pt∗1 − 1) ,

and the inequalities also hold for t. The statement follows by induction. 	


From Lemmas 4 and 5 we obtain Theorem 1.

4 Quantum Coin Flipping

4.1 Protocols

An unbalanced weak coin flip with error ε WCF(z, ε) is a CF(z, 1 − z, 1, 1 −
z + ε, z + ε, 1), i.e., a coin flip where Alice wins with probability z, Bob with
probability 1 − z and both cannot increase their probability to win by more
than ε. (They may, however, decrease the probability to 0). Let WCF(z) :=
WCF(z, 0).

It has been shown by Mochon [15] that weak coin flipping can be implemented
with an arbitrarily small error.

Theorem 3 (Mochon [15]). For any constant ε > 0, there exists a quantum
protocol that implements WCF(1/2, ε).

In [14], Mochon showed that quantum coin-flipping protocols compose sequen-
tially. Implicitly using this result, Chailloux and Kerenidis showed that an un-
balanced weak coin flip can be implemented from many instances of (balanced)
weak coin flips.

Proposition 1 (Chailloux, Kerenidis [6]). For all z ∈ [0, 1], there exists a
classical protocol that uses k instances of WCF(1/2, ε) and implements WCF(x,
2ε), for a value x ∈ [0, 1] with |x− z| ≤ 2−k.

The following lemma shows that the parameter z can be slightly changed without
increasing the error much.

Lemma 6. For any 1 > z′ > z > 0, there exists a classical protocol that uses 1
instance of WCF(z′, ε) and implements WCF(z, ε + z′ − z).
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Proof. The protocol first calls WCF(z′, ε). If Alice wins, i.e., if the output is 0,
then she changes the output bit to 1 with probability 1 − z/z′, and sends the
bit to Bob. Bob only accepts changes from 0 to 1, but not from 1 to 0. Alice
can force the coin to be 0 with probability at most z′ + ε = z + (ε + z′ − z).
Let x ∈ [0, 1 − z′ + ε] be the probability with which a cheating Bob forces the
protocol WCF(z′, ε) to output 1. Alice will output 1 with probability

x + (1− x)
(
1− z

z′

)
= 1− z

z′
+ x · z

z′
≤ 1− z

z′
+ (1 − z′ + ε) · z

z′

= 1− z + ε · z

z′
≤ 1− z + ε . 	


Note that for z ∈ {0, 1}, the implementation of WCF(z, 0) is trivial. Hence,
Theorem 3, Proposition 1 and Lemma 6 imply together that WCF(z, ε) can be
implemented for any z ∈ [0, 1] with an arbitrarily small error ε. To simplify the
analysis of our protocols, we will assume that we have access to WCF(z) for
any z ∈ [0, 1]. The following lemma shows that when WCF(z) is replaced by
WCF(z, ε), the bias of the output is increased by at most 2ε.

Lemma 7. Let P be a protocol that implements CF(p00, p11, p0∗, p1∗, p∗0, p∗1)
using one instance of WCF(z). If WCF(z) is replaced by WCF(z, ε), then P
implements CF(p00, p11, p0∗ + 2ε, p1∗ + 2ε, p∗0 + 2ε, p∗1 + 2ε).

Proof. Let us compare two settings: one where the players execute P using one
instance of WCF(z, ε), and the other where they use one instance of WCF(z).
When both players are honest, the two settings are obviously identical. Let Alice
be honest and Bob malicious. For each setting, we can define an event that occurs
with probability at most ε, such that under the condition that the two events do
not occur, WCF(z) and WCF(z, ε) and hence the whole protocol are identical.
The probability that the two events do not occur is at least 1− 2ε by the union
bound. Therefore, the probabilities that the honest player outputs 0 (or 1) differ
by at most 2ε. The statement follows. 	


The following protocol is a generalization of the strong coin-flipping protocol S
from [6]. It gives optimal bounds for the case where the honest players never
abort, i.e., p00 + p11 = 1.

Protocol QCoinFlip1:
Parameters: x, z0, z1, p0, p1 ∈ [0, 1].

– Alice flips a coin a ∈ {0, 1} such that the probability that a = 0 is x
and sends a to Bob.

– Alice and Bob execute WCF(za).
– If Alice wins, i.e., the outcome is 0, then both output a.
– If Bob wins, then he flips a coin b such that b = a with probability pa.

Both output b.
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Lemma 8. Let p0∗, p1∗, p∗0, p∗1 ∈ [0, 1] where p∗0 + p∗1 > 1, p0∗ + p1∗ > 1 and
p∗0p0∗+p∗1p1∗ = 1. Given access to one instance of WCF(z), we can implement
a CF(p00, p11, p0∗, p1∗, p∗0, p∗1) where p00 = p0∗p∗0 and p11 = p1∗p∗1.

Proof. We execute Protocol QCoinFlip1, choosing the parameters

pi := 1− p∗1−i , z0 :=
p∗0 + p∗1 − 1

p∗1
, z1 :=

p∗0 + p∗1 − 1
p∗0

,

and x :=
p0∗p∗0 + p∗1 − 1
p∗0 + p∗1 − 1

.

Note that

1− z0 =
1− p∗0
p∗1

and 1− z1 =
1− p∗1
p∗0

.

Since 1 − p∗0 < p∗1 and 1 − p∗1 < p∗0, these values are between 0 and 1, and
hence also z0 and z1 are between 0 and 1. From p0∗ ≤ 1 follows that x ≤ 1, and
from p∗0p0∗ + p∗1 ≥ p∗0p0∗ + p∗1p1∗ = 1 that x ≥ 0. Furthermore, we have

z0 + (1− z0)p0 =
p∗0 + p∗1 − 1

p∗1
+

(1− p∗1)(1− p∗0)
p∗1

= p∗0 (6)

and

z1 + (1 − z1)p1 =
p∗0 + p∗1 − 1

p∗0
+

(1 − p∗1)(1− p∗0)
p∗0

= p∗1 .

Alice can bias Bob’s coin to 0 with probability

max{z0 + (1− z0)p0; (1− p1)} = p∗0

and to 1 with probability

max{z1 + (1− z1)p1; (1− p0)} = p∗1 .

The probability that Bob can bias Alice’s coin to 0 is

x + (1− x)(1 − z1) = (1− z1) + xz1

=
1− p∗1
p∗0

+
p0∗p∗0 + p∗1 − 1
p∗0 + p∗1 − 1

· p∗0 + p∗1 − 1
p∗0

= p0∗

and the probability that he can bias it to 1 is

(1− x) + x(1 − z0) = 1− xz0

(6)
= 1− p0∗p∗0 + p∗1 − 1

p∗0 + p∗1 − 1
· p∗0 + p∗1 − 1

p∗1

= 1− p0∗p∗0 + p∗1 − 1
p∗1

=
1− p0∗p∗0

p∗1

=
p1∗p∗1
p∗1

= p1∗ .
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Furthermore, two honest players output 0 with probability

xz0 + x(1 − z0)p0 + (1− x)(1 − z1)(1− p1)

= x(z0 + (1− z0)p0) + (1− x)
1− p∗1
p∗0

p∗0

= xp∗0 + (1− x)(1 − p∗1)
= 1− p∗1 + x(p∗0 + p∗1 − 1)
= p0∗p∗0

= p00

and 1 with probability 1− p00 = 1− p0∗p∗0 = p1∗p∗1 = p11. 	

The following protocol gives optimal bounds for the general case. It uses one
instance of the above protocol, and lets Alice and Bob abort in some situations.

Protocol QCoinFlip2:
Parameters: Protocol P , ε0, ε1 ∈ [0, 1

2 ].

– Alice and Bob execute the coin-flipping protocol P .
– If Alice obtains 0, she changes to Δ with probability ε0. If Bob obtains 1,

he changes to Δ with probability ε1. If either Alice or Bob has changed
to Δ, they both output Δ, otherwise they output the value obtained
from P .

Lemma 9. Let p0∗, p1∗, p∗0, p∗1 ∈ [0, 1] where p∗0 + p∗1 > 1, p0∗ + p1∗ > 1
and p0∗p∗0 + p∗1p∗1 ≤ 1. Given access to WCF(z) for any z ∈ [0, 1], we can
implement a CF(p00, p11, p0∗, p1∗, p∗0, p∗1) where p00 = p0∗p∗0 and p11 = p1∗p∗1.

Proof. From p∗0 + p∗1 > 1 and p0∗ + p1∗ > 1 follows that either p∗0 + p1∗ > 1 or
p0∗ + p∗1 > 1. Without loss of generality, let us assume that p∗0 + p1∗ > 1.

Let

p′0∗ := min
(

1,
1− p1∗p∗1

p∗0

)
and p′∗1 :=

1− p′0∗p∗0
p1∗

.

First, note that since p0∗ ≤ 1−p1∗p∗1
p∗0

we have p′0∗ ≥ p0∗. Obviously, we also have
p′0∗ ≤ 1. Since p′0∗ ≤ 1−p1∗p∗1

p∗0
, we have

p′∗1 =
1− p′0∗p∗0

p1∗
≥

1− 1−p1∗p∗1
p∗0

p∗0

p1∗
=

p1∗p∗1
p1∗

= p∗1 .

In order to see that p′∗1 ≤ 1, we need to distinguish two cases. Since p′0∗ :=
min
(
1, 1−p1∗p∗1

p∗0

)
, it holds that either p′0∗ = 1 or p′0∗ = 1−p1∗p∗1

p∗0
. In the first

case,

p′∗1 =
1− p∗0
p1∗

<
p1∗
p1∗

= 1 ,
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and the claim holds. In the second case,

p′∗1 =
1− p′∗0p∗0

p1∗
=

1− (1− p1∗p∗1)
p1∗

= p∗1 ≤ 1 ,

and the claim also holds. Therefore, p′∗1 ≤ 1.
Since p′0∗p∗0 + p1∗p

′
∗1 = 1, according to Lemma 8, we can use protocol

QCoinFlip1 to implement a CF(p′00, p
′
11, p

′
0∗, p1∗, p∗0, p

′
∗1), where p′00 = p′0∗p∗0

and p′11 = p1∗p
′
∗1. Using that protocol as protocol P , let Alice and Bob execute

protocol QCoinFlip2 with ε0 := 1− p0∗/p
′
0∗, and ε1 := 1− p∗1/p

′
∗1.

The probability that Bob can bias Alice to 0 is now (1−ε0)p′0∗ = p0∗, and the
probability that Alice can bias Bob to 1 is now (1− ε1)p′∗1 = p∗1. Furthermore,
the probability that two honest players output both 0 is (1 − ε0)p′00 = (1 −
ε0)p′0∗p∗0 = p0∗p∗0 and the probability that they both output 1 is (1− ε1)p′11 =
(1− ε1)p1∗p

′
∗1 = p1∗p∗1. 	


Lemma 10. Let p00, p11, p0∗, p1∗, p∗0, p∗1 ∈ [0, 1] with

p00 ≤ p0∗p∗0 ,

p11 ≤ p1∗p∗1 , and
p00 + p11 ≤ 1 .

Then, for any constant ε > 0, there exists a quantum protocol that implements
CF(p00, p11, p0∗ + ε, p1∗ + ε, p∗0 + ε, p∗1 + ε).

Proof. Let us first assume that p∗0 + p∗1 > 1 and p0∗ + p1∗ > 1. We reduce
the value of p0∗ to p00/p∗0 and the value of p1∗ to p11/p∗1, which ensures that
p0∗p∗0 + p1∗p∗1 ≤ 1. Now we can apply Lemma 9, together with Theorem 3,
Proposition 1 and Lemmas 6, 7 and 3.

If the assumption does not hold then either p∗0 + p∗1 ≤ 1 or p0∗ + p1∗ ≤ 1. In
this case, we can apply Lemmas 1 and 3. 	


4.2 Impossibilities

In order to see that the bound obtained in Section 4.1 is tight, we can use the
proof of Kitaev [11] (printed in [3]) showing that an adversary can always bias
the outcome of a strong quantum coin-flipping protocol. In fact, Equations (36)
- (38) in [3] imply that for any quantum coin-flipping protocol, it must hold that
p11 ≤ p1∗p∗1. In the same way, it can be proven that p00 ≤ p0∗p∗0. We obtain
the following lemma.

Lemma 11. A CF(p00, p11, p0∗, p1∗, p∗0, p∗1) can only be implemented by a quan-
tum protocol if

p00 ≤ p0∗p∗0 ,

p11 ≤ p1∗p∗1 , and
p00 + p11 ≤ 1 .

Lemma 10 and 11 imply together Theorem 2.



484 E. Hänggi and J. Wullschleger

5 Conclusions

We have shown tight bounds for a general definition of coin flipping, which
give trade-offs between weak vs. strong coin flipping, between bias vs. abort
probability, and between classical vs. quantum protocols.

Our result extends the work of [6], and shows that the whole advantage of
the quantum setting lies in the ability to do weak coin flips (as shown by Mo-
chon [15]). If weak coin flips are available in the classical setting, classical pro-
tocols can achieve the same bounds as quantum protocols.

For future work, it would be interesting to see if similar bounds hold for
the definition of coin flipping without the possibility for the malicious player to
abort.
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Abstract. In 2-party secure computation, access to common, trusted
randomness is a fundamental primitive. It is widely employed in the
setting of computationally bounded players (under various complexity
assumptions) to great advantage. In this work we seek to understand
the power of trusted randomness, primarily in the computationally un-
bounded (or information theoretic) setting. We show that a source of
common randomness does not add any additional power for secure eval-
uation of deterministic functions, even when one of the parties has arbi-
trary influence over the distribution of the common randomness. Further,
common randomness helps only in a trivial sense for realizing random-
ized functions too (namely, it only allows for sampling from publicly fixed
distributions), if UC security is required.

To obtain these impossibility results, we employ a recently developed
protocol analysis technique, which we call the frontier analysis. This in-
volves analyzing carefully defined “frontiers” in a weighted tree induced
by the protocol’s execution (or executions, with various inputs), and es-
tablishing various properties regarding one or more such frontiers. We
demonstrate the versatility of this technique by employing carefully cho-
sen frontiers to derive the different results. To analyze randomized func-
tionalities we introduce a frontier argument that involves a geometric
analysis of the space of probability distributions.

Finally, we relate our results to computational intractability ques-
tions. We give an equivalent formulation of the “cryptomania assump-
tion” (that there is a semi-honest or standalone secure oblivious transfer
protocol) in terms of UC-secure reduction among randomized function-
alities. Also, we provide an unconditional result on the uselessness of
common randomness, even in the computationally bounded setting.

Our results make significant progress towards understanding the exact
power of shared randomness in cryptography. To the best of our knowl-
edge, our results are the first to comprehensively characterize the power
of large classes of randomized functionalities.
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1 Introduction

In this work, we consider a fundamental question: How cryptographically useful
is a trusted source of public coins?

While there are several instances in cryptography where a common random
string or a trusted source of public coins is very useful (e.g. [3,5]), we show severe
limitations to its usefulness1 in secure two-party computation, without — and
sometimes even with — computational intractability assumptions. In contrast,
it is well known that more general correlated private random variables can be
extremely powerful [2]. Given that for semi-honest security common randomness
is useless (as one of the parties could sample and broadcast it), it is not surpris-
ing that it should turn out to be not as powerful as general correlated random
variables. However, despite its fundamental nature, the exact power of common
randomness has not yet been characterized. Here, we provide tight characteriza-
tions of what can be achieved with a source of common randomness, in various
settings of 2-party computation. We show:

– For two-party secure function evaluation (SFE) of deterministic functions,
being given a source of common randomness is useless, irrespective of any
computational complexity assumptions, when considering security in the
standalone setting2.

– Clearly a source of common randomness can be useful for realizing ran-
domized functionalities. However, in the case of UC security, we show that a
source of common coins can be useful only in a trivial sense (unless restricted
to the computationally bounded setting, and intractability assumptions are
employed). We show that any UC-secure protocol that uses common coins
for evaluating a randomized function can be replaced by a protocol of the
following simple form: one of the parties announces a probability distribu-
tion, based deterministically on its input, and then the two parties sample
an outcome from this distribution using freshly sampled common coins. We
call the resulting functionality a publicly-selectable source.

– We relate computational intractability assumptions to secure reductions
among randomized functionalities, giving evidence that common random-
ness is useful only under strong computational assumptions. In particular
we show that common randomness can be used to UC-securely realize a
symmetric functionality with bi-directional influence (i.e., the output is in-
fluenced by both the parties’ inputs) if and only if there exists a semi-honest
secure protocol for oblivious transfer.

These results are actually proven for a class of sources more general than coin
tossing, namely selectable sources – that let one of the parties (secretly) specify
1 We say that a source of common randomness is useless in realizing some 2-party

functionality F if either F could be realized without using the given source or F
cannot be realized even given the source. Note that we consider only the feasibility
question and not any efficiency issues.

2 In the case of UC security, it follows from the results in [16] that a source of common
randomness is useless except in Cryptomania, where it is a complete functionality.
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which among a set of distributions should be used by the source. We highlight
two aspects of these results:

Non-blackbox analysis of protocols. In deriving the impossibility results our anal-
ysis crucially relies on the communication and information structure of protocols.
We build on the “frontier analysis” paradigm in [8,15,16], but significantly ex-
tend its power, among other things, to enable analyzing protocols for arbitrary
randomized functionalities, and protocols using randomized functionalities.

These results (and hence proofs) are necessarily of a non-relativizing nature —
if the protocol has access to another trusted functionality (more sophisticated
than common randomness), the impossibility results no longer hold. Specifics
about the common randomness functionality are (and must be) used in our
proofs. Such low-level analysis of protocols, we believe, is crucial to understand-
ing the power and complexity of multi-party computation primitives.

Understanding randomized functionalities. Secure evaluation of randomized func-
tions has in general been a poorly understood area. In particular, to date it
remains open to characterize which randomized functions can be securely real-
ized even against computationally unbounded passive (honest-but-curious) ad-
versaries — a problem that was solved for deterministic functions twenty years
ago [1,13]. Much of the study of randomized functionalities has been focused on
in-depth understanding of the simplest such functionality — namely generating
shared fair coins (e.g., see [7,10,8,18] and references therein). Our results provide
significant insight into other randomized functionalities as well, and their con-
nections to computational intractability assumptions. In particular, our results
involve two interesting classes of randomized functionalities, namely selectable
sources and publicly-selectable sources.

1.1 Overview

Frontier analysis. The bulk of our results take the form of statements of crypto-
graphic impossibility. That is, we show that a protocol for a given cryptographic
task is impossible (or else implies a certain computational primitive like one-way
functions). Such impossibility results have been a core challenge in cryptography.
In this work, we present a powerful battery of techniques that we use to analyze
2-party protocols, which we broadly call “frontier analysis.”

The basic outline of a frontier analysis is as follows. We first interpret a proto-
col as a tree of possible transcripts, with weights corresponding to the probability
that the protocol assigns to each message, based on the parties’ inputs. Within
this tree, we identify “frontiers”, which are simply a collection of nodes (partial
transcripts) that form a cut and an independent set. Intuitively, these frontiers
correspond to points in the protocol when some condition is satisfied for the first
time, where the condition in question depends on the kind of analysis needed:
for example, the first place the transcript leaks “significant” information about
a party’s input, or the first place that common coins have made a “significant”
influence on the protocol’s output.
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Impossibility proofs using frontier analysis proceed by showing that frontiers
of certain kind exist, often showing that multiple frontiers must be encountered
in a specific order, and then showing that an adversary can effect an attack by
exploiting the properties of these frontiers. The interested reader can find a high
level discussion on frontier analysis as a tool for protocol analysis in the full
version of this paper [14].

Common coins are not useful in SFE protocols. We show that against compu-
tationally unbounded adversaries (more precisely, against adversaries that can
break one-way functions), any 2-party deterministic SFE (in which both par-
ties receive the same output) functionality that can be securely realized given
a trusted coin-tossing functionality can in fact be securely realized without it.
This is most interesting for the standalone setting, because if one-way functions
do exist then a standalone-secure coin-tossing protocols exist, so again access to
a trusted coin-tossing functionality is redundant3.

We start off by showing that there is no secure protocol for evaluating boolean
xor given a coin-tossing functionality. In many ways these functionalities have
similar “complexity” (in particular, neither is complete, and both are trivial
to realize against passive adversaries), so establishing a qualitative separation
between them is interesting in itself. In a protocol for xor, either party may be
the first to reveal information about their input, and the two parties can even
gradually reveal more and more information about their input in an interleaved
fashion. We define a frontier corresponding to the first point at which some
party has revealed “significant” information about its input. Then we define an
attack that can be carried out when the protocol crosses this frontier. Since
a large class of SFE functionalities can be used to securely realize xor, the
impossibility extends to these functionalities as well.

We then use the combinatorial characterizations of Symmetric Secure Func-
tion Evaluation (SSFE) functionalities (obtained using frontier analysis) from
[15] to extend the result to arbitrary SSFE functionalities (instead of just XOR).
Further, using an extension of a result in [11], we extend this to arbitrary SFE
functionalities by associating a symmetric SFE with every general SFE that has
a secure protocol using a source of common randomness.

For randomized SFE, common coins help only in a trivial sense. We show that
common coins are useful in constructing UC-secure protocols for randomized
SFE functionalities only for the class of publicly-selectable sources (Theorem 2).
For this result, we exploit the versatility of the frontier analysis and also employ
a geometric analysis of the space of effective probability distributions.

3 A recent result in [16] gives a sharp result for the case of UC security: the coin-
tossing functionality is useful in realizing further deterministic SFE functionalities
if and only if there exists a semi-honest oblivious transfer protocol. However neither
the result nor the approach in [16] extends to the standalone setting. Also, our result
is applicable to not just symmetric functionalities and coin-tossing, but extends to
general SFE functionalities and all selectable sources.
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The frontier analysis is carried out for an SSFE functionality, and then the re-
sult is extended to general SFE functionality separately. For a randomized SSFE
functionality, for each pair of inputs, the output is specified by a distribution
(over a finite output alphabet). This distribution can be represented as a vector
in d-dimensional real space where d is the size of the output alphabet. By con-
sidering all possible inputs, we obtain a set of points in this space as legitimate
output distributions. But since the parties can choose their input according to
any distribution they wish, the entire convex hull of these points is the set of le-
gitimate output distributions. Note that the vertices of this polytope correspond
to the output distributions for various specific input choices.

In analyzing a protocol for such a functionality, we define two very different
frontiers: one intuitively captures the last point in the protocol where the parties’
inputs have any noticeable influence over the output distribution. The other
intuitively captures the first point where the common coins have had a non-
trivial influence on the output distribution.

Defining these frontiers is a delicate task, but once they are defined, we can show
that, for the protocol to be UC-secure, the two frontiers must be encountered in
the order listed above. Thus there is always a point within the protocol where the
parties’ inputs have stopped influencing the output, yet the public coins have not
yet started influencing the output in a non-trivial way. At this point, we can show
that the output distribution is uniquely determined, and that the subsequent coins
are simply used to sample from this publicly-chosen distribution.

Then, on each node in the first frontier the conditional output distribution is
still within the polytope. On the other hand, since the input influence has ceased
at this point, for any fixed input, its output distribution must be determined by
this frontier: i.e., it must be a convex combination of the conditional output
distributions at the nodes on the frontier. That is, the output distribution for
this input is a convex combination of conditional output distributions which
are all themselves within the polytope. Now, (without loss of generality, as it
turns out) we can consider inputs whose output distributions are vertices of the
polytope. Then, for all nodes in the frontier the conditional output distribution
must coincide with the final distribution itself. Thus on reaching this frontier in
the protocol, the output distribution is revealed (as a deterministic function of
the inputs) and the rest of the protocol simply samples from this distribution.

Finally, we extend this result also to general SFE (instead of just symmetric
SFE) functionalities, in the same way as for deterministic functionalities.

Selectable sources. Selectable sources are an interesting class of randomized func-
tionalities with an intermediate level of complexity: they can be more complex
than a (fixed) source of common randomness, yet they are simple enough that
we can show that they are as useless as common randomness when it comes
to securely realizing deterministic functionalities. The extension is observed by
following the analysis for the case of the source of common randomness, and iden-
tifying the properties that it relies on. We do not know at this point whether
these are exactly all the functionalities which are useless for realizing SFE func-
tionalities, but based on our understanding so far, we conjecture that they are.
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Connections to Computational Intractability. Finally, we relate our results to
computational intractability questions. The attacks based on frontier analysis
can often be extended to the computationally bounded setting, if one-way func-
tions do not exist (as was pointed out in [16]). We show that this is indeed the
case for our attacks. In fact, our first application of such an extension is to obtain
an unconditional result about the uselessness of selectable sources in realizing
deterministic secure function evaluation with standalone security. For this we use
the fact that if one-way functions do not exist we can attack any given protocol,
whereas if one-way functions do exist then we can realize any selectable source
functionality (with standalone security) and then again they are useless.

We also generalize a result in [16] to the setting of randomized functional-
ities. There it was shown that if any non-trivial deterministic functionality is
UC-securely realizable using access to common randomness, then there exists an
oblivious transfer protocol secure against semi-honest adversaries. We generalize
common randomness to any selectable source, and also generalize non-trivial de-
terministic functionalities to randomized SSFE functionalities with both parties’
inputs having an influence on the output.

Related Results. Frontier analysis is possibly implicit in previous works on prov-
ing impossibility or lower bounds for protocols. For instance, the analysis in [8]
very well fits our notion of what frontier analysis is. The analysis of protocols in
[6,1,13] also have some elements of a frontier analysis, but of a rudimentary form
which was sufficient for analysis of perfect security. In [15] frontier analysis was
explicitly introduced and used to prove several protocol impossibility results and
characterizations. [12] also presented similar results and used somewhat similar
techniques (but relied on analyzing the protocol by rounds, instead of frontiers,
and suffered limitations on the round complexity of the protocols for which the
impossibility could be shown).

2 Preliminaries

We say that a function ν : N → R is negligible if for every polynomial p,
ν(k) < 1/p(k) for sufficiently large k. If D,D′ are discrete probability distri-
butions with support S, we write SD(D,D′) to denote the statistical distance of
the distributions, defined as SD(D,D′) = 1

2

∑
s∈S |D(s) −D′(s)|.

Security. We use standard conventions and terminology for the security of proto-
cols for multi-party computation tasks. A protocol is secure if for every adversary
in the real world (in which parties execute a protocol), there is an adversary, or
simulator, in the ideal world (in which the task is carried out on behalf of the
parties by a trusted third party called a functionality) that achieves the same
effect. A semi-honest or passive adversary is one which is not allowed to deviate
from the protocol. Standalone security is achieved if the simulator is allowed to
rewind the adversary; Universally composable (UC) security [4] is achieved if
the simulation is straight-line (i.e., never rewinds the adversary). In this work,
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we exclusively consider static adversaries, who do not adaptively corrupt honest
parties during the execution of a protocol.

The plain model is a real world in which protocols only have access to a
simple communication channel; a hybrid model is a real world in which protocols
can additionally use a particular trusted functionality. While hybrid worlds are
usually considered only for UC security, we also use the terminology in the setting
of standalone security. We note that protocols for non-reactive functionalities
(i.e., those which receive input from all parties, then give output, and then stop
responding) do securely compose even in the standalone security setting.

2.1 Functionalities

We focus on classifying several important subclasses of functionalities.

Secure function evaluation (SFE). A 2-party secure function evaluation (SFE)
functionality is specified by two functions f1 : X ×Y → Z and f2 : X ×Y → Z,
where X and Y are finite sets. The functionality waits for input x ∈ X from Alice
and y ∈ Y from Bob, then delivers f1(x, y) and f2(x, y) to them, respectively.
There is no fairness guarantee: if a party is corrupt, it can obtain its own output
first and decide whether the output should be delivered to the other party.

If f1 = f2 are identical we call it a symmetric SFE (or SSFE) functionality.
SSFE functionalities are the most fundamental, and have been studied since Yao
first introduced the concept of multi-party computation [20]. We can specify an
SSFE function by simply giving its function table, where the rows correspond
to an input of Alice, and columns correspond to an input of Bob. For instance,
the XOR functionality has function table 0 1

1 0 .

Randomized functionalities. A randomized SFE functionality is specified by
functions f1, f2 : X × Y × R → Z. The functionality takes inputs x ∈ X from
Alice, y ∈ Y from Bob, uniformly samples r ∈ R and outputs f1(x, y, r) and
f2(x, y, r) to Alice and Bob, respectively. An important example is the common
randomness functionality, denoted by Fcoin (with X = Y = {0}, R = {0, 1}, and
f1(x, y, r) = f2(x, y, r) = r). Note that for a given pair of inputs, the outputs to
Alice and Bob could be correlated as the same value r is used in both.

We identify two important subclasses of randomized SSFE functionalities:

Selectable sources: One in which one party’s input does not affect the output.
That is, functions which can be written as f(x, y, r) = h(x, r) for some func-
tion h. Note that for different values of x, the function’s output distribution
may be arbitrary.

Publicly-selectable sources: Those functions which can be written as
f(x, y, r) = (g(x), h(g(x), r)), for some functions g and h. In this case, the
function’s output distribution for different values of x must be either iden-
tical (when g(x) = g(x′)) or have disjoint supports (when g(x) �= g(x′),
which is included in the function’s output). Intuitively, the function’s out-
put determines the identity of the random distribution h(g(x), ·) that was
used.
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In these two classes of functionalities, only one party can influence the output,
so we say they have uni-directional influence. If there exists inputs x, x′, x′′ for
Alice and y, y′, y′′ for Bob so that f(x, y′) �≡ f(x, y′′), and f(x′, y) �≡ f(x′′, y),
then both parties can potentially influence the output, and we say that the
functionality has bi-directional influence.

Isomorphism. F and G are isomorphic4 if either functionality can be UC-securely
realized using the other functionality by a protocol that is “local” in the following
sense: to realize F given G (say), each party maps its input (possibly probabilis-
tically) to inputs for the functionality G, calls G once with that input and, based
on their private input, the output obtained from G, and possibly private random
coins, locally computes the final output, without any other communication. It is
easy to see that isomorphism is an equivalence relation.

Usefulness of a source. We say that a source of common randomness G is useless
in realizing a 2-party functionality F if either F could be securely realized in
the plain model (i.e., without using G) or F cannot be securely realized even in
the G-hybrid model. Note that we consider only the feasibility question and not
any efficiency issues.

2.2 Frontier Analysis

Protocols and transcript trees. We view a 2-party protocol as a weighted tree of
possible transcripts. The leaves of the tree correspond to completed transcripts,
on which both parties give output. The tree’s internal nodes alternate between
“Alice” and “Bob” nodes, corresponding to points in the protocol (identified by
partial transcripts) at which Alice and Bob send messages, respectively. Given
a party’s private input and the transcript so far (i.e., a node in the tree), the
protocol assigns probabilities to the outgoing edges (i.e., possible next messages).
In some settings we also consider nodes corresponding to invocations of ideal
functionalities (like Fcoin), when appropriate. For these the protocol tree assigns
probabilities to the outputs of the functionality (the corresponding “messages”
included in the transcripts for these steps) according to the probabilities of
parties’ inputs and the functionality’s internal randomness. An execution of the
protocol corresponds to a traversal from root to leaf in the tree.

Probabilities and frontiers. We write Pr[v|x, y] for the probability that the pro-
tocol visits node v (equivalently, generates a transcript with v as a prefix) when
executed honestly on inputs x and y. Suppose πA(x, vb) is the probability that
when Alice executes the protocol honestly with input x and the transcript so far
is v, her next message is b. Similarly, we define a probability πB for Bob. Then
(assuming Alice speaks first in the protocol):

Pr[v|x, y] = πA(x, v1)πB(y, v1v2) · · · =

[ ∏
i odd

πA(x, v1 · · · vi)

] [ ∏
i even

πB(y, v1 · · · vi)

]
4 The definition given here is a generalization for randomized functionalities of the

definition from [15].
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If we define α(v, x) and β(v, y) to be the two parenthesized quantities (equiva-
lently, the product of weights from Alice nodes and Bob nodes in the transcript
tree, respectively), then we have Pr[v|x, y] = α(v, x)β(v, y). Thus, in a plain
protocol, the two parties make independent contributions to the probability of
each transcript. In fact, even if the protocol is allowed to use a selectable source,
this property still holds (see Section 4). This property of protocols is crucially
used in all frontier analysis in this work.

When S is a set of independent nodes in the transcript tree (prefix-free partial
transcripts), we define Pr[S|x, y] =

∑
v∈S Pr[v|x, y], as all the probabilities in the

summation are for mutually exclusive events. If Pr[F |x, y] = 1, then we call F a
frontier. Equivalently, a frontier is a maximal independent set in the transcript
tree. In general, a frontier represents a point in the protocol where a certain
event happens, usually defined in terms of the probabilities α and β.

3 Handling General SFE Functionalities

Frontier analysis is most naturally applied to protocols realizing SSFE function-
alities — that is, functionalities which give the same output to both parties.
So we derive our results for such functionalities. However, we can then extend
our characterizations to apply to SFE functionalities with unrestricted outputs
using the following lemma (see the full version of this paper [14]):

Lemma 1. Suppose H is a functionality that has a passive-secure protocol in the
plain model. If H is useful in UC- or standalone-securely realizing a (possibly
randomized) SFE functionality F , then there exists a symmetric SFE function-
ality F∗ such that F∗ is isomorphic to F , and H is useful in (respectively, UC-
or standalone-) securely realizing F∗.

Here, being useful or not is in the sense of the definition given in Section 2.1.
Proving Lemma 1 essentially involves relating SSFE and SFE functionali-

ties. As it turns out, relating symmetric and unrestricted functionalities is most
convenient in the setting of passive security. In that setting, we associate with
every SFE functionality F a symmetric functionality which is simply the maxi-
mal “common information” provided to the two parties by F . (See proof in the
full version [14] for a combinatorial description of this function) Following [11]
it is not hard to show that if an SFE functionality G is not isomorphic to its
(symmetric-output) common information functionality then G must be complete
in the passive security setting.

To apply this result, however, we must be careful in relating passive security
and active security. It is not necessarily the case that an actively secure pro-
tocol implies a passively secure protocol (since in the passive security setting,
the security reduction must map passively corrupt adversaries to passively cor-
rupt simulators). In [14] we show that every SFE functionality is isomorphic to
a functionality that is “deviation-revealing” [19]. Such functionalities have the
property that active-secure protocols imply passive-secure protocols. Using these
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two results, we are able to transition from active to passive security, and then
argue about generalized vs. symmetric output.

4 Selectable Sources Are Useless for Deterministic SFE

In this section we will show that any selectable source is useless for securely re-
alizing any deterministic SFE functionality against computationally unbounded
adversaries. In particular this shows that Fcoin is useless for realizing any deter-
ministic SFE functionality.

Theorem 1. Suppose F is a 2-party deterministic SFE and G is a selectable
source. Then F has a standalone-secure (resp. UC-secure) protocol in the G-
hybrid model against computationally unbounded adversaries if and only if F
has a standalone-secure (resp. UC-secure) protocol in the plain model.

To give an overview of our techniques, we present the result for the special case
of F = Fxor and G = Fcoin. Then we describe the modifications necessary to
consider arbitrary F and arbitrary selectable source G, respectively.

The case of Fxor and Fcoin. This special case illustrates our new frontier-based
attack. It is well-known that there is no standalone-secure (or UC-secure) proto-
col for Fxor in the plain model (cf. the complete characterization of [12,15]). Also
note that standalone security is a special case of UC security. Thus it suffices to
show the following:

Lemma 2. There is no standalone-secure protocol for Fxor using Fcoin, against
computationally unbounded adversaries.

Proof (Sketch). The main novelty in this proof (compared to the techniques in
[15]) is the nature of the frontier we consider, in a semi-honest protocol. For semi-
honest security, Fxor does not have a canonical order for what information must
be revealed by the two parties. This thwarts the analysis in [15], which depends
on defining frontiers corresponding to what information is revealed in what order.
Nevertheless we show that using a frontier parameterized by a threshold μ on
(an appropriately defined notion of) how much information is revealed about a
party’s input, one can devise an attack on purported protocol for Fxor in the
Fcoin-hybrid model.

For simplicity, first assume that we are given a protocol π for Fxor in the plain
model (i.e., let us ignore Fcoin for the moment). Let α and β be defined as in
Section 2. Then for every node v in the transcript tree of π, define

δA(v, x, x′) =
|α(v, x) − α(v, x′)|
α(v, x) + α(v, x′)

and δB(v, y, y′) =
|β(v, y) − β(v, y′)|
β(v, y) + β(v, y′)

.
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δA and δB are well-defined after we exclude any nodes that have α(v, x) =
α(v, x′) = 0 or β(v, y) = β(v, y′) = 0. Intuitively, δA(v, x, x′) and δB(v, y, y′)
measure how much the transcript reveals about the distinction between x and
x′, or y and y′, respectively. A δ value of 0 means that the partial transcript v is
independent of the choice between the two inputs; a value of 1 means that the
transcript v is only consistent with one of the two inputs.

Then given a parameter μ, we define a frontier F as follows:

F =
{

v

∣∣∣∣ max{δA(v, 0, 1), δB(v, 0, 1)} ≥ μ

and no proper prefix of v also satisfies this condition

}
Intuitively, F is the first place at which one of the parties has revealed “signifi-
cant” information about its input, where significance is measured by μ.

Now we sketch an attack based on this frontier. (The actual proof and calcu-
lations in [14] follow a slightly different argument, but using the same frontier).
Suppose by symmetry that on an honest execution, the protocol assigns the
majority of the weight on F to transcripts v satisfying δB(v, 0, 1) ≥ μ. Then,
intuitively, Alice can launch an attack as follows. She runs the protocol honestly
(say, with input 0) until reaching F . Then at F , the transcript is correlated with
Bob’s input enough so that Alice can guess Bob’s input with bias roughly μ/2.
On the other hand, since δA(v, 0, 1) < μ with good probability at this point of
the protocol, both values for Alice’s input are somewhat likely explanations for
the transcript seen so far. Therefore if Alice changes her input at this point (by
sampling a state consistent with the current transcript and the new input), the
outcome of the protocol will change with all but negligible probability, thanks
to the correctness guarantee of the protocol. Thus, Alice can significantly corre-
late her effective input with Bob’s, so that Bob’s output is biased significantly
towards 1 (when Bob picks his input at random). But this is a behavior that is
not possible in an ideal-world interaction with Fxor, so it constitutes a violation
of the security of π.

The only difference when attacking a protocol in the Fcoin-hybrid model is
that the common coins also influence the probabilities of partial transcripts. One
may consider the probability of a partial transcript v (which includes outputs of
Fcoin) as a product of α(v, x), β(v, y), and a contribution γ(v) from the combined
calls to Fcoin. However, γ(v) does not depend on x or y, so we can absorb its
contribution into (arbitrarily) α(v, x) and the analysis remains valid5.

Uselessness of Fcoin for any SFE F . First we consider the case when F is a sym-
metric SFE functionality. We use the characterization of SSFE functionalities

5 Note that α and β are defined only in terms of honest behavior by the parties, so that
every call to Fcoin delivers its output to both parties in our analysis and associated
attack. (Only corrupt parties can prevent output delivery in a functionality with no
output fairness guarantee.) Thus our attacks neither rely on fairness nor crucially
exploit unfairness in the source of common coins; the adversaries we construct will
always choose to deliver the outputs of the setup functionality.



Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 497

with standalone-secure protocols from [15] to show that if an SSFE functional-
ity F has no standalone-secure protocol in the plain model, then either there
is a standalone-secure protocol for Fxor in the F -hybrid model, or else there
is a frontier-based attack that violates standalone security of every purported
protocol for F in the plain model.

In the first case, Lemma 2 demonstrates that F can have no standalone-
secure protocol in the Fcoin-hybrid world. In the second case, we observe that
the frontier-based attacks go through unaltered even if the protocols are allowed
access to Fcoin. This is because the frontier attack merely relies on the fact that
in a protocol, given a transcript prefix v, the next message depends only on one
of Alice and Bob’s inputs. However, this is true even if the protocol has access
to Fcoin— the bits from Fcoin being independent of both parties’ inputs.

This allows us to conclude that in either case, there can be no protocol for
F in the Fcoin-hybrid model, giving us the following lemma (see the full version
[14] for more details).

Lemma 3. If F is a 2-party deterministic SSFE that has no standalone-secure
(resp. UC-secure) protocol against unbounded adversaries in the plain model,
then F has no standalone-secure (resp. UC-secure) protocol in the Fcoin-hybrid
model.

Replacing G with an arbitrary selectable source. Our analysis goes through with
minimal modification when Fcoin is replaced by an arbitrary selectable source.
Recall that in a selectable source functionality G, only one party can influence
the output at a time (depending on which “direction” G is used in). When G is
used such that only Alice influences the output, the influence on the transcript’s
probability can be collected into the term α(v, x). Similarly, when only Bob can
influence the output of G, the influence can be collected into the term β(v, y).
Therefore, we can still write Pr[v|x, y] = α(v, x)β(v, y) for appropriate α and β.
Each invocation of G is an atomic event with respect to the frontiers and to the
adversary’s changes in behavior in our our attacks.

Extending to general SFE functionalities. Finally, we prove Theorem 1, using
Lemma 1. Note that a selectable source has a passive secure protocol (Alice
samples an output and gives it to Bob). Thus if there exists any SFE functionality
F for which some selectable source is useful in (UC- or standalone-) securely
realizing, then by Lemma 1 selectable source is useful in (UC- or standalone-)
securely realizing some SSFE functionality as well, contradicting Lemma 3.

5 Coins Are Useless for Randomized SFE

In this section, we characterize the set of randomized SFE functionalities that
can be reduced to Fcoin.

Since Fcoin itself is not securely realizable (in the UC or standalone model)
against computationally unbounded adversaries, common randomness clearly
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allow more functionalities to be securely realized. In particular common ran-
domness can be used to generate a shared sample from a publicly agreed-upon
distribution. However, we show that this is essentially the only use of common
randomness, when UC security is required6. More precisely,

Theorem 2. A randomized SFE functionality F has a UC-secure protocol in
the Fcoin-hybrid model if and only if F is isomorphic to the SSFE functional-
ity F∗ with output function F∗ such that F∗(x, y, r) = (h(x), r), where h is a
deterministic function.

Note that a secure protocol for F∗(x, y, r) above is simple: Alice sends h(x) to
Bob, and then they obtain uniformly random coins r from Fcoin. Thus, any UC
secure protocol for f which uses Fcoin can be replaced by one of the following
form: (1) one party sends a function of its input to the other party; (2) both
parties access Fcoin to obtain coins r; (3) both parties carry out local computation
to produce their outputs.

Given Lemma 1, it is enough to establish our characterization for the special
case of symmetric SFE functionalities (for which we shall denote the common
output by f(x, y, r)).

The first step in proving Theorem 2 for SSFE is to show that only one party’s
input can have influence on the outcome of the other party.

Lemma 4. If F is a 2-party randomized SSFE functionality with a UC-secure
protocol in the Fcoin-hybrid model, then F(x, y) is distributed as F ′(x) (or F ′(y)),
where F ′ is some randomized function of one input.

If F does not have the form F ′(x) or F ′(y), we call it an SSFE functionality with
bidirectional influence. Using a lemma proven in the full version of this paper
[14], we know that if a SSFE F with bidirectional influence has a UC-secure
protocol in the Fcoin-hybrid then there exists a semi-honest protocol for OT.
However, this is not possible against computationally unbounded adversaries
and hence, F can not have bidirectional influence.

Frontiers of influence. Suppose we are given a protocol π for f in the Fcoin-
hybrid model, with simulation error ε. Without loss of generality, we assume

6 The full version of this paper [14] contains examples of randomized SSFE for which
Fcoin is useful in a more non-trivial way, but for standalone security. For one such
example, consider the protocol to compute the minimum of the private inputs of
the two parties [15,12]: Alice declares whether her input is 0 or 2; next, conditioned
on Alice input being 2, Bob declares whether his input is 1 or 3. This protocol
is a standalone secure protocol for the deterministic SSFE:

0 0

1 3 . Now, we random-
ize the output when Alice input is 1: Based on whether Bob’s input is 1 or 3 we
use Fcoin to uniformly sample from the set {1, 2} or {2, 3}, respectively. This is a

standalone-secure protocol for the randomized SSFE:
(1,0,0,0) (1,0,0,0)

(0, 1
2 , 1

2 ,0) (0,0, 1
2 , 1

2 ) , where the
vectors indicate probability distribution over an output alphabet of size 4.
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that the last step of π is to toss a random coin which is included in the output7.
First, define Ox

v to be the output distribution of the protocol when executed
honestly on (Alice) input x, starting from partial transcript v. We use this to
define our first frontier:

G =

⎧⎨⎩v

∣∣∣∣∣∣ ∀x′, x′′ : SD
(
Ox′

v ,Ox′′

v

)
<

√
ε

and no ancestor of v satisfies the same condition

⎫⎬⎭
Intuitively, G represents the point at which Alice’s input has first exhausted
any “significant” influence on the final output distribution — her input can no
longer change the output distribution by more than

√
ε. Next, note that the only

way to induce an output distribution in the ideal world is to choose an input
x according to some distribution D and then send x to f , yielding the output
distribution {f(x)}x←D. Let S be the space of all possible output distributions
that can be induced in this way8. We use this to define a collection of frontiers,
one for each value of x.

