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Preface

Microsystems technology (MST) or Microelectromechanical systems (MEMS) how

it is called in America is a comparatively young emerging technology, which allows

building up miniaturized devices such as microvalves for implantable medicament

dosing systems or micro-total analysis systems (mTAS) which shall provide a

miniaturized laboratory on a polymer chip just a few centimeters in size. The first

steps to MST had been done more than 30 years ago when anisotropic etching of

silicon was discovered [1] and sacrificial layer technique was invented [2].

Nowadays, MST is a well-established technology which is the basis of many

products. Modern life in many fields is based on a variety of microsystems un-

noticed by most of us. In most cars, microsensors for the measurement of accelera-

tion, yaw rate, pressure, and flow are implemented. Watches, hearing aids, mobile

phones, beamers, ink-jet printers, PCs, and catheters for minimal invasive surgery

are other examples of applications which became possible in the present form by

microtechnologies only. Accordingly, many jobs are available in microtechnique

and much more jobs are depending on it.

In previous decades, the fabrication techniques of MST had been the main issue

of research and development resulting in today’s more or less standard production

processes such as bulk silicon etching, reactive ion etching, surface micromachin-

ing, micromolding, silicon fusion bonding, etc. These processes are well described

in several text books [3–6], and, therefore, are available for both industry and

teaching at universities.

However, MST is not only characterized by its novel fabrication processes. The

transition to smaller dimensions is combined with the need for a change in design

also. A miniaturized sensor or actuator requires a different design due to both the

new fabrication techniques and the smaller scale which results in a change of the

significance of effects and forces. For example, capillary force is of no importance in

the macroscopic world, while it may be used as the driving force in microscopic

designs. The piezoelectric effect and thermal strain are known and need to be

considered in macroscopic engineering but play a much more important role inMST.

Until now, there is no textbook which describes the design of micro systems

systematically. Therefore, this book was written to fill this gap. It is based on

a course given at RWTH Aachen University and Tsinghua University in Beijing for

undergraduate students in their fifth or higher semester. This book may be used as
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the basis for similar courses, for self-study, or as a reference for the experienced

engineer. All the equations presented here are not limited to microsystems but are

valid in general. Therefore, this book may help also engineers working in different

fields.

This book does not describe the fabrication processes of MST but can be

understood without knowing these processes. It provides the basic equations needed

to calculate or at least estimate the order of magnitude of the effects and forces

which are important in MST. For quick reference, these equations are presented in

tables which are found in an index on page xxi.
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Notations and Symbols

The following notations and symbols are used throughout this book. The notations

and symbols are not always defined in the near of an equation avoiding interruption

of the text. If the meaning of a parameter is not obvious to the reader, it will be

found in this list.

A Area

AB Cross-sectional area of a beam

AC Inner area of a capacitor electrode

AF Cross-sectional area of a fluid

Ag Cross-sectional area of a gap

Ai Amplitude of mode i

AK Area of a body

AM Area of a membrane

An,m Amplitude of the mode n,m of a membrane

AP Area of a piezo

AS Area of a layer

AZ Cross-sectional area of supply and delivery pipes

A0 Amplitude

a Coefficient

aC Coriolis acceleration

aF Acceleration of a fluid

ai Coefficients

aM Length of a rectangular membrane

am Acceleration of a mass

ap Coefficient

B Width of a slide valve

BF,opt Width of a slide valve optimum with respect to small switching force

BW,opt Width of a slide valve optimum with respect to small switching energy

bB Width of a beam

bC Width of a capacitor electrode

bK Width of a capillary

bL Width of a conductor path
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bM Width of a rectangular membrane

bPZ Width of a Pockels cell

bP Width of a piezo

bp Coefficient

bS Width of a layer

BZ Width of supply and delivery pipes

CD Heat capacity of a wire

Cel Electrical capacity

Cfl Fluidic capacity

Cp Heat capacity of a gas at constant pressure

c Speed of sound or light

Cth Heat capacity

CV Heat capacity of a gas at constant volume

cF Concentration of particles in a liquid

cf Specific heat capacity of a fluid

cp Specific heat capacity of a gas at constant pressure

cV Specific heat capacity of a gas at constant volume

D Diffusion constant

Di Charge density in i-direction

Dh Hydraulic diameter

Dh,Z Hydraulic diameter of supply or delivery pipes, or feed channels

DL Diameter of a lens

DR Damping constant

DS Diameter of a valve seat

d Distance or diffusion depth

dB Thickness of a beam

dC Distance of capacitor plates

dE Thickness of electrodes

df Thickness of a thin film

dij Piezoelectric modulus of straining in j-direction and loading in i-direc-

tion ¼ e0 er gij
dI Thickness of an insulation layer

di Distance of the electrodes of a closed relay

dK Height of a rectangular capillary

dL Thickness of a conductor path

dM Thickness of a membrane

dSu Thickness of a substrate

d0 Distance of capacitor plates when no voltage is applied

EB Young’s modulus of a beam

Eel Electrical field

Ef Young’s modulus of a thin film

Ekin Kinetic energy

Ekin,m Maximum of kinetic energy

EM Young’s modulus of a membrane
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EP Young’s modulus of a piezo

ES Young’s modulus of a layer

ESu Young’s modulus of a substrate

ET Young’s modulus of a carrier layer

EV Ratio (hT ET)/(hP EP)

e Elementary charge ¼ 1.6�10�19 C

F Force

Fa Loading force

FB Force generated by a beam

FC,n Normal capacitive force

FC,l Lateral capacitive force

Fel Electrostatic force

FF Force acting at a frame

FF,z z-Component of a force acting at a frame

FH Force required for valve switching

FH,max Maximum force required by a valve actuator

Fi Force required for acceleration or force in i-direction

FK Critical force of a beam

FKu Weight force of a sphere

Fk Force of a spring

Fl Force longitudinal to a beam

FM Force acting on or elastic force of a membrane

FP Force generated by a piezo

Fp Force generated by a pressure difference

Fp,z z-Component of a force generated by a pressure difference

FR Friction force

Fsf Force due to squeeze-film effect

Ft Force transversal to a beam

Fth Force of a thermal actuator

FU Force needed to flap over a beam or membrane

Fx Force or force component in x-direction

Fz Force or force component in z-direction

F0 Force of an actuator hindered from deflection

F0,B Force of a bimorph hindered from deflection

f Frequency

fA Frequency of an actuator

fB Focus length

fF0
Correction factor for the effect of the carrier layer on the maxim force of

a piezo

fi Frequency of vibration mode i

fn,m Frequency of the mode n,m

fP Pump frequency

fP,max Maximum pump frequency
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fwE
Correction factor for the effect of the carrier layer on the deflection of a

piezo generated by a voltage

fwF
Correction factor for the effect of the carrier layer on the deflection of a

piezo generated by an outer force

f0 Frequency without damping

f1 Frequency of the fundamental mode

GB Shear modulus of a beam

g Grid constant

ge Acceleration of gravity

gij Piezoelectric modulus ¼ dij/(e0 er)
H Travel of a valve body

Hmax Maximum stroke of a slide valve

HZ Height of supply and delivery pipes

hA Height of an actuator chamber

hi Thickness of layer i

hP Height of a piezo

hT Height of a carrier layer

hV Ratio hT/hP
hS Height of a layer

I Area moment of inertia

Ia Intensity of light at the output

Ie Intensity of light at the input

Iel Electrical current

IL Intensity of light

Im Mass moment of inertia

It Torsional constant

I0 Initial intensity of light

i Index or integer number

K Gauge factor of strain gauges

Ki Gauge factor of strain gages in i-direction

k Spring constant

kB Boltzmann constant ¼ 1.4�10�23 J/K

kel Electrical spring constant

ki Spring constant in i-direction

km Mechanical spring constant

kS Constant

kW Heat transition coefficient

L Length

LB Length of a beam

LBc Length of the beam connecting two beams

LC Length of the overlap of the electrodes of a capacitor

LE Distance between electrodes

Lel Inductivity

LF Length of a fluid column
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Lf Length of a thin film

Lfl Fluidic inductance

LK Length of a capillary

Lk Critical distance

LL Length of a conductor path

Lm Mechanical analogon to inductance

LPa Length of a parabola arc

LP Length of a piezo

LPZ Length of a Pockels cell

LR Distance to the rim

LS Length of a layer

Ls Length of a sensor

LV Length of a valve gap in flow direction

LZ Length of supply and delivery pipes

M Bending moment

Mt Torque

m Natural number or mode

mB Mass of a beam

mF Mass of a fluid

mK Mass of a body

mmol Mass of a mol

mT Mass of a particle

m0 Mass attached to a beam

m1 Mass of body 1

m2 Mass of body 2

NA Numerical aperture

Nu Nusselt number

NA Avogadro constant ¼ 6.02�1023/mol

n Natural number

ni Refractive index of material i

nmol Number of mols in a gas volume

nop Refractive index

n0 Refractive index outside of a waveguide

P Power

Pel Electric power

Pfl Fluidic power

Popt Optimum power

PP Fluidic power output of a pump

PP,m Maximum fluidic power of a pump

Pth Thermal power

p Pressure

pA,U Pressure generated by an actuator supplied with voltage

pA,0 Pressure generated by an actuator without voltage supply

pa Pressure at the outlet
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pe Pressure at the inlet

pR Reference pressure

pS Pressure in a gap

pS,m Maximum pressure in a gap

pV Vapor pressure

p0 Pressure in the surrounding

p3 Pyroelectric coefficient of a piezo in the direction of polarization

Q Quality of an oscillation

Qel Electrical charge

Qi Charge of a piezo in i-direction

QK Heat dissipated by convection

Qth Heat energy

q Quality factor of corrugations

qP Charge of a particle

Re Reynold’s number

RB Radius of a beam with a circular cross-section

Rc Radius of curvature

Rel Electrical resistance

Rf Radius of curvature of a thin film

Rfl Fluidic resistance

Rfl,Z Fluidic resistance of feed channels

RG Gas constant ¼ 8.314 J/(mol K)

RKa Radius of a capillary

RM Radius of a membrane

RSu Radius of curvature of a substrate

RT Radius of a particle

Rth Thermal resistance

RV Radius of the boss of a membrane

RW Radius of a circular wall

RZ Radius of support and delivery pipes

RZ,max Maximum radius of valve seat at which a pump can generate a flow

r Coordinate in radial direction

rK Kerr constant

rP Pockels constant

S Entropy

sf Scaling factor

smax Maximum deflection of a heated beam clamped at both ends

s0 Deflection

T Temperature

Ta Initial temperature

TK Critical temperature at which the surface tension of a liquid equals to zero

theoretically

T0 Room temperature

t Time

xii Notations and Symbols



tf Duration of a delivering pulse of a pump

tV Switching time of valves

tZ Cycle time

U Voltage

Um Measurement voltage

Umax Maximum voltage

Umin Minimum voltage

Up Pull-in-voltage

US Circumference length of a valve seat

Uw Wetted circumference length of a fluid

U0 Supply voltage

u Position-dependent part of a wave function

ui Position-dependent part of a wave function of mode i

u1 Static deflection shape of a membrane

V Volume

VA Volume displaced in one pump cycle

Va Dead volume of outlet valve

VB,a Volume of a bubble in a pump when the outlet valve is open

VB,e Volume of a bubble when the inlet valve is open

VB,0 Volume of a bubble at normal conditions

Ve Dead volume of inlet valve

VF Volume delivered by one pump cycle

Vfl Volume of a liquid

Vfl,min Minimum liquid volume required

VL Leakage volume per pump cycle

Vmol Volume of a mol ¼ 22.4 L at 101.3 kPa and 22�C
VP Dead volume of a pump

Vp Potential energy

Vp,m Maximum of potential energy

VT Dead volume

VV Dead volume of a valve

VW Volume in the bulged up part of a membrane

V0 Volume at normal conditions

v Mean velocity of a fluid in a capillary or velocity of a mass

va Velocity before a change

ve Velocity a long time after a change

vmax Maximum velocity

vk Critical flow velocity

vw Velocity of wall movement

W Work

WA Energy output of an actuator

WE Energy input of an actuator

WA,opt Maximum energy output

WC Energy stored in a capacitor
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WH Work necessary for valve switching

Wth Thermal energy

w Deflection

wE Deflection of a piezo or an arrangement of piezos generated by the voltage

supplied

wE,B Deflection of a bimorph at which no outer force is applied

wF Deflection of a piezo or an arrangement of piezos generated by outer

forces

wF,B Deflection of a bimorph generated by outer forces

wi Deflection in i-direction

wl Longitudinal deflection of a beam

wn,m Deflection of the mode n,m

wR Deflection at the rim

wth Deflection of a thermal actuator when no outer forces are acting

wU Deflection at which a beam or membrane is snapping over to the opposite

side

wV Pre-deflection of an actuator

wx Deflection in x-direction

wz Deflection in z-direction

w0 Deflection at the end of a beam, the center of a membrane, or amplitude of

an oscillation

w0,B Deflection of a bimorph

w0,max Maximum deflection

w0y Deflection of a membrane when it bursts under a pressure load

w0,opt Deflection of a piezo at maximum energy output

x,y,z Euclidian coordinates

a Angle

aD Damping constant

am Angle of light propagation of the mode m

aop Optical damping constant

ath Thermal expansion coefficient

aS Damping by sound emission

aT Temperature coefficient of an electrical resistance

aTot Angle of total reflection

at Angle of transmitted ligth

ar Angle of reflected light

aV Damping by the viscosity of the surrounding fluid

b Angle

bm Additive mass

z z-potential
D Difference

DbB Change of the width of a beam

DdB Change of the thickness of a beam

DLL Change of the length of a conductor path
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DbL Change of the width of a conductor path

Dp Pressure difference

DpA Pressure difference over an actuator

DpC Capillary pressure on a dielectric

DpEOF Pressure difference generated by an electroosmotic flow

DpK Capillary pressure

DpM Pressure difference generated by the elastic force of a membrane

Dpmax Maximum pressure difference generated by an actuator

DpP Pressure generated by a pump

DpP,m Maximum pressure generated by a pump

Dpp Pressure difference applied to a capillary from outside

DpR Pressure difference needed to overcome the friction of a flow

DpS Pressure drop over a valve seat

Dpsf Squeeze-film pressure difference

DpV Pressure difference over a valve

Dpy Burst pressure of a membrane

DpZ Pressure difference over feed channels

DRel Change of electrical resistance

DRel,l Resistance change of longitudinal strain gauges

DRel,R Resistance change of radial strain gauges

DRel,T Resistance change of tangential strain gauges

DRel,t Resistance change of transversal strain gauges

DT Temperature difference

DTa Temperature difference of the wire of an anemometer and the fluid before

a change

DTe Temperature difference of the wire of an anemometer and the fluid a long

time after a change

DV Volume change

DVA Volume change generated by an actuator

DVA0 Displaced volume at the beginning of a pump cycle

DVB Volume change of a bubble

DVmax Volume change of an actuator when no counter pressure is applied

DVopt Volume change at maximum energy output

Der Difference of relative permittivity

Dj Phase shift

Djn,m Phase shift of the mode n,m

e Strain

eB Strain at the surface of a beam

eb Strain in the direction of the width

ed Strain in the direction of the thickness

ei Strain in i-direction

el Longitudinal strain

eR Radial strain

er Relative permittivity
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eT Tangential strain

et Transversal strain

eth Thermal strain

e0 Absolute permittivity ¼ 8.9�10�12 (A s)/(V m)

Z Dynamical viscosity

ZA Efficiency of an actuator

ZC Efficiency of the Carnot process

F Electrical potential

Fa Flow through an outlet valve

Fb Backflow through a passive valve

FF Volume flow

FP Volume flow generated by a pump

FP,m Maximum volume flow generated by a pump

FS Volume flow over valve seat

FSt Slope angle of the mirror of a grid

Fth Heat flow

FW Electrical potential at the surface of a rigid body

FZ Volume flow through feed channels

j Angle or phase

ji Phase of vibration mode i

G Surface tension of a liquid

GK Capillary force per circumference length

GKap Force due to the capillary “force”

k Coupling constant between neighboring wave guides

L Vaporization heat of 1 mol

Le Effective heat conduction

l Wave length

lB Blase wave length

lD Debye–Hückel length

lF Heat conductivity of a fluid

li Frequency parameter

lM Characteristic length of a membrane

lV Steam heat

l0 Wavelength in vacuum

l1 Frequency parameter of fundamental mode

m Friction coefficient

n Poisson’s ratio of a conductor path

nB Poisson’s ratio of a beam

nM Poisson’s ratio of a membrane

nP Poisson’s ratio of a piezo

nSu Poisson’s ratio of a substrate

O Angular velocity

o Angular velocity or angular frequency

on,m Anguglar frequency of the mode n,m
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or Angular frequency at resonance

p Ludolph’s constant “Pi” ¼ 3.141592. . .
pi Piezoresistive coefficient for straining in i-direction

pl Piezoresistive coefficient longitudinal to a conductor path

pm Mean value of piezoresistive coefficients

pt Piezoresistive coefficient transversal to a conductor path

rB Density of a beam

rel Specific electric resistance

rel,0 Specific electric resistance at the origin of the temperature scale used

rF Density of a fluid

rM Density of a membrane

sa Stress of a rectangular membrane in direction of its length

sB Stress of a beam

sb Stress of a rectangular membrane in direction of its width

sD Stress due to straining

sf Stress of a thin film

si Frequency parameter

sk Critical stress

sl Longitudinal stress

sM Stress of a membrane

sR Radial stress

sT Tangential stress

st Transversal stress

sth Stress generated by a temperature change

sy Yield stress

s0 Residual stress

tA Reaction time of an anemometer

tp Time of pressure rise

tth Thermal relaxation time

y Angle

yi Wave function of the torosional vibration of a beam at mode i

yw Wetting angle

ymax Maximum angle at which light can enter or leave a waveguide

w Number between 0 and 1 describing the contribution of the Torricelli

equation to a pressure loss
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Introduction

This book was developed from lectures held at RWTH Aachen University, Germany

and Tsinghua University at Beijing, P.R. China. It may be used as a basis for similar

lectures on designing of microsystems. For this purpose, it is recommended to

follow the sequence of this book, because it is arranged such that following chapters

are building up on previous ones. Students are also strongly recommended to solve

the problems included in this book, because this is important for getting familiar

with the units and orders of magnitude to be expected in microtechnique. Besides

this, often the relevance of the lessons becomes clear much more, when an example

calculation shows the importance of the subjects taught.

This book is written such that the reader does not need to know how micro-

systems are fabricated and what are the big possibilities and limits of microtech-

nique. When real microsystems are to be designed, a lot of knowledge of the

fabrication possibilities is required of cause. This knowledge is not provided in

this book, because other literature is available which covers this topic [3–6].

Students may be taught the contents of this book without any prior knowledge of

the fabrication processes. However, it is recommended to teach microfabrication

first and then the design of microsystems whenever this is possible.

Besides teaching, the purpose of this book is to provide the equations which are

needed to calculate the behavior of basic elements and physical effects which are

important in microtechnique. For a quick reference, several tables are included,

which allow to find the equation needed for a certain problem. At the beginning of

this book, there is an index of all tables.

The equations introduced in this book are not restricted to microtechnique. They

are all valid in the macroscopic world also. It may be, however, that an effect such

as capillary force is less important in macroscopic applications. On the other hand,

it is expected that the coherent description of topics such as strain gauges and the

piezo-electric effect will also help readers not working on microsystems.

Nowadays, finite element methods (FEM) are available which allow calculating

the behavior of macroscopic as well as microscopic structures and elements with

high precision. However, FEM do not provide an overview and an understanding of

the interrelationships and how to optimize a component for a certain application.

Therefore, analytical calculations are desirable which provide an overall under-

standing of a given problem first, and, after an advantageous way of solving the
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problem is envisaged, FEM can be used to find the precise optimum. An approxi-

mate description of the problem by an analytical equation will help optimizing by

FEM, because the equation gives a good hint where to search for the optimum and

which parameters show the largest effect.

The existence of FEM also allows making more rough approximations in

analytical calculations, because the calculations are no longer needed to find the

exact results. In this book, very rough approximations are accepted achieving an

analytical description of the overall behavior of structures such as the buckling up

of membranes and beams when the compressive stress exceeds the critical stress.

This shows how analytical calculations and FEM nowadays complement each

other.

Microsystem technology combines a lot of technical fields such as mechanics,

electronics, fluidics, optics, etc. Therefore, the notations of all these fields need to

be mixed up, and avoiding confusion of variables is not an easy task. Every variable

is assigned a unique notation throughout this book which is found in “Notations and

Symbols” section. As a consequence, variables need to be distinguished by sub-

scripts where this is not necessary normally. For example, the Greek letter a may

be used for an angle, a damping constant, the thermal expansion coefficient, and

the temperature coefficient of an electrical resistance. These quantities are assigned

the distinctive notations a, aD, ath, and aT, respectively.
In microtechnique, typically very small structures and shape changes are next to

much larger ones. If both small and large structures would be shown up to scale, the

smaller ones could not be recognized in general. Therefore, it is usual both in

microtechnique and throughout this book to draw smaller structures larger than they

are in comparison to surrounding larger ones. The real dimensions are given in the

figure caption or the text related to it.
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Scaling Laws

If a cube is to be separated into smaller ones, in such a way, that each edge is cut

into two equal pieces (cf. Fig. 1), three cuts through the cube need to be made. Each

cut generates a surface area equal to the surfaces of the original cube parallel to the

cut. All together, the overall surface is duplicated while the volume remains to be

the same. If each edge is cut into n pieces, the surface is increased by a factor n.

Thus, the ratio of surface to volume is changing by the inverse of the factor sf by

which the dimensions of a cube (and in general any object) is scaled up or down.

This is the reason why ships are built as large as possible. The building costs are

proportional to the hull – the surface of the ship; the driving costs are proportional

to the friction with the water – which is proportional to the surface again. But the

benefit is proportional to the amount of goods transported – the volume of the ship.

Therefore, the costs grow as the surface with the square of the scaling factor sf of a

ship, while the benefit increases as the volume with the third power of sf, i.e., the

larger a ship is the more economic it will be. This means also that microships are not

a good idea if large amounts of goods are to be transported. However, there are

other problems where miniaturization is an advantage.

The simple geometrical fact that the ratio of surface to volume scales with sf
�1

has a lot of consequences in microtechnique in general, and especially for the

design of microcomponents and systems. For example, noble metals are widely

used in microtechnique because corrosion acts on the large area of microcompo-

nents, while the small volume is used up very quick. If 100 mm of the supporting

pillar of a macroscopic bridge is corroded away, nobody will care about that, but if

100 mm of a microstructure are corroded away, it may have vanished. On the other

hand, the cost of the small volume of noble metal needed is of no matter.

The increase of chemical reactions is a disadvantage with respect to corrosion,

but it is an advantage when a chemical analysis is to be made in a small volume.

This is the basis for chemical microreactors and microanalysis chips for DNA

recognition and other biological or chemical assays.

The surface to volume ratio is also the reason for a quick exchange of heat for

microcomponents. The large surface facilitates heat exchange, while the small

volume results in a small heat capacity. The flow of heat, fluids, and electrical

current is scaled down when the dimensions are reduced, because the cross-section

is diminished with sf
�2 but the length is reduced by sf

�1 only. This shows that
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microtechnique is more than just a reduction of dimensions, but new concepts and

new design principles are required.

This becomes especially clear when the scaling down of forces is investigated.

All forces that act on the surface of objects become larger in comparison to forces

acting on the volume or mass. Therefore, electrostatic force, piezoelectric force,

capillary force, and friction are of more importance in microtechnique than gravity,

inertia, and magnetism which govern the macroscopic world.

The principal interrelationships that change the nature of things when their over

all size is altered are called the scaling laws. They apply not only to effects and

forces but also to entire sensors and actuators as described in this book. The scaling

laws are the reason why it was necessary to write this book, which describes the

distinguished designs required in microtechnique.

Fig. 1 Surface increase as a

result of the separation of a

cube
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Elastic Deformations

Before the mechanics of basic elements of microtechnique is described, it is

necessary to introduce the main parameters which govern the elastic deformation

of rigid bodies under the action of forces. There are mainly three parameters: Stress
due to straining, residual stress, and bending.

Stress due to straining is generated when a force is pulling or pushing at a rigid

body. For example, a force F pulls in longitudinal direction at the free end of a beam

which is fixed at its other end (cf. Fig. 2a). This force results in a strain eB of the

beam and a stress sB. The stress is the force acting at the beam per cross-section

area AB. Stress and strain are proportional to each other according to Hooke’s law:

F

AB

¼ sB ¼ EBeB: (1)

The proportionality constant EB is a function of the material of the beam and is

called Young’s modulus.

While the length of the beam is increased according to Hooke’s law, its diameter

is decreased by a factor which is smaller than the longitudinal strain eB by Poisson’s
ratio nB. Thus, the change of the width DbB and the thickness DdB of the beam are:

DbB ¼ �nB eB bB and DdB ¼ �nB eB dB: (2)

If the force acting at the beam is released again and if the force was not too large,

the beam comes back to its original position and there is neither stress nor strain

any more. Besides the stress due to straining, a rigid body may show some residual

stress also. This occurs only if the body is fixed at more than one part, e.g., a beam

fixed at both ends (cf. Fig. 2b). The residual stress in microtechnique often is

generated during the fabrication process. For the example of a beam fixed at both

ends, it may be assumed that the beam was stretched or compressed to fit between

the fixation points. If the residual stress does not exceed certain values and no outer

forces are acting, the beam looks the same way as a beam without residual stress,

but a significant change is observed when an outer force is acting on the beam. For

example, if a force is pulling transversally at the center of the beam, it may be deflected

much more with a compressive residual stress and much less with a tensile one.
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Again, if the fixation points are moving or released, the residual stress is changing and

the beam shows some movement, e.g., becomes thicker and shorter.

Bending generates tensile stress and strain on one side of a body and compres-

sive ones on the opposite side (cf. Fig. 2c). The gradient of the stress over the

thickness of the body results in a bending moment, which tends to bring the body

back into its original position when outer forces are taken away again. The integral

of the stress over the cross-section is zero when only bending is involved. So,

bending does not alter the length of, e.g., a beam. There is an infinitesimally thin

layer in every bent body at which the stress is zero. This is called the neutral fiber.

The neutral fiber is strained, however, when a force or a force component is acting

longitudinal to the beam. Beams clamped at one end and loaded only in transversal

direction are elastically deformed only by bending, because the neutral fiber cannot

be strained that way.

The strain e of a beam in axial direction generated by bending is the change of an

infinitesimal length dLB, cf. Fig. 3a:

e ¼ ds� dLB

dLB

¼ Rc þ zð Þda� Rcda
Rcda

¼ z

Rc

: (3)

In this equation, Rc denotes the radius of curvature of the beam. The radius of

curvature of a function w(x) can be calculated, in general, by [21]:

Rc ¼ �
1þ ðqw=qxÞ2

� �3=2

q2w=qx2
: (4)

Fig. 2 Beams with (a) stress

due to straining, (b) residual

stress, and (c) bending
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For small slopes of the curve (if the x-axis is parallel to the beam axis), the first

derivative can be neglected compared with one, and (3) becomes:

e ¼ �z
q2w
qx2

: (5)

The bending moment M acting at the beam is the integral of the product of the

force dF acting on the infinitesimal surface element dA of the cross-section of the

beam and the distance z to the axis around which the beam is bending (the y-axis in

Fig. 3b):

M ¼
ð
A

z dF ¼
ð
A

zs dA: (6)

In this equation, the stress according to Hooke’s law (1), and (5) is inserted:

M¼
ð
A

z s dA¼�
ð
A

z2 EB

q2w
qx2

dA¼�EB

q2w
qx2

ð
A

z2 dA¼�EB I
q2w
qx2

: (7)

In this equation, I denotes the area momentum of inertia which is defined by:

I ¼
ð
A

z2 dA: (8)

The area momentum of inertia of cross-sections important in microtechnique are

listed in Table 3 on page 67.

Fig. 3 Calculation of strain

and bending moment

of a beam
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Thin Films

Thin films are an important basic element of microsystem design. They are used for

masking in etching processes, as a diffusion stop layer, and as functional elements

such as electrical conductors, membranes, and beams. Thin films may consist of

nearly every rigid material. Typical examples are metals, polymers, oxides, and

nitrides. The thickness of thin films typically is in the range of 50 nm – 10 mm. The

lower limit is due to the problem that layers with an average thickness of less than

50 nm hardly are made homogeneously, because they tend to form separated

clusters. The upper limit is a kind of convention. Films that are thicker than

10 mm are no longer considered to be thin in microtechnology, and they cannot

be generated easily by processes such as sputtering and evaporation but need to be

produced by, e.g., electroplating.

When dealing with thin films, stress is an important parameter which may make

the difference between success and a flop of a newly developed microsystem. That

is why stress control is important (or even a design which works at any stress level).

This chapter describes how thin film stress affects their behavior, what are the

consequences for parts fixed to the film, and how the stress can be altered.

It is almost impossible to deposit a thin film onto a substrate without any residual

stress. The only exception is epitaxial growth. The reason for this is that the

molecules of the deposited layer walk around on the substrate surface until an

energetically low position is found. The mismatch in the crystalline structure of

substrate and thin film material results in a strain of the crystal lattice of the thin

film, and, therefore, generates some stress.

If a polymer layer is deposited by a process such as spin-coating or just painting,

a different mechanism is working. A solvent is evaporating from the thin film and

its dimension is reduced. As a consequence, some tensile stress is generated in the

thin film.

Residual stress bends the substrate a little bit. Typically, the deflection by

bending of a silicon wafer with a diameter of 100 mm and a thickness of 500 mm
is on the order of 100 mm when the thickness of the thin film is 100 nm. On the

macroscopic scale, this is of no importance. When a bridge is painted, nobody cares

about the change in shape entailed with this. On the microscopic scale, however,

this is an effect which needs to be considered.
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Substrate bowing is used to measure residual stress s0 of thin films. When the

thickness df of the film is much less than the thickness dSu of the substrate, the

residual stress can be calculated approximately with Stoney’s equation [9]:

s0 ¼ ESu

6 ð1� nSuÞRSu

d2Su
df

: (9)

As can be seen from (9), it is not necessary to know the elastic properties of the

thin film which are hard to measure in general. It is sufficient to know Young’s

modulus ESu, Poisson’s ratio nSu, and the radius of curvature RSu of the substrate.

The radius of curvature of the substrate is easily measured with a surface profiler.

Thin films with a tensile residual stress tend to peel off the substrate [10], while

compressive stress facilitates adhesion. As indicated in Fig. 4 (The figures are not

up to scale allowing to recognize small dimensions next to larger ones.), a tensile

stress pulls the upper part of the thin film away from the rim generating a bending

moment which peels the film off the substrate. Therefore, in the light of good

adhesion, compressive stress is desirable in thin films.

The stress has also an influence on the etching under a thin film used as a mask.

As shown in Fig. 4, the curling down of a mask with compressive stress reduces the

undesired etching under the mask while a tensile stress results in an enhanced

sideward etching.

A thin film may also curl due to a stress gradient. Such gradients occur often

when a thin film is deposited on a substrate. As described above, the mismatch

in the crystalline structure of substrate and thin film material results in a strain in

the crystals of the thin film generated. When the crystal growth is continued, the

mismatch disappears and the natural lattice of the thin film is formed. This results in

a residual stress with an absolute value getting smaller with increasing distance

from the substrate. Figure 5 shows what happens if a sacrificial layer beneath a thin

film is etched away when the film initially was under compressive stress decreasing

with the distance from the substrate. The beams in the left part of Fig. 6 are curling

up because of a gradient in their residual stress.

The radius Rf of curvature of a curling thin film with thickness df and Young’s

modulusEf and a difference in stressDs can be calculatedwith the following equation:

Rf ¼ df Ef

Ds
: (10)

Fig. 4 Thin film on a

substrate with tensile and

compressive stress,

respectively
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Thin films tend to deform membranes as well. If a membrane with tensile stress

carries a thin film, it is very unlikely that the thin film shows no stress. Therefore, it

has to be expected that bending moments in the film will deform the membrane. The

upper part of Fig. 7 shows a thin film with compressive stress on a membrane which

has tensile stress, because it is fixed at a frame (frame not shown in Fig. 7). The

bending moments produce a deflection of the membrane in the vicinity of the rim of

the thin film. Far away from the rim, there is nearly no bending of the membrane

neither in the part uncovered with the thin film nor in the covered part.

If the thickness df of a thin film is much less than the thickness dM of the

membrane, the following equations can be used to calculate the deflection w of

the membrane with a tensile stress sM as a function of the distance x from the center

of the thin film, its length Lf, and its stress sf [11].

The deflection of the part of the membrane covered with the thin film xj j< 1
2
Lf

� �
is described by:

w¼ 1

2

sf df

sMdM
df þdMð Þ 1þ 1

1þ cothðLf=ð2 lMÞÞ�1

� �
coshðx=lMÞ

coshðLf=ð2 lMÞÞ
� �

(11)

Fig. 5 Thin film on a

substrate with a stress

gradient after deposition

(top) and after etching the

sacrificial layer (bottom)

Fig. 6 Thin films bowing up (left) [7] and two thin films curling up and down as a design element

in a microvalve (right) [8]. # [1997] IEEE
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and the deflection of the uncovered part xj j> 1
2
Lf

� �
is given by:

w ¼ wR e
ð� xj jþLf=2Þ=lM (12)

with:

wR ¼ 1

2

sf df

sM dM
ðdf þ dMÞ 1

1þ coth ðLf=ð2 lMÞÞ : (13)

The parameter lM in (11–13) is defined as:

lM ¼ dM

2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EM

sMð1� n2MÞ

s
: (14)

The lower part of Fig. 7 shows the deflection of a membrane with a thickness of

5 mm, Young’s modulus of 120 GPa, Poisson’s ratio of 0.3, and a tensile stress of

10 MPa as calculated with (11–14). It is bent by a 1-mm thick thin film with a length

of 3 mm. The parameters lM and wR are 234 and 3.6 mm, respectively. As shown in

Fig. 7, the bending of the membrane is restricted to a stripe with a width of

approximately 4lM and the total deflection is 2wR. Note that the total deflection

is larger than the thickness of the membrane!

Figure 8 displays the deflection parameter wR calculated with (13) as a function

of the length of the thin film. It is clearly visible that the total deflection due to the

stress in a thin film on a membrane may be reduced substantially when the length of

a continuous film is designed smaller than lM. So, an undesired deflection may be

avoided by separating the thin film into parts smaller than lM.
A membrane will be bent also, if it is fixed with tensile stress to a frame on one

side only and if there is no thin film on the membrane (cf. Fig. 9). The upper part of

the membrane is relaxing a little bit by moving from the frame to the free-span

membrane. Thus, a bending moment is generated which pushes the membrane

down to the side of the frame.