Fx = {v | SD(Ox
v ,S) >

√
ε and no ancestor of v satisfies the same condition}

Intuitively Fx represents the first time that randomness has had a “significantly”
non-trivial influence on the output when Alice’s input is x. Here, the influence of
randomness in the protocol is considered non-trivial if the protocol has reached
a point such that the conditional output distribution induced by the protocol
starting from that point cannot be achieved by Alice in the ideal world.

We now show that in a secure protocol, Alice’s input must completely exhaust
its influence before the randomness from Fcoin can begin to influence the output
distribution.

Lemma 5. In the above setting, let Fx < G denote the event that the protocol
generates a transcript that encounters frontier Fx strictly before encountering
frontier G. Then Pr[Fx < G|x] is negligible for all x.

Proof (Sketch). Consider a malicious Alice that runs π honestly on input x.
Whenever this adversary encounters Fx strictly before G, it reports the resulting
partial transcript to the environment. Being in the frontier Fx, this transcript
intuitively represents an assertion by the adversary that it can realize an output
distribution Ox

v that is impossible to effect in the ideal world (by continuing
hereafter with input x). Being before G, the transcript also indicates an assertion
by the adversary that it can still induce two “significantly” different output

7 To see that this is without loss of generality, define a randomized SSFE f ′ which
on input x, outputs f(x) as well as a random bit. Then define π′ to be the protocol
which runs π and in the last step uses Fcoin to toss a coin which is included in the
output. It is easy to see that if π is a secure protocol for f , then π′ is a secure
protocol for f ′, so proving the insecurity of π′ establishes the insecurity of π.

8 Note that S is the space of convex combinations of {f(x) | x}, where here f(x)
denotes the discrete probability distribution itself, represented by a stochastic vector.
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distributions (by continuing hereafter with one of the inputs from the condition
in the definition of G). The environment can choose to challenge the adversary
on any of these choices, and in the real world the adversary can always succeed.
However, for any simulator in the ideal world, there must be some challenge
for which the simulator must fail. Namely, if the simulator has already sent an
input to ideal f at the time it makes its “assertion”, then it cannot proceed
to induce two significantly different output distributions on command — the
output is already fixed. On the other hand, if the simulator has not sent an
input to the ideal f , then it cannot proceed to realize an output distribution
that is impossible in the ideal world.

Thus this adversary violates the security of f with success proportional to
Pr[Fx < G|x], so we conclude that this probability must be negligible.

Using the previous two lemmas, we can now prove the special case of Theorem 2,
restricted to SSFE functionalities:

Lemma 6. A 2-party randomized SSFE functionality F has a UC-secure pro-
tocol in the Fcoin-hybrid model against computationally unbounded adversaries if
and only if F is isomorphic to the SSFE functionality F∗ with output function
f∗ such that f∗(x, y, r) = (h(x), r), where h is a deterministic function.

Proof. The complete proof of the lemma is provided in the full version of this
paper [14]. Lemma 5 shows that there is a frontier G that separates all of the
influence of Alice’s input (before G) from all of the influence of Fcoin (after G).

Our analysis relies on the geometric interpretation of possible output distri-
butions. As before, let S denote the space of output distributions that can be
realized in the ideal world by randomly choosing an input and sending it to f
to obtain a sample of f(x). S is the convex closure of a finite set of points f(x).
Call an input x fundamental if f(x) is a corner on the convex hull of S. Without
loss of generality, we restrict our attention exclusively to fundamental inputs9.

Let x be a fundamental input. Since x affects the output of the protocol only
negligibly after the transcript reaches G, we have that f(x) is statistically close
to a convex combination of {Ox

v | v ∈ G}. An overwhelming weight of these
distributions Ox

v are negligibly close (in statistical distance) to the space S. By
a geometric argument, since f(x) is a corner in the space S, we have that an
overwhelming weight of Ox

v distributions are negligibly close to f(x).
Thus, consider any two inputs x, x′ such that f(x) �≡ f(x′). The statistical

distance between these two distributions is a constant Δ. The above argument
implies that x and x′ must induce distributions over G that have statistical
distance negligibly close to 1. In other words, executing the protocol until G
unambiguously determines the distribution f(x); after G, x has no more influence
on the output. Then it is straight-forward to show that the following simple
protocol is also secure for f : Alice sends a description of the distribution f(x)
to Bob (say, the lexicographically smallest x∗ s.t. the distributions of f(x) and

9 Any non-fundamental input x is redundant in f and we can remove it to obtain an
isomorphic functionality (for details refer to the full version of this paper [14]).
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f(x∗) are identical). Both parties use Fcoin to generate random coins r and use
them to compute a sample from the distribution f(x). Then it is clear that f has
the desired form — the output of this protocol is computed from a deterministic
function of x along with independent coins.

On extending to selectable sources. Unlike our results in Section 4, Theorem 2
does not generalize to arbitrary selectable sources (instead of just Fcoin). To
see this, one can easily construct a selectable source f which is not of the form
f(x, y, r) = (h(x), r). Then trivially f has a UC-secure protocol using some
selectable source (namely, itself), but f is not of the form required by Theorem 2.

Indeed, to prove Theorem 2, we made a crucial distinction between Alice’s
choice of input influencing the output distribution and Fcoin influencing the
output distribution. This distinction is lost if Fcoin is replaced by a functionality
in which Alice is allowed to influence the output.

On a common random string (CRS) vs. Fcoin. A common random string (CRS)
is a source of shared randomness in which all random bits are generated once and
for all at the beginning of a protocol interaction, rather than as-needed, as with
Fcoin. Our proof of Theorem 2 states that the influence of the parties’ inputs
ends before the influence of the shared randomness begins. Since the influence
of a CRS must happen at the start of a protocol, a CRS is useless for SSFEs
except those of the form f(x, y, r) = h(x) (no influence from shared randomness)
or f(x, y, r) = h(r) (no influence from parties’ inputs), for a deterministic h.

6 Randomized Functionalities and Computational
Intractability

Our results so far have been presented in the computationally unbounded set-
ting. However, they do extend somewhat to the probabilistic polynomial time
(PPT) setting (where all entities, including the adversary and the environment
are PPT), and yield interesting connections with computational intractability
assumptions. These results are similar in spirit to the connections established in
[16], but unlike there, are applicable to randomized functionalities.

Firstly, in the case of deterministic SFE functionalities, we obtain the following
unconditional result in the PPT setting

Theorem 3. For every 2-party deterministic SFE F and selectable source G,
F has a standalone secure protocol in the G-hybrid model in the PPT setting, if
and only if F has a standalone secure protocol in the plain model in the PPT
setting. (for the proof, consult the full version [14]).

Our other results for the PPT setting are conditional. An important observation
in [16] was that, statements of the form “2-party functionality F has a UC-
secure protocol in the G-hybrid world (in the PPT setting)” are either known to
be unconditionally true or false, or tend to be equivalent to the assumption that
one-way functions exist, or the assumption that there is an oblivious transfer
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(OT) protocol secure against semi-honest adversaries. [16] study a large class of
such statements for deterministic F and G, and show that for every one of them
the corresponding statement falls into one of the four classes listed above. An
important problem left open is to understand whether the same pattern holds
when considering randomized functionalities.

Our results suggest that this may be the case: the only intractability assump-
tions (other than being known to be unconditionally true or false) that arise
among randomized functionalities still seem to be the existence of OWF and the
existence of a semi-honest OT protocol. In particular we have the following two
results (refer to the full version of this paper [14]):

Theorem 4. Let F be any 2-party SFE functionality, possibly randomized. If
one-way functions do not exist then F has a UC-secure protocol in the Fcoin-
hybrid model in the PPT setting, if and only if F is a publicly-selectable source.

Theorem 5. The following three statements are equivalent:
1. There exists a semi-honest OT protocol.
2. ∃ (possibly randomized) 2-party SSFE F with bidirectional influence : F is

UC securely-realizable in Fcoin-hybrid world.
3. ∀ (possibly randomized) 2-party SSFE F with bidirectional influence : F is

UC securely-realizable in Fcoin-hybrid world.

The main task in proving the above is to show that (2) ⇒ (1), which shown in the
full version. (1) ⇒ (3) follows from a result proven in [9,17] on the completeness
of Fcoin. (3) ⇒ (2) is trivial.

7 Conclusion and Future Work

Recently, [16] made a case for “cryptographic complexity theory,” trying to un-
derstand the qualitative difference between different multiparty functionalities.
However, the results there were confined to deterministic functionalities; the
universe of randomized functionalities is vastly more complex, and is little un-
derstood. Among other things, this work initiates a systematic study of random-
ized functionalities, by proving the low-complexity nature of certain classes of
randomized functionalities. In this work we do not consider randomized func-
tionalities of higher levels of complexity, nor do we seek to classify all kinds of
randomized functionalities. Nevertheless, we believe that our proof techniques
— both for the computationally unbounded setting and for the PPT setting —
will be useful in such a study. We leave this for future work.
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Abstract. The standard approach for constructing a large-stretch
pseudo-random generator given a one-way permutation or given a smaller-
stretch pseudo-random generator involves repeatedly composing the given
primitive with itself. In this paper, we consider whether this approach is
necessary, that is, whether there are constructions that do not involve com-
position. More formally, we consider black-box constructions of pseudo-
random generators from pseudo-random generators of smaller stretch or
from one-way permutations, where the constructions make only non-
adaptive queries to the given object. We consider three classes of such con-
structions, and for each class, we give a black-box impossibility result that
demonstrates a contrast between the stretch that can be achieved by adap-
tive and non-adaptive black-box constructions.

We first consider constructions that make constantly-many non-
adaptive queries to a given pseudo-random generator, where the seed
length of the construction is at most O(log n) bits longer than the length
n of each oracle query. We show that such constructions cannot achieve
stretch that is even a single bit greater than the stretch of the given
pseudo-random generator.

Wethen consider constructionswith arbitrarily long seeds, butwhereor-
acle queries are collectively chosen in a manner that depends only on a por-
tion of the seed whose length is at most O(log n) bits longer than the length
n of each query. We show that such constructions making constantly-many
non-adaptive queries cannot achieve stretch that is ω(log n) bits greater
than the stretch of the given pseudo-random generator.

Finally, we consider a class of constructions motivated by streaming
computation. Specifically, we consider constructions where the compu-
tation of each individual output bit depends only on the seed and on
the response to a single query to a one-way permutation. We allow the
seed to have a public portion that is arbitrarily long but must always be
included in the output, and a non-public portion that is at most O(log n)
bits longer than the length n of each oracle query. We show that such
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constructions whose queries are chosen non-adaptively based only on the
non-public portion of the seed cannot achieve linear stretch.

1 Introduction

It is well known that if there exist pseudo-random generators obtaining even
one bit of stretch, then for every polynomial p(n), there exist pseudo-random
generators obtaining p(n) bits of stretch. The usual approach for constructing
a pseudo-random generator of large stretch from a pseudo-random generator
of smaller stretch involves composing the smaller-stretch generator with itself
repeatedly. Similarly, the usual approach for constructing a pseudo-random gen-
erators of large stretch from a one-way permutation involves composing the
one-way permutation with itself repeatedly.

In this paper, we consider whether there exist such constructions that do
not involve composition. To formalize this requirement about composition, we
consider constructions that only have oracle access to the given object (a smaller-
stretch pseudo-random generator or a one-way permutation) and query this
oracle non-adaptively. We refer to such constructions as non-adaptive (oracle)
constructions.

Given oracle access to a pseudo-random generator or a one-way per-
mutation is it possible to construct, via non-adaptive oracle queries, a
pseudo-random generator of large stretch?

We give a number of black-box impossibility results for non-adaptive oracle con-
structions of pseudo-random generators. Some of these arguments are rather
technically involved. Roughly speaking, we answer in the negative whether we
can obtain, with only a constant number of queries to a pseudo-random genera-
tor, a pseudo-random generator of much larger stretch, where answers to these
non-adaptive queries are combined arbitrarily. The challenge is to deal with this
arbitrary computation phase.

Non-adaptive constructions are conceptually related to streaming cryptogra-
phy; that is, computing private-key primitives with a device that uses small
space and accesses the seed a small number of times. One of the three non-
adaptive settings we consider in this paper is motivated by questions in streaming
cryptography.

Our results. Observe that if pseudo-random generators exist, then there exist
trivial non-adaptive oracle constructions of large-stretch pseudo-random gener-
ators: such constructions can simply ignore their oracle and directly compute
a large-stretch pseudo-random generator. Since we are interested in construc-
tions that use their oracle in a non-trivial way, we focus on constructions whose
pseudo-randomness is proven using a black-box reduction [8] to the the security
(pseudo-randomness or one-wayness) of their oracle.

We consider three classes of such constructions, and give bounds on the stretch
that can be obtained by each class. For each class, our results demonstrate a
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contrast between the stretch that can be achieved by adaptive and non-adaptive
constructions. We show that, in some sense, whatever was already known re-
garding algorithms for non-adaptive constructions is the best we can hope for.
While we are primarily interested in constructions that are polynomial-time
computable, our bounds hold even for computationally-unbounded constructions
(where the number of oracle queries is still bounded).

– Class 1: Constructions with short seeds
Suppose we have a pseudo-random generator f : {0, 1}n → {0, 1}n+s(n) and
we wish to obtain a pseudo-random generator with larger stretch, say stretch
2·s(n). We can easily define such a generator Gf : {0, 1}n → {0, 1}n+2·s(n) as
follows: on input x ∈ {0, 1}n, Gf computes y0||y1 = f(x) (where |y0| = s(n)
and |y1| = n), and outputs y0||f(y1). Gf can be formalized as a fully black-
box construction making two adaptive oracle queries, each of the same length
as G’s seed x, to an oracle mapping n bits to n + s(n) bits. This idea can
easily be extended to obtain, for every k ∈ N, a fully black-box construction
making k adaptive oracle queries and achieving stretch k · s(n).

We show that fully black-box constructions making constantly-many
queries, each of the same length as their seed length n, must make adaptive
queries even to achieve stretch s(n) + 1, that is, even to achieve a one-bit
increase in stretch. We show that this also holds for constructions whose
seed length is at most O(log n) bits longer than the length n of each oracle
query.

– Class 2: Constructions with long seeds
What about constructions whose seed length is significantly longer than the
length of each oracle query? Can we also show that such constructions must
make adaptive oracle queries in order to achieve greater stretch than their
oracle? In fact, a very simple way for such a construction to make non-
adaptive oracle queries, yet achieve greater stretch than its oracle, involves
splitting up its seed into two or more portions, and using each portion as
an oracle query. For example, if f : {0, 1}n → {0, 1}n+1 is pseudo-random,
then the generator Gf : {0, 1}2n → {0, 1}2n+2 defined for all x1, x2 ∈ {0, 1}n
as Gf (x1||x2) = f(x1)||f(x2) is also pseudo-random. Observe that when
this construction is given an input chosen uniformly at random, the oracle
queries x1 and x2 are chosen independently (and uniformly at random); this
property is crucial for the construction’s security.

What about constructions where oracle queries cannot be chosen indepen-
dently and uniformly at random? Specifically, what if we consider construc-
tions where we place no restriction on the seed length, but insist that oracle
queries are collectively chosen in a manner that depends only on a portion
of the seed that is not too much longer than the length of each oracle query
(making it impossible to simply split up the seed into multiple queries)? While
this setting may seem unnatural at first, it is possible in this setting to ob-
tain a construction that makes constantly-many non-adaptive oracle queries
to a pseudo-random generator and achieves more stretch than its oracle; in-
deed, even a single query suffices. For example, if f : {0, 1}n → {0, 1}n+s(n)

is pseudo-random, then by the Goldreich-Levin theorem [6] we have that for
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all functions m(n) ∈ O(log n), the number generator Gf : {0, 1}n·m(n)+n →
{0, 1}n·m(n)+n+s(n)+m(n) defined for all r1, r2, . . . , rm(n), x ∈ {0, 1}n as

Gf (r1||r2|| . . . ||rm(n)||x
)

= r1||r2|| . . . ||rm(n)||f(x)||〈r1, x〉||〈r2, x〉|| . . . ||〈rm(n), x〉

is pseudo-random; the stretch of Gf is m(n) bits greater than the stretch of
f . Also observe that the query made by G(·) depends only on a portion of the
seed of G(·) whose length is the same as the length of the query (indeed, the
query is identical to this portion of the seed). Using this Goldreich-Levin-
based approach, it is easy to see that adaptive black-box constructions whose
input length is much longer than the length n of each oracle query can obtain
stretch k · s(n) + O(log n) by making k queries to an oracle of stretch s(n),
even when the portion of the seed that is used to choose oracle queries has
length n.

We show that fully black-box constructions G(·) making constantly-many
queries of length n to a pseudo-random generator f : {0, 1}n → {0, 1}n+s(n),
such that only the rightmost n+O(log n) bits of the seed of G(·) are used to
choose oracle queries, must make adaptive queries in order to achieve stretch
s(n) + ω(log n). That is, such constructions making constantly-many non-
adaptive queries cannot achieve greater stretch than the stretch provided by
Goldreich-Levin with just a single query. This holds no matter how long a
seed is used by the construction G(·).

– Class 3: Goldreich-Levin-like constructions
The final class of constructions we consider is motivated by the streaming
computation of pseudo-random generators. What is the relationship between
non-adaptivity and streaming? In what sense could one prove a black-box
lower bound that rules out streaming constructions of pseudo-random gener-
ator G of linear stretch using a one-way permutation π? A black-box lower-
bound stated for a streaming device has to reference the many details of
the model. We wish to state a similar thing in a setting that abstracts out
a common property of streaming algorithms extended to have oracle access
to a one-way permutation. Can a streaming algorithm be adaptive (even
when we do not account for the space occupied by the oracle tape), in the
sense that a query depends on many bits of previous queries? Given that
a random input is incompressible, and the fact that we lack space (so as
to store) and passes over the input (so as to recompute), it is plausible to
consider non-adaptivity as a clean setting for studying black-box streaming
constructions.

We consider a class of constructions where the seed has a public portion
that is always included in the output, the choice of each oracle query does
not depend on the public portion of the seed, and the computation of each
individual output bit depends only on the seed and on the response to a sin-
gle oracle query. We refer to such constructions making non-adaptive oracle
queries as bitwise-nonadaptive constructions. It is not hard to see that such
constructions making polynomially-many adaptive queries to a one-way per-
mutation π : {0, 1}n → {0, 1}n can achieve arbitrary polynomial stretch; the
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idea is to repeatedly compose π with itself, outputting a hardcore bit of π on
each composition. For example, using the Goldreich-Levin hardcore bit [6],
a standard way of constructing a pseudo-random generator G of polynomial
stretch p(n) is the following: On input r, x ∈ {0, 1}n,

Gπ(r||x) = r||〈r, x〉||〈r, π(x)〉||〈r, π2(x)〉|| . . . ||〈r, πp(n)+n(x)〉

where πi := π ◦ π ◦ . . . ◦ π︸ ︷︷ ︸
i times

, and 〈α, β〉 denotes the standard inner product

of α and β. Observe that the leftmost n bits of the seed of G are public
in the sense that they are included in the output. Also observe that each
of the remaining output bits of G is computed using only a single output
of π along with the input bits of G. Finally, observe that the queries made
to π do not depend on the public input bits of G, and the number of non-
public input bits is no greater than the length n of each oracle query. It
is natural to ask whether the adaptive use of π in a construction of this
form is necessary. This is particularly interesting if we wish to compute G
in a streaming setting where we have small workspace, we are allowed to
produce the output bit-by-bit, and we are allowed to re-read the input once
per output bit.

We show that fully black-box bitwise-nonadaptive constructions G(·) mak-
ing queries of length n to a one-way permutation, such that the non-public
portion of the seed of G(·) is of length at most n + O(log n), cannot achieve
linear stretch. This holds no matter the length of the public portion of the
seed of G(·).

We conclude this paper with some remarks and observations about streaming
models for cryptography. Our treatment of streaming models mostly serves the
purpose of proposing some new research directions.

Related work. Black-box reductions were formalized by Impagliazzo and Rudich
[8], who observed that most proofs of security in cryptography are of this form.
Impagliazzo and Rudich also gave the first black-box impossibility results. In
their most general form, such results show that for particular security properties
P1 and P2, it is impossible to give a black-box construction of P1 from P2. The
same approach can also be applied to particular classes of black-box construc-
tions, such as those making some restricted number of oracle queries or those
that query their oracle non-adaptively. A large number of impossibility results
have been given using this framework. The results most closely related to the
problem we are considering are those of Gennaro et al [5], Viola [13], Lu [10],
and Miles and Viola [11].

Gennnaro et al [5] consider black-box constructions of pseudo-random gen-
erators from one-way permutations. They show that such constructions cannot
achieve ω(log n) bits of stretch per oracle query of length n, even when queries
are chosen adaptively. Their result can be extended in a straightforward way to
show that for the second class of constructions we consider (and also for a more
general class where queries are allowed to depend on the entire seed), for every
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k ∈ N, constructions making k oracle queries to a pseudo-random generator of
stretch s(n) cannot achieve stretch k ·s(n)+ω(log n), even when these queries are
chosen adaptively. By contrast, recall that we show that for this class of construc-
tions, for every k ∈ N, constructions making k non-adaptive oracle queries to a
pseudo-random generator of stretch s(n) cannot achieve stretch s(n)+ ω(log n).

Viola [13] considers black-box constructions of pseudo-random generators
from one-way functions where oracle queries are non-adaptive but chosen in
a computationally unbounded way, while the output of the construction is com-
puted from the query responses by an AC0 (polynomial-size and constant-depth)
circuit. He shows that such constructions cannot achieve linear stretch. The class
of constructions considered by Viola is, in general, incomparable to the classes
we consider. His class is more general in terms of the numbers of queries allowed
and the way that queries are chosen: he places no bounds on the number of
queries, allows the queries to be chosen arbitrarily based on the seed (while we
require queries to be chosen in a computable manner), and places no restrictions
on the length of the queries relative to the length of the seed. On the other
hand, his class is more restrictive in terms of the computational power allowed
after the query responses are received: he only allows AC0 computation, while
we allow unbounded computation.

Lu [10] considers the same class of constructions as Viola, except that Lu
allows the output to be computed from the query responses by a subexponential-
size constant-depth circuit (rather than an AC0 circuit). He shows that such
constructions cannot achieve linear stretch.

Miles and Viola [11] consider black-box constructions of pseudo-random gen-
erators from pseudo-random generators of 1-bit stretch, where the oracle queries
are non-adaptive but chosen in a computationally unbounded way, while the
output of the construction consists simply of query response bits; that is, these
constructions are not allowed to perform any computation on query responses.
They show that such constructions cannot achieve linear stretch. Like the con-
structions considered by Viola [13] and Lu [10], the class of constructions consid-
ered by Miles and Viola is, in general, incomparable to the classes we consider:
the constructions they consider are more general in the manner in which queries
are chosen (they place no restrictions on the length of queries relative to the
length of the seed), but much more restrictive in terms of the computational
power allowed after query responses are received.

In the positive direction, Haitner et al [7] give the first non-adaptive black-
box construction of a pseudo-random generator from a one-way function. Their
construction achieves sublinear stretch. They also give a non-adaptive black-box
construction achieving linear stretch, but this requires an exponentially-hard one-
way function. In both of these constructions, the oracle queries are collectively
chosen based on a portion of the seed that is significantly longer than the length
of each oracle query. By contrast, recall that all of our impossibility results are
for constructions where the oracle queries are collectively chosen based on a
portion of the seed that is no more than logarithmically-many bits longer than
the length of each oracle query.
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Organization. Section 2 contains definitions and preliminaries. The impossibility
results for constructions with short seeds and long seeds are discussed in Sections
3 and 4 respectively. In Section 5, we state a restriction on the way that con-
structions choose oracle queries, and under this restriction we extend the results
of Sections 3 and 4 to constructions making polynomially-many queries. The
impossibility result for Goldreich-Levin-like constructions is found in Section 6.
Section 7 contains our remarks on streaming models in cryptography.

2 Preliminaries

Notation. We use “PPT” to denote “probabilistic polynomial time”. We denote
by 〈a〉n the n-bit binary string representation of a ∈ N, padded with leading zeros
when necessary. If the desired representation length is clear from the context,
we write 〈a〉 instead of 〈a〉n. If a ≥ 2n, then 〈a〉n denotes the n least significant
bits of the binary representation of a. We denote by x||y the concatenation of
strings x and y.

2.1 Pseudo-Random Generators and One-Way Functions

A length-increasing function G : {0, 1}�1(n) → {0, 1}�2(n) is a pseudo-random
generator if for every PPT adversary M , we have∣∣∣∣ Pr

x←{0,1}�1(n)
[M (G (x)) = 1] − Pr

z←{0,1}�2(n)
[M (z) = 1]

∣∣∣∣ ≤ 1/nc

for all c and sufficiently large n.
A function f : {0, 1}�1(n) → {0, 1}�2(n) is one-way if for every PPT adver-

sary M , we have Pr
x←�1(n)

[f (M (f (x))) = f (x)] ≤ 1/nc for all c and sufficiently

large n.

2.2 Non-adaptive Constructions

Our impossibility results are for constructions that use their oracle in a non-
adaptive manner.

Definition 1 (Non-adaptive oracle machine). Let M (·) be a deterministic
oracle Turing machine. We say that M (·) is a non-adaptive oracle machine if
the oracle queries made by M (·) are determined by only the input to M (·), and,
in particular, do not depend on the responses to previous queries.

We will sometimes need to refer to the querying function of a non-adaptive oracle
machine.

Definition 2 (Querying function). Let �1(n), �2(n), and p(n) be polynomials,
and let M (·) : {0, 1}�1(n) → {0, 1}�2(n) be a non-adaptive oracle machine that
makes p(n) oracle queries, each of length n. The querying function of M (·),
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denoted QM , is the function QM : {0, 1}�1(n) × {0, 1}logp(n) → {0, 1}n such that
for all x ∈ {0, 1}�1(n) and 0 ≤ i < p(n), the i-th oracle query made by M (·)(x)
is QM (x, 〈i〉). When p(n) ≡ 1, the second argument to QM is omitted.

If there exists a polynomial r(n) such that the queries made by M (·) depend
only on the rightmost r(n) bits of the input of M (·), then the r(n)-restricted
querying function of M (·), denoted Q

r(n)
M , is the function Q

r(n)
M : {0, 1}r(n) ×

{0, 1}logp(n) → {0, 1}n such that for all v ∈ {0, 1}�1(n)−r(n), w ∈ {0, 1}r(n), and
0 ≤ i < p(n), the i-th oracle query made by M (·)(v||w) is Q

r(n)
M (w, 〈i〉).

2.3 Black-Box Reductions

Reingold, Trevisan, and Vadhan [12] give a classification of black-box security
reductions. Our impossibility results apply to what Reingold et al call fully-black
box reductions. We avoid defining such reductions in their full generality and
instead focus on security reductions for constructions of pseudo-random number
generators from pseudo-random generators of smaller stretch.

Definition 3 (Fully black-box reduction [8]). Let G(·) : {0, 1}�1(n) →
{0, 1}�2(n) be a number generator whose construction has access to an oracle
for a length-increasing function mapping �′1(n) bits to �′2(n) bits. There is a fully
black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness
of its oracle if there exists a PPT oracle machine M (·,·) such that for every func-
tion f : {0, 1}�′1(n) → {0, 1}�′2(n) and every function A : {0, 1}�2(n) → {0, 1}, if A
breaks the pseudo-randomness of Gf then M (f,A) breaks the pseudo-randomness
of f .

Definition 3 can be modified in a straightforward way for constructions of
pseudo-random number generators from other primitives, such as from one-way
permutations.

An oracle construction whose security is proven using a black-box reduction
is called a black-box construction.

3 Constructions with Short Seeds

In this section, we consider constructions whose seed length is not more than
O(log n) bits longer than the length n of each oracle query. Recall that such
constructions making k adaptive queries to a given pseudo-random generator
can achieve stretch that is k times the stretch of the given generator. We show
that such constructions making constantly-many non-adaptive queries cannot
achieve stretch that is even a single bit longer than the stretch of the given
generator.

Theorem 1. Let k ∈ N, and let �1(n) and �2(n) be polynomials such that
�1(n) ≤ n+O(log n) and �2(n) > n. Let G(·) : {0, 1}�1(n)→{0, 1}�1(n)+(�2(n)−n)+1

be a non-adaptive oracle construction of a number generator, making k queries
of length n to an oracle mapping n bits to �2(n) bits. Then there is no fully
black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness
of its oracle.
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The approach we use to prove Theorem 1 does not seem to extend to the case
of polynomially-many (or even ω(1)-many) queries. However, a similar approach
does work for polynomially-many queries when we place a restriction on the
many-oneness of the number generator’s querying function. We state this re-
striction in Section 5.

We give an overview of the proof of Theorem 1 in Section 3.1, and we give
the proof details in the full version of this paper.

3.1 Proof Overview for Theorem 1

A simpler case. We first consider the simpler case of constructions making just
a single query, where the query made is required to be the same as the construc-
tion’s input. That is, we consider constructions G(·) : {0, 1}n → {0, 1}�2(n)+1

such that on every input x ∈ {0, 1}n, G makes query x to an oracle mapping n
bits to �2(n) bits. Fix such a construction G(·). We need to show the existence
of functions f : {0, 1}n → {0, 1}�2(n) and A : {0, 1}�2(n) → {0, 1} such that A
breaks the pseudo-randomness of Gf but f is pseudo-random even with respect
to adversaries that have oracle access to f and A. Following the approach for
proving black-box impossibility results initiated by Impagliazzo and Rudich [8],
we actually define a joint distribution (F ,A) over pairs of functions, such that
with probability one over (f, A) ← (F ,A), A breaks the pseudo-randomness of
Gf but f is pseudo-random even with respect to adversaries that have oracle
access to f and A.

Consider how we might define such a joint distribution (F ,A). The most
obvious approach is to let (F ,A) be the distribution defined by the following
procedure for sampling a tuple (f, A) ← (F ,A): randomly select f from the
(infinite) set of all functions that, for each n ∈ N, map n bits to �2(n) bits; let
A be the function such that for every z ∈ {0, 1}�2(n)+1, A(z) = 1 if and only
if there exists an s ∈ {0, 1}n such that Gf (s) = z. Following this approach,
we have that with probability one over (f, A) ← (F ,A), A breaks the pseudo-
randomness of Gf but f is pseudo-random with respect to adversaries that have
oracle access to f alone. However, it is not necessarily the case that f is pseudo-
random with respect to adversaries that have oracle access to f and A. For
example, suppose construction G is such that for every x ∈ {0, 1}n−1 and every
b ∈ {0, 1}, Gf (x||b) = f(x||b)||b. In this case, it is easy to use A to break f : on
input y ∈ {0, 1}�2(n), output 1 if and only if either A(y||0) = 1 or A(y||1) = 1.

To overcome this problem, we add some “noise” to A. We need to be careful
that we add enough noise to A so that it is no longer useful for breaking f , but
we do not add so much noise that A no longer breaks Gf . Our basic aproach is
to modify A so that instead of only accepting Gf (s) for all s ∈ {0, 1}n, A accepts
Gfi(s) for all s, all i, and some appropriate collection of functions {f0, f1, f2, . . . }
where f0 = f . How should this collection of functions be defined? Since we want
to make sure that A still breaks Gf , and since we have that A accepts Gf (s)
with probability 1 over s ← {0, 1}n, we need to ensure that A accepts randomly
chosen strings with probability non-negligibly less than 1. For this, it suffices
to ensure that (# of n-bit strings s)*(# of functions fi) is at most, say, half
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the number of strings of length �2(n) + 1. At the same time, to prevent A from
helping to break f , we would like it to be the case that, intuitively, A treats
strings that are not in the image of f on an equal footing with strings that are
in the image of f . One way to accomplish these objectives, which we follow, is
to randomly select a permutation π on {0, 1}�2(n), define f(x) = π(0�2(n)−n||x)
for all x ∈ {0, 1}n, and define A to accept Gπ(y||·)(s) for every y ∈ {0, 1}�2(n)−n

and every s ∈ {0, 1}n. We formalize this as a joint distribution (F ,A, Π) over
tuples (f, A, π) that are sampled in the manner just described.

It is easy to show that with probability one over (f, A, π) ← (F ,A, Π), A does
indeed break Gf . It is much more difficult to show that with probability one over
(f, A, π) ← (F ,A, Π), f is pseudo-random ever with respect to PPT adversaries
that have oracle access to f and A. We argue that it suffices to show that for
every PPT oracle machine D(·,·), the probability over (f, A, π) ← (F ,A, Π) and
s ← {0, 1}n that D(f,A)(f(s)) makes oracle query s to f is negligible. Now,
instead of only showing this for every PPT oracle machine D(·,·), we find it
more convenient to show this for every computationally unbounded probabilistic
oracle machine D(·,·) that makes at most polynomially-many oracle queries. How
might we do so? We would like to argue that A does not help D to find s since
a computationally unbounded D can try to compute A by itself. More formally,
we would like to show that given D, we can build a D′ that, given input f(s)
and given oracle access only to f , simulates D on input f(s), answers f -queries
of D using the given oracle, and “makes up” answers to the A-queries of D
in a manner that ensures that the probability that the simulation of D makes
query s is very close to the probability that D(f,A)(f(s)) makes oracle query s.
Of course, D′ does not “know” π, so it is not immediately clear how it should
answer the A-queries of the simulation of D. If D′ simply randomly chooses its
own permutation π′ and answers A-queries using π′ in place of the unknown
π, the simulation of D may “notice” this sleight of hand. For example, since D
is given f(s) as input, it might (depending on the definition of G) be able to
compute the value of Gf (s), and hence make query Gf (s) to A; if this query does
not produce response 1, D will “know” that queries are not being responded to
properly.

We address this by showing that D′ can still compute “most” of A on its own,
and that the “rest” of A is not helpful for finding s. Specifically, we split A into
two functions, A1 and A2, that together can be used to compute A. Function A1
outputs 1 only on input Gf (s). For every (�2(n) + 1)-bit string z, A2(z) = 1 if
and only if z �= Gf (s) and A(z) = 1. We then argue that querying A1 provides
very little help for finding s. Let X be the set of all strings x ∈ {0, 1}n such that
Gf (x) = Gf (s). Roughly speaking, if X is large, then A1 gives no information
about s beyond the fact that s ∈ X . On the other hand, if X is small, then we
argue it is unlikely that an adversary making polynomially-many queries to A1
will receive a non-zero response to any of its queries (in other words, it is unlikely
that query Gf (s) will be made). It remains to argue that D′ can compute A2 on
its own. We show that if D′ randomly selects a permutation π′, computes an A′

2
based on π′ (rather than π), uses this A′

2 along with the given A1 to answer the
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A-queries of the simulation of D, and answers the f -queries of the simulation
of D based on π′(0�2(n)−n||·) (rather than using the given oracle f), then it is
unlikely that the simulation of D will make a query that “exposes” the fact that
its oracle queries are not being answered by f and A.

The general case. We extend the above argument to constructions G(·) :
{0, 1}�1(n) → {0, 1}�1(n)+(�2(n)−n)+1 making constantly-many non-adaptive
queries, where the length �1(n) of the construction’s input is allowed to be
O(log n) bits longer than the length n of each oracle query. The high-level idea
is the same: we define a joint distribution (F ,A, Π) by specifying a procedure
for sampling a tuple (f, A, π) ← (F ,A, Π), and the way we sample π and f is
(almost) the same as before. But now we change the way A behaves. Our goal is
to follow the same style of argument as before. To accomplish this, we would still
like it to be the case that when we “split up” A into functions A1 and A2, there
is still at most one string accepted by A1 (this helps us ensure that A1 does
not provide too much information about s). Recall that before, when D′ was
run on an input f(s), the unique string accepted by A1 was Gf (s). This made
sense because in the previous setting, the only input on which G(·) made oracle
query s was s itself. But in the current setting, for each s ∈ {0, 1}n, there may
be many inputs x ∈ {0, 1}�1(n) on which G(·) makes oracle query s. We would
like to modify the definition of A so that rather than accepting Gπ(y||·)(x) for
every y ∈ {0, 1}�2(n)−n and every x ∈ {0, 1}�1(n), A accepts Gπ(y||·)(x) for every
y ∈ {0, 1}�2(n)−n and x in some subset Good(n) ⊆ {0, 1}�1(n) such that for every
s ∈ {0, 1}n, there is at most one x ∈ Good(n) such that G(·) on input x makes
query s. But we cannot do exactly this (and still have that A breaks Gf ), since,
for example, there might be some string t that G(·) queries no matter what its
input is.

Instead, we need to proceed very carefully, partitioning the set of strings t
of length n into those that are queried by G(·) for “many” of its inputs x ∈
{0, 1}�1(n), and those queried by G(·) for “at most a few” of its inputs x ∈
{0, 1}�1(n). We call the former set Fixed(n) and the latter set NotF ixed(n). We
then define a set Good(n) ⊆ {0, 1}�1(n) of inputs to G(·) such that for no pair of
distinct inputs from Good(n) does G(·) make the same query t ∈ NotF ixed(n).
That is, each t ∈ NotF ixed(n) is queried by G(·) for at most one of its inputs
x ∈ Good(n). The challenge, of course, is ensuring that that the set Good(n)
defined this way is “large enough”.

We define A to accept Gπ(y||·)(x) for every y ∈ {0, 1}�2(n)−n and every x ∈
Good(n). Now we can “split up” A into A1 and A2 in a manner similar to what
we did before: on input f(s) to D′, where s ∈ NotF ixed(n), if there exists a
string x ∈ Good(n) such that G(·)(x) makes query s (note that there can be at
most one such string x by definition of Good(n)), then A1 only accepts Gf (x),
and if there is no such string x then A1 does not accept any strings; as before,
we define A2 to accept the remaining strings accepted by A. We then argue as
before about the (lack of) usefulness of A1 and A2 for helping to find s. Finally,
we argue that our definition of Fixed(n) ensures that this set will be of negligible
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size, and hence it does not hurt to ignore the case s ∈ Fixed(n) (since this case
will occur with negligible probability).

4 Constructions with Long Seeds

In Section 3, we saw that black-box constructions G(·) making constantly-many
non-adaptive oracle queries, where the seed length of G(·) is not too much longer
than the length of each oracle query, cannot achieve even a single bit more
stretch than their oracle. In this section, we consider constructions whose seed
length is allowed to be much longer than the length of each oracle query, but
where the oracle queries are collectively chosen in a manner that depends only
on a portion of the seed whose length is not more than O(log n) bits longer than
the length n of each oracle query. Recall that such constructions making even
a single query to a given pseudo-random generator can achieve stretch that is
O(log n) bits longer than the stretch of the given generator [6]. Further, recall
that such constructions making k adaptive queries can achieve stretch that is
O(log n) bits longer than k times the stretch of the given generator. We show that
such constructions making constantly-many non-adaptive queries cannot achieve
stretch that is ω(log n) bits longer than the stretch of the given generator.

Theorem 2. Let k ∈ N, c ∈ R+, and m(n) ∈ ω(log n). Let �0(n), �1(n), and
�2(n) be polynomials such that �1(n) ≤ n + c logn. Let G(·) : {0, 1}�0(n)+�1(n) →
{0, 1}�0(n)+�1(n)+(�2(n)−n)+m(n) be a non-adaptive oracle construction of a num-
ber generator that makes k queries of length n to a number generator mapping
n bits to �2(n) bits, such that for all r ∈ {0, 1}�0(n) and x ∈ {0, 1}�1(n), the
queries made by G(·) on input (r||x) depend only on x. Then there is no fully
black-box reduction of the pseudo-randomness of G(·) to the pseudo-randomness
of its oracle.

As is the case for Theorem 1, the approach we use to prove Theorem 2 does not
seem to extend to the case of polynomially-many (or even ω(1)-many) queries.
However, a similar approach does work for polynomially-many queries when
we place a restriction on the many-oneness of the number generator’s querying
function. We state this restriction in Section 5.

We give an overview of the proof of Theorem 2 in Section 4.1, and we give
the proof details in the full version of this paper.

4.1 Proof Overview for Theorem 2

As in the proof of Theorem 1, it suffices to define a joint distribution (F ,A)
over pairs of functions, such that with probability one over (f, A) ← (F ,A), A
breaks the pseudo-randomness of Gf but f is pseudo-random even with respect
to adversaries that have oracle access to f and A. Unlike the previous proof,
we actually define distributions F and A that are independent – in fact, we
define A to be a degenerate distribution that assigns all probability to a fixed
function A. We define a set Good(n) ⊆ {0, 1}�1(n) in a careful manner very
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similar to the proof of Theorem 1, but taking into account the fact that the
queries of G(·) depend only on the rightmost �1(n) bits of its seed. The goal is
to ensure that Good(n) is sufficiently large and has the property that for every
string x ∈ Good(n), every r ∈ {0, 1}�0(n), and every f ∈ F , A accepts Gf (r||x).
Simultaneously, we need to ensure that the total number of strings accepted
by A is sufficiently smaller than 2�0(n)+�1(n)+(�2(n)−n)+m(n) and that f ← F is
pseudo-random with probability one even with respect to adversaries that have
oracle access to f and A.

If we define F in a very straightforward way (e.g. as the uniform distribution
over all 1-1 functions), the total number of strings that A will need to accept
(in order to accept Gf (r||x) for every f ∈ F , every r, and every x ∈ Good(n))
could be too large. The problem is that when deciding whether to accept a given
input, A is existentially quantifying over over a set that is (much) larger than
the set of its possible inputs. We need to minimize the number of different f ∈ F
(while, of course, still ensuring that f ← F is pseudo-random with probability
one even with respect to adversaries that have oracle access to f and A). At the
same time, we need to add some structure to the f ∈ F to, intuitively, reduce
the amount of new information contained in the responses to the oracle queries
made by Gf when run on each r||x where x ∈ Good(n). The idea is that rather
than existentially quantifying over every r, every x ∈ Good(n), and every f ∈ F
when deciding whether to accept a particular input z, A will instead existentially
quantify over every r, every x ∈ Good(n), and every possible value for the (small
amount of) new information (that is, the information not already determined by
x) contained in the responses to oracle queries made by G(·) when run on input
r||x.

Similarly to the proof of Theorem 1, our procedure for constructing the set
Good(n) ensures that for every distinct x, x′ ∈ Good(n), each query q made by
G, when run on an input whose rightmost bits are x, is either in some small
set Fixed(n) or is distinct from every query q′ made by G when run on every
input whose rightmost bits are x′. This allows us to follow a two-step approach
to defining F . We first define a permutation h on {0, 1}n that, for each x ∈
Good(n), maps the queries q /∈ Fixed(n) made by G, when run on an input whose
rightmost bits are x, to strings that differ in at most a small number of bits, and,
in particular, have a common (m(n)/2)-bit suffix. Roughly speaking, sampling
f ← F proceeds as follows. We randomly select a function f ′ : {0, 1}n ←
{0, 1}�2(n) that is the identity on its first n − m(n)/2 input bits, and is 1-1 on
its last m(n)/2 input bits, mapping them to �2(n)−n+m(n)/2 output bits. We
then define f = f ′ ◦ h. The actual definition of F that we use in the proof also
ensures that for every q ∈ Fixed(n), the value f(q) is independent of the choice
f ← F (that is, f1(q) = f2(q) for all f1, f2 ∈ F).

Intuitively, this approach ensures that f ← F has “just enough” randomness.
At the same time, this approach ensures that for every r and every x ∈ Good(n),
the responses to oracle queries made by Gf (r||x) collectively contain at most
�2(n) − n + m(n)/2 bits of information that depend on the choice f ← F .
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We remark that it is crucial for this proof that 2m(n)/2 is super-polynomial.
It is for this reason that we cannot adapt the current proof in order to obtain a
significantly simpler proof of Theorem 1; in Theorem 1, the corresponding value
of m(n) (the additional stretch achieved by G(·)) is exactly 1.

5 Moving beyond Constantly-Many Queries

In this section we consider extending Theorem 1 and Theorem 2 to the case
of polynomially-many queries. We are able to do this for a restricted class of
constructions. We begin by defining the restriction we need to place on the
querying function of the construction.

Definition 4 (Many-oneness bounded almost everywhere). Let �(n) and
q(n) be polynomials, and let f : {0, 1}�(n) → {0, 1}n be a function. f has many-
oneness bounded by q(n) almost everywhere if for all c and sufficiently large n,
there are fewer than 2n/nc strings y ∈ {0, 1}n such that |f−1(y)| > q(n).

Theorem 3. Let p(n), q(n), �1(n), and �2(n) be polynomials such that �1(n) ≤
n + O(log n) and �2(n) > n. Let G(·) : {0, 1}�1(n) → {0, 1}�1(n)+(�2(n)−n)+1 be
a non-adaptive oracle construction of a number generator, making p(n) queries
of length n to an oracle mapping n bits to �2(n) bits, such that the querying
function of G(·) has many-oneness bounded by q(n) almost everywhere. Then
there is no fully black-box reduction of the pseudo-randomness of G(·) to the
pseudo-randomness of its oracle.

Theorem 4. Let c ∈ R+ and m(n) ∈ ω(log n). Let p(n), q(n), �0(n), �1(n), and
�2(n) be polynomials such that �1(n) ≤ n + c logn. Let G(·) : {0, 1}�0(n)+�1(n) →
{0, 1}�0(n)+�1(n)+(�2(n)−n)+m(n) be a non-adaptive oracle construction of a num-
ber generator that makes p(n) queries of length n to a number generator mapping
n bits to �2(n) bits, such that G(·) has an �1(n)-restricted querying function whose
many-oneness is bounded by q(n) almost everywhere. Then there is no fully black-
box reduction of the pseudo-randomness of G(·) to the pseudo-randomness of its
oracle.

The proofs of Theorem 3 and Theorem 4 follow the same basic structure as the
proofs of Theorem 1 and Theorem 2, respectively, but the procedure used to
define the set Good(n) in each proof is simpler as a result of the restriction on
the many-oneness of the querying function. For both Theorem 3 and Theorem
4, the procedure begins by defining Fixed(n) ⊆ {0, 1}n to be the set of strings
in the image of the querying function QG whose many-oneness is not bounded
by q(n). Then, since the remaining strings in the image of QG have bounded
many-oneness, it is easy to define a large set Good(n) ⊆ {0, 1}�1(n) such that
for all distinct x, x′ ∈ Good(n) and all 0 ≤ i, j < p(n), either QG(x, 〈i〉) ∈
Fixed(n) or QG(x, 〈i〉) �= QG(x′, 〈j〉). The idea is to proceed as follows: initially,
every x ∈ {0, 1}�1(n) is a candidate for inclusion in Good(n); while there are
candidates remaining, select an arbitrary candidate x, add it to Good(n), and
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remove from consideration as candidates all x′ such that for some 0 ≤ i, j <
p(n), we have QG(x, 〈i〉) /∈ Fixed(n) and QG(x, 〈i〉) = QG(x′, 〈j〉). For every x
added to Good(n) by this procedure, at most p(n)(q(n) − 1) are removed from
consideration, and hence at the end of this procedure Good(n) has size at least
2�1(n)/(p(n)(q(n) − 1) + 1). Further details about these proofs are omitted for
the sake of conciseness.

6 Goldreich-Levin-Like Constructions

In this section, we consider constructions where the seed has a public portion
that is always included in the output, such that the oracle queries are chosen
non-adaptively based only on the non-public portion of the seed. We further
require that the computation of each individual output bit depends only on the
seed and on the response to a single oracle query. We begin by formalizing this
class of constructions.

Definition 5 (Bitwise-nonadaptive construction). Let �0(n), �1(n), and
�2(n) be polynomials, and let G(·) : {0, 1}�0(n)+�1(n) → {0, 1}�0(n)+�2(n) be a non-
adaptive oracle machine. We say that G(·) is bitwise-nonadaptive if there exist
uniformly-computable functions

QG =
{
QG,n : {0, 1}�1(n) × {0, 1}log �2(n) → {0, 1}n

}
and

B =
{

Bn : {0, 1}�0(n) × {0, 1}�1(n) × {0, 1}n × {0, 1}log �2(n) → {0, 1}
}

such that for all n, all r ∈ {0, 1}�0(n), all x ∈ {0, 1}�1(n), and all permutations
π : {0, 1}n → {0, 1}n, we have Gπ(r||x) = r||b0||b1|| . . . ||b�2(n)−1 where bi =
Bn(r, x, 〈i〉, π(QG,n(x, 〈i〉))) for 0 ≤ i ≤ �2(n) − 1.

Observe that the Goldreich-Levin-based pseudo-random generator Gπ(r||x) =
r||π(x)||〈r, x〉 is bitwise-nonadaptive.

We show that fully black-box bitwise-nonadaptive constructions G(·) making
queries to a one-way permutation, such that the non-public portion of the seed
of G(·) is no more that O(log n) bits longer than the length n of each oracle
query, cannot achieve linear stretch.

Theorem 5. Let α > 1, and let �0(n), �1(n), and �2(n) be polynomials such
that �1(n) < n + O(log n) and �2(n) ≥ α · �1(n). Let G(·) : {0, 1}�0(n)+�1(n) →
{0, 1}�0(n)+�2(n) be a bitwise-nonadaptive number generator that makes queries
to a permutation on {0, 1}n. Then there is no fully black-box reduction of the
pseudo-randomness of G(·) to the one-wayness of its oracle.

To prove Theorem 5, we proceed in a manner similar to the proof of Theorem
2, building up a set Good′(n) whose purpose is similar to the set Good(n) in
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that proof. The fact that each output bit of G depends only a single oracle
query simplifies the construction of Good′(n). Specifically, when constructing
Good′(n), we can ignore some of the “more difficult to deal with” queries made
by G(·), since we can later define adversary A to also ignore these queries simply
by ignoring the corresponding output bits. This is what allows us to handle
linearly-many queries in the current setting, even though we could only handle
constantly-many queries in the proof of Theorem 2.

Proof details are deferred to the full version of this paper.

7 Some Remarks on Streaming Cryptography

The study of non-adaptivity in Goldreich-Levin-like constructions (Theorem 5)
is motivated by questions related to Streaming Models for Cryptography. In
some sense, impossibility results for non-adaptive black-box-constructions in-
dicate the impossibility of certain type of black-box streaming constructions.
We ask whether there is anything positive that can be said in the streaming
setting, perhaps using non-black-box techniques. In this section, we put forward
the main questions in streaming models for cryptography. Here is the main mo-
tivating question:

Starting from generic assumptions, is it possible to construct a one-way
function or a pseudo-random generator using O(log n) space and a small
(1, 2, . . . , constant, polylog) number of passes over the seed?

Why logarithmic space? Observe that assuming the existence of 2n
ε

-hard one-
way functions (resp. one-way permutations), we can easily construct a one-way
function (resp. pseudo-random generator) that uses poly-logarithmic space and
reads its input once. By “2n

ε

-hard”, we mean functions that are hard to invert
with probability ≥ 1/2n

ε

in time ≤ 2n
ε

. Computing such functions in logarithmic
space without the ability to recompute (by revisiting the input) seems counter-
intuitive. In fact, one can show that unconditionally this cannot be done with
any constant number of passes (see the full version of this paper). Are super-
constantly-many passes sufficient?

Motivation and related work. Streaming cryptography is motivated both from a
theoretical and a practical viewpoint. The practical impact is in settings where
on-line or streaming computation of a cryptographic primitive is needed. The-
oretical motivation comes from the general theme of computing cryptographic
primitives using rudimentary resources. Most relevant to streaming cryptogra-
phy is the seminal work of Applebaum, Ishai, and Kushilevitz [2,1,4,3], which
builds upon the work of Randomizing Polynomials (e.g. [9]), and shows the pos-
sibility of Cryptography in NC0: given a “cryptographic function” f , construct
a randomized encoding of f , which is a distribution {f̂} that (i) preserves the
security of f , and (ii) is much simpler to compute than f . This amazing technical
achievement brings the combinatorics of cryptographic functions to a simplified
setting, and opens the possibility of better understanding cryptographic primi-
tives and non-black-box techniques.
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Goals and observations. We wish to be able to state a theorem of the form:
if one-way functions exist then one-way functions computable in a streaming
manner exist. We believe that this is a difficult thing to show. A potentially
more feasible goal would be to show: if 2n

ε

-hard one-way functions exist then
log-space streaming cryptography exists. In fact, by relying on [1,7], one can
easily obtain a non-black-box construction of a one-way function computable in
O(log n) space with logO(1) n passes over the input, assuming that both (i) 2n

ε

-
hard one-way functions exist, and (ii) log-space computable one-way functions
exist; see the full version of this paper for the details. The latter assumption refers
to functions that are just super-polynomially hard, computable with nO(1) many
passes. It seems challenging to do the construction relying only on the existence
of 2n

ε

-hard one-way functions. One can take this further to conjecture that it is
possible to prove the following statement in some constructive way:

2n
ε

-hard one-way functions exist ⇐⇒ O(log n) streaming one-way func-
tions exist ⇐⇒ one-way functions computable in NC0 exist

This is a rather ambitious research direction. In particular, the right-to-left impli-
cation is a hardness amplification of some sort. Our intuition is that streaming
computation of functions, functions computable by NC0 circuits of some re-
stricted form (e.g. of bounded treewidth), and 2n

ε

-hard one-way functions seem
to be related.
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Abstract. We study the complexity of black-box constructions of linear-
stretch pseudorandom generators starting from a 1-bit stretch oracle
generator G. We show that there is no construction which makes non-
adaptive queries to G and then just outputs bits of the answers. The re-
sult extends to constructions that both work in the non-uniform setting
and are only black-box in the primitive G (not the proof of correctness),
in the sense that any such construction implies NP/poly �= P/poly. We
then argue that not much more can be obtained using our techniques: via
a modification of an argument of Reingold, Trevisan, and Vadhan (TCC
’04), we prove in the non-uniform setting that there is a construction
which only treats the primitive G as black-box, has polynomial stretch,
makes non-adaptive queries to the oracle G, and outputs an affine func-
tion (i.e., parity or its complement) of the oracle query answers.

1 Introduction

The notion of a pseudorandom generator is fundamental to the study of both
cryptography and computational complexity. An efficient algorithm G : {0, 1}n →
{0, 1}n+s is a (cryptographic) pseudorandom generator (PRG) if no efficient ad-
versary can distinguish a random output from a uniformly random string, ex-
cept with some small advantage. That is, for all efficient adversaries A, we have
|Pr[A(G(Un)) = 1] − Pr[A(Un+s) = 1]| < ε.

A key parameter for any PRG is its stretch s, the difference between the
output and input lengths. Any PRG must have stretch s ≥ 1 to even satisfy
the definition, but in fact such a small amount of stretch is not useful for any
cryptographic or derandomization applications of which we are aware. For these,
one typically needs the stretch to be larger, e.g. linear (s = Ω(n)). An important
and well-known result is that the existence of a PRG with stretch s = 1 implies
the existence of a PRG with stretch s = poly(n) for any desired polynomial.
We begin by briefly recalling the construction that is typically used to prove
this result (due to Goldreich and Micali; see [4] Sect. 3.3.2 for a more thorough
treatment).

For a generator G : {0, 1}� → {0, 1}�+1 and a positive integer k, let Gk(x)
denote the (� + 1)-bit string resulting from k iterative applications of G, each
� Supported by NSF grant CCF-0845003.
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Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 522–539, 2011.
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time using the first � bits of the previous output as input, and using x as input for
the first invocation. Then, the “stretch-increasing” construction H(·) : {0, 1}� →
{0, 1}m is defined as

HG(x) := G1(x)�+1 ◦ G2(x)�+1 ◦ · · · ◦ Gm(x)�+1. (1)

That is, H iteratively queries G as described above, and outputs the final bit of
each answer.

An aspect of the Goldreich-Micali construction that we would like to stress
is that the queries H makes to its oracle are adaptive, in the sense that the
ith query can be determined only after the answer to the (i − 1)th query has
been received. The presence of adaptivity in such constructions is of particular
importance when considering the existence of cryptographic primitives in “low”
complexity classes. The celebrated work of Applebaum et al. [1], in combination
with the recent (non-adaptive) construction of Haitner et al. [7], demonstrates
the existence of PRGs computable in NC0 under the assumption that there exist
one-way functions computable in NC1. However, the resulting PRGs have sub-
linear stretch, and the application of construction (1) would place them outside
of NC0.

Finally, we note that construction (1) only outputs bits of the answers it gets
back from the queries, with no additional computation performed.

Informal discussion of our results. In this paper we study the complexity of
increasing the stretch of cryptographic PRGs. We work in the setting of black-
box constructions, which is explained in detail later. Informally, our first main
result says that there can be no linear-stretch construction that makes non-
adaptive queries and outputs only bits of its answers. For example, this rules
out constructions which make non-adaptive queries and always output the last
bit of the query answers, or even the entire query answers. Thus, linear-stretch
constructions require either adaptive queries or postprocessing the queries in a
more sophisticated way than just projecting. Our proof of this result is simi-
lar to one by Gennaro, Gertner, Katz, and Trevisan [3] who prove that con-
structions of generators with stretch s from one-way permutations must make
≥ Ω(s/ log(security)) queries. But note that our work is incomparable to theirs
because we do not bound the number of queries (our constructions make one
query per output bit).

Our second main result complements the first by showing that not much
more can be obtained with the techniques in this paper. Specifically, we consider
a special type of construction which is termed weakly black-box by Reingold,
Trevisan, and Vadhan in [12], and for which we later advocate the alternative
terminology primitive black-box. Then we extend an argument also in [12] to
prove unconditionally, in the non-uniform setting, the existence of such con-
structions which have polynomial stretch, make non-adaptive queries, and just
compute affine functions (parities or their complement) of the query answers.
This complements the previous result because if instead of affine functions one
only allows for projections, we show that such a construction implies NP/poly
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�= P/poly. This means that, at least in the non-uniform setting, to extend our
negative result to constructions with more postprocessing power requires differ-
ent techniques from the ones in this paper. Our extension of the argument in
[12] combines that argument with the Nisan-Wigderson generator [11].

Black-box constructions and formal statement of our results. To formally state
our result, we first define black-box constructions. To explain and motivate the
latter, we start by sketching the proof of correctness of the Goldreich-Micali
Construction (1). Suppose there is an adversary A that distinguishes HG(U�)
from Um with advantage greater than ε · m. Using a hybrid argument, one can
show that there exists a k ∈ [m] such that A distinguishes the distributions
Uk−1 ◦

(
HG(U�)|[m−(k−1)]

)
and Uk ◦

(
HG(U�)|[m−k]

)
with advantage greater

than ε. Then, we define a probabilistic oracle circuit C(·) as follows: on input
(x, b) ∈ {0, 1}� × {0, 1}, CG,A computes HG(x) using its oracle to G, chooses
y ∈ {0, 1}k−1 uniformly at random, and then outputs A

(
y ◦ b ◦ HG(x)|[m−k]

)
.

Depending on whether (x, b) was chosen from U�+1 or from G(U�), the input
C gives to A will come from one of the two hybrid distributions that A can
distinguish between, and so C distinguishes G with advantage greater than ε,
contradicting G’s pseudorandomness.

The above argument is an example of a black-box reduction: the argument
applies to any (possibly hard to compute) functions G and A, provided that we
are given oracle access to them.

Definition 1 (Black-box stretch-increasing construction). An oracle
function H(·) : {0, 1}n → {0, 1}n+s is a black-box stretch-increasing construc-
tion with security reduction size t of a generator with stretch s and error ε from
any one-bit-stretch oracle generator G : {0, 1}� → {0, 1}�+1 with error δ if the
following holds:

For every 1-bit stretch generator G : {0, 1}� → {0, 1}�+1 and every adversary
A, if A distinguishes HG with advantage ε, i.e.∣∣Pr[A(HG(Un)) = 1] − Pr[A(Un+s) = 1]

∣∣ ≥ ε

then there is an oracle circuit C(·) of size t that, when given oracle access to both
A and G, distinguishes G with advantage δ, i.e.∣∣Pr[CA,G(G(U�)) = 1] − Pr[CA,G(U�+1) = 1]

∣∣ ≥ δ.

Poly-time computable stretch-increasing black-box constructions are useful in
constructing efficient PRGs, because if we start with an oracle G that is a poly-
time computable PRG with error δ(�) = 1/�ω(1) against circuits of size s(�) =
�ω(1), and we have t, n = poly(�), then HG is a poly-time computable PRG with
error ε(n) = 1/nω(1) against circuits of size s′(n) = nω(1). This can be easily
seen by noticing that any circuit of size poly(n) that distinguishes HG with
advantage 1/nO(1) can be transformed into a circuit of size at most poly(�) that
distinguishes G with advantage 1/�O(1), contradicting G’s pseudorandomness.

We can now state our first main result.
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Theorem 1. For all sufficiently large � and for n ≤ 2
√
�, there is no black-box

construction H(·) : {0, 1}n → {0, 1}n+s of a generator with stretch s ≥ 5n/ logn
and error ε ≤ 1/4 from any one-bit stretch generator G : {0, 1}� → {0, 1}�+1

with error δ ≥ 2−
√
�/30 and with security reduction size t ≤ 2

√
�/30 of the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦ G(qn+s(x))bn+s(x)

where qi : {0, 1}n → {0, 1}� specifies the i-th query and bi : {0, 1}n → [� + 1]
specifies the bit of the i-th answer to output.

Note this holds even if the 1-bit stretch generator is hard against circuits (as
opposed to uniform algorithms).

An interesting open problem is to understand whether a result like Theorem 1
holds for arbitrary polynomial-time postprocess of the query answers. We do not
know how to solve this problem. However, as mentioned before we can show that
the techniques in this paper are unlikely to prove a negative result, even if the
postprocessing is just computing parities or their complements. For this, we
consider a special type of construction, which is termed weakly black-box in
[12]. Informally, a reduction is weakly black-box if the construction H treats the
primitive G as a black-box, but outputs a generator in the real-world, i.e. the
proof of correctness is arbitrary. We suggest the alternative terminology primitive
black-box, to signify both that only the primitive (and not the adversary) is
treated as a black-box, and that this is a “cruder” form of reduction.

We define next primitive constructions, working in the asymptotic setting be-
cause the following results are cleaner to state in that setting. We also note that
our construction will hold for infinitely many input lengths (as opposed to suffi-
ciently large input), and for conciseness we incorporate this into the definition.

Definition 2 (Primitive black-box stretch-increasing construction). Let
� be a security parameter, and let n = n(�) and s = s(�) be functions of �. A
family of oracle functions H(·) : {0, 1}n → {0, 1}n+s is a primitive black-box
stretch-increasing construction with stretch s from any family of one-bit-stretch
generators G : {0, 1}� → {0, 1}�+1 if the following holds for infinitely many input
lengths �:

For every generator family G : {0, 1}� → {0, 1}�+1, if there exists a constant c0
and a circuit family A of size at most nc0 which distinguishes HG from uniform
with advantage at least 1/nc0, i.e.∣∣Pr

[
A
(
HG(Un)

)
= 1
]
− Pr [A (Un+s) = 1]

∣∣ ≥ 1/nc0

then there exists a constant c1 and a oracle circuit family C(·) of size at most
�c1 which distinguishes G from uniform with probability at least 1/�c1, i.e.∣∣Pr

[
CG (G(U�)) = 1

]
− Pr
[
CG (U�+1) = 1

]∣∣ ≥ 1/�c1.

Our second main results proves the existence of a non-adaptive primitive black-
box stretch-increasing construction of a slightly modified form which computes a
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polynomial-stretch PRG. The additional power that this construction has is the
ability to compute parities or their complements of the query answers, rather
than just projections. Recall from Definition 2 that primitive constructions only
work for infinitely many input lengths.

Theorem 2. Let c > 1 be any constant. Then, for n = 17�2, there exists a
primitive black-box stretch-increasing construction H(·) : {0, 1}n → {0, 1}nc

with
stretch s := nc − n from any family of one bit stretch generators G : {0, 1}� →
{0, 1}�+1. In addition, H(·) is computable by a poly(n)-sized circuit family, and
has the form

HG(x) := 〈G(q1(x)), r1(x)〉 ⊕ t1(x) ◦ · · · ◦ 〈G(qn+s(x)), rn+s(x)〉 ⊕ tn+s(x)

where qi : {0, 1}n → {0, 1}� specifies the ith query, ri : {0, 1}n → {0, 1}�+1

specifies the parity function for the ith answer, and ti : {0, 1}n → {0, 1} specifies
whether to flip the ith bit.

One weakness of the above theorem is that it works in the non-uniform setting.
It is an open problem whether something like this can be proved in the uniform
one.

To appreciate Theorem 2, we point out that the techniques used for our pre-
vious negative result (Theorem 1) “extend” to primitive constructions as well,
in the sense that they can be used to show that any such construction implies
NP/poly �⊆ P/poly. Note that primitive black-box constructions cannot be ruled
out without ruling out the existence of pseudorandom generators (if the lat-
ter exist, a construction can just ignore the oracle and output a pseudorandom
generator).

Theorem 3. Let n = n(�) ≤ 2
√
� and s = s(n) ≥ 5n/ logn. Let H(·) : {0, 1}n →

{0, 1}n+s be a primitive black-box stretch-increasing construction with stretch s
from any family of one-bit stretch generators G : {0, 1}� → {0, 1}�+1. If H has
the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦ G(qn+s(x))bn+s(x)

and the qi and bi are computable by poly(n)-sized circuits, then NP/poly �⊆
P/poly.

Note that the parameters in Theorem 2 are within the range of parameters
considered by Theorem 3 – the only difference is the amount of postprocess.

1.1 More Related Work

The earlier work [13] (which was later extended by [10]) analyzes a type of pseu-
dorandom generator construction that is very similar to ours. The constructions
in [13] make non-adaptive queries to an oracle one-way function, and then ap-
ply an arbitrary unbounded-fan-in constant-depth circuit (AC0) to the outputs;
[13] shows that such constructions cannot have linear stretch. At first glance
this construction is incomparable to Theorem 1, because it starts from a weaker
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primitive (one-way function instead of one-bit stretch generator) but on the other
hand allows for AC0 postprocessing instead of just projections.

However, it was pointed out to us by Benny Applebaum that a strengthening
of Theorem 1 follows from [13] when combined with the works [1] and [7]. Specifi-
cally, a version of Theorem 1 holds even if the construction H is allowed to apply
an AC0 circuit to the output of the one-bit stretch oracle PRG G (rather than
just taking projections). We now elaborate on this improvement. (We also re-
mark that at the moment this establishes a strengthened negative result only for
constructions that start from a uniform hardness assumption, because Theorem
1.1 in [13] is only proved for those).

Let H(·) : {0, 1}n → {0, 1}n+s be a a black-box construction of a PRG from
a one-bit stretch PRG of the form HG(x) := Cx(G(q1(x)), . . . , G(qpoly(n)(x))),
where Cx is an AC0 circuit generated arbitrarily from x and the functions qi
are arbitrary as before. Let G

(·)
HRV : {0, 1}� → {0, 1}�+1 be the black-box con-

struction of a PRG from a OWF given by [7] Theorem 6.1. This construction
has the form Gf

HRV(x) := C′(x, f(x′
1), . . . , f(x′

t)) where C′ is an NC1 circuit
and the x′

i are disjoint projections of the input x. Then, we can apply the
compiler from [1] (cf. Remark 6.7 in that work) to obtain a black-box con-
struction G

(·)
AIK : {0, 1}� → {0, 1}�+1 of a PRG from a OWF of the form

Gf
AIK(x) := C′′(x, f(x′

1), . . . , f(x′
t)), where now C′′ is an NC0 circuit (and thus is

also an AC0 circuit). (For both GHRV and GAIK the seed length is � = poly(m),
where m is the input length of the oracle OWF, though the compiler from [1]
does increase the seed length). Finally, by combining H and GAIK, we obtain
a black-box construction H

(·)
∗ : {0, 1}n → {0, 1}n+s of a PRG from a OWF

which has the form Hf
∗ (x) := C′′′

x (f(q1(x)), . . . , f(qpoly(n)(x))) where C′′′
x is an

AC0 circuit. This is a contradiction to Theorem 1.1 of [13] when the oracle
f : {0, 1}m → {0, 1}k has logω(1) m < k ≤ mO(1) and the stretch s is greater
than n · logO(1) m/k = o(n).

Finally, we mention that in a concurrent work, Bronson, Juma, and Papakon-
stantinou [2] also study non-adaptive black-box PRG constructions and obtain
results which are incomparable to ours.

1.2 Techniques

We now explain the ideas behind the proof of Theorem 1. For simplicity, we
first explain our proof in the case in which the construction always outputs the
same bit of the answers, say the first bit (i.e., bi(x) = 1 for every i, in Theorem
1). We start by considering a non-explicit oracle pseudorandom generator G :
{0, 1}� → {0, 1}�+1 that is hard to break even for circuits that have access
to G. Such oracles are obtained in an unpublished manuscript of Impagliazzo
[9] and in a work by Zimand [15]. (They work in a slightly different setting,
however, obtaining PRGs with high probability in the random oracle model,
where we instead require an unconditional (but non-explicit) generator that is
secure against adversaries which can query it. For completeness we present a
streamlined version of their arguments in Sect. 4, and for the moment continue
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with the description of the proof of Theorem 1). By padding, we can modify our
oracle to have the extra property that G(x)1 = x1 for every x. Now, the point
is that the construction doesn’t need to query the oracle, since each output bit
G(qi(x))bi(x) can be replaced with qi(x)1. So we can consider an adversary A that
breaks the construction H by simply checking, given a challenge z ∈ {0, 1}m,
whether there exists an input to H that produces z. This breaks H as soon as
the output length is ≥ |x|+1. Since H doesn’t use G anymore, neither does the
adversary A. Hence the ability to access A does not compromise the security of
G, contradicting Definition 1.

To obtain the result for primitive constructions, we observe that A can be
computed in NP/poly, and hence under the assumption that NP/poly = P/poly
we obtain a distinguisher.

Moreover, this simplified argument says nothing about, for example, a con-
struction which outputs the entirety of the answers received from the oracle,
which a priori may seem to be a plausible candidate. To generalize our result to
constructions that output different bits (i.e. not always the first one), we identify
a set of indices T ⊆ [� + 1] of size �(1 − Θ(1/ log �)), such that for most input
strings x ∈ {0, 1}n, most of the bits bi(x) chosen by H fall inside T . We exploit
this fact by designing an oracle PRG G that reveals the first |T | bits of its input
on the set T ; that is, G(x)|T = x1x2 · · ·x|T | for every input x. We then design
an (inefficient) adversary A that distinguishes HG from uniform by examining,
for every x ∈ {0, 1}n, only the bits i such that bi(x) ∈ T , and checking if each
bit matches the corresponding bit from the query qi(x). This turns out to break
H as soon as the the output length is ≥ |x|+ Ω(|x|/ log |x|) (we do not attempt
to optimize this value and content ourselves with anything sublinear). On the
other hand, A depends on G just because of the knowledge of the set T , which
means that oracle access to A does not compromise the security of G, again
contradicting 1.

We now explain the proof of Theorem 2. Here we follow closely an argument of
Reingold, Trevisan, and Vadhan in [12]. We proceed by case analysis, depending
on the existence or non-existence of one-way functions (OWFs). For our argu-
ment, we define OWFs as computable by a family of poly-size circuits and hard
to invert by any family of poly-size circuits.

If OWFs exist, we use the result of H̊astad et al. [8] that efficiently computable
PRGs also exist; the construction then ignores its oracle and simply outputs the
PRG, by letting ti(x) be the ith output bit of the PRG, and setting ri = 0, for
every i.

If OWFs do not exist, this means that the oracle cannot be computable by
poly-size circuits (since it is assumed to be hard to invert). We can then use
Goldreich-Levin [6] to transform the oracle into a Boolean function that is hard to
compute by any family of poly-size circuits. Until now this is the argument in [12].
(Actually [12] is more involved because it works even in the uniform setting). Our
contribution is to apply at this point the Nisan-Wigderson construction [11] to
get a PRG. Since this construction is non-adaptive and has arbitrary polynomial
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stretch, and the hard function given by Goldreich-Levin is just the inner product
of the oracle with a random vector, this has the desired form.

We note that, as is well-known, the proof of correctness of the Nisan-Wigderson
construction requires non-uniformity, and this is what prevents this result to ap-
ply to the uniform setting.

Organization. In Sect. 2 we prove Theorems 1 and 3, the two negative results.
In Sect. 3 we prove Theorem 2, the complementing positive result. Finally, in
Sect. 4 we construct the one-bit-stretch oracle generator used in Sect. 2.

2 Black-Box Stretch-Increasing Constructions

In this section we prove Theorems 1 and 3. We use the following definition of an
oracle pseudorandom generator.

Definition 3 (Oracle pseudorandom generator). Let G : {0, 1}n →
{0, 1}n+s be a function. G is a (T, ε)-pseudorandom generator if s ≥ 1 and for every
oracle circuit C of size at most T , we have

∣∣Pr[CG(G(Un)) = 1] − [CG(Un+s) = 1]
∣∣

< ε. The quantity on the left-hand side of the inequality is referred to as C’s ad-
vantage in distinguishing G, and s is referred to as G’s stretch.

The key property we require of our one-bit stretch oracle G, stated in the next
theorem, is that it reveals a large portion of its input, i.e. most of the output
bits are simply copied from the input.

Theorem 4. Let �, d ∈ N be sufficiently large with d ≤ �/2. Then, for any
subset T ⊆ [� + 1] with |T | = � − d and any oracle A, there exists a generator
G : {0, 1}� → {0, 1}�+1 such that

1. G is a (2d/30, 2−d/30)-PRG against adversaries with oracle access to A
(and G).

2. For every input x ∈ {0, 1}�, G(x)|T = x1x2 · · ·x�−d.

We defer the proof of this theorem to Sect. 4, and instead start by showing how
it is used to prove the main theorem. First, we need a simple technical lemma
showing that for any stretch-increasing construction of the specified form, we
can find a large set of indices inside which most bi(x) fall for most choices of x.

Lemma 1. Let n, d, s, � ∈ N with d < �. Let {bi : {0, 1}n → [� + 1]}i∈[n+s] be a
collection of n + s functions. Then, there exists a set T ⊆ [� + 1] of size � − d
such that

Pr
x

[
|{i : bi(x) ∈ T }| ≥ (n + s) ·

(
1 − 4(d + 1)

� + 1

)]
≥ 3

4
.

Proof. Let S ⊆ [�+1] denote a random subset of size d+1. We have Prx,i,S [bi(x) ∈
S] = (d + 1)/(� + 1), and so we can fix some S so that Prx,i[bi(x) ∈ S] ≤
(d+1)/(�+1). This can be restated as Ex [Pri [bi(x) ∈ S]] ≤ (d+1)/(�+1), and
so by Markov’s inequality we have Prx[Pri[bi(x) ∈ S] ≥ 4(d + 1)/(� + 1)] ≤ 1/4.
Letting T := [� + 1] \ S completes the proof.
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We now prove Theorem 1, restated for convenience.

Theorem 1. For all sufficiently large � and for n ≤ 2
√
�, there is no black-box

construction H(·) : {0, 1}n → {0, 1}n+s of a generator with stretch s ≥ 5n/ logn
and error ε ≤ 1/4 from any one-bit stretch generator G : {0, 1}� → {0, 1}�+1

with error δ ≥ 2−
√
�/30 and with security reduction size t ≤ 2

√
�/30 of the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦ G(qn+s(x))bn+s(x)

where qi : {0, 1}n → {0, 1}� specifies the i-th query and bi : {0, 1}n → [� + 1]
specifies the bit of the i-th answer to output.

Proof. Let H(·) be a construction of the specified form. Fix a parameter d :=
�/ logn. Fix T ⊆ [� + 1] to be the subset of size � − d guaranteed by Lemma 1.
For each x ∈ {0, 1}n, let Ix denote the set {i : bi(x) ∈ T } ⊆ [n + s]. Using
s = 5n/ logn, the chosen value for d, and the fact that |Ix| is an integer, the
bound from Lemma 1 can be restated as Prx [|Ix| ≥ n + 1] ≥ 3/4 for sufficiently
large n and �. In the remainder of the proof, we refer to x such that |Ix| ≥ n + 1
as good.

Let T−1 denote a transformation such that T−1(j) = k if j is the kth smallest
element of T (this is simply to provide a mapping from G’s output bits to the
corresponding revealed input bits). The adversary A : {0, 1}n+s → {0, 1} is
defined as the function which accepts exactly the set

{z : ∃x ∈ {0, 1}n such that x is good and ∀i ∈ Ix, zi = qi(x)T−1(bi(x))}.

Let G : {0, 1}� → {0, 1}�+1 be the PRG guaranteed by Theorem 4 using these
choices of T and A. We claim that A distinguishes HG(Un) from Un+s with
advantage at least 1/4. To see this, consider z which is a uniformly chosen
output of HG, i.e. z = HG(x) for x ← Un. Because x is good with probability
at least 3/4, and because HG(x)i = qi(x)T−1(bi(x)) for all i ∈ Ix by item 2 of
Theorem 4, we have Pr[A(HG(Un)) = 1] ≥ 3/4. Conversely, for the case where
A’s input is chosen from Un+s, we have the following calculation:

Pr
z←Un+s

[A(z) = 1] = Pr
z

[
∃x : x is good ∧ ∀i ∈ Ix : zi = qi(x)T−1(bi(x))

]
≤
∑

x∈{0,1}n

x is good

Pr
z

[
∀i ∈ Ix : zi = qi(x)T−1(bi(x))

]
≤
∑

x∈{0,1}n

x is good

2−(n+1)

≤ 1
2
.

(The second inequality follows from the fact that |Ix| ≥ n + 1 for x that are
good).
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Finally, note that item 1 in Theorem 4 (along with the choice of d and the
upper bound on n) implies that there is no oracle circuit C of size at most 2

√
�/30

such that CA,G distinguishes G with advantage at least 2−
√
�/30. Therefore, H

does not meet the conditions of Definition 1 for the stated parameters.

Next, we show that this theorem can be extended to the primitive black-box
setting.

Theorem 3. Let n = n(�) ≤ 2
√
� and s = s(n) ≥ 5n/ logn. Let H(·) : {0, 1}n →

{0, 1}n+s be a primitive black-box stretch-increasing construction with stretch s
from any family of one-bit stretch generators G : {0, 1}� → {0, 1}�+1. If H has
the form

HG(x) := G(q1(x))b1(x) ◦ · · · ◦ G(qn+s(x))bn+s(x)

and the qi and bi are computable by poly(n)-sized circuits, then NP/poly �⊆
P/poly.

Proof. Let H be a primitive black-box stretch-increasing construction of the
specified form. Let G and Ix be defined as in Theorem 1 (the oracle A against
which G is secure is not relevant here). Because the qi, bi functions are com-
putable by poly(n)-size circuits, there is a poly(n)-size circuit family which
computes the string HG(x)|Ix on input x, while making no oracle calls to G.
As a result, we can define a non-deterministic poly(n)-size circuit family which
distinguishes HG from uniform with advantage 1/4: on input z ∈ {0, 1}n+s, the
circuit non-deterministically guesses x ∈ {0, 1}n, and accepts iff |Ix| ≥ n+1 and
z|Ix = HG(x)|Ix . The proof that this is indeed a distinguisher for HG is identical
to the argument given for Theorem 1.

Now assume for contradiction that NP/poly = P/poly, i.e. that every non-
deterministic circuit family can be simulated by a deterministic circuit family
with only a polynomial increase in size. Then, there is a poly(n)-size determin-
istic circuit family which distinguishes HG from uniform with noticeable advan-
tage. By the definition of a primitive black-box construction, there must also be
such a circuit family that distinguishes G, contradicting G’s pseudorandomness.

3 A Non-adaptive Primitive Black-Box Construction

In this section we prove Theorem 2, showing that there exists a non-adaptive
primitive black-box reduction with slightly more post-processing power (namely
the ability to compute inner products) that computes a polynomial-stretch PRG.
We remind the reader that this construction produces a PRG on infinitely many
input lengths. For the sake of brevity, we state two standard definitions that are
used in this section and the next.

Definition 4 (Hard to invert). Let f : {0, 1}n → {0, 1}m be a function. f
is (T, ε)-hard to invert if for every oracle circuit C of size at most T , we have
Pr[f(Cf (f(Un))) = f(Un)] < ε.



532 E. Miles and E. Viola

Definition 5 (Hard to compute). Let f : {0, 1}n → {0, 1} be a Boolean
function. f is (T, ε)-hard to compute if for every circuit C of size at most T , we
have Pr[C(Un) = f(Un)] < 1/2 + ε.

We now state the prior results that we will use, and prove a simple lemma. In
what follows, we will sometimes make the assumption that “OWFs do not exist”,
which means that, for any family of functions f : {0, 1}� → {0, 1}poly(�) that is
(p(�), 1/p(�))-hard to invert for all polynomials p and sufficiently large �, every
poly(�)-sized circuit family fails to compute f on infinitely many input lengths.
This corresponds to one-way functions computable by circuits and hard to invert
by circuits.

Theorem 5 ([8]). Assume that there exists a family of functions G : {0, 1}� →
{0, 1}�+1 that is computable by a poly(�)-size circuit family and is (p(�), 1/p(�))-
hard to invert for all polynomials p and sufficiently large �. Then, for any
constant c, there exists a family of generators H : {0, 1}n → {0, 1}nc

that is
computable by a poly(n)-size circuit family and is (p(n), 1/p(n))-pseudorandom
for all polynomials p and sufficiently large n.

A version of the following result was proved in [12] for the uniform computation
model. This proof, which relies on non-uniformity, is a bit simpler.

Lemma 2. Assume that OWFs do not exist and let G : {0, 1}� → {0, 1}�+1

be a generator family. If G is (p(�), 1/p(�))-pseudorandom for all polynomials p
and sufficiently large �, then the Boolean function family f(x, r) := 〈G(x), r〉 is
(p(�), 1/p(�))-hard to compute for all polynomials p and infinitely many input
lengths.

Proof. First, we show that if G is (p(�), 1/p(�))-pseudorandom for all polynomials
p and sufficiently large �, then it is also (p(�), 1/p(�))-hard to invert for all poly-
nomials p and sufficiently large �. Let C be a poly(�)-size circuit family which,
for sufficiently large �, inverts G with probability = ε for some ε = 1/poly(�).
Then, define an adversary A : {0, 1}�+1 → {0, 1} as follows: on input y, A com-
putes x = C(y), uses its oracle to G to check if G(x) = y, and outputs 1 iff
this holds. We clearly have Pr[A(G(U�)) = 1] = ε. Let T ⊆ Im(G) be the set of
outputs that C inverts, and note that

∑
y∈T Pr[G(U�) = y] = ε. For each y ∈ T

we have Pr[G(U�) = y] ≥ 1/2�, and so |T |/2� ≤ ε. Then, since A will only output
1 on inputs that C can invert and since no string outside Im(G) can be inverted,
we have Pr[A(U�+1) = 1] = |T |/2�+1 ≤ ε/2, and thus A distinguishes G from
uniform with advantage ≥ ε/2 = 1/poly(�).

Now, assume for contradiction that there exists a polynomial p and a cir-
cuit family C of size p(�) which computes f correctly with probability at least
1/2+1/p(�) over the input, for sufficiently large �. Then by the Goldreich-Levin
theorem [6], there exists a polynomial p′ and a circuit family C′ of size p′(�) such
that Pr[C′(U�) = G(U�)] ≥ 1/p′(�), for sufficiently large �. Notice that (the func-
tion computed by) C′ can only be inverted on strictly less than a 1− 1/(2p′(�))
fraction of inputs by poly(�)-size circuits, because any circuit which inverts C′ on
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a 1−1/(2p′(�)) fraction of inputs also inverts G on at least a 1/(2p′(�)) fraction of
inputs. However, using the standard direct product construction (originally due
to Yao [14]; see also [4] Theorem 2.3.2), this implies the existence of a one-way
function, contradicting the assumption that OWFs do not exist.

By virtue of the above proof, Theorem 2 actually establishes a primitive black-
box stretch-increasing construction which works when the oracle is any hard-to-
invert function, and not only the special case of one-bit-stretch PRGs.

In order to apply the Nisan-Wigderson construction, we recall the notion of
designs.

Definition 6 (Design). A collection of sets S1, . . . , Sd ⊆ [n] is an (n, d, �, α)-
design if

1. ∀i : |Si| = �.
2. ∀i �= j : |Si ∩ Sj | ≤ α.

Lemma 3 ([11]). For any integers d and � such that log d ≤ � ≤ d, there exists a
poly(d)-time constructible collection S1, . . . , Sd which is a (4�2, d, �, log d)-design.

We now give the proof of Theorem 2.

Theorem 2. Let c > 1 be any constant. Then, for n = 17�2, there exists a
primitive black-box stretch-increasing construction H(·) : {0, 1}n → {0, 1}nc

with
stretch s := nc − n from any family of one bit stretch generators G : {0, 1}� →
{0, 1}�+1. In addition, H(·) is computable by a poly(n)-sized circuit family, and
has the form

HG(x) := 〈G(q1(x)), r1(x)〉 ⊕ t1(x) ◦ · · · ◦ 〈G(qn+s(x)), rn+s(x)〉 ⊕ tn+s(x)

where qi : {0, 1}n → {0, 1}� specifies the ith query, ri : {0, 1}n → {0, 1}�+1

specifies the parity function for the ith answer, and ti : {0, 1}n → {0, 1} specifies
whether to flip the ith bit.

Proof. Assume that OWFs exist, and let H ′ : {0, 1}n → {0, 1}nc

be the generator
guaranteed by Theorem 5. Then, the construction H(·) is HG(z) := H ′(z) for
any oracle G. (Note that this can be achieved in the form stated in the theorem
by setting ri(z) = 0�+1 for all i and z, and choosing the ti appropriately to
compute each bit of H ′).

Now assume that OWFs do not exist. Let G : {0, 1}� → {0, 1}�+1 be any
generator family, and define f : {0, 1}2�+1 → {0, 1} as f(x, r) := 〈G(x), r〉.
Fix a constant c > 1, and define n = 4(2� + 1)2 (which is at most 17�2 for
sufficiently large �). Let S1, . . . , Snc be the (n, nc, 2�+1, c logn) design guaranteed
by Lemma 3. Then, the construction HG : {0, 1}n → {0, 1}nc

is defined as

HG(z) := f(z|S1) ◦ · · · ◦ f(z|Snc ).
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If there exists a polynomial p and a circuit family of size p(�) which distinguishes
G from uniform with advantage at least 1/p(�), then the theorem is trivially true.
Thus, we can take G to be (p(�), 1/p(�))-pseudorandom for all polynomials p and
sufficiently large �. Assume for contradiction that there exists a constant c0 and
a circuit family A of size nc0 that distinguishes HG(Un) from Unc with advantage
1/nc0. Using the equivalence of distinguishing and next-bit predicting [14], this
implies the existence of an i ∈ [nc] and a circuit family A′ : {0, 1}i−1 → {0, 1} of
size nO(c0) such that Pr

[
A′(HG(Un)|[i−1]) = HG(Un)i

]
≥ 1/2 + 1/nc+c0. Sepa-

rating out the part of the input indexed by Si, this can be rewritten as

Pr
(x,y)←(U2�+1,Un)

[
A′(HG(z)|[i−1]) = HG(z)i

]
≥ 1/2 + 1/nc+c0, (2)

where z ∈ {0, 1}n is defined by z|Si = x and z|Si
= y|Si

. By an averaging argu-
ment, there is a way to fix y ∈ {0, 1}n such that (2) holds; from here on we assume
that this y is fixed. For each j ∈ [i−1], define the function fj : {0, 1}2�+1 → {0, 1}
as fj(x) := f(z), where now z is defined by z|Si∩Sj = x1x2 · · ·x|Si∩Sj| and
z|Si∩Sj

= y|Si∩Sj
. Note that since Si ∩ Sj ≤ c logn and y is fixed, each fj is

computable by a circuit family of size poly(n) = poly(�). Finally, define the cir-
cuit family A′′ : {0, 1}2�+1 → {0, 1} as A′′(x) := A′(f1(x), . . . , fi−1(x)). It can
be easily checked that A′′ has size poly(�) and correctly computes f on a random
input with probability at least 1/2 + 1/nc+c0, contradicting Lemma 2.