Fig. 7 Thin film on a

substrate with compressive

stress. Top: Schematic

drawing; bottom: Deflection
calculated with (11–14)
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Figures 10 and 11 show breaking edges of membranes sputtered from titanium

and beryllium, respectively, as observed with a scanning electron microscope

(SEM). It is clearly seen that the crystalline structure of these membranes is dif-

ferent. As a consequence, the properties of these membranes are different. Crystal

growth during sputtering the beryllium started from the bottom in Fig. 11, and it

is seen that at the bottom there are the smallest crystallites. The speed of growth

is a function of the orientation of the crystal lattice. Some of the crystallites in the

bottom layer are orientated such that they show a quicker growth and they grow

over their neighbors. Therefore, the properties of such a thin film become more

anisotropic when it is thicker.

Fig. 8 Deflection parameter

wR calculated with (13)

Fig. 9 Deflection of a

membrane stretched with

tensile stress over a frame

Fig. 10 SEM of a titanium

membrane, 2.7 mm in

thickness. (Courtesy of

Karlsruhe Institute of

Technology, KIT)

Fig. 11 SEM of a beryllium

membrane, 10 mm in

thickness. (Courtesy of

Karlsruhe Institute of

Technology, KIT)
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In Fig. 10, the crystallites are very small and homogenous. The reason for this is

that the crystalline structure was changed by exposing the thin film to high

temperatures after sputtering. This has caused recrystallization, i.e,. the atoms of

the material started to move at elevated temperatures and to change their position

from one crystal to the other. This process is lent by the reduction of stress. Thus,

the recrystallization continues until a certain stress level is achieved which does not

induce further recrystallization.

This became evident in an experiment performed by Flinn [12]. He used silicon

wafers onwhich a thinmetal layer had been sputtered. The films showed tensile stress,

and, therefore, thewaferswere bent. Flinn used the curved thin film as a hollowmirror.

The focal length of this mirror was a measure of wafer bending and thin film stress.

This way, the stress of the thin film could bemeasured through the window of an oven

and the change of the stress was recorded as a function of temperature. Figure 12

shows the result of this experiment for aluminum films on silicon wafers.

The experiment started at a thin film stress of approximately 100 MPa. Then the

temperature was raised and the stress was reduced according to the larger thermal

expansion of aluminum compared with silicon. As temperature continued to

increase the thin film got compressive stress. At approximately 100�C and a stress

of �70 MPa, recrystallization started and the compressive stress no longer changed

with raising temperature or even reduced. At 450�C, heating was turned off and

cooling down of the sample started. Again the stress was changing according to the

difference in thermal expansion of aluminum and silicon until a certain tensile

stress was reached and recrystallization reduced further stress enhancement.

A theoretical model of this experiment is shown in Fig. 13: During heating the

stress follows the line from A to B. At B, a theoretical line is reached which marks

the stress level as a function of temperature at which recrystallization starts. From

B to C the stress follows this line. When cooling starts there is no longer enough

stress for recrystallization and the stress follows the difference in thermal expansion

until the tensile stress at D gets so large that the stress follows another line which

marks the start of recrystallization.

Fig. 12 Thin film stress as a

function of heating and

cooling (reproduced

from [12])

Fig. 13 Theoretical model of

the experiment in Fig. 12 [12]
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This experiment shows how the stress in thin films can be altered by a temper-

ature cycle. When thin films are sputtered or evaporated onto substrates the condi-

tions differ a bit as a function of the position in the machine. Therefore, thin film

stress is not everywhere the same, neither on neighboring substrates in a machine

nor on a single substrate. In Fig. 13, it can be seen how the stress of a whole batch

may be adjusted to a common level. A thin film starting at A0 instead of A will end

up at the same stress at E as all the other films with different initial stress.

A stress gradient is reduced or vanishes after temperature cycling. Curling up of

the thin films shown in the left part of Fig. 6 (on page 11) might have been avoided

with a proper temperature cycle before release from the substrate. The titanium

membrane shown in Fig. 10 before separation from the substrate underwent a

temperature cycle for 30 min at 450�C. As a result, the membrane stress was

changed from compressive to tensile and no more stress gradient was found. The

figure shows also the homogeneous crystalline structure generated this way.

The crystalline structure affects other properties of thin films also. One example is

the electrical resistance. Usually, conductor metal paths are exposed to a temperature

cycle to avoid a later change of the resistance when it may get heated during use.

The strength of thin films is also a function of their crystalline structure. Thin

films which have been sputtered or evaporated typically show a larger strength than

the casted material. Recrystallization will reduce this strength.

The density of thin films after deposition is approximately 10% less than the

density of the same material after casting. Recrystallization increases the density.

Other properties of thin films, which are important for their application, are

adhesion to the substrate and other layers, diffusion of molecules and atoms into

and through the film, wettening by liquids, chemical reactivity, and thermal con-

ductivity.

Exercises

Problem 1

In Figures E1–E4, you find four typical applications from microtechnique. In these

applications, basic elements have been employed which you have got to know in the

lecture. Find out which are these basic elements.

Fig. E1 Schematic setup of

a bistable microvalve [13]
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Fig. E2 Cross-section of the

nozzle of an ink-jet printer

Fig. E3 Schematic setup of a pressure sensor (b) and an acceleration sensor (c). (Reprinted from

[14] with permission from Elsevier)
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Problem 2

Why is it important to know the mechanical stress of a layer? Which meaning has it

for the development of a microtechnical system?

Problem 3

You got to know Stoney’s equation in the lecture, which you can use to calculate the

stress of a thin film as a function of the radius of curvature. Consider which

experimental methods you could use to measure the curvature of the substrate.

There are several possibilities.

How could you measure the thickness of a thin layer?

Problem 4

Let us assume that you are able to measure the vertical deflection of the substrate

with the method suggested by you. The geometrical situation is approximated by

a circle (cf. Fig. E5). If the length of a chord of the circle is L and its maximum

distance to the circle is w0, the radius can be calculated or approximated, respec-

tively, with the following equation:

Rf ¼ w0

2
þ L2

8 w0

� L2

8 w0

:

Figure E6 displays the curvature of a passivated silicon wafer (diameter 100 mm

and thickness 0.55 mm) without any metallic layer as measured by Thomas et al.

Fig. E4 Silicon micropump [15]
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[16]. After this measurement, the wafer was sputtered first with 5 nm titanium and

then with 500 nm tungsten. The curvature of the covered wafer is shown in Fig. E7.

(a) Obviously, the passivated but uncovered wafer shows some stress already.

What is the reason for this curvature?

(b) Please, calculate the (mean) stress in the coating of the silicon wafer.

Fig. E5 Chord of the circle

of curvature
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Fig. E6 Curvature of the uncovered passivated silicon wafer [16]. # [1988] IEEE
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Hint: Do not get irritated because the curvature is no exact circle. This cannot be

expected from a real measurement.

Young’s modulus of silicon 133 GPa Poisson’s ratio of silicon 0.28

Problem 5

In surface micromachining, a sacrificial layer in the near of the surface is removed

to partly separate movable parts from the substrate. A wafer is first coated with

a sacrificial layer from SiO2 and then with a thin titanium layer. The sacrificial SiO2

layer is etched away with hydrofluoric acid.

(a) A thin layer may curl after removing its linkage to the substrate. This effect is

due to a stress gradient in the layer. Calculate the radius of curvature of titanium

films with different thicknesses and a stress difference of 300 MPa. The thick-

nesses of the titanium films are 10 mm, 5 mm, and 200 nm.

Young’s modulus of titanium 120 GPa

(b) You may learn from your calculations that the radii of curled films can become

very small. With a modified approach at Max-Planck Institute for rigid body

research in Stuttgart so-called nanotubes were generated (cf. Figs. E8 and E9).

The stress gradient was generated in this case by deposition of two layers with

Fig. E8 Schematic drawing

of the curling of a nanotube

consisting of two thin layers.

The upper layer shows a

smaller lattice distance than

the lower one. Courtesy of [17]
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a thickness of approximately 60 nm with different stresses. How large was

round about the difference in stress of the two layers before the sacrificial layer

had been dissolved? The diameter of the nanotube is 530 nm. Assume that

the mean Young’s modulus of the two layers is 106.5 GPa. Assume that the

effective distance of the two layers equals the distance of their centers.

Fig. E9 SEM of a nanotube

with a diameter of 530 nm.

Courtesy of [17]
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Conductor Paths

Conductor paths are either thin films on a substrate patterned to get the shape of the

desired paths or the substrate itself is made conductive along the desired paths. The

latter is obtained by doping of a semiconductor. Doping is obtained by techniques

such as diffusion of chemical species such as boron or phosphorus out of a gas

phase into a semiconductor along the paths where a conductor is to be formed or

ions are implanted there. For more details on doping of semiconductors, refer books

on micromachining such as refs. [3–6].

Conductor paths are used to establish electrical connections between compo-

nents and are employed as strain gauges measuring strain. Typical thicknesses of

conductor paths range from 50 nm to 5 mm. The lower limit is defined by the ability

to form a continuous layer as described in the beginning of the previous chapter and

the upper limit is set by the effort necessary to generate thicker layers with the

processes used in microtechnique. The lateral dimensions of conductor paths in

electronics fabrication nowadays achieve 40 nm or even less. Wiring in micro-

systems does not require such small dimensions. Typically, the width of conductor

paths is in the range from a few micrometers up to some millimeters.

This chapter describes how the resistance of a conductor path is affected by

strain and temperature providing the basics for designing strain gauges.
The resistance Rel of a conductor path with length LL, thickness dL, width bL,

and specific resistance rel can be calculated with the following equation:

Rel ¼ rel
LL

bL dL
: (15)

If this conductor path is strained in the direction of its length by DLL ¼ LL el,
width by DbL ¼ bL eb, and thickness DdL ¼ dL ed, the resistance changes according
to the change in geometry:

DRel ¼ qRel

qLL

DLL þ qRel

qbL
DbL þ qRel

qdL
DdL ¼ Rel el � eb � edð Þ: (16)

If a unidirectional strain el is applied to this conductor path in the direction of its
length (cf. Fig. 14), it becomes longer by the factor (1 þ el), and if there are no

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,
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other boundary conditions, i.e., the conductor path is not fixed to a substrate, it will

shrink in the two directions perpendicular to the straining by a factor (1� nel) with n
denoting Poisson’s ratio. So, the width and the thickness of the conductor path

become smaller when it is strained in the direction of its length. The resulting

resistance change is shown in (17):

DRel ¼ qRel

qLL

DLL þ qRel

qbL
DbL þ qRel

qdL
DdL ¼ Rel el þ neL þ neLð Þ ¼ Relel 1þ 2nð Þ:

(17)

Thus, the resistance of a conductor path gets larger by straining when it becomes

longer and when it becomes narrower and/or thinner.

This is the resistance change due to the geometrical effect. Besides this, the

specific resistance of the conductor material is a function of strain and temperature T.

Equation (16) becomes now:

DRel ¼ Rel el � eb � edð Þ þ qRel

qrel

qrel
qel

el þ qrel
qeb

eb þ qrel
qed

ed þ qrel
qT

DT
� �

: (18)

The specific resistance is nearly a linear function of temperature which is des-

cribed by the temperature coefficient aT:

rel ¼ rel;0 1þ aTTð Þ; (19)

where rel,0 denoting the specific resistance at the origin of the temperature scale

used. Every conductor material shows some resistance change as a function of

temperature. Therefore, this is an effect which needs to be taken into account.

The derivative of the specific resistance with respect to the strain ei in direction i
is described by the gauge factor K:

qrel
qei

¼ rel Ki: (20)

Inserting (20) and (19) in (18) yields:

DRel ¼ Rel el � eb � edð Þ þ Rel Kl el þ Kb eb þ Kd ed þ aT DTð Þ: (21)

Fig. 14 Geometrical changes

of a conductor path due to a

longitudinal force
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The gauge factor of metals is comparatively small and usually neglected in

calculations. Thus, for metal conductors, only the geometrical and temperature

effect is taken into account. The gauge factor of monocrystalline silicon is on the

order of 90 and for polycrystalline silicon in the range of 20–40 while the geomet-

rical effect is approximately 1–2. Therefore, if the resistance change of silicon is to

be calculated, the geometrical effect is neglected in general.

Sometimes the change of the specific resistance is expressed as a function of the

stress sf of the conductor path. Then, the terms (Ki ei) in (21) are exchanged against
(pi si), where pi denotes the piezoresistive coefficient in direction i. The gauge

factors and piezoresistive coefficients are measured in experiments not corrected

for the transverse strain which occurs when the sample is strained longitudinal.

Thus, these material properties already include the effect of transverse strain and

there is no stress sd in the direction of the thickness:

DRel ¼ Rel pl sl þ pb sb þ aT DTð Þ: (22)

Pure silicon is a semiconductor, i.e., it is insulating at room temperature. It is

necessary to add other atoms to obtain electrical conductivity. This is achieved by a

process called doping, during which other atoms such as boron or phosphor are

brought into the silicon. If the kind of atoms added have less than four electrons in

their outer electron shell such as boron, this process is called p-doping, and if there

are more than four electrons in the outer shell it is n-doping.

In monocrystalline materials such as silicon wafers, the gauge factor and the

piezoresistive coefficient are a function of the orientation relative to the crystal

lattice. The orientation relative to the lattice is described by the so-called Miller
indices. Silicon has a cubic lattice, and planes in the lattice are described by their

intersection points with the coordinate axes parallel to the lattice. The unit along the

coordinate axes is the grid constant which is the distance between two lattice points.

The Miller indices of a certain plain through the lattice are the reverse of the

distances from the origin of the intersection points with all three axes. So, the

Miller indices (111) indicate a plane which shows intersection points with all

coordinate axes at the distance of one grid constant (cf. Fig. 15).

Intersections at negative coordinate values are denoted by a minus sign above

the corresponding index, e.g. ð1�11Þ: However, a minus sign simply mirrors the

plane, and, therefore, results in a physically identical plane. In a cubic lattice also, a

rotation by 90� results in a physical identical plane. Therefore, the planes (100),

(010), and (001) are all the same. It is usual to use a curly brace {100} instead of a

parenthesis to denote one of these physically identical planes.

Directions in the lattice are denoted by the Miller indices of the plane perpen-

dicular to the direction. A direction is distinguished from a plane by showing the

Miller indices in square brackets such as [100] or [110], instead of parenthesis. In

this book, physical identical directions such as [100] and [010] are denoted by sharp

brackets <100>.

For practical applications in microtechnique, typically the three planes {100},

{110}, and {111} are important only. These planes are shown in Fig. 15.
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In a silicon factory, the monocrystals are sawn into plates, the so-called silicon

wafers. The surface of a wafer is parallel to a certain plain of the crystal lattice such

as (100). The directions on the surface of the wafer are indicated by a so-called flat.

This is a secant at the circular wafer as shown in Fig. 16. The flat points in a certain

direction, e.g. [110].

As described above, the change of the specific resistance of monocrystalline

silicon is a function of the orientation on the wafer. Thus, the piezoresistive

coefficient of a conductor path is defined by the direction, e.g. [110] on a (100)-

wafer, in which it is orientated and whether it is strained parallel or perpendicular.

The piezoresistive coefficients were drawn by Kanda in certain graphs [18]. Four of

these graphs are shown in Fig. 17.

The piezoresistive constants of some important crystal orientations are shown in

Table 1.

The piezoresistive constants are a function of doping also. As shown in Fig. 17,

(110)-wafers show completely different piezoresistive constants as a function of

orientation, when they are n-doped instead of p-doped. Besides this, the effect is a

function of the number of doping atoms per cm3 as shown in Fig. 18. Lower-doped

Fig. 16 Directions on the

surface of a (100)-silicon

wafer

[001] [001] [001]

[010] [010]

(111)

[111] [010]

[100][100] [100]

[110]

(110)
(100)

Fig. 15 Directions and plains in the cubic silicon lattice
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Fig. 17 Piezoresistive coefficient of (100), (110), and (111) wafers as a function of doping and the

orientation in the silicon lattice. Note the different sign of the constants for unidirectional stressing

longitudinal pl and transversal pt to the conductor path. The constants are shown as the distance

from the origin in the unit 10�11/Pa. The graphs are reproduced from [18]. # [1982] IEEE

Table 1 Piezoresistive

coefficients on {100} silicon

wafers doped less than

1018/cm3

Doping Orientation pl (10
�11/Pa) pt (10

�11/Pa)

p <100> 6.6 �1.1

p <110> 72 �66

n <100> �102.2 53.4

n <110> �31 �18

Fig. 18 Correction factor of

piezoresistive constants for

doping concentration and

temperature. The graph is

reproduced from [18].

# [1982] IEEE

Conductor Paths 25



silicon is more sensitive to straining than higher-doped. However, lower doping is

entailed with a larger temperature effect. Therefore, a doping of 1020 atoms per cm3

and higher appears to be more favorable for applications where a cross-sensitivity

to temperature changes is not desirable.

Exercises

Problem 6

Your colleague is proud on his new developed microbalance. It employs the

piezoresistive effect to measure small masses. The sensitive element of this balance

is a rectangular upright polysilicon beam, 2 mm in length with a cross-section of

0.25 � 0.25 mm2. At the upper end of the beam, there is a small plate mounted

carrying the small samples. The weight of the samples is determined from the

change of the electrical resistance along the beam.

(a) Your colleague measures the weight of a fly in his laboratory. He obtains a

resistance change of 20 mO. What is the mass of the fly?

(b) After lunch at the sunny terrace, your colleague shows his new microbalance to

his fellow colleagues. The same fly as before is used as a sample. At the terrace

the temperature is 35�C, while in the laboratory there were 25�C.

What is the weight your colleague obtains now at the terrace? Do you think that

this is a good design for a microbalance?

Specific resistance of silicon at 25�C 5 O cm Poisson’s ratio of polysilicon 0.23

Young’s modulus of polycrystalline

silicon

160 GPa Part of the gauge factor due to

change of conductivity KL

30

Temperature coefficient of the

resistance of polycrystalline silicon

1.2 � 10�3

Problem 7

In Fig. E10, the piezoresistive coefficients of monocrystalline silicon are shown

which was cut along the (001)-plane. It is advantageous to design strain gauges such

that they are orientated in [110]-direction or in a direction which is equivalent to

this, because the measurement effect is large, this way. Electrical connections to the

strain gauges which obviously shall show a very small sensitivity to straining may

be positioned along the [100]- or an equivalent direction.

(a) Take from Fig. E10, the piezoresistive coefficient pl for the case that it is

stressed along its length.

(b) Find the corresponding value pt for stressing perpendicular to the electrical

current.
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(c) By a mismatch during fabrication, the strain gauges are rotated relative to the

crystal orientation by þ10�. How are the values changed by this production

error?

Fig. E10 Piezoresistive coefficients in the (001)-plane for p-doped silicon [18]. The values in

the upper and lower hemisphere are for longitudinal pl and transversal pt stress, respectively.
# [1982] IEEE

Exercises 27



Membranes

Besides conductor paths, membranes are another special type of thin films. Mem-

branes are an important mechanical basic element in microtechnique. They are the

microscopic correspondence to macroscopic gaskets, bearings, and springs. They

are made of silicon, oxides, nitrides, glasses, polymers, and metals. Their thickness

typically is in the range of 0.5–500 mm. Membranes which are thinner than 0.5 mm
are very hard to manufacture without holes and are generally not strong enough to

withstand usual loads. The upper limit is given by the fact that thicker membranes

are no longer a microscopic element. The lateral dimensions of membranes are

typically in the range between 100 mm and 10 mm. Again the lower limit is defined

by the possibilities of fabrication, while the upper limit is approximately the limit to

the macroscopic world. However, all equations discussed here are valid in the

macroscopic world also.

There are two types of membranes, which are frequently used in microtech-

nique: Thick membranes and thin membranes. A membrane is called thick when its

maximum deflection w0 is much smaller than its thickness dM and thin when the

deflection is larger than the thickness. So, a thick membrane may become a thin one

when the pressure drop rises and the deflection is increased. A thick membrane,

sometimes, is also called a plate. The shape of the deflection of a thick membrane is

determined by the bending moments acting especially at the rim where the mem-

brane is clamped to a frame or housing. Figure 19 shows the characteristic shape of

different types of membranes. As usual in microtechnique, the drawings are not to

scale; small dimensions are shown larger to make them visible in the vicinity of

larger ones. The deflection w of a circular thick membrane with radius RM is des-

cribed by the following equation [19]:

w ðrÞ ¼ w0 1� r2

R2
M

� �2
: (23)

When the membrane is deflected, its neutral fiber needs to become longer and

this strain generates some stress according to Hooke’s law. When the deflection

becomes much larger than the thickness of the membrane, the effect on the shape of

the membrane generated by the stress due to straining gets much larger than the

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,
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effect of the bending moments. In this case, the bending moments may be neglected

in calculations. The deflection curve of a circular thin membrane adopts the shape

of a parabola and is described by the following equation:

w ðrÞ ¼ w0 1� r2

R2
M

� �
: (24)

A third membrane type is the flexible membrane, which is shown at the bottom of

Fig. 19. It is longer than the distance between the positions where its rim is clamped

and it is so thin that bending moments are of minor importance. There is no straining

along the neutral fiber and no residual stress. The deflection of such a membrane is

not defined. It behaves as a plastic bag which can be deformed with small forces and

retains this shape until further forces act on it. A flexible membrane may be used to

separate two fluids and to ensure that there is no pressure difference over the

membrane. It may also be used to limit the volume of a fluid because much pressure

is required when a certain displacement of the membrane shall be overcome.

The deflection of a circular thin membrane loaded by a constant pressure drop

Dp can be calculated from the equilibrium of forces at the rim. The absolute value

of the total force Fp acting on the membrane is the pressure difference times the

membrane area pR2
M (cf. Fig. 20). This force is balanced by the force FF of the

frame fixing the membrane at the circumference. The lateral components of this

force cancel out when summed over the entire rim of the membrane, because there

is no lateral movement of the membrane. The vertical components FF,z and Fp,z of

the force of the frame and the pressure drop, respectively, are in equilibrium:

Fp;z ¼ Dp p R2
M ¼ �FF;z ¼ �sM dM 2 p RM sin ðaÞ: (25)

r

w0

w0

RM

dM

Fig. 19 Thick, thin, and

flexible membrane,

respectively
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The force of the frame in (25) is calculated from the membrane stress sM times

the cross-section of the membrane around the circumference, which is the mem-

brane thickness dM times the length of the circumference 2 p RM. The vertical

component of the force of the frame is obtained by multiplying with the sine of the

angle at which the membrane touches the frame. For comparatively small angles a,
the sine is approximately the same as the tangent which is the slope of the

membrane at its rim and can be calculated as the derivative of the deflection

curve w(r) at the rim. Equation (25) becomes now:

Dp p R2
M � �sM dM 2 p RM tan ðaÞ ¼ �sM dM 2 p RM

qw
qr

����
r¼RM

: (26)

The deflection curve of the membrane is the parabola described by (24). Calcu-

lating the derivative of this, inserting in (26) and solving for the pressure drop

yields:

Dp p R2
M ¼ �sM dM 2 p RM w0

2

RM

¼ 4 p w0 dM sM ) Dp ¼ 4 w0 dM

R2
M

sM:

(27)

The stress sM of the membrane consists of two parts, the residual stress s0,
which is already present when there is no deflection of the membrane, and the stress

sD due to Hooke’s law generated by the deflection of the membrane. The latter part

can be calculated from the strains eR and eT in radial and tangential direction,

respectively, generated by the deflection. According to Hooke’s law, the radial

strain is calculated with the following equation:

eR ¼ sR

EM

þ nM
sT

EM

¼ 1

EM

sR þ nM sTð Þ: (28)

The first term in (28) is the strain generated by the radial stress sR of the

membrane and the second term is due to the transverse strain generated by the

tangential stress sT of the membrane. nM and EM denote Poisson’s ratio and

Young’s modulus of the membrane, respectively. The tangential strain eT is calcu-

lated accordingly to (28):

eT ¼ sT

EM

þ nM
sR

EM

¼ 1

EM

sT þ nM sRð Þ: (29)

RM z

w
r

∆p FF,z

Fp,z

w0

FF

α

Fig. 20 Cross-section of a

circular thin membrane

loaded with a pressure drop
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Radial strain is assumed to be constant over the entire membrane. This can be

adequate for thin membranes only, because bending moments, which result in

a strain change over the thickness of the membrane, are comparatively small and

may be neglected in thin membranes. Radial membrane strain is estimated by the

extension along the neutral fiber of the membrane which is necessary for deflection

(cf. Fig. 21). In formularies such as [21], the length LPa of a parabola with

a comparatively small height w0 at its peak and a base length 2 RM is found to be:

LPa � 2RM 1þ 2

3

w2
0

R2
M

� 2

5

w4
0

R4
M

� �
: (30)

Thus, the strain eR necessary to extend the base length to the length of the

parabola is:

eR � 2

3

w2
0

R2
M

: (31)

The tangential strain of the membrane is currently unknown. Only two boundary

conditions can be determined:

1. In the center of the membrane, radial and tangential strains are equal because the

strain is not a function of direction at this position due to symmetry.

2. At the circumference, tangential strain is zero because the membrane is clamped

there and the frame does not allow any movements of the membrane.

In the following, the two ansatz-equations are made that either the first or the

second boundary condition would be fulfilled everywhere on the membrane. Later

the results obtained this way are compared with each other.

If tangential and radial strains are equal throughout the membrane (31), (28), and

(29) result in:

sR ¼ eR
E

1� nM
: (32)

If tangential strain is assumed to be zero everywhere, we obtain:

sR ¼ eR
E

1� n2M
: (33)

For most materials, Poisson’s ratio is approximately 0.3. As a consequence, the

maximum change in the quantity (1�nM) versus (1�nM
2) is 11%. For polymers,

LPa
W0

RM

Fig. 21 Length LPa of a

parabola with a peak height

w0 and a base length 2 RM
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Poisson’s ratio may approach 0.5 resulting in a ratio of 66%. For a general

understanding of the interrelationships, this is an approximation which is still

good enough.

Equation (31) is substituted in (32) and the total stress sM of the thin circular

membrane is obtained from the sum of the residual stress s0, and the stress

generated by the deflection of the membrane sR:

sM ¼ s0 þ 2

3

w2
0

R2
M

EM

1� nM
: (34)

This is introduced now to (27) resulting in an interrelationship between the

pressure drop Dp over a thin, circular membrane and its radius RM, thickness dM,

Young’s modulus EM, Poisson’s ratio nM, residual stress s0, and deflection w0:

Dp ¼ 4
w0 dM

R2
M

s0 þ 2

3

w2
0

R2
M

EM

1� nM

� �
: (35)

Equation (35) is Cabrera’s equation which is frequently used to calculate

membrane deflections [22]. However, it is based on a rough approximation, and it

could have been assumed also that tangential strain is zero throughout the mem-

brane (33). As a consequence of this assumption, (35) would be:

Dp ¼ 4
w0 dM

R2
M

s0 þ 2

3

w2
0

R2
M

EM

1� n2M

� �
: (36)

The exact equation for thin, circular membranes was found by using finite

element methods (FEM) [23]. An ansatz with variable parameters was made for

the pressure drop Dp as a function of Poisson’s ratio and the parameters were

determined by a fit to the FEM result. The solutions for a circular and a square

membrane with an edge length aM are as follows.

Circular membrane

Dp ¼ 4
w0 dM

R2
M

s0 þ 2

3

w2
0

R2
M

EM

1:026� 0:793nM � 0:233n2M

� �
: (37)

Square membrane

Dp ¼ 13:6
w0 dM

a2M
s0 þ 1:61

w2
0

a2M

1:446� 0:427 nMð ÞEM

1� nM

� �
: (38)

It should be noted that all the calculations above are for thin membranes only,

i.e., bending moments are not included. When a membrane is thick, however,

bending moments dominate the behavior of the membrane and the stress may be
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neglected for some cases. In the macroscopic world, the deflection of membranes is

very often dominated by bending moments; therefore, solutions for this problem

have existed for decades. These are the calculations for the deflection of plates,

commonly found in classical mechanics books. After solving these classic macro-

scopic differential equations, the following equations are found [19].

Circular membrane

Dp ¼ 16

3

d3M
R4
M

EM

1� n2M
w0 ) w0 ¼ 3

16

R4
M

d3M

1� nM
EM

Dp: (39)

Square membrane

Dp ¼ 66
d3M
a4M

EM

1� n2M
w0 ) w0 ¼ 1

66

a4M
d3M

1� n2M
EM

Dp: (40)

In general, however, both bending moments and stress affect membrane deflec-

tions. If it is desired to take both into account, the Ritz method can be used to find

the resultant deflection [24]. In this approach, the potential energy of the membrane

is calculated as a function of one or more free parameters, which are obtained by

calculating the extremes of the energy function. A local minimum corresponds to

a stable equilibrium of the membrane, while a maximum is an unstable one.

In the following, the Ritz method is utilized in a simple example of the deflection

of a spring loaded with a mass mK (cf. Fig. 22). The potential energy Vp of the

system is the sum of the energy of the spring and the mass:

Vp ¼ �mK ge w0 þ k

2
w2

0: (41)

The derivative of the potential energy is the force. Therefore, the extremes of

the potential energy correspond to the positions where the sum of the forces is zero,

i.e., the equilibrium of forces. The derivative of (41) with respect to the deflection

w0 of the spring is:

qVp

qw0

¼ 0 ¼ FKu þ Fk ¼ �mK ge þ kw0: (42)

Fig. 22 Equilibrium of

forces at a spring loaded with

a mass
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Solving this equation yields the deflection of the spring:

w0 ¼ mK ge

k
: (43)

This result could have also been found by directly calculating the equilibrium of

forces, but with a more difficult problem, using the extremes of the potential energy

according to the Ritz method is much easier.

The potential energy of a membrane with thickness dM, radius RM, Young’s

modulus EM, Poisson’s ratio nM, and deflection w can generally be calculated from

a differential equation. If membrane bending moments, residual stress, stress due to

straining, and the pressure drop are included, the equation takes the following form

in rectangular and polar coordinates, respectively [19]:

Vp¼
ðð

dxdy
EM d3M

24 1�n2Mð Þ
q2w
qx2

þq2w
qy2

� �2

þdM

2
sx0

qw
qx

� �2

þsy0

qw
qy

� �2
 !"

þdM

8

EM

1�n2M

qw
qx

� �4

þ qw
qy

� �4
 !

�wDp

#
;

(44)

Vp ¼
ð2p
0

dj
ðRM

0

r dr
EM d3M

24 1� n2Mð Þ
q2w
qr2

þ 1

r

qw
qr

þ 1

r2
q2w
qj2

� �2
"

þ dM

2
sr0

qw
qr

� �2

þ sj0

r2
qw
qj

� �2
 !

þ dM

8

EM

1� n2M

qw
qr

� �4

� w Dp

#
: (45)

The first term in the brackets of the two equations above corresponds to the

effect of the bending moments, the second to residual membrane stress in x- and y-,

(radial and tangential) directions, respectively, the third to the contribution of the

stress due to straining of the neutral fiber, and the last to the energy generated by

moving the membrane at the pressure difference.

Equations (44) and (45) are differential equations. In principle, the deflection

curve w(r) of the membrane would need to be found which yields the minimum

potential energy. An ansatz with free parameters was used instead of the unknown

deflection curve. This ansatz is chosen such that it describes the expected deflection

curve as good as possible. For a circular membrane with radius RM and center

deflection w0, an ansatz is made with a fourth-order polynomial with the free

parameters w0, a0, a1, a2, a3, and a4:

wðrÞ ¼ w0 a0 þ a1
r

RM

þ a2
r2

R2
M

þ a3
r3

R3
M

þ a4
r4

R4
M

� �
: (46)

Some of the free parameters can be derived from boundary conditions: The slope

of the membrane at its center needs to be zero, i.e. the derivative of w(r) at r ¼ 0
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needs to be zero; therefore a1 ¼ 0. Also, the deflection at the center of the membrane

is defined to be w0, resulting in a0 ¼ 1. Finally, the deflection at the rim and the slope

of the membrane at the rim are necessarily zero. Using these parameters, the following

equations are created:

a2 ¼ a4 � 3 and a3 ¼ 2� 2a4: (47)

As a consequence, w0 and a4 are the only free parameters remaining, because a2
and a3 depend on a4, and (46) becomes:

wðrÞ ¼ w0 1þ a4 � 3½ � r
2

R2
M

þ 2� 2a4½ � r
3

R3
M

þ a4
r4

R4
M

� �
; (48)

where w0 is the center deflection of the membrane and a4 is a measure of the

deflection shape of the membrane. The case when a4 ¼ 1 corresponds to a circular,

thick membrane [cf. (23) on page 29]. Figure 23 shows the deflection curve as a

function of the parameter a4. A thinmembrane [(24) on page 30] would correspond to

the parabola shown in the figure. Obviously, a parabola cannot be perfectly modeled

by this ansatz, because the slope of a parabola is not zero at the rim. However, the

parabola is best approximated by the ansatz when a4 is between 3 and 5.

The ansatz (48) is now differentiated and the results are inserted into (45). The

integral can then be calculated because the resulting function is simply a polyno-

mial. This calculation comprises a lot of simple steps which all bear the risk of

mistakes. Therefore, computer codes are used to perform the analytical calcula-

tions. The following equation is the result of such a code:

Vp¼2p
EM d3M

24 1�n2Mð Þ
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0

R2
M

9þ6

5
a4þ 7

15
a24

� �
þdM

2
sr0 w

2
0

3

5
þ 2

35
a4þ 1

105
a24

� ��

þ EM dM

1�n2M

w4
0

R2
M

9

70
þ 6

385
a4þ 3

385
a24þ

2

5;005
a34þ

1

30;030
a44

� �

�Dp w0 R
2
M

3

20
þ 1

60
a4

� ��
: (49)
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a4 = -3 r/RM
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Fig. 23 Deflection curve of a

circular membrane calculated

with (48) as a function of the

parameter a4
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The equation above describes the potential energy of the membrane as a function

of the free parameters w0 and a4. As before, we are looking for those values of the

parameters for which the potential energy is minimal. As usual, the minimum of

a function is found by calculating the zero of the derivative with respect to the

corresponding parameter, i.e. the following system of two equations needs to be

solved for w0 and a4:

0¼ qVp

qw0

¼ 2 p
EM d3M

24 1�n2Mð Þ
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; (50)
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Unfortunately, this system of equations is too complicated to be solved analyti-

cally, but numerically it can be solved easily. In Fig. 24, the interrelationship

between pressure drop and both membrane deflection w0 and the parameter a4
are shown for two typical cases. On the left, there is the linear relationship between

pressure drop and deflection of a 20-mm thick silicon membrane with a radius of

500 mm, no residual stress, and a ratio of Young’s modulus EM to (1�nM
2) of

240 GPa. a4 is approximately one for all pressure values, as expected for a thick

membrane.