4 Constructing the Oracle Generator

In this section we prove Theorem 4 (restated for convenience), which gives
the one-bit-stretch oracle generator used in the proofs of our negative results
(Theorems 1 and 3).

Theorem 4. Let �, d ∈ N be sufficiently large with d ≤ �/2. Then, for any
subset T ⊆ [� + 1] with |T | = � − d and any oracle A, there exists a generator
G : {0, 1}� → {0, 1}�+1 such that

1. G is a (2d/30, 2−d/30)-PRG against adversaries with oracle access to A
(and G).

2. For every input x ∈ {0, 1}�, G(x)|T = x1x2 · · ·x�−d.

On constructing the oracle. A direct proof that a random function G : {0, 1}� →
{0, 1}�+1 is a pseudorandom generator even for circuits that have oracle access
to G does not seem immediate to us. The existence of such oracles is shown
via an indirect route in an unpublished manuscript of Impagliazzo [9] and – in
a slightly different scenario – in a work by Zimand [15]. Both works proceed
by considering an oracle one-way function, and then applying standard con-
structions of generators from one-way functions (for which one can now use [8]
or [7]).

We proceed by first considering a hard-to-invert oracle permutation π,
and then using the Goldreich-Levin hardcore bit [6] to get one bit of stretch.
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This approach will have security exponential in the input length of π, and so we
can apply π to the relatively few (Θ(�/ log �)) bits outside of |T |, and then use
padding to get a generator G on � bits that reveals most of its input.

We know of two ways to demonstrate the existence of such a permutation π.
One is via a theorem in [3] which uses a clever encoding argument to prove that
a random permutation is hard to invert with very high probability. They show
that if there exists a small circuit which inverts a permutation π on some fraction
of inputs, then π can be succinctly encoded when the circuit is given as advice.
Then, since only a small number of permutations have succinct encodings, the
probability that a random π can be sufficiently inverted by a fixed circuit is
small, and a union bound over circuits gives the result.

The second way, and the one that we use here, is an arguably more direct
argument showing that any fixed circuit with access to a fixed auxiliary oracle
has negligible probability (over the choice of permutation) of sufficiently invert-
ing the permutation. This method is from [9] and [15] (though they consider
general length-preserving functions rather than permutations), and hinges on a
combinatorial trick which originally appeared in [5]. Briefly, it is shown that for
a fixed circuit C, the expected number of subsets of size k that are inverted by C
is not too large. Then, Markov’s inequality is used to show that the probability
that C inverts any set of size m ≈ k2 is small, since to do so C would have to
invert each of its

(
m
k

)
subsets of size k (this is the combinatorial trick).

We now turn to the formal proof of Theorem 4. There are two main ingre-
dients; the first is the well-known Goldreich-Levin hard-core bit theorem [6]. It
can be checked that the standard proof of this theorem relativizes; we omit the
details.

Theorem 6. Let f : {0, 1}d → {0, 1}m be a function, and let A be any oracle.
Let C be an oracle circuit of size T such that Pr[CA(f(Ud), U ′

d) = 〈Ud, U ′
d〉] ≥

1/2 + ε. Then, for d sufficiently large, there exists an oracle circuit B of size at
most α · T · (d/ε)2 (where α is a universal constant) such that Pr[BA(f(Ud)) =
Ud] ≥ ε3/8d.

The second ingredient is the fact that there exist permutations π which are hard
to invert even for adversaries that have access to π and to an arbitrary fixed
auxiliary oracle.

Theorem 7. Let d ∈ N be sufficiently large. Then for any oracle A, there exists
a permutation π : {0, 1}d → {0, 1}d that is (2d/5, 2−d/5)-hard to invert against
adversaries with oracle access to π and A.

Before giving the proof, we state and prove two lemmas. The aforementioned
combinatorial trick, due to [5], is given by the following lemma.

Lemma 4. Let U be a finite set, let Γ = {φ : U → {0, 1}} be a family of
predicates on U , and let pk be an upper bound on the probability that φ chosen
uniformly from Γ returns true for every element in a subset of size k, i.e.

∀K ⊆ U, |K| = k : Pr
φ←Γ

[∏
x∈K

φ(x) = 1

]
≤ pk.
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Then, for any m such that k ≤ m ≤ |U |, we have

Pr
φ←Γ

[
∃M ⊆ U, |M | ≥ m :

∏
x∈M

φ(x) = 1

]
≤
(|U|
k

)
· pk(

m
k

) .

Proof. Let φ(X)denote
∏
x∈X φ(x).We have E [|{K ⊆ U : |K|=k and φ(K)=1}|]

≤
(|U|
k

)
· pk by linearity of expectation. Then the lemma follows from double

counting, because for any set M ⊆ U of size m, φ(M) = 1 iff φ(K) = 1 for every
one of the

(
m
k

)
subsets K ⊆ M of size k.

We now explain why this lemma is helpful. Following [9] and [15], we bound the
probability (over the permutation π) that a fixed circuit C of size s inverts a
fixed set K of size k; this is done by considering the probability that any k out
of the at most ks distinct queries made by C on inputs from K are mapped by
π to K; specifically, we bound

pk ≤
(

ks

k

)
·
(

k

|U |

)k
≈ sk(|U|

k

) .
The factor of sk means that we cannot use a union bound over all

(|U|
k

)
subsets

of size k. So we instead use Lemma 4, choosing m so that
(
m
k

)
≈ s2.3k, which

makes the probability of inverting a set of size m small enough to use a union
bound over all circuits.

We also require a bound on the number of oracle circuits of a given size.

Lemma 5. There are at most 2s(3+4 log s) oracle circuits of size s which have
access to two oracles π and A.

Proof. We define the size of a circuit to be the number of wires it has; this is
also an upper bound on the number of gates. For each wire in the circuit, we
must specify two things:

– which gate it is an output of (or if it is an input wire) and which position it
is in for this gate

– which gate it is an input of (or if it is an output wire) and which position it
is in for this gate

Note that the positions are relevant for wires incident on oracle gates, as the
functions computed by these gates may not be symmetric. Specifying either
incident gate for a given wire takes log s bits (as there are at most s gates), and
likewise each position can be specified with log s bits. Therefore, each of the s
wires can be specified with 4 log s bits. Finally, for each gate, we must specify
which of the five types it is (∧,∨,¬, π-oracle or A-oracle), which takes three bits.

Proof (Proof of Theorem 7). We will in fact show that a random π has the
desired property with probability at least 1 − 2−2d/4

. Fix an oracle A and an
oracle circuit C of size s. Fix a subset K ⊆ {0, 1}d of size k; we will first bound
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the probability that C inverts all of K. Let Qπ
x denote the set of at most s

distinct queries that CA,π(x) makes to π (for some choice of x and π), and let
Qπ
K :=
⋃
x∈K Qπ

x. We assume without loss of generality that the last query that
C makes to π is the string that C outputs (this is justified because any circuit
which does not query its output string can be modified into one that does with
an increase in size that is so small as to not affect the union bound below).

A necessary condition for C to invert all of K is that π−1(x) ∈ Qπ
K for all

x ∈ K. Since |Qπ
K | ≤ ks, we can bound this by

Pr
π

[
∀x ∈ K : π−1(x) ∈ Qπ

K

]
≤ Pr

π

[
∃X ⊆ Qπ

K :
⋃
x∈X

π(x) = K

]

≤
(

ks

k

)
·
(

k

2d

)(
k − 1
2d − 1

)
· · ·
(

1
2d − k + 1

)
≤
(

eks

2d

)k
.

We now apply Lemma 4 in the obvious way: U is {0, 1}d, and there is a predicate
φπ ∈ Γ for each permutation π, where φπ(x) = 1 iff CA,π(x) = π−1(x). By the
lemma, the probability that there exists a set M of size m ≥ k such that C
inverts every element of M is bounded from above by (e2 · k · s/m)k. Choosing
k = 2d/3, m = 24d/5 and s = 2d/5, this is bounded by 2−2d/3

for sufficiently
large d. By Lemma 5, there are at most 22d/5·Θ(d) circuits of size 2d/5, and
so the probability over the choice of π that there exists a circuit of size 2d/5

which inverts a set of size at least 24d/5 is at most 2−2d/3+2d/5·Θ(d) < 2−2d/4
for

sufficiently large d. Therefore, π is (2d/5, 2−d/5)-hard to invert with probability
at least 1 − 2−2d/4

.

We may now give the proof of Theorem 4.

Proof (Proof of Theorem 4). Let the oracle A and the subset T be given. Recall
that |T | = � − d, and let π : {0, 1}d → {0, 1}d be the permutation guaranteed
by Theorem 7 which is (2d/5, 2−d/5)-hard to invert against adversaries with or-
acle access to π and A. Then, the generator G treats its input x ∈ {0, 1}� as
(x1, x2, x3) ∈ {0, 1}�−2d × {0, 1}d × {0, 1}d, and outputs the (� + 1)-bit string
defined as follows:

G(x)|[�+1]\T = π(x3) ◦ 〈x3, x2〉 G(x)|T = x1 ◦ x2.

Now assume for contradiction that there exists an oracle circuit C : {0, 1}�+1 →
{0, 1} of size at most 2d/30 such that Pr[CA,G(G(U�)) = 1] − Pr[CA,G(U�+1) =
1] ≥ 2−d/30 (dropping the absolute value w.l.o.g).. Because the permutation π is
the only part of G’s output which may be “difficult” to compute, we can take C to
have oracles (A, π) instead of (A, G) at the cost of increasing C’s size by a factor
of poly(d). We construct a probabilistic oracle circuit IP : {0, 1}d × {0, 1}d →
{0, 1} which, on input (x, y), tries to compute 〈π−1(x), y〉. IPA,π(x, y) performs
the following steps:
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1. chooses a random string z ∈ {0, 1}�−2d and a random bit b ∈ {0, 1}
2. constructs the (� + 1)-bit string w defined by w|[�+1]\T = x ◦ b, w|T = z ◦ y
3. computes CA,π(w) and outputs CA,π(w) ⊕ 1 ⊕ b

We clearly have |IP | ≤ |C| · poly(d) ≤ 2d/30 · poly(d). Consider the behavior of
IPA,π on a uniformly random input (x, y). It is easy to see that the string w is
distributed according to U�+1. If we condition on the chosen bit b being equal to
〈π−1(x), y〉 (which happens with probability 1/2), then w is distributed according
to G(U�). For brevity, let EIP denote the event IPA,π(x, y) = 〈π−1(x), y〉, and
let Eb denote the event b = 〈π−1(x), y〉. Then,

Pr[EIP ] =
1
2
(
Pr[EIP | Eb] + Pr[EIP | Eb]

)
=

1
2
(
Pr[CA,π(w) = 1 | Eb] +

(
1 − Pr[CA,π(w) = 1 | Eb]

))
= 1/2 + Pr[CA,π(w) = 1 | Eb] − Pr[CA,π(w) = 1]
= 1/2 + Pr[CA,π(G(U�)) = 1] − Pr[CA,π(U�+1) = 1]
≥ 1/2 + 2−d/30.

The probabilities are over both (x, y) and the internal randomness of IP ; by
a standard averaging argument, we can fix the internal randomness of IP to
get a deterministic circuit which computes 〈π−1(x), y〉 on a random (x, y) with
the same success probability. Then for sufficiently large d, Theorem 6 gives an
oracle circuit of size at most 2d/30 · poly(d) · O(d2 · 22d/30) ≤ 2d/5 that, when
given access to A and π, inverts π with probability at least 2−3d/30/8d ≥ 2−d/5

over its input, contradicting the hardness of π.
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Abstract. Selective opening attacks against commitment schemes occur
when the commitment scheme is repeated in parallel (or concurrently)
and an adversary can choose depending on the commit-phase transcript
to see the values and openings to some subset of the committed bits.
Commitments are secure under such attacks if one can prove that the
remaining, unopened commitments stay secret.

We prove the following black-box constructions and black-box lower
bounds for commitments secure against selective opening attacks:
1. For parallel composition, 4 (resp. 5) rounds are necessary and

sufficient to build computationally (resp. statistically) binding and
computationally hiding commitments. Also, there are no perfectly
binding commitments.

2. For parallel composition, O(1)-round statistically-hiding
commitments are equivalent to O(1)-round statistically-binding
commitments.

3. For concurrent composition, ω(log n) rounds are sufficient to build
statistically binding commitments and are necessary even to build
computationally binding and computationally hiding commitments,
up to log log n factors.

Our lower bounds improve upon the parameters obtained by the impos-
sibility results of Bellare et al. (EUROCRYPT ’09), and are proved in
a fundamentally different way, by observing that essentially all known
impossibility results for black-box zero-knowledge can also be applied to
the case of commitments secure against selective opening attacks.

Keywords: commitments, black-box lower bounds, zero knowledge,
selective opening attacks, parallel composition, concurrent composition.

1 Introduction

Commitment schemes have a wide array of applications in cryptography, one
of the most notable being the construction of zero knowledge protocols [14, 4].
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A problem that arises in the use of commitment schemes is whether their hid-
ing property holds when composed in parallel: if some subset of the committed
messages are opened, do the remaining unopened messages remain secure? This
question arose early in the study of zero knowledge protocols, and is also nat-
ural in other cryptographic contexts where commitments are used as building
blocks for protocols that might be then used in parallel (e.g. secure multi-party
computation, etc.).

Although naively one might think because commitments are hiding that no
additional information should be leaked by composing them, nevertheless it is
unknown how to prove that standard stand-alone commitments (e.g. [18]) remain
hiding when composed.

More formally, a selective opening attack on a commitment scheme allows
a cheating receiver to interact in k parallel (or concurrent) commitments, and
then ask the sender to open some subset I ⊆ [k] of the commitments. The
question is whether the unopened messages remain hidden in the following sense:
is there a simulator strategy for every cheating receiver strategy that outputs
a commit-phase transcript, a set I ⊂ [k], and decommitments to (bi)i∈I that is
indistinguishable from the output of the cheating receiver with an honest sender?

In this paper we show that techniques both for constructions and lower bounds
from the study of zero knowledge protocols can be applied to the study of com-
mitments secure against selective opening attacks. We study the minimal round
complexity needed to construct such commitments, and give solutions for com-
mitments secure against selective opening attacks that are optimal or nearly
optimal up to small factors.

1.1 Our Results

We let PAR denote parallel composition and CC denote concurrent composition.
We let CB (resp. SB, PB) denote computational (resp. statistical, perfect) binding
and CH (resp. SH) denote computational (resp. statistical) hiding. We give the
following constructions:

Theorem 1. The following hold via fully black-box reductions:

1. One-way permutations imply 4-round PAR-CBCH commitments exist.
2. t-round stand-alone SH commitments imply (t + 3)-round PAR-SB commit-

ments exist.
3. t-round stand-alone SH commitments imply ω(t log n)-round CC-SB commit-

ments exist.

In particular, Item 2 implies that collision-resistant hash functions (or even just
2-round statistically hiding commitments) suffice to construct 5-round PAR-SB
commitments.

Assuming the proof of security for such a commitment scheme is given by a
black-box simulator, we prove the following corresponding lower bounds:

Theorem 2 (Informal). The following hold relative to any oracle:
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1. There is no 3-round PAR-CBCH commitment.
2. There is no 4-round PAR-SB commitment.
3. There is a black-box reduction that uses a O(1)-round PAR-SB commitment

to build a O(1)-round statistically hiding commitment.
4. There is no o(log n/ log log n)-round CC-CBCH commitment.

We stress that besides the constraint that the simulator be black-box, these
results are otherwise unconditional. Namely, Theorem 2 implies that no such
commitments exist in the plain model (without oracles), but also implies that
such commitments do not exist even in say the random oracle model (or stronger
oracle models), where a priori one might have hoped to bypass impossibility
results in the plain model.

Combining the second item of Theorem 2 with the main theorem of [15], which
proves that there is no black-box reduction building a o(n/ log n)-round statis-
tically hiding commitment from one-way permutations, we obtain the following
corollary:

Corollary 1. There is no black-box reduction that uses a one-way permutation
to build a O(1)-round PAR-SB commitment.

Wee [23] independently proved via different techniques a theorem similar to
Corollary 1 for the very closely related case of trapdoor commitments.

In addition to the above impossibility results, we also prove:

Theorem 3 (Informal). Relative to any oracle, there exists no PAR-PB com-
mitments nor receiver public-coin PAR-CBCH commitments.

1.2 Comparison to Previous Constructions

Notions related to security against selective opening attacks have previously been
studied in the literature. Security against selective opening is closely related to
chameleon blobs [5, 6], trapdoor commitments [11], and equivocable commit-
ments [2, 9, 8]. Roughly speaking, these notions all allow a simulator that can
generate commit-phase transcripts that can be opened in many ways. Indeed,
our constructions will be based on the equivocable commitment of [8].

Security against selective opening may be weaker than the notions above,
and was directly studied in [10, 3]. Bellare et al. [3] give a construction of a
scheme that is CC-SB secure, but this construction is non-black-box and requires
applying a concurrent zero knowledge proof on a statement regarding the code
implementing a one-way permutation. In contrast, all constructions presented in
this paper are fully black-box.

Equivalence of statistical hiding and statistical binding. In this work we only study
commitments with computational hiding. [3] already noted that stand-alone SH
commitments satisfy a notion of PAR-SH security based on indistinguishability
(this notion is different from ours). Independent of our work, Zhang et al. [24]
gave a black-box reduction that uses t-round stand-alone SH commitments and
one-way permutations to construct (t + 3)-round PAR-SH commitments (under
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our definition of selective opening security). Their construction is an extension of
a recent trapdoor commitment of Pass and Wee [19].

With Item 2 of Theorem 2, this implies that O(1)-round statistical hiding
and O(1)-round statistical binding are equivalent via black-box reductions when
security against selective opening attacks is required. This contrasts sharply with
the stand-alone case, as 2-round statistically binding commitments are equivalent
to one-way functions, but no black-box reduction can build o(n/ log n)-round
statistically hiding commitment from one-way functions [15].

1.3 Comparison to Previous Lower Bounds

Bellare et al. [3] proved that non-interactive commitments and perfectly binding
commitments secure against selective opening attacks cannot be based on any
black-box cryptographic assumption. Our lower bounds are stronger than theirs
in that we can rule out 3- or 4-round rather than non-interactive commitments, as
well as ruling out certain types of commitment with non-zero statistical binding
error. However, our proof technique is incomparable to theirs.

Ways in which our lower bounds are stronger: first, the lower bounds of
[3] assume black-box access to a cryptographic primitive, and therefore do not
apply to constructions based on concrete assumptions (e.g. factoring, discrete
log, lattice problems) where one might hope to exploit the specific structure of
those problems to achieve security. In contrast, our results immediately rule out
all constructions in the plain model.

Second, the lower bounds of [3] prove that non-interactive and perfectly bind-
ing commitments secure against selective opening attacks are impossible with
respect to a very specific message distribution that is defined in terms of a
random oracle. One could argue that the message distribution they consider is
artificial and would not arise in applications of these commitments. In partic-
ular, it may suffice for applications to build commitments that are secure only
for particular natural message distributions, such as the uniform distribution or
the distributions encountered when using commitments to build zero knowledge
proofs for NP. [3] does not rule out the existence of commitments that are secure
only for these message distributions, while our impossibility results do and in
fact apply simultaneously to all message distributions satisfying what we argue
are very natural constraints (see Definition 5). In particular, the results of [3]
also use the assumptions in Definition 5.

Ways in which our lower bounds are weaker: our results are weaker because
they only apply to constructions with black-box simulators, i.e. we require that
there exists a single simulator that works given black-box access to any cheating
receiver. The results of [3] hold even for slightly non-black-box simulation tech-
niques: they only require that for every cheating receiver oracle algorithm (Rec′)(·)

that accesses the underlying crypto primitive as a black-box, there exists an ef-
ficient oracle algorithm Sim(·) that accesses the underling crypto primitive as a
black box that generates an indistinguishable transcript. However, [3] do not rule
out techniques such as Barak’s simulator [1], because the simulator there includes
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a PCP encoding of the code of the underlying cryptographic primitive, and thus
treats the crypto primitive itself in a non-black-box way.

1.4 Our Techniques

Our constructions for parallel composition are essentially the equivocable
commitment scheme of [8], while the case for concurrent composition follows
in a straight-forward way by combining the commitment of [8] with the pream-
ble from the concurrent zero knowledge proof of [21].

Our lower bounds are proven by observing that most known lower bounds
for zero knowledge (e.g. [13, 17, 7, 16, 20]) extend naturally to the case of
commitment schemes. Lower bounds for zero knowledge show that if a zero
knowledge proof for L satisfies certain restrictions (e.g. 3 rounds, constant-round
public coin [13], etc.), then L ∈ BPP.

As was observed by [10, 3], plugging a t-round PAR-CBCH commitment into
the GMW zero knowledge protocol for NP allows the zero knowledge property
to be preserved under parallel repetition, thus allowing one to reduce soundness
error while preserving zero knowledge and without increasing round complexity.
Furthermore, the resulting protocol has t + 2 rounds, and has a black-box sim-
ulator if the commitment had a black-box simulator. This immediately implies
the following:

Proposition 1 ([13], weak impossibility of PAR-CBCH, informal). In the
plain model, there exist no black-box simulator non-interactive or constant-round
public-coin PAR-CBCH commitment schemes.

To see why, suppose there were such a scheme, then by the above discussion
one would obtain either a 3-round or constant-round public-coin zero knowledge
argument for NP with a black-box simulator that remains zero knowledge under
parallel repetition. By [13], this implies that NP = BPP. But this contradicts
the existence of a PAR-CBCH commitment scheme, since by the Cook-Levin
reduction we can use an algorithm solving NP to break any commitment.

Our results improve upon Proposition 1 as they apply to broader categories of
commitments (e.g. 3-round vs. non-interactive). In addition, Proposition 1 uses
the Cook-Levin reduction and therefore does not apply when considering schemes
that might use random oracles. In contrast, Theorem 2 does hold relative to any
oracle, and in the case of Item 3 of Theorem 2, is black-box. This is important
for two reasons: first, Proposition 1 does not say whether such constructions are
possible in the random oracle model, which is often used to prove the security
of schemes for which we cannot prove security in the plain model. Second, if
we want to compose our impossibility result with other black-box lower bounds,
then our impossibility result had better also be black-box. For example, in order
to obtain Corollary 1 we must combine Item 3 of Theorem 2 with the black-box
lower bound of Haitner et al.. This is only possible if Item 3 of Theorem 2 is a
black-box reduction, which would not be true using the approach of the weak
impossibility result Proposition 1.
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To prove Theorem 2, we construct what we call “equivocal senders”: senders
that run the commit phase without knowing the bits that must be revealed. We
show that the existence of such equivocal senders implies that binding can be
broken. We then construct equivocal senders for various kinds of protocols by
applying the proof strategy for zero knowledge lower bounds originally outlined
by Goldreich and Krawczyk [13]. By arguing directly, we avoid the Cook-Levin
step in Proposition 1 and therefore our results hold relative to any oracle.

2 Preliminaries

For a random variable X , we let x ←R X denote a sample drawn according to
X . We let Uk denote the uniform distribution over {0, 1}k. For a set S, we let
x ←R S denote a uniform element of S. Let 2S denote the set of all subsets of
S. All security definitions in this paper are with respect to non-uniform circuits.
We say that an event occurs with overwhelming probability if it occurs with
probability 1− n−ω(1), and that it occurs with negligible probability if it occurs
with probability n−ω(1). Two families of random variables (Xn)n∈N, (Yn)n∈N over
{0, 1}n are computationally indistinguishable, or equivalently X ≈c Y , if for all
circuits C of size poly(n) it holds that |Pr[C(X) = 1]−Pr[C(Y ) = 1]| ≤ n−ω(1).

2.1 Commitment Schemes

We formally define commitments for single-bit messages; since we will be
concerned with commitments that are composable, multi-bit messages can be
handled by just repeating the single-bit protocol in parallel or concurrently.

Definition 1. A t-round (stand-alone) commitment protocol is a pair of
efficient algorithms Send and Rec. Given a sender input b ∈ {0, 1}, we define:

1. The commit phase transcript is τ = 〈Send(b; ωSend), Rec(ωRec)〉 where ωSend,
ωRec are the random coins of the sender and receiver, respectively. Exactly t
messages are exchanged in the commit phase t.

2. The decommit phase transcript consists of Send sending (b, open) to Rec.
Rec(τ, b, open) = 1 if open is a valid opening, and outputs 0 otherwise.

Notation and variable definitions: We assume that a commitment scheme is
put in a canonical form, where each party alternates speaking. We assume the
number of rounds is even and the receiver speaks first. If the number of rounds
is 2t, then we label the sender’s messages α1, . . . , αt and the receiver’s messages
β1, . . . , βt, and we let α[i] = (α1, . . . , αi) and likewise for β[i]. For a commitment
protocol (Send, Rec), we write that the receiver’s i’th response βi is given by
computing β[i] = Rec(α[i−1]; ω) where α[i−1] are the first i − 1 sender messages,
and ω are the receiver’s random coins. We let Rec(⊥; ω) = β1 denote the first
receiver message.
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Let k denote the number of parallel or concurrent repetitions of a commitment
protocol. Let n denote the security parameter of the protocol. Given a stand-alone
commitment (Send, Rec), let Sendk denote the k-fold repeated sender (context will
determine whether we mean parallel or concurrent composition). Let Reck denote
the k-fold parallel receiver, and let ReckΣ denote the k-fold concurrent receiver with
schedule Σ. Underlined variables denote vectors of message bits (e.g. b ∈ {0, 1}k)
and plain letters with indices the bit at each coordinate (e.g. bi is the i’th bit of b).

Definition 2 (Binding). A commitment scheme (Send, Rec) is computation-
ally (resp. statistically) binding if for all polynomial-time (resp. unbounded)
sender strategies Send′, only with negligible probability can Send′ interact with an
honest Rec to generate a commit-phase transcript τ and then produce open, open′

such Rec(τ, 0, open) = 1 and Rec(τ, 1, open′) = 1. A scheme is perfectly binding
if the above probability of cheating is 0.

It is straight-forward to prove that all the variants of the binding property are
preserved under parallel/concurrent composition.

Hiding under selective opening attacks. We only study the case of computational
hiding. In the following, I ⊆ 2[k] is a family of subsets of [k], which denotes the set
of legal subsets of commitments that the receiver is allowed to ask to be opened.

Definition 3 (Hiding under selective opening: k-fold parallel compo-
sition security game). Sender input: b ∈ {0, 1}k. Let Rec′ be the (possibly
cheating) sender.

1. Sendk, Rec′ run k executions of the commit phase in parallel using indepen-
dent random coins, obtaining k commit-phase transcripts τk = (τ1, . . . , τk).

2. Rec′ chooses a set I ←R I and sends it to Sendk.
3. Sendk sends (bi, ωi) for all i ∈ I, where ωi is an opening of the i’th commitment.

In Item 2, the honest receiver is defined to pick I ∈ I uniformly, while a malicious
receiver may pick I adversarially.

Definition 4 (Hiding under selective opening, parallel composition).
Let I ⊆ 2[k] be a family of subsets and B be a family of message distributions
over {0, 1}k for all k. Let (Send, Rec) be a commitment and Simk be a simulator.
We say that (Send, Rec) is secure against selective opening attacks for (I,B) if
for all k ≤ poly(n):

– Let 〈Sendk(b), Rec′〉 = (τk, I, {(bi, ωi)}i∈I) be the complete interaction be-
tween Rec′ and the honest sender, including the commit-phase transcript τk,
the subset I of coordinates to be opened and the openings (bi, ωi)i∈I .

– Let (SimRec′

k | b) denote the following: first, SimRec′

k interacts with Rec′ (without
knowledge of b) and outputs a subset I of bits to be opened. Then Simk is given
{bi}i∈I . Using this, Simk interacts with Rec′ some more and outputs a commit-
phase transcript τk, the set I, and the openings {(bi, ωi)}i∈I .

– It holds that (SimRec′

k | b) ≈c 〈Sendk(b), Rec′〉 where b ←R B.
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Definition 5. We say that (I,B) is non-trivial if (the uniform distribution
over) I,B are efficiently samplable, and (1) |I| = kω(1) and (2) PrI←RI [H∞(BI)
≥ 1/poly(n)] ≥ 1/poly(n).

Here BI is the joint distribution of bits Bi for i ∈ I. Property 1 says that if the re-
ceiver asks for a random set in I to be opened, then the sender cannot guess the set
with noticeable probability. This restriction is natural because in many contexts
if the sender can guess the set to be opened then it can cheat in the larger protocol
where the commitment is being used (e.g. in a zero knowledge proof). Property 2
says that with noticeable probability over the choice of I, there is non-negligible
entropy in the bits revealed. This is very natural as otherwise any receiver is triv-
ially simulable since it always sees the same constant bits.

Stronger definitions of hiding. Our definitions are chosen to be as weak as possible
in order to make our lower bounds stronger. Nevertheless, our positive results also
satisfy a stronger definition of security, where security holds simultaneously for all
I,B. For such a notion, we prepend STR to the name of the security property (e.g.
STR-PAR-SB).

Definition 6 (Security game for k-fold concurrent composition). Identi-
cal to the parallel case, except that the receiver has the power to schedule mes-
sages as he wishes, rather than sending them in parallel. In addition, we allow the
receiver to pick the set I incrementally subject to the constraint that at the end,
I ∈ I. For example, the receiver can generate one commit-phase transcript, ask
the sender to decommit that instance, then use this information in its interaction
to generate the second commit-phase transcript, and so forth.

Definition 7 (Hiding under selective opening, concurrent composition)
Same as the parallel case, except that the simulator can incrementally ask for the
values (bi)i∈I before completing all commit-phase executions, subject to the con-
straint that at the end I ∈ I.

Discussion of definitional choices: One could weaken Definition 6 to require
that although all the commit-phase transcripts may be generated concurrently,
the openings happen simultaneously. Indeed, this was the definition used in [3].
We do not work with this weakening because it makes the definition not truly
concurrent: forcing all the openings to occur simultaneously “synchronizes” the
sessions.

3 Constructions

Di Crescenzo and Ostrovsky [8] (see also [9]) showed how to build an equivoca-
ble commitment scheme. Equivocable means that for every cheating receiver Rec′,
there exists a simulator that generates a commit-phase transcript that is compu-
tationally indistinguishable from a real transcript, but which the simulator can de-
commit to both 0 and 1. Equivocation seems even stronger than STR-PAR-CBCH
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security, except that STR-PAR-CBCH explicitly requires security to hold in many
parallel sessions. Although it is not clear how to generically convert any stand-
alone equivocable commitment to an equivocable commitment that is composable
in parallel/concurrently, the particular construction of Di Crescenzo and Ostro-
vsky can be composed by using a suitable preamble.

The DO construction consists of a preamble, which is a coin-flipping scheme
that outputs a random string, followed by running Naor’s commitment based on
OWF [18] using the random string of the preamble as the receiver’s first message.
Depending on how the preamble is constructed, we get either a STR-PAR-CBCH,
STR-PAR-SB, or STR-CC-SB commitment. Therefore, Theorem 1 follows by The-
orem 6 and Theorem 8 about the following protocol.

Protocol 4 ([8, 9, 18]). Sender’s bit: b. Let G : {0, 1}n → {0, 1}3n be a PRG.

Preamble: Use a coin-flipping protocol to obtain σ ←R {0, 1}3n.
Commit phase: The sender picks random s ←R {0, 1}n and sends c =
(σ ∧ b) ⊕ G(s) (where we use the notation (σ ∧ b)i = σi ∧ b).
Decommit phase: The sender sends b, s. Receiver checks that c = (σ ∧
b) ⊕ G(s).

We now present three different preambles that when used in the protocol above,
provide STR-PAR-CBCH, STR-PAR-SB, and STR-CC-SB security, respectively.

Protocol 5 ([8]). Preambles for STR-PAR-CBCH or STR-PAR-SB:

1. Using the non-interactive stand-alone CH commitment based on one-way per-
mutations (to achieve STR-PAR-CBCH) or a t-round stand-alone SH commit-
ment (to achieve STR-PAR-SB), the receiver sends a commitment to α ←R

{0, 1}3n.
2. The sender replies with β ←R {0, 1}3n.
3. The receiver opens α.
4. Output σ = α ⊕ β.

Theorem 6 ([8]). Protocol 4 with the STR-PAR-CBCH (resp. STR-PAR-SB) ver-
sion of the preamble of Protocol 5 gives a STR-PAR-CBCH (resp. STR-PAR-SB)
commitment.

Proof (Proof sketch of Theorem 6). We include a proof sketch for the sake of com-
pleteness, and refer the reader to [18, 12, 8] for full proofs. The binding properties
are easy to verify, given the fact that Naor’s commitment scheme is statistically
binding.

The following simulator proves security against selective opening attacks for
both the computational and statistical binding variants. Consider the k-fold rep-
etition Sendk, Reck of the protocol. Following the proof of Goldreich and Kahan
[12], one can construct a simulator such that, by rewinding the first step of the
preamble (i.e. Step 1 of Protocol 5), can learn the value of the α1, . . . αk used in
each of the k parallel sessions. Care must be taken to ensure this finishes in ex-
pected polynomial time, but the same technique as in [12] works in our setting
and we refer the reader to that paper for details.
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Now for each i ∈ [k] in the i’th session the simulator can sample s0, s1 ←R

{0, 1}n and reply with βi = G(s0) ⊕ G(s1) ⊕ αi. This sets σi = G(s0) ⊕ G(s1).
Then the simulator sets c = G(s0). Now the simulator can decommit to both 0
(by sending s0) and to 1 (by sending s1).

Protocol 7 ([21]). Preamble for STR-CC-SB:

1. The receiver picks α ←R {0, 1}3n and for � = ω(log n) picks α0
i,j ←R {0, 1}3n

for i, j ∈ [�] and sets α1
i,j = α ⊕ α0

i,j. The receiver commits in parallel to
α, α0

i,j , α
1
i,j via a t-round statistically hiding commitment.

2. For each j = 1 to � sequentially, do the following:
(a) The sender sends q1, . . . , q� ←R {0, 1}.
(b) The receiver opens the commitment to αqi

i,j for all i ∈ [�].
3. The sender sends β ←R {0, 1}3n.
4. The receiver opens the commitment to α, α0

i,j , α
1
i,j for all i, j ∈ [�].

5. The sender checks that indeed α = α0
i,j ⊕ α1

i,j for all i, j ∈ [�]. If so output
σ = α ⊕ β, otherwise abort.

Theorem 8 ([21, 22]). Protocol 4 using the preamble of Protocol 7 gives a STR-
CC-SB commitment.

Proof. Binding is straightforward. For hiding, observe that this is the preamble
of the concurrent zero knowledge proof of Prabhakaran et al. [21]. They prove the
following:

Theorem 9 (Theorem 5.2 of [21], informal). There is black-box simulator
strategy that, given access to any efficient receiver for Protocol 7 with any con-
current scheduling, outputs with high probability in every session a string α before
Step 3 such that the receiver opens to α in step 5.

Namely, [21] show that by using an appropriate rewinding schedule, the simulator
can obtain the value of α in all of the concurrent executions before the sender is
supposed to send β, regardless of how the receiver schedules the messages. Once
the simulator knows α, one can apply the simulator strategy of [12, 8], as in the
proof sketch of Theorem 6.

4 Optimality of Constructions

We now define our main tool for proving lower bounds, equivocal senders. Intu-
itively, an equivocal sender must run its commit phase without knowing what it
is committing to, so if it can cause the receiver to accept with non-negligible prob-
ability, then it must be able to open its commitments in many ways.

4.1 Equivocal Senders

For a pair of algorithms T = (Tcom, Tdecom), define the following game:



(Nearly) Round-Optimal Black-Box Constructions of Commitments 551

1. 〈Tcom, Reck〉 = (τk, I, statecom). Here, statecom is the internal state of Tcom to
be transmitted to Tdecom. I is the set Reck asks to be opened. Notice Tcom runs
without knowledge of b, hence T is “equivocal” during the commit phase.

2. Tdecom(b, τk, I, statecom) = {(bi, openi)}i∈I .

The overall transcript is (〈T, Reck〉 | b, NoAbortT ) = (τk, I, {(bi, openi)}i∈I), where
NoAbortT denotes the event that T does not abort. Say that (τk, I, statecom) is δ-
openable if with probability at least δ over the choice of b, Reck accepts (τk, I,
{(bi, openi)}i∈I), where {(bi, openi)}i∈I = Tdecom(b, τk, I, statecom)..

Definition 8 (Equivocal sender). We say that T = (Tcom, Tdecom) is a k-
equivocal sender for (Send, Rec, Simk) if it holds that

Pr[(τk,I, statecom)=〈Tcom, Reck〉is (1 − n−ω(1))-openable∧NoAbortT ]≥1/poly(n)

Using equivocal senders to break binding. To prove our impossibility results, we
will apply the following theorem, which says that the existence of equivocal senders
imply that a commitment is not secure.

Theorem 10. Fix any non-trivial (I,B) and k-fold repeated commitment scheme
(Sendk, Reck) with a simulator Simk that proves computational hiding. If this com-
mitment has a k-equivocal sender T = (Tcom, Tdecom) for any k ≤ poly(n), then
this commitment cannot be statistically binding. If furthermore T is efficient, then
this commitment cannot be computationally binding.

Proof. The idea is to convert a k-equivocal T sender into a sender Send′ that
breaks binding in a single execution of the commitment, Send′ emulates T in-
ternally and chooses one of the k parallel instances to insert its interaction with
the real receiver Rec. By the non-triviality of (I,B), with high probability over
I ←R I the coordinates in I have significant min-entropy, and in particular some
coordinate must have significant min-entropy. Therefore if Send′ picks this coor-
dinate, then since T is able to open its commitment with non-trivial probability
for I ←R I and b ←R B, it follows that Send′ can open its commitment to both 0
and 1 with non-negligible probability.

We now proceed formally by constructing a malicious sender Send′ and proving
that this sender breaks binding.

Algorithm 11
Malicious sender Send′, interacting with a single honest receiver Rec:
1. Pick a random j. For each j′ �= j, sample random coins ω(j′) to run an honest

receiver.
2. Respond to the i’th message βi from Rec as follows.

(a) If i > 1, let (α(1)
[i−1], . . . , α

(k)
[i−1]) be Tcom’s response from previous queries.

(b) For j′ �= j, compute β
(j′)
i = Rec(α(j′)

[i−1]; ω
(j′)). Set β

(j)
i = βi.

(c) Feed (β(1)
i , . . . , β

(k)
i ) to Tcom to obtain response (α(1)

[i] , . . . , α
(k)
[i] ) (assuming

Tcom does not abort).
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(d) Forward α
(j)
i back to Rec.

3. If Tcom does not abort, Send′ successfully generates a commit-phase transcript
distributed according to 〈Tcom, Reck〉. Send′ picks a random I ←R I to be opened.

4. If j /∈ I, Send′ aborts. Otherwise, it independently picks two b, b′ ←R B, and
runs Tdecom(b, I) to obtain a decommitment for (bi)i∈I and runs Tdecom(b′, I)
to obtain openings for (b′i)i∈I . In particular, the malicious sender obtains open-
ings for bj and b′j.

Analyzing Send′: By hypothesis, T is a (k, ε, 1 − n−ω(1))-equivocal server for
some ε = 1/poly(n). This implies that with probability at least ε, 〈Tcom, Reck〉
produces an (1 − n−ω(1))-openable (τk, I, statecom). Therefore, since the proba-
bility of producing an accepting opening for a random b at least (1 − n−ω(1)), it
holds with probability at least ε(1 − n−ω(1))2 that Reck accepts both openings
Tdecom(b, τk, I, statecom) and Tdecom(b′, τk, I, statecom).

Since (I,B) is non-trivial, it follows that Prb,b′,I [∀ i ∈ I, bi = b′i] ≤ n−ω(1).
Therefore with probability ε(1 − n−ω(1))2 − n−ω(1), T produces accepting open-
ings for b and b′ and furthermore there exists i such that bi �= b′i. Since the sender
picked at random the coordinate j that contains the real interaction, with proba-
bility 1/k it chooses j = i and therefore with non-negligible probability produces
decommitments for both 0 and 1 in an interaction with the real receiver, breaking
binding.

4.2 Impossibility Results for Parallel Composition

We present the proofs for the case of 3-round PAR-CBCH and 4-round PAR-SB
commitments, while the cases in Theorem 3 are deferred to the full version.

We construct equivocal senders using the strategy of Goldreich and Krawczyk
[13]. Intuitively, the idea is to construct a sender T whose output distribution is
the same as SimRech

k . Here, Rech is intuitively a cheating receiver that, for each
sender message, uses its hash function h to generate a response that looks com-
pletely random, and therefore Simk gains no advantage by rewinding Rech. From
this cheating property, we will be able to conclude that T satisfies Definition 8.

Goldreich and Krawczyk [13] observe that we can make the following simpli-
fying assumptions w.l.o.g.: (1) Simk makes exactly p(n) = poly(n) queries to its
receiver black box, (2) all queries made by Simk are distinct, and (3) Simk always
outputs a transcript τk that consists of queries it made to the receiver and the
corresponding receiver responses.

The following lemma from [13] says that simply by guessing uniformly at ran-
dom, one can pick with some noticeable probability the queries/responses that the
simulator outputs as its final transcript.

Lemma 1 ([13]). Fix a black-box simulator Simk for a protocol with t sender mes-
sages, and suppose Simk makes p(n) queries. Draw u1, . . . , ut ←R [p(n)], then with
probability≥ 1/p(n)t, the final transcript output by Simk consists of the u1, . . . , ut’th
queries (along with the corresponding receiver responses).
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3-Round Commitments

Theorem 12. For all non-trivial (I,B) and relative to any oracle, there exists no
3-round PAR-CBCH commitment protocol secure for (I,B).

Proof. We construct a polynomial-time k-equivocal sender for (Send, Rec) for k =
n. By Theorem 10, this contradicts the binding property of the commitment.

Algorithm 13
Equivocal sender T = (Tcom, Tdecom) for 3-round commitments:
1. Tcom picks u1, u2 ←R [p(n)].
2. Tcom internally runs Simk, answering its queries as follows:

– For the u1, u2’th queries, if the u1’th query is a first sender message α1 and
the u2’th query is a second sender message α[2] that extends α1, then Tcom

forwards them to the real receiver and forwards the receiver’s responses to
the simulator. Otherwise, Tcom aborts.

– For all other queries: if the query is α1, then Tcom returns Reck(α1; ω) for
uniform ω. If the query is α[2] then T returns a random I ←R I.

3. When Simk requests that a subset I of bits be revealed, Tcom checks to see if I
equals the set that the real receiver asked to be opened. If not, Tcom aborts.

4. In the opening phase, Tdecom receives b and feeds (bi)i∈I to the simulator and
obtains (τk, I, (bi, openi)i∈I). Tdecom checks that τk and I consists of queries
to/from the real receiver, and if not aborts. Otherwise it outputs these openings.

Analyzing equivocal sender T . It is clear that T runs in polynomial time.
Lemma 1 implies that with probability 1/p(n)2, Simk picks the set to be revealed
I using the receiver’s responses to the guessed queries u1, u2.

Lemma 2. The probability that Simk makes two queries α[2], α
′
[2] that are both an-

swered with the same I is negligible

This claim holds because |I| = nω(1) and Simk makes at most p(n) = poly(n)
queries. Lemma 2 implies that when T emulates Simk, Simk cannot pick I us-
ing the real receiver’s messages but then find a different commit-phase transcript
that leads to the same set I. Therefore the probability that T does not abort and
outputs the queries to and responses from the real receiver is at least 1/p(n)2 −
n−ω(1) ≥ 1/poly(n).

Lemma 3. Reck accepts (〈T, Reck〉 | b, NoAbortT ) with overwhelming probability.

This claim combined with the above assertion that T does not abort with non-
negligible probability implies that T satisfies Definition 8.

We now prove Lemma 3 by comparing the output of T to (SimRech

k | b) where
Rech is defined as follows: h is a p(n)-wise independent hash function, it responds
to first sender queries α1 by computing β1 = Rec(α1; h(α1)) and to second sender
queries α[2] by sampling uniform I ←R I using h(α[2]) as random coins.

As observed by [13], (〈T, Rec〉 | b, NoAbortT ) = (SimRech

k | b) for a uniform
choice of h. Since Rech is efficient, by the hiding property this is indistinguishable
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from 〈Sendk(b), Rech〉. This in turn is equal to a true interaction 〈Sendk(b), Reck〉,
since by the definition of Rech the two receivers Rech and Reck behave identically
when there is no rewinding. Since Reck always accepts a real interaction, therefore
Reck accepts (〈T, Rec〉 | b, NoAbortT ) with overwhelming probability.

4-Round Commitments

Theorem 14. For all non-trivial (I,B) and relative to any oracle, there exists no
4-round PAR-SB commitment protocol secure for (I,B).

Proof (Proof). As before, it suffices to construct a k-equivocal sender for k = n.

Algorithm 15
Equivocal sender T = (Tcom, Tdecom) for 4-round PAR-SB commitments
1. Tcom picks u1, u2 ←R [p(n)].
2. Tcom receives the first message β1 from the receiver.
3. Tcom internally runs Simk, answering its queries as follows:

– For the simulator’s u1, u2’th queries, if the u1’th query is a first sender
message α1 and the u2’th query is a second sender message α[2] that extends
α1, then Tcom forwards them to the real receiver and forwards the receiver’s
responses to the simulator. Otherwise, Tcom aborts.

– For all other queries: if the query is α1 then Tcom samples a random ω′ ←R

{ω | Rec(⊥; ω) = β1} and returns β2 = Rec(β1, α1; ω′) to the simulator. If
the query is α[2] then the simulator picks a random I ←R I and returns it
to the simulator.

4. When Simk requests that a subset I of bits be revealed, Tcom checks to see if I
equals the set that the real receiver asked to be opened. If not, Tcom aborts.

5. In the opening phase, Tdecom receives b and feeds (bi)i∈I to the simulator and
obtains (τk, I, (bi, openi)i∈I). Tdecom checks that τk and I consists of queries
to/from the real receiver, and if not aborts. Otherwise it outputs the openings.

Analyzing equivocal sender T .T may not run in polynomial time because sam-
pling ω′ ←R {ω | β1 = Rec(⊥; ω)} may be inefficient. This implies the sender
breaking binding given by Theorem 10 may be inefficient, which is why we can
only handle PAR-SB commitments.

Applying Lemma 1, T does not abort with probability ≥ 1/p(n)2. Lemma 2
applies here for the same reason as in the proof of Theorem 12, therefore it holds
with probability 1/p(n)2 − n−ω(1) ≥ 1/poly(n) that T ’s messages to/from the
receiver are exactly those in the output of its emulation of Simk.

We claim that Lemma 3 holds in this case as well, which would imply that T
satisfies Definition 8. We prove Lemma 3 in this setting by comparing the output
of T to (Sim

Rec
ω1,...,ωs
h

k | b), where we use the cheating receiver strategy Recω1,...,ωs

h

defined by Katz [17]: s will be set below, and the ωi are random coins for the honest
receiver algorithm such that Rec(⊥; ωi) = Rec(⊥; ωj) for all i, j ∈ [s], and h is a
p(n)-wise independent hash function with output range [s]. The first message of
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Recω1,...,ωs

h is β1 = Rec(⊥; ω1) and given sender message α1, the second message
is β2 = Rec(β1, α1; ωh(β1,α1)). Given sender messages α[2], the set I to be opened
is sampled using ωh(β[2],α[2]) as random coins.

As observed in [17], for s = 50p(n)2/δ it holds that the statistical distance be-

tween (〈T, Reck〉 | b, NoAbortT ) and (Sim
Rec

ω1,...,ωs
h

k | b) is at most δ, where the
randomness is over uniform p(n)-wise independent h, uniform ω1 and uniform
ω2, . . . , ωs conditioned on Rec(⊥; ωj) = Rec(⊥; ω1) for all j ∈ [s]. By the com-
mitment’s hiding property this is indistinguishable from 〈Sendk(b), Recω1,...,ωs

h 〉,
which in turn is equal to 〈Sendk(b), Reck〉 by the definition of Recω1,...,ωs

h . Fi-
nally, since Reck always accepts a real interaction, therefore it accepts (〈T, Reck〉 |
b, NoAbortT ) with probability 1 − δ − n−ω(1).

We can apply the above argument for any δ ≥ 1/poly(n) to conclude that
Reck accepts (〈T, Reck〉 | b, NoAbortT ) with probability 1 − δ − n−ω(1) for all
δ ≥ 1/poly(n).

Therefore Reck must accept (〈T, Reck〉 | b, NoAbortT ) with probability 1 −
n−ω(1) and so T satisfies Definition 8.

4.3 PAR-SB Commitments Imply (Stand-Alone) SH Commitments

To prove Item 2 of Theorem 2, we show that PAR-SB commitments can be used to
generate a gap between real and accessible entropy [16]. Then we apply the trans-
formation of [16] that converts an entropy gap into a statistically hiding commit-
ment.

To simplify the statement of our result, we assume that I = 2[k] andB = Uk; see
the full version for the general treatment. We also defer the definitions of real min-
entropy and accessible max-entropy and the formal proof of the main technical
lemma (Lemma 4) to the full version.

Theorem 16. For (I = 2[k],B = Uk), if there exists O(1)-round (Send, Rec) that
is PAR-SB secure for (I,B), then there exists O(1)-round statistically hiding com-
mitments.

Proof. Assume without loss of generality that Reck sends all his random coins at
the end of the opening phase, and that Rec uses m random coins in a single stand-
alone instance.

Lemma 4. Reck has real min-entropy at least km(1 − 1/k1/3) and has context-
independent accessible max-entropy ≤ km − k/4.

Lemma 4 implies there is an entropy gap, and so the theorem follows by combin-
ing it with the black-box construction of statistically hiding commitments from
entropy gaps given by Lemmas 6.7, 4.7, and 4.18 of [16].

Proof (Proof of Lemma 4.). The real min-entropy part of the claim follows from
the definitions and amplification by parallel repetition (Proposition 3.8 in [16]).
For the accessible entropy part, we use the following:
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Claim. If there exists efficient A∗ sampling context-independent max-entropy >
km − k/4 for Reck, then there exists a k-equivocal sender.

By Theorem 10 this contradicts the binding property of the commitment, and
so A∗ cannot exist. The proof follows from ideas of [16] and we defer a formal proof
to the full version.

4.4 Impossibility Results for Concurrent Composition

Again, we state our theorem for the natural case I = 2[k] and B = Uk, and defer
the general statement to the full version.

Theorem 17. For (I = 2[k],B = Uk), and relative to any oracle, no o(log n/ log
log n)-round commitment is CC-CBCH secure for I,B.

Proof. Building the equivocal sender: The message schedule we use is exactly
that of [7], which we call Σ, and is defined in the full version. The high-level idea
of T , also adapted from [7], is to execute Simk and to insert the real receiver’s
messages into one session j chosen at random, and where T aborts if the simulator
tries to rewind queries in session j. Messages for other sessions are computed using
the partial transcripts generated by the simulator so far. We defer a more explicit
description to the full version.

Analyzing equivocal sender T : [7] prove the following lemma:

Lemma 5 ([7], informal). It holds with non-negligible probability that there ex-

ists a “good session” in the execution of Sim
Reck

Σ

k , i.e. a session where Simk does not
rewind ReckΣ.

The only place where T may abort is if in its emulation of Simk, the simulator
tries to rewind the receiver in session j. Therefore, with probability 1/k, T inserts
the real receiver into the good session that is guaranteed to exist by Lemma 5
with non-negligible probability. Furthermore, since the k concurrent simulation is
indistinguishable from a real interaction, it follows that ReckΣ accepts (〈T, ReckΣ〉 |
b, NoAbortT ) with overwhelming probability.
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Abstract. For over 20 years, black-box impossibility results have been
used to argue the infeasibility of constructing certain cryptographic prim-
itives (e.g., key agreement) from others (e.g., one-way functions). A
widely recognized limitation of such impossibility results, however, is
that they say nothing about the usefulness of (known) nonblack-box
techniques. This is unsatisfying, as we would at least like to rule out
constructions using the set of techniques we have at our disposal.

With this motivation in mind, we suggest a new framework for black-
box constructions that encompasses constructions with a nonblack-box
flavor: specifically, those that rely on zero-knowledge proofs relative to
some oracle. We show that our framework is powerful enough to capture
the Naor-Yung/Sahai paradigm for building a (shielding) CCA-secure
public-key encryption scheme from a CPA-secure one, something ruled
out by prior black-box separation results. On the other hand, we show
that several black-box impossibility results still hold even in a setting
that allows for zero-knowledge proofs.

1 Introduction

A central goal of theoretical cryptography is to explore relationships between
various cryptographic primitives and, in particular, to show constructions of
various “high-level” cryptographic objects (encryption schemes, key-agreement
protocols, etc). based on “low-level” cryptographic tools (such as one-way func-
tions). This line of research has been very successful in many cases. In other
cases, however, constructions of certain primitives from others are unknown:
for example, we do not currently know how to construct public-key encryption
schemes based on one-way functions. Given this failure, it is natural to wonder
whether such constructions are inherently impossible. Unfortunately, we cannot
rule out all such constructions as long as we believe that the object in question
exists in the real world: if we believe that RSA encryption (say) is secure, then
a valid construction of public-key encryption from any one-way function f con-
sists of simply ignoring f and then outputting the code for the RSA encryption
scheme. Yet this is clearly not what is intended.
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c© International Association for Cryptologic Research 2011



560 Z. Brakerski et al.

In an effort to capture what is meant by a “natural” construction of one
primitive from another, Impagliazzo and Rudich [15] formalized the notion of
a black-box construction. Informally, a black-box construction of A from B is
a construction of A that uses only the input/output characteristics of an im-
plementation of B, but does not rely on any internal details as to how B is
implemented. Moreover, A should be “secure” as long as B is “secure” (each in
their respective senses). (We refer the reader to the work of Reingold, Trevisan,
and Vadhan [19] for a more extensive definitional treatment). Impagliazzo and
Rudich show that there does not exist a black-box construction of key agreement
from one-way functions, and since their work many more black-box impossibility
results have been shown.

A recognized drawback of existing black-box impossibility results is that they
saynothing regardingwhether these resultsmightbe circumventedusingnonblack-
box techniques. While it is true that most constructions in cryptography are black-
box, we have many examples of nonblack-box constructions as well. One striking
example is given by the observation that all known constructions of CCA-secure
public-key encryption schemes based on trapdoor permutations [18,5,20,16] are, in
fact, not black-box. (Interestingly, a partial black-box separation is known [11]).
Other nonblack-box constructions include those of [6,4,3,1,9]; we refer the reader
to [10] for further discussion and additional examples.

If black-box constructions are supposed to be representative of existing
techniques, we should update our definition of what “black-box” means. In this
paper, we propose a framework to do exactly this. Specifically, we suggest a
model that incorporates a specific class of nonblack-box techniques: those that
rely on zero-knowledge proofs. We accomplish this by augmenting the basic,
black-box model — in which there is only an oracle O for some primitive —
with a zero-knowledge (ZK) oracle that allows parties to prove statements in
zero knowledge relative to O. (Technically, a ZK oracle allows zero-knowledge
proofs for any language in NPO. We also find it simpler to work with a witness-
indistinguishability (WI) oracle, but we show that a WI oracle implies zero-
knowledge proofs in the settings we consider. In fact, although we do not define
the notion of proofs of knowledge, our formulation can also be seen as providing
that stronger property). We call any construction using black-box access to O
and its associated WI oracle an augmented black-box construction. Given
primitives A and B, we can then ask whether there exists an augmented black-
box construction of A from B; an impossibility result demonstrating that no
such construction exists rules out a broader class of approaches to constructing
one from the other. Of course, as with all impossibility results, such a result says
nothing about whether some other nonblack-box techniques might apply (and,
in fact, the nonblack-box results of, e.g., [3,1] do not fall within our framework);
nevertheless, impossibility results are still useful insofar as they show us where
we must look if we hope to circumvent them.

Our contributions. We view the primary contribution of this paper as
definitional and conceptual. In addition to putting forth the notion of aug-
mented black-box constructions, however, we also show several technical results.
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To validate our framework, we show that the Naor-Yung/Sahai [18,20] (shield-
ing) construction of CCA-secure public-key encryption from CPA-secure public-
key encryption falls within our framework. (Such a construction is ruled out, in a
black-box sense, by the result of Gertner et al. [11]). We note that
several other existing nonblack-box constructions also fall within our framework,
including those of [6,4,9]. This demonstrates that our framework meaningfully
encompasses constructions that lie outside the standard black-box model.

On the negative side, we present two impossibility results for augmented black-
box constructions. Generalizing the work of Impagliazzo and Rudich [15], we
rule out augmented (fully) black-box constructions of key-agreement protocols
with perfect completeness from one-way functions. (We leave the case of proto-
cols without perfect completeness as an open problem). Generalizing results of
Haitner et al. [12,13], we rule out augmented (fully) black-box constructions of
statistically-hiding commitment schemes with low round complexity or low com-
munication complexity from enhanced trapdoor permutations. Though it may
seem “intuitively obvious” to the reader that zero-knowledge proofs cannot help
in these settings, the challenge — as in all black-box impossibility proofs — is to
prove this intuition. (In fact, under our initial modeling of a random WI proof
system there was a construction of key agreement from one-way functions).

Outline of the paper. In Section 2 we define the notion of augmented black-
box constructions, and in Section 3 we show that our framework encompasses
the Naor-Yung/Sahai paradigm for building CCA-secure public-key encryption
from CPA-secure schemes. Our main technical results are in the sections that
follow. We rule out augmented black-box constructions of key agreement from
one-way functions in Section 4, and in Section 5 we prove lower bounds on
the round complexity and communication complexity of augmented black-box
constructions of statistically-hiding commitments from trapdoor permutations.

2 Augmented Black-Box Constructions

In this section we formally define our notion of augmented black-box construc-
tions. Recall that our goal here is to model constructions that use an oracle O
for some primitive as a black box, while also (possibly) using zero-knowledge
proofs of NP statements relative to O. To enable such proofs we introduce an
additional set of oracles (P ,V) implementing a “prover” and a “verifier”, respec-
tively. We find it easiest to model (P ,V) as a witness-indistinguishable (WI) proof
system [7], and to prove our impossibility results relative to oracles achieving
this notion. In Section 2.2, however, we show that any WI proof system can be
used to construct non-interactive zero-knowledge (NIZK) proofs in the common
random string model, assuming the existence of one-way functions.

Fix an oracle O : {0, 1}∗ → {0, 1}∗. For a language L, we say L ∈ NPO if
there exists a polynomial-time oracle machine M running in time polynomial in
its first input such that x ∈ L if and only if there exists a witness w for which
MO(x, w) accepts. (We assume a valid witness w satisfies |w| = |x| without loss
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of generality). For any L ∈ NPO, we let RL denote an NP-relation associated
with L, and we let Ln

def=L∩{0, 1}n and Rn
def= {(x, w) | (x, w) ∈ RL and x ∈ Ln}.

We now define what it means for a pair of oracles (P ,V) to be a witness-
indistinguishable proof system. (All adversaries are stateful by default).

Definition 1. Fix an oracle O, a language L ∈ NPO, and an NP relation RL

for L. An oracle WI = (P ,V) is a proof system for RL if the following hold:

– Perfect completeness: For any n ∈ N, (x, w) ∈ Rn, and r ∈ {0, 1}n, it
holds that Vn(x,Pn(x, w, r)) = 1.

– Perfect soundness: For any x /∈ L and any π, it holds that Vn(x, π) = 0.

WI is witness-indistinguishable (WI) if additionally:

– Witness indistinguishability: For every probabilistic polynomial-time A,
it holds that |Pr [ExptWIA(n) = 1] − 1/2| is negligible, where ExptWIA(n) is
defined as follows:

(x, w0, w1) ← AO,WI (1n); b ← {0, 1};
r ← {0, 1}n; π ← Pn(x, wb, r)

b′ = AO,WI (1n, π)
:
if (x, w0), (x, w1) ∈ Rn

output 1 iff b′ = b
else, output a random bit

When the relation RL is irrelevant for the discussion at hand, or is clear from
the context, we may abuse terminology and call WI a WI proof system for L.
We say that WI is a WI proof system for NPO if it is a WI proof system for
the NPO-complete language circuit-satO (the set of satisfiable circuits with
O gates) under the natural relation RL.

We now define our notion of black-box reductions using a base oracle O and a
WI oracle WI for NPO. The definitions and terminology are adapted from [19].

Definition 2 (Augmented fully black-box construction). There is an aug-
mented fully black-box construction of primitive Q from primitive P if there exist
probabilistic polynomial-time oracle machines G and S such that:

– For any O,WI such that O implements P , and WI is a proof system
for NPO, the algorithm GO,WI implements Q.

– For any O,WI and any (possibly inefficient) adversary AO,WI that breaks
the Q-security of GO,WI, the adversary SA,O,WI breaks the P -security of O
or the witness indistinguishability of WI .

Definition 3 (Augmented semi-black-box construction). There is an aug-
mented semi-black-box construction of primitive Q from primitive P if there exists
a probabilistic polynomial-time oracle machine G such that:

– For any O,WI such that O implements P , and WI is a proof system
for NPO, the algorithm GO,WI implements Q.

– For any O,WI and any probabilistic polynomial-time adversary AO,WI that
breaks the Q-security of GO,WI, there is a probabilistic polynomial-time S
such that SO,WI breaks the P -security of O or the witness indistinguisha-
bility of WI .
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We remark that our notions of augmented black-box constructions are not tran-
sitive: i.e., if there is an augmented black-box construction of Q from P , and an
augmented black-box construction of R from Q, this does not imply that there is
an augmented black-box construction of R from P . (On the other hand, if either
of the given constructions is black-box, that does imply an augmented black-box
construction of R from P ). The reason is that WI enables proofs for NPO but
not NPO,WI . While it is true that Definition 1 can be meaningfully changed to
allow for proofs of NPO,WI , doing so introduces technical issues (due to circu-
larity) and we were unable to prove our separation results with respect to such
a definition. We leave this as an interesting open question.

2.1 Instantiating a WI Proof System

For arbitrary O, we show how to instantiate a WI proof system for NPO. We
begin by describing a distribution such that an oracle sampled according to
this distribution is a WI proof system for NPO with overwhelming probability
(Lemma 2). We then show that this implies that measure 1 of the oracles under
this distribution constitute a WI proof system for NPO (Lemma 3). Throughout
this section, we take L to be circuit-satO.

It is convenient to view the (infinite) oracle WI as a sequence of oracles
{WI n = (Pn,Vn)}n∈N, one for each input length. Consider the distribution
over WI where, for each n, the distribution over WI n is defined as follows:

Prover oracle: Pn is a random function Pn : {0, 1}3n → {0, 1}7n whose inputs
are parsed as tuples of the form (x, w, r) ∈ {0, 1}n×{0, 1}n×{0, 1}n. Note that
Pn is defined for all such tuples (x, w, r) of the appropriate length, and not only
for those satisfying (x, w) ∈ RL (i.e., Pn does not check whether (x, w) ∈ RL).

Verifier oracle: The verifier oracle is a function Vn : {0, 1}8n → {0, 1}, whose
inputs are parsed as pairs of the form (x, π) ∈ {0, 1}n × {0, 1}7n. The function
is defined as:

Vn(x, π) =
{

1 if ∃(w, r) s.t. π = Pn(x, w, r) ∧ (x, w) ∈ RL

0 otherwise

Note that WI sampled as above is always a proof system. It remains to show
that witness indistinguishability holds with overwhelming probability. We begin
by proving that, for oracles distributed as above, it is essentially impossible to
“spoof” a proof. That is, for n large enough, the only way to generate a proof π
such that Vn(x, π) = 1 is by querying Pn. This property of the WI oracle will
also be useful later.

Lemma 1. For an oracle algorithm AO,WI , let Spoofn be the event that A
makes a query Vn(x, π) that returns 1, yet π was not output by a previous
query Pn(x, w, �) with (x, w) ∈ RL. For any O, any A making at most q or-
acle queries, and any n, the probability of Spoofn is at most q · 2−4n (where the
probability is taken over choice of WI according to the distribution above).
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Proof (sketch). We drop the subscript n for ease of presentation. There are at
most 23n elements in the range of P and these are distributed uniformly in a
space of size 27n. Since P is chosen independently of O, queries to O give no
information about the range of P . Each P-query reveals one point in the range
of P , but as the other points in the range are chosen independently this does not
help to find another element in the range. The probability that any particular
query V(x, π) returns 1 if π was not previously output by P is at most 2−4n.
Taking a union bound over all the queries of A gives the desired result.

Lemma 2. For any oracle O, every probabilistic polynomial-time oracle ma-
chine A, and n large enough:∣∣∣∣Pr [ExptWIA(n) = 1] − 1

2

∣∣∣∣ ≤ 2−n/2,

where ExptWIA(n) is as in Definition 1, and the above probability is also taken
over the choice of WI .

Proof. Consider some value of n, and fix the values of WI other than WI n.
Assume without loss of generality that A(1n) outputs values (x, w0, w1) with
(x, w0), (x, w1) ∈ Rn. Then A is given a proof π and has to identify whether
w0 or w1 was used to generate it. We observe that for all k �= n the output of
any query to Pk or Vk is independent of the bit b. Therefore from this point on
we focus on queries to Pn and Vn. Let q be the total number of oracle queries
made by A. We may assume that A does not query Vn since it can simulate this
oracle by itself to within statistical difference at most 2−n (for n large enough).
Indeed, there are three types of queries to Vn:

– The query Vn(x, π). In this case, the output is 1.
– Queries of the form Vn(x, π′), where π′ was output by a previous query

Pn(x, w, �) with (x, w) ∈ Rn. Once again, in this case the output is 1. Note
that A can check in polynomial time whether (x, w) ∈ Rn.

– All other queries to Vn. In this case, Lemma 1 shows that the output of all
these queries is 0 except with probability at most q · 2−4n, which is bounded
by 2−n for n sufficiently large.

Given the above, and the fact that Pn is chosen at random, it follows that A
cannot distinguish which witness was used with probability better than q · 2−n,
which is bounded by 2−n/2 for n sufficiently large. The lemma follows.

Lemma 3. Fix an oracle O. For measure 1 of the oracles WI under the dis-
tribution defined above, WI is a witness-indistinguishable proof system for L.

Proof. Completeness and soundness always hold, and so we must only prove
witness indistinguishability. To do so we apply a standard argument using the
Borel-Cantelli lemma for reversing the order of quantifiers in Lemma 2.

Fix O. For any n ∈ N and any probabilistic polynomial-time A, denote by
En,A the event in which WI is chosen such that∣∣∣∣Pr [ExptWIA(n) = 1] − 1

2

∣∣∣∣ > 2−n/3.
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Lemma 2 and an averaging argument imply that for any A and sufficiently
large n the probability of En,A is at most 1/n2. Then

∑
n Pr[En,A] is finite, and

so the Borel-Cantelli lemma implies that the probability over choice of WI that
event En,A occurs for infinitely many values of n is zero. Thus, for large enough
n and measure 1 of the oracles under the distribution in question we have∣∣∣∣Pr [ExptWIA(n) = 1] − 1

2

∣∣∣∣ ≤ 2−n/3.

This holds for any specific A, and therefore by removing a set of measure 0 for
each of the (countably many) machines A we obtain that for measure 1 of the
oracles WI it holds that for all probabilistic polynomial-time A the quantity∣∣Pr [ExptWIA(n) = 1] − 1

2

∣∣ is negligible.

Before concluding this section we prove a technical result regarding oracles WI
sampled according to the distribution described earlier. We show that if f is one-
way relative to O, then for measure 1 of the oracles WI under the distribution
defined above f remains one-way relative to (O,WI ).

Lemma 4. Let f be a polynomial-time oracle machine such that fO is one-way
relative to O. Then for measure 1 of the oracles WI under the distribution
defined above, fO is one-way relative to (O,WI ).

Proof. It suffices to show that for any ppt A the probability that AO,WI inverts
fO is negligible, where the probability is also taken over choice of WI . We can
then proceed as in Lemma 3 to obtain the stated result.

Assume toward a contradiction that there exists an algorithm A and a poly-
nomial p(n) ≥ n such that the running time of A is bounded by p(n) and, for
infinitely many n, it holds that AO,WI inverts fO with probability at least 1/p(n)
when WI is chosen at random. We show how to construct a ppt algorithm Â
such that ÂO inverts fO with inverse-polynomial probability for infinitely many
values of n, a contradiction.

Â(1n, y) runs A(1n, y), simulating the WI oracle for A as follows. Let k∗ =
log p(n). Algorithm Â samples WI k = (Pk,Vk) according to the prescribed
distribution for all k ≤ k∗, and these are used to (perfectly) simulate {WI k}k≤k∗
to A. Thus, we now only need to deal with the queries of A to WI k for k > k∗.
When A queries Pk(x, w, r), then Â returns a random π ∈ {0, 1}7k as the result.
When A queries Vk(x, π) then Â first checks to see whether there was any prior
query Pk(x, w, �) = π with (x, w) ∈ RL. If not, then Â returns 0 in response to
this Vk-query. Otherwise, Â returns 1.

It follows from Lemma 1 that Â’s simulation of A degrades the latter’s prob-
ability of inversion by at most 1/2p(n). This implies that ÂO inverts fO with
probability at least 1/2p(n) for infinitely many values of n, a contradiction.

2.2 Zero-Knowledge Proofs

We define a notion of zero knowledge, and then discuss appropriate conditions
under which zero-knowledge (ZK) proofs can be constructed from WI proofs.
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In our context, zero knowledge is most easily expressed in terms of non-interactive
zero knowledge in the common random string model.

Definition 4. Fix an oracle O and a language L ∈ NPO. An oracle ZK =
(P ,V) is a proof system in the common random string model for L with relation RL

if there is a polynomial � such that the following hold:

– Perfect completeness: For all n ∈ N, all (x, w) ∈ Rn, all crs ∈ {0, 1}�(n),
and all r ∈ {0, 1}n, we have V(crs, x,P(crs, x, w, r)) = 1.

– Statistical soundness: With all but negligible probability over choice of
crs ∈ {0, 1}�(n), there do not exist x �∈ Ln and π such that V(crs, x, π) = 1.

ZK is a non-interactive zero-knowledge (NIZK) proof system if additionally:

– Black-box (adaptive) zero knowledge: There exists a ppt simulator

Sdef=(S1,S2) such that for all probabilistic polynomial-time A the following is
negligible:∣∣∣∣∣∣∣∣Pr

⎡⎢⎢⎣
crs ← {0, 1}�(n);

(x, w) ← AO,ZK(crs);
r ← {0, 1}n;

π ← P(crs, x, w, r)

: AO,ZK(π) = 1 ∧ (x, w) ∈ Rn

⎤⎥⎥⎦
− Pr

⎡⎣ (crs, s) ← SO,ZK
1 (1n);

(x, w) ← AO,ZK(crs);
π′ ← SA,O,ZK

2 (s, x)
: AO,ZK(π′) = 1 ∧ (x, w) ∈ Rn

⎤⎦∣∣∣∣∣∣ .
Constructing NIZK proofs from WI proofs. Fix an oracle O, and let
WI = (P ,V) be a WI proof system for L =circuit-satO. We show that if a
one-way function fO exists relative to O,WI , then we can construct an NIZK
proof system for NPO.

Assume fO is one-way relative to O,WI . Using f , we can construct, in a
black-box fashion, a pseudorandom generator GO : {0, 1}n → {0, 1}2n (see [14]).
Define the following language L′ ∈ NPO:

L′def=
{
(x, crs) s.t. ∃w ∈ {0, 1}n for which (x, w) ∈ RL or crs = GO(w)

}
.

A zero-knowledge proof that x ∈ L can then be constructed [7] by giving a
witness-indistinguishable proof that (x, crs) ∈ L′. In more detail, given a WI
proof system (P ,V) for L, consider the following proof system (PZK,VZK) for L:

Prover PZK: Given crs, x, w with crs ∈ {0, 1}2n and (x, w) ∈ Rn, set x′ =
(x, crs) and note that (x′, w) ∈ L′. Use a Levin reduction to the NPO-complete
language L to obtain (x̂, ŵ) ∈ L. Choose r ← {0, 1}|x̂| and return the proof
π = P(x̂, ŵ, r).

Verifier VZK: Given crs, x, π, set x′ = (x, crs) and use a Levin reduction to the
NPO-complete language L to obtain x̂. Then output V(x̂, π).
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Theorem 1. If (P ,V) is a WI proof system for L, then (PZK,VZK) is an NIZK
proof system for L.

Proof. Completeness is immediate, and statistical soundness of (PZK,VZK) fol-
lows from the soundness of (P ,V) and the fact that a uniform crs ∈ {0, 1}2n is
in the range of G with only negligible probability.

A simulator S = (S1,S2) is given as follows. S1(1n) chooses w ← {0, 1}n
computes crs = GO(w), and then outputs (crs, w). Given x, simulator S2 sets
x′ = (x, crs), applies a Levin reduction to (x′, w) to obtain (x̂, ŵ) ∈ L, chooses
r ← {0, 1}|x̂|, and outputs π = P(x̂, ŵ, r).

The fact that S provides a good simulation follows from pseudorandomness
of G relative to O,WI , and witness indistinguishability of WI .

3 An Augmented Black-Box Construction

Here we show that the Naor-Yung/Sahai construction of CCA-secure public-key
encryption from CPA-secure public-key encryption can be cast as an augmented
fully black-box construction. This result is not surprising; the point is to demon-
strate that our framework does, indeed, capture constructions that go beyond
the usual black-box ones. In particular, the construction is shielding in the ter-
minology of [11], something ruled out in that same work in a black-box sense.

Let O = (G, E, D) be a public-key encryption scheme (with perfect correct-
ness), and let WI = (P ,V) be a WI proof system for NPO. Assume O is
CPA-secure relative to O,WI . As noted in Section 2.2, we can use WI to con-
struct an NIZK proof system (PZK,VZK) for NPO. (Existence of CPA-secure
encryption implies existence of a one-way function). Moreover, we can use the
results of Sahai [20] to transform (PZK,VZK) into a simulation-sound NIZK
proof system ssZK = (PssZK,VssZK) for NPO. (We remark that for WI sam-
pled according to the distribution described in Section 2.1, the NIZK proof
system (PZK,VZK) would already satisfy simulation soundness with overwhelm-
ing probability. However, here we want a construction starting from any WI
proof system). For notational convenience, we will treat ssZK as an NIZK proof
system for the specific language

L
def= {(c1, c2, pk1, pk2) | ∃m, r1, r2 : c1 = EO

pk1
(m; r1)

∧
c2 = EO

pk2
(m; r2)}.

We now describe the construction of a CCA-secure encryption scheme:

KeyGen GO,ssZK: Compute (pk1, sk1) ← G(1n) and (pk2, sk2) ← G(1n). Then
choose crs ← {0, 1}�(n) and set PK = (pk1, pk2, crs) and SK = (sk1, sk2).

Encryption EO,ssZK: To encrypt plaintext m, choose r1, r2, r ← {0, 1}n and
then compute the ciphertexts c1 = Epk1 (m; r1) and c2 = Epk2 (m; r2). Set
x = (c1, c2, pk1, pk2) and w = (m, r1, r2) and generate an NIZK proof π =
PssZK(crs, x, w, r). Output (c1, c2, π).

Decryption DO,ssZK: To decrypt (c1, c2, π), set x = (c1, c2, pk1, pk2) and check
that VssZK(crs, x, π) = 1. If not, output ⊥. Otherwise, output m = Dsk1(c1).
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The following theorem follows from [20, Theorem 4.1].

Theorem 2. Let O be an encryption scheme (with perfect correctness) that is
CPA-secure relative to O,WI . Then the above is an augmented fully black-box
construction of a CCA-secure encryption scheme from O.

4 An Impossibility Result for Key Agreement

In this section, we rule out augmented black-box constructions of key agreement
with perfect completeness from one-way functions. (We conjecture that the result
extends to the case of imperfect completeness, but we were unable to prove this).
For the remainder of this section, we only consider 1-bit key-agreement protocols
with perfect completeness.

Say (A, B) is a pair of polynomial-time oracle algorithms that is an augmented
black-box construction of key agreement from one-way functions. Then:

– For any O,WI such that WI is a proof system for NPO and all n, following
an execution between AO,WI (1n) and BO,WI (1n) both parties agree on a
common bit k ∈ {0, 1}.

– Given (A, B) and E, define the advantage of E by the following experiment:
1. AO,WI (1n) and BO,WI (1n) interact, resulting in a shared key k and a

transcript T .
2. E is given T , and outputs a bit k′.

The advantage of E is |Pr[k′ = k] − 1/2|.
For any O and WI such that O is one-way relative to (O,WI ) and WI

is a WI proof system for NPO, every unbounded algorithm E making at
most polynomially many queries to O and WI has negligible advantage.

To prove that no augmented (fully) black-box construction of key agreement
from one-way functions exists, fix some (A, B) and consider an execution of
(A, B) when O is chosen at random and WI is chosen as described in Sec-
tion 2.1. A random oracle is one-way [15], and Lemma 4 shows that it remains
one-way in the presence of WI chosen from the specified distribution. Moreover,
by Lemma 3 we have that WI is a WI proof system for NPO. We note that
even though these lemmas are stated with respect to polynomial time adver-
saries, since our proofs relativize, they also hold for computationally unbounded
adversaries making at most polynomially many oracle queries. Thus, if (A, B)
were an augmented black-box construction of key-agreement from one-way func-
tions, then for any unbounded algorithm E making at most polynomially many
oracle queries that has non-negligible advantage, there should exist a polynomial
time machine SE,O,WI that inverts O or breaks the witness indistinguishability
of WI . However, since S makes at most polynomially many queries to O,WI
(even indirectly through E), such an S does not exist. Therefore, every un-
bounded algorithm E making at most polynomially many queries to O and WI
should have negligible advantage. However, we show an explicit E for which this
is not the case, thus proving that no augmented (fully) black-box construction
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of key agreement from one-way functions exists. (In fact, our attack works for
any oracles O,WI , not just those chosen according to the distributions stated).
E can be made efficient if P = NP ; thus any augmented semi-black-box con-
struction of key agreement from one-way functions would imply P �= NP .

4.1 Breaking Key Agreement Relative to a Random Oracle

In this section we provide a warmup for our main proof by ruling out (standard)
black-box constructions of key agreement from one-way functions. This proof
may also be of independent interest for pedagogical purposes as a simplified
version of the proofs in [15,2]. Note, however, that we prove a weaker result: we
only rule out constructions of key-agreement protocols with perfect completeness
based on one-way functions.

Let (A, B) be a construction of key agreement from one-way functions. Let qA
(resp., qB) be a polynomial upper bound on the number of queries made by A
(resp., B). Consider an attacker E defined as follows. E, given a transcript T
of an execution of (A, B) in the presence of a random oracle O, maintains a set
Q(E) of query/answer pairs for O, and a multiset of candidate keys K, both
initialized to ∅. Then E runs 2qB + 1 iterations of the following attack:

– Simulation phase: E finds a view of A consistent with the given transcript
and with Q(E). This view contains the randomness rA used by A, as well as a
set of oracle queries/answers Q̂(A) made by A. The set Q̂(A) is chosen to be
consistent with any queries/answers in Q(E), but it need not be consistent
with the true oracle O.

Let k denote the key computed by A in the view. Then E adds k to K.
– Update phase: E makes all queries in Q̂(A) \Q(E) to the true oracle O, and

adds the resulting query/answer pairs to Q(E).

Following the above, E has a multiset K of 2qB +1 possible keys. E outputs the
majority value in K.

In each iteration E makes at most qA queries to O. Thus, E makes O(qA · qB)
queries overall. We claim that E outputs the key computed by A and B with
probability 1. Toward this, we first prove the following:

Claim 1. Let k denote the actual key computed by A and B in an execution of
the protocol. Then in each iteration of the attack, either E adds k to K, or E
adds to Q(E) one of the queries made by B in the real execution.

Proof. Let Q(B) denote the queries made by B in the real execution of the
protocol. In a given iteration, there are two possibilities. If Q̂(A) ∩ Q(B) �⊆
Q(E), then we are done since E makes all queries in Q̂(A) \ Q(E) to the true
oracle O. If, on the other hand, Q̂(A) ∩ Q(B) ⊆ Q(E) then there is an oracle
Õ that is consistent with the sampled view of A and the view of the real B.
That is, there is an execution of the protocol with an oracle Õ that yields the
observed transcript T , a view for B identical to the view of the real B, and a
view for A identical to the view generated by E in the current iteration. Perfect
completeness implies that the key k computed by A in this case must match the
(actual) key computed by B.
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Since B makes at most qB queries, it follows that there are at most qB iterations
in which E adds an incorrect key to K, and so at least qB+1 iterations in which
E adds the correct key to K. Since E outputs the key that occurs most often,
E always outputs the correct key.

4.2 Breaking Key Agreement Relative to O, WI
Here we prove the main result of this section:

Theorem 3. There is no augmented fully black-box construction of key agree-
ment with perfect completeness from one-way functions.

The overall structure of the attack is the same as in the previous section, but
there are some key differences. Our attack again proceeds by having E repeatedly
find a view of A consistent with a transcript T and the oracle queries Q(E) that
E has made thus far. Let Q(A) and Q(B) denote the queries of A and B,
respectively, in the actual execution of the protocol, and let Q̂(A) denote the
queries of A in the view found by E in some iteration. In the previous section
we argued that as long as Q̂(A) ∩ Q(B) ⊆ Q(E), the key found by E in the
given iteration matches the key computed by the real B. This was because,
under that condition, there must exist an oracle Õ that is consistent with an
execution of the protocol in which party A makes queries Q̂(A), party B makes
queries Q(B), and the resulting transcript is T . Here, however, that need not
be the case. For example, consider a real execution of the protocol in which B
makes a query V(x, π) that returns 1, yet B does not make any corresponding
query P(x, w, �) = π with (x, w) ∈ RL. If E samples a view of A in which x �∈ L,
then there are no oracles Õ, W̃I consistent with the sampled view of A and the
real view of B, but neither does E necessarily learn any new queries in Q(B).

We deal with the above by modifying the attack and changing the proof. First,
we modify the attack by having E sample extended views of A, which include a
view of A along with additional oracle queries used for “book-keeping”. Second,
rather than showing that, in every iteration, E either learns the correct key or a
query in Q(B), we show that, in every iteration, E either learns the correct key
or a query in Q(AB)def=Q(A) ∪ Q(B).

An additional subtlety arises due to the possibility that Spoofi occurs (cf.
Lemma 1) for some i. In our attack we handle this by guaranteeing that Spoof =
∪iSpoofi occurs with sufficiently small probability, and showing that the attack
is successful whenever Spoof does not occur. (Our proof can be significantly
simplified if we make the assumption that A(1n) and B(1n) only query their
oracles on inputs of length n, however we wish to avoid this assumption).

Preliminaries: We view Q(A), Q(B), and Q(E) interchangeably as sets of
queries and sets of query/answer pairs. We write, e.g., [P(x, w, r) = π] ∈ Q(A)
to denote that A made the query P(x, w, r) and received the answer π. As usual,
we let L denote the set of satisfiable circuits with O-gates.

We assume any key-agreement construction (A, B) has the following normal
form: Before a party queries P(x, w, r), that party also asks all O-queries neces-
sary to check whether (x, w) ∈ RL; after receiving the result π = P(x, w, r), that
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party also asks V(x, π). Any key-agreement protocol can be modified to satisfy
this condition with only a polynomial blow-up in the number of queries. We let
q = q(n) ≥ n denote a polynomial upper bound on the combined running time
of A and B (and so in particular a bound on the number of queries they make).

Without loss of generality, assume that for any (circuit) x ∈ {0, 1}n and
w ∈ {0, 1}n, computation of x on input w queries O at most n times, each time
on input of length at most n.

Extended views of A: In our attack, E will repeatedly sample extended views
of A which include A’s view along with some additional oracle queries/answers.
We denote an extended view by (rA,O′,WI ′), where rA are the random coins
of A and O′,WI ′ are a set of query/answer pairs that includes all those made by
A (using coins rA and the given transcript). E samples only consistent extended
views, which we define now.

Definition 5. Let Q =
(
O′,WI ′ = (P ′,V ′)

)
be a set of queries/answers. We

say it is consistent if

1. For every query [P ′(x, w, r) = π] ∈ WI ′, oracle O′ contains queries/answers
sufficient to determine whether (x, w) ∈ RL. Moreover, if (x, w) ∈ RL then
[V ′(x, π) = 1] ∈ WI ′, while if (x, w) �∈ RL then [V ′(x, π) = 0] ∈ WI ′.

2. For every query [V ′(x, π) = 1] ∈ WI ′, there exist w, r such that O′ contains
queries/answers for which (x, w) ∈ RL and [P ′(x, w, r) = π] ∈ WI ′.

Let T be a transcript of an execution between A(1n) and B(1n), and let Q(E) be
a set of queries/answers. We say the extended view (rA,O′,WI ′) is consistent
with T and Q(E) if O′,WI ′ is consistent, and also:

1. Every query in Q(E) is in O′,WI ′, and is answered the same way.
2. AO′,WI ′

(1n; rA), when fed with incoming messages as in T , would generate
outgoing messages consistent with T .

The attack. Let t = 4 log q. First, E queries O(x) for all x with |x| ≤ t; queries
P(x, w, r) for all x, w, r with |x| = |w| = |r| ≤ t; and queries V (x, π) for all x, π
with |x| = |π|/7 ≤ t. Denote these queries/answers by Q∗(E). The rest of the
attack is similar to that of the previous section. E, given a transcript T of an
execution of (A, B), initializes Q(E) = Q∗(E) and K = ∅, and then runs 2q + 1
iterations of the following:

– Simulation phase: E finds an extended view (rA,O′,WI ′) consistent with
T and Q(E), with O′,WI ′ of size at most |Q(E)|+ q. (If no such extended
view exists, E aborts). Let k be the key computed by A in this view. E adds
k to K.

– Update phase: E makes all queries in (O′ ∪WI ′) \ Q(E) to the true or-
acles O,WI . For any queries [P ′(x, w, r) = π] just made, E also makes
any O queries needed to determine whether (x, w) ∈ RL, as well as the
query V(x, π). All the resulting query/answer pairs are added to Q(E).



572 Z. Brakerski et al.

Following the above, E has a multiset K of 2q + 1 possible keys. E outputs the
majority value in K.

Analysis. In pre-processing, E makes polynomially many queries. In each it-
eration of the attack, E makes at most q + q(q + 1) ≤ 3q2 queries: there are
at most q queries in (O′ ∪WI ′) \ Q(E), and for each such query of the form
[P ′(x, w, r) = π] we have |x| ≤ q and so at most q queries are needed to check
whether (x, w) ∈ RL. Thus, E makes at most 7q3 queries after the pre-processing.

For any i, define Spoofi (cf. Lemma 1) to be the event that there is a query
[Vi(x, π) = 1] ∈ Q(A) ∪ Q(B), yet there is no query

[Pi(x, w, �) = π] ∈ Q(A) ∪ Q(B) ∪ Q∗(E)

with (x, w) ∈ RL. Let Spoof =
∨
i Spoofi. We claim that Spoof occurs with

probability at most 1/4. Indeed, by construction Spoofi cannot occur for i ≤ t,
and (by Lemma 1 and a union bound) Pr[

∨
i>t Spoofi] ≤ 1/8.

Define Spoof′ to be the event that, at some point during the attack, E queries
V(x, π) = 1 to the real oracle, but there was no previous query [Pi(x, w, �) = π]
made by A, B, or E with (x, w) ∈ RL. By construction, this can only possibly
occur if |x| > 4 log q. Since E makes at most 7q3 queries after the pre-processing
stage, however, Spoof′ occurs with probability at most 1/8.

In the rest of the analysis, we show that as long as neither Spoof nor Spoof′

occur, E outputs the key computed by A and B. This suffices, since then E finds
the shared key with probability at least 3/4 overall. As in the previous section,
then, the following lemma will prove Theorem 3:

Lemma 5. Let k denote the actual key computed by A and B in an execution
of the protocol, and assume neither Spoof nor Spoof′ occur. Then E does not
abort, and in each iteration of the attack either E adds k to K, or E adds to
Q(E) one of the queries made by A or B in the real execution.

Proof. Let Q(AB)def=Q(A)∪Q(B) denote the queries/answers made/received by
A or B in the real execution. We first show that E never aborts. Say Q(E) is
consistent at the beginning of some iteration; this is true by construction in the
first iteration. Since Spoof did not occur, a consistent, extended view is given by
letting (O′,WI ′) = Q(E)∪Q(AB), which is of size at most |Q(E)|+q. Moreover,
regardless of what consistent, extended view is actually sampled by E, the new
set Q(E) defined at the end of the iteration is consistent unless Spoof′ occurs.

We now prove the rest of the lemma. Let (rA,O′,WI ′) be the consistent,
extended view chosen by E in some iteration. We define three events, and show:

– If one of the events occurs, then, in the update phase of that iteration, E
adds to Q(E) some query in Q(AB).