Fig. 24 Interrelationship between the pressure drop over a circular membrane and its center

deflection w0 and the parameter a4 describing the deflection curve of the membrane both calculated

by numerically solving the system of equations (50) and (51). On the left, the result is shown for

a thick silicon membrane and on the right for a thin polyimide membrane
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On the right of Fig. 24 are the results for a 5-mm thick polyimide membrane also

with a radius of 500 mm but with a tensile residual stress of 50 MPa and a ratio

of Young’s modulus EM to (1�nM
2) of 3.3 GPa. The interrelationship between

pressure drop and deflection is not linear in this case. This is in agreement

with Cabrera’s equation for a thin membrane [(35) on page 33], which contains

a nonlinear term due to the straining of the neutral fiber. Accordingly the value of

the parameter a4 is around 4, which approximates a parabola shaped deflection

curve of the membrane (cf. Fig. 23).

As the system of (50) and (51) cannot be solved analytically, a simpler ansatz is

made calculating the membrane deflection with the Ritz method. It is assumed that

the parameter a4 always equals one. As noted above, this is a good approximation

for a thick membrane but does not match well for the case of a thin membrane.

Therefore, precision is lost with a more general solution which can be used to study

more general cases. The only free parameter remaining in the ansatz is the deflec-

tion w0 of the membrane. At the extremes of the potential energy, the derivative of

the potential energy with respect to the deflection is zero:

0 ¼ qVp

qw0

¼ 2 p
3

8

3

EM d3M
1� n2M

w0

R2
M

þ 2 dM s0 w0 þ 128

105

EM dM

1� n2M

w3
0

R2
M

� 1

2
Dp R2

M

� �
¼ FM:

(52)

The derivative of the potential energy with respect to the movement is the force,

in general. Therefore, (52) is a description of the force FM acting on the membrane,

and the deflection where the force becomes zero corresponds to the equilibrium of

forces as in the simple case of (42) on page 34.

The four terms in the brackets of (52) correspond to the contributions of bending

moments, residual stress s0, stress due to straining of the neutral fiber, and pressure
drop Dp over the membrane, respectively.

Solving (52) for the pressure drop Dp over the membrane yields an equation

which describes the relationship between pressure drop and the deflection of

a membrane:

Dp ¼ 4 dM w0

R2
M

4

3

d2M
R2
M

EM

1� n2M
þ s0 þ 64

105

w2
0

R2
M

EM

1� n2M

� �
: (53)

This equation can be used to investigate the behavior of membranes. The three

terms in the brackets describe the contribution of the bending moments, residual

stress s0, and stress due to straining of the neutral fiber, respectively. Bending

moments and residual stress show a linear interrelationship between pressure drop

and membrane deflection, while the stress due to straining contributes with its third

power. That is, if the first and the second term of the bracket of (53) are much larger

than the third term, the pressure is a linear function of the deflection.

This is important, if a pressure sensor has to be designed which shows a linear

characteristic curve. The characteristic curve (53) gets more linear by increasing the
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thickness dM of the membrane, which enlarges the first term in the brackets

compared with the others. In Fig. 25, the pressure drop is shown as a function of

the deflection for different thicknesses of a membrane as calculated with (53).

Residual stress s0, radius RM, and ratio of Young’s modulus EM to (1�nM) of this
membrane are 300 MPa, 600 mm, and 120 GPa, respectively.

As expected, the figure shows that the pressure drop is a more linear function of

the deflection for thicker membranes and that this function is linear approximately

up to a deflection as large as the thickness of the membrane. So it is an option to

design a thicker membrane, if a linear interrelationship between pressure drop and

deflection is desired. However, Fig. 25 also shows that the deflection of thicker

membranes is less at a certain pressure drop. That is, if a thick membrane is used for

a pressure sensor, it is less sensitive. Therefore, there is a compromise between

linearity and sensitivity.

The same trend is observed when (53) is investigated with respect to changes in

residual stress. A larger residual stress results in a more linear function as well as

less sensitivity for a pressure sensor equipped with such a membrane.

If a compressive residual stress is assumed for the membrane, negative values

need to be used for s0 in (53). This is again a rough approximation because it is

assumed that the compressive stress of the membrane would be constant throughout

the membrane. In general, this is not true, but the negative input value of s0 may be

considered as a kind of effective residual stress which generates a similar effect as

the true distribution of the stress. So a precise description of membrane deflection

cannot be expected, but the general trend will be shown.

Figure 26 shows the change which occurs when a compressive residual stress of

s0 ¼ �600 MPa is used instead of the tensile stress assumed for Fig. 25. In a

certain pressure range, there are two stable states for the membrane: It may buckle

up (positive deflection, right side of the graph) or buckle down (negative deflection,

left side of the graph). This is called a bistable membrane. When there is no

pressure drop over the membrane and it is buckling down, it will deflect approxi-

mately -55 mm. If the pressure is then raised, the downward deflection becomes

increasingly smaller until at approximately�30 mm the membrane snaps over to the

opposite side, following the dashed arrow and arriving at an upward deflection of

approximately 60 mm. Starting from that point, the pressure can be reversed to

about �300 kPa before the membrane snaps back to a downward deflection.

Fig. 25 Pressure drop over a

circular membrane as a

function of its deflection and

different thicknesses

calculated with (53)
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The curve between the two points where the membrane is snapping over cannot

be reached by adjusting the pressure difference over the membrane to a certain

value. However, it is a real part of the function and can be reached by holding the

membrane at a certain deflection by some other means. The pressure drop shown in

the graph corresponds to the force per unit area of the membrane necessary to hold

the membrane in position and prevent further deflection. The closer the membrane

is brought to the non-deflected position, the smaller is the force necessary to hold it

at that position. The non-deflected position corresponds to an instable equilibrium

of forces of the membrane.

The curves shown in Fig. 26 were also calculated by a numerical solution of (50)

and 51 (see page 37) with the same compressive residual stress. In Fig. 27, these

curves are compared with each other. The numerical solution is a better approxi-

mation because it includes the change of the deflection shape of the membrane.

Snapping over is calculated to occur already at a larger deflection and at a smaller

pressure difference than calculated with the simpler (53). The calculation also

shows that the deflection shape changes from parabolic shape to something beyond

the shape of a thick membrane when the snapping over position is approached.

Fig. 26 Pressure drop over a

circular membrane as a

function of its deflection

calculated with (42) as in

Fig. 21 but with a

compressive residual stress of

�600 MPa

(53)
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Figure 28 shows the interrelationship between the pressure drop over a circular

membrane and its center deflection for different residual stresses. At a residual

stress of �1.8 MPa, there is a transition from a monostable to a bistable membrane.

This stress, called the critical stress sk of the membrane, occurs where the slope of

the function at the origin is zero. Therefore, the critical stress at which the transition

takes place can be calculated from the zero of the derivative of (53):

0 ¼ @Dp
@w0

����
w0¼0

¼ 4 dM

R2
M

4

3

d2M
R2
M

EM

1� n2M
þ s0

� �
) sk ¼ � 4

3

d2M
R2
M

EM

1� n2M
: (54)

When the residual stress is smaller (more compressive) than the critical stress, the

membrane becomes bistable and buckles if there is no pressure drop. A membrane

with larger (more tensile) stress is flat and does not deflect without a pressure drop.

Note that the critical stress is as large as the contribution of the bending moments

in (53). In other words, buckling takes place when the residual stress overcomes the

bending moments of the membrane.

The deflection w0(Dp ¼ 0) of a membrane without pressure drop is calculated

now by inserting a pressure drop equal to zero into (53):

Dp ¼ 0 ¼ 4 dM w0

R2
M

4

3

d2M
R2
M

EM

1� n2M
þ s0 þ 64

105

w2
0

R2
M

EM

1� n2M

� �
: (55)

There are two possibilities to solve this equation:

w0 ¼ 0 (56)

Fig. 28 Interrelationship

between the pressure drop

over a circular membrane and

its center deflection for

different residual stresses as

calculated with (53)
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s0

� 4
3
d2M R2

M


� �
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: (57)

The first solution corresponds to a flat membrane, while the second describes the

deflection of a bistable membrane with compressive stress. The denominator under

the square root is the critical stress (cf. 54), and this solution gives a suitable result

only if the residual stress is more compressive than the critical stress (cf. Fig. 29).

Equation (56) is a valid solution for all residual stresses of the membrane. In fact,

if the residual stress is more tensile than the critical stress, it is the only solution,

because the term under the root is negative. If the residual stress is more compres-

sive than the critical one, the membrane is in an unstable, non-deflected position.

The residual stress of a membrane is changed as a function of the temperature,

if the frame or housing it is fixed at shows a different thermal expansion. Equation

(57) may be useful to calculate the temperature at which the membrane buckles.

The buckling of a bistable membrane with compressive stress was employed

to design the microvalve shown in Fig. 30 [25]. The compressive stress of the

membrane results in a force which presses the membrane against the orifice of

the inlet and keeps it closed against an outer pressure. When the valve is opened, the

heater in the actuator chamber is switched on and the air escapes through the orifice

to the environment. After this, the heater is switched off and the decreasing pressure

in the actuator chamber pulls the membrane into the downward stable position. For

closing, the membrane is pushed up again by activating the heater. The electrical

Fig. 29 Deflection of a

circular membrane without

pressure difference as a

function of its residual stress

calculated with (57) and (56)

(dashed line)

Fig. 30 Microvalve

equipped with a bistable

membrane [25]
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current through the heater is then lowered slowly, allowing the pressure in the

actuator chamber to equalize through the orifice and avoiding the pulling down of

the membrane.

To design the membrane of a valve of this type its deflection and elastic force

need to be calculated. The optimum distance between the undeflected membrane

and the inlet orifice with respect to a maximized force on the inlet also needs to be

known.

If a force such as the pressure from the inlet of the valve is acting on the center of

a circular membrane, the deflection can be approximated with (52) on page 38.

Fig. 31 shows the calculated elastic force generated by a 2-mm thick, circular

membrane (radius of 600 mm and a ratio EM=ð1� n2MÞ of 120 GPa) as a function

of membrane deflection w0 and stress s0, if there is no pressure difference over

the membrane. The situation is similar to the case of a membrane loaded with

a pressure shown in Fig. 28. The only difference is that the membrane is deflected

by a force instead of a pressure. When the stress is more compressive than the

critical stress, it becomes bistable. If there is no force acting on the membrane and

it is buckling downward (negative w0), its deflection is approximately�55 mm. If it

is deflected upward, then it generates a negative elastic force which tries to deflect

it down further. The absolute value of this force is increasing until the deflection

wU� is reached at a force FU� and the membrane snaps over to the upper side.

The extremes of the deflection are found by calculating the derivative of (52) on

page 38 and finding the zeros:

qFM
qw0

¼ 2p
3

8

3

EM d3M
1� n2M

1

R2
M

þ 2 dM s0 þ 128

35

EM dM

1� n2M

w2
0

R2
M

� �
¼ 0: (58)

) wU ¼ �
ffiffiffiffiffi
35

p
ffiffiffi
3

p
4
dM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

� 4
3
d2M R2

M


� �
EM 1� n2M

� �� 1

s

¼ �
ffiffiffiffiffi
35

p
ffiffiffi
3

p
4
dM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

sk
� 1

r
¼ 1ffiffiffi

3
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(59)

The comparison of the above result with (57) shows that the deflection at the

snapping over point is just a factor 1/
p
3 � 0.58, smaller than the deflection when

Fig. 31 Elastic force of

a circular membrane as a

function of its deflection and

stress calculated with (52)

on page 38
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no force or pressure difference is acting on the membrane. The maximum force

generated by the membrane is achieved at wU and is found by inserting (59) into

(52):

FU ¼ � p
3

7

3

ffiffiffiffiffi
35

3

r
d2M sk

s0

sk

� 1

� �3=2
� Dp R2

M

 !
: (60)

Figure 32 shows the effect of a pressure difference on snapping over and

maximum force of a membrane with a residual stress of �300 MPa as calculated

with (52).

The pressure drop simply adds a constant to (52). Thus, the deflections wUþ and

wU� at which the membrane snaps over are not changed. The maximum forces

FUþ and FU�, however, become asymmetric and the bistable membrane positions

without an outer force acting are changed also.

If the stress of a membrane becomes increasingly compressive, more complex

bulging may occur which is not described with a simple ansatz such as (48) on page

36. The membrane then contains several folds as seen in Fig. 33, which shows the

membrane of a micropump heated and thus being exposed to large compressive

stress [26].

When a membrane is designed for a pressure sensor, a microvalve, or a micro-

pump, it is important to know at which burst pressure the membrane breaks. The

Fig. 32 Elastic force of a

circular membrane as a

function of its deflection and

stress calculated with (52) on

page 38

Fig. 33 Membrane of a

micropump showing several

folds due to large

compressive stress generated

by heating of the membrane

[26]. # [1997] IEEE
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burst pressure can be calculated from Cabrera’s equation or another equation

describing the relationship between deflection w0, pressure drop Dp, and total stress
of the membrane sM. Here the calculation based on Cabrera’s equation [(35) on

page 33] assumes that the membrane is a thin membrane. This assumption will be

suitable for most applications because the deflection of a membrane will be larger

than its thickness when it bursts. However, membranes from brittle materials such

as silicon dioxide and ceramics may be exceptions.

The membrane bursts when the total stress sM becomes larger than the yield

stress sy. [The total stress is described by (34) on page 33.] At the burst pressure

Dpy, the membrane will have the burst deflection w0y and (34) and (35) become:

sy ¼ s0 þ 2

3

w2
0y

R2
M

EM

1� nM
: (61)

Dpy ¼ 4
w0y dM

R2
M

sy: (62)

The burst deflection is calculated from (61)

w0y ¼ RM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
s0 � sy

� � 1� nM
EM

r
(63)

and inserted into (62), resulting in an expression with which the burst pressure can

be calculated as follows:

Dpy ¼ 4
dM

RM

sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
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s0 � sy

� � 1� nM
EM

r
: (64)

To calculate the burst pressure, the yield stress of the membrane material needs

to be known. The yield stress can be determined by increasing the pressure

differential in small increments and measuring the deflection. When the membrane

breaks, the last deflection and pressure measured are the burst deflection and burst

pressure, respectively, and the yield stress can be calculated by solving (62).

The calculations shown above for a circular membrane can also be performed for

square membranes with edge length aM. A parabolic deflection is assumed in x- and

y-direction:

w x; yð Þ ¼ w0 1� 4
x2

a2M

� �2
1� 4

y2

a2M

� �2
: (65)

The potential energy is calculated from (44) (page 35) with this ansatz and

differentiated with respect to the central deflection w0 to obtain the force acting on

the membrane. It is assumed that the stress sx and sy of the square membrane may

be different in the x- and y-direction, respectively:
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(66)

If the force acting on the membrane is zero, i.e. the membrane is in equilibrium,

this equation can be solved for Dp:
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From this equation, the critical stress of a square membrane can be calcu-

lated. Similar to the case of a circular membrane (cf. page 41), the critical stress

sk is achieved when the second term in the parenthesis of (67) is more compres-

sive than the first one. In other words, the average of the stress components in

the x- and y-directions is more negative than the following:

sk ¼ � 9

2

EM

1� n2M

d2M
a2M

: (68)

The deflection w0 (Dp ¼ 0) of a square membrane with a compressive stress

larger than the critical stress sk and no pressure difference, the deflection wU at the

snapping over point, and the force FU needed for snapping over are calculated in the

same way as for a circular membrane:
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46 Membranes



Figure 25 and the last term of (53) (page 38) show that, in general, the deflection

of a membrane is not a linear function of the pressure drop. For several applications,

especially pressure sensors, it is desirable to design membranes with a deflection

which is a linear function of the pressure difference. Therefore, several designs

were developed providing improved linearity.

One possibility is to fabricate a membrane with a boss at its center (cf. Fig. 34).
The boss stiffens the membrane so much that it may be assumed that only the

annular part of the membrane not covered by the boss is strained when a pressure

difference is applied to the membrane. As a result, the coefficients in (53) on

page 38 need to be altered [27]:

Dp ¼ dM w0

R2
M

ap
d2M
R2
M

EM

1� n2M
þ 4 s0 þ bp

w2
0

R2
M

EM

� �
: (72)

With

ap ¼ 16

3

1

1� R4
V R4

M


� �� 4 R2
V R2

M


� �
ln RM RV=ð Þ (73)

and

bp ¼
ð7� nMÞ 1þ R2

V R2
M


� �þ R4
V R4

M


� �� �
=3þ 3� nMð Þ2 ð1þ nM= Þ R2

V R2
M


� �
1� nMð Þ 1� R4

V R4
M


� �� �
1� R2

V R2
M


� �� � :

(74)

In the above equations, RV denotes the radius of the boss. Equation (72) is an

approximation which is valid when the radius of the boss RV is larger than 15% of

the radius of the membrane RM and the thickness of the boss is at least six times

larger than the thickness of the membrane.

The effect of the boss is illustrated in Fig. 35, which shows the coefficients ap, bp,

and their ratio as a function of the ratio RV/RM of the radii of boss and membrane.

Poisson’s ratio was assumed to be 0.3 for this example calculation. The coefficients

are much larger with a sufficiently large boss at the membrane center than without

it. (16/3 and 256/(105 (1�nM
2)) � 2.7, respectively, as shown in (53) on page 38.)

This means that the deflection calculated with (72) will be smaller with a boss,

resulting in less sensitivity if the membrane is employed in a pressure sensor. On

the other hand, the residual stress of the membrane has a comparatively smaller

effect on the deflection. This is an advantage because the cross-sensitivity of the

sensor to stress changes is reduced. Such stress changes often occur when the

Fig. 34 Membrane with a

boss at its center
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housing of the sensor shows a different thermal expansion than the membrane or

when the sensor is mounted somewhere.

The ratio of the coefficients ap and bp increases with the radius of the boss.

As a consequence, the characteristic curve (membrane deflection as a function of

the pressure difference) becomes more linear, because ap is the coefficient of

a linear term and bp of a nonlinear term in (72). However, a significant effect is

achieved, only if the boss covers more than approximately 80% of the membrane

(cf. Fig. 35).

Another interesting way to achieve a more linear membrane deflection as

a function of the pressure difference is to design a corrugated membrane (cf.

Fig. 36). Similar to the case of a membrane with a boss, (53) on page 38 needs

to be altered to take into account the effect of the corrugations [28]:

Dp ¼ dM w0

R2
M

ap
d2M
R2
M

EM þ 4s0 þ bp
w2

0

R2
M

EM

1� n2M

� �
: (75)

With

ap ¼ 2

3

qþ 3ð Þ qþ 1ð Þ
1� n2M q2=ð Þ (76)

and

bp ¼ 165 qþ 1ð Þ qþ 3ð Þ
q2 qþ 4ð Þ qþ 11ð Þ 2 qþ 1ð Þ 3 qþ 5ð Þ: (77)

Fig. 35 Coefficients ap, bp,

and their ratio calculated with

(73) and (74)

Fig. 36 Membrane with

corrugations at its rim
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In these equations, q is the profile factor of the corrugations in the membrane.

It is a measure of the size of the corrugations. The calculation is described in [27].

A membrane without any corrugations corresponds to q ¼ 1. Typical corrugated

membranes correspond to a profile factor between 10 and 30.

Figure 37 shows the coefficients ap and bp as a function of q. Only small

corrugations are required to reduce the nonlinear third term in the parenthesis of

(75) and to allow dominance of the linear first term. Thus, only a few shallow

corrugations at the rim of a membrane are enough to achieve a linear displacement

as a function of the pressure difference. Since ap rises quickly with increasing q, the

corrugated membrane becomes much stiffer and the effect of residual stress is

diminished significantly.

It should be noted that in all calculations described in this chapter, it has been

assumed that Young’s modulus and Poisson’s ratio are isotropic properties of the

membrane material. This is true for amorphous and polycrystalline materials.

However, for monocrystalline materials such as silicon, which is the material

most widely used in microtechnique, these properties are a strong function of

crystal orientation. Figure 38 shows Young’s modulus and Poisson’s ratio as a

function of crystal orientation for monocrystalline silicon [29].

Different orientations result in Young’s moduli which vary up to 40% and

Poisson’s ratios can change by as much as a factor 4. Fortunately, in most equations,

the ratios E/(1 � n) or E/(1 � n2) occur, which only vary by 23% in the worst case

because Young’s modulus is largest for the [110] direction where Poisson’s ratio is

smallest, and the ratio balances these variations slightly.

It is very hard to include the anisotropic properties in analytical calculations.

Therefore, effective or average values are often used instead.

The following table provides an overview on the equations which can be used to

calculate the interrelationship between the pressure difference over a membrane

and its deflection.

Fig. 37 Coefficients ap, bp,

and their ratio calculated with

(76) and (77)
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Fig. 38 Young’s modulus [GPa] (upper row) and Poisson’s ratio (lower row) of monocrystalline

silicon as a function of crystal orientation. Reprinted with permission from [29]. Copyright [1965],

American Institute of Physics

Table 2 Equations for the calculation of the interrelationship of pressure difference Dp and

deflection w0 of a membrane

Membrane type Equation

General solution for

circular membrane,

rough approximation

Dp ¼ 4
dM w0

R2
M

4

3

d2M
R2
M

EM

1� n2M
þ s0 þ 64

105

w2
0

R2
M

EM

1� n2M

� �

General solution for

square membrane,

rough approximation

Dp ¼ 3
dM w0

a2M
20:9

EM

1� n2M

d2M
a2M

þ 2:32 sx þ sy

� �þ 12:3
EM

1� n2M

w2
0

a2M

� �

Thin, circular, without

bending moments,

exact solution

Dp ¼ 4
dM w0

R2
M

s0 þ 2

3

w2
0

R2
M

EM

1:026� 0:793nM � 0:233 n2M

� �

Thin, square, without

bending moments,

exact solution

Dp ¼ 13:6
dM w0

a2M
s0 þ 1:61

w2
0

a2M

1:446� 0:427 nMð ÞEM

1� nM

� �

Thick, circular, without

stress, exact solution Dp ¼ 16

3

d3M
R4
M

EM

1� n2M
w0 ) w0 ¼ 3

16

R4
M

d3M

1� n2M
EM

Dp

Thick, square, without

stress, exact solution Dp ¼ 66
d3M
a4M

EM

1� n2M
w0 ) w0 ¼ 1

66

a4M
d3M

1� n2M
EM

Dp

Circular membrane, with

boss, for ap and bp see

(73) and (74)

Dp ¼ dM w0

R2
M
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d2M
R2
M

EM

1� n2M
þ 4 s0 þ bp

w2
0

R2
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EM
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Circular membrane, with

corrugations, [ap, bp
see (76) and (77)]
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M
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R2
M

EM þ 4 s0 þ bp
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� �
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Exercises

Problem 8

You are asked to design a pressure sensor which fulfills the following

specifications:

Measurement range 0–100 kPa

Sensitivity 1 kPa

Maximum deviation of the characteristic curve from linearity 1% of the value measured

Temperature range for the use �20 to 50�C

Due to the available equipment in your company, you decide to design a circular

silicon membrane. The deflection of this membrane shall be ruled by the bending

moments. The following material properties are given:

Young’s modulus of the membrane 150 GPa

Poisson’s ratio 0.3

Thermal strain of the membrane 3 � 10�6/�C
Thermal strain of the housing 5 � 10�6/�C

(a) Assume that the sensor membrane is strained directly by the difference in

thermal strain of sensor and housing, because it is much thinner than the

housing. Which change of the stress of the membrane do you expect over the

temperature range specified for the sensor?

(b) The membrane may be deflected up to what portion of the thickness in order to

keep the linearity specified? (Neglect the initial stress of the membrane.)

(c) How small may the ratio of thickness to radius of the membrane become to

avoid that the thermal strain changes the sensor signal for less than 1%.

(d) How small may the ratio of thickness to radius of the membrane become to

avoid that the maximum deflection of the membrane [from (b)] is not exceeded

at the upper limit of the measurement range? (Again neglect the initial stress of

the membrane.)

(e) What is the smallest deflection of the membrane which needs to be measured to

achieve the desired sensitivity? (The diameter of the membrane is 2 mm.)

(f) What thickness is needed for the membrane?

Problem 9

In the lecture, you got to know a membrane with bistable states.

(a) What is the reason for the snapping over of the membrane?
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(b) The snapping over can be used to design a bistable valve (cf. Fig. 30 on page 42).

In such a bistable valve [30], the membrane consists of polyimide and shows a

thickness of dM ¼ 25 mm. The radius of the membrane is RM ¼ 1.5 mm.

(c) Please calculate the critical stress sK of this membrane.

(d) What is the deflection of the membrane at the snapping over if the initial stress

is s0 ¼ �8.5 MPa?

Young’s modulus of polyimide 1.66 GPa Poisson’s ratio of polyimide 0.41
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Strain Gauges on Membranes

The deflection of membranes is most often measured by strain gauges on or in the

membrane. The application used most frequently is the deflection of membranes

in silicon pressure sensors. In pressure sensors, deflections of the membrane of less

than a micrometer need to be detected and the strain generated by these deflections

is on the order of 10�4. As a consequence, the resistance of conductor paths that are

employed as strain gauges may change much more due to temperature changes than

due to strain. Therefore, the deflection of such a membrane cannot be measured

reliably without temperature compensation. The usual way for temperature com-

pensation is to build up a Wheatstone bridge from two or four strain gauges as

shown in Fig. 39.

The Wheatstone bridge contains strain gauges which are arranged differently

such that their resistances change differently when the membrane is deflected. For

example, two strain gauges are placed at a position on the membrane where there

is compressive stress and two other strain gauges where there is tensile stress (cf.

Fig. 39). Thus, a voltage difference is generated between the two branches of the

bridge when the membrane is deflected. If the temperature is changed, all strain

gauges undergo the same changes resulting in no change of the output voltage. The

bridge may be driven either with a constant voltage or with a constant current

source.

The resistances are designed and fabricated such that there is no output voltage

when the membrane is not deflected. As a consequence, the voltage change can be

measured starting from a level of 0 V. If the change of a single resistance due to

membrane deflection would be measured, a small change of a much larger voltage

had to be measured which is much more difficult to detect.

The four strain gauges shown in the upper part of Fig. 39 are called a full bridge,

while the two strain gauges in the middle part of the figure are a half bridge. At

a half bridge, only the strain gauges are situated on the membrane and the potenti-

ometer and other electronics are not on the membrane. The advantage of a half

bridge is that small deviations of the resistances which occur during fabrication can

be adapted with the potentiometer easily and that more area is available to achieve a

sufficiently large resistance with a metal conductor path. The resistance of the strain

gauges needs to be large enough, because power consumption and even heating of

the membrane by the current through the strain gauges could become too large.

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_7, # Springer-Verlag Berlin Heidelberg 2011
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On the other hand, the output of a full bridge is two times larger than for a half

bridge, and modern fabrication techniques allow balancing the bridge during the

fabrication process. Nearly all membranes for pressure sensors are made of silicon

nowadays and the resistance of a strain gauge from silicon is large enough even if it

is short. That is why most pressure sensors are equipped with a full bridge.

The output voltage of a Wheatstone bridge which shall be used to measure the

deflection of a membrane is largest, if the difference in resistance change of the

strain gauges is maximized. Therefore, the designer of strain gauges needs to search

for positions and orientations on the membrane which show the most different

resistance changes for strain gauges.

In the following, it is assumed that the strain gauges show no mechanical effect

on the straining of the membrane, although this is not quite correct in any case. It is

assumed that the strain gauges are so thin and week that they do not hinder the

deflection of the membrane and that their lateral strain is the same as the strain of

the membrane without a strain gauge at that position.

The change of a resistance due to the geometrical effect ofmetal strain gauges is
described by (16) on page 21. The resistance change DRel of a strain gauge with

Poisson’s ratio n on a membrane with lateral strain el and transversal strain et is
composed of terms which describe the effect of the strain gauge to become longer

Fig. 39 Wheatstone bridges;

Top: Full bridge;Middle: Half
bridge; Bottom: Positions on a
deflected thick membrane

with compressive and tensile

stress
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and wider by the straining and by getting thinner perpendicular to each of these

strain directions:

DRel ¼ Rel el þ nel � et þ netð Þ ¼ Rel el 1þ nð Þ � et 1� nð Þð Þ: (78)

Note that this result is different from (17) on page 22, which describes the

resistance change of a strained wire not fixed on a substrate.

Equation (78) shows that straining longitudinal to the direction of the electrical

current in a conductor path results in an enhancement of the electrical resistance,

while straining perpendicular to the strain gauge reduces the resistance (a bit less,

because of the negative sign of n). So, at a first glance, arranging strain gauges

parallel and perpendicular to the direction of strain will result in a large difference

of the resistance change when the membrane is deflected. However, the strain

distribution on the membrane needs to be considered also.

Until now stress and strain on the surface of thick membranes have not been

discussed in detail. This was sufficient for the approximate calculation of the

deflection and form with (53) on page 38. If the proper arrangement of strain

gauges on such membranes shall be calculated, more exact equations are needed.

They can be calculated with the Ritz method and are found in text books, e.g., [19].

Radial sR and tangential sT stress of a circular, thick membrane without residual

stress and with radius RM, thickness dM, and Poisson’s ratio nM as a function of the

pressure difference Dp over the membrane are:

sR ¼ 3

8

Dp
d2M

R2
M 1þ nMð Þ � r2 3þ nMð Þ� �

(79)

sT ¼ 3

8

Dp
d2M

R2
M 1þ nMð Þ � r2 1þ 3nMð Þ� �

: (80)

Figure 40a shows the radial and tangential stress of a circular thick membrane as

calculated with (79) and (80). A glass membrane was assumed for the calculation

with a Young’s modulus and Poisson’s ratio of 60 GPa and 0.3, respectively, and

a radius and thickness of 500 and 50 mm, respectively, with no residual stress. As

expected radial and tangential stress are the same at the center of the membrane,

because of the symmetry. At the center the surface of the membrane shows tensile

stress, because it is bulged convexly, while at the rim there is compressive stress in

radial direction due to concave bowing. There is no tangential strain at the rim,

because the membrane is fixed there. As a consequence, a tangential stress appears

which compensates the transverse strain which would occur due to the radial strain.

The strain on the membrane can be calculated from these equations now by

Hooke’s law which has been employed already on page 31 where Cabrera’s

equation was derived [cf. (28) and (29)]:

eR ¼ sR

EM

� nM
sT

EM

¼ 3

8

Dp
EM d2M

1� n2M
� �

R2
M � 3r2

� �
(81)
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eT ¼ sT

EM

� nM
sR

EM

¼ 3

8

Dp
EM d2M

1� n2M
� �

R2
M � r2

� �
: (82)

Figure 40b shows the strain components of the glass membrane. As expected

there is no tangential strain at the rim. The radial strain on the upper surface of the

membrane is tensile and compressive at the center and the rim, respectively,

because of convex and concave bulging, respectively.

The strains shown in (81) and (82) are inserted into (78) now both for conductor

paths in radial and in tangential direction on the membrane. For a radial conductor

path, the radial strain is taken as the longitudinal strain and the tangential strain is

taken for the transverse strain. For a tangential conductor path, the tangential strain

is longitudinal and the radial one is transversal. This results in the following

equations for the change DRel,R and DRel,T of the electrical resistance Rel of radial

and transversal strain gauges on the surface of thick circular membranes:

DRel;R ¼ 3

8
Rel;R

Dp
EMd

2
M

1� n2M
� �

R2
Mn� 1þ 2nð Þr2� �

(83)

DRel;T ¼ 3

8
Rel;T

Dp
EMd

2
M

1� n2M
� �

R2
Mnþ 1� 2nð Þr2� �

: (84)

The relative resistance change calculated with these equations is shown in

Fig. 40c for the glass membrane. The resistance of tangential strain gauges is rising

Fig. 40 (a) Stress and

(b) strain on the upper surface

of a circular thick membrane

and (c) relative resistance

change of strain gauges on

that membrane
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everywhere on the membrane when it is bulged by a pressure difference. This effect

increases by approximately a factor of 2 from the center to the rim of the membrane.

Radial strain gauges in the center of the membrane gain an increase of their

resistance at the center and a decrease at the rim. The largest resistance change is

the decrease of a radial strain gauge at the rim.

Equations (79)–(84) describe stress and strain on a thick circular membrane and

the resistance change of strain gauges on such a membrane as a function of the

pressure drop Dp. Actually these quantities are a function of membrane deflection

w0 and the deflection is generated by pressure drop. Therefore, it appears to be

expedient to write these equations also as a function of deflection. This is easily

achieved by replacing Dp by (53) (page 38). The second and third term in the

parenthesis of (53) have to be ignored because the calculation of (79)–(84) are for

a circular thick membrane without residual stress:

sR ¼ 2
dM w0

R4
M

EM

1� n2M
R2
M 1þ nMð Þ � r2 3þ nMð Þ� �

; (85)

sT ¼ 2
dM w0

R4
M

EM

1� n2M
R2
M 1þ nMð Þ � r2 1þ 3nMð Þ� �

; (86)

eR ¼ 2
dM w0

R4
M

R2
M � 3r2

� �
; (87)

eT ¼ 2
dM w0

R4
M

R2
M � r2

� �
; (88)

DRel;R ¼ 2 Rel;R
dM w0

R4
M

R2
M n� 1þ 2nð Þr2� �

; (89)

DRel;T ¼ 2 Rel;T
dM w0

R4
M

R2
M nþ 1� 2nð Þr2� �

: (90)

As it has to be expected, strain and resistance change of strain gauges are no

function of Young’s modulus and Poisson’s ratio of the membrane material. Only

the stress is a function of the elastic properties of the membrane.

As mentioned above, two strain gauges need to be arranged on the membrane

such, that their resistance changes differ as much as possible producing the largest

possible output voltage of the Wheatstone bridge. According to Fig. 40c, it appears

to be advantageous to place both radial and tangential strain gauges near the rim of

the membrane, because their resistance changes are most different there.

However, it needs to be considered also that a metal strain gauge should have

a sufficiently large resistance. The bridge must be driven with a comparatively large

voltage providing a suitable output. This would result in a large electrical current

through the strain gauge, if its resistance is not large enough. The current needs to
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be small, because it generates heating of the membrane resulting in a larger

deflection. The heating may also be asymmetrically over the membrane and cause

a change of the output voltage. Therefore, the strain gauges must be comparatively

long and there may be not enough area on a small membrane to place both radial

and tangential conductor paths at the rim. This can also be a reason, why a half

bridge with two strain gauges on the membrane is more suitable than a full bridge

with four strain gauges.

If there is not enough area to place both radial and tangential strain gauges at the

rim of the membrane, it is best to design radial strain gauges at the rim and tangential

ones next to them towards the membrane center. Such an arrangement is shown in

Fig. 41 where a spiral (which is nearly a tangential conductor path) covers the

central area of the membrane and radial strain gauges are placed at the rim.