– If none of the events occur then there are oracles Õ, W̃I that match (i.e., are
not inconsistent with) the extended view of A and the real view of B. (Thus,
by perfect completeness, E adds the correct key to K in that iteration).

Before defining the events, we introduce some terminology. Given some set of
queries Q, we say Q fixes x ∈ L if either (1) there exists a w and O-queries in Q
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such that (x, w) ∈ RL, or (2) there is a query [V(x, �) = 1] ∈ Q. We say Q fixes
x �∈ L if for all w there are O-queries in Q such that, regardless of how any of
the O-queries not in Q are answered, it holds that (x, w) �∈ RL. We define Q
fixes (x, w) ∈ RL and Q fixes (x, w) �∈ RL in the obvious way.

We now define the events of interest:

E1: O′,WI ′ disagrees with Q(AB) on the answer to some O-, P-, or V-query.
E2: There exists an x such that Q(AB) fixes x ∈ L but O′,WI ′ fixes x �∈ L, or

vice versa.
E3: A V ′-query returning 0 in WI ′ is “inconsistent” with the O,P queries in

Q(AB), or vice versa. Formally, one of the following occurs:
– There is a query [V ′(x, π) = 0] ∈ WI ′, but [P(x, w, �) = π] ∈ Q(AB)

and Q(AB) fixes (x, w) ∈ RL.
– There is a query [P ′(x, w, �) = π] ∈ WI ′ and O′ fixes (x, w) ∈ RL, but

[V(x, π) = 0] ∈ Q(AB).

Claim 2. If any of E1, E2, or E3 occur in the simulation phase of some itera-
tion, then E learns a new query in Q(AB) in the update phase of that iteration.

Proof. If E1 occurs, the claim is immediate. (Q(E) contains the answers of the
true oracles, and so can never disagree with Q(AB). So any disagreement be-
tween O′,WI ′ and Q(AB) must be due to some query in O′,WI ′ outside
of Q(E)). If E2 occurs there are several sub-cases to consider:

1. Say Q(AB) fixes x ∈ L, but O′,WI ′ fixes x �∈ L. The second event implies
that for all w oracle O′ fixes (x, w) �∈ RL. There are two ways the first event
can occur:
– There exists a w such that Q(AB) fixes (x, w) ∈ RL. In this case there

must be an O-query in Q(AB) that is answered inconsistently with some
query in O′, and event E1 has occurred.

– There is a query [V(x, π) = 1] ∈ Q(AB) (for some π). Since Spoof has not
occurred, this means that for some w, r there is a query [P(x, w, r) = π]
in Q(AB) or Q∗(E). Say [P(x, w, r) = π] ∈ Q(AB). Then by our normal-
form assumption, Q(AB) fixes (x, w) ∈ RL; this, in turn, implies an O-
query in Q(AB) inconsistent with O′ (which, recall, fixed x �∈ L), and
so E1 has occurred.

On the other hand, say [P(x, w, r) = π] ∈ Q∗(E). Then, by definition
of Q∗(E), the query [V(x, π) = 1] is also in Q∗(E), and Q∗(E) fixes
(x, w) ∈ RL. But since any queries in O′ must agree with the corre-
sponding O-queries in Q∗(E), this cannot happen.

2. Say O′,WI ′ fixes x ∈ L, but Q(AB) fixes x �∈ L. The second event implies
that for all w we have that Q(AB) fixes (x, w) �∈ RL. There are two ways
the first event can occur:
– There exists a w for which O′ fixes (x, w) ∈ RL. In this case there is

an O-query in Q(AB) that is answered inconsistently with some query
in O′, and event E1 has occurred.
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– There is a query [V(x, π) = 1] ∈ WI ′ for some π. By definition of
consistency, there exists w such that O′ fixes (x, w) ∈ RL. Then there
must be an O-query in Q(AB) that is answered inconsistently with O′,
and so E1 has occurred.

Finally, we turn to E3. Here there are two sub-cases:

1. Say [V ′(x, π) = 0] ∈ WI ′, but [P(x, w, �) = π] ∈ Q(AB) and further-
more Q(AB) fixes (x, w) ∈ RL. Because of our normal-form assumption,
[V(x, π) = 1] ∈ Q(AB). Thus there is a V-query in Q(AB) that is answered
inconsistently with WI ′ and so E1 has occurred.

2. Say [P ′(x, w, �) = π] ∈ WI ′ and O′ fixes (x, w) ∈ RL, but we have
[V(x, π) = 0] ∈ Q(AB). By definition of consistency, [V(x, π) = 1] ∈ WI ′.
Thus there is a V-query in Q(AB) that is answered inconsistently with WI ′,
and so E1 has occurred.

This concludes the proof of Claim 2.

To complete the proof of the lemma, we show that if none of E1, E2, or E3 occur,
there exist oracles Õ, W̃I (in the support of the distribution from Section 2.1)
that match (i.e., do not disagree with) O′,WI ′, and Q(AB). This means there
is an execution of the protocol with oracles Õ, W̃I that yields a view for B
identical to the view of the real B, and a view for A identical to the view of A
in the extended view sampled by E. Perfect completeness implies that the key
k computed by A in that case must match the (actual) key computed by B, as
we needed to show.

We construct Õ, W̃I as follows. First, answer all queries in O′,WI ′, and
Q(AB) as answered by those oracles; if E1 does not occur, this is well-defined
as there is no conflict. Answer all other queries in Õ arbitrarily. Note that if
O′,WI ′, Q(AB) fixes x ∈ L then so does Õ, and similarly if O′,WI ′, Q(AB)
fixes x �∈ L. Note also that with Õ fixed, so are L̃ and R̃L.

For P̃, proceed as follows. Recall that all P̃i queries for i ≤ t = 4 log q were
made by E during pre-processing and so are already fixed. Any other unassigned
query P̃(x, w, r) with |x| > t is defined as follows:

– If (x, w) �∈ R̃L, the query is answered arbitrarily.
– If (x, w) ∈ R̃L, let π∗ ∈ {0, 1}7|x| be such that V(x, π∗) is not in WI ′

or Q(AB). (There must exist such a π∗, by the bound on the number of
queries in these sets). Set P̃(x, w, r) = π∗.

With the Õ and P̃ queries fixed, oracle Ṽ is set as in Section 2.1.
We show that Õ, W̃I match (i.e., do not disagree with) O′,WI ′, and Q(AB).

By construction, the only possible conflict can be between Ṽ and some V-query
in WI ′ or Q(AB). No such conflict is possible:

1. Say [V(x, π) = 1] ∈ WI ′ for some x, π. Then by definition of consistency,
there exist w, r such that O′ fixes (x, w) ∈ RL, and [P(x, w, r) = π] ∈ WI ′.
But then (x, w) ∈ R̃L and P̃(x, w, r) = π, and so Ṽ(x, π) = 1.
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2. Say [V(x, π) = 1] ∈ Q(AB) for some x, π. Since Spoof does not occur, there
exist w, r such that O′ ∪ Q(AB) fixes (x, w) ∈ RL, and [P(x, w, r) = π] ∈
WI ′∪Q(AB). But then (x, w) ∈ R̃L and P̃(x, w, r) = π, and so Ṽ(x, π) = 1.

3. Say [V(x, π) = 0] ∈ WI ′ ∪ Q(AB) for some x, π. If x �∈ L̃ then Ṽ(x, π) =
0 also. If x ∈ L̃, there is an inconsistency only if there is some w with
P̃(x, w, �) = π and (x, w) ∈ R̃L. Note P̃(x, w, �) = π can only occur if
[P(x, w, �) = π] ∈ WI ′ ∪ Q(AB), but in that case (since [V(x, π) = 0] ∈
WI ′ ∪ Q(AB) and E3 did not occur) either O′ or Q(AB) fix (x, w) �∈ RL,
and hence (x, w) �∈ R̃L either.

This completes the proof of Lemma 5.

5 Impossibility for Statistically-Hiding Commitments

We show that the impossibility results of Haitner et al. [12,13] for statistically-
hiding commitment schemes can be strengthened to hold even within our new
framework. (Our results here do not require perfect completeness).

Theorem 4. Any augmented fully black-box construction of a statistically-hiding
bit-commitment scheme from trapdoor permutations over {0, 1}n has an Ω(n/ logn)-
round commit stage.

Theorem 5. Any augmented fully black-box construction of a statistically-hiding
bit-commitment scheme from trapdoor permutations over {0, 1}n requires the
sender to communicate Ω(n) bits to the receiver during the commit stage.

Note that in the above theorems we consider constructions which invoke only
trapdoor permutations over n bits, where n is the security parameter. In fact,
when considering constructions which may invoke the trapdoor permutations
over smaller domains, better upper bounds are known. In particular, it is possible
to apply the scheme of Naor et al. [17] using a one-way permutation over nε

bits, which results in a statistically-hiding commitment scheme with an O(nε)-
round commit phase. As already discussed by Haitner et al. [12] this issue is
not unique to our setting, but arises in essentially any study of the efficiency of
cryptographic reductions. The common approach for addressing this issue is by
restricting the class of constructions (as in the statements of our theorems); we
refer the reader to [12] for a less restrictive approach.

Due to space limitations the proofs of Theorems 4 and 5 are provided in the
full version of this work, and here we only give a high-level overview. We consider
a set of oracles Γ = (O,P ,V , Sam), and prove that the following hold with high
probability1:

1. O is a collection of trapdoor permutations relative to Γ .
2. (P ,V) is a WI proof system for NPO relative to Γ .

1 We prove our statements with respect to a distribution over oracles. As in Lemma 3,
we can also reverse the order of quantifiers and fix a specific oracle.
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3. Any statistically-hiding bit-commitment scheme in which the sender and
receiver have oracle access to (O,P ,V) can be broken using Γ . The efficiency
and success probability of the attack depend on the round complexity or
communication complexity of the commitment scheme.

This suffices because any (augmented) fully black-box construction is also rela-
tivizing [19].

The oracle Sam is the interactive collision-finding oracle of Haitner et al. [12].
In its most basic and non-interactive form, this oracle takes as input a circuit C,
and outputs a random pair of inputs (w, w′) such that C(w) = C(w′). Relative
to such an oracle there are no collision-resistant hash functions [21] or 2-move
statistically-hiding commitment schemes [8]. Moreover [21], one-way functions
exist relative to Sam. This oracle was generalized by Haitner et al. to an in-
teractive setting: Sam takes as input a circuit C and a “target” value z, and
outputs a random input w such that C(w) = z. Haitner et al. had to force vari-
ous restrictions on Sam such that one-way functions continue to exist, yet Sam
remains sufficiently powerful to break the binding of (interactive) statistically-
hiding commitment schemes.

In our setting, where we also consider a WI oracle (P ,V), the argument that
Sam can be used to break statistically-hiding commitment schemes is essentially
identical to the corresponding argument of Haitner et al. [12,13]. The challenging
part (in which our proof differs from that of Haitner et al.), lies in showing that
one-way functions (and, more generally, that trapdoor permutations) still exist
relative to Sam, and that (P ,V) is still witness indistinguishable.

The proofs of these properties are more subtle than the corresponding proofs
in Section 2. In that section we relied on the fact that any efficient algorithm
can issue only a polynomial number of queries to O and P . Here, however,
when considering also the oracle Sam, this is no longer true: although an ef-
ficient algorithm with access to Γ may issue only a polynomial number of di-
rect queries to O, P , and Sam, the oracles O and P may actually be indirectly
queried an exponential number of times by Sam, and the previous arguments no
longer hold.

To circumvent this and several other similar difficulties, we extend the proof of
Haitner et al. [12] that manages to distinguish between the amount of “useful in-
formation” that is obtained by direct and indirect queries, and uses information-
theoretic compression arguments that are oblivious to the (possibly exponential)
number of indirect queries. The main difficulty in our setting, when compared
to that of [12], is that we need to deal also with the oracles P and V . Note
that P is simply a random function (and thus can be treated as in [12]), but
V has structure. Technically, proving that O is one-way is very similar to the
corresponding proof in [12], since when compressing the description of O we are
granted unbounded access to P and V , and this enables us to perfectly simu-
late their behavior. The main difference is in proving that (P ,V) is a WI proof
system, and due to the structure of V this requires us to refine and adjust the
compression arguments from [12] for arguing that V does not reveal too much
“useful information” on P , and can be simulated while compressing P .
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Finally, we note that although we prove our impossibility results for non-
interactive witness-indistinguishable proof systems, our results immediately ex-
tend to non-interactive zero-knowledge proof systems (the main difference is in
allowing the sender and receiver access to a common reference string). This
follows from the fact that our impossibility results hold even for commitment
schemes in which the hiding property is assumed to hold only with respect to
the honest receiver (exactly as in [12,13]). Therefore, in such a case the receiver
can choose a common random string that transforms a witness-indistinguishable
proof system into a zero-knowledge proof system as in Section 2.2. Specifically,
showing that O is one-way relative to Γ implies the existence of a pseudorandom
generator, and therefore the transformation in Section 2.2 can be carried out by
having the receiver sample a uniform random string and send it to the sender in
the first round.

Acknowledgments

We thank the anonymous referees for their extensive comments, and Dominique
Unruh for a thorough proofreading of our results and several useful discussions.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115–162
(2006)

2. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an o(n2)-
query attack on any key exchange from a random oracle. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

3. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: 28th Annual ACM Symposium on Theory of Computing (STOC), pp.
479–488. ACM Press, New York (1996)

4. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

5. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

6. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryp-
tology 1(2), 77–94 (1988)

7. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)

8. Fischlin, M.: On the impossibility of constructing non-interactive statistically-
secret protocols from any trapdoor one-way function. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 79–95. Springer, Heidelberg (2002)

9. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

10. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM Journal on Computing 35(1), 217–246 (2005)



578 Z. Brakerski et al.

11. Gertner, Y., Malkin, T.G., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 434–455. Springer, Heidelberg (2007)

12. Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive
protocols — a tight lower bound on the round complexity of statistically-hiding
commitments. In: 48th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 669–679. IEEE, Los Alamitos (2007)

13. Haitner, I., Hoch, J.J., Segev, G.: A linear lower bound on the communication
complexity of single-server private information retrieval. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 445–464. Springer, Heidelberg (2008)

14. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

15. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing (STOC),
pp. 44–61. ACM Press, New York (1989)

16. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

17. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. Journal of Cryptology 11(2), 87–108
(1998)

18. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 427–437. ACM Press, New York (1990)

19. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

20. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 543–553. IEEE, Los Alamitos (1999)

21. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)



Towards Non-Black-Box Lower Bounds
in Cryptography

Rafael Pass�, Wei-Lung Dustin Tseng,
and Muthuramakrishnan Venkitasubramaniam

Cornell University,
{rafael,wdtseng,vmuthu}@cs.cornell.edu

Abstract. We consider average-case strengthenings of the traditional
assumption that coNP is not contained in AM. Under these assumptions,
we rule out generic and potentially non-black-box constructions of various
cryptographic primitives (e.g., one-way permutations, collision-resistant
hash-functions, constant-round statistically hiding commitments, and
constant-round black-box zero-knowledge proofs for NP) from one-way
functions, assuming the security reductions are black-box.

1 Introduction

In the past four decades, many cryptographic tasks have been put under rigorous
treatment in an effort to realize these tasks under minimal assumptions. In par-
ticular, one-way functions are widely regarded as the most basic cryptographic
primitive; their existence is implied by most other cryptographic tasks. Presently,
one-way functions are known to imply schemes such as private-key encryption
[GM84, GGM86, HILL99], pseudo-random generators [HILL99], statistically-
binding commitments [Nao91], statistically-hiding commitments [NOVY98,
HR07] and zero-knowledge proofs [GMW91]. At the same time, some other tasks
still have no known constructions based on one-way functions (e.g., key agree-
ment schemes or collision-resistant hash functions).

Following the seminal paper by Impagliazzo and Rudich [IR88], many works
have addressed this phenomenon by demonstrating black-box separations, which
rules out constructions of a cryptographic task using the underlying primitive
as a black-box. For instance, Impagliazzo and Rudich rule out black-box con-
structions of key-agreement protocols (and thus also trapdoor predicates) from
one-way functions; Simon [Sim98] rules out black-box constructions of collision-
resistant hash functions from one-way functions. Furthermore, these impossibil-
ity results are unconditional.

Yet many classical cryptographic constructions (e.g., [FS90, DDN00, GMW91])
are non-black-box. This begs the question: to what extent does black-box sepa-
rations give us insight into the actual separation of cryptographic primitives?
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In this paper, we directly focus on providing lower bounds for non-black-box
constructions of cryptographic primitives from one-way functions. We emphasize
that although we consider non-black-box constructions, we still assume Turing
(i.e., black-box) security reductions. For some of our results, we heavily lever-
age the existing literature on the impossibility of basing cryptography on NP
hardness (these works also directly consider a Turing reduction of cryptographic
primitives from NP). Perhaps surprisingly, we also make extensive use of known
black-box separations. In other words, we demonstrate that some black-box sep-
arations can be modified to give further insight into the separation of crypto-
graphic primitives.

Before stating our theorems, we first discuss our assumptions. Assumptions
are necessary for non-black-box separations assuming black-box reductions; to
show that a primitive P cannot be constructed using one-way functions, we must
at least assume that a weak notion of so-called somewhere-uninvertable one-way
functions exist—i.e. functions that cannot be inverted on all input lengths (as
opposed to infinitely many lengths as in the traditional definition of one-way
functions)1. As one of the main contributions of the paper, we introduce general
assumptions that we believe are reasonable, and are useful in establishing a
variety of non-black-box separations.

1.1 Our Assumptions

Assumption 1. Dist1sided-coNP �⊆ Heur1/polyAM is an average-case extension of
the well-studied (and widely believed) classical assumption coNP �⊆ AM. Briefly,
Dist1sided-coNP contains all coNP languages coupled with an efficiently samplable
distribution over the no instances of the language. Such a language is considered
to be in Heur1/polyAM if there exists an AM (constant-round) protocol that ac-
cepts the language, with the relaxation that soundness only needs to hold with
high probability over the no instances, as measured by the given distribution.
As we prove later, the assumption is equivalent to the existence of an efficiently
computable function f that is not heuristically co-range verifiable—that is, there
does not exist an AM protocol proving that an element is outside the range of
f , where soundness holds with high probability for a random instance f(x)2.
Assuming that there exists an efficiently computable function that is not heuris-
tically co-range verifiable seems most reasonable (consider, for instance, proving
that an element is not in the range of AES [DR02]). We additionally show that
such a function is implied by the existence of pseudorandom generators3 secure
against “promise-AM ∩ coAM”.

Assumption 2. Our second assumption is of a different flavor: we assume the ex-
istence of one-way functions that are secure against PPTSAMd . Here SAMd refers
1 If Somewhere-Uninvertable OWFs do not exist, then every cryptographic primitive

can be constructed from OWFs, because for every efficiently computable function,
there would be a trivial reduction that inverts the function on all input lengths.

2 See section 3 for a comparison with the literature of “average refutation” [FKO06].
3 Here we refer to BMY-type pseudo-random generators [BM84, Yao82].
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to the depth-d collision finding oracle defined in [Sim98, HHRS07];4 PPTSAMd

refers to the class of probabilistic polynomial time machines with oracle access
to SAMd. This assumption is flexible since we can adjust the parameter d; a
larger d implies a stronger assumption (in fact, if d = n/ logn, the assumption
is simply false since SAMn/ logn can in fact invert one-way functions [PV10]). In
our work, we focus on the case d = O(1) (constant depth), and refer to SAMO(1)
simply as SAM.

Assumption 3. Our final and strongest assumption is Dist1sided-coNP �⊆
Heur1/polyIP[PPTNP] (heuristically verified by an interactive protocol where the
prover is a probabilistic polynomial time machine with access to a NP oracle). It
directly implies assumption 1, and relying on the work of Haitner, Mahmoody-
Ghidary and Xiao [HMX10], we show that it implies assumption 2 as well in the
case d = O(1). Due to their similarity, Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP]
inherits many of the justifications as our first assumption in a weaker form (e.g., it
is based on the classical assumption coNP �⊆ IP[PPTNP], and is equivalent to the
existence of efficient functions whose co-range cannot be verified by IP[PPTNP]
protocols). We treat assumption 3 as a unifying (and strongest) assumption that
implies all of the results in our work.

Minimizing the assumption. It is natural to ask if the classical assumption
coNP �⊆ AM, or perhaps the more standard average-case hardness assumption
Dist-coNP �⊆ Heur1/polyAM, are enough for our theorems (Dist-coNP consists of
coNP languages coupled with efficiently samplable distributions that may range
over all instances). We argue that it would be unlikely. In order to rule out
constructions of cryptographic primitives based on OWFs, we first need to as-
sume the existence of OWFs. But, it is unknown even if hard-on-the-average
languages exist assuming only coNP �⊆ AM. Similarly, the stronger assumption
Dist-coNP �⊆ Heur1/polyAM implies the existence of a hard-on-the-average lan-
guage, but, as far as we know, does not imply the existence of OWFs (indeed,
this is related to the question of whether one-way functions can be based on
average-case hardness). Restricting to one-sided distributions (i.e., considering
Dist1sided-coNP instead of Dist-coNP) is the next logical step, and this can be
shown to imply a form of one-way functions (see full version).

1.2 Our Results

As mentioned, we are able to prove many separation results by adapting nu-
merous previous works to take advantage of our assumptions. We highlight the
main separations here (grouped by their assumptions), and leave the numerous
corollaries to the main text.

4 Given an interactive Turing machine M and a transcript of ≤ d rounds, the SAMd or-
acle samples uniformly from the set of random tapes on which the M would produce
the given transcript.
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Based on the work of [Bra83], [AGGM06] and [Pas06], we have

Theorem 1 (Informal). Assuming Dist1sided-coNP �⊆ Heur1/polyAM, one-way
permutations and constant-round public-coin strongly witness-indistinguishable
proofs for all of NP cannot be based on one-way functions with a Turing security
reduction.

Based on the work of [Sim98], [HHRS07] and [PV10], we have

Theorem 2 (Informal). Assuming the existence of one-way functions secure
against PPTSAMO(1) (implied by Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP]),
collision-resistant hash functions, constant-round statistically hiding commit-
ments, and constant-round black-box zero-knowledge proofs for all of NP cannot
be based on one-way functions with a Turing security reduction.

Remark 1. Based on the work of [HMX10], the results in Theorem 2 can be
obtained under the weaker assumption of Theorem 1 if we restrict to security
reductions that have constant adaptivity.

In addition to these theorems, we again stress the following philosophical con-
tribution: with the right assumptions, not only are non-black-box separation
results possible, many such separations can be based on existing techniques. For
example, the black-box separation results of [Sim98], [HHRS07] and [PV10] are
essentially “upgraded” to non-black-box separations using our framework.

1.3 Our Techniques

Regarding the first assumption, Dist1sided-coNP �⊆ Heur1/polyAM, our separation
results are largely based on previous works in the literature of separating cryp-
tography from NP hardness, specifically ruling out constructions of one-way per-
mutations [Bra83], size-verifiable one-way functions [AGGM06] and public-coin
strongly witness-indistinguishable proofs [Pas06]. These works follow a common
pattern: they take a (candidate) Turing security reduction of some cryptographic
primitive P from NP, transform the reduction into an AM protocol, and con-
clude that coNP ⊆ AM, an unlikely consequence. By adapting their techniques,
we show that a (candidate) Turing security reduction of the same primitive P
from a one-way function can be transformed into an AM protocol that inverts
the one-way function, and therefore the AM protocol may verify the co-range
of f . This is a contradiction (not surprising since our assumption is an average
case generalization of coNP �⊆ AM).

Our second assumption is used in a different fashion. Having justified the
assumption that there exist one-way functions secure against SAM = SAMO(1),
it follows that any cryptographic primitive P whose security can be broken using
SAM cannot be based on one-way functions. This is because a Turing security
reduction of primitive P from a one-way function f directly gives an algorithm
that inverts f by using the SAM oracle, if SAMO(1) can be used to break the
security of primitive P . The SAMO(1) oracle (as well as its variants) is particularly
interesting in this aspect, since it is originally studied in the setting of black-box



Towards Non-Black-Box Lower Bounds in Cryptography 583

separations. Therefore, we know from previous works that in a relativized world
with the SAMO(1) oracle, there do not exist collision-resistant hash functions
[Sim98], constant-round statistically hiding commitments [HHRS07], and zero-
knowledge proofs for all of NP [PV10]. In a similar spirit, other on black-box
separations can also be extended also to non-black-box separations; the work
then lies in justifying the resulting new assumption.
A note on Turing reductions. In this work, we only consider constructions with
Turing security reductions; that is, reductions that use the adversary (supposedly
breaking the security of the construction) as a black box. The non-black-box sim-
ulation technique of Barak [Bar01] demonstrates how the code of the adversary
can be used in security proofs for certain interactive zero-knowledge protocols.
Such non-black-box reductions might potentially also be useful in analyzing the
security of other cryptographic tasks.

However, as we argue, in the context of basing cryptographic primitives on
one another, Turing reductions provide a semantically stronger notion of secu-
rity than non-black-box reductions. The existence of a Turing reduction from a
primitive P to a primitive Q implies that any “physical device”—which might
rely on physical phenomena—that breaks the security of primitive Q, can be
used to break the security of primitive P . With a non-black-box security reduc-
tion, we would instead require an explicit description of the code of the attack
on primitive Q. Such descriptions might be hard to find: consider, for instance,
a “human-aided” computation, where a human is interacting with a computer
program in order to break a crypto system;5 getting an explicit description of
the attack would require providing an explicit (and “short”) description of the
human brain.

2 Preliminaries

We assume familiarity with common complexity classes such as NP, AM, etc.,
as well as common cryptographic primitives such as one-way functions (OWF),
collision-resistant hash-functions (CRH), zero-knowledge proofs (ZK), and
witness-indistinguishable proofs (WI).

Let [n] denotes the set {1, . . . , n}. Given an interactive protocol (P, V ) (a
pair of interactive Turing machines), let 〈P, V 〉 (x) denote the output of V (the
verifier) at the end of an execution with P (the prover), on common input x.
Given a function f : {0, 1}∗ → {0, 1}∗ and a polynomial q(n), we say g is q(n)
concatenations of f to mean that for x1, . . . , xq(n) ∈ {0, 1}n, g(x1, . . . , xq(n)) =
(f(x1), . . . , f(xq(n))) (on other input lengths, g considers part of the input to be
padding appropriately).

2.1 Distributional Languages

Definition 3 (Distributional Languages). An ensemble of distributions
is a collection D = {D1, D2, . . .} where Dn is a distribution over {0, 1}n.
5 Practical attacks on crypto-systems are often not fully automatized, but do indeed

rely on such interactions; see e.g., [AAG +00].
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The ensemble is efficiently samplable if there exists a probabilistic polynomial-
time algorithm S that, on input 1n, outputs a sample according to Dn. A dis-
tributional language is a pair (L, D) where L is a standard language and D
is an ensemble of distributions.

A well known class of distributional languages is Dist-coNP; it contains the set of
distributional languages (L, D) where L ∈ coNP and D is efficiently samplable.

2.2 Hardness Amplification of One-Way Functions

The following lemma on hardness amplification of one-way functions is due to
Yao [Yao82].

Lemma 4 ([Yao82]). Let f : {0, 1}∗ → {0, 1}∗ be an efficiently computable
function. Given any polynomial q(n), let g be q(n) concatenations of f . Then
there is a PPT oracle machine AO such that whenever O is an oracle that
inverts g with non-negligible probability, i.e., there exists some polynomial p(n)
such that for some set of n’s,

Prx←{0,1}nq(n)

[
O(g(x)) ∈ g−1(g(x))

]
≥ 1/p(n)

then AO inverts f with probability 1 − 1/q(n), i.e., for the same set of n’s,

Prx←{0,1}n

[
AO(f(x)) ∈ f−1(f(x))

]
≥ 1 − 1/q(n)

3 On Dist1sided-coNP �⊆ Heur1/polyAM

In this section we discuss our first assumption, Dist1sided-coNP �⊆ Heur1/polyAM,
starting with definitions, followed by its relation to other assumptions, and its
implications on basing cryptography on one-way functions.

Definition 5. A distributional language (L, D) is in Dist1sided-coNP if and only
if L ∈ coNP, D is efficiently samplable, and D only ranges over L̄.

Remark 2. In other words, (L, D) ∈ Dist1sided-coNP if and only if (L, D) ∈
Dist-coNP and D only sample instances not in L.

Definition 6. A distributional language (L, D) is in Heur1/polyAM if for every
polynomial q, there exists an AM (i.e., constant-round public-coin) protocol
(P, V ) such that:

Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1 −

1/q(n), an x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satisfies
Pr[〈P ∗, V 〉 (x) = 1] ≤ 1/3.
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Remark 3. As usual, the choice of 2/3 and 1/3 is arbitrary and can be amplified
to 1− 2−n and 2−n. Intuitively, the soundness condition means that L is almost
in AM, except for a fraction of instances in L̄ that is sampled with (arbitrarily
small) polynomial probability.

Remark 4. In a related work, Feige, Kim and Ofek give positive results in refut-
ing restricted random coSAT instances on average [FKO06]. The main difference
between the notion of average refutation and our definition of heuristic verifia-
bility is in where errors are allowed. An average refutation algorithm may not
refute a random unsatisfiable instance with small probability, but will never re-
fute a satisfiable instance (i.e., perfect soundness). On a philosophical level, the
work of [FKO06] gives a distribution of coSAT instances that may indeed be
heuristically verifiable.

The complexity assumption we consider is Dist1sided-coNP �⊆ Heur1/polyAM,
which is a strengthening of the more standard assumption that Dist-coNP �⊆
Heur1/polyAM, which in turn is the heuristic analog of coNP �⊆ AM.

Relation to other assumptions. To get a more concrete handle on our assumption,
we prove that Dist1sided-coNP �⊆ Heur1/polyAM is equivalent to the existence of
an efficiently computable function f that is not heuristically co-range verifiable,
i.e., there does not exist an AM protocol proving that an instance is outside
the range of f , where soundness holds only with high probability with respect
to random instances of f(x). We then present several candidates for such a
function (such as AES [DR02] and Learning Parity with Noise [BFKL93]). Using
this equivalence, we also show that Dist1sided-coNP �⊆ Heur1/polyAM is implied
by the existence of pseudorandom generators secure against BPP(Promise(AM∩
coAM))6.

3.1 Heuristic co-Range Verifiable Functions

Given a function f , consider the language Rangef =
{
f(x) | x ∈ {0, 1}∗

}
.

Definition 7. f is heuristically co-range verifiable if for any polynomial p,
there exists an AM (i.e., constant-round public-coin) protocol (P, V ) such that:

Completeness: For every y /∈ Rangef , Pr[〈P, V 〉(y) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1−1/p(n)

over x ← {0, 1}n, Pr[〈P ∗, V 〉 (f(x)) = 1] ≤ 1/3.

Theorem 8. Dist1sided-coNP �⊆ Heur1/polyAM if and only if there exists an ef-
ficiently computable function that is not heuristically co-range verifiable.

Proof. We show each direction separately.
6 Traditionally, NW-style [NW94] PRGs against AM have been considered in the

literature (see e.g., [MV05]); in contrast, we require a BMY-style [BM84, Yao82]
“cryptographic” PRG.



586 R. Pass, W.-L.D. Tseng, and M. Venkitasubramaniam

“if” part: Let f be a function that is not heuristically co-range verifiable. By
padding the input/output of f , construct another efficiently computable
function g that is length preserving (i.e., |g(x)| = |x| for all x). It is easy to
see that padding preserves heuristic co-range verifiability, and so g is also
not heuristically co-range verifiable. Consider the Dist1sided-coNP distribu-
tional language (L, D) where L = Rangeg and Dn is the distribution that
results from computing g on a uniformly random x ∈ {0, 1}n. Because g is
not heuristically co-range verifiable, (L, D) /∈ Heur1/polyAM.

“only-if” part: Let (L, D) be a distributional language such that (L, D) ∈
Dist1sided-coNP and (L, D) /∈ Heur1/polyAM, and let t(n) be a bound on
the random bits required to efficiently sample from Dn. Define f on input
x ∈ {0, 1}t(n) to be the result of sampling from Dn given randomness x
(for other input lengths, f may treat part of the input as padding). f is an
efficient function since D is efficiently samplable, and f is not heuristically
co-range verifiable precisely because (L, D) /∈ Heur1/polyAM. ��

The statement “f is heuristically co-range verifiable” can be viewed as an average-
case (heuristic) variant of the statement “Rangef ∈ coAM”. (Also observe that if f
is efficiently computable then Rangef ∈ NP ⊆ AM.) We believe that the existence
of such functions is a reasonable average-case generalization of SAT /∈ coAM:
Just as it seems “unlikely” that there exist AM proofs for proving that a string
is outside an arbitrary NP set, it seems “unlikely” that there is a AM proof for
proving that a string is outside the range an arbitrary efficiently computable
function, even if we only require soundness to hold for a random string in the
range of the function.

Candidate functions that are not heuristic co-range verifiable. Although many
traditional one-way functions (based for example on the hardness of factoring,
RSA, discrete log [Rab80], or lattice-based problems [GG00, AR05]) are co-range
verifiable, there are also "natural" one-way functions for which we do not know
of co-range verifiability protocols. We here briefly discuss a few functions that
are not known to be heuristically co-range verifiable.

Generalized AES: AES is a permutation on 128 bits [DR02]; that is, for a 128-
bit seeds, AESs is a permutation on defined on {0, 1}128. However, due to
the algebraic nature of the construction of AES, it can easily be generalized
to longer input lengths. Let AESn denote this generalized version of AES to
n-bit inputs. Now, consider the (one-way) function f(x) = AES|x|

x (0|x|). It
would seems unlikely that this function is heuristically co-range verifiable.

Random Binary Linear Codes: A random binary linear code is obtained by
encoding a message x ∈ {0, 1}n as Ax where A is a random m × n binary
matrix. Given the matrix A and a codeword y, it is easy to find the corre-
sponding message x when m ≥ n. However, the problem of finding x becomes
hard when only a “noisy” codeword is given. The learning parity with noise
(LPN) problem requires finding a random secret x, given (A, Ax + e) where
e is a “short” (binary) error vector. The worst-case variant of the LPN prob-
lem (i.e. given a set of equations Ax = s to find x that maximally satisfies
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the equations) is known to be NP-hard even to approximate [Hås01]. The
average-case version of LPN is also believed to be intractable: the LPNp,m

assumption [BFKL93] states that for p ∈ (0, 1
2 ) and polynomial m, there is

no PPT algorithm that finds x with more than negligible probability given
(A, Ax + e mod 2) where A is a random m × n binary matrix and every
component of e is set to 1 independently with probability p. It seems like
a reasonable strengthening of the LPN assumption to say that the func-
tion x �→ (A, Ax + e mod 2) is not heuristically co-range verifiable, for some
choices of m and p. In other words, there is no AM-proof showing that a
binary string y is “far” from Ax for any x, even if soundness only holds for
randomly perturbed codewords.

Pseudo-random Generators secure against BPP(Promise(AM ∩ coAM))
While not a specific function, we show that this class of PRGs are not
heuristically co-range verifiable.
Definition 9. Let Un denote the distribution of uniform bit-strings of length
n. A collection of efficiently computable functions G = {gn : {0, 1}n →
{0, 1}n+1}n∈N is a PRG secure against BPP(Promise(AM∩coAM)) if no PPT
adversary with a Promise(AM ∩ coAM) oracle can distinguish the ensembles
{gn(Un)}n∈N

and {Un+1}n∈N
with non-negligible probability in n.

Claim 10. Let g : {0, 1}n → {0, 1}n+1 be a PRG secure against
BPP(Promise(AM ∩ coAM)). Then g is not heuristically range verifiable.

Proof. Assume for contradiction that g is heuristically range verifiable. By
the definition of heuristic range verifiability, there is a AM protocol (P, V )
such that on input g(x) for a uniformly random x ∈ {0, 1}n, V rejects g(x)
with probability at least 1−1/n. Let S = {x ∈ {0, 1}n | Pr[V rejects g(x)] ≤
1/n} (i.e., the set of x where V fails to reject g(x)). Then we must have

Prx←{0,1}n [x ∈ S] ≤ 2/n

Let T = {g(x) | x ∈ S}, i.e., the set of inputs where (P, V ) has high sound-
ness error. Now consider the promise problem Π = (ΠY , ΠN ) = (Rangeg −
T, Rangeg). Note that Π is trivially in NP ⊆ AM, and that Π ∈ coAM by
definition of T (via protocol (P, V )). Therefore Π ∈ AM ∩ coAM.

We now describe a polynomial-time distinguisher D that has oracle access
to a decision procedure for the the promise problem Π . On input y, D simply
outputs Π(y). To show that D is a good distinguisher for g, observe that

Pr
x←{0,1}n

[D(g(x)) = 1] ≥ Pr
x

[g(x) /∈ T ] = Pr
x

[x /∈ S] ≥ 1 − 2
n

On the other hand,

Pr
y←{0,1}n+1

[D(y) = 1] ≤ Pr
y

[y /∈ Rangeg] ≤
1
2

��

Claim 10 together with forthcoming theorems yields the following trade-off:
if certain cryptographic primitives can be based on OWFs, then there does
not exist PRGs secure against BPP(Promise(AM ∩ coAM)).
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3.2 Consequences of Dist1sided-coNP �⊆ Heur1/polyAM

The assumption Dist1sided-coNP �⊆ Heur1/polyAM implies some impossibility re-
sults on basing cryptographic primitives on one-way functions. First, we provide
an outline of our proof framework.

Recall that we consider arbitrary non-black-box (and even non explicit) con-
structions based on one-way functions, but restrict our attention to Turing
(black-box) security reductions. This means a primitive P constructed from a
one-way function f is accompanied by a PPT oracle reduction RO, such that
whenever O is an oracle that “breaks the security of P , RO inverts the f with
non-negligible probability. We will show that for certain primitives P and respec-
tive oracles O that break the security of P , the reduction RO can be emulated in
an AM protocol, allowing the verifier of the AM protocol to invert the one-way
function. Coupled with the Yao’s amplification lemma (Lemma 4), the verifier
can actually invert f with very high probability, and therefore heuristically verify
the co-range of f (by checking for a lack of inverses).

We present the lower-bound result for one-way permutations and Strong WI
AM proofs based on OWFs below.

On Basing One-Way Permutations on One-Way Functions. We first
formalize the definition of basing one-way permutations (OWP) on one-way
functions (OWF) with Turing (black-box) reductions, and show that such a
construction is ruled out by the assumption Dist1sided-coNP �⊆ Heur1/polyAM.

Definition 11. We say that OWPs can be based on OWFs if:

Construction: There is a mapping that takes the description of any polynomial-
time function f (candidate OWF) and outputs the description of a permu-
tation φ = φf (candidate OWP).

Reduction: For any polynomial-time function f , there is a PPT oracle algo-
rithm Rf such that whenever O inverts φ, i.e., there is a polynomial p such
that Prx←{0,1}n [O(φ(x)) = x] ≥ 1/p(n), RO

f inverts f , i.e., there is some
polynomial p′ such that

Prx←{0,1}n [RO
f (f(x)) ∈ f−1(f(x))] ≥ 1/p′(n)

The following theorem is proved using our framework combined with the work
of [Bra83].

Theorem 12. If OWPs can be based on OWFs, then Dist1sided-coNP ⊆
Heur1/polyAM (contradicting our assumption).

Proof. Suppose that OWPs can be based on OWFs. We will show that every effi-
ciently computable function is heuristically co-range verifiable. Fix any efficient
function f and polynomial q(n) (as in the definition of heuristically co-range
verifiability), and define g to be q(n) concatenations of f . By assumption, there
exists a permutation Pg and an efficient security reduction Rg such that, given
an oracle O that inverts φ inverts g, RO

g inverts g with non-negligible probability.
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Using Lemma 4, we can construct a new efficient reduction R̃f that, given an
oracle O that inverts φ inverts g, R̃O

f inverts f with probability 1 − 1/q(n).
Next we recall from [Bra83] an AM protocol that allows the verifier to run R̃f

without access to O. The verifier start by sending the prover a sufficiently long
random string to act as the random tape of R̃f . The prover then runs R̃f with
the given randomness, solving oracle queries as needed. When R̃f terminates,
the prover sends the output of R̃f as well as any oracle query-answer pairs
encountered in the execution of R̃f to the verifier. The verifier can check the
validity of the oracle query-answer pairs, and the validity of the execution using
the given oracle query-answer pairs. On common input y, the verifier accepts if
and only if R̃f (y) fails to find an inverse.

Completeness: If y /∈ Rangef , and if the prover simulates R̃f (y) honestly, then
the verifier will always accept the simulation, and of course R̃f will never
find an inverse to y under f . Hence we have completeness probability 1.

Soundness: We may assume that the verifier accepts the execution of R̃f (y)
provided by the (possibly cheating) prover. In this case, the simulated exe-
cution of R̃f (y) is identical to a real execution of R̃O

f (y) for a “perfect oracle”
O that answers all queries correctly; this is because every oracle has exactly
one answer. Therefore:

Pr
x←{0,1}n

[R̃f (f(x)) ∈ f−1(f(x))] > 1 − 1/q(n)

By an averaging argument, we have that with probability at least 1−3/q(n)
over a random x ∈ {0, 1}n, y = f(x),

Pr[R̃f (f(x)) ∈ f−1(f(x))] > 2/3

in which case the verifier would reject.

This concludes that f is heuristically co-range verifiable.

Remark 5. The difficulty of extending Theorem 12 to other cryptographic prim-
itives comes from constructing an AM protocol. For many primitives (e.g., col-
lections of trapdoor one-way functions), an oracle that breaks the security of the
primitive suffers from two caveats: some queries have no answers (which cannot
be checked by the verifier), and some queries have multiple answers (which al-
low a cheating prover to adaptively select the answer). These difficulties are well
known; see [BT03, AGGM06, HMX10].

Theorem 12 can be extended beyond one-way permutations. For example, it
can rule out basing certified collection of (trapdoor) permutations on one-way
functions [BY96]. In this case, an oracle query consists of a candidate permu-
tation description and a candidate image. The verifier can check whether each
description is indeed a valid permutation in the collection (certifiable), and if so
expect a unique inverse of the given image. (We may even extend the definition
of “certified” to mean certifiable under an AM protocol.)
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Another example is to rule out basing size-verifiable, polynomial-sized pre-
image one-way functions on one-way functions [AGGM06]. In this case, size-
verifiable one-way functions allow the verifier to check the pre-image size of any
oracle query (in particular the verifier checks whether a pre-image exists). Then,
the verifier may ask the prover to provide all polynomially many pre-images to
force a unique answer.

On Basing Public-Coin Strongly Witness Indistinguishable Proofs on
OWFs. Using the same framework, we rule out the possibility of basing O(1)-
round public-coin strongly witness-indistinguishable proofs (Strong-WI AM) for
languages in NP on OWFs. Below, we provide the result and brief overview of
the proof. The complete proof will appear in the full version.

The definition of basing Strong-WI AM proofs on OWFs can be extended
similarly to OWPs. Roughly speaking, for any language L, there exists a mapping
from the description of any function f to a protocol (P sWI

f , V sWI
f ) and a reduction

R such that for any adversary O and pair of ensembles of distributions,
{
D1
n

}
n∈N

and
{
D2
n

}
n∈N , and D1

n and D2
n are distributions over L ∩ {0, 1}n × {0, 1}∗, if

O distinguishes proofs of statements using (P sWI
f , V sWI

f ) sampled from the two
distributions D1

n and D2
n, then RO inverts f with non-negligible probability. The

main result we obtain using the work of [Pas06] is.

Theorem 13. If there exists O(1)-round Strong-WI AM proof systems with per-
fect completeness based on OWFs for all NP-languages, then Dist1sided-coNP ⊆
Heur1/polyAM.

On a high-level, [Pas06] shows how to construct a game Gf from any function
f using a Strong-WI AM protocol for NP languages based on f such that there
exists a reduction from breaking the game to inverting the function f . Addi-
tionally, he shows that a worst-case breaking oracle for Gf can be simulated
using an AM protocol. We obtain our result using the same game Gf but in-
stead of using any one-way function f , we use the function g obtained from any
language (L, D) ∈ Dist1sided-coNP as in the proof for OWP. Since a worst-case
breaker can be simulated using an AM protocol, following the proof technique
from Theorem 12, it essentially follows that (L, D) ∈ Heur1/polyAM.

4 On One-Way Functions Secure against PPTSAMO(1)

In this section we explore our second assumption: the existence of one-way func-
tions that cannot be inverted by PPTSAMO(1) : efficient algorithms that have
access to a SAMO(1) oracle.

4.1 Definition of the SAM Oracle

Let M be a probabilistic interactive Turing machine that runs a d-round pro-
tocol. Let transi = (a1, b1, . . . , ai, bi) be a partial transcript of the messages
exchange with M(1n) in an execution. We use :: to denote appending messages
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to a transcript. Define Rtransi
(M) to be the set of all random tapes τ for which

Mτ (1n, a1, b1, . . . , bj−1) = aj for all j < i; we say that such a τ is consistent with
respect to transi. Without loss of generality, we assume that M sends the first
message (i.e., outputs a message on initiation). The oracle SAMd(n) takes inputs
of the form Q = (M(1n),transi, r) where transi−1 = (a1, b1, . . . , bi−1) is a par-
tial transcript and r ∈ {0, 1}∗. On input Q, SAMd(n) outputs (τ ′,transi−1 :: ai)
such that τ ′ ∈ Rtransi−1(M(1n)) and Mτ ′(1n,transi) = ai,7 with the following
restrictions:

1. If i > 1, then (a1, b1, . . . , ai−1) was the result of a previous query of the form
(M, (a1, b1, . . . , bi−2), r′) for some r′ ∈ {0, 1}∗.

2. τ ′ is uniformly distributed in Rtransi−1(M) over the randomness of SAMd(n),
independent of all other queries.

3. SAMd(n) answers queries only up to a depth d(n), i.e. i ≤ d(n).

Otherwise, SAMd(n) outputs ⊥. The role of r in the query is to obtain new and
independent samples for each r and to allow a verifier to obtain the same sample
query by querying on the same r.

Our above description of the SAMd(n)-oracle is a stateful instantiation of the
oracle defined in [HHRS07]. Just as in [HHRS07], for our results, we need the
oracle to be stateless; [HHRS07] specify how to modify the oracle to achieve this
(using “signatures”); we omit the details. When clear from context, we drop the
input 1n to M .

Definition 14. We say that a (one-way) function f : {0, 1}∗ → {0, 1}∗ is se-
cure against (or hard to invert by) PPTSAMd if for every oracle PPT machine
A there exists a negligible function ν(·) such that

Pr[x ← {0, 1}n ; y = f(x) : ASAMd(y) ∈ f−1(y)] ≤ ν(n)

In this work, we focus on the SAMO(1) and in the rest of the paper, we refer to
this oracle simply by SAM.

Definition 15. We say that a language L is in BPPSAM if there exists an oracle
PPT machine M such that the following holds:

Completeness: For every x ∈ L, Pr[MSAM(x) = 1] ≥ 2/3
Soundness: For every x �∈ L, Pr[MSAM(x) = 1] ≤ 1/2

The second assumption that we consider to establish non black-box lower bounds
is the existence of one-way functions that are secure against PPTSAM. We justify
our assumption in the next section.

7 It suffices to consider an oracle that merely outputs τ ′, however, we consider SAM
that additionally outputs transi−1 :: ai for ease of exposition.
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4.2 Relation to Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP]

Definition 16. A distributional language (L, D) is in Heur1/polyIP[PPTNP] if
for every polynomial q, there exists an interactive protocol (P, V ) where P ∈
PPTNP (oracle PPT machine with oracle access to an NP oracle) such that:

Completeness: If x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2/3.
Soundness: For every n ∈ N and every machine P ∗, with probability 1 −

1/q(n), an x ∈ {0, 1}n sampled from Dn conditioned on x /∈ L satisfies
Pr[〈P ∗, V 〉 (x) = 1] ≤ 1/3.

The assumption Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP] is a heuristic extension
of the worst case assumption coNP �⊆ IP[PPTNP], i.e., there are no interactive
proofs for coSAT where the prover is efficient with a NP oracle. While coNP �⊆
IP[PPTNP] is not as well studied as more standard assumptions like coNP �⊆ AM,
the search for the aforementioned interactive proof for coSAT has been open since
the question was raised by Babai, Fortnow and Lund in 1991 [BFL91]. Next we
show that Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP] implies the existence of one-
way functions secure against PPTSAM; the bulk of the technical content of the
proof is taken from [HMX10].

Lemma 17. If Dist1sided-coNP �⊆ Heur1/polyIP[PPTNP], then there exists a one-
way function that is secure against PPTSAM.

Proof. We prove the contrapositive. Suppose all efficiently computable func-
tions can be inverted by PPTSAM. Fix any (L, D) ∈ Dist1sided-coNP and any
polynomial q as in the definition of Heur1/polyIP[PPTNP]. We will show that
(L, D) ∈ Heur1/polyIP[PPTNP].

Let t(n) be a bound on the randomness required to efficiently sample from
Dn, define f on input x ∈ {0, 1}t(n) to be the result of sampling from Dn given
randomness x, and let g = gq be q(n) concatenations of f . By assumption,
there is a PPT oracle algorithm R such that RSAM inverts g with polynomial
probability. By Lemma 4, we can further construct a PPT oracle algorithm R̃
such that R̃SAM inverts f with probability 1 − 1/q(n).

By the work of Haitner et. al [HMX10], the reduction R̃ can be simulated
in an interactive proof (P, V ) where the P is an efficient algorithm with access
to an NP oracle. Specifically, using Theorem 5.2 of [HMX10]8, with parameter
δ = 1/q, (P, V ) has two properties:

Completeness: (P, V ) has completeness error 1/q(n) (the probability that V
aborts).

Soundness: For any (possibly cheating) prover P ∗, if V does not abort,
〈P ∗, V 〉 (y) (the output of V ) and the output of R̃SAM(y) has statistical
difference at most 1/q(n).

8 The theorem number refers to the full version of [HMX10] on ECCC.
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We modify the protocol so that V on input y accepts if and only if V does not
abort during the simulation of R̃, and that R̃ does not find an inverse of y under
f . The resulting protocol shows that (L, D) ∈ Heur1/polyIP[PPTNP]:

Completeness: On input y ∈ L, i.e., y /∈ Rangef , V only rejects during the
simulation of R̃ because R̃ can never find an inverse to y. Therefore V rejects
with probability at most 1/q(n).

Soundness: Let P ∗ be an arbitrary machine. On a random input y /∈ L dis-
tributed according to Dn, i.e., y = f(x) for a random x ∈ {0, 1}t(n), R̃SAM(y)
would find an inverse of y with probability 1 − 1/q(n). Therefore, if V does
not reject the simulation of R̃ provided by P ∗, V would find an inverse of y
with probability at least 1− 2/q(n). By an averaging argument, with proba-
bly at least 1 − 3/q(n) over choosing y from Dn, Pr[〈P ∗, V 〉 (y) = 0] ≥ 2/3.

4.3 Consequences of the Existence of One-Way Function Secure
w.r.t PPT SAM

Assuming the existence of one-way function secure against PPT SAM we show
separation of collision-resistant hash-functions, O(1)-round statistically-hiding
commitments and O(1)-round zero-knowledge proofs for NP from OWFs. On a
high-level, for each of these primitives, we show that there exists an adversary
that can break the security with oracle access to SAM. Therefore, if these prim-
itives could be based on one-way functions, then we arrive at a contradiction
under the assumption.

As with the case of one-way permutations, we consider arbitrary non-black-
box (and even non explicit) constructions, but as before restrict attention to
Turing (i.e., black-box) security reductions. The definitions of basing CRHs,
statistically-hiding commitments and zero-knowledge proofs on one-way func-
tions can be extended analogously from OWP. Below we discuss briefly how the
SAM oracle can be used to break each primitive.

Collision-Resistant Hash-Functions: Recall that, the SAM oracle can sam-
ple uniform collisions for probabilistic interactive Turing machines. If we
consider the efficient Turing machine that computes the CRH function, it
follows that SAM can find a collision for a uniform input to the CRH if one
exists. Since any length-compressing function with high-probability has col-
lisions for uniformly chosen inputs, SAM breaks any CRH. We remark that
it suffices to consider the potentially weaker SAM1-oracle to break CRHs.
As a consequence, we obtain the following theorem.

Theorem 18. Assuming the existence of one-way functions that are secure
against PPTSAM, we have that worst-case CRHs cannot be based on OWFs.

As a corollary, we also obtain (a potentially weaker statement) that
worst-case CRHs cannot be based on OWFs unless Dist1sided-coNP ⊆
Heur1/polyIP[PPTNP].
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Statistically-Hiding Commitments: We show that, for every O(1)-round
statistically hiding commitment based on one-way functions, there exists
a cheating sender who with oracle access to SAM violates the binding prop-
erty of the commitment. Haitner, Hoch, Reingold and Segev [HHRS07] prove
that using the stronger SAMπ oracle (that finds collisions for PPT machines
that access a random permutation oracle π), there is a cheating committer
that can break the binding property of any fully black-box construction of
a statistically-hiding commitment scheme based on one-way permutations.
It essentially follows using the same proof that without access to any oracle
π, SAM can break any statistically-hiding commitment scheme with a PPT
committer. As a consequence, we obtain the following theorem.

Theorem 19. Assuming the existence of one-way functions secure w.r.t.
PPTSAM, then there exists no O(1)-round statistically-hiding bit-commitment
scheme based on one-way function.

As for the case of CRHs, we also have that there exists no O(1)-round
statistically-hiding bit-commitment scheme unless Dist1sided-coNP ⊆
Heur1/polyIP[PPTNP].

Zero-Knowledge Proofs: Using similar techniques we show how to extend to
lower-bound of [PV10] on O(1)-round zero-knowledge proofs based on one-
way functions. Goldreich-Krawczyk [GK96b] showed that only languages in
BPP have constant-round public-coin black-box zero-know-ledge protocols.
In [PV10], this lower bound was extended to “fully black-box” constructions
of black-box zero-knowledge proofs (that could be private-coin) based on
one-way functions. More precisely, they show that only languages decidable
by oracle PPT machines with oracle access to SAMπ (for random permu-
tation π) can have constant-round fully black-box zero-knowledge proofs.
On a high-level, they establish this lower-bound, by providing a transforma-
tion that takes any private-coin zero-knowledge proof based on OWFs and
produces a public-coin zero-knowledge proof in a SAMπ-relativized world
and then concluding using the result of Goldreich-Krawczyk for public-coin
protocols. Based on the result of [PV10], we obtain the following theorem.

Theorem 20. Assume the existence of one-way functions that are secure
w.r.t. PPTSAM, there does not exist O(1)-round computational zero-knowledge
proofs for all of NP based on one-way functions.

Following the proof of [PV10], we can show that only languages in PPTSAM

have O(1)-round computational zero-knowledge proofs based on one-way
functions. We complete the argument by noting that our assumption implies
that NP �⊆ BPPSAM, since otherwise, we can construct an oracle PPT ma-
chine that with oracle access to SAM inverts OWFs. We provide the formal
proof in the full version.

Finally, we remark that Theorem 20 implies Theorem 19 relying on the result
of Goldreich and Kahan [GK96a] and Theorem 19 implies Theorem 18 relying
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on the result of Damgård, Pedersen and Pfitzmann [DPP98]. Nevertheless, the
direct proofs are simpler and as mentioned before, it suffices to assume the
weaker SAM1-oracle for Theorem 18.
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Abstract. A one-way permutation (OWP) is one of the most funda-
mental cryptographic primitives, and can be used as a building block for
most of basic symmetric-key cryptographic primitives. However, despite
its importance and usefulness, previous black-box separation results have
shown that constructing a OWP from another primitive seems hopeless,
unless building blocks already achieve “one-way” property and “permu-
tation” property simultaneously. In this paper, in order to clarify more
about the constructions of a OWP from other primitives, we study the
construction of a OWP from primitives that are very close to a OWP.
Concretely, as a negative result, we show that there is no fully black-box
construction of a OWP from a length-increasing injective one-way func-
tion (OWF), even if the latter is just 1-bit-increasing and achieves strong
form of one-wayness which we call adaptive one-wayness. As a corollary,
we show that there is no fully black-box construction of a OWP from
a regular OWF with regularity greater than 1. Since a permutation is
length-preserving and injective, and is a regular OWF with regularity
1, our negative result indicates that to construct a OWP from another
primitive is quite difficult, even if we use very close primitives to a OWP
as building blocks. Moreover, we extend our separation result of a OWP
from a length-increasing injective OWF, and show a certain restrictive
form of black-box separations among injective OWFs in terms of how
much a function stretches its input. This result shows a hierarchy among
injective OWFs (including a OWP).

Keywords: black-box separation, injective one-way function, one-way
permutation, adaptive one-wayness.

1 Introduction

A one-way permutation (OWP) is one of the most fundamental cryptographic
primitives1. It has been shown that OWPs are sufficient for constructing most
of basic “symmetric-key” primitives, which include, e.g. pseudorandom genera-
tors [18,2], pseudorandom functions [4], symmetric-key encryption schemes and
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1 Unless otherwise stated explicitly, whenever we say “OWP”, we mean a single OWP,

not a family of OWPs.
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message authentication codes. While most of primitives implied by a OWP are
later shown to be implied by an ordinary one-way function (OWF) (e.g. a pseu-
dorandom generator from any OWF [7]), it is usual that a primitive built from
a OWP is more efficient than the one built from a general OWF. Therefore, a
OWP is still quite an important primitive, and constructions of a OWP from
other (simpler) primitives (possibly efficiently) is worth studying. However, how
to construct a OWP from other primitives has not been studied well, compared
to constructions of other primitives that use a OWP as a building block. In this
paper, we focus on constructions of OWPs.

There are several negative results on this, in terms of black-box constructions2.
The combination of the results by Rudich [14] and Kahn et al. [10] shows that
there is no black-box construction of a OWP from a OWF. Chang et al. [3]
later extend it and show that there is no black-box construction of a OWP
from (a family of) trapdoor functions or private information retrieval protocols.
These negative results indicate that it is quite difficult to construct a OWP from
other primitives. There are also some positive results. However, to the best of
our knowledge, the only positive results about the construction of a OWP are
the constructions from primitives which already have “one-way” property and
“permutation” property simultaneously: Yao [18] shows that the existence of a
permutation which is weakly one-way implies that of a (normal) OWP. Goldreich
et al. [5] show that if a family of OWPs satisfies some special properties, it can
be used to construct a single OWP.

Taking into account these negative and positive results on the constructions
of OWPs, a natural question that arises here is: Which properties of a OWP
make it hard to construct a OWP from other primitives? To clarify this, in this
paper, we focus on a special type of OWFs, a length-increasing injective OWF,
and tackle the problem of whether we can construct a OWP from it. Recall
that a permutation is a function which is both length-preserving and injective.
Therefore, a length-increasing injective OWF is one of the primitives that is
extremely close to a OWP. Regarding this problem, our answer is negative.

The problem on a OWP versus a length-increasing injective OWF can be
generalized into the following form: Let m, � be integers with m > � ≥ 0. Can we
construct an �-bit-increasing injective OWF from an m-bit-increasing injective
OWF? (Note that if m ≤ �, then the answer to the question is trivially yes.) We
also tackle this problem and show a partial negative answer.

1.1 Our Contribution

In this paper, we show that even if we use a very close primitive to a OWP,
it is impossible to construct a OWP in a black-box manner. More concretely,
2 Roughly speaking, a construction of a primitive from another is black-box if the

constructed primitive does not use the code of the building block primitive, and the
reduction algorithm for the security proof does not use the code of an adversary
attacking the constructed primitive. In this paper, we only talk about the so-called
fully black-box constructions (reductions) defined in [13]. See [13] for other types of
black-box constructions/reductions.
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we show in Section 3 that there is no fully black-box construction3 of a OWP
from a length-increasing injective OWF, even if the latter is just 1-bit-increasing
and achieves stronger type of one-wayness which we call adaptive one-wayness
(see below). We note that this separation result is not implied by the previous
results [14,10,3] on a black-box separation of a OWP from other primitives.
Actually, one of the results in [3] implies the separation of a OWP from an
injective OWF whose range is sparse (e.g. length-tripling functions). However,
our impossibility holds as long as the building block injective OWF is length-
increasing, regardless of the sparseness of the range. An immediate corollary of
the separation result is the non-existence of a fully black-box construction of a
OWP from a regular OWF4 for any regularity greater than 1. Note that a OWP is
also a regular OWF with regularity 1. Therefore, our negative results suggest that
constructing a OWP is quite difficult (or maybe impossible) unless a building
block primitive already achieves both “one-way” property and “permutation”
property simultaneously.

Moreover, we extend our above result to show some restricted type of black-
box separations among injective OWFs. More precisely, we show in Section 4
that for any integer pair (�, m) satisfying m > � ≥ 0, there is no range-invariant
fully black-box construction of an �-bit-increasing injective OWF from an m-bit-
increasing injective OWF, where a construction of an injective OWF from other
primitives is said to be range-invariant if the range of the constructed injective
OWF depends only on the construction and is independent of the building block
primitives. Note that a OWP is a 0-bit-increasing injective OWF, and any con-
struction of a OWP from other primitives is inherently range-invariant, and thus
our first separation result is the special case of the latter one in which � = 0.
Although this range-invariance condition seems a bit heavy when � > 0, this
result shows a hierarchy among injective OWFs (including a OWP), and we
think this result is interesting. So far, we are not sure whether we can remove
the range-invariance condition from this separation result, and thus we would
like to leave it as an open problem.

In order to make our black-box separation results stronger, for both of our
separation results, we consider a stronger type of one-wayness, adaptive one-
wayness, for building block OWFs. Roughly, an injective function is adaptively
one-way if it is one-way against adversaries that have access to a “magical”
inversion oracle which takes a string (other than a challenge instance that the
adversary has to invert) as input and returns the inverse of the value. Our
definition of adaptive one-wayness is different from the one introduced by Pandey
et al. [11] who considered it in a “tag-based” setting while ours does not consider
it. See Section 2 for a formal definition.

3 This is the most restrictive type of black-box constructions formalized in [13]. How-
ever, it should be noticed that most cryptographic constructions of a primitive from
another primitive is fully black-box.

4 Roughly, a function is said to be regular if it is length-preserving and each image
of the function has the same-sized set of preimages, and the regularity is the size of
the set of preimages which map to a same image.
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1.2 Technical Overview of Our Separation Results

The combination the results by Rudich [14] and Kahn et al. [10] shows that
there is no (so-called ∀∃ semi-)black-box construction of a OWP from a OWF.
However, it is known that if we only need to exclude a more restrictive form of
black-box constructions, fully black-box constructions, of a OWP from a OWF,
proving the following statement is sufficient (see also [12]): “For any oracle prob-
abilistic polynomial time algorithm (PPTA) P, if PO implements a permutation
for all random oracles5 O, then there is an oracle PPTA that has access to O and
a PSPACE-complete oracle and inverts PO.”6 Let us call this statement “(A)”.

Since we will use the basic proof strategy for the statement (A) in our black-
box separation results, we briefly outline the proof, and then explain the prob-
lems that arise when proving our results.

Basic Proof Strategy for Separation of OWP and (Ordinary) OWF. To prove
the statement (A), we construct a computationally unbounded adversary A that
makes only polynomially many queries to its given random oracle O and success-
fully inverts PO: Given a string y∗ ∈ {0, 1}k which A has to find the preimege
under PO, A first generates an empty list L that will be used to maintain the
“known” query/answer pair of O, and then repeats the following steps 1 to 3 for
polynomially many times:

Step 1: find a string x′ and an oracle Õ under the condition: Õ(α) = O(α) for
all α ∈ L and PÕ(x′) = y∗.

Step 2: check if PO(x′) = y∗ (note that here we use O, not Õ), and terminate
with output this x′ if this is the case.

Step 3: askO all thequeriesmadebyPÕ(x′) andupdate theknownquery/answer
pair list L.

The key observation is that in each iteration, either (a) A finds a preimage x∗

such that PO(x∗) = y∗ and terminates at Step 2, or (b) at Step 3 A finds (and
stores in L) at least one query that is also made by P during the computation of
y∗ = PO(x∗) but has not been contained in the known queries L. Very roughly,
this is because if (a) and (b) are simultaneously false, then we can construct a
“hybrid” random oracle Ô that behaves like O on the queries made by PO(x∗)
and like Õ on those made by PÕ(x′). This hybrid oracle Ô has the property
that PÔ(x∗) = PÔ(x′) = y∗ while x∗ �= x′, which is a contradiction because PÔ

implements a permutation which cannot have a collision (recall that PO′
imple-

ments a permutation for all random oracles O′). Since P makes only polynomially
many queries to O, by repeating the above procedure polynomially many times
A eventually finds the preimage x∗ and terminates, or we reach the situation
where L contains all the queries made by PO(x∗). Note that if L contains all

5 Here, “all random oracles” should be interpreted as “all the possible instances of
random oracles”.

6 According to [14, Sect. 9.1], this statement can be shown as a corollary of the result
independently discovered in [1,6,16]. For more details, see [14].
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the queries made by PO(x∗), then the preimage of y∗ under the permutation PÕ

(where Õ is the oracle chosen at Step 1) must be x∗, because O(α) = Õ(α) for
all the queries α made by PO(x∗), which means that PO(x∗) = PÕ(x∗) = y∗.
Since Step 1 in each iteration can be simulated by a PPTA with oracle access to
a PSPACE-complete oracle7, A can actually be a PPTA.

Problems for Separations of OWP and Length-Increasing Injective OWF. For
our purpose of (fully) black-box separation of a OWP from a length-increasing
injective OWF (say, m-bit-increasing with m > 0), we would like to replace the
random oracle in the statement (A) with a random instance of oracles O which
is m-bit-increasing and injective (we call it m-bit-increasing injective oracle).
We are given an oracle PPTA P such that PO′

implements a permutation for
all m-bit-increasing injective oracles O′. Then, consider the same proof strategy
as above, i.e. constructing a PPTA adversary A that has access to an m-bit-
increasing injective oracle O and PSPACE-complete oracle, and tries to invert
a given instance y∗ = PO(x∗) by the above procedure. However, if we naively
do the sampling process of x′ and Õ at Step 1, we will meet some problem
when arguing the above key observation. More concretely, even though we have
PÕ(x′) = y∗ and x∗ �= x′, it might be the case that the range of O and Õ
have an overlap outside the range corresponding to L, which could prevent the
hybrid oracle Ô from being injective. If Ô is not injective, then it is no longer
guaranteed that PÔ is a permutation, and thus having a collision does not cause
a contradiction.

Therefore, in order to avoid such a situation, we have to choose the m-bit-
increasing injective oracle Õ in Step 1 so that we can always construct an “in-
jective” hybrid oracle Ô from O and Õ. Our solution is to choose Õ so that (i)
Õ(α) = O(α) for all α ∈ L and (ii) for all other inputs from {0, 1}∗\L, the range
of Õ and that of O are disjoint. It will be shown later that picking such Õ is
always possible as long as Õ is length-increasing.

Another problem that arises here is that it might not be possible to execute
Step 1 modified as above by only using a PSPACE-complete oracle and making
only polynomially many queries to O, because it seems that we need the entire
knowledge about the range of O in order to pick such Õ. However, since O
is a random m-bit-increasing injective oracle, it seems hard to know the range
of O entirely by making only polynomially many queries to O. To solve it, we
adopt the so-called “two oracle” separation paradigm introduced by Hsiao and
Reyzin [8], which is sufficient for showing the non-existence of fully black-box
constructions. More concretely, we introduce another oracle B (which we call
“breaking oracle”) that helps A to do the above procedure of picking x′ such
that PÕ(x′) = y∗ where Õ is chosen as above. To make Step 3 possible, the
oracle B also outputs a query set that is made by PÕ(x′) to Õ.

7 This is because what we need is not the entire oracle Õ, but the queries made by
PÕ(x′), which is a witness for a certain NP language statement, which can be picked
by using a PSPACE-complete oracle.
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Now, since we have introduced a new oracle B, we also have to show that an
m-bit-increasing injective oracle O is one-way in the presence of B. We will show
that (adaptive) one-wayness of O in the presence of B can be reduced to (adap-
tive) one-wayness of a random permutation oracle π against computationally
unbounded adversary S that makes only polynomially many queries.

1.3 Paper Organization

The rest of this paper is organized as follows. In Section 2 we review some basic
definitions and facts used for describing our results. In Section 3, we show our
main result on a black-box separation of a OWP from a length-increasing injec-
tive OWF, and we extend the result for a restricted type of black-box separations
among injective OWFs in Section 4.

2 Preliminaries

In this section, we review basic definitions and some fact necessary used for
describing our results.

Basic Notations. Throughout this paper, we use the following notations: “N”
denotes the set of natural numbers. “x||y” denotes a concatenation of x and y. If x
is a string, then “|x|” denotes the bit length of x. “x ← y” denotes an assignment
of y to x. If S is a set, then “|S|” denotes its size, and “x ←R S” denotes that x is
chosen uniformly at random from S. If Ψ is a probability distribution, then “x ←R

Ψ” denotes that x is chosen according to Ψ , and “[Ψ ]” denotes the “support” of Ψ ,
that is, [Ψ ] = {x|Prx′←RΨ [x′ = x] > 0}. “PPTA” denotes probabilistic polynomial
time algorithm. If A is a (probabilistic) algorithm, then “z ←R A(x, y, . . . )”
denotes that A takes x, y, . . . as input and outputs z, and “AO” denotes that
A has oracle access to an oracle O. If f is a function/algorithm/oracle and S is
a (sub)domain of f , then we define f(S) = {f(x)|x ∈ S}. We say that an oracle
algorithm has query complexity q if the algorithm makes at most q queries to
its given oracle. “Permn” denotes the set of all permutations over {0, 1}n. A
function f : N → [0, 1] is said to be negligible in k if f(k) < 1/p(k) for any
positive polynomial p(k) and all sufficiently large k ∈ N.

2.1 One-Way Functions

We say that a function f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF) if
there exists a PPTA that for any x computes f(x), and for any PPTA A, the
following advantage function AdvOWf,A(k) is negligible in k:

AdvOWf,A(k) = Pr[x∗ ←R {0, 1}k; y∗ ← f(x∗); x′ ←R A(1k, y∗) : f(x′) = y∗].

If the function f is injective, then we call it an injective OWF. If f is injective and
length-preserving (i.e. permutation), we call it a one-way permutation (OWP).
If |f−1(f(x))| = |f−1(f(y))| for any x, y ∈ {0, 1}n and any n ∈ N, we call it



On Black-Box Separations among Injective One-Way Functions 603

a regular OWF, and in particular, if α(n) = |f−1(f(x))|, then we call it an
α-regular OWF.

Adaptive One-wayness for Injective Functions. In this paper, we will use a
stronger type of one-wayness for strengthening our black-box separation results.

We say that an injective function f : {0, 1}∗ → {0, 1}∗ is adaptive one-way, if
there exists a PPTA that for any x computes f(x), and for any PPTA A, the
following advantage function AdvAOWf,A(k) is negligible in k.

AdvAOWf,A(k) = Pr[x∗ ←R {0, 1}k; y∗ ← f(x∗); x′ ←R Af−1
�=y∗ (·)(1k, y∗) : x′ = x∗],

where f−1
�=y∗(·) is the inversion oracle which takes a string y as input and outputs

x such that f(x) = y if such x exists and y �= y∗, or outputs ⊥ otherwise.
We also say that f is an adaptive one-way function (AOWF). (Whenever we

say f is an AOWF, we always mean that f is injective.)

2.2 Basic Fact about Random Permutations

In this paper, we will use a simple fact that a random permutation is adaptively
one-way even against a computationally unbounded adversary who is given or-
acle access to the permutation and its inversion only polynomially many times.

Let A be an oracle adversary. Consider the following experiment ExptAOWRP,A(k):

ExptAOWRP,A(k) : [π ←R Permk; α∗ ←R {0, 1}k; β∗ ← π(α∗);

Return 1 iff Aπ,π−1
�=β∗ (1k, β∗) returns α∗]

(Here, “RP” stands for “random permutation”, and note that the experiment
includes the choice of the permutation π.) We define the advantage function of
an oracle adversary A by AdvAOWRP,A(k) = Pr[ExptAOWRP,A(k) = 1]. Regarding the
above experiment, the following is easy to prove (the proof is omitted due to
lack of space).

Lemma 1. For any (even computationally unbounded) adversary A with poly-
nomial query complexity, AdvAOWRP,A(k) is negligible in k. Specifically, if A has
query complexity q, then AdvAOWRP,A(k) ≤ (q+1)

2k−q .

3 Black-Box Separation of OWP from Length-Increasing
Injective AOWF

In this section, we show that there is no fully black-box construction of a OWP
from a length-increasing injective OWF, even if the latter is just 1-bit-increasing
and achieves adaptive one-wayness.

We first recall the formal definition of a fully black-box construction [13] of a
OWP from an m-bit-increasing injective AOWF.



604 T. Matsuda and K. Matsuura

Definition 1. Let m > 0 be an integer. We say that there exists a fully black-
box construction of a OWP from an m-bit-increasing injective AOWF, if there
exist oracle PPTAs P and R such that for all functions f that implement m-
bit-increasing injective functions and all algorithms A (where f and A are of
arbitrary complexity):

Correctness: Pf is a permutation.
Security: If AdvOWPf ,A(k) is non-negligible, so is AdvAOWf,Rf,A(k).

Now, we show the following separation between a OWP and a length-increasing
injective OWF:

Theorem 1. For any integer m > 0, there is no fully black-box construction of
a OWP from an m-bit-increasing injective AOWF.

To prove Theorem 1, We use a variant of the two oracle separation paradigm [8]:

Lemma 2. Let m > 0 be an integer. Assume that there exists a distribution Ψ
of an oracle pair (O,B) that satisfies the following three conditions:

(1): O implements an m-bit-increasing injective function for all (O,B) ∈ [Ψ ].
(2): For any oracle PPTA A, E(O,B)←RΨ [AdvAOWO,AO,B(k)] is negligible.
(3): For any oracle PPTA P, if PO′

implements a permutation for all (O′,B′) ∈
[Ψ ], then there is an oracle PPTA A s. t. E(O,B)←RΨ [AdvOWPO,AO,B (k)] = 1.

Then, there is no fully black-box construction of a OWP from an m-bit-increasing
injective AOWF.

In order to use Lemma 2, we define the distribution Ψ of an oracle pair (O,B)
in Section 3.1. Then we show that Ψ satisfies the conditions (1) and (2) in
Section 3.2, and Ψ satisfies the condition (3) in Section 3.3. Finally in Section 3.4
we show the formal proof of Theorem 1.

3.1 Definitions of Oracles and Their Distribution

m-Bit-Increasing Injective Oracle O. Let m > 0 be an integer. We say that an
oracle O is an m-bit-increasing injective oracle if (1) for every n ∈ N, O is of the
form O : {0, 1}n → {0, 1}n+m, and (2) O is injective. Let Om be the set of all
m-bit-increasing injective oracles.

“Breaking” Oracle B. Before describing the definition of our breaking oracle,
we introduce the following notation.

Definition 2. Let P be an oracle algorithm, O ∈ Om be an m-bit-increasing
injective oracle, and x be a string. A query set with respect to (P,O, x), denoted
by QSPO(x), is a set of all the queries to O made by PO(x), i.e., QSPO(x) =
{ α | PO(x) makes a query α to O }.

By definition, if the running time of P is bounded by τP, then |QSPO(x)| ≤ τP.
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Now, we describe the definition of the breaking oracle B formally. Our breaking
oracle B is associated with an m-bit-increasing injective oracle O ∈ Om. Since
B generates a slightly different m-bit-increasing injective oracle Õ based on O
during its procedure, in order not to mix up them we refer to the oracle O with
which B is associated as the “original oracle”, and the oracle Õ that is generated
in the procedure of B as a “modified oracle”.

B takes the following three objects as input:

1. a description of an oracle algorithm P that is a candidate of a OWP.
2. a set of strings L ⊆ {0, 1}∗
3. a string y

B then does the following:

Step 1 (Correctness check): Check if PO′
implements a permutation over

{0, 1}|y| for all the possible instances of m-bit-increasing injective oracles
O′ ∈ Om. If the check fails, output ⊥ and stop.

Step 2 (Generating a modified oracle Õ): For each n ∈ N, pick uniformly
an m-bit-increasing injective function g′n : {0, 1}n → ({0, 1}n+m\O({0, 1}n)).
Here, note that the size of the set {0, 1}n+m\O({0, 1}n) is 2n+m − 2n ≥ 2n

(because m > 0), and thus picking such an injective function g′n is always
possible. Then, a “modified” oracle Õ is defined as:

Õ(α) =

{
O(α) if α ∈ L

g′|α|(α) otherwise

Note that Õ ∈ Om: clearly Õ is m-bit-increasing, and is injective for each
of the subdomains L and {0, 1}∗\L; the set Õ(L) = O(L) and the set
Õ({0, 1}∗\L) = {g′|α|(α)|α ∈ {0, 1}∗\L} are always disjoint, and thus there

is no pair (α, α′) ∈ L × ({0, 1}∗\L) such that Õ(α) = Õ(α′).
Step 3 (Finding a preimage and a query set wrt. Õ): Find x such that

PÕ(x) = y. (Note that x ∈ {0, 1}|y| is unique since it is guaranteed by
Correctness check that PÕ implements a permutation over {0, 1}|y|.) Output
x and the corresponding query set QSPÕ(x).

The above completes the description of B. Although B is probabilistic (see Step
2), in order to make B behave as a deterministic function, we assume that the
randomness B uses to pick functions {g′n(·)}n∈N is fixed for each input to B, and
make B choose the same functions {g′n(·)}n∈N for the same input (P, L, y).)

Let τP be the maximum running time of P, where the maximum is over all
oracles O ∈ Om and all inputs of length |y|. Similarly to [15] and [17], we count
each B-query as |L|+τP queries, rather than naively counting it as a single query,
and make B output the response after these steps have passed from the point B
receives the input. This is to prevent an adversary from making a very “large”
B-query that may give too much information about O to the adversary.

We call a B-query valid if the correctness check passes, and invalid otherwise.
What should be noticed about the modified m-bit-increasing injective oracle

Õ is: For any L ⊆ {0, 1}∗,
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– Õ(α) = O(α) for all α ∈ L

– the set O({0, 1}∗) and the set Õ({0, 1}∗\L) are always disjoint

Moreover, the following property of B will be used later for breaking any candi-
date of OWP that is constructed from O ∈ Om.

Lemma 3. Let P be a PPTA such that PO′
implements a permutation for all

O′ ∈ Om. For any string x, any L ⊆ {0, 1}∗, and any O ∈ Om, if B is associated
with O and QSPO(x) ⊆ L, then B(P, L, PO(x)) returns x and QSPO(x).

Proof. Fix a string x, a set L ⊆ {0, 1}∗ such that QSPO(x) ⊆ L, and O ∈ Om.
Let y = PO(x). By the given condition, P will pass the correctness check. Let
Õ be the modified m-bit-increasing injective oracle generated in the step 2 of
B. By the definition of B and the given condition QSPO(x) ⊆ L, it holds that
Õ(α) = O(α) for all α ∈ QSPO(x) . This means that PÕ(x) = PO(x) = y and
QSPÕ(x) = QSPO(x). Since PÕ(·) is a permutation, the preimage of y under PÕ(·)
is unique and must be x, which is found and output in Step 3 of B together with
the query set QSPÕ(x) = QSPO(x). This completes the proof of Lemma 3. ��

Distribution Ψ of Oracles (O,B). We define “how to pick oracles (O,B) accord-
ing to the distribution Ψ” as follows: Pick an m-bit-increasing injective oracle
O ∈ Om uniformly at random, and then pick the breaking oracle B associated
with O (B’s internal randomness is fixed in this step).

3.2 Adaptive One-Wayness of O in the Presence of B
From the definition of Ψ in the previous subsection, it is clear that for any
(O,B) ∈ [Ψ ], O implements an m-bit-increasing injective function. The rest of
this subsection is devoted to proving the following.

Lemma 4. For any oracle PPTA A, E(O,B)←RΨ [AdvAOWO,AO,B(k)] is negligible.

Proof. Fix an arbitrary PPTA adversaryA, and let τA = τA(k) be A’s maximum
running time (when run with input 1k). Since A is a PPTA, τA is polynomial.

The expectation (over the choice of (O,B)) of the advantage of the adversary
A attacking adaptive one-wayness of O can be written as:

E
(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
= Pr[(O,B) ←R Ψ ; x∗ ←R {0, 1}k; y∗ ← O(x∗); x′ ←R AO,O−1

�=y∗ ,B(y∗) : x′ = x∗]

For notational convenience, we denote by Ẽxpt
AOW

Om,A(k) the experiment

Ẽxpt
AOW

Om,A(k) : [(O,B) ←R Ψ ; x∗ ←R {0, 1}k; y∗ ← O(x∗); x′ ←R AO,O−1
�=y∗ ,B(y∗)],

and we write Ãdv
AOW

Om,A(k) = E(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
.
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Assume towards a contradiction that Ãdv
AOW

Om,A(k) is not negligible. Then, we
show that we can construct another computationally unbounded adversary S that
has query complexity at most τA (and thus has polynomial query complexity)
and has non-negligible advantage in the experiment ExptAOWRP,S(k), which will con-
tradict Lemma 1. S is given 1k and an image β∗ = π(α∗) for randomly chosen
α∗ ∈ {0, 1}k and π ∈ Permk, is given oracle access to π and π−1

�=β∗ , and has to

find α∗. The description of Sπ,π
−1
�=β∗ (1k, β∗) is as follows.

Description of Sπ,π
−1
�=β∗ (1k, β∗ = π(α∗)): (Below, recall that S is computation-

ally unbounded and thus can do very powerful things such as picking an injec-
tive function uniformly, etc.) Firstly, S picks its own m-bit-increasing injective
oracle O ∈ Om uniformly at random8. Next, S defines a slightly modified m-bit-
increasing injective oracle Oπ into which S’s oracle π is “embedded” as follows:

Oπ(α) =

{
O(π(α)) if |α| = k

O(α) otherwise

Note that this modification does not change the range of the m-bit-increasing
injective oracle, i.e. Oπ({0, 1}∗) = O({0, 1}∗).

Then, S sets y∗ ← O(β∗) = O(π(α∗)) = Oπ(α∗), and runs A with input

(1k, y∗). Hereafter, S starts simulating Ẽxpt
AOW

Om,A for A in which the m-bit-
increasing injective oracle is Oπ. We note that since π is not entirely known
to S, Oπ for input length k (and the corresponding inversion) is not entirely
known to S. However, S knows all the knowledge about O (recall that O is
picked by S) and S can access to π and π−1

�=β∗ , and thus S can perfectly simulate
the responses of O-queries and the inversion (i.e. O−1

�=y∗ -)queries from A.
When A makes a B-query (P, L, y), if (P, L, y) has been queried before, the

same answer is used as a response. Otherwise, S responds as follows.

1. Firstly, S does Correctness check of P as is done in Step 1 in B, by its com-
putationally unbounded power (e.g. exhaustively checking if PO′

implements
a permutation over {0, 1}|y| for all O′ ∈ Om)9. If the check fails, S returns
⊥ to A after |L|+ τP steps from the point A made the B-query, where τP is
the maximum running time of P.

Next, for each α ∈ L∩{0, 1}k, S issues α to π and obtains the corresponding
value β = π(α). Then, for each response β ∈ π(L ∩ {0, 1}k) obtained in the
above procedure, S computes γ ← O(β).

2. S generates the “modified” m-bit-increasing injective oracle Õπ (correspond-
ing to Oπ) as is done in Step 2 of B10. As mentioned earlier, S does not have

8 Here, actually it is enough to pick O for input length up to τA, because A cannot
issue an O-query (and an O−1

�=y∗-query) of length more than τA.
9 Here, it is enough to check the correctness of P with oracles O that is defined up to

input length τP, because P cannot issue an O-query of length longer than τP.
10 With similar reasons to what we mentioned in the previous footnotes, the new oracle

Õπ is only needed to be defined for input length up to τA.
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all the knowledge about the m-bit-increasing injective oracle Oπ that S is
using for simulating Ẽxpt

AOW

Om,A for A, because π is not entirely known to
S. However, for the strings α ∈ L ∩ {0, 1}k, the corresponding evaluations
γ = Oπ(α) = O(π(α)) are already calculated in the above step, and to
generate Õπ , no further knowledge about π(·) is needed. Note also that O
itself was generated by S, and the range of Oπ is identical to that of O
(i.e. Oπ({0, 1}∗) = O({0, 1}∗)), which means that S can appropriately pick
an injective function g′n : {0, 1}n → ({0, 1}n+m\Oπ({0, 1}n)) for each input
length n ∈ N.

3. S finds x such that PÕπ(x) = y and the corresponding query set QSPÕπ (x)
by using S’s computationally unbounded power and the entire knowledge
about Õπ. Finally, S returns x and QSPÕ(x) to A after |L| + τP steps from
the point A made this B-query.

When A terminates with an output, S outputs what A outputs as a candidate
of the preimage of β∗ under π and terminates.

The above completes the description of S. Let us confirm the query complexity
of S. S issues at most one query to π (resp. π−1

�=β∗) for simulating a response to
an O-query (resp. O−1

�=y∗-query), and at most |L| queries to π for simulating a

response to a B-query. Recall that in the original experiment Ẽxpt
AOW

Om,A, each
B-query (P, L, y) is responded after |L| + τP steps from the point B is invoked,
where τP is the maximum running time of P (for |y|-bit input). These imply that
the number of S’s queries never exceeds A’s running time. Since the running
time of A is at most τA, S’s query complexity is at most τA.

Moreover, as we have explained in the description of S, S perfectly simulates
the experiment Ẽxpt

AOW

Om,A(k) for A so that the m-bit-increasing injective oracle
is Oπ. Under this situation, if A succeeds in outputting a preimage O−1

π (y∗) =
π−1(O−1(y∗)), since β∗ = O−1(y∗), S also succeeds in outputting the preimage

α∗ = π−1(β∗). Therefore, we have AdvAOWRP,S(k) = Ãdv
AOW

Om,A(k), which means that

if Ãdv
AOW

Om,A(k) = E(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
is non-negligible, so is AdvAOWRP,S(k).

Since S has only polynomial query complexity (at most polynomial τA), this
contradicts Lemma 1, and thus E(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
must be negligible.

This completes the proof of Lemma 4. ��

3.3 Breaking Any Candidate of One-Way Permutation with B
In this subsection, we show that for any candidate of a OWP that is constructed
using an m-bit-increasing injective oracle O ∈ Om, there is a perfect inverter
that has access to O and B, where (O,B) are chosen according to Ψ defined in
Section 3.1.

Lemma 5. For any oracle PPTA P, if PO′
implements a permutation for all

(O′,B′) ∈ [Ψ ], then there is an oracle PPTA A such that E(O,B)←RΨ [AdvOWPO,AO,B

(k)] = 1.
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Proof. Fix an oracle PPTA P such that PO′
implements a permutation for all

O′ ∈ Om. Let τP = τP(k) be the maximum running time of P on input k-bit
strings. Since P is a PPTA, τP is a polynomial.

The expectation (over the choice of (O,B)) of the advantage of an oracle
PPTA adversary A attacking the one-wayness of PO can be written as:

E
(O,B)←RΨ

[
AdvOWPO ,AO,B (k)

]
= Pr
[
(O,B) ←R Ψ ; x∗ ←R {0, 1}k; y∗ ← PO(x∗); x′ ←R AO,B(y∗) : x′ = x∗]

For notational convenience, we denote by Ẽxpt
OW

P,A(k) the experiment

Ẽxpt
OW

P,A(k) : [(O,B) ←R Ψ ; x∗ ←R {0, 1}k; y∗ ← PO(x∗); x′ ←R AO,B(y∗)]

(Ẽxpt
OW

P,A(k) includes the sampling of oracles (O,B) according to Ψ), and we write

Ãdv
OW

P,A(k) = E(O,B)←RΨ

[
AdvOWPO,AO,B (k)

]
.

We show that there is an oracle PPTA adversary A such that Ãdv
OW

P,A(k) = 1.
That is, A is given 1k and y∗ ∈ {0, 1}k, has access to two oracles (O,B), and
will always find the preimage x∗ ∈ {0, 1}k of y∗ under the permutation PO. The
description of AO,B(1k, y∗) is as follows:

Description of AO,B(1k, y∗): Firstly, A generates an empty list L1 = ∅. Then
for 1 ≤ i ≤ τP + 1, A does the following.