The strain gauges are designed such that their resistances show nearly the same

value, because this way the output of the bridge becomes maximized. In the light of

maximum production tolerances, it is better to place tangential strain gauges at the

rim and radial ones nearer to the center, because the variation of the resistance

change with the radial position is less, this way. Thus, a shift of the strain gauges

relative to the membrane center results in a smaller change of the characteristic

curve which describes the output voltage as a function of membrane deflection.

The designer needs to take into account that the tangential connections between

radial conductor paths contribute to the total effect also. Therefore, these tangential

connections had been designed wider than the radial strain gauges in Fig. 41. It

needs to be considered also that the calculations shown here are approximate,

because the Young’s modulus of the strain gauges reduces membrane deflection,

and, therefore, the real resistance changes are smaller than calculated here.

On thin membranes, the stress and strain distribution is different than in the case

of the thick membranes described by (85), (86) and (87), (88), respectively. The

strain is the same on both sides of a thin membrane, and there is no position with

compressive stress or strain. It is assumed now that the radial strain is constant over

the entire membrane and that it can be calculated from the increase in length which

is necessary to deflect a membrane with parabolic form as calculated with (31) on

page 32.

Fig. 41 Strain gauges from

gold on a membrane (The

membrane cannot be

recognized). The width of the

strain gauges is 5 mm and the

diameter of the membrane is

2 mm. (Courtesy of Karlsruhe

Institute of Technology, KIT)
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eR � 2

3

w2
0

R2
M

: (31)

The tangential strain in the center of the membrane needs to be the same as the

radial one and it needs to be zero at the rim, because the membrane is fixed there. It

is assumed now that the tangential strain diminishes from the center to the rim

nearly as a parabolic function yielding:

eT ¼ eR 1� r2

R2
M

� �
¼ 2

3

w2
0

R2
M

1� r2

R2
M

� �
: (91)

In the same way as above for a thick membrane, the strains shown in (31) and

(91) are inserted into (78) now both for conductor paths in radial and in tangential

direction on the membrane. This results in the following equations:

DRel;R ¼ 2

3
Rel;R

w2
0

R2
M

2nþ 1� nð Þ r2

R2
M

� �
; (92)

DRel;T ¼ 2

3
Rel;T

w2
0

R2
M

2n� 1þ nð Þ r2

R2
M

� �
: (93)

Strain and resistance changes of strain gauges on a membrane with a radius RM

of 1 mm and a thickness dM of 10 mm for a deflection of 17.7 mm are shown in

Fig. 42 as a function of the radial position as calculated by (31), (91) and (92), (93),

respectively. As in the case of the thick membrane, the resistance changes are

largest at the rim and show opposite signs for radial and tangential conductor paths,

respectively. If there is not sufficient area to place strain gauges with both
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Fig. 42 (a) Strain and

(b) relative resistance change

of strain gauges on a thin

circular membrane
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orientations at the rim, because otherwise their resistance would be too small, it is

preferable to arrange radial strain gauges at the rim and tangential ones next to them

towards the center, because the difference of the resistance changes is a little bit

larger this way.

Instead of at the surface of a membrane, strain gauges can also be arranged in its

neutral fiber at half of the membrane thickness. This way, the strain at the surface

generated by membrane bending is not transferred to the strain gauges and only the

strain due to the lateral expansion of the membrane during deflection is measured

by the strain gauges. As a consequence, the resistance change has to be calculated

with (92) and (93) also for deflections much smaller as membrane thickness.

Equations (92) and (93) are proportional to the square of membrane deflection.

As a consequence, the resistance change is not a function of the direction in which

the membrane is deflected.

The remarks made above for thick membranes on the contribution of tangential

connections and the equal resistances of radial and tangential strain gauges are true

for thin membranes also. The mechanical effect of the conductor paths on mem-

brane deflection is obviously even more important for thin membranes. Figure 43

shows (a) the model and (b) the radial strain as calculated by finite element methods

(FEM) of a circular thin membrane and radial and tangential conductor paths on it.

The conductors are from gold, 200 nm thick and 20 mm wide, and the membrane is

made of polyimide, 10 mm thick, has a diameter of 2 mm, and is loaded with a

pressure difference of 1 kPa [20].

The radial strain at the middle of the membrane and the conductor path are

shown in Fig. 43b. The assumption of a constant radial strain (31) which was made

for the analytical calculation is compared with the FEM results in Fig. 43b. It is

clearly seen that the assumption was not too bad; the strain in the middle of the

membrane is nearly constant. However, where there is a strain gauge on top of the

membrane, the strain is reduced for the tangential conductor paths and changed for

the radial ones, because their Young’s modulus hinders straining. This means that

the real strain which contributes to the measurement is much smaller than the effect

calculated analytically for a thin membrane.

Fig. 43 (a) Layout and (b) strain of a membrane and strain gauges on it along the dashed line
shown in (a) as calculated by FEM [20]
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At the position of the radial strain gauges at the rim, the strain of the membrane

is tensile, while the strain of the conductor path is compressive. This means that

bending of the membrane occurs which had been assumed to be negligible.

Until now, the geometrical effect of strain gauges has been discussed. Nearly all

pressure sensors are made of monocrystalline silicon, however. Their geometrical

effect is negligible compared with the change of the specific resistance due to

straining which is a function of the orientation relative to the crystal (cf. Fig. 17 on

page 25).

Membranes frommonocrystalline silicon are fabricatedmost easily and precisely

by the so-called electro-chemical etch stop. For this process, the {100}-surface layer

is n-doped, while the rest of the silicon wafer is p-doped. A voltage is supplied

between the surface layer and a solution which under these conditions is etching

the p-doped silicon only. As a result of this process, an n-doped square membrane

remains with edges orientated in [110] or a physically equivalent direction

(cf. Fig. 44). So, for a pressure sensor, the deflection of an n-doped membrane

needs to be measured.

As in the case of circular membranes, the deflection of a thick square membrane

is a linear function of the pressure load, because bending moments are dominating

[cf. (53) on page 38 and the following text]. Tangential strain is zero at the rim and

radial strain is maximal at the rim and at the center.

Strain gauges are introduced into the membrane by p-doping of the n-doped

membrane. Therefore, the piezoresistive effect of p-doped monocrystalline silicon

needs to be considered. The piezoresistive constants of p-doped silicon on an {100}-

plane are shown in Fig. 17 on page 25. The effect is largest in [110]-direction which

is parallel to the edges of the square membrane. Because radial strain is maximal and

tangential strain is zero at the rim of the membrane, it is best to place two radial

(perpendicular to the edge) and two tangential (parallel to the edge) strain gauges on

the square membrane. This way, the strain gauges perpendicular to the edge are

strained only longitudinally and the strain gauges parallel to the edge are strained

only transversally. The piezoresistive effect of longitudinally and transversally

strained conductor paths in [110]-direction in p-doped silicon shows opposite

sign. Thus, they can be combined to a full bridge as shown in Fig. 39 and explained

on page 53.

Fig. 44 Typical silicon

pressure sensor with a

p-doped square membrane

etched out of a (100)-wafer

and n-doped strain gauges in

(110)-direction parallel and

perpendicular to the edges
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Exercises

Problem 10

The relative change of the resistance of strain gauges is small. Tomeasure them certain

circuits are used. The most common of them is the Wheatstone bridge (Fig. E11).

The so-called bridge of the circuit shown as the connection of the resistances

Rel,1, Rel,2, Rel,3, and Rel,4 is supported on one diagonal by the constant voltage U0.

The voltage measured on the other diagonal is the output signal Um which is a

measure for the difference of the resistances Rel,1 to Rel,4. The bridge is in balance,

if the output voltage Um is zero. If the resistances Rel,1 to Rel,4 are changed after the

equalization of the bridge, Um is proportional to DRel,i.

(a) Use Ohm’s law to derive an equation for the electrical current through the

branches of the bridge Iel,1 (current through Rel,1 and Rel,2) and Iel,2 (current

through Rel,3 and Rel,4). Hint: At equilibrium Um ¼ 0.

(b) Use the law of Kirchhoff (SUn ¼ Iel,n Rel,n) to derive the output voltage Um.

Insert your result from (a) into the equation of Um. Which condition needs to be

fulfilled by the resistances Rel,1, Rel,2, Rel,3, and Rel,4 to equalize the bridge?

(c) Show that the output of a bridge is maximum, if all resistances Rel,1, Rel,2,

Rel,3, and Rel,4 are the same and the relative changes DRel,1/Rel,1, DRel,2/Rel,2,

DRel,3/Rel,3, and DRel,4/Rel,4 are constant.

(d) Assume that all resistances of theWheatstone bridge are the same (Rel,1 ¼ Rel,2 ¼
Rel,3 ¼ Rel,4 ¼ Rel). Then the resistances are changed by DRel,1, DRel,2, DRel,3,

andDRel,4.Which equation is now valid for the change of the output voltageDUm?

Hint: Use the equation for Um which you derived in (b) and insert the resistance

changes DRel,1, DRel,2, DRel,3, and DRel,4.

(e) Assume that the resistances Rel,1 and Rel,4 are enhanced by the same amount

DRel by which the resistances Rel,2 and Rel,3 are reduced:

DRel;1 ¼ DRel;4 ¼ DRel and DRel;2 ¼ DRel;3 ¼ �DRel:

How is the expression derived in (c) for the output voltage DUm changed by this

assumption?

U0

Rel,1 Rel,3

Rel,2
Rel,4

Um

Fig. E11 Electronic circuit

of a Wheatstone bridge
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(f) What is the advantage of the bridge circuit compared with the measurement of

the resistance change of a single strain gauge?

Problem 11

In a pressure sensor four strain gauges (DRel,1, DRel,2, DRel,3, and DRel,4) are

arranged at the rim of a circular (100)-silicon membrane (cf. Fig. E12). These

strain gauges are connected such that they form a Wheatstone bridge. The strain

gauges are fabricated by p-doping of a silicon membrane and orientated parallel to

the <110>-direction.

Piezoresistive effects occur parallel and perpendicular to the conductor path. The

relative change of the resistance of a single strain gauge DRel,/Rel is described by:

DRel

Rel

¼ p1s1 þ ptst;

where pl and pt denote the piezoresistive coefficients parallel and perpendicular to the
conductor path, respectively, while sl and st denote the stress parallel and perpendic-
ular to the conductor path, respectively. As the conductor path is orientated parallel

to the <110>-direction, the piezoresistive coefficients are pl ¼ �66 � 10�11 Pa�1

and pt ¼ 72 � 10�11 Pa�1 (cf. Table 1 on page 25).

(a) Derive expressions both for the resistance changes DRel,1/Rel,1 and DRel,3/Rel,3

and for the resistance changes DRel,2/Rel,2 and DRel,4/Rel,4.

Take into account that radial sR and tangential sT stress arises when the circular
membrane is loaded with a pressure difference. The equations for the radial sR
and tangential sT stresses of a circular membrane can be found in (79) and (80),

respectively, (page 55). Assume that the distance of the strain gauges to the

center would be the radius of the membrane RM.

(b) As an approximation, it shall be assumed now that the absolute value of the

piezoresistive coefficients have an average value pm:

p1 � �pt ¼ pm ¼ 69� 10�11 Pa�1:

Rel,1

Rel,2

Rel,3

Rel,4[110]

[110]

Rim of  the
membrane 

Fig. E12 Arrangement of

p-doped conductor paths on a

circular silicon membrane
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With this approximation, the following interrelationships between the resistance

changes apply:

DRel;1

Rel;1
¼ DRel;3

Rel;3
� �DRel;2

Rel;2
¼ �DRel;4

Rel;4
¼ DRel

Rel

:

Based on your results from (a) derive an equation which describes the charac-

teristic curve of the pressure sensor. This is the output voltage as a function of

the pressure difference over the membrane.

(c) Calculate, using the result of (b), the change of the output voltage DUm at a

pressure difference of 150 kPa.

The voltage support is U0 ¼ 10 V. The radius of the silicon membrane is

400 mm and its thickness is 25 mm. Poisson’s ratio of silicon is 0.23.
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Beams

Beams are an important mechanical basic element in microtechnique. They are the

microscopic correspondence to macroscopic bearings and springs. They can be

made of nearly every rigid material such as silicon, oxides, nitrides, glasses,

polymers, and metals. Their thickness typically is in the range of 1–500 mm.

Beams which are thinner than 1 mm are very hard to manufacture and are not strong

enough, in general. The upper limit is given by the fact that thicker beams are no

longer a microscopic element. The width of beams is not much smaller than their

thickness but may become a factor of 100 larger than it. When it is bent transver-

sally, the dimension of the beam in the direction of bending is called its thickness

and the dimensions perpendicular to this are called width and length. The length of

beams typically is in the range between 10 mm and 20 mm. Again the lower limit is

defined by the possibilities of fabrication, while the upper limit is approximately the

limit to the macroscopic world. However, all equations discussed here are valid in

the macroscopic world also.

As beams are used as bearings, it is important to know what kinds of elastic

deformations are possible and how they can be calculated in advance. The deflec-

tion of a beam loaded with a force is a function of the bearing which holds it in

place. Text books of classical mechanical engineering such as [32–34] contain

a variety of bearings and kinds of loadings on beams and show the corresponding

functions which describe the interrelationship between load and deflection. In

microtechnique, clamped beams are important only, because there is no way to

simply support or fix a beam. On the other hand, the equations found in textbooks of

macroscopic mechanics usually include the effect of bending moments only and

do not take into account residual stress of beams clamped at both ends which is

important in microcomponents.

There are three ways of deflecting a beam: longitudinal, transversal (in x and y),
and torsional. The deflection applied most is the transversal one shown schemati-

cally in Fig. 45. The deflection w of a beam with length LB, width bB, thickness dB,

and Young’s modulus EB as a function of the force F acting at its free end is given

by the following equation:

w ¼ F

6 EB I
x2 3 LB � xð Þ: (94)

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_8, # Springer-Verlag Berlin Heidelberg 2011
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In this equation, the force is due to bending of the beam, i.e., straining in the

direction of the beam. As a consequence, if the beam is made of monocrystalline

material where Young’s modulus is not isotropic (cf. Fig. 38 on page 50), the value

in longitudinal direction of the beam has to be used in the equation.

In (94), x is the coordinate in the direction of the non-deflected beam and I is the

area momentum of inertia as calculated with (8) on page 7. The area momentum of

inertia contains the information on the cross-sectional shape of the beam.

In the case of a symmetrical cross-section, the neutral fiber is just at the middle

of the beam. Beams etched from silicon often have the shape of a trapezoid with a

longer width bB,1 and a shorter width dB,2. In this case, the distance of the neutral

fiber dB,n from the shorter width is:

dB;n ¼ dB

3

2 dB;1 þ dB;2

dB;1 þ dB;2
: (95)

The area momentums of inertia of beams with the cross-sections used most often

in microtechnique are shown in Table 3.

More equations for area momentums of inertia are found in textbooks such

as [32, 33].

Very often the deflection w0 of the free end of a beam clamped at the other end

needs to be calculated as a function of the force F acting at the free end. It can easily

be obtained by inserting the length LB of the beam for x into (94):

w0 ¼ L3
B F

3 EB I
: (96)

From this equation, the elastic force FB of a beam deflected for w0 can be

calculated also:

FB ¼ � 3 EB I

L3
B

w0: (97)

This equation is the characteristic curve of a beam clamped at one end and

loaded with a force at the other end. It describes the elastic force generated by the

beam as a function of its deflection.

Fig. 45 Schematic drawing

of a transversally deflected

beam
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The strain eB on the surface of a beam clamped at one end is derived from (94)

with (5) on page 7:

eB ¼ dB

2

F LB � xð Þ
EB I

: (98)

Figure 46 shows the deflection and the strain on the surface of an 800-mm long,

40-mm wide, and 20-mm thick beam with a Young’s modulus of 140 GPa clamped

at one end, which is loaded transversally with a force of 1 mN at its free end.

Fig. 46 Deflection (left) and strain (right) of a microbeam as a function of the position along the

beam

Table 3 Area momentums of inertia of beams as a function of their cross-section. The position of

the neutral fiber is dB,n

Form of cross-section Area momentum of inertia

Rectangle 1

12
bB d3B

Circle 1

4
p R4

B

Trapezoid d3B
36

b2B;1 þ 4 bB;1 bB;2 þ b2B;2

bB;1 þ bB;2

dB;n ¼ dB

3

2 bB;1 þ bB;2

bB;1 þ bB;2

Unisotropically etched silicon See above with

bB,1 ¼ bB,2 + 1.416 dB
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Equation (98) and Fig. 46 show that the absolute value of the strain is maximal

next to the clamped end of the beam. In a beam clamped at one end only, there is no

residual stress; therefore, stress does not affect the bending of such a beam. This is

good for building sensors, because stress is a parameter which is hard to control.

Stress often changes with temperature or as a function of the packaging or fixation

of a sensor. Thus, it is important to note that a beam clamped at only one end is a

basic element of microtechnique, which is independent of stress.

Temperature changes still have a small effect on the deflection of a beam fixed at

one end, because Young’s modulus is a week function of temperature.

Equations (96) and (98) show also that deflection and strain of a beam clamped

at one end are linear functions of the force acting at the free end of the beam. This is

also useful for building sensors, because a linear characteristic curve is desirable in

many cases.

If a beam shall be used as a sensor, it is necessary to measure its deflection. A

possible way to do this is to employ strain gauges on a surface of the beam which is

strained during deflection. The strain in the direction of the beam is described by

(98), and the strain perpendicular to this can be calculated from Poisson’s ratio nB of
the beam. Figure 47 shows exaggeratedly how the cross-section of a beam is

changing when it is bent upward. The beam surface that is stretched by eB narrows

in the two perpendicular directions (width and thickness) by nB eB and the opposite

surface which is compressed longitudinal widens transversally by the same amount.

As in the case of the membranes, it is assumed now that the strain gauges are so

thin that they do not hinder the bending and straining of the beam. This assumption

is not correct in most cases, but it eases the calculation a lot and the mechanical

effect of the strain gauges just diminishes the resistance change measured in reality

and does not cause principally different results. When metal strain gauges on the

beam are used (geometrical effect only; cf. page 21f), the resistance change of strain

gauges longitudinal DRel,l and transversal DRel,t to the beam can be calculated now

with (78) on page 55. It is simply necessary to replace the strain of the membrane by

the strain of the beam:

DRel;l

Rel;l
¼ el 1þ nð Þ � et 1� nð Þ ¼ eB 1þ nð Þ þ nB eB 1� nð Þ

¼ eB 1þ nB þ n 1� nBð Þð Þ; (99)

DRel;t

Rel;t
¼ el 1þ nð Þ � et 1� nð Þ ¼ �nB eB 1þ nð Þ � eB 1� nð Þ

¼ �eB 1þ nB � n 1� nBð Þð Þ: (100)

Fig. 47 Cross-section of a

rectangular beam without (a)

and with (b) bending upward
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These equations show that the absolute value of the resistance change of a strain

gauge longitudinal to the beam is a bit larger than for a transversal one. The sign of

these resistance changes is different, and, therefore, they can be combined to a

Wheatstone bridge similar as in the case of strain gauges on a membrane described

on page 53. Figure 48 shows for the beam from Fig. 46 the resistance changes of

strain gauges, as calculated with (99) and (100). The strain eB of the beam as a

function of the position x in longitudinal direction was calculated with (98) and the

area momentum of inertia of a beam with rectangular cross-section from Table 3.

This figure shows that the typical resistance change which can be expected is on the

order of some 10�3 and, therefore, temperature compensation by a bridge is

required. The sensitivity is larger, if the space next to the clamped end of the

beam is used for the longitudinal strain gauges and the transversal ones are arranged

adjacent to them, because longitudinal strain gauges show the larger resistance

change.

It is important to mention here that the resistance change of strain gauges doped

into single crystalline silicon are a function of crystal orientation and need to be

calculated with (21) (on page 22) instead of (99) and (100).

The transversal deflection of a beam loaded with its own weight is calculated
with the following equation:

w ¼ rB ge bB dB

24 EB I
x2 x2 � 4 LB x� 6 L2

B

� �
: (101)

In this equation, ge and rB are the gravitational acceleration of the earth (ge
� 9.81 m/s2) and the density of the beam, respectively. This equation shows that

the deflection of a beam loaded with its own weight is proportional to the square of

its linear dimensions. Thus, if length, thickness, and width are reduced by a factor

10, the deflection is decreased by a factor 100. The Golden Gate Bridge at San

Francisco is 2.7 km long and approximately 10 m thick, Young’s modulus, Pois-

son’s ratio, and the density of steal are 210 GPa, 0.28, and 7,900 kg/m3, respec-

tively. It can hold its own weight only because it is supported by ropes fixed at the

two towers (cf. Fig. 49). If all linear dimensions of the bridge would be reduced to a

millionth, i.e., 2.7 mm long and 10 mm thick, according to (101) it would hang down

by 930 nm only. That is, in the microworld, the Golden Gate Bridge can be built as a

Fig. 48 Resistance change of

strain gauges on a beam
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simple beam without any extra-supporting structure. Figure 49 shows an extreme

cantilever structure which is possible in the microscopic world only.

Beams can be deflected in longitudinal direction also (cf. Fig. 50a). If a force is

acting in longitudinal direction, a beam is deflected according to Hooke’s law:

eB ¼ sB

EB

¼ F

AB EB

: (102)

In this equation, sB, EB, AB, and F are the mechanical stress in the beam,

Young’s modulus, the cross-sectional area of the beam, and the force acting at

the end of the beam, respectively. The deflection w of the beam is the product of the

distance from the clamping point x and the strain eB:

w ðxÞ ¼ eB x ¼ F

AB EB

x: (103)

Figure 50b, c shows strain and deflection of the beam assumed for Fig. 46 but

loaded with an axial force of 1 mN at the free end.

Fig. 49 The deflection of beams loaded with their own weight is much smaller in the microscopic

than in the macroscopic world. The Golden Gate Bridge (on the left) [35] needs to be supported by
ropes, while extreme cantilevers [44] (on the right) can be build without such supports in

microtechnique

Fig. 50 Beam deflected in longitudinal direction (a), strain (b), and deflection (c)
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A longitudinal force acting on a beam besides the longitudinal strain will cause

transversal strains et which are a function of Poisson’s ratio of the beam:

et ¼ �nB eB ¼ �nB
F

AB EB

: (104)

As in the case of a beam clamped at one end and loaded transversally at the free

end, the resistance change of metal strain gauges on the surface of the beam can be

calculated now with (16) on page 21:

DRel;l ¼ Rel eL � eb � edð Þ ¼ Rel eB 1þ nB þ nð Þ; (105)

DRel;t ¼ Rel eL � eb � edð Þ ¼ Rel eB �nB � 1þ nð Þ ¼ �Rel eB 1þ nB � nð Þ: (106)

Equations (105) and (106) are identical with (99) and (100), which describe the

resistance change of a beam loaded transversally. However, the strain on the surface

of a beam loaded transversally is much larger than the one of a longitudinally

loaded beam (cf. Figs. 46 and 50, respectively). Therefore, if the beam is an elastic

element in a sensor, e.g., an acceleration sensor, it should be designed such that it is

loaded transversally. If the beam is employed to hold an object in position,

however, a longitudinal load is preferable.

Note that the resistance change is to be calculated with the equations shown here

only for metal strain gauges. Often strain gauges from silicon are used and their

resistance change needs to be calculated as a function of their crystal orientation as

shown in Fig. 17 on page 25. It needs to be considered also that Young’s modulus

and Poisson’s ratio are a function of crystal orientation, if monocrystalline silicon is

used to construct a beam (cf. Fig. 38 on page 50). Since it is difficult to take this into

account in an analytical calculation, mean values are used often, which provide an

approximate description.

If a beam clamped or fixed at one end is compressed by a force acting at the free

end, the beam tends to bend transversally when a certain compressive stress is

overcome. This force is called the critical force FK. It is a function of the boundary
condition at the ends of the beam and can be found in text books on mechanics

[32–34]. Table 4 shows the cases which are most important in microtechnique.

A beam clamped at both ends and loaded with a transversal force F in its center

(cf. Fig. 51a) is another basic element which is important in microtechnique. The

deflection w of this beam as a function of the distance x from the beam center, its

length LB, width bB, thickness dB (dimension in the direction of the deflection), and

Young’s modulus EB is described by the following equation [33]:

w ¼ F

48 EB I

1

4
L3
B � 3 LB x2 þ 4 x3

�� ��
� �

: (107)

The maximum deflection w0 occurs at the center (x ¼ 0):

w0 ¼ L3
B F

192 EB I
: (108)
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The strain eB due to bending of such a beam is on its surface according to (5) on

page 7 and (107):

eB ¼ dB F

16 EB I
LB � 4 xj jð Þ: (109)

Deflection and strain calculated with (107) and (109), respectively, of a beam

clamped at both ends and loaded with a force of 1 mN at its center which has

the same properties as the beam in Fig. 46 (page 67) are shown in Fig. 51. The

comparison with Fig. 46 and of (108) with (96) (on page 66) shows that the

deflection of a beam clamped at both ends is 64 times smaller than the same

beam clamped at one end only. This shows that a beam clamped only at one end

is superior as an elastic element in a sensor, but is less suitable as a supporting

element.

The resistance change of metal strain gauges on the surface of a beam clamped

at both ends is calculated with (99) and (100) again, because they undergo the same

change as a function of the strain of the beam. However, (109) needs to be inserted

for the strain at the surface of the beam. Figure 51c shows the strain distribution

Table 4 Critical force

(buckling load) of beams with

different boundary conditions

FK ¼ � p2

4

EB I

L2
B

FK ¼ �p2
EB I

L2
B

FK ¼ �2 p2
EB I

L2
B

FK ¼ �4 p2
EB I

L2
B

Fig. 51 Beam clamped at both ends and loaded transversally at its center. (a) Schematic drawing,

(b) deflection, and (c) strain
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along the surface of the beam calculated with this equation and Fig. 52 the

resistance changes of strain gauges parallel and perpendicular to the beam, respec-

tively.

Strain gauges are arranged best parallel to the beam, because the resistance

change is larger this way. Opposite sign of the resistance change is achieved by

placing them at the middle and at the end of the beam, respectively.

The equations above that describe the deflection and strain of beams were

derived by considering the bending moments only. This is correct, if the beam is

fixed or clamped only at one end, because no stress along the neutral fiber of the

beam can develop; and this is sufficient in the macroscopic world, where, e.g., the

beams employed to erect a building are designed such that their deflection is much

less than their thickness. In microtechnique, however, beam deflections occur

which are much larger than their thickness, and, if these beams are clamped at

both ends, the strain and stress of the neutral fiber need to be taken into account.

This is similar as in the case of thin membranes which was discussed above (cf.

page 32). Therefore, the stress sD due to straining of the neutral fiber is calculated in

a similar way from the increase in length which is necessary to deflect the beam [cf.

(31), page 32]:

sD ¼ 8

3

w2
0

L2
B

EB: (110)

The total stress along the neutral fiber is the sum of the stress due to straining of

the neutral fiber and the residual stress which is nearly always present in micro-

technique:

s ¼ s0 þ sD ¼ s0 þ 8

3

w2
0

L2
B

EB: (111)

The equilibrium of forces at the ends of the beam is shown in Fig. 53. The beam is

deflecting until the force of the frame FF is compensating the force F pulling the

beam upward. The x-components of the two forces acting at the frame cancel out

each other. As a consequence, it is sufficient to calculate the z-components of these

forces FF,z which must be equal to the absolute value of the force F [cf. (112)]. The

–0.4

0.4
ΔRel

Rel

–400 400

[%]
perpen-
dicular

parallel

X [μm]

Fig. 52 Resistance change of

metal strain gauges on a beam

clamped at both ends parallel

and perpendicular to the

beam, respectively
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force of the beamwhich is equal to the forces of the frame FF can be expressed as the

tensile stress s of the beam times its cross-section AB. The z-component of this force

is obtained by multiplying with sin(a). For small deflections, the sine is equal to the

slope which is the ratio of z- and x-components.

F ¼ 2 FF;z ¼ 2sAB sin að Þ � 2sAB

w0

LB=2
¼ 4

AB

LB

w0 s: (112)

The stress of the beam is now inserted in (112) from (111) and an equation for

the interrelationship of the deflection of a beam clamped at both ends and the force

acting at its center is obtained:

F ¼ 4
AB

LB

w0 s0 þ 8

3
EB

w2
0

L2
B

� �
: (113)

This equation approximately describes the effect of the stress of the beam on its

deflection, but the effect of the bending moments is not taken into account. As a

rough approximation, the forces due to stress and bending moments (108) are added

now, resulting in an equation which includes all important effects:

F ¼ 4
AB

LB

w0 48
EB I

AB L2
B

þ s0 þ 8

3
EB

w2
0

L2
B

� �
: (114)

This equation is only a rough approximation. If exact calculations are required

FEM will help to find the desired results. On the other hand, (114) contributes to the

understanding of beam deflections very much. The three terms in the parentheses

correspond to the contributions of bending moments, residual stress, and stress due

to straining, respectively. Similar as for a membrane (cf. page 41), there exists a

critical compressive stress sk at which the beam buckles up, and this critical stress

is reached when the residual stress in (114) is equal to the negative of the term of the

bending moments:

sk ¼ �48
EB I

AB L2
B

: (115)

Fig. 53 Equilibrium of

forces at the ends of a beam
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When the residual stress is more compressive than the critical stress, the beam is

bistable and can bulge either up or down such as a membrane with compressive

stress (cf. page 39). A bistable beam can retain a bulging direction until the counter

force overcomes a certain level and the beam flips over to the other side. Figure 54

shows the elastic force calculated with (114) for a rectangular beam with the same

properties as used above in Figs. 46 (on page 67) and 51 but clamped at both ends

and with a residual stress of 0 MPa and -600 MPa, respectively.

The deflection of such a beam not loaded by a force is calculated from the zeros

of (114). One solution is found for zero deflection which corresponds to the origin

of the graph in Fig. 54. Two other solutions are found by the zero of the term in the

parentheses of (114):

w0 F¼ 0ð Þ ¼ �6

ffiffiffiffiffiffi
2I

AB

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

�48 EB I ðAB L2
BÞ

�� �� 1

s

¼�3
ffiffiffi
2

p ffiffiffiffiffiffi
I

AB

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

sk

� 1

r
; (116)

where sk is the critical stress of the beam as calculated with (115). The deflection

w0 of a beam clamped at both ends without any load as a function of its residual

stress (116) is similar as the deflection of a membrane without any pressure drop as

a function of its residual stress [(57) on page 42)], and, therefore, the graph of this

interrelationship is similar to that of Fig. 29 on page 42.

The deflection wU at which the beam snaps over to the opposite side is calculated

from the zeros of the derivatives of (114):

qF
qw0

¼ 0¼ 4 AB

LB

48
EB I

L2
B

þs0þ8EB

w2
0

L2
B

� �
)wU ¼�

ffiffiffi
6

p ffiffiffiffiffiffi
I

AB

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

sk

�1

r
; (117)

where sk is the critical stress of the beam again. The comparison of (116) and (117)

shows that the ratio of the deflection without load to the deflection at the snapping

over is 1/
p
3 � 0.58 independent of the other parameters of the beam. This is the

same as for membranes (cf. page 43).

Fig. 54 Elastic force of a

beam as a function of its

deflection and residual stress

as calculated with (114)
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If there is no force acting on the beam and it is bending downward, its position

can be calculated with (116). In the graph shown in Fig. 54, this position is

approximately -42 mm. If the beam is to be moved towards its non-deflected

position, the force shown in the graph needs to be applied. This force increases

until wU is reached. If the beam is further moved upward, the force needed to hold it

in that position decreases, while the non-deflected position at the origin in Fig. 54 is

approached. No force is necessary to hold the beam in the non-deflected position,

but if it is moved away from that position, a certain force is required to prevent it

from moving further away. This is a typical unstable position.

The force required to let the beam snap over to the opposite side is calculated by

inserting the position of snapping over [(117) with the critical stress from (115)]

into (114) which describes the force of the beam as a function of its deflection:

FU ¼ �8

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffi
AB I

p
LB

sk

s0

sk

� 1

� �3=2

: (118)

The exact values of the critical force FK at which a beam buckles was shown in

Table 4 (page 72). The critical stress can be calculated from this by dividing the

cross-section of the beam. This results in:

sk ¼ �4p2
EB I

AB L2
B

¼ �39:5
EB I

AB L2
B

: (119)

This is approximately 20% less than the value calculated with (115) and pro-

vides an impression of the effect of the rough approximations made when (114) was

derived.

Two beamsmay be arranged such that they are deflected in parallel (cf. Fig. 55).
This results in a parallel movement of a structure fixed at these beams. The

comparison of Figs. 55 and 51a (page 72) shows that the deflection curve of each

of the parallel beams is half of the deflection curve of a beam clamped at both ends.

Thus, the deflection of both arrangements should be the same with the only

difference that the parallel beams have no residual stress and no stress due to

straining of the neutral fiber. Besides this, it needs to be taken into account that

the length of the beams in Fig. 55 is half of the beam length in Fig. 51a. Therefore,

LB needs to be replaced by 2LB, and the different origin of the coordinates needs to

Fig. 55 Beams deflected in

parallel
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be taken into account in (107–109) to describe deflection w and strain eB at the

surface as a function of the position along the beam, and maximum deflection w0:

w ¼ F

24 EB I
3 LB x2 � 2 x3
� �

; (120)

w0 ¼ L3
B F

24 EB I
; (121)

eB ¼ dB F

8 EB I
LB � 2 xð Þ: (122)

Deflection and strain due to bending are the same as in the left half of the graphs

in Fig. 51b, c (page 72).

Another combination of beams employed very often is two beams arranged in

parallel with their ends fixed to each other (cf. Fig. 56a). One of the beams is

supported at its center and the load Ft is applied at the center of the other beam in

transversal direction (Fig. 56b). This arrangement may be regarded as a folded
beam. It simply doubles the displacement of a single beam clamped at both ends

and is not subject to residual stress and stress due to straining of the neutral fiber

[(108) on page 71].

Folded beams allow a larger displacement with a given force and provide a strait

movement similar to beams deflected in parallel. They are very stiff when they are

pulled by a longitudinal force Fl, i.e., perpendicular to the intended direction

(Fig. 56c). Therefore, folded beams are very popular for the movable electrodes

of electrostatic comb actuators which are not able to produce large forces and are

sensitive to displacements in transversal direction (cf. page 132). The displacement

wl in longitudinal direction of a folded beam with length LB, Young’s modulus EB,

area moment of inertia I, and a length LBc of the beams connecting the two parts of

the folded beam can be estimated by the following equation, which was derived

from finite element calculations (FEM) [31]:

Fl ¼ 49� 5ð Þ EB I

L2
Bc LB

wl: (123)

Fig. 56 Folded beams with (b) and without (a) deflection
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The standard deviation expresses how good the FEM results are described by the

above equation. The FEM calculations also showed that the deflection in longitudi-

nal direction is not a function of the deflection in transversal direction.

A twisted beam shows torsional deflection (cf. Fig. 57 left). Since torsional

elastic forces are comparatively small for microbeams, torsional deflection is

important in applications where only small forces are available and needed, e.g.,

sensors or the steering of light beams. The angle ’ at which a beam with the length

LB is twisted by a torque Mt is a function of its torsional constant It and the shear

modulus GB of its material:

j ¼ LB

GB It
Mt: (124)

The torsional constant is found in text books, e.g., [32–34] and is shown in

Table 5 for beams with three different cross-sectional shapes. The sear modulus is

a material constant and found in text books also or is calculated from Young’s

modulus and Poisson’s ratio:

GB ¼ EB

2 1þ nBð Þ : (125)

Fig. 57 Beams twisted by axial (left) and transversal (right) torques

Table 5 Torsional constants of beams

Circular cross-section It ¼ p
2
R4
B

Square cross-section It ¼ 0:1406 d4B

Rectangular cross-section
It ¼ a

d3B b3B
d2B þ b2B

dB/bB 1 2 4 8 1
a 0.281 0.286 0.299 0.312 1/3
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All the equations above are based on the assumption that Young’s modulus

and Poisson’s ratio are isotropic quantities. As shown in Fig. 38 on page 50, this is

not true for monocrystalline materials such as silicon. As a consequence, the shear

modulus is a function of crystal orientation also. This interrelationship is shown

in Fig. 58.

A beam clamped at both ends can be twisted perpendicular to its axis also

(cf. Fig. 57 right). Normally, this is not desired, but the designer of a microcompo-

nent needs to know also, which not intended deflections may occur at basic

elements.

The deflection angle of a beam with an area momentum of inertia I, clamped at

both ends, and subject to a torque Mt perpendicular to its axis at its center is:

j ¼ LB

16 EB I
Mt: (126)

The effect of residual stress is not included in this equation and further reduces

the deflection angle.

Table 6 summarizes the interrelationships of deflections and forces and torques.

The comparison of the equations in this table shows that comparatively large forces

can be achieved with membranes and with beams clamped at both ends. Thus,

these elements are preferable for stable supports and actuators. Large deflections

are easily achieved with beams clamped at one end only. Therefore, these are

superior for elastic elements in sensors and movable supports and bearings in

microtechnique.

All beams clamped at one end only are not affected by stress and stress changes.

Stress changes most often are generated by temperature changes because materials

with different thermal extensions are involved. Thus, these beams are less sensitive

to temperature changes which are the source of most cross sensitivities. This is

Fig. 58 Shear modulus

[GPa] of monocrystalline

silicon. Reprinted with

permission from [29].

Copyright [1965], American

Institute of Physics
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Table 6 Equations for the calculation of the interrelationship of deflection w0 and force F or

torque Mt of a beam or membrane

Type Equation

General solution for circular membrane,

rough approximation F ¼ 4p dM w0

4

3

d2M
R2
M

EM

1� n2M
þ s0 þ 64

105

w2
0

R2
M

EM

1� n2M

� �

Beam, general solution, rough

approximation

F ¼ 4
AB

LB

w0 48
EB I

AB L2
B

þ s0 þ 8

3
EB

w2
0

L2
B

� �

Beam, without stress, exact solution

F ¼ 192
EB I

L2
B

w0 ) w0 ¼ L2
B

192 EB I
F

Exact

F ¼ 3
EB I

L3
B

w0 ) w0 ¼ L3
B

3 EB I
F

Under own weight, exact

w0 ¼ � 3

8

rB ge bB dB

EB I
L2
B

Exact

F ¼ AB EB

LB

w0 ) w0 ¼ LB

AB EB

F

Exact

F ¼ 24
EB I

L2
B

w0 ) w0 ¼ L3
B

24 EB I
F

Exact

Mt ¼ GB It

LB

f ) f ¼ LB

GB It
Mt

(continued)
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another reason why beams clamped at only one end are preferable in a lot of

applications.

Exercises

Problem 12

Figure E13 shows an acceleration sensor fabricated from nickel with the LIGA

process [36]. For the measurement, the capacity between the fixed electrodes e1 and
e2 and the seismic mass ms is recorded. As shown in the schematic drawing of the

figure, the seismic mass is suspended by parallel beams to achieve a homogeneous

width of the capacitor gap when the beams are deflected. At the sides, there are stops

mounted which prevent a short circuit when an unexpectedly large acceleration

occurs. The seismic mass may move up to 3.5 mm until it touches one of the stops.

(a) What is the maximum acceleration which can be measured with the sensor?

(b) What is the maximum strain which can occur in the beams?

(c) What is the minimum height at which the beams need to be mounted above the

substrate not to be deflected down by their own weight and touching the

substrate?

Table 6 (continued)

Type Equation

Beam without stress

Mt ¼ 16 EB It

LB

f ) f ¼ LB

16 EB It
Mt

Exact

Ft ¼ 96
EB I

L3
B

w0 ) w0 ¼ L3
B

96 EB I
Ft

Approximation

Fl ¼ 49� 5ð Þ EB I

L2
Bc LB

wl ) wl ¼ L2
Bc LB

49� 5ð ÞEB I
Fl

For beams from monocrystalline material, the Young’s modulus in longitudinal direction has to be

used (cf. Fig. 38 on page 50). For membranes from monocrystalline materials using a mean value

of Young’s modulus yields an approximate result
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Hint: Assume that the entire seismic mass is concentrated at the end of the

beams.

Young’s modulus of nickel 186 GPa Height of seismic mass and beams 80 mm
Length of the beams 2.5 mm Width of the beams 14.5 mm
Seismic mass 1.3 mg

Problem 13

Figure E14 shows at the top a silicon acceleration sensor which was etched from a

(100)-wafer and consists of a seismic mass which is suspended by a beam with a

nearly rectangular cross-section [37]. On the upper surface of the beam, two strain

gauges are integrated which are combined to a Wheatstone bridge with two

reference resistances (cf. Fig. E14 bottom).

The strain gauges of the beam are fabricated from n-doped conductor paths and

are parallel to the <100>-direction. The beam and the seismic mass consist of

p-doped silicon.

The beam is 600 mm long and 40 mm wide. The width of the strain gauges is

10 mm and they stretch on the beam next to its edge. They are as long as the beam.

The length of the edge of the seismic mass is 3 mm and both the seismic mass and

the beam are 250 mm high.

(a) How does this sensor work? What could be the advantages compared with the

usual designs of acceleration sensors shown in Fig. E15?

mS e1

Beams

Stop

e2

Fig. E13 Acceleration sensor fabricated by the LIGA process shown as an SEM (left) and as a

schematic drawing (right) [36]. (Courtesy of Karlsruhe Institute of Technology, KIT)
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(b) The sensor is accelerated by 3 g in z-direction. What resistance change DRel/Rel

develops in the strain gauges?

What output signal can be measured at the Wheatstone bridge?

(c) Now the sensor is accelerated in x-direction and an output voltage of 0.3 mV is

measured at the bridge. Please, calculate the acceleration. What resistance

change could be measured at a single strain gauge?

Strain gaugesSeismic mass

[110]

[110]

y x

Fig. E14 SEM and

schematic drawing of the

acceleration sensor [37].

# [1997] IEEE

Fig. E15 The first silicon

acceleration sensor [38].

# [1979] IEEE
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Hints for the calculations:

l As an approximation, assume that the seismic mass would be concentrated in a

point at the end of the beam.
l Besides this, you may assume that the seismic mass has a rectangular shape with

the dimensions given in the table.

Height of the seismic mass 250 mm Length of the edge of the seismic mass 3 mm

Density of silicon 2.32 g/cm3 Young’s modulus of silicon 160 GPa

Poisson’s ratio of silicon 0.23 Specific resistance of the n-doped silicon 5 O cm

Voltage supply 5 V

84 Beams



Vibrations

Vibrations of membranes and beams are important in microtechnique. The fre-

quency range of pressure sensors and microphones is limited by the resonance

frequencies of their membrane. In a similar way, the resonance frequency of beams

limits the possible applications of acceleration sensors. On the other hand, the

resonance frequency of a vibrating element may be proportional to the measurand

and allow measurements less affected by noise.

Figure 59 shows the amplitude of a vibrating structure as a function of the

exciting frequency. There are two frequency ranges which usually are important for

the designer: The range well below the lowest resonance frequency – the so-called

fundamental frequency f1, and the range in the near of the fundamental frequency.

The former range is desirable when a sensor or an actuator shall be independent of

the frequency. For example, the deflection of the membrane of a pressure sensor

shall not be enhanced by resonance effects. Therefore, pressure sensors are limited

to a certain frequency range. On the other hand, actuators may achieve larger

deflections when driven at their resonance and the resonance frequency may be

employed to measure certain quantities such as forces and masses.

The classical way to calculate the resonance frequencies of a body is to set up the

equilibrium of forces in the form of a differential equation and to solve that equation.

For example, the differential equation for calculating the vibrations of a membrane
neglecting bending moments and stress due to straining of the neutral fiber is:

s0

q2w
qx2

þ q2w
qy2

� �
¼ rM

q2w
qt2

: (127)

The left side of this equation is the elastic force due to the residual stress s0 of
a rectangular membrane with a deflection w(x, y, t) which is a function of x- and

y-coordinate and time t. On the right side of the equation is the inertial force

according to Newton’s law where the mass is represented by the density rM of the

membrane. This differential equation is solved by the following ansatz:

wn;m x; y; tð Þ ¼ An;m sin
n p
aM

xþ aM

2

h i� �
sin

m p
bM

yþ bM

2

� �� �
sin on;m tþ Djn;m

� �
:

(128)

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_9, # Springer-Verlag Berlin Heidelberg 2011
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In this ansatz, aM and bM denote the length of the membrane in x- and y-direction,

respectively, and An,m, on,m, and Djn,m are the amplitude, angular frequency, and

phase of the vibration in the mode n,m, respectively. This ansatz can fulfill the above

differential equation only if the frequency f adopts one of the following values:

fn;m :¼ on;m

2p
¼ 1

2

ffiffiffiffiffiffi
s0

rM

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

a2M
þm2

b2M

s
: (129)

These values are the resonance frequencies of the membrane. The lowest

possible frequency f1,1 with n ¼ m ¼ 1 is the fundamental frequency. Each pair

of natural numbers n and m denote a so-called vibration mode of the membrane and

every mode corresponds to a certain resonance frequency. Figure 60 shows a

deflected membrane vibrating at its fundamental frequency f1,1 and at f3,2. The

numbers n and m correspond to the numbers of antinodes in x- and y-direction,

respectively. In Fig. 60c, there are shown the resonance frequencies calculated with

(129) with aM ¼ 1 and bM ¼ 2.4. There are even more resonances, because there

are further solutions of (127) which are not included in the ansatz (128). The node

lines (lines which are not deflected during vibration) of such resonances are shown

in Fig. 60d.

In general, a membrane will vibrate at several resonance frequencies at the same

time. The general solution of (127) is the sum of all solutions possible. If we restrict

ourselves to solutions according to the ansatz (128), the general deflection w(x, y, t)

is given by:

w x; y; tð Þ ¼
X
n;m

wn;m x; y; tð Þ: (130)

The variety of frequencies that appear above the fundamental frequency impede

employing higher resonances for sensors and actuators, because it is difficult to

make sure that the desired resonance is in use and not a neighboring one. Therefore,

Fig. 59 Vibration amplitude

as a function of excitation

frequency
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in most applications in microtechnique, it is enough to know the fundamental

frequency and the effects which may change it.

Equation (129) shows that, besides the geometry, the fundamental frequency is a

function of membrane stress and density, i.e., changes of the geometry, density, and

stress can be determined by measuring the fundamental resonance frequency of a

membrane. On the other hand, changes of these properties may interfere measure-

ments of this kind. An example is micromembrane sensors [39]. Figure 61 shows a
break through such a sensor. A membrane is separated by a microstructure into

micromembranes which due to their small dimensions show a fundamental reso-

nance frequency of some MHz, which is in the range of ultrasound used for medical

diagnosis.

The micromembranes can be excited to vibrations by an acoustic pulse gener-

ated by an ultrasonic transducer. After this, the membranes emit ultrasound at their

resonance frequency. Figure 62a shows the setup of an experiment in which

micromembranes were placed on the bottom of a vessel filled with water. The

micromembranes were excited by a transducer pulse and the same transducer

picked up the acoustic response from the membranes which is shown in Fig. 62d.

Fig. 60 Vibrations of

rectangular membranes:

(a) fundamental frequency

f1,1; (b) f3,2; (c) frequency

spectrum calculated with

(129); and (d) additional

nodal lines
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The first part of the signal is the excitation pulse reflected from the membranes and

the second part of the signal is the sound emission from the micromembranes. From

this second part of the signal, a Fourier transformation was calculated which yields

the resonance frequency (cf. Fig. 62e).

According to (129), the resonance frequency is a function of membrane stress

which may be a function of temperature also, if the thermal expansion of the housing

of the membranes is different from the one of the membranes. Figure 62b, c shows

the resonance frequency measured as a function of straining and temperature [39].

When (129) was derived, residual stress was taken into account only. Stress due

to straining of the neutral fiber and bending moments influences the resonance

frequency also. Therefore, this equation is only correct for thin membranes with

comparatively small deflections and large residual stress. The stress due to straining

Fig. 61 Break through a

micromembrane sensor.

(Courtesy of Karlsruhe

Institute of Technology, KIT)

Fig. 62 Experimental test setup for micromembrane sensors [39] (a); Measured resonance

frequency as a function of strain (b) and temperature (c); Measured signal from the micromem-

branes (d); and Fourier transformation of the second part of that signal (e). (Courtesy of Karlsruhe

Institute of Technology, KIT)
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of the neutral fiber is only important for membranes vibrating with large amplitudes.

This does not occur often, and, therefore, here is not discussed further. The bending

moments are included employing theRayleighmethod [40]. Similar to the Ritz method

(cf. page 34), the energy of the vibratingmembrane is calculated.When an elastic body

or structure is vibrating, its energy is transformed back and forth between potential and

kinetic energy. If damping is neglected, the maxima of potential and kinetic energy are

equal. From this equation, the resonance frequency can be calculated.

Figure 63 shows a simple example. A mass affixed to the end of a spring (spring

constant k) is vibrating around its rest position. The maximum potential energy

Vp,m of this system is reached at the extreme positions of the deflections where the

velocity is zero and the maximum kinetic energy Ekin,m is achieved while passing its

idle position with maximum velocity vmax:

Vp;m ¼ k

2
w2

0 ¼ Ekin;m ¼ mK

2
v2max: (131)

The position of every vibrating body is described by an equation of the following

type:

wðtÞ ¼ w0 sin o tþ jð Þ ) vðtÞ ¼ qw
qt

¼ w0 o cos o tþ jð Þ: (132)

The maximum of the velocity is reached when the cosine function equals 1.

Therefore, (131) becomes now:

k

2
w2

0 ¼
mK

2
w2

0 o2 ) o ¼
ffiffiffiffiffiffiffi
k

mK

r
: (133)

This result could have been obtained from the calculation of the equilibrium of

forces with the inertial force of Newton F ¼ a m also, but for more complicated

cases such as a membrane subject to both residual stress and bending moments, it is

nearly impossible to set up the equilibrium of forces. Therefore, it is an advantage

that it is enough to calculate the potential and kinetic energy of such a membrane.

The kinetic energy Ekin,m is calculated from the integral over the kinetic energies

of all infinitesimal elements of the membrane. The kinetic energy dEkin of an

mK

w0

v = vmax

w0

v = 0v = 0Fig. 63 Vibrating spring

loaded with a mass
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infinitesimal volume element dM dx dy of a membrane with thickness dM and

density rM is given by (cf. Fig. 64):

dEkin ¼ rM dM dx dy

2
v2 ¼ rM dM dx dy

2

qw
qt

� �2
: (134)

The total kinetic energy is the integral over this equation:

Ekin ¼
ðð

rM dM

2

qw
qt

� �2
dx dy: (135)

The membrane deflection is approximated now with the following ansatz:

w x; y; tð Þ ¼ w0 u x; yð Þ cos otþ jð Þ: (136)

In this equation, u(x, y) denotes the part of the ansatz which is a function of the

position and cos (ot + ’) is the part which is a function of time. The kinetic energy

in (135) is expressed now with the derivative of (136):

Ekin ¼ rM dM

2
w2

0 o2 sin2 otþ jð Þ
ðð

u2 dx dy: (137)

The kinetic energy is maximal when the sine function is equal to one, and this

needs to be equal to the maximum of the potential energy Vp,m:

Ekin;m ¼ rM dM

2
w2

0 o2

ðð
u2 dx dy ¼ Vp;m: (138)

This equation is solved for o achieving the resonance frequency f of the

membrane:

f ¼ o
2 p

¼ 1

2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Vp;mðuÞ

rM dM w2
0

ÐÐ
u2 dx dy

s
: (139)

The maximum potential energy Vp,m can be calculated with the Ritz method (44

or 45 on page 35). The unknown shape u(x, y) of the vibrating membrane is

w

dx

vFig. 64 Vibrating membrane
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approximated with a reasonable ansatz containing unknown parameters. The

unknown parameters are found then by calculating the minimum of the resonance

frequency as a function of these parameters. Every deviation from the real shape of

the vibrating membrane results in a higher frequency, and, therefore, the minimum

approximates the real frequency [41]. With a suitable ansatz more than one relative

minimum may be found. The least of these minima is an upper limit of the

fundamental frequency and the larger ones correspond to higher-order resonances.

Typically, the static deflection shape u1(x, y) of the membrane is a good ansatz

for the deflection shape of the fundamental resonance frequency. Here, the shape of

a thick membrane statically deflected by a constant pressure difference is assumed

as described by (23) (page 29):

u1ðrÞ ¼ 1� r2

R2
M

� �2
: (140)

With this ansatz, the only unknown parameter in (139) is the maximum deflection

w0 of the vibrating membrane also called the amplitude of the vibration. When the

potential energy is inserted into (139) from (44) or (45) (page 35) neglecting the term

of stress due to straining of the neutral fiber, the vibration amplitude is canceling out.

Thus, the resonance frequency is obtained directly from (139) and no further calcula-

tion of the minimum is required. For a circular membrane it is obtained:

f1 ¼
ffiffiffi
5

3

r
1

p RM
ffiffiffiffiffiffi
rM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

EM

1� n2M

d2M
R2
M

þ s0

s
: (141)

The fundamental frequency of a rectangular membrane is found with the ansatz,

which was employed for the static deflection of square membranes also [(65) on

page 45]:

u1 x; yð Þ ¼ 1� 4
x2

a2M

� �2
1� 4

y2

b2M

� �2
(142)

and yields:

f1;1 ¼
ffiffiffi
3

p

p
ffiffiffiffiffiffi
rM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

EM

1� n2M
d2M

7

a4M
þ 4

a2M b2M
þ 7

b2M

� �
þ sa

a2M
þ sb

b2M

� �s
: (143)

In these equations, sa and sb denote the stresses in the direction of the edges of

the rectangular membrane with the lengths aM and bM, respectively. The stresses are

assumed to be constant all over the membrane.

Figure 65 shows the fundamental frequency calculated with (141) as a function of

membrane stress. A circular membrane with a radius and thickness of 0.5 mm and

5 mm, respectively, and a density, Young’s modulus, and Poisson’s ratio of 1 kg/L,
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109 GPa, and 0.3, respectively, were assumed for this calculation. The figure and the

equation show that the resonance frequency is decreasing with decreasing stress. At

a certain compressive stress, the frequency becomes zero. This is the critical stress

sk already known from (54) on page 41. Thus, (141) can be written in the form:

f1 ¼
ffiffiffi
5

3

r
1

p RM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � sk

rM

r
with sk ¼ � 4

3

EM

1� n2M

d2M
R2
M

: (144)

Up to now, the medium surrounding the membrane has not been taken into

account. Thus, the equations above are valid for membranes vibrating in vacuum

only. If the membrane is in contact to a medium such as air or water, this fluid will

vibrate together with the membrane and contribute to the moving mass. This is

introduced by a so-called additive mass bm. The following equation includes the

effect of a fluid with density rF which is in contact to one side of a circular

membrane with density rM [42]:

f1 ¼
ffiffiffi
5

3

r
1

p RM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � sk

rM 1þ bmð Þ
r

with bm ¼ 2

3

rF
rM

RM

dM
: (145)

Most often the membrane will be in contact to the fluid on both sides, and, as a

consequence, the additive mass needs to be doubled.

The effect of the additive mass was observed with micromembrane sensors as

well. Figure 66a shows the measured frequency as a function of the density of a

water solution. Potassium iodide (KI) was added stepwise enhancing the density

with only little changes of the viscosity [39].

Up to now the damping of a vibrating membrane has not been taken into account

here. The effect of the damping of a membrane (and any other vibrating body) is

described by an exponential function. Thus, the maximum deflection is a function

of time and the overall deflection becomes (cf. 136):

w x; y; tð Þ ¼ A0 e�aD t u x; yð Þ cos o tþ jð Þ; (146)

w0 ¼ A0 e�aD t; (147)

where A0 and aD denote the vibration amplitude and the damping constant, respec-

tively. Figure 67 shows the maximum deflection as a function of time according to

the above equation.

Fig. 65 Fundamental

frequency of a circular

membrane calculated with

(141)
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Damping lowers the resonance frequency also. The angular frequency o of the

damped vibration is described as a function of the undamped angular velocity o0 by

the following equation:

2 p f ¼ o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2
0 � a2D

q
: (148)

There are several reasons for damping such as the emission of sound and the

friction in the surrounding fluid. The friction of the fluid is a function of its viscosity

as shown in Fig. 66b, which displays the measured frequency of micromembrane

sensors as a function of the viscosity enhanced by stepwise adding polyvinylmethyl-

ether (PVM) which has approximately the same density as water but a much larger

viscosity. The effect of friction may be enhanced by the squeeze film effect also (cf.

page 119ff).

The damping constant due to the emission of sound into a fluid on one side of a

circular membrane is calculated by the following equation [42]:

aD ¼ 5

36

rF
rM

R2
M

c dM 1þ bmð Þ2
f20

4 p2
: (149)

In this equation, c denotes the velocity of sound in the fluid and f0 is the resonance

frequency without damping due to sound emission. Often the membrane will be in

contact to the fluid on both sides. As a consequence, both the additive mass needs to

be doubled and the entire equation needs to be multiplied by two. This is illustrated

Fig. 66 (a) Measured

resonance frequency of

micromembrane sensors as a

function of the density of the

surrounding fluid and (b)

damping coefficient as a

function of the dynamic

viscosity [39]

w0

t

A0 e
-αD t

Fig. 67 Deflection of a

vibrating body as a function

of time
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very well by an experiment with micromembrane sensors. Instead of a sensor with

entrapped air as shown in Fig. 62a (page 88), a sensor with a frame open at the

reverse side was used (cf. Fig. 68a). As a consequence, the micromembranes were

emitting ultrasound to both sides and damping was larger. As shown in Fig. 68b, the

vibrations of this sensor were damped out much quicker compared with Fig. 62d.

Damping of a vibrating element may be an advantage. For example, micromem-

brane sensors and the membranes of loud speakers of hearing aids need to emit

enough sound for good performance. An element which emits sound also absorbs it

very well. Thus microphones need to show large damping by sound emission also.

Equation (149) shows that a larger damping can be achieved by increasing the

diameter of a membrane and employing thin membranes with a small density.

The resonance frequencies of vibrating beams are calculated in a similar way as

for membranes. Again there is a differential equation which needs to be solved with

the required boundary conditions to obtain the frequencies. This differential equa-

tion is:

EB I
q4w
qx4

þ rB AB

q2w
qt2

¼ 0; (150)

where EB, AB, rB, I, and x are Young’s modulus, cross-sectional area, density, area

moment of inertia of the beam, and the coordinate in the direction of the beam,

respectively.

The solutions of this differential equation are:

wi x; tð Þ ¼ uiðxÞ cos 2 p fi tþ jið Þ: (151)

In this equation, wi(x, t) describes the deflection of the beam as a function of

the position x along the beam, the time t, and the parameter i which denotes the

Fig. 68 Micromembrane

sensor with an open frame

(a) and signal measured with

this sensor (b)
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so-called mode of vibration. Every mode corresponds to a certain deflection shape

ui(x) which needs to fulfill both the boundary conditions and the differential

equation. The resonance frequencies are the distinct values at which the differential

equation is solved. The general solution of the differential equation includes all

resonance frequencies and is the sum of all possible solutions:

w x; tð Þ ¼
X
i

Ai wi x; tð Þ ¼
X
i

Ai uiðxÞ cos 2 p fi tþ jið Þ: (152)

The amplitudes Ai in this equation are a function of the excitation of the

vibration.

The deflection shape solves the differential equation (150), if it is of the

following form:

uiðxÞ ¼ a1 cosh
li x
LB

� �
þ a2 cos

li x
LB

� �
� si sinh

li x
LB

� �
þ a3 sin

li x
LB

� �� �
; (153)

In this equation, a1 through a3, si, and li are coefficients which are to be chosen

such that the boundary conditions are fulfilled. These boundary conditions are that

the deflection ui(x) of the beam and its first derivative are zero at x ¼ 0 where the

beam is clamped and that the curvature of the beam (its second derivative, cf.

page 6) is zero at its free end:

uið0Þ ¼ 0 ) a2 ¼ �1 (154)

qw
qt

				
x¼0

¼ 0 ) a3 ¼ si (155)

q2w
qx2

				
x¼LB

¼ 0 ) si ¼ cosh lið Þ þ cos lið Þ
sinh lið Þ þ sin lið Þ ¼ sinh lið Þ � sin lið Þ

cosh lið Þ þ cos lið Þ : (156)

A pair of shear forces FS acting on a beam generates a bending moment (Fig. 69).

If the axial distance at which the shear forces act is dx, the generated bending

moment dM is:

dM ¼ FS dx ) FS ¼ qM
qx

: (157)

Fig. 69 Shear force

generating a bending moment
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The bending moment of a beam is described by (7) on page 7. Introducing this

into the above equation, yields:

FS ¼ �EB I
q3w
qx3

: (158)

Thus, as a consequence of the fact that no forces are acting on the free end of a

beam, the third derivative of the deflection curve needs to be zero at the free end:

q3w
qx3

				
x¼LB

¼ 0 ) cos lið Þ cosh lið Þ ¼ �1: (159)

The frequency parameters li and si calculated with these equations are shown in
Table 7 with the precision of five digits. It is important to perform the calculations

of the deflection shape with this accuracy, because otherwise the boundary condi-

tions are not fulfilled.

a1 is chosen such that the largest deflection which occurs along the beam is one.

This way, the amplitude Ai in (152) corresponds to the largest deflection of the

beam. As a consequence, the deflection shape of a beam clamped at one end is:

uiðxÞ ¼ 1

2
cosh

li x
LB

� �
� cos

li x
LB

� �
� si sinh

li x
LB

� �
� sin

li x
LB

� �� �
 �
: (160)

When (151) and (160) are inserted into the differential equation (150), the

following equation results, which yields the resonance frequencies of the beam:

l4i
L4
B

� r AB

EB I
2 p fið Þ2¼ 0 ) fi ¼ l2i

2 p L2
B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

rB AB

s
: (161)

The deflection shape ui(x) of a vibrating beam, 1 mm in length, is shown in

Fig. 70a for the first three modes as calculated with (160) and Table 7.

If a vibrating beam is to be employed as a sensor, strain gauges are a good way to

measure the vibration amplitude and frequency. The resistance change as a function

of the position along the beam can be calculated when the strain on the beam

surface is known. The strain eB on the surface of the beam generated by bending is

according to (5) on page 7:

eB ¼ � dB

2

q2w
qx2

: (162)

Table 7 Frequency

parameters of beams clamped

at one end

Mode i li si
1 1.8751 0.7341

2 4.6941 1.0185

3 7.8548 0.9992
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Inserting (152) and (160) yields:

eB ¼ � dB

2 L2
B

X
i

Ai l
2
i

1

2
cosh

li x
LB

� �
þ cos

li x
LB

� �
�

�si sinh
li x
LB

� �
þ sin

li x
LB

� �� ��
cos 2 p fi tþ jið Þ

�
: (163)

In Fig. 70b, c, the strain eB of the first three modes i is shown as calculated with

this equation for the beam mentioned assuming a thickness of 100 mm and an

amplitude of 10 mm. The resistance change of strain gauges mounted on top of the

surface of the beam can be calculated by inserting (163) into (99) and (100) on

page 68. If strain gauges are produced by doping of monocrystalline silicon, the

resistance change is a function of crystal orientation also. The resistance changes

then need to be calculated with (21) on page 22.

As both for strain gauges from silicon and from other materials, the resistance

change is proportional to the strain, the largest effect may be expected from

placing them in the near of the clamped end. As usual, strain gauges parallel and

perpendicular to the beam may be combined compensating for temperature

effects.

If the contribution of other modes than the desired one needs to be excluded from

the measurement, an electronic band pass filter can be employed and/or the strain

gauges are placed around the zeros of the strain of undesired modes. In Fig. 70c, this

Fig. 70 Deflection shape

(a) and surface strain (b) and

(c) of a vibrating beam

clamped at one end
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would be at 0.2 and 0.5 mm for suppressing the second and third mode, respectively.

It could be possible also to measure the strain near the clamping point and to subtract

values proportional to the signal of strain gauges at the antinodes of undesired

modes.

Often there is a mass fixed at the free end of a vibrating beam fixed at one end.

For example, most acceleration sensors consist of a beam with a seismic mass at

their end (cf. page 83). If the mass is approximated by a point mass m0 at the end of

the beam and the mass of the beam is mB, deflection shape u1(x) and fundamental

frequency f1 of this beam are calculated by:

u1ðxÞ ¼ 1

2
1� x

LB

� �3
þ 3

x

LB

� 1

 !
; (164)

f1 ¼ 1

2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 EB I

L3
B m0 þ 0:24 mBð Þ

s
: (165)

If a vibrating beam is clamped at both ends and only bending moments are in

action as elastic forces (i.e., there is no residual stress), the same differential

equation (150) applies as for a beam clamped only at one end. The only difference

is that the boundary conditions are changed. As a consequence, the same equations

are valid for the deflection shape (160) and resonance frequencies (161). However,

the changed boundary conditions result in a changed factor a1 (¼½ in 160) and

different frequency parameters li and si. They are derived from the boundary

condition that both deflection and slope of the beam are zero where it is clamped.

Thus, (154) and (155) need to be fulfilled not only at x ¼ 0 but also at x ¼ LB. Zero

deflection at the end of the beam results in:

si ¼ cos lið Þ � cosh lið Þ
sin lið Þ � sinh lið Þ (166)

and the condition of zero beam slope at its end yields:

cos lið Þ cosh lið Þ ¼ 1: (167)

Table 8 shows the frequency parameters li and si calculated with these equations
and Fig. 71a shows the deflection shape calculated with these parameters and (160).

Table 8 Frequency

parameters of beams

clamped at both ends

Mode i li si
1 4.7300 0.9825

2 7.8532 1.000777

3 10.9956 0.999966
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The factor ½ was replaced by 0.63 for the first mode, and 0.66 for the second and

third mode, achieving a maximum deflection of 1.

The strain at the surface of the beam is calculated with (163) as in the case of a

beam clamped only at one end, but with the frequency parameters from Table 8.

The resistance change of strain gauges on the beam is obtained by inserting (163)

into (99) and (100) on page 68. Figure 71b shows the strain on the surface of the

beam. The resistance change of strain gauges is proportional to this. Again the

largest effect is found in the near of the clamping points. If specific modes are to be

selected, as in the case of a beam clamped only at one end, it is possible to place

strain gauges at the antinodes or the nodes of the corresponding modes or to use

frequency filters.

If a certain mode of vibration shall be excited, it is important to deflect it with the

right resonance frequency. As shown later in this book, there are several possibi-

lities to generate a beam deflection such as local heating (page 164f), electrostatic

actuation (page 131f), and piezos (page 144f). The vibration at a certain mode is

facilitated by generating beam bending at the antinodes or by generating a deflec-

tion at these positions.

Sometimes the vibrations of a beam with a concentrated mass at its center need
to be known for designing. The deflection shape of the fundamental mode of this

beam is described by:

u1ðxÞ ¼ 4 3
x

LB

� �2
� 4

x

LB

� �3 !
: (168)

This equation describes only half of the symmetrical deflection shape of the

beam. The x-coordinate is starting at one clamping point. The fundamental reso-

nance frequency of the beam is:

Fig. 71 Deflection shape

(a) and surface strain (b) of

a vibrating beam without

residual stress clamped at

both ends
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f1 ¼ 4

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3EB I

L3
B m0 þ 0:37 mBð Þ

s
: (169)

All the equations shown above for a beam clamped at both ends do not include

residual stress. However, residual stress has a significant influence on resonance
frequencies and cannot be avoided, in general. It can be approximately taken

into account by a factor multiplied to the resonance frequency without residual

stress [43]:

fi s0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

l2i

s0

skj j

s
fi s0 ¼ 0ð Þ: (170)

The frequency shift due to residual stress in a beam is shown in Fig. 72 as

calculated with this equation. It is clearly seen that the fundamental frequency

approaches zero when the compressive stress of the beam converges against the

buckling load sk.
If the resonance frequency of a vibrating beam clamped at both ends shall be a

measure of a force or a stress, respectively, it appears to be advantageous to employ

the fundamental frequency of a beam near its critical stress sk, because the slope of
the curve in Fig. 72 is largest there. If other parameters such as the mass of

substances deposited on the beam shall be determined, it is desirable to avoid the

effect of residual stress and a beam with more stress or vibrating at a higher mode

may be preferred.

The resonance frequencies of all arrangements of beams with a mass fixed at

their end which is much larger than the mass of the vibrating beam can easily be

calculated when the force required for their deflection is known. Table 6 (page 80)

shows the forces required for deflecting beams of several cases. The spring constant

k of a certain case is the ratio of force F and deflection w0, and the frequency can be

calculated with (133) on page 89.

Torsional vibrations of microbeams occur easily, because the torque required to

twist a beam by a certain angle ’ (cf. Fig. 57 on page 78) is proportional to the third

power of the linear dimensions [cf. (126) on page 79]. Thus, if torsional vibrations

are undesired, this needs to be avoided by a suitable design. On the other hand,

Fig. 72 Resonance

frequencies of a vibrating

beam as a function of residual

stress calculated with (170)

and (161)
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torsional vibrations may be employed to measure small changes of a force or a

torque.

Similar as in the case of transversal vibrations of beams [(152) on page 95] in

general, the torsional angel y of a beam clamped only at one end is described by a

sum over wave functions yi, which need to fulfill both the boundary conditions and

the differential equation:

y x; tð Þ ¼
X
i

Ai yi x; tð Þ ¼
X
i

Ai uiðxÞ cos 2 p fi tþ jið Þ: (171)

In this equation, Ai denotes the amplitude, ui(x) the deflection shape, fi the

resonance frequency, and ’i a phase angle of the mode i of the torsional vibration.

The boundary condition of a beam clamped only at one end is fulfilled, if

uiðxÞ ¼ sin li
x

LB

� �
; (172)

where li is a solution of the following transcendental equation:

cot lið Þ ¼ Im

rB LB It
li: (173)

In this equation, ri, LB, Im, and It are the density, length, mass moment of inertia,

and torsional constant (cf. Table 5 on page 78) of the beam, respectively. The mass

moment of inertia is defined by the following integral:

Im ¼
ð
r2 dm; (174)

where r and dm are the distance from the axis of rotation and the infinitesimal mass

element of the beam. The mass moments of inertia of beams often employed in

microtechnique are shown in Table 9. For other cross-sections, the corresponding

values are found in text books such as [32, 33].

Table 9 Mass momentums

of inertia of homogeneous

beams rotating around their

length axis as a function of

their cross-section

Form of cross-section Mass momentum of inertia

Rectangle mB

12
b2B þ d2B
� �

Circle mB

2
R2
B
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Table 10 Equations for the calculation of the resonance frequencies f of membranes and beams

Type Equation

Circular membrane
f1 ¼

ffiffiffi
5

3

r
1

p RM

1ffiffiffiffiffiffi
rM

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � sk

p
with sk ¼ � 4

3

EM

1� n2M

d2M
R2
M

Rectangular membrane
f1;1 ¼

ffiffiffi
3

p

p
ffiffiffiffiffiffi
rM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

EM

1� n2M
d2M

7

a4M
þ 4

a2M b2M
þ 7

b4M

� �
þ sa

a2M
þ sb

b2M

� �s

Square membrane
f1;1 ¼

ffiffiffi
6

p

p aM
ffiffiffiffiffiffi
rM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa þ sb

2
� sk

r
with sk ¼ � 9

2

EM

1� n2M

d2M
a2M

Beam clamped at both ends,

li see Table 8 (page 98) fi ¼ l2i
2 p LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

LB mB

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l21

l2i

s0

sk

s
with sk ¼ � 4p2

AB

EB I

L2
B

fi ¼ l2i
2 p LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

LB mB

r
; li see Table 7 (page 96)

f1 ¼
ffiffiffi
3

p

2 p LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

LB m0 þ 0:24 mBð Þ

s

f1 ¼ 4
ffiffiffi
3

p

p LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

LB m0 þ 0:37 mBð Þ

s

f1 ¼ 1

2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EB AB

m0 LB

r

f1 ¼ 1

2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24 EB I

m0 L
3
B

s

fi ¼ li
2 p dB LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

EB

1þ nB

LB It

mB

r
; li from (173)

f1 ¼ 1

2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96 EB I

m0 L3
B

s

f1 ¼ 1

2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49� 5ð ÞEB I

m0 L2
Bc LB

s

For I and It see Table 3 (page 67) and Table 5 (page 78), respectively
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Table 10 summarizes the resonance frequencies of circular membranes and

beams with different boundary conditions.

Exercises

Problem 14

The fluid surrounding a membrane and the temperature have an effect on the

fundamental frequency of a membrane.

(a) Calculate the fundamental frequency of two circular membranes in vacuum and

in water. One membrane is from silicon and the other one from polyimide. The

thickness of the membrane is 25 mm and the radius is 2 mm. The initial stress

s0 is the same for both membranes (s0 ¼ 35 MPa at 20�C).
(b) What is the fundamental frequency of the polyimide membrane, if the temper-

ature is enhanced from 20 to 95�C? The polyimide membrane is stretched over

a frame from steel. Take into account the effect of the thermal strain only, and

neglect the geometrical changes of thickness and radius, and the change of the

density surrounding the membrane.

(c) The density of the surrounding fluid is changed by the temperature change as

well. This has an effect on the additive mass and in this way on the fundamental

frequency. Calculate the changed fundamental frequency of the polyimide

membrane in air and water, when the temperature is enhanced from 20 to

95�C. Take into account the change of the additive mass and the initial stress.

Hint: The change of the density of a gas can be calculated with sufficient

accuracy with the fundamental equation for gases which says that the density

is proportional to the inverse of the absolute temperature [K].

(d) Which meaning do the above effects calculated by you have for the designer of

membranes in microsystems?

Young’s modulus of silicon 160 GPa Young’s modulus of

polyimide

1.66 GPa

Poisson’s ratio of silicon 0.23 Poisson’s ratio of polyimide 0.41

Density of air at 20�C 1.2 g/L Density of water at 20�C 998 g/L

Temperature coefficient of

the polyimide

membrane

45 � 10�6 1/K Temperature coefficient of

the frame of the

membrane

12 � 10�6 1/K

Density of water at 95�C 962 g/L Gas constant RG 8.314 J/(mol K)

Density of silicon 2.3 g/cm3 Density of polyimide 1.43 g/cm3

Temperature coefficient of

silicon

2.3 � 10�6 1/K
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Problem 15

You have started a new job in a company producing sensors for the measurement of

machine vibrations. The sensors are fabricated with silicon technology and consist

of beams clamped at one end with strain gauges.

(a) First you shall get to know the vibration sensors. You get some sensors from the

production line on which the strain gauges are not yet implemented. You

investigate the geometrical dimensions of the beams with an SEM (scanning

electron microscope) and find out that the beams have a width of 50 mm,

a thickness of 25 mm, and are 605 mm long.

Please calculate the resonance frequencies of the first three modes.

(b) By what factor would the thickness or length of the beam need to be altered

achieving a fundamental frequency of 5,820 Hz? What is the effect of the width

of the beam?

(c) Where would you place strain gauges if the sensor shall be sensitive to the

resonance frequency of the three lowest modes?

(d) At one customer of your company damages of the machine occur especially at

a frequency which corresponds to the third mode of your beam. When these

vibrations occur, the machine shall be switched off. Where would you place the

strain gauges on the sensor described before to obtain a sensor which is

especially sensitive to the third mode and insensitive to noise from the funda-

mental mode? Take the value from Fig. 70 on page 97.

(e) The most recent development of your company is a vibration sensor consisting

of several silicon beams arranged parallel to each other (cf. Fig. E16). At

the end of each beam, there is an enlarged area with a gold layer serving as

a seismic mass. The output signal of this sensor as a function of frequency is

shown in Fig. E17. Obviously, it is an advantage of this sensor that a wide range

of vibration frequencies can be recorded.

The gold covered ends of the beams show dimensions of 200 � 200 mm2.

The silicon of the beam and the end mass show the same thickness as the beams

of part (a), but the beam is 2.5 mm long. What mass is needed at the end of the

beam to obtain a resonance frequency of 3 kHz? Calculate the thickness of the

gold layer.

Hint: Assume for your calculation that the gold covered end would be concentrated

as a point mass at the end of the beam.

(f) What is the advantage of the gold covered ends compared with beams without

any extrastructure at their end but the same resonance frequency?

Density of silicon 2.32 g/cm3 Young’s modulus of silicon 160 GPa

Density of gold 19.3 g/cm3

Hint: Assume for your calculations that the sensor would vibrate in vacuum and

that the surrounding medium would show no effect on the vibrations.
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Problem 16

By microgravimetry the mass of very small particles and molecules can be

measured. The change of the resonance frequency of membranes or beams as

a function of the mass of these structures is employed to measure small masses in

microgravimetry. A selective layer on the microstructure allows the binding of

a certain kind of molecules only. This allows the analysis of DNA, RNA, and

proteins. The performance of such microscales is demonstrated especially by so-

called electronic noses: Even the binding of smell molecules on the surface of

a vibrating membrane or a vibration beam results in a change of the resonance

frequency, and, therefore, can be employed to recognize the presence of a certain

smell.

The microscale manufactured by you consists of a silicon beam clamped at one

end. With a piezo, the beam can be excited to vibrations. The beam shows a length

of 200 mm, a width of 50 mm, and a thickness of 5 mm. The free end of the beam is

covered on both sides with proteins on an area of 50 � 50 mm2. On these proteins,

only the macromolecules of the type A can adhere.

Fig. E16 Vibration sensor

with several beams of

different lengths and with

gold covered seismic masses

at their ends [44]

Fig. E17 Output signal of

the vibration sensor [44] from

Fig. E16
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(a) Please calculate the fundamental resonance frequency of the beam without any

molecules on it.

(b) At the beginning of your measurement, you perform a reference measurement.

You obtain the resonance frequency calculated at part (a) of this exercise.

Now, you conduct an air stream with the macromolecules of interest over the

beam and measure the resonance frequency once more. Assume that the area

on both sides of the beam becomes covered with a 100-nm thick layer with

a density of 1.2 g/cm3.

What resonance frequency is measured now?

Hint:

– Assume that the molecules are distributed homogeneously on both sides of

the beam and all remain to be adhered.

– Assume for the calculation that the additional mass of the macromolecules

is attached to the end of the beam.

(c) How much does the resonance frequency change, when a dust particle with

a mass of 10 mg would adhere at the end of the beam?

Hint: Assume for all problems of the exercise that you may use the equations of

beam vibrations in vacuum. (In a real calculation, the effect of the surrounding

air with its damping and additive mass would need to be taken into account.)

Young’s modulus of silicon 160 GPa Density of silicon 2.32 g/cm3
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Capillaries

Microfluidic is one of the most promising fields of microtechnique. A variety of

microfluidic devices has been developed such as micropumps (page 229), micro-

valves (page 203), pressure sensors (page 275), flow sensors (page 289), and

analysis systems. The most important basic element of microfluidics is the capil-

lary. It is needed to link components and to direct the flow of a fluid. The notion

“fluid” includes both gasses and liquids. Besides this, capillaries can be employed

for the separation of different ingredients.

Capillaries are made of nearly every rigid material used in microtechnique. They

typically show diameters between 10 mm and some millimeters. It is possible to

fabricate capillaries with a smaller diameter but the risk that they are blocked by a

small particle rises quickly with decreasing diameter, and, therefore, most capil-

laries are wider than 100 mm. The total length of a capillary is limited to several

centimeters by the space available on a single device. On the other hand, a capillary

shorter than approximately 100 mm normally is not very useful.

Capillaries can be fabricated as a concave edge which is open to the environ-

ment. However, the evaporation rate of water is on the order of some millimeters

per day. One millimeter per day is the same as 42 mm/h. Thus, a capillary may be

emptied by evaporation within a short time, and the concentration of an analyte in

the liquid in a capillary may change significantly within seconds. That is why most

capillaries need to be designed as closed channels avoiding evaporation.

A certain pressure difference DpR is necessary to move a fluid inside of a

capillary, because friction needs to be overcome. The pressure difference to move

a fluid with length LF and dynamical viscosity � in a capillary with the velocity v is
given by the Hagen Poiseuille equation (cf. Fig. 73):

DpR ¼ �32
Z LF

D2
h

v: (175)

The quantity Dh denotes the so-called hydraulic diameter of the capillary. It

expresses the influence of the geometrical shape of the cross-section of the capillary

on the flow. The definition of the hydraulic diameter is:

Dh ¼ 4AF

Uw

; (176)

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_10, # Springer-Verlag Berlin Heidelberg 2011
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where AF is the area of the cross-section and Uw is the wetted circumference of the

capillary. For a circular cross-section, the hydraulic diameter is the same as the real

diameter.

The hydraulic diameter can also be employed in unusual cases such as a

macroscopic pipe which is filled only partly. In a macroscopic pipe, e.g., the

lower half could be filled with water (cf. Fig. 74 left). Thus, half of the cross-

section and half of the circumference need to be introduced into (176). In a

microscopic pipe, capillary forces could (hypothetically) cause the water to be

attached to the walls. As a consequence, the complete circumference and half of

the cross-sectional area would be used in (176).

The flow in a capillary formed by a concave edge can also be calculated with

(176) (cf. Fig. 74 right). If the length of the liquid in touch with the wall is

designated by L and its cross-sectional area is estimated to A ¼ (3/8)L2, the

hydraulic diameter according to (176) is calculated as Dh ¼ (3/4)L.

If a pressure difference Dp over a capillary is given or a liquid flow is driven by

known capillary forces (cf. page 114f), the flow velocity v can be calculated from

(175):

v ¼ � 1

32

D2
h

Z LF

Dp: (177)

From the mean flow velocity v from (177), the volume flow FF is calculated by

multiplying with the cross-section A of the channel:

FF ¼ vA ¼ � 1

32

D2
h A

ZLF

Dp ¼:
Dp
Rfl

: (178)

Fig. 74 Partly filled capillaries. Left: Half filled macroscopic and microscopic pipes, respectively.

Right: Water in a concave edge

Fig. 73 Fluid in a capillary

driven by a pressure drop
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The quantity Rfl in the above equation is the so-called flow resistance of the

channel. Table 11 shows the hydraulic diameter and flow resistance of microchan-

nels which are often used in microtechnique.

For a short capillary, (177) yields unrealistically high velocities. This is due to

the fact that the inertial force needed for accelerating the liquid has not yet been

taken into account. If a liquid is taken from a resting reservoir into a capillary (cf.

Fig. 75), the force dF is required to achieve the acceleration aF bringing the mass

dm to the velocity v in the time dt:

dF ¼ aF dm ¼ dv dm

dt
: (179)

The mass dm equals the density rF of the liquid times the volume, and the

volume is the cross-section A of the capillary times the length dx the liquid moves

in the time dt:

dF ¼ dv dm

dt
¼ rF AF dx

dt
dv ¼ rF AF v dv: (180)

Integrating on both sides and taking into account that the pressure is decreasing

in the direction of the velocity yields:

ð
dF ¼ F ¼ rF AF

ð
v dv ¼ rF AF

v2

2
) Dp ¼ � rF

2
v2: (181)

To the pressure drop Dp which is necessary to accelerate the liquid, the pressure
drop needed to overcome the friction (175) has to be added:

Dp ¼ � rF
2
v2 � 32

ZLF

D2
h

v ) v ¼ �32
Z LF

rF D2
h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

Z LF

rF D2
h

� �2
� 2 Dp

rF
:

s
(182)

As a consequence of this equation, the flow into a capillary driven by a constant

pressure drop or by constant capillary forces will start with a velocity which is a

function of the force required for acceleration and then reduces as a result of the

friction in a capillary with growing wetted length. Figure 76 shows the velocity

calculated with (177) and (182) as a function of the length water (with dynamic

viscosity � ¼ 1 mPa s, density rF ¼ 1,000 kg/m3) has penetrated into a capillary

with a square cross-section of 100 � 100 mm2 driven by a pressure drop of

�10 kPa.

Also important for the calculation of flow velocities in capillaries is the Ber-
noulli equation. If the cross-section of a capillary is reducing, the mean flow

velocity v of an incompressible liquid needs to increase there, because the volume

flow has to be constant everywhere along the capillary (Fig. 77). As described
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Table 11 Hydraulic diameter and flow resistance of microchannels often used in microtechnique

as calculated from (176) and (178)

Hydraulic diameter Dh Flow resistance Rfl

2 RKa 8 ZLK

p R4
Ka

2
bK dK

bK þ dK
8 Z LK

bK þ dKð Þ2
b3K d3K

bK 32 Z LK

b4K

2 dK bK;1 þ bK;2
� �

bK;1 þ bK;2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 d2K þ bK;1 � bK;2

� �2q
16 Z LK

bK;1 þ bK;2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 d2K þ bK;1 � bK;2

� �2q� �2

bK;1 þ bK;2
� �3

d3K

2 dK
2 bK;1 � 1:416 dK
2 bK;1 þ 1:035 dK 16 Z LK

2 bK;1 þ 1:035 dK
� �2
2 bK;1 � 1:416 dK
� �3

d3K

4 bK;1 þ bK;2
� �

dK

2 bK;2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 d2K þ bK;1 � bK;2

� �2q
8 Z LK

bK;2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 d2K þ bK;1 � bK;2

� �2q� �2

bK;1 þ bK;2
� �3

d3K

2 dK
2 bK;1 � 1:416 dK
bK;2 þ 2:451 dK 8 Z LK

bK;2 þ 2:451 dK
� �2
2 bK;1 � 1:416 dK
� �3

d3K

2 dK bK;1

bK;1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 d2K þ b2K;1

q
16 Z LK

bK;1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2K þ b2K;1

q� �2

b3K:1 d
3
K

0:478 bK;1 ¼ 0:548 dK 338:7 Z LK

b4K;1
¼ 84:25 Z LK

d4K
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before, the velocity increase is combined with a pressure drop which provides the

force required for acceleration:

pþ rF
2
v2 ¼ p0 ¼ const: (183)

The first term in this equation is the static pressure which can be measured with a

pressure sensor perpendicular to the flow direction. The second term is the so-called

dynamic pressure which corresponds to the kinetic energy of the flow. The Ber-

noulli equation says that the sum of static and dynamic pressure needs to be

constant.

If the fluid is a gas, it is compressible and the calculation becomes more

complex, because the density of the fluid increases with the pressure and, besides

this, the temperature T may be a function of the flow velocity also. If the flow

velocity is so small that temperature changes are equalized at once with the

ambient, the flow is called isothermal and the pressure of a gas with mol mass

mmol, flow velocity v, and pressure at rest p0 is:

p ¼ p0 e
�ðmmol v

2=ð2 RG TÞÞ; (184)

where RG ¼ 8.31 J/(mol K) is the gas constant.

Fig. 75 Fluid entering a

capillary driven by a pressure

difference

Fig. 76 Flow velocity in a

capillary as a function of the

wetted length calculated with

(177) and (182)

Fig. 77 Capillary with

changing cross-section
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If the flow of a gas is so fast that there is not enough time for temperature

equalization, it is called adiabatic, and pressure and temperature are calculated with

the following equations:

p ¼ p0
1

2

Cp

CV

� 1

	 

v2

c2
þ 1

� �Cp=ðCpþCVÞ
; (185)

T ¼ T0

1

2

Cp

CV

� 1

	 

v2

c2
þ 1

� �
: (186)

In these equations, Cp, CV, and c denote the heat capacity at constant pressure,

constant volume, and the velocity of sound, respectively.

Figure 78 shows pressure and temperature as a function of flow velocity as

calculated with (183), (184), (185), and (186). Incompressible and compressible

isothermal flow show a significant difference only at velocities higher than 7 m/s.

Such high velocities rarely occur in microtechnique. The heat capacities in micro-

technique are very small, and, therefore, most flows may be considered as iso-

thermal. Thus, in most cases, the pressure drop may be calculated with the

Bernoulli equation (183). The temperature rise in adiabatic flows shows a signifi-

cant effect only at very high velocities, and, therefore, not often is important in

microtechnique.

Where there is a constriction in a flow channel, the mean flow velocity needs to

become larger (see above). As a consequence, the static pressure is reduced in the

constriction. If the flow is slow, the mean velocity behind the constriction will be

the same as in front of it (cf. Fig. 79a) and the static pressure behind the constriction

is the one in front of it reduced by the pressure drop due to the Hagen Poiseuille

equation [(175), page 107]. However, if the flow is quick, the flow will emanate

from the end of the constriction as a jet. This jet may loose its kinetic energy due to

friction (Fig. 79b). The energy which is absorbed by friction is lost and results in an

additional pressure drop over the constriction. This pressure lost is a function of

the flow velocity and the geometry at the entrance and the exit of the channel.

Therefore, a quantity w is defined which describes the amount of this effect. The

pressure drop due to the change of the mean velocity v is calculated with (183).

Together with the Hagen Poiseuille equation it is obtained:

Dp ¼ �w
rF
2

v21 � v22
� �� 32

ZLF

D2
h

v2: (187)

In the above equation, v1 and v2 are the mean flow velocities inside and outside

the constriction, respectively. The volume flow FF is the product of mean flow

velocity and cross-sectional area A, resulting in:

Dp ¼ �w
rF
2

1

A2
1

� 1

A2
2

� �
F2

F � 32
ZLF

D2
h

FF

A2

: (188)
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The second term in the above equation is the Hagen Poiseuille equation and the

first term is called the Torricelli equation which describes the flow through an

aperture.

A consequence of the Bernoulli effect is the Coanda effect. The Coanda effect is
known from everyday experience: If coffee or tea shall be filled into a cup, it is

spilled because the liquid stream is deflected from the expected way towards the

can. Due to the Bernoulli effect, the pressure in the near of the liquid flow is

decreased. This is compensated by air flowing towards the liquid stream. The wall

of a rigid body (e.g., the can) in the near of the stream does not allow for this air

flow, and, therefore, the liquid stream is deflected towards the wall.

This effect can be employed in microtechnique by steering a stream with a

moving wall. Figure 80a shows a microvalve in which an air stream is emanating

out of a nozzle over a bimetal stripe and closing the outlet of the valve with the

pressure rise generated over the membrane [45]. If the bimetal stripe is heated, it is

deflecting down and the air stream is directed below the membrane opening the

valve (Fig. 80b).

Another application of the Coanda effect is shown in Fig. 81 [46]. An air stream

emanating from a nozzle sticks to one of two walls and can be moved to the other

Fig. 79 Slow (a) and quick (b) flow through a constriction

Fig. 78 Static pressure for

incompressible, adiabatic,

and isothermal flow and

temperature for adiabatic flow

as a function of the flow

velocity calculated with

(183–186)
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one with a short pressure pulse. Thus, the pressure at the two outlets of this device

can be switched back and forth.

There are several ways how a fluid in a capillary can be moved. The most

important ones are a pressure drop, capillary forces, electro osmosis, electrophore-

sis, dielectrophoresis, and capacitive forces. These are described in the following.

Capillary forces are the result of polarized atoms or molecules in the fluid and

the rigid wall of the capillary attracting or repelling each other by electrostatic

forces. Every fluid is more or less attracted into or repelled out of a capillary. As the

force is generated at the interface between fluid and capillary wall, the circumfer-

ence of the fluid is leading the flow and the volume is following due to attractive

intermolecular forces inside of the fluid as shown in Fig. 82a, b. This is opposite to

the situation of a fluid driven by a pressure drop (cf. Fig. 73 on page 108 and

Fig. 75).

Capillary forces are acting on both gasses and liquids. However, the effect is

more pronounced with liquids and gasses show a minor effect. When the capillary is

filled completely or does not have a link to a reservoir outside the capillary, the

intermolecular forces act in both directions in the same way. Thus, no effect on the

fluid is observed any more.

The strength of capillary forces is a function of the surface tension G of the fluid

and the wetting angle yw which is adopted by a liquid in contact with the wall

material and another liquid or gas.

Figure 82c shows a droplet of a liquid in contact to a wall. At the rim of the

droplet, an equilibrium is established between the forces GK per circumference

length which try to wet the wall on the one hand, and on the other hand the

component of the surface tension G which does not want to get into contact to the

surrounding gas and binding the molecules of the liquid together:

Fig. 80 Microvalve employing the Coanda effect (reproduced from [45])
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GK ¼ G cos ywð Þ: (189)

This so-called “capillary force” is not really a force but a force per circumfer-

ence length and the surface tension is not a tension either. The real force GKap

attracting the liquid into the capillary or repelling it out of it is obtained by multi-

plying (189) with the circumference length Uw:

GKap ¼ Uw G cos ywð Þ: (190)

From this equation, the capillary pressure (DpK ¼ force per cross-sectional area

AF) can be calculated which corresponds to the pressure drop which would result in

Fig. 82 A liquid attracted

into (a) and repelled off (b)

by capillary forces, and (c)

the equilibrium of forces at

the circumference of a liquid

on a rigid body

Fig. 81 Fluidic beam

element applied as a

pneumatic flow control [46].

(Courtesy of Karlsruhe

Institute of Technology, KIT)
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the same effect as the capillary force. It needs to be taken into account that the

pressure drop has the opposite direction than the force:

DpK ¼ �Uw

AF

G cos ywð Þ: (191)

This equation shows that the capillary pressure is negative (i.e., the liquid is

attracted into the capillary), if the wetting angle yw is smaller than 90� and that a

liquid is repelled from a capillary, if the wetting angle is larger than 90� (i.e., the
cosine is negative).

In general, the total pressure driving a liquid is the sum of the pressure drop Dpp
over the capillary and the capillary pressure DpK. This sum is equal to the pressure

DpR required to overcome the friction [cf. (175) on page 107], if friction is much

larger than the inertia force needed for acceleration:

Dp ¼ Dpp þ DpK ¼ Dpp � Uw

AF

G cos ywð Þ ¼ �32
ZLF

D2
h

v ¼ �2ZLF

U2
w

A2
F

v

) v ¼ 1

2 ZLF

A2
F

U2
w

�Dpp þ Uw

AF

G cos ywð Þ
� � : (192)

If a gap with width bK and height dK is filled with a liquid, the cross-sectional

area of this capillary is AF ¼ bK dK and its wetted circumference is Uw ¼ 2 bK (cf.

Fig. 83). Inserting this into (192), yields the flow velocity of a liquid in a gap:

v ¼ d2K
8ZLF

�Dpp þ 2

dK
G cos ywð Þ

� �
: (193)

If the capillary is rectangular and width and height are denoted by bK and dK,

respectively, the circumference is Uw ¼ 2 bK + 2 dK, yielding:

v ¼ 1

8ZLF

d2K b2K
dK þ bK

�Dpp þ 2
dK þ bK

dK bK
G cos ywð Þ

� �
: (194)

The flow velocity in a gap as described by (193) shows two terms in the

parenthesis: the pressure difference and the capillary pressure. The capillary pres-

sure is inversely proportional to the height of the capillary, while a pressure drop

from the outside is not a function of capillary size. Therefore, capillary pressure

becomes larger than any given pressure when the capillary gap is reduced enough.

Figure 84 shows both a pressure drop of 30 kPa and capillary pressure of water with

a surface tension of G ¼ 50 mN/m and a wetting angle of yw ¼ 15� calculated with
(191) as a function of the gap height. This explains why capillary forces are not

important in the macroscopic world, while they may play a dominating role in

microtechnique.
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If the height of a gap or the cross-section of a capillary increases, the capillary

force is reduced significantly. The velocity of a flow driven by capillary force

(Dpp ¼ 0) in a gap as calculated with (193) at the end of the gap with height dK in

Fig. 85:

v ¼ G cos ywð ÞdK
4ZLK

: (195)

Behind the lower gap, the capillary force is reduced, because the height DK of

the higher gap needs to be used in the term of the capillary force in the parentheses

in (193), while the friction is still due to the lower gap and dK needs to be used in the

term before the parentheses resulting in:

v ¼ G cos ywð ÞdK
4ZLK

dK

DK

: (196)

Thus, the sudden widening of the gap reduces the flow velocity by the ratio of the

two gap heights. As a consequence, the capillary flow is nearly stopped. This can be

employed to direct a capillary flow. For example, adhesive used to bond two parts

can be kept away from certain positions by a wide stop groove and the adhesive

dries before it overcomes the groove with the reduced flow velocity.

Fig. 83 Cross-section of a

gap filled with a liquid. The

flow direction is normal to the

drawing area

Fig. 84 Pressure drop and

capillary pressure as a

function of the height of a gap
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A gas bubble in a liquid flowing through a capillary has nearly no effect on the

velocity, if the cross-section of the capillary does not change. However, if the

bubble arrives at a constriction, the capillary force needs to be overcome which

either pulls the liquid into the narrower part of the capillary or rejects it from it (cf.

Fig. 86a, b). Therefore, a liquid flow driven by a pressure drop over the capillary

may be blocked when the bubble arrives at a constriction, if the driving pressure is

not larger than the capillary pressure calculated with (191).

Obviously, a way to avoid problems with bubbles blocking capillaries is to

design no constrictions. However, a lot of applications are based on a changing

cross-section, e.g., microvalves. Thus, it is interesting to know that this problem can

be circumvented. If the capillary forces are attractive, bubbles can be caught in a

part of the capillary which shows an enlarged cross-section (cf. Fig. 86c). Bubbles

are pushed into the larger cross-section by the liquid attracted into the smaller one.

If capillary forces are repulsive, a system of smaller capillaries with a large enough

volume is required next to the capillary.

Capillary forces are a function of temperature because surface tension G is a

function of temperature which enters into (191). For most liquids, the interrelation-

ship between surface tension and temperature is a linear function:

G ¼ ks TK � Tð Þ; (197)

where TK and ks are constants (for water TK ¼ 710 K). For most liquids which boil

below 200–300�C, ks can be calculated as:

Fig. 86 Bubble blocking a constriction by (a) attractive and (b) repulsive capillary forces. (c)

Bubble catching capillary part shown as a cross-section along the capillary (left) and perpendicular
to it

Fig. 85 Capillary flow

arriving at a stop groove
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ks ¼ 2:1� 10�7 mmol

rF

� ��2=3

; (198)

where mmol and rF denote the mass of 1 mol of the liquid and its density,

respectively. For water, the surface tension and the capillary force vary by approxi-

mately 20% between freezing and boiling point. This can be employed to build up a

capillary motor. Heaters can be used to reduce the capillary force at one end and

move a droplet, this way. Difficulties of this motor may be that the liquid may

evaporate or get lost by diffusion through the walls of the capillary.

A special application of repulsive capillary forces is the so-called lotus effect.
Water is repelled from the surface of the leaf of a lotus plant because the leaf is

hydrophobic and has a microstructure on its surface. On a hydrophilic surface,

water penetrates into every microcavity. Since the friction in such cavities is very

large and water molecules are bonded to each other by intermolecular forces, water

droplets on a hydrophilic surface with a microstructure are hindered from moving.

The opposite happens on a hydrophobic surface. The water is repelled from the

cavities on the surface and only very few and small contact areas remain between

water and the surface. Therefore, the friction of water on such a surface is much

reduced and does not adhere on the surface. Hydrophobic surfaces with a micro-

structure are also called super hydrophobic surfaces.
The lotus effect was first discovered on plants and insects in the 1970s and then

employed for the development of foils, paints, and clothes which repel water and dirt.

If one wall of a capillary is moved in normal direction, the fluid inside is pressed

out or sucked into the capillary. The fluid entering or ejected from the capillary is

subject to the friction force calculated with (175) on page 107. As a result, a certain

force is required to move the wall. This is the so-called squeeze film effect which is

well known from the difficulty to lift the lid of a pot lying on a flat surface, e.g., the

kitchen desk. This effect is also one of the reasons why a rotating coin needs such a

long time to fall down onto a desk.

In general, the calculation of the squeeze film effect is very complex, because a

lot of phenomena have to be taken into account. Here, an equation is derived for the

capillary formed by a rectangular wall open to all sides (cf. Fig. 87) with the help of

simplifications which, in general, are not fulfilled but allow calculating at least the

correct order of magnitude of the effect. It is assumed that the fluid in the capillary

moves only in the direction of the width of the capillary. This is approximately true,

if the wall is much longer than wide. It is assumed further that the fluid is

incompressible and that pressure changes due to the Bernoulli equation [(183) on

page 111] are negligible. Besides this, deformations of the wall due to the pressure

difference and the movement are not taken into account.

The volume dV which is squeezed out of the capillary between its center and the

position x after the wall is moved by dz is given by:

dV ¼ LK x dz; (199)
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where LK denotes the length of the wall. From this, it is easily derived that the

volume change _V per time unit as a function of the velocity vw of the wall is:

_V ¼ LK x vw: (200)

The flow velocity is obtained from this equation by dividing the cross-section of

the capillary in the direction of the flow:

v ¼ x

dK
vw: (201)

This velocity equals the velocity due to friction in a gap with length dx as a

function of the driving pressure difference dpS [(193) without the term of the

capillary force, cf. Fig. 87c]:

v ¼ x

dK
vw ¼ � d2K

8Z dx
dpS ) dpS ¼ � 8Z vw

d3K
x dx: (202)

Integrating on both sides of this equation yields:

Fsf

x
z

v

dx

v

dpS

dpS,m p0

vw

Fsf

x
z

v
Δz

ΔV

bK

v

LK

dK

WallSubstrate

a

b

c
Fig. 87 Top view (a) and

cross-section (b) of a

rectangular wall forming a

capillary with the substrate.

(c) Pressures in the capillary
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ðpS
pS;m

dp0S ¼
ðx
0

� 8Z vw

d3K
x0 dx0 ) pSðxÞ � pS;m ¼ � 8 Z vw

d3K

1

2
x2: (203)

At the end of the capillary (at x ¼ bk/2), the pressure is the pressure of the

environment p0. From this boundary condition, it is obtained:

pSðxÞ ¼ 4Z u

d3K

b2K
4
� x2

� �
þ p0: (204)

The force Fsf necessary to press the wall down with the velocity vw can be

calculated now from the integral over the force contributions dFsf which are acting

on the area with the length LK and the width dx:

Fsf ¼
ðbK=2
�bK=2

dFsf ¼
ðbK=2
�bK=2

pSðxÞ � p0ð ÞLK dx

¼
ðbK=2
�bK=2

4Z vw

d3K

b2K
4

� x2
� �

LK dx ¼ 2

3

ZLK b3K
d3K

vw:

(205)

From this force, the pressure can be calculated which is necessary to press the

wall down:

Dpsf ¼ Fsf

LK bK
¼ 2

3

Z b2K
d3K

vw: (206)

In a similar way, this calculation can be performed for the squeeze film effect

generated by a circular wall with the radius RW:

Fsf ¼ Zp
R4
W

d3K
vw (207)

Dpsf ¼ Z
R2
W

d3K
vw: (208)

The squeeze film effect is important in microtechnique, because many micro-

structures are moving near the surface of a substrate or next to another structure. For

example, the electrodes of the acceleration sensor shown in the exercises in

Fig. E13 in problem 12 on page 82 are subdivided into small parts allowing air

escaping between them. Thus, this acceleration sensor does not need to be evac-

uated to avoid damping by the squeeze film effect.

If a microstructure is moving parallel to a wall, there is also some friction,

because the viscosity of the fluid hampers the flow in the gap which is caused by the

moving body. The fluid in contact to the surface of the wall and the body nearly

adheres to it. As a consequence, a linear flow profile is developing as shown in
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Fig. 88. The friction force FR of a flat body with area AK and distance dK to the wall

is given by:

FR ¼ Z
AK

dK
vw: (209)

Even if there is no wall in the near of the moving body, there is some friction due

to the viscosity of the surrounding fluid, the so-called Stokes friction. If the body is a
sphere with radius RK, it can be calculated exactly with the following equation:

FR ¼ 6 pZRKvw: (210)

The liquid in a capillary can be moved by electroosmosis also. If a polar liquid
such as water is in contact with a rigid material, electrical charges are exchanged

between liquid and rigid body. As a result, the rigid body is charged negatively and

positive charges in the liquid are attracted to its surface (Fig. 89). A positively

charged layer is formed which adheres to the surface. This layer is called the Stern

layer. Adjacent to the Stern layer, a diffusion layer is built up which is caused both

by the attraction of the negative charges and the diffusion of the constituents of the

liquid due to the Brownian motion driven by temperature. The diffusion layer

contains an excess of positive charges also. Stern layer and diffusion layer are

called the electrical double layer (EDL).

An electrical potential F is generated by the double layer which drops exponen-

tially from the wall into the liquid:

F ¼ FW e�z=lD : (211)

In this equation, FW is the potential at the surface of the rigid body and lD is the

so-called Debye–H€uckel length which is a measure of the potential drop as a

function of the distance z from the surface and the thickness of the diffusion layer:

lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0 er kB T
2 q2e e

2 cF

s
; (212)

Fig. 88 Flow profile

generated between a moving

microstructure and a wall
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where e0 ¼ 8.9 � 10�12 A s/(V m) and er are the absolute and relative permittivity,

respectively, qe is the number of elementary charges of the ions in the liquid (e.g.,

qe ¼ �1 for OH� and qe ¼ 2 for Ca2+), e ¼ 1.6 � 10�19 C is the elementary charge,

cF is the concentration of charges in the liquid at a position far from the surface of the

rigid body (number of particles per m3 ¼ mol/m3 � NA), NA ¼ 6.02 � 1023/mol is

the Avogadro constant, kB ¼ 1.4 � 10�23 J/K is the Boltzmann constant, and T is the

absolute temperature measured in Kelvin (K).

The electrical potential z at the interface between Stern layer and diffusion layer
is called the z-potential. The Stern layer adheres to the surface of the rigid body, but
the diffusion layer can be moved by an electric field. Therefore, electrodes in a

capillary move the diffusion layer, and due to friction in the liquid, the charged

particles in the diffusion layer take the neutral particles along.

The friction is largest at the wall of the capillary and the electroosmotic force is

largest at the wall also. Therefore, these two effects approximately balance one

another, and, as a consequence, the flow velocity is approximately constant over the

channel width, if it is not too wide (cf. Fig. 90). This is different from the parabolic

flow profile of a flow driven by a pressure difference over a capillary, and this is an

important condition for analyzing different ingredients by electrophoresis (see

below).

If the EDL is thin compared with the width of the capillary and the electric field is

not too large, the flow velocity v of a liquid with dynamic viscosity � and z-potential

-
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Fig. 89 Electrical double

layer consisting of Stern and

diffusion layer and electrical

potential due to these layers
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z generated by electroosmosis between electrodes with a distance LE and charged

with a voltage U can be calculated with the Helmholtz–Schmoluchovski equation:

v ¼ e0 er Eel z
Z

¼ e0 er U z
ZLE

; (213)

where Eel is the electrical field between the electrodes. This flow velocity is

generated by an electroosmotic pressure DpEOF which is equal to the pressure

difference DpR necessary to overcome the friction in the capillary [(175) on

page 107]:

DpEOF ¼ DpR ¼ 32
ZLE

D2
h

v ¼ 32

D2
h

e0 er U z: (214)

The electroosmotic flow calculated with (213) is a function of the electro-

chemical interaction between liquid and rigid body, temperature, and concentra-

tion. As a consequence, the prediction of the velocity is not very reliable, because,

e.g., a very thin layer of any molecules or atoms on the surface of the wall can

change the z-potential or a comparatively small change of the temperature will

change both the z-potential and the viscosity.

The volume flow FP generated by electroosmosis is the product of the cross-

section A of the microchannel and the flow mean velocity v calculated with (213).

In general, a counter pressure may reduce the electroosmotic flow. Thus, the entire

pressure drop DpP over the flow channel is the difference of the electroosmotic

pressure DpEOF and the pressure difference DpR necessary to overcome the friction

in the capillary [(175) on page 107]:

Fig. 90 Flow profile

generated by a pressure drop

(top) and by electroosmosis

(bottom)

124 Capillaries



DpP ¼DpEOF�DpR ¼ 32

D2
h

e0 er Uz� 32
ZLE

D2
h

v¼ 32

D2
h

e0 er Uz�ZLE

FP

A

� �
(215)

) FP ¼ A

ZLE

e0 er U z� D2
h

32
DpP

� �
: (216)

A channel between the electrodes in which an electroosmotic flow FP is gener-

ated is a kind of micropump. The characteristic curve of this pump is the volume

flow generated as a function of the counter pressure DpP against which the pump is

working. On the left of Fig. 91, the characteristic curve of an electroosmotic

micropump with a channel length of 1 cm, a cross-section of 100 mm � 100 mm,

z-potential of 30 mV, viscosity of 1 mPa s, and relative permittivity of 81 is shown

as calculated with (216). The characteristic curve is similar to those of other

micropumps driven by, e.g., a piezo (cf. Fig. 182 on page 238). However, both

the flow and the pressure generated by an electroosmotic micropump are compara-

tively small. The maximum flow FP,m which can be achieved is limited by the

maximum electric field which can be applied before the breakdown voltage is

reached. A larger maximum counter pressure DpP,m can be achieved at a certain

electrical field (the ratio of voltage U and distance of the electrodes LE) when the

channel is longer. A compromise is necessary between the maximum flow and the

maximum counter pressure, when the cross-section A of the channel is designed. A

larger cross-section results in a larger maximum flow and also in a smaller maxi-

mum counter pressure, because the hydraulic diameter Dh increases when the cross-

section is enhanced.

The power PP generated by a pump is the product of the generated flow FP and

the counter pressure DpP. The power of the electroosmotic pump with the charac-

teristic curve shown on the left of Fig. 91 is shown on its right. The power generated

by an electroosmotic pump generally is rather small (cf. Fig. 183 on page 239).

The electrical resistance of the electroosmotic pump is given by (432) on

page 257.

The electroosmotic effect can also be reversed. A flow through an arrangement

of parallel capillaries generates a voltage which is a function of the flow velocity as

shown in Fig. 92. This voltage is produced by the charges transported together with
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Fig. 91 Characteristic curve of a electroosmotic micropump (left) and power PP generated by

such a pump driven with 1,000 V
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a part of the diffusion layer which is taken along with the flow. This effect could

even be employed as a flow sensor.

While the electroosmotic effect is moving the entire liquid in a capillary,

electrophoresis is generating an additional flow velocity of single particles inside

of the liquid. An EDL is also developing around particles in a liquid. The diffusion

layer around the particles contains an excess of positive charges and is attracted to

the cathode taking along the particle. The additional velocity v, which a particle

gains this way, is calculated with the H€uckel equation, if it is much smaller than the

Debye–H€uckel length lD:

v ¼ 2

3

e0 er Eel z
Z

¼ 2

3

e0 er U z
ZLE

: (217)

Examples of such small particles are organic molecules and nanoparticles.

If the particles are larger than the Debye–H€uckel length, the 2/3 in above

equation needs to be omitted. Examples are cells or polymer spheres with a

diameter of several micrometers, so-called beads.

If particles carry a charge qP themselves such as ions, they are moved by the

electric field also. An equilibrium is reached between the electrical force Fel

Fel ¼ qP Eel ¼ qP
U

LE

; (218)

and the friction force FR of a sphere moving in a fluid, the Stokes equation (210):

FR ¼ 6 pZRT v ) v ¼ qP U

6 pZRT LE

: (219)

Here RT is the radius of the particle and the surrounding hydrate hull which is

moved together with it.

Different kinds of particles in a liquid show different z-potentials, charges, and
radii. Therefore, they move with different velocities and are separated from each

other, if they start at the same time from a common position in a capillary. This

effect is employed for chemical and biological analyses in microchannels. Figure 93

Fig. 92 Voltage generated

by the reversed

electroosmotic effect
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shows the principal design of such a device. An electrophoresis chip contains a

cross-like capillary system filled with a gel. At the four ends of the channels,

reservoirs with access to the environment are placed. The sample to be analyzed

is introduced at the reservoir of one of the short arms of the capillary system.

Electrodes are immersed into the reservoirs and a voltage on the order of several

hundred volts between the ends of the two short arms is transporting the sample

across the intersection point of the channels by electroosmosis and electrophoresis.

Then a voltage is applied over the long separation channel of the chip and the

ingredients of the part of the sample at the intersection point are moved along the

separation channel. The difference in velocity of the electrophoretic flow of ingre-

dients of different type separates them from each other and they arrive at a detection

point down stream at different times.

Ingredients are distinguished by the time they need to arrive at the detection

point and their amount is calculated from the size of the peak developing when it is

passing the detection point. Detection needs to be sensitive to almost every possible

ingredient. UV transmission, fluorescence, and conductivity of the liquid are used

mostly.

Particles inside of a liquid can be moved by alternating voltage, also, if the

electrical field is asymmetric. This phenomenon is called dielectrophoresis. An
explanation of this phenomenon is that charges are induced on the particle by

the electrical field. More charges are induced where the field is stronger, and the

particle is attracted towards the gradient of the electric field (cf. Fig. 94). If the

polarity of the electrical field is changed, the resulting forces are the same. Dielec-

trophoretic forces may be repulsive also. This can be explained by a buoyancy force

in the electrical field which is generated, because the liquid is attracted more than

the particle. It remains to be difficult to understand that an arrangement of electro-

des may change between attracting and repulsing particles just by changing the

frequency. The voltages applied for dielectrophoresis are on the order of some 10 V

with a frequency in the range of MHz.

Detection pointReservoir
Separation channel

500 µm

Fig. 93 Microchannel for

capillary electrophoresis.

Top: Cut through a part of a

channel (Courtesy of

Karlsruhe Institute of

Technology, KIT); Bottom:
Schematic top view
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A liquid can be attracted into or ejected from a partly filled capillary by

capacitive forces also. This is described in the following chapter, but the

corresponding equations are included in Table 12, which summarizes all equations

describing forces which move fluids in a capillary.

Exercises

Problem 17

In Fig. E18, the working principle of a flow sensor is shown. Strain gauges are

mounted on the two membranes at the circumference of the capillary. A bridge

circuit measures the difference of the deflection of the two membranes only.

Temperature changes and pressure changes outside of the sensor which affect the

deflection of both membranes and the electrical resistance of all resistances are

compensated by the bridge circuit.

Electrical field lines

-

+
+
+
+
+
+
+

Fig. 94 Particle moved by

dielectrophoresis by the

gradient of the electric field

Table 12 Equations for the calculation of pressures acting in capillaries

Type Equation

Pressure difference overcoming friction
DpR ¼ �32

ZLF

D2
h

v

Pressure difference accelerating to velocity v Dp ¼ � rF
2
v2

Capillary pressure
DpK ¼ �Uw

AF

G cos ywð Þ
Pressure overcoming squeeze-film effect at a rectangular wall (rough

approximation) Dpsf ¼ 2

3

Z b2K
d3K

vw

Pressure overcoming squeeze-film effect at a circular wall (rough

approximation) Dpsf ¼ Z
R2
W

d3K
vw

Electroosmotic pressure
DpEOF ¼ 32

D2
h

e0 er U z

Capacitive pressure on dielectric liquid
DpC ¼ 1

2

e0
d2K

Der U2

Capacitive pressure on conductive liquid
DpC ¼ 1

2

e0
d2I

Der U2
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(a) Derive an equation with which the flow velocity (in m/s) can be calculated from

the measured pressure difference.

(b) Use the equation from (a) to calculate the pressure difference which is the result

of a water flow of 1 m/s in the wider part of the capillary, if the height of the

capillary at the constriction is reduced by a factor of 2.

(c) If the membrane at the right is placed behind the constriction where the

capillary gets as wide as at the position of the other membrane, what pressure

difference is measured in that case?

Dynamic viscosity of water 1.002 mPa s Density of water 1,000 kg/m3

Length of the constriction 1 mm Height and width of the constriction 200 mm

Problem 18

The rising of a liquid in a capillary is a function of the surface tension and the

wetting angle.

(a) Two glass plates are bonded to each other in such a way that there is a gap

between them. These plates are immersed into a cup filled with water. Please,

calculate the height up to which the water rises in the gap of 0.5 mm, 20 mm,

and 2 mm at 20�C, respectively. The width of the gap is 50 mm. Is the rising

height of the water a function of the gap width?

Hint: Consider the equilibrium of forces between the weight and the capillary

force. Express the weight in the capillary gap as:

FG ¼ rw bK dK LK ge, where rw is the density of water (rw ¼ 1 � 103 kg/m3),

bK is the width of the gap, and ge ¼ 9.81 m/s2 is the acceleration of gravity.

(b) Calculate the flow velocity in the unit [mm/s] in the three gaps given above, if

the gaps are lying horizontally and are filled to 1 cm.

(c) Have you taken into account for your calculation in (b) that the water needs to

be accelerated to achieve its velocity? Please calculate the mean flow velocity

with and without the effect of the acceleration.

(d) What is the rising height for the three cases of (a) at a water temperature of

80�C?
(e) How does the rising height change if a surface-active agent is mixed into the

water which reduces the surface tension to 5 mN/m? The wetting angle changes

to 10�. Please calculate the rising height for the three gap sizes given in (a).

Fig. E18 Capillary with a

changing height and two

membranes
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(f) How do the rising heights change, if the plates are not made of glass but from

silicone? For example, a structure could be cast of PDMS (poly dimethyl

siloxan). PDMS is a two-component silicone which is used in microtechnique

to mold surface structures.

Please calculate the rising height for silicone plates and the three gap sizes in (a).

Surface tension of pure water at

20�C
72.7 mN/m Surface tension of pure water at

80�C
62.5 mN/m

Wetting angle of pure water on

glass

14� Wetting angle of pure water on

silicone

110�

Dynamic viscosity of pure water 1.002 mPa s

Problem 19

A capillary is 5 cm long, 100 mm high, and at both ends there are electrodes. It can

be filled with a water solution without bubbles.

(a) Please calculate the flow velocity inside of the capillary, if a voltage of 1,000 V

is supplied to the electrodes.

(b) Please calculate the additional velocity with which the amino acid glycin is

transported in the capillary.

(c) Please calculate the electrophoretic velocity of sodium ions in the same setup.

Use the equation of the velocity which was derived from the Stokes equation

(210 on page 122). Assume 0.2 nm for the radius of the hydrate hull of sodium.

(d) Electrophoresis is employed in bioscience to separate molecules. In certain

analytic applications at the end of a capillary, there is a detector arranged

detecting the molecules (e.g., by fluorescence).

How long needs a separation channel to be which shall be suitable for the

separation and detection of glycin and sodium? The time sensitivity of the detector

is assumed to be 0.1 s. How much time is required for separation?

Absolute permittivity 8.9 � 10�12 A s/(V m) Relative permittivity of water 81

z-potential of water 30 mV z-potential of glycin 70 mV

Dynamic viscosity of

the water solution

1.002 mPa s
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Capacitive Forces

Capacitive forces transform a voltage directly into a movement and they are

insensitive to temperature changes. These are the main reasons why capacitive

forces are employed so often in microtechnique.

A capacitor consists of two electrodes mounted at a certain distance. When the

electrodes are charged, they are attracted to each other due to the electrostatic

Coulomb force. There are several kinds of capacitive forces distinguished by the

way of movement which is generated by them. They all can be calculated from the

potential energy WC stored in the capacitor which is a function of the voltage U and

the capacity Cel:

WC ¼ 1

2
Cel U

2: (220)

Here, Cel is the electrical capacity which is a function of the absolute e0 and the

relative er permittivity of the material between the electrodes, their area AC, and the

distance dC between the electrodes:

Cel ¼ e0 er
AC

dC
) WC ¼ 1

2
e0 er

AC

dC
U2: (221)

In general, the force is the derivative of the potential energy with respect to the

path of the movement. This method has been introduced by Ritz to calculate the

deformation of bodies (cf. page 34f). Thus, if the bearing of the electrodes is

arranged such that one electrode can move towards the other, a capacitive force

FC,n is acting normal (perpendicular) to the electrodes (cf. Fig. 95a) and it is

calculated as the derivative of the energy with respect to the distance of the plates:

FC;n ¼ qWC

qdC
¼ � 1

2
e0 er

AC

d2C
U2: (222)

The normal capacitive force is inversely proportional to the square of the

distance of the electrodes. Therefore, large forces can be obtained only if the

electrodes are near to each other limiting the possible stroke of this kind of actuator.

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_11, # Springer-Verlag Berlin Heidelberg 2011
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If the bearing of the movable electrode allows a movement in lateral direction

only, the capacitive force FC,l needs to be calculated from the derivative with

respect to the overlapping length of the electrodes and the area is expressed as

the product of overlapping length x and width bC of the electrodes (cf. Fig. 95b):

FC;l ¼ qWC

qx
¼ 1

2
e0 er

bC

dC
U2: (223)

This lateral capacitive force is not a function of the position of the electrode.

Thus, the force is constant until it vanishes when the electrodes are overlapping

completely. This capacitive force is employed for comb drives which allow for a

larger actuator strokewith a constant force enlarged bymultiple electrodes. Figure 96

shows on the left such a comb drive.

At comb drives, the normal capacitive force is acting also. If the bearing

[typically beams clamped at one end or folded beams (cf. page 77)] is not strong

enough, the electrodes may touch each other resulting in a short circuit. The

potential energy of an electrode between two other electrodes is the sum of the

energies stored in the capacitors on both sides of the movable electrode (cf. Fig. 96).

From (221) it is derived:

Fig. 95 Normal (a) and

lateral (b) capacitive forces

Fig. 96 Left: Comb drive [5] Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced

with permission. Right: Movable electrode between two fixed ones and capacitive force acting on

it as calculated with (225)
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WC¼ 1

2
e0 er

AC

dCþx
U2þ1

2
e0 er

AC

dC�x
U2¼ 1

2
e0 er AC U

2 1

dC�x
þ 1

dCþx

� �
: (224)

The normal force acting on the movable electrode again is calculated by the

derivative of the energy:

FC;n ¼ qWC

qx
¼ 1

2
e0 er AC U2 1

dC � xð Þ2 �
1

dC þ xð Þ2
 !

: (225)

Figure 96 shows on the right the normal capacitive force of a movable electrode

calculated with (225). The area of the electrode is AC ¼ 1 mm2, its distance to the

fixed electrodes is in the center position dC ¼ 50 mm, and it is powered with 100 V.

In the middle between the electrodes, there is an unstable equilibrium of forces,

because the movable electrode is attracted to both sides with the same force. If the

position is changed towards one side, the force is increasing strongly. Therefore, in

the near of the center position not much force is needed to balance the electrode of a

comb drive but stoppers or some other means is needed avoiding that the central

position is left too much, e.g., by an impact from the outside.

The lateral capacitive force as calculated with (223) can be increased if the

movable electrode is not a rigid body but an electrically conductive liquid as

schematically shown in Fig. 97a. Since one of the electrodes is the conductive liquid

now, the distance of the electrodes is reduced in this case to the thickness dI of an

insulating layer on the electrode and the relative permittivity is the one of that layer.

For this calculation, it is neglected that the part of the capacitor not filled with liquid

is also contributing a bit to the total stored energy, reducing the force a little bit.

Even if the liquid or a rigid body between two electrodes is insulating (Insulating

material is called dielectric.), there is a capacitive force attracting it into the capacitor.

Fig. 97 Lateral capacitive

force on (a) a conductive

liquid and (b) a dielectric
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This is due to atoms or molecules in the material acting as electrical dipoles which

align to the electrical field in the capacitor and are attracted this way. This effect is a

function of the relative permittivity of the material. The capacitor can be considered

consisting of two parts filled with different dielectrics. Therefore, the potential energy

stored in the capacitor is calculated as the sum of the energies of both parts:

WC ¼ 1

2
e0 er;1

bC x

dC
U2 þ 1

2
e0 er;2

bC LC � xð Þ
dC

U2: (226)

Calculating the derivative with respect to x yields the force:

FC;l ¼ qWC

qx
¼ 1

2
e0

bC

dC
U2 er;1 � er;2
� �

: (227)

Note that this capacitive force may also become repulsive (negative) when the

relative permittivity of the second material is larger than that of the first one. In such

a case, the material with the smaller permittivity is ejected from the capacitor.

The pressure DpC generated in a capillary when a dielectric liquid is attracted

into it can be calculated from (227) by dividing by the cross-sectional area:

DpC ¼ 1

2

e0
d2C

U2 er;1 � er;2
� �

: (228)

The capacitive forces are compared with each other in Fig. 98. For all calcula-

tions, electrodes with a length of LC ¼ 2 mm, a width of bC ¼ 0.5 mm, and a

voltage supply of 100 V were assumed. The normal and lateral forces were

calculated with (222) and (223), respectively, assuming air between the electrodes

(er ¼ 1). For the lateral forces, a distance of 100 mm between the electrodes was

used. For the conductive liquid, the thickness and relative permittivity of the

insulation layer were set to 1 mm and 2.5, respectively.

Figure 98 shows that for small distances between the electrodes the normal

force is much larger than all other capacitive forces. Since the normal force is

Fig. 98 (a) Capacitive forces FC and (b) work WA as a function of the stroke x
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proportional to the inverse of the square of the distance, at larger distances the

lateral forces are dominating. Especially, the conductive liquid in a capacitor allows

for comparatively large forces, because the thickness of the insulating layer may be

manufactured very thin compared with the required height of a capillary.

The force acting on a dielectric liquid may be comparatively large, if a proper

dielectric has been chosen. For the calculation shown in Fig. 98, water (er ¼ 81)

was assumed to be attracted into a channel filled with air.

The lateral capacitive force on a single electrode is comparatively small as shown

in Fig. 98. This is the reason why comb drives need such a large number of

electrodes. There are two unique advantages of lateral capacitive actuators. One of

them is that the force is not a function of the stroke. Therefore, the stroke can be

designed very large. This is illustrated by the work WA done by the actuator as a

function of the stroke length which is shown on the right of Fig. 98. The work is the

integral of the force over the stroke length. Since the lateral force is constant with

respect to the stroke, the work done by the actuator rises linearly with the stroke.

The other unique advantage of capacitive actuators is that they show nearly no

cross-sensitivity to temperature changes. The characteristic curves of almost all

sensors and actuators are a function of temperature. Even the elastic deflection of a

beam [cf. (97) on page 66] varies with temperature because Young’s modulus is a

function of temperature. So, cross-sensitivity to temperature changes is one of the

major problems (not only) in microtechnique. Whenever a design is made, the

possible effect of temperature changes needs to be considered. The behavior of

capacitive actuators changes only due to thermal strain which is generally smaller

than other temperature effects such as the change of piezoelectric coefficients

(cf. Fig. 114 on page 153) or the influence on thermal actuators for which the

deflection is a direct effect of the temperature change.

The efficiency of electrostatic actuators is very large and close to 100%. This is

an advantage especially when battery powered devices need to be designed with

small energy consumption. Besides the efficiency, the maximum energy output

density is an interesting quantity, because microactuators typically are not able to

provide large energy output. The maximum energy output density is the total power

output which can be generated with an actuator per volume when there are no

restrictions on the energy consumption. Since the efficiency of electrostatic actua-

tors is very large, the energy output can be assumed to be approximately the same as

the energy stored in the capacitor which is calculated with (221). The volume V of

the capacitor is approximately its area AC times the sum of the distance dC of the

electrodes and their thickness dE. Therefore, the energy output density is:

WA

V
¼ 1

2
e0 er

U2

dCdE
: (229)

If a maximum voltage of 400 V and a distance of the electrodes of 10 mm are

assumed as possible maximum and minimum values, respectively, and the needed

height of the actuator is 100 mm, the maximum energy density of an electrostatic

actuator is 0.7 mJ/mL.
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Exercises

Problem 20

A thick foil from polyimide can move in the space between the electrodes of a

capacitor (cf. Fig. E19). The foil is fixed at two parallel beams.

The distance between the capacitor electrodes is 20 mm. The width of the

capacitor plates is 0.5 mm. The thickness of the polyimide foil is 20 mm. The

beams are 5 mm long, 10 mm wide, and 10 mm thick. They are made of silicon with

a Young’s modulus of 120 GPa.

(a) Please calculate the force acting on the polyimide foil, when a voltage of 50 V

is applied to the electrodes. In which direction is the force acting on the foil?

This microsystem is surrounded by air.

Hint: Assume that the thickness of the foil is the same as the distance of the

plates, but there is no friction between foil and electrodes.

(b) Derive an equation for the calculation of the position of the polyimide foil as a

function of the voltage applied. What is the position of the foil when 50 V are

applied?

(c) The microsystem is now placed into a cup filled with pure water. In which

direction does the force act on the foil now, when a voltage is applied?

Calculate this force.

(d) What is the force if the lower electrode is fixed to the beams and neither

polyimide nor water is in the capacitor?

Absolute permittivity 8.9 � 10�12 A s/(V m) Relative permittivity of polyimide 3.4

Relative permittivity of air 1.0 Relative permittivity of water 81

Fig. E19 Capillary with

laterally movable polyimide

foil fixed at parallel beams
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Piezoelectric Effect

The piezoelectric effect is widely employed in microtechnique. Especially, piezos

used as an actuator are appreciated because of the large force which can be

generated in a small volume. But piezos can be employed also as sensors which

provide a large output voltage.

If a piezoelectric material is loaded with a pressure, it is compressed as any other

elastic material, and it is extended transversal to the direction of the load

(cf. Fig. 99b). In addition, electrical charges are generated on electrodes on the

surface of the piezoelectric material and it is possible to measure a voltage between

the electrodes. The generation of charges is called the piezoelectric effect and the

material is called a piezo. The origin of the word “piezo” is Greek and it means “I

am pressing”. The piezoelectric effect is employed to measure strains, forces, or

pressures.

There is also an inverse piezoelectric effect: When a voltage is supplied to the

electrodes, the piezo is straining both longitudinal and transversal to the electric

field as shown in Fig. 99c. This inverse piezoelectric effect is employed to build

actuators.

There are two kinds of piezoelectric materials: monocrystalline materials, such

as quartz, zink oxide, and lithium niobate, and ferroelectric materials, such as the

ceramics PZT (lead–zirconate–titanate) and barium titanate, and the polymer PVDF

(poly vinyliden fluoride). The piezoelectric effect of monocrystalline materials is a

function of crystal orientation. In general, it is comparatively small. Therefore, the

piezoelectric effect of ferroelectric materials is employed in most cases.

Ferroelectric materials are not yet piezoelectric after they have been fabricated.

They need to be polarized by a large electrical field before use; similar to ferro-

magnetic materials which need to be magnetized in a magnetic field before they

become permanent magnets. This analogy is the reason for the name “ferro”elec-

tric, although these materials have nothing in common with iron.

Also in analogy to ferromagnetic materials, ferroelectric materials have a Curie

temperature. If they are heated up over this temperature, the piezoelectric effect

disappears again. Again in analogy to ferromagnetic materials, ferroelectric mate-

rials can be depolarized by an electric field opposite to their direction of polariza-

tion. As a consequence, ferroelectric materials should not be exposed to high

temperatures and large electric fields opposite to their polarization.

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_12, # Springer-Verlag Berlin Heidelberg 2011
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It needs to be noted also that the most commonly used piezoelectric material

PZT, which shows the largest effect, is a ceramic. As a consequence, it is brittle and

tends to break when loaded with a tensile force. Tensile stress in a piezo can be

avoided by designing an actuator such that it is under compressive stress always.

Figure 100 shows an example.

Usually, the directions of a piezo are denominated by the subscripts 1, 2, and 3.

The direction of the polarization of the piezo is marked with the subscript 3.

Typically, the direction of polarization is identical with the connecting line of the

electrodes, because the piezo was polarized by applying a large voltage to these

electrodes.

The strain e3 in polarization direction of a piezo is calculated with the following

equation:

e3 ¼ d33 Eel þ s3
EP

; (230)

where Eel is the electrical field and s3 is the stress acting in polarization direction.

EP is Young’s modulus of the piezo when the electrodes are short-circuited. The

quantity d33 is the piezoelectric modulus of the piezo. d33 is a material property,

which denotes the strength of the piezoelectric effect.

Equation (230) consists of two terms. The second one is already known; it is the

strain of an elastic material according to Hooke’s law. The first term in (230)

represents the strain generated by the inverse piezoelectric effect.

Fig. 100 Piezo mounted

such that it is always under

compressive stress

Fig. 99 A piezo pressed

together generates electrical

charges on its electrodes (b),

and a voltage supplied to the

electrodes is straining the

piezo. In (a) the piezo is

shown without mechanical

load and discharged
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The deflection w3 in polarization direction of a piezo is obtained form (230) by

multiplying with the thickness hP of the piezo which in this case is equal to the

distance between its electrodes:

hP e3 ¼ w3 ¼ d33 hP Eel þ hP
s3
EP

¼ d33 Uþ hP

EP AP

F3 ¼ d33 Uþ F3=k3: (231)

The last part of the equation was obtained with the definition of the homoge-

neous electrical field Eel in a capacitor as the quotient of the voltage and the

distance of the electrodes, and the force F3 acting in polarization direction was

calculated as the product of the homogeneous stress s3 and the cross-sectional area
AP of the piezo perpendicular to the stress. The factor behind F3 is the spring

constant k of an elastic body.

The unit of the piezoelectric modulus obviously is (m/V). The first index denotes

the direction in which the voltage is applied and the second stands for the direction

in which the deflection is calculated. Thus, the strain in 1-direction (the direction of

the length LP of the piezo) under the action of forces in 1- and 3-direction is

calculated with:

e1 ¼ d31 Eel þ s1
EP

� nP
s3
EP

; (232)

where nP is Poisson’s ratio of the piezo. The deflection in 1-direction is obtained by
multiplying with the length LP of the piezo:

LP e1 ¼ w1 ¼ d31
LP

hP
Uþ LP F1

EP hP bP
� nP

F3

EP bP
; (233)

where bP is the width of the piezo. The absolute value of the piezoelectric modulus

d31 is typically approximately half of the one of d33. Therefore, it might be

concluded that employing the effect in polarization direction would be preferable

compared with the effect in transversal direction; but the opposite is true, because

the length LP of a piezo typically is much larger than its thickness hP, and the factor

LP/hP is much larger than two.

The electric field might also be applied in 1-direction transversal to the polari-

zation and the deflection in 1-direction needs to be calculated. In this case, the

piezoelectric modulus d11 needs to be employed:

e1 ¼ d11 Eel þ s1
EP

� nP
s3
EP

¼ d11
U

LP

þ s1
EP

� nP
s3
EP

(234)

) w1 ¼ LP e1 ¼ d11 Uþ LP

s1
EP

� nP
s3
EP

� �
: (235)

However, applying a voltage perpendicular to the polarization is very difficult,

because after fabrication and polarization of the piezo, electrodes need to be
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manufactured in 1-direction which are not short-cricuited with the electrodes

employed for polarization. Therefore, d33 and d31 are sufficient to calculate the

deflection of a piezo in most cases.

Equations (231) and (233) are employed for the calculation of the deflection of a

piezo as an actuator. Figure 101 shows the deflection w3 as a function of the force

F3, calculated with (231) for a piezo from PZT with a Young’s modulus and

piezoelectric modulus of 60 GPa and 250 � 10-12 m/V, respectively, an area of

10 mm2, and a distance hP between the electrodes of 0.5 mm. This graph is the

characteristic curve of a piezo as an actuator. The maximum force F0 generated by

the piezo is achieved when it is hindered from deflecting, and no force can be

generated at the maximum deflection wE which can be generated. Between maxi-

mum force and maximum deflection, there is a linear curve which even extends

over the points of maximum deflection and maximum force, because an external

force may further deflect the piezo.

The maximum deflection wE of a piezo, which is obtained when no external

force is acting on it, is calculated by inserting no force in (231). The maximum force

F0 which can be generated by a piezo is obtained when it is hindered from

deflecting. In polarization direction, this is calculated by setting the deflection in

(231) to zero and to solve for the force F3:

F0 ¼ �d33
EP AP

hP
U: (236)

If the voltage supplied to the piezo is changed, the characteristic curve is shifted

as shown in Fig. 101. Without any voltage supplied, the characteristic curves

simply represents the deflection due to Hooke’s law (cf. 231).

Equations (231) and (233) are used to calculate the deflection of a piezo

employed as an actuator. If a piezo is to be used as a sensor, the voltage generated

by the deformation of the piezo needs to be calculated. The charge density D3

generated in 3-direction is obtained from the following equation:

D3 ¼ d33 s3 þ e0 er Eel: (237)

Fig. 101 Characteristic

curves of a piezo as an

actuator driven at various

voltages
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The charge Q3 on the electrodes in polarization direction of the piezo is obtained

from this equation by multiplying with the area AP of the electrodes (AP is equal to

the area of the piezo in this case):

Q3 ¼ d33 F3 þ e0 er AP

hP
U ¼ d33 F3 þ Cel U: (238)

The above equation consists of two terms. The second one represents the charge

which is stored on a capacitor: Q ¼ Cel U, where Cel is the electrical capacity of the

piezo [cf. (221) on page 131]. The first term in (238) is the charge generated by the

force acting on the piezo. The factor in front of the force F3 is the piezoelectric

modulus again. It is the same number as in (231), although the unit obviously is

[C/N] instead of [m/V] in (231). However, both units are the same and it will be

shown below that both numbers need to be equal because the piezoelectric effect is

reversible.

If a piezo is strained perpendicular to its polarization direction, there is also

a charge generated on the electrodes. Therefore, another term needs to be added

in (237):

D3 ¼ d31 s1 þ d32 s2 þ d33 s3 þ e0 er Eel: (239)

) Q3 ¼ d31
LP

hP
F1 þ d32

bP

hP
F2 þ d33 F3 þ e0 er AP

hP
U: (240)

When a piezo is employed as a sensor, the above equation is used to calculate the

charge generated by straining. Actually not the charge but the voltage is measured.

The electrodes of the piezo are short-cricuited, the contact between the electrodes is

opened, and the force is applied. As the contact between the electrodes is open, no

charge can flow onto or leave the electrodes; i.e., Q3 is zero in (240) yielding the

voltage U which can be measured:

U ¼ d31

e0 er

LP

AP

F1 þ d32

e0 er

bP

AP

F2 þ d33

e0 er

hP

AP

F3

¼g31
LP

AP

F1þg32
bP

AP

F2þg33
hP

AP

F3 with gij¼ dij

e0 er
:

(241)

The quantities gij are often also called piezoelectric moduli g31, g32, and g33. In

this book, it is avoided to use these quantities to prevent confusion of the different

types of piezoelectric moduli.

Equation (241) describes the characteristic curve of a piezo employed as a sensor.

Figure 102 shows the characteristic curve of a piezo with thickness hP, area AP,

Young’s modulus EP, piezoelectric modulus d33, and relative permittivity er of

0.5 mm, 10 mm2, 60 GPa, 250 � 10-12 m/V, and 2,400, respectively, calculated

with (241). The force is acting in polarization direction and a fewNewtons are enough
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to generate an output of several volts. This is an extraordinary result, because other

sensors, e.g., strain gauges, produce only somemillivolts without amplification. There-

fore, electromagnetic disturbances usually are no problem for piezoelectric sensors.

On the other hand, it needs to be noted that the piezoelectric modulus is a

function of temperature and in almost every case temperature compensation is

necessary. Besides this, every piezoelectric material has a small electrical conduc-

tivity resulting in a slow discharging of the piezo. Therefore, some electronics is

necessary if long-time measurements are to be performed. Short-time measure-

ments of changes of force or pressure are realized easier.

The piezoelectric modulus d33 in (231) and (238) is the same. This is due to the

fact that the potential energy of a piezo is reversible [48]. That is, we start from a

certain state where the piezo has a deflection wi and charge Qi resulting in a potential

energy Vp0. Then, deflection and charge are changed such that after a while the piezo

arrives at the same state (deflection and charge) again (cf. Fig. 103a). The energy of a

piezo is the same as before the changes, if the potential energy is reversible. In other

words, the potential energy is a function of deflection and charge only, and not a

function of the way how this state was approached. It is obvious that the potential

energy of a piezo is reversible, because it is a function of deflection and charge only.

It is the sum of the potential energy of a capacitor and a spring:

Vp ¼ 1

2

Q2
3

Cel

þ k3

2
w2

3: (242)

Fig. 102 Characteristic

curve of a piezo as a sensor

Fig. 103 Paths in the charge-deflection plane
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Starting from the above equation, the piezo is deflected by Dw3 (path from A to B
in Fig. 103b) resulting in the following energy:

Vp ¼ Vp0 þ qVp

qw3

Dw3: (243)

Then the charge of the piezo is changed by DQ3 (path from B to C in Fig. 103b):

Vp ¼ Vp0 þ qVp

qw3

Dw3 þ qVp

qQ3

DQ3 þ q2Vp

qw3 qQ3

Dw3DQ3: (244)

If the charge is changed first and then the deflection (path from A over D to C in

Fig. 103b), the energy is calculated as:

Vp ¼ Vp0 þ qVp

qQ3

DQ3 þ qVp

qw3

Dw3 þ q2Vp

qQ3 qw3

DQ3 Dw3: (245)

If the potential energy of the piezo is reversible, (244) and (245) need to be

equal, because the same state is approached via different ways (first changing the

deflection and then the charge or vice versa):

q2Vp

qQ3 qw3

¼ q2Vp

qw3 qQ3

: (246)

Differentiation of (242) yields:

qVp

qQ3

¼ Q3

Cel

¼ U and
qVp

qw3

¼ k3w3 ¼ F3: (247)

Thus, (246) results in:

qU
qw3

¼ qF3
qQ3

: (248)

Solving (231) for U and calculating the differential with respect to w3 on the one

hand, and solving (238) for F3 and calculating the differential with respect to Q3

yields:

U ¼ w3 � F3=k3
d33

) qU
qw3

¼ 1

d33
; (249)

F3 ¼ Q3 � CelU

d�33
) qF3

qQ3

¼ 1

d�33
: (250)

The asterisk in (250) denotes the piezoelectric modulus appearing in (238).

According to (248), (249) and (250) are equal and thus d33 and d�33 are equal.
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The deflection of a piezo typically is on the order of several nanometers. This is

not enough for most applications. On the other hand, the forces generated by piezos

are comparatively large. Therefore, it is advantageous to partly sacrifice the force

generated and to increase the deflection. This is typically achieved by an arrangement

of two or more piezos bonded on each other. Figure 104a shows two piezos bonded

onto each other. This is called a piezo bimorph. If a voltage is applied in polarization
direction of a piezo, it shrinks laterally. Thus, the other piezo of the bimorph needs to

be supplied with a voltage against its polarization direction resulting in a lateral

extension. As a consequence, the bimorph is deflected transversally.

If voltage is applied to both piezos of a bimorph, the voltage is limited because

always one of the piezos is charged against its polarization direction. Therefore, it is

usual to apply power only to the piezo which shall shrink laterally (Fig. 104b). The

deflection is reduced by a factor of 2, because only one piezo is active but the

voltage may be raised more, e.g., a factor of 5. Thus, charging only one piezo yields

larger deflections. Typically, the transversal deflection of the bimorph is a factor of

ten larger than the lateral deflection of the two piezos.

The deflection w0,B of a bimorph composed of two piezos with length LP, width

bP, thickness hP, Young’s modulus EP, and piezoelectric modulus d33 is calculated

with the following equation [49] (Only one piezo is active.):

w0;B ¼ wE;B þ wF;B ¼ 3

8
d31

L2
P

h2P
Uþ L3

P

2 EP bP h3P
F: (251)

The second term in (251) describes the deflection wF,B of a beam with a

rectangular cross-section and thickness 2hP which is clamped at one end and loaded

transversally with a force F at the free end. This is already known from the theory of

the deflection of beams [cf. Fig. 45 and (94) on page 65 and 66]. The first term in

(251) describes the deflection wE,B of the beam generated by the voltage U.

The force FP generated by a piezo bimorph is calculated by solving (251) for F

and changing the sign, because the force of the bimorph is calculated instead of the

force acting on it:

FP ¼ 3

4
d31

EP bP hP

LP

U� 2
EP bP h3P

L3
P

w0: (252)

Fig. 104 Piezo bimorphs
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Equation (252) describes the characteristic curve of a piezo bimorph. Figure 105

shows this curve for a bimorph with piezos with length, width, thickness, Young’s

modulus, and piezoelectric modulus of 20 mm, 5 mm, 1 mm, 60 GPa, and

190 � 10�12 m/V, respectively, and driven by 200 V. The comparison with

Fig. 101 on page 140 shows that a larger deflection and a smaller force are achieved.

The characteristic curve is linear and subtends ordinate and abscissa at the maxi-

mum force F0,B obtained when the deflection of the bimorph is prevented by outer

forces and the maximum deflection wE,B which is obtained when no outer forces are

acting on the bimorph. The characteristic curve extends over the intersections,

because a larger force than F0,B acting against the bimorph bends it backward and

an additional force in forward direction results in a larger deflection than wE,B and a

negative counter force generated by the elastic forces of the beam.

The maximum force F0,B is the first term in (252), which calculates the force of

the bimorph when it is not deflected. The maximum deflection is found as the first

term of (251), which calculates the deflection when no force is acting on the

bimorph:

F0;B ¼ 3

4
d31

EP bP hP

LP

U; (253)

wE;B ¼ 3

8
d31

L2
P

h2P
U: (254)

The two above equations show that the characteristic curve of a piezo can be

adapted in certain limits to the needs of a given application. A larger ratio of the

thickness to the length increases the maximum force and reduces the maximum

deflection. With a larger width, the maximum force can be enhanced without

changing the maximum deflection.

If the bimorph is deflected in only one direction, the inactive piezo can be

exchanged by a non-piezoelectric material. This opens up the door for optimizing

deflection and force by varying Young’s modulus and thickness of the inactive

layer.

Fig. 105 Characteristic

curve of a piezo bimorph as

an actuator
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The deflection w0 of a piezo bonded onto an inactive carrier consists of two

terms describing the deflection due to the electric field wE and due to external forces

wF similar as in the case of a bimorph (251) [49]:

w0 ¼ fwE
wE;B þ fwF

wF;B ¼: wE þ wF: (255)

Here, wE,B and wF,B are the deflections of a bimorph due to the piezoelectric

effect and outer forces as in (251), and fwE
and fwF

are correction factors which

describe the influence of the carrier layer:

fwE
¼ 2

1þ hVð Þ þ 1� EV hVð Þ2 ð4 EV 1þ hVð Þ= Þ
� � ; (256)

fwF
¼ 8 1þ EVð Þ

4 EV 1þ hVð Þ2 þ 1� EV hVð Þ2 : (257)

In the two equations above, the quantities hV and EV appear which are defined as

ratios of the thickness of carrier hT and piezo hP and their Young’s moduli ET and

EP, respectively:

hV¼ hT

hP
and EV¼ hT ET

hP EP

: (258)

The maximum force F0 generated by the piezo on an inactive carrier is obtained

by solving (255) for the force (contained in wF,B) and assuming zero deflection w0:

F0 ¼ EV 1þhVð Þ
1þEVð Þ

3

4
d31

EP bP hP

LP

U¼fF0 F0;B with fF0 :¼
EV 1þhVð Þ
1þEVð Þ : (259)

The first fraction in the above equation is defined as the correction factor fFo

which describes the effect of bonding the piezo to a carrier beam, while the rest of

the equation is the maximum force F0,B of a bimorph as shown in (253).

The characteristic curve of a piezo on an inactive carrier is obtained by calculat-

ing the force FP from (255) for the force and not assuming zero deflection:

FP ¼ fF0 F0;B � 2 EP bP h3P
fwF

L3
P

w0: (260)

Now the question rises what is the optimum thickness and Young’s modulus to

obtain maximum deflection wE and maximum force F0, respectively. According to

(255), the maximum deflection wE is calculated as the product of the maximum

deflection wE,B of the bimorph and the correction factor fwE
which describes the

effect of the carrier layer. Therefore, the maximum deflection is achieved with

the parameters for which the correction factor is largest. Figure 106a shows the
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correction factor fwE
calculated with (256) as a function of the thickness ratio of

carrier ET and piezo EP and the ratio of the Young’s moduli. The dashed straight

line corresponds to a bimorph. This shows that the bimorph is not optimum with

respect to a large deflection. 20% more deflection can be achieved, if the thickness

of the carrier is only half of the thickness of the piezo. The larger the ratio of the

Young’s moduli of carrier and piezo is, the larger the deflections can be obtained, if

the thickness ratio of carrier and piezo is optimum.

The optimum thickness ratio is found by calculating the maximum of fwE
as a

function of this ratio. Thus, the derivative of fwE
with respect to the thickness ratio is

calculated, set to be zero, and solved for the thickness ratio. This calculation is hard

to be done by hand but easily performed with the help of suitable computer codes:

qfwE

q hT hP=ð Þ ¼ 0 ) hT

hP

� �
opt

¼ 1

2

ffiffiffiffiffiffi
EP

ET

r
: (261)

If the above equation is inserted into (256), the maximum correction factor fwE,opt

can be calculated which is obtained with the optimum thickness ratio:

fwE;opt ¼ 32
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

EP ET=
p

32þ 41
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EP ET=

p þ 8 EP ET=
: (262)

The maximum correction factor fwE,opt calculated with the above equation is

shown in Fig. 106b and clearly shows that larger deflections can be obtained when

the carrier is made of a material with a larger Young’s modulus. However, it needs

to be considered that a different material for the carrier results in a thermal

expansion different from the one of the piezo. Therefore, the deflection will change

with temperature. Employing a carrier with a larger Young’s modulus is only an

advantage, if the cross sensitivity to temperature changes does not perturb the

desired performance.

1.6

a b
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0
0 0.5 1 1.5

hT

hp

fWE ET /Ep = 4

ET /Ep = 2

ET /Ep = 1

ET /Ep = 0.5

ET /Ep = 0.25

Bimorph

Fig. 106 Correction factor fwE
of a piezo bonded to an inactive carrier calculated with (256) as a

function of the ratio of the thicknesses of carrier and piezo (a), and value obtained with the

thickness ratio optimum for large deflection (b)
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If not the deflection but the force generated by a piezo on a carrier shall be

maximum, the correction factor fF0
needs to be maximized. Figure 107 shows fFo

as a

function of the ratios of thicknesses and Young’s moduli of carrier and piezo. The

larger the thickness and the Young’s modulus of the carrier are, the larger the forces

are generated. There are no optimum values. However, the possible deflection will

vary also as a function of these parameters, and a piezo on a carrier is normally not

only chosen to obtain the maximum force, but the maximum deflection.

A piezo bimorph may be equipped with an inactive carrier between the piezos.
This arrangement is shown in Fig. 108. This also corresponds to two piezos glued

onto each other to form a bimorph. The glue behaves as an inactive layer, and the

following equations show what is the effect of the glue on deflection and force of

such a bimorph with an inactive carrier between the piezos.

In the following, the calculations assume that only one piezo is powered. In most

applications, however, it will be advantageous to move the beam up by driving the

upper piezo and down by the other one. That way, larger deflections are achieved.

The deflection of a bimorph with an inactive carrier between the piezos is

calculated with (255) with modified correction factors [49]:

fwE
¼ 1þ hVð Þ

1þ ð3 2Þ= hV þ 3 4= þ ð1 8Þ= EVð Þh2V
(263)

fwF
¼ 1

1þ ð3 2Þ= hV þ 3 4= þ ð1 8Þ= EVð Þh2V
: (264)

The maximum force and force as a function of the deflection (characteristic

curve) are calculated with (259) and (260) but with a different correction factor:

fF0 ¼ 1þ hVð Þ: (265)
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Fig. 107 Correction factor

fFo
for a piezo bonded on an

inactive carrier calculated

with (259)

Fig. 108 Bimorph with an

inactive carrier between two

piezos

148 Piezoelectric Effect



If the thickness and Young’s modulus of the carrier shall be optimized to obtain

either maximum deflection or maximum force, the correction factors according to

(263) and (265) need to become maximum. These correction factors are drawn in

Fig. 109 as a function of the ratios of the thicknesses and Young’s moduli of carrier

and piezos, respectively.

The thicker the carrier and the larger its Young’s modulus are the smaller is the

deflection. If the deflection shall be large, a carrier between the piezos is no advantage

and the glue between the piezos of a bimorph should be as thin as possible and its

Young’s modulus should be as small as possible.

On the other hand, the maximum force F0 generated by a bimorph with a carrier

between the piezos is rising as a linear function of the thickness of the carrier but is

not a function of its Young’s modulus.

Piezos and carriers do not need to be beams with a rectangular cross-section.

Deflections and forces of piezos and carriers as circular plates simply supported at

their rim (cf. Fig. 110) are calculated also with (255) and (259), if maximum

deflection wE,B, deflection due to outer forces wF,B, and maximum force F0,B of

the bimorph are calculated with the following equations [49]:

wE;B ¼ 3

8
d31

R2
P

h2P
U; (266)

wF;B ¼ 0:069
R2
P

EP h3P
F; (267)

F0;B ¼ 5:45 d31 EP hP U: (268)
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In the above equations, it is assumed that Poisson’s ratio both of piezo and

carrier layer are 0.3. If arrangements of piezos and carriers are used, the same

correction factors fwE
, fwF

, and fFo
are to be used as in (256), (257), and (259) for a

piezo on a carrier or (263), (264), and (265) for two piezos with a carrier in between,

respectively. This means also that the optimum ratios of thicknesses and Young’s

moduli of piezo and carrier are the same as described above for rectangular beams.

The characteristic curves of all piezos and arrangements of piezos with inactive

carriers employed as actuators are strait lines defined by their maximum force F0
and maximum deflection wE as shown in Fig. 111a. These parameters are listed in

Table 13 and the required correction factors are found in Table 14. Thus, the

characteristic curve of any arrangement of piezos discussed here is described by

the following equation and can be calculated with the help of the two tables:

FP ¼ F0 1� w0

wE

� �
: (269)

If the force which has to be overcome is not a function of the deflection of the

piezo arrangement, e.g., a weight is to be lifted; the mechanical energy WA

generated by the piezo is the product of force and deflection:

WA ¼ FP w0 ¼ F0 w0 1� w0

wE

� �
: (270)

This means that for the maximum force no work is done, because the deflection

is zero, and for no force acting on the piezo also no work is done, although the

deflection is maximum. Figure 111b shows the work WA (¼ energy output) as a

function of the deflection w0. The maximum work WA,opt can be calculated from

the maximum of the parabola described by (270):

WA;opt ¼ 1

4
F0 wE: (271)

Fig. 111 (a) Characteristic curve of a piezo or an arrangement of piezos with a carrier and

(b) work done by the piezo
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The optimum deflection w0,opt, where the work is maximum, is found at half of

the maximum deflection wE. Half of the maximum deflection corresponds also to

half of the maximum force, because the characteristic curve in Fig. 111a is a strait

line. The energy input is approximately the same independent of the deflection; it is

the electrical energy WC necessary to charge the capacity of the piezo [cf. (221) on

page 133]. To obtain the exact energy input, the work done by the actuator would

need to be added, but the energy required for charging is at least ten times larger.

So, if a piezo is designed for a certain application and the energy consumption is

an issue, e.g., in battery powered devices, the piezo should be dimensioned such

that it is able to achieve the double of the desired deflection and force. Both a

smaller and a larger piezo will result in a small efficiency.

The efficiency �A is calculated from the ratio of the energy output WA,opt and

the energy input WC. It is shown for every arrangement of piezos in Table 13.

The maximum efficiency is on the order of 10%. Sometimes people say that the

efficiency of piezos would be approximately 95%, but this is only true when the

electrical energy stored during deflection of the piezo is recovered when the

deflection is reduced again. Normally, this is not done and the 95% efficiency is

only a theoretical value, while in practical applications less than 10% are

achieved.

Thickness and Young’s modulus of carriers can also be optimized for maxi-

mum efficiency. As seen in Table 13, the product of the correction factors fwE
and

fFo
needs to be optimized to achieve this. This product is shown in Fig. 112 both

for a piezo on a carrier and a bimorph with a carrier between the piezos as a

function of the ratios of the thicknesses and the Young’s moduli of piezo and

carrier.

For a piezo on a carrier, the product is:

fwE
fF0 ¼

2 EV

1þ 1� EV hVð Þ2 ð4 EV 1þ hVð Þ2Þ
.� �

1þ EVð Þ
: (272)
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For a bimorph with a carrier between the piezos, the product is:

fwE
fF0 ¼

1þ hVð Þ2
1þ ð3 2Þ= hV þ 3 4= þ ð1 8Þ= EvÞh2V:

� (273)

Figure 112a shows that for a piezo on a carrier, the energy output and efficiency

can be largest when Young’s modulus of the carrier is maximum. A bimorph is not

optimum with respect to efficiency; 20% more energy output could be achieved

with the same input, if the inactive piezo would be two times thicker.

A bimorph with a carrier between the piezos achieves a higher efficiency when

the carrier is made of a material with a small Young’s modulus and adapted

thickness. The optimum thickness ratios is found by calculating the derivative of

(273), setting it equal to zero, and solving for the thickness ratio. This calculation is

very lengthy and yields a very complex result, but it can easily be obtained with

suitable computer codes:

hT

hP

� �
opt

¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ET EP= þ 2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ET EP=

p
ET EP=

s

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET EP=

2� ET EP= þ 2
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ET EP=

p
s

� 1: (274)

The above equation is not easy to understand but when drawn in a graph shows

its simple nature (cf. Fig. 113).

If the largest possible deflection is to be achieved, a piezo on a carrier is the best

possible arrangement. The deflection can be enhanced by choosing a carrier with

a large Young’s modulus. However, it needs to be considered that the deflection will

be a function of temperature also, if the carrier is not a piezo (see “Thermal Actua-

tors”). An alternative for obtaining a larger deflection with a suitable carrier layer is

often to employ a larger bimorph. The thickness of the carrier should be close to the

ratio given in (261) on page 147.

If the largest possible force is to be achieved, the best option is a piezo without

any carrier pushing in polarization direction.

Fig. 113 Optimum thickness

ratio of carrier and piezo for

maximum efficiency of a

bimorph with a carrier

between the piezos

152 Piezoelectric Effect



Energy output and efficiency are largest for a piezo without any carrier layer.

However, if at a considerably large deflection energy output and efficiency are to be

maximized, a bimorph with an inactive carrier between the piezos often will be the

best solution. Young’s modulus of the carrier should be as small as possible and its

thickness should be designed according to (274). Besides the fact that the piezo-

electric moduli are a function of temperature (see below), deflection and force of

this arrangement will not be sensitive to temperature changes, because it is sym-

metrical with respect to the neutral fiber.

The maximum energy output density of a piezo actuator is calculated from (271)

together with (236) (page 140) and (231) (page 139):

WA;opt

V
¼ 1

4
d233 EP

U2

h2P
: (275)

If for maximum voltage, thickness, Young’s modulus, and piezoelectric modu-

lus 400 V, 0.5 mm, 60 GPa, and 250 � 10�12 V/m are assumed, respectively,

0.6 mJ/mL is obtained for the maximum output energy density.

The piezoelectric moduli, e.g., d33 and d31, are a function of temperature

(cf. Fig. 114). As a consequence, both sensors and actuators are cross sensitive to

temperature changes, and this fact needs to be taken into account, when devices

based of the piezoelectric effect are designed.

Besides the fact that the piezoelectric moduli are a function of temperature, there

is the pyroelectric effect: When the temperature changes, electrical charges are

generated on the electrodes of a piezo, and these charges cause deflection of the

piezo. The charge change DQ3 generated on the electrodes in polarization direction

by a temperature change DT is calculated with the following equation:

DQ3 ¼ AP p
3
DT: (276)

Fig. 114 Piezoelectric moduli of PVDF as a function of temperature [50]
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In the above equation, p3 is the pyroelectric coefficient in the direction of

polarization which is a material property of the piezo. The charge change DQ3

corresponds to a voltage change DU on the capacitor according to the definition of

the electric capacity Cel:

DQ3 ¼ Cel DU ¼ e0 er
AP

hP
DU ¼ AP p

3
DT ) DU ¼ hP p

3

e0 er
DT: (277)

In principle, the pyroelectric effect could be employed to measure temperature

changes or to actuate a piezo. However, the slow discharging of piezos is a

disadvantage for sensor applications and there are a lot of alternatives for tempera-

ture measurement. The actuation of a piezo by a voltage is much quicker than by the

pyroelectric effect. Therefore, the pyroelectric effect mostly causes cross-sensitivity

and is not employed in any way.

For every case in Table 13, the deflection is calculated as w0 ¼ wE þ wF. The

correction factors describing the effect of the arrangement of the piezos are given in

Table 14.

Exercises

Problem 21

Your chief tells you to design a microvalve which employs piezo actuators. It shall

be a two-way valve with an orifice which is closed by a piezo beam from two

combined layers from PZT (cf. Fig. E20). This way, temperature changes do not

affect switching.

Only the upper piezo layer shall be driven, while the lower one is short-circuited.

This way, it is possible to apply the whole available voltage of up to 200 V and no

piezo gets depolarized. The diameter of the orifice is 200 mm. The piezo material is

commercially available with a width of 500 mm. The thickness of each of the two

layers is 500 mm.

The distance between piezo beam and valve seat of an open valve needs to be a

fourth of the diameter of the inlet and outlet to avoid that the flow resistance is a

function of the gap between the beam and the valve seat.

(a) What length do you choose for the piezo beam to allow a sufficient opening of

the valve?

(b) Up to what pressure difference can the valve be opened, if the piezo beam is

designed with a length of 30 mm?

(c) What would be the maximum pressure difference against which the valve could

work, if the active piezo would not be combined with an inactive one, but would

press against the valve seat as shown in Fig. E21?

(d) Do you think that the design of Fig. E21 is feasible?
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Piezoelectric modulus d31 of PZT �170 � 10�12 C/N

Piezoelectric modulus d33 of PZT 250 � 10�12 C/N

Young’s modulus of PZT 60 GPa

Relative permittivity of PZT 2,400

Problem 22

The 30-mm long beam of Fig. E21 shall now be used as a sensor.

(a) What voltage can be measured when the beam is compressed with a force of

13 mN?

(b) How much is the beam compressed by the load of 13 mN if the electrodes are

short-circuited?

(c) How much is the beam compressed by the load of 13 mN if the electrodes are

not short-circuited but insulated to the environment? Take into account that a

charge is generated by the force which diminishes the compression.

Fig. E21 Cross-section of

the alternative two-way valve

Fig. E20 Schematic view of

the two-way valve

Table 14 Correction factors describing the effect of the arrangement of the piezos in Table 13

Bimorph Piezo with carrier Two piezos on a carrier

fwE
1 2

1þ hVð Þ þ 1� EV hVð Þ2 ð4 EV 1þ hVð ÞÞ=

1þ hVð Þ
1þ ð3=2ÞhV þ 3=4þ ð1=8ÞEVð Þh2V

fwF
1 8 1þ EVð Þ

4 EV 1þ hVð Þ2 þ 1� EV hVð Þ2
1

1þ ð3=2ÞhV þ 3=4þ ð1=8ÞEVð Þh2V
fF0 1 EV 1þ hVð Þ

1þ EVð Þ
1þ hVð Þ
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(d) How much are the combined piezos of Fig. E20 deflected if the force of 13 mN

is acting at their free end perpendicular to the direction of the beam and only

one of the piezos is short-circuited and the other one has electrodes insulated to

the environment?

Problem 23

A piezo layer from PZT is bonded onto a circular silicon plate. The thickness of the

piezo layer and the silicon plate are 0.5 and 1 mm, respectively, and the radius of

both is 10 mm. The applied voltage is 200 V.

(a) Calculate the maximum force and the maximum deflection of this arrangement.

What is the maximum energy output?

(b) Calculate the electrical energy which is needed to deflect this actuator. Calcu-

late the ratio of energy output to energy input and, thus, calculate the efficiency.

Hint: The piezo actuator forms a capacitor together with the electrodes. The

energy stored in the capacitor is calculated with (221) on page 131.

(c) Calculate the efficiency also for the case that the piezo is not combined with the

silicon carrier and is working only by extension in the direction of polarization.

(d) Calculate the efficiency for the case that the lower side of the silicon is bonded

to another piezo layer of the same size as on the upper side. There is always

voltage applied to only one piezo layer.

(e) What is your conclusion, when you compare the results of (b)–(d)?

Young’s modulus of PZT 60 GPa Young’s modulus of silicon 190 GPa

d31 of the PZT layer �170 � 10�12 C/N Relative permittivity of PZT 2,400

d33 of the PZT layer 250 � 10�12 C/N
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Thermal Actuators

If the linear dimensions of a device are reduced, its mass decreases with the third

power, while its surface decreases only proportional to the square (cf. page 3). As a

consequence, the ratio of surface to volume or mass is very large for microdevices.

This means, that a microdevice is heated up much more quickly and with less

energy consumption, because of its small mass, and is cooling down more quickly

due to its large surface to mass ratio. Therefore, heating up is a suitable actuation

principle for a lot of microdevices, while it is not a good solution for macroscopic

devices. The ink-jet printer is a good example (cf. page 251).

If an isotropic rigid body with a coefficient of thermal extension ath is heated up

by the temperature change DT, it extends to all directions by the strain eth
(cf. Fig. 115):

eth ¼ ath DT: (278)

The coefficient of thermal extension ath is a material constant which needs to be

measured or found in a suitable book.

If a pressure load p is acting on the heated body against the direction of thermal

extension, the strain generated by the pressure according to Hooke’s law needs to be

added:

eth ¼ ath DT� p

ES

: (279)

In the above equation, ES is Young’s modulus of the heated body. The deflec-

tions wx and wz of the rigid body in direction of its length LS and thickness hS,

respectively, under the action of compressive forces Fx and Fz are derived from the

above equation (bS is the width of the body):

wz ¼ ath hS DT� hS

LS bS

Fz

ES

þ nS
bS

Fx

ES

; (280)

wx ¼ ath LS DT� LS

hS bS

Fx

ES

þ nS
bS

Fz

ES

: (281)

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_13, # Springer-Verlag Berlin Heidelberg 2011
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From the two above equations, the characteristic curves of this thermal actuator

can be calculated by solving for the force. For exampel, if deflection and force are

acting in z-direction only, it is obtained:

Fz ¼ LS bS ES ath DT� wz

hS

� �
: (282)

Figure 116 shows the characteristic curve of a thermal actuator with length,

width, and thickness of 5 mm, 2 mm, 0.5 mm, respectively. A Young’s modulus of

60 GPa is assumed, so that this actuator corresponds to the piezo described by the

characteristic curve in Fig. 101 on page 140. The comparison of Figs. 116 and 101

shows that a thermal actuator is able to produce similar forces and deflections as a

piezo when it is heated up by just 10 K, and it can be heated up much more.

Therefore, it needs to be noted that thermomechanical actuators are capable to

produce large forces and small deflections.

Similar as for piezos, the maximum force F0 and maximum deflection wth

without any force acting on the actuator are calculated from (282) and (280),

respectively:

F0 ¼ LS bS ES ath DT: (283)

wth ¼ hS ath DT: (284)

As a consequence of small deflections and large forces generated by a thermo-

mechanical actuator, as in the case of piezo actuators, it is advantageous to employ

Fig. 116 Characteristic

curves of a thermal actuator

as calculated with (282)

Fig. 115 Extension of a

heated rigid body
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beams with different deflection which are bonded to each other. Such beams are

called bimaterial actuators. They consist of two stripes of materials with different

thermal extension. Figure 117 shows such a bimaterial actuator. The thermal

extension of beam 1 is larger than the one of beam 2. That is why the beams are

bending upward. Obviously, the coefficient of thermal expansion of beam 1 should

be as large as possible and the one of beam 2 as small as possible or even negative.

There are some ceramic materials which show a negative coefficient of thermal

extension and, therefore, shrink when heated.

When heated, both beams of a bimaterial actuator undergo a change in their

length according to (281) (with no forces acting). The difference in their straining

takes the role which was played by the straining of a piezo when a voltage is applied.

Thus, the same equations can be employed as for bimorphs when the piezoelectric

strain is replaced by the difference in the thermal strain of the two beams:

e1 ¼ d31
U

hP
! eth ¼ Dath DT: (285)

This way, the deflections and characteristic curves of a bimaterial actuator are

obtained from (255) (on page 146) and (259)/(260):

w0 ¼ wth þ wF ¼ fwE

3

4

L2
B

h2
Da DTþ fwF

1

2

L3
B

E2 bB h32
F; (286)

Fth ¼ fF0
3

2

E2 bB h22
LB

Da DT� 2 E2 bB h32
fwF

L3
B

w0: (287)

In the above two equations, the correction factors fwE
, fwF

, and fF0
are the same as

in (256), (257) and (259) (see page 146), respectively, h1 and E1 are thickness and

Young’s modulus of the beam with the larger thermal expansion, and bB and LB are

width and length of the beams, respectively.

The characteristic curve of a bimaterial actuator consisting of two beams with

the same dimensions and Young’s modulus as in Fig. 116 and with a difference in

the coefficients of thermal expansion Da ¼ 5 � 10�6 is shown in Fig. 118 as

calculated with (287). The characteristic curve is a strait line as in Figs. 116 and

105 (page 145). As a consequence, the optimum deflection for maximum energy

Fig. 117 Bimaterial actuator
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output and efficiency is half of the maximum deflection wth and the maximum

energy is a fourth of the product of maximum deflection wth and maximum force F0
[cf. (271) on page 150].

If the dimensions of a bimaterial actuator shall be optimized for maximum

deflection, force, or efficiency, the correction factors fwE
, fF0

, and their product

need to be maximized as in the case of the piezo actuators. Therefore, the same

ratios of thickness and Young’s modulus are optimum as described on pages 146f

and 152f, respectively.

The energy input WE necessary to deflect a thermomechanical actuator approxi-

mately is the heat necessary to enhance its temperature, because this is much larger

than the energy output which can be generated. An actuator with mass mK and heat

capacity Cth which is to be heated by the temperature difference DT consumes the

following power:

WE ¼ mK Cth DT: (288)

The efficiency of a bimaterial actuator is calculated as the ratio of energy output

to input. The maximum efficiency typically is on the order of 0.1%. In Table 15, the

efficiency is shown together with deflection, force, and maximum energy output of

thermomechanical actuators. The correction factors are the same as for piezos with

a carrier which are listed in Table 14 on page 156. There is no thermomechanical

equivalence to two piezos with a carrier in between, because it is virtually impossi-

ble to heat only one side of a stack of beams bonded to each other.

Maximum force is achieved with a plate in normal direction. Maximum deflec-

tion is obtained with a bimaterial beam.

Table 15 shows also that a certain deflection or force can be achieved (in certain

limits) either by enlarging the actuator or by raising the temperature at which it is

driven. When the efficiency shall not become too small, it is better to drive a small

actuator at large temperatures. A larger temperature will also help to extenuate two

other principles of thermal actuators: cross sensitivity to changes of ambient

temperature and long cooling time.

The maximum energy output density of the actuator is calculated from the

optimum output energy in Table 15 divided by the volume hS AS. If for Young’s

modulus, thermal expansion, and temperature difference 120 � 109, 15 � 10�6,

and 200�C are assumed, respectively, a maximum energy output density of

270 mJ/mL is obtained.

Fig. 118 Characteristic

curves of a bimaterial

actuator as calculated with

(287)
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Another kind of thermomechanical actuator may be built of a heated beam
clamped at both ends. If only the beam and not its bearing is heated, the beam

generates compressive stress and buckles when its critical stress is exceeded.

Typically, the beam is heated by an electrical current through a part of the beam

or a conductor path on it. Some predeflection wV of the beam is necessary to ensure

buckling to the desired side (cf. Fig. 119 top). Another possibility is a material with

a different heat expansion at least on a part of the beam forming a bimaterial.

Figure 119 bottom shows some possibilities. Even a layer of the same material as

the membrane on one of its sides will result in a buckling towards this side, because

the neutral fiber is shifted towards that side. It needs also to be taken into account

that a thin film may deflect a beam due to initial stress as shown in Figs. 7 or 9 on

page 12 and 13, repectively.

When heated, a beam not clamped and without any outer forces acting on it,

expands according to (278) (page 159). When the beam is clamped at both ends its

stress becomes more compressive by the thermal stress sth which is the strain

without clamping (ath DT) times Young’s modulus EB of the beam. When the

buckling stress is overcome, the beam buckles. The deflection as a function of the

stress of the beam is calculated with (116) (page 75). Inserting sth into (116) yields:

w0 F ¼ 0ð Þ ¼ 3
ffiffiffi
2

p ffiffiffiffiffiffi
I

AB

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � EB ath DT

sk
� 1

s
: (289)

Figure 120 shows the deflection w0 of a rectangular beam with Young’s modulus

EB ¼ 100 GPa, thermal expansion ath ¼ 5 � 10�6, thickness 20 mm, width 60 mm,

length 1 mm calculated with the above equation as a function of temperature. For

temperatures where the stress of the beam is less than the critical stress sk, there is
no deflection. When the stress exceeds the critical stress, the deflection quickly rises

as calculated with (289).

The interrelationship between the force F acting perpendicular to the center of

the beam and its deflection w0 is calculated by inserting the thermal stress sth into

Fig. 119 Beam clamped at

both ends deflected by heating

only the beam
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(114) (on page 74). The force FB generated by the beam is obtained from this by

changing the sign:

FB ¼ �4