Iterations for 1 ≤ i ≤ τP + 1: A issues aB-query (P, Li, y
∗). Letxi andQS

PÕi (xi)

be the response fromB, where Õi is the modified m-bit-increasing injective or-
acle generated in the step 2 of B in the i-th iteration, xi is a string such that
PÕi(xi) = y∗, and QS

PÕi (xi)
is the corresponding query set. (Since PO′

im-
plements a permutation for all oracles O′ ∈ Om, A’s B-query is always valid.)
Then, A computes yi ← PO(xi). If yi = y∗, A terminates with output xi as
the preimage of y∗ under the permutation PO. Otherwise (i.e. yi �= y∗), A
updates the list by Li+1 ← Li ∪ QS

PÕi (xi)
, and goes to the next iteration.

If A does not terminate after τP + 1 iterations, A simply gives up and aborts.
The above completes the description of A. We first confirm the query com-

plexity of A. Clearly, the query complexity becomes maximum if A performs
all τP + 1 iterations without discovering the preimage. Thus we consider this
case. In the i-th iteration, A makes one B-query (P, Li, y

∗) which is counted as
|Li| + τP queries, and executes PO once during which at most τP queries are
made to O. Therefore, in the i-th iteration, the query complexity can increase
by at most |Li| + 2τP. Moreover, recall that in each iteration the list Li is up-
dated to Li+1 ← Li ∪ QS

PÕi (xi)
. Since |L1| = 0 and it is always the case that

|QS
PÕi (xi)

| ≤ τP, we have |Li| ≤ (i − 1)τP ≤ τ2
P for 1 ≤ i ≤ τP + 1. This im-

plies that in the i-th iteration, the query complexity can increase by at most
|Li|+ 2τP ≤ τ2

P + 2τP = τP(τP + 2). Thus, after τP + 1 iterations, A’s total query
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complexity is at most τP(τP + 1)(τP + 2), which is polynomial in k. Therefore,
the number of steps incurred by the use of oracles (O,B) is at most polynomial,
which means A works in polynomial time.

Next, we show that A can always find the preimage x∗ of y∗ under PO. We
show the following key claim, which states that in each iteration A either finds
the preimage x∗ or finds at least one “undiscovered” O-query α ∈ QSPO(x∗)\Li,
i.e. a query to O that is made by P during a computation of PO(x∗) but is not
contained in Li.

Claim 1. For every i ∈ {1, . . . , τP}, at least one of the following two is true:

(a) xi = x∗

(b) the set QS
PÕi (xi)

\Li contains at least one α ∈ QSPO(x∗)\Li

Proof of Claim 1. Assume towards a contradiction that we have both (a)
xi �= x∗ and (b) no α ∈ QSPO(x∗)\Li is contained in the set QS

PÕi (xi)
\Li. The

latter means that the set QSPO(x∗)\Li and the set QS
PÕi (xi)

\Li are disjoint.

Consider the following “hybrid” oracle Ô defined by:

Ô(α) =

{
Õi(α) if α ∈ (QS

PÕi (xi)
\Li)

O(α) otherwise

We argue Ô ∈ Om, i.e., Ô is also a possible instance of an m-bit-increasing injec-
tive oracle. For notational convenience, we write A = (QS

PÕi (xi)
\Li). Firstly, it is

clear that Ô is m-bit-increasing, and is injective for each of the subdomains A and
{0, 1}∗\A, because so are O and Õi. Secondly, recall that the sets Õi({0, 1}∗\Li)
and O({0, 1}∗) are always disjoint (see the explanation after the description of
B in Section 3.1). Since we trivially have A ⊆ ({0, 1}∗\Li) and ({0, 1}∗\A) ⊆
{0, 1}∗, the set Ô(A) = Õi(A) and the set Ô({0, 1}∗\A) = O({0, 1}∗\A) are also
disjoint, which means that there is no pair (α, α′) ∈ A × ({0, 1}∗\A) such that
Ô(α) = Ô(α′). These imply Ô ∈ Om.

Therefore, PÔ also implements a permutation.
Next, we confirm the property of this hybrid oracle Ô. The condition (b) and

the definitions of O, Õi, and Ô imply the following relations among these oracles:

(1): Ô(α) = O(α) = Õi(α) for all α ∈ Li
(2): Ô(α) = O(α) for all α ∈ QSPO(x∗)\Li
(3): Ô(α) = Õi(α) for all α ∈ QS

PÕi (xi)
\Li

where (2) is due to the condition (b), i.e. the set QSPO(x∗)\Li and the set
QS

PÕi (xi)
\Li are disjoint. On the one hand, (1) and (2) imply Ô(α) = O(α)

for all α ∈ QSPO(x∗), which in turn implies PÔ(x∗) = PO(x∗) = y∗. On the
other hand, (1) and (3) imply Ô(α) = Õi(α) for all α ∈ QS

PÕi (xi)
, which in turn

implies PÔ(xi) = PÕi(xi) = y∗.
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In summary, we have PÔ(x∗) = PÔ(xi) = y∗, while we also have x∗ �= xi by
the condition (a). This is a contradiction because PÔ is a permutation, which
cannot have a collision. Therefore, our hypothesis must be false, and (a) or (b)
must be true. This completes the proof of Claim 1. ��

Due to Claim 1, in the i-th iteration (for 1 ≤ i ≤ τP) A finds the preimage
x∗ and stops, or the set QS

PÕi (xi)
\Li contains at least one α which is contained

in QSPO(x∗) but is not contained in Li. In the latter case, since the list Li is
updated as Li+1 ← Li ∪ QS

PÕi (xi)
, the size of the set of “undiscovered queries”

QSPO(x∗)\Li decreases at least by one in each iteration. Recall that |QSPO(x∗)| ≤
τP. Therefore, when A is executed, A finds the preimage x∗ and stops within τP

iterations, or after τP iterations we have QSPO(x∗) ⊆ LτP+1. In the latter case,
by Lemma 3, the (τP +1)-th B-query (P, LτP+1, y

∗) results in x∗ (and QSPO(x∗)).
These imply that A always outputs x∗ within τP + 1 iterations, which means

that we have Ãdv
OW

P,A = E(O,B)←RΨ [AdvOWPO ,AO,B (k)] = 1. This completes the proof
of Lemma 5. ��

3.4 Putting Everything Together

Here, we show the formal proof of Theorem 1.

Proof of Theorem 1. Let m > 0 be an integer. We use the distribution Ψ of
oracles (O,B) defined in Section 3.1 for Lemma 2. Then, by definition any O
where (O,B) ∈ [Ψ ] is m-bit-increasing and injective, and thus the assumption
(1) in Lemma 2 is satisfied. Moreover, the assumptions (2) and (3) are satisfied
due to Lemma 4 in Section 3.2 and Lemma 5 in Section 3.3, respectively. Since
the distribution Ψ satisfies all the assumptions in Lemma 2, it follows that there
is no fully black-box construction of a OWP from an m-bit-increasing injective
AOWF. This statement holds for any integer m > 0. This completes the proof
of Theorem 1. ��
An immediate corollary of Theorem 1 is the following:

Corollary 1. For any integer m > 0, there is no fully black-box construction of
a OWP from a 2m-regular OWF.

Proof. Let m > 0. Suppose f : {0, 1}n → {0, 1}n+m is an m-bit-increasing
injective OWF. From f , construct a new function g : {0, 1}n+m → {0, 1}n+m

by g(x||x′) = f(x) where |x| = n and |x′| = m (i.e, g ignores the last m-bits of
the input). Then, this function g is a 2m-regular OWF (for security parameter
1n) as long as g is an m-bit-increasing injective OWF (for security parameter
1n). Trivially, the construction of g from f and the security proof are black-box,
and thus for any integer m > 0, there is a fully black-box construction of a 2m-
regular OWF from an m-bit-increasing injective OWF. Since a fully-black-box
construction of a primitive from another primitive is a transitive relation, we
have the claimed result. ��
Remark. In Theorem 1, the “stretch” m of the building block (injective) AOWFs
has been treated as a constant. However, our negative results can be extended
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to the case in which m = m(k) is a function of the input-length k (i.e. security
parameter), as long as m(k) > 0 for all k > 0. m in Corollary 1 can be a function
of the security parameter as well.

4 Restricted Type of Black-Box Separations among
Injective OWFs

In this section, we show that Theorem 1 can be extended to show the impossibil-
ity of a restricted type of black-box constructions, which we call range-invariant
fully black-box constructions, of an injective OWF from another injective OWF.

Definition 3. Let �, m ≥ 0 be integers. We say there exists a range-invariant
fully black-box construction of an �-bit-increasing injective OWF from an m-bit-
increasing injective AOWF, if there exist oracle PPTAs G and R such that:

(Correctness). For all m-bit-increasing injective functions f (of arbitrary com-
plexity), Gf is an �-bit-increasing injective function and has the same range11.

(Security). For all m-bit-increasing injective functions f and all algorithms A
(where f and A are of arbitrary complexity), if AdvOWGf ,A(k) is non-negligible,
so is AdvAOWf,Rf,A(k).

In other words, the range of the constructed �-bit-increasing injective function
Gf depends solely on G, and independent of the building block f .

Now, we state our black-box separation result among injective OWFs.

Theorem 2. For any integer pair (�, m) satisfying m > � ≥ 0, there is no range-
invariant fully black-box construction of an �-bit-increasing injective OWF from
an m-bit-increasing injective AOWF.

Note that a permutation is a 0-bit-increasing injective function. Moreover, any
construction of a permutation from other primitives has the same range, namely,
a set of all strings, and thus is inherently range-invariant. Therefore, Theorem 1
is the special case of Theorem 2 in which � = 0.

Since Theorem 2 can be proved very similarly to Theorem 1, below we only
show the outline of the proof, highlighting the different points from the proof of
Theorem 1 we need to care.

As in the case of Theorem 1, in order to show Theorem 2, we can use the
generalized version of Lemma 2 (which can be proved similarly to Lemma 2):

Lemma 6. Let � and m be integers satisfying m > � ≥ 0. Assume that there
exists a distribution Ψ of an oracle pair (O,B) that satisfies the following three
conditions:

11 That is, Gf and Gf ′
have the same range for any f , f ′ implementing m-bit-increasing

injective functions.
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(1) and (2): Same as Lemma 2.
(3): For any oracle PPTA G, if GO′

implements an �-bit-increasing injective
function and has the same range for all (O′,B′) ∈ [Ψ ], then there exists an
oracle PPTA A such that E(O,B)←RΨ [AdvOWGO,AO,B (k)] = 1.

Then, there is no range-invariant fully black-box construction of an �-bit-increasing
injective OWF from an m-bit-increasing injective AOWF.

We remark that the range-invariance condition in Theorem 2 is due to the addi-
tional condition on the range of GO in (3) in the above lemma. The reason why
we need this additional condition on the range of G is to ensure that if a string
y is in the range of GO for some O ∈ Om, then y is also in the range of GO′

for
any O′ ∈ Om, and thus the preimage of y under GO′

always exists.
To use Lemma 6 to prove Theorem 2, it remains to show the definition of

an oracle pair (O,B) and their distibution Ψ , and the conditions (1) to (3) of
Lemma 6 (i.e. the statements corresponding to Lemmas 4 and 5). For O, we
again use an m-bit-increasing injective oracle. The breaking oracle B needs to
be modified slightly: in Step 1, B checks if a given description of an algorithm
G implements an �-bit-increasing injective function and has the same range for
all m-bit-increasing injective oracles, and also checks if a given string y belongs
to the range of GO. If G and y pass the check, then it is guaranteed that there
always exist x satisfying y∗ = GO(x∗) = GÕ(x) where Õ is the modified oracle
generated in the step 2 of B and x is a string found in the step 3 of B. (Without
the checks, it is possible that such x does not exist, which we want to avoid.)
The distribution Ψ is also naturally defined.

The statement corresponding to Lemma 4, which roughly states that a random
m-bit-increasing injective function is adaptively one-way even against adversaries
with access to B that is modified as above, can be similarly proved as Lemma 4.

To show the statement corresponding to Lemma 5, which roughly states that
no �-bit-increasing injective function GO with the “range-invariance” can be
one-way if B is available, we need to rely on the additional assumption on the
range of G, especially when showing the statement analogous to Claim 1. Recall
that in order to prove Claim 1 by contradiction we need a property that under
several different oracles, namely the original oracle O, the modified oracle Õi,
and the “hybrid oracle” Ô, P always implements a permutation and causes a
situation in which y∗ = PÔ(x∗) = PÔ(xi) and x∗ �= xi. In order for the same
strategy to work, the challenge instance y∗ needs to belong to the range of the
�-bit-increasing injective functions GO, GÕi , and GÔ. Due to the assumption
we have made, however, it is guaranteed that y∗ always belong to the range of
these �-bit-increasing injective functions, and we can cause a situation in which
y∗ = GÔ(x∗) = GÔ(xi) and x∗ �= xi.
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Abstract. A seminal result in cryptography is that signature schemes
can be constructed (in a black-box fashion) from any one-way function.
The minimal assumptions needed to construct blind signature schemes,
however, have remained unclear. Here, we rule out black-box construc-
tions of blind signature schemes from one-way functions. In fact, we rule
out constructions even from a random permutation oracle, and our re-
sults hold even for blind signature schemes for 1-bit messages that achieve
security only against honest-but-curious behavior.

1 Introduction

Blind signature schemes, introduced by Chaum [10], allow a signer to interac-
tively issue signatures for a user in such a way that, roughly, the signer learns
nothing about the message being signed (blindness) while the user cannot com-
pute any additional signatures without the help of the signer (unforgeability).
Classical applications of blind signatures include e-cash, where a bank blindly
signs coins withdrawn by users, and e-voting, where an authority blindly signs
public keys that voters later use to cast their votes.

Several constructions of blind signature schemes are known in either the ran-
dom oracle model [23,1,6,7,3] or the standard model [19,8,22,12,15,16,20,13,2].
The minimal assumptions needed to construct blind signatures, however, are un-
clear. On the positive side, there exist constructions of blind signatures based on
(doubly) enhanced trapdoor permutations [19,12,16]. Interestingly, these con-
structions are all nonblack-box even in the honest-but-curious setting, relying
as they do on either generic secure two-party computation or non-interactive
zero-knowledge proofs. (More recently, protocols for secure two-party computa-
tion making only black-box use of enhanced trapdoor permutations have been
shown [18]; these could be used in conjunction with [16] to give a black-box con-
struction of blind signatures from certified enhanced trapdoor permutations).
On the other hand, for standard signatures we know that one-way functions
suffice [21,25], and there is no reason a priori to believe that blind signatures
cannot be constructed from one-way functions also.
� This work was done while visiting the University of Maryland.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 615–629, 2011.
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Previous work of Camenisch, Neven, and Shelat [9] (see also [13]) shows
that any unique blind signature scheme implies oblivious transfer. Combined
with known results showing that oblivious transfer cannot be constructed in
a black-box fashion from one-way permutations, this at first may appear to
rule out black-box constructions of blind signatures from one-way permutations.
The uniqueness requirement, however, is quite strong: Fiore and Schröder show
that unique signatures (even without the blindness requirement) cannot be con-
structed in a black-box fashion even from trapdoor permutations [11]. More
importantly, uniqueness is not a standard desideratum for blind signatures and
the result of Camenisch et al. implies nothing for blind signatures without the
uniqueness property. In another line of work, Fischlin and Schröder [14] show
that three-round blind signature schemes with signature-derivation checks can-
not be constructed in a black-box way from any non-interactive problem. Their
result, however, says nothing about protocols with more rounds, or for schemes
that do not have signature-derivation checks. We refer to the reader to [26] for
a comprehensive survey of the above results.

As our main result, we show:

Theorem 1 (Main theorem). There is no black-box construction of blind sig-
nature schemes from one-way functions.

Our result imposes no restrictions on the blind signature scheme, and applies
even to schemes with imperfect completeness. Our result is actually more general
than the above theorem indicates; it also applies to constructions based on one-
way permutations or random oracles, and even rules out constructions of blind
signature schemes for 1-bit messages that achieve security only against honest-
but-curious behavior.

The proof of our impossibility result requires a careful combination of prior
techniques in the area of black-box separations. At a high level, our basic frame-
work is similar to the one used by Barak and Mahmoody-Ghidary in studying
black-box constructions of (standard) signature schemes from one-way functions
[4]. Our setting introduces several additional difficulties, however, not least of
which is that we must deal with the case of interactive protocols. Also, Barak
and Mahmoody-Ghidary prove limits on the efficiency of constructions, whereas
we are interested in proving impossibility. To deal with these complications, we
also rely on techniques used in analyzing constructions of key-agreement proto-
cols from one-way functions [17,5]. A more detailed overview of our proof is given
in Section 2.

Black-box separations. In cryptography, constructions are usually proven se-
cure by reduction to the security of some “low-level” primitive. Most known
constructions are black-box, in that they treat the underlying primitive as an or-
acle and do not use any internal structure of the primitive; see [24] for extensive
discussion and formal definitions. Impagliazzo and Rudich [17] initiated work
showing impossibility of black-box constructions; in their paper they showed im-
possibility of constructing key-exchange protocols in a black-box manner from
one-way functions. It is important to bear in mind that several nonblack-box
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constructions are known; nevertheless, black-box impossibility are useful insofar
as they rule out a particular approach to a problem. Nonblack-box constructions
also tend to be orders of magnitude less efficient than black-box constructions.

Organization. We provide on overview of our proof in Section 2. In Section 3 we
present definitions of blind signatures, and we prove our main result in Section 4.
In Section 5 we discuss extensions of our result to handle schemes with imperfect
completeness, and to rule out constructions from one-way permutations.

2 Overview of Our Techniques

We consider interactive signature-issue protocols between a signer and a user.
The input of the signer is a private key sk, and the user’s input is a public key
pk and a message m; at the end of this protocol the user outputs a signature
σ on the message m. The algorithms run by both the signer and the user are
given black-box access to a one-way function (OWF); we allow the parties to
be computationally unbounded, but require that they only query the one-way
function a polynomial number of times. For our impossibility result, we assume
that both parties follow the protocol and are just honest-but-curious (i.e., semi-
honest). This assumption only strengthens our result.

In the setting of blind signatures, security demands that:

Unforgeability. The user should not be able to output two valid signatures
after interacting with the signer once. (More generally, the user should be
unable to output k+1 valid signatures on distinct messages after interacting
with the signer k times).

Blindness. If the user executes the signature-issue protocol twice, once using a
message m0 and once using a message m1, then the signer should be unable
to tell in which order these executions were run. This should hold even if the
signer is given both of the resulting signatures.

We show that if we wish to satisfy both conditions above then OWFs are not
sufficient. To illustrate the main idea why this is true, consider the setting where
both the user and signer are given access to a random oracle. Let Q denote the
oracle queries made by the signer in generating its public and private keys. Now
consider two protocol executions in which the user first obtains a signature on
the message m0 and then obtains a signature on the message m1. Correctness
intuitively requires that in each interaction the user learns sufficiently many of
the queries in Q in order to be abe to derive a valid signature. Unforgeability
requires that the user does not learn “too many” of the queries in Q in each
interaction; in particular, the user should not learn enough queries in the first
interaction to derive a valid signature on m1. Finally, blindness implies that,
from the point of view of the signer, the queries the user learns in the first
interaction should be distributed identically to the queries the user learns in the
second interaction. We show that all these requirements are in conflict.

More formally, we rely on results of [17,5] showing that for any two-party pro-
tocol there is an algorithm Find that takes as input a transcript of an execution of
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the protocol and outputs, with high probability, a set that contains every oracle
query that was asked by both parties (“intersection queries”). Noting that the
signer can run this algorithm, the blindness requirement thus implies that the
set obtained by running Find on the signature-issue protocol for m0 must contain
a set of intersection queries that are sufficient to derive a signature on the mes-
sage m1. (Else the signer knows that the first execution could not possibly have
been for m1). We use this to construct a forger, which is a more efficient version
of the one given in [4]. Our forger runs a single protocol execution honestly to
obtain a signature on m0, and then runs Find to learn all the intersection queries.
By what we have just said, this set will contain enough information to allow the
forger to also compute a valid signature on m1.

From a technical point of view, our proof technique can be viewed as following
the general framework proposed by Barak and Mahmoody-Ghidary [4], who show
a forger for any (standard) signature scheme constructed from one-way functions
in a black-box fashion. Our work differs from theirs in the following respects:

– The obvious difference is that we consider an interactive signing protocol,
whereas in [4] the signing algorithm was non-interactive. Moreover, Barak
and Mahmoody-Ghidary assume that signing is deterministic. This assump-
tion is without loss of generality for standard signatures, but is more subtle
in the case of blind signatures.

– While we use the same “usefulness” property as in [4], our proof that use-
fulness holds is very different from the analogous proof in their work: they
assume a large message and argue that usefulness occurs for some pair of
messages with high probability, whereas in our case we rely on blindness and
show (roughly) that usefulness holds for any two messages with all but neg-
ligible probability. This allows us to simplify the attack and obtain a forger
that makes only polynomially many oracle queries regardless of how many
oracle queries the construction uses. (In the work of Barak and Mahmoody-
Ghidary the number of queries made by the forger depends exponentially on
the number of queries made by the construction).

3 Definitions

3.1 Blind Signatures

The notation AO(x) refers to an algorithm A that on input x gets black-box ac-
cess to an oracle O. By (a, b) ← 〈X (x),Y(y)〉 we denote interactive execution of
algorithms X and Y, where x (resp., y) is the private input of X (resp., Y), and a
(resp., b) is the private output of X (resp., Y). We write Y〈X (x),·〉(y) if Y can in-
voke a single execution of the protocol with X . Accordingly, X 〈·,Y(y0)〉,〈·,Y(y1)〉(x)
denotes that X can invoke one execution each with Y(y0) and Y(y1).

We define blind signatures for 1-bit messages; since we are proving impossi-
bility, this only makes our results stronger.

Definition 1 (Oracle blind signature scheme). An oracle blind signature
scheme is a tuple of polynomial-time algorithms BS = (Gen(·), S(·), U (·), Vrfy(·)),
where for any λ ∈ N and any oracle O : {0, 1}λ → {0, 1}λ we have:
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– GenO(1λ) generates a key pair (sk, pk).
– The joint execution of SO(sk) and UO(pk, m), where m ∈ {0, 1}, generates

an output σ for the user and no output for the signer. We write this as
(⊥, σ) ←

〈
SO(sk),UO(pk, m)

〉
.

– Algorithm VrfyO(pk, m, σ) outputs a bit b.

We assume1 perfect completeness: i.e., for any λ ∈ N and O : {0, 1}λ → {0, 1}λ,
any (sk, pk) ← GenO(1λ), any m ∈ {0, 1}, and any signature σ output by UO in
the joint execution of SO(sk) and UO(pk, m), it holds that VrfyO(pk, m, σ) = 1.

3.2 Security of Blind Signatures

Blind signatures must satisfy two properties: unforgeability and blindness. For
unforgeability we require that a user who runs a single execution of the signature-
issuing protocol should be unable to forge a valid signature on two messages.
For blindness we require that in two executions of the protocol, in which the
user obtains signatures on both possible messages, the signer should be unable
to determine which message was signed in which execution. In both cases, we
assume semi-honest behavior. Our definitions of security are weaker than those
usually considered; since we show impossibility, this only strengthens our results.

In the definitions that follow we consider an execution of an oracle blind
signature scheme BS relative to a random oracle O. Since a random oracle is
one-way with overwhelming probability, any construction of blind signatures
from one-way functions must give an oracle blind signature scheme satisfying
these definitions. We remark that our definitions consider unbounded adversaries
who make polynomially many queries to O; however, we could have stated our
definitions in terms of polynomial-time adversaries given access to an NP oracle.

Definition 2 (Unforgeability). Oracle blind signature scheme BS = (Gen,
S,U , Vrfy) is unforgeable if for any semi-honest algorithm U∗ that makes at most
poly(λ) queries to O, the probability that experiment ForgeBS

U∗(λ) evaluates to 1
is negligible (in λ), where

Experiment ForgeBS
U∗(λ):

Oracle O : {0, 1}λ → {0, 1}λ is chosen at random
(sk, pk) ← GenO(1λ)
(σ0, σ1) ← U∗〈S(sk),·〉,O(pk) (where U∗ runs an honest execution

of U(pk, 0) with S and then outputs signatures of its choice)
Return 1 iff VrfyO(pk, 0, σ0) = 1 and VrfyO(pk, 1, σ1) = 1.

Definition 3 (Blindness). Oracle blind signature scheme BS = (Gen,S,U ,
Vrfy) satisfies blindness if for any semi-honest algorithm S∗ that makes at most
poly(λ) queries to O, the probability that experiment UnblindBS

S∗(λ) evaluates to 1
is negligibly close to 1/2, where

1 We relax this requirement in Section 5.1.
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Experiment UnblindBS
S∗(λ)

Oracle O : {0, 1}λ → {0, 1}λ is chosen at random
r ← {0, 1}λ; b ← {0, 1}
(sk, pk) ← GenO(1λ; r)
st ← S∗〈·,U(pk,b)〉,〈·,U(pk,b̄)〉,O(sk, pk, r) (where S∗ runs

an honest execution of the protocol with each instance of U)
Let σb, σ1−b denote the local outputs of each instance of U
b′ ← S∗O(st, σ0, σ1)
Return 1 iff b = b′.

Throughout this work we make the simplifying assumption that the signing algo-
rithm S is deterministic. This is without loss of generality when we consider the
above definitions of security, as a blind signature scheme with randomized signer
S can always be converted to a scheme with deterministic signer S′ by (1) in-
cluding a key for a pairwise-independent hash function as part of the signer’s
private key; (2) having the user send a random nonce as its first message in the
signing protocol; and then (3) having S′ apply the hash function to the user’s
first message to generate random coins that it then uses to run S.

4 Attacking Black-Box Constructions of Blind Signatures

In this section we show that there is no black-box construction of blind signatures
from one-way functions. To this end, we show that any oracle blind signature
scheme BS(·) fails to satisfy either blindness or unforgeability when instantiated
with a random oracle O : {0, 1}λ → {0, 1}λ.

4.1 Preliminaries

We begin by reviewing a lemma from previous work [17,5] that we utilize in our
proof. Informally, it states that for any two-party protocol Π where each party
has access to a random oracle there exists an algorithm that, upon observing
the transcript of an interaction, finds with high probability all the intersection
queries (queries to the oracle that have been asked by both parties).

Lemma 1 ([5]). Let Π be a two-party (randomized) protocol where each party
asks at most q queries to an oracle. Then for every δ ∈ (0, 1), there is an algo-
rithm Findδ that makes O((q/δ)2) oracle queries, such that when Findδ is given
the transcript of an execution of the protocol between the parties in the presence
of a random oracle, the queries made by Findδ contain all the intersection queries
of the two parties with probability at least 1 − δ. (The probability is taken over
the coins of Findδ and the parties, as well as choice of the random oracle).

We apply this in our setting in the following way. Corresponding to any oracle
blind signature scheme BS(·), define the following two-party protocol Π between
a signer S and a user U :
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1. S runs (sk, pk) ← GenO(1λ) and sends pk to U .
2. U and S then run the signature-issuing protocol on the message 1, at the

end of which U obtains a signature σ1.
3. U runs VrfyO(pk, 1, σ1).

For the remainder of Section 4, fix some δ and define Findδ (as per Lemma 1)
relative to the above protocol Π . Say the above protocol is run in the presence
of a random oracle O. If we let Q(SΠ) and Q(UΠ) denote the O-queries made by
each party during an execution of the above protocol that resulted in transcript
trans, then Lemma 1 guarantees that, with high probability,

Q(SΠ) ∩ Q(UΠ) ⊆ FindOδ (trans).

4.2 From Blindness to Usefulness

In this section we study the question of what blindness implies with regard
to the set of queries I output by the Find algorithm. The main observation
is that due to blindness the set I (that contains all intersection queries with
high probability) must be somehow “independent” of the actual message being
signed. Recall that in the blindness game the semi-honest signer interacts with
two honest user instances in a random order. The task for the attacker is to guess
which instance used which message. Now, consider two protocol executions and
suppose that the set of intersection queries depended on the message being used.
Then just by looking at those queries it would be possible to determine the order
of the messages.

To formalize this intuition, we first define some notation. Consider an execu-
tion of the blindness experiment. We write Q(Gen) to represent the set of O-
queries made during key generation. In the interaction between S and U(pk, 0),
let Q(S0) denote the O-queries made by S; let trans0 denote the resulting tran-
script; let σ0 be the signature that U outputs; and let Q(Vrfy0) be the set of O-
queries made by the verification algorithm VrfyO(pk, 0, σ0). Define Q(S1), trans1,
and Q(Vrfy1) analogously for the interaction between S and U(pk, 1). (Note that
by perfect completeness and the assumption of semi-honest behavior by S, both
user instances always obtain a valid signature on their message).

Consider a (semi-honest) signer S∗ in the blindness game. Say the adversary
runs Find using trans1. It follows from Lemma 1 and the definition of Π in the
previous section that, with high probability,

Q(Vrfy1) ∩ (Q(Gen) ∪ Q(S1)) ⊆ Find(trans1). (1)

S∗ can check whether Equation (1) holds by computing VrfyO(pk, 1, σ1) itself.
But then blindness implies that Equation (1) must hold with high probability
even when Find is run on the “wrong” interaction; i.e.,

Q(Vrfy1) ∩ (Q(Gen) ∪ Q(S0)) ⊆ Find(trans0).

In the language of [4], this means that the message ‘0’ is “useful” for the mes-
sage ‘1’ with high probability.

We now give the formal proof.
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Lemma 2. Let BS be an oracle blind signature scheme satisfying blindness.
Consider an execution of the blindness experiment (cf. Definition 3), and let
Q(Gen), Q(Sb), transb, and Q(Vrfyb) be as defined above. Then with probability
at least 1 − δ − negl(λ) over the random coins of the experiment it holds that

Q(Vrfy1) ∩ (Q(Gen) ∪ Q(S0)) ⊆ Findδ(trans0).

Proof. We first observe that with probability at least 1 − δ we have

Q(Vrfy1) ∩ (Q(Gen) ∪ Q(S1)) ⊆ Findδ(trans1).

This follows immediately from Lemma 1 and our definition of protocol Π in the
previous section.

Consider now the following adversary S∗:

1. S∗ runs the honest key-generation algorithm to obtain (sk, pk). It records
the O-queries Q(Gen) made during this step.

2. S∗ then runs the honest signing protocol with the first user instance. Let
trans denote the transcript of this execution, and let Q(S) denote the O-
queries made during this step.

3. S∗ then runs the honest signing protocol with the second user instance.
4. S∗ is given signatures σ0, σ1 on the messages 0 and 1, respectively. (By

perfect completeness, both user instances always obtain valid signatures).
S∗ verifies σ1 and records the O-queries Q(Vrfy1) made in doing so.

5. Finally, S∗ outputs 1 iff Q(Vrfy1) ∩ (Q(Gen) ∪ Q(S)) ⊆ Findδ(trans).

If b = 1, and so the first user instance represents an interaction with U(pk, 1),
then trans = trans1 and Q(S) = Q(S1) and so S∗ outputs 1 with probability at
least 1−δ. The blindness property thus implies that S∗ outputs 1 with probability
at least 1 − δ − negl(λ) when b = 0 (and the first user instance represents an
interaction with U(pk, 0)). This concludes the proof.

4.3 Forging a Signature

Before presenting our forger, we begin by discussing the ideas behind our attack.
The main observation is that due to the blindness of the signature scheme the
intersection queries between the signer and user are somehow “independent” of
the message. This was formalized in Lemma 2, where we showed that (with high
probability)

Q(Vrfy1) ∩ (Q(Gen) ∪ Q(S0)) ⊆ Find(trans0).

Intuitively, this means that all the “important” queries needed to verify a sig-
nature on the message ‘1’ must already be contained in the set of queries that
are found when signing and verifying the message ‘0’. Thus, in the language of
Barak and Mahmoody-Ghidary [4], we have shown that 0 is “useful” for 1 with
high probability. As in that paper, we use this property to show an attack.

The above condition seems to suggest that the set of intersection queries
for ‘0’ is sufficient to generate a signature on ‘1’. However, this is not quite
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true. The problem is that there may be queries that the user makes with high
probability when generating and verifying a signature for 1 that are not in the
set Find(trans0); this could cause technical problems because our forger must get
the answers to these queries right when constructing a forged signature. For a
concrete example, consider a blind signature scheme where the user, on input
a message b, always queries y = O(b) and includes y as part of the signature;
verification checks whether O(b) = y (among other things). In such a case the
query O(1) may not be in the set Find(trans0).

As in [4], we handle this issue by introducing a phase in which the forger
makes any “heavy” queries that are made by the user with high probability. If
the forger knows the correct answers to all these high-probability queries then
it is very unlikely that it will incorrectly answer some query asked during the
verification of the forged signature.

Given this intuition we now present the details of the attack. The main struc-
ture of the attack is based on [4] with necessary changes to adapt the proof
to our setting. In particular, our attack makes only polynomially many oracle
queries (regardless of the number of queries the scheme itself makes).

Theorem 2. Let BS be an oracle blind signature scheme satisfying blindness.
Then there exists an adversary U∗ for which ForgeBSO

U∗ (λ) (cf. Definition 2) is
not negligible.

Proof. Consider the following adversary U∗:

Setup. The input of U∗ is a public key pk.

Step 1: Requesting a signature. U∗ runs the honest signing protocol (using
message ‘0’) with the signer, eventually obtaining a valid signature σ0. Let
trans0 be the transcript (i.e., the messages exchanged) for this execution. U∗

verifies the received signature and records the oracle queries Q(Vrfy0) made.
U∗ then computes Findδ(trans0) with δ = 1/10.

Denote by T0 the complete transcript of the entire experiment run so far;
i.e., T0 contains the entire views of both the signer and U∗. Note that U∗

has only partial knowledge about T0.

Step 2: Learning query/answer pairs. Let L0 be the information that U∗

has about T0 and the oracle O following Step 1. Let q be an upper bound
on the total number of queries asked when running each of the algorithms
in BS once. Let ε = δ/q and M = q/εδ = 100q2. For i = 1, . . . , M do the
following:
1. Let Di−1 be the distribution of T0, the transcript of the first step, con-

ditioned on Li−1.

2. Denote by Q(Li−1) the oracle queries that appear in Li−1. If a query
x ∈ {0, 1}λ\Q(Li−1) appears with probability at least ε in Di−1, then
U∗ queries O(x) and adds the query/answer pair to Li−1 to obtain Li.
(If there is more than one such x, then U∗ adds the lexicographically
first one).
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Step 3: Sampling a possible transcript. U∗ samples a random transcript
T̃0 according to the distribution DM . Observe that T̃0 also defines a secret
key s̃k that may be distinct from the real secret key sk. Moreover, T̃0 may
include some new mappings that were not defined in LM . We let Õ be the
following oracle: If a query x appears in T̃0 then Õ(x) returns the value
contained in T̃0; otherwise, Õ(x) = O(x).

Step 4: Forging. U∗ runs the interactive signing protocol for the message ‘1’
locally, playing the role of both the signer and the user, using s̃k and Õ; that
is, it computes σ1 ←

〈
SÕ(s̃k),U Õ(pk, 1)

〉
. For technical reasons, we also

have U∗ verify σ1 (using O). Finally, U∗ outputs the two signatures σ0, σ1.

Analysis. It is easy to see that U∗ makes polynomially many queries to O. Since
U∗ runs the honest user protocol in its execution with the signer (in step 1), σ0
is always a valid signature on ‘0’. In the remainder of the proof, we show that σ1
is a valid signature on the message ‘1’ with probability at least 4/5− δ−negl(λ).

In the following we show that, with high probability, verification of σ1 never
asks a query on which oracles Õ and O disagree. Assuming this to be the case, it
follows (by the perfect completeness of the signature scheme) that σ1 is a valid
signature on ‘1’ with respect to the true oracle O.

Lemma 3. Let Q(Vrfy1) denote the set of oracle queries made when U∗ ver-
ifies the signature σ1. Let Q̃(Gen) and Q̃(S0) denote the set of oracle queries
made by the key-generation and signing algorithms, respectively, in the sampled
transcript T̃0. Then with probability at least 4

5 − δ − negl(λ) it holds that

Q(Vrfy1) ∩
(
Q̃(Gen) ∪ Q̃(S0)

)
⊆ Findδ(trans0).

Lemma 3 implies Theorem 2. To see this, note that VrfyÕ(pk, 1, σ1) = 1 by
perfect completeness of the signature scheme. But the only queries on which
Õ and O can possibly differ are queries in

(
Q̃(Gen) ∪ Q̃(S0)

)
\ Findδ(trans0). If

verification makes no such queries, then

VrfyO(pk, 1, σ1) = VrfyÕ(pk, 1, σ1) = 1.

Let E denote the event considered in Lemma 3. The proof of Lemma 3 follows
the proof in [4]: we define a sequence of hybrid distributions, and analyze the
probability of E in each of them. The biggest difference between the proof in [4]
and the proof here is when we analyze the probability that E happens in the
final hybrid distribution.

Definition of hybrid distributions. We define four hybrid distributions H0,
H1, H2, and H3 as follows:

H0. The first hybrid is the distribution (T̃0, T1), where T̃0 is the transcript sam-
pled by U∗ in Step 3, and T1 is the transcript of Step 4 (i.e., generation and
verification of σ1). Note that T̃0 includes the queries of the key-generation
algorithm.
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H1. The second hybrid is defined identically to H0, except that we use Õ to
verify σ1. (In H0, oracle O was used when verifying σ1).

H2. The third hybrid has the same distribution as H1, except that we change
the definition of Õ as follows. Recall that LM is the set of O query/answer
pairs that U∗ knows after the learning queries step (Step 2). We define Õ
to answer any query contained in LM with the answer stored there and all
other queries with a randomly chosen value. This modification results in an
oracle Õ that agrees with O on all the queries U∗ has queried to O until the
end of Step 2; all other queries are answered completely at random.

H3. The distribution of the last hybrid is the same as H2 except that T̃0
is replaced with T0. Thus the output of this hybrid is (T0, T1) which de-
scribes the experiment where we first compute (sk, pk) ← Gen; then run
σ0 ←

〈
SO(sk),UO(pk, 0)

〉
and σ1 ←

〈
SO(sk),UO(pk, 1)

〉
; and finally verify

both signatures. Note that all algorithms here use the “real” oracle O and
thus verification succeeds for both signatures.

The distributions considered in each hybrid are taken over random choice of the
oracle and random coins of the key-generation algorithm, the signer, and the
adversary. We prove Lemma 3 by showing that (1) event E occurs with high
probability in H3 and (2) the probability that event E occurs in H0 is not much
smaller than its probability in H3.

We first show that E occurs with high probability in H3. The following is an
immediate consequence of Lemma 2.

Claim. PrH3 [E] ≥ 1 − δ − negl(λ).

We next show that the probability of E remains unchanged when we move from
H3 to H2.

Claim. H2 ≡ H3. Thus, PrH2 [E] = PrH3 [E].

Proof. The proof here is the same as in [4]. We can view H3 as being sampled as
follows: first, fix LM ; then choose the transcript T0 at random from DM . This,
however, is exactly the same distribution as H2 where LM is fixed and we then
choose T̃0 from DM .

For the next claim, we need the following definition.

Definition 4 (Statistical distance). If X, Y are two random variables taking
values in a finite set A, then SD(X, Y ) = 1/2 ·

∑
a∈A |Pr[X = a] − Pr[Y = a]| .

We now show that H1 and H2 are “close”.

Claim. SD(H1,H2) ≤ 1
5 . Thus, PrH1 [E] ≥ PrH2 [E] − 1

5 .

Proof. Let Q(T0) be the queries contained in the transcript T0. Let B be the
event that U∗ ever asks a query in Q(T0) \ Q(LM ). It is clear that H1 = H2 as
long as event B does not occur in either of them, since in both distributions any
queries outside of Q(T0) are answered randomly. This implies that PrH1 [B] =
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PrH2 [B], and SD(H1,H2) ≤ PrH2 [B]. We now show that PrH2 [B] ≤ 1
5 . (In the

following, all probabilities are in H2).
Recall that in Step 2 of the attack, we set ε = δ/q and U∗ learns at most

M = 100q2 query/answer pairs from O. Let Di be the distribution of T0 sampled
in this step by U∗ given the set Li of known query/answer pairs. Let C be the
event that there are more than M queries that become likely during the attack.
That is, C is the event that there exists a query x /∈ Q(LM ) such that x is asked
in DM with probability at least ε. Below, we show that Pr [C] ≤ δ = 1

10 and
Pr[B | ¬C] ≤ δ = 1

10 . This completes the proof, since then

Pr [B] = Pr [C] · Pr[B | C] + Pr [¬C] · Pr[B | ¬C]

≤ Pr [C] + Pr[B | ¬C] ≤ 2δ =
1
5

.

The following two claims complete the proof that H1 and H2 are close.

Claim. Let C be the event defined in the proof of the previous claim. Then
PrH2 [C] ≤ δ.

Proof. All probabilities here are in H2. Consider an arbitrary query x and let
hitx be the event that x is queried to O by the signer and then by the user
when generating the signature on ‘0’. Let qx = Pr[hitx]. Finally, let Ax(i) be the
event that x is asked in the ith iteration of Step 2; let px(i) = Pr[Ax(i)]; and let
px = Pr[∪iAx(i)]. Note that

∑
x qx ≤ q since q is an upper bound on the total

number of queries asked when running each algorithm of the blind signature
scheme. Furthermore, qx ≥ εpx because

qx = Pr [hitx] ≥
∑
i

Pr[hitx | Ax(i)] · Pr [Ax(i)] ,

and U∗ adds a query to its list only if the probability that this query is asked is
at least ε. Thus, Pr[hitx | Ax(i)] ≥ ε and so qx ≥ ε

∑
i Pr [Ax(i)] = εpx.

Assume for the sake of contradiction that Pr [C] > δ. Since C is the event
that M queries are learned in Step 2, this implies that the expected number of
queries asked,

∑
x px, is larger than δM . But this would imply

δM <
∑
x

px ≤
∑
x

qx/ε ≤ q/ε,

contradicting the fact that M = q/δε.

Claim. Let B and C be as defined earlier. Then PrH2 [B | ¬C] ≤ δ.

Proof. Recall that in Step 4 U∗ relies only on the mappings stored in LM , and
all queries from Q(T0)\Q(LM ) are answered at random. But then H2 is inde-
pendent of T0 conditioned on LM (whereas LM has the distribution DM ). This
means that we can imagine defining H2 by choosing LM first, then running U∗

(using LM ) to sample H2, and then choosing T0 conditioned on LM and H2. Re-
call that event C is determined by LM , and assume that LM is such that event
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¬C occurs. This implies that every query asked by U∗ that is not in Q(LM )
must appear in DM with probability less than ε. Since U∗ asks at most q queries
in Step 4, the probability that Q(T0)\Q(LM ) contains one of these queries is at
most εq = δ.

Finally, we show that E occurs with the same probability in H0 and H1.

Claim. PrH0 [E] = PrH1 [E].

Proof. This claim follows easily if both hybrid distributions H0 and H1 use the
same oracle O and if they are sampled using the same random coins for key
generation and the adversary (note that the randomness of the adversary fully
determines the randomness used to run the honest user algorithm during the
signature-issue protocol). But then it follows that event E occurs in H0 if and
only if it also occurs in H1.

This completes the proof of Lemma 3, and thus the proof of Theorem 2.

5 Extensions

In this section we briefly discuss how to extend our impossibility result to the case
of blind signature schemes with imperfect completeness, and to constructions
from one-way permutations.

5.1 Imperfect Completeness

Let BS(·) be an oracle blind signature scheme for which correctness holds with
all but negligible probability; i.e., for any O and any m ∈ {0, 1}, we have

Pr
[

(sk, pk) ← GenO(1λ);
(⊥, σ) ←

〈
SO(sk),UO(pk, m)

〉 : VrfyO(pk, m, σ) = 1
]
≥ 1 − negl(λ).

Our results from the previous section can be easily extended to such schemes.
The proof of Lemma 2 is largely identical, with the only modification being to
explicitly consider what happens if either of the signatures computed by the two
user instances are invalid.

The forgery attack also proceeds just as in the previous section. Since the
probability that one of the signatures is invalid is negligible, this only affects the
forgery probability by a negligible amount.

5.2 One-Way Permutations

We now discuss how to extend our impossibility result to also rule out construc-
tions from one-way permutations. As noted in [5], the Find algorithm can be
modified to work in the random permutation model with a polynomial blow-up
in the number of queries. It follows that an analogue of Lemma 2 holds when
O is chosen as a random permutation. (Again, a random permutation oracle is
one-way with all but negligible probability). For the forgery attack we modify
the proof of Theorem 2 as in [4]. We omit the details here.
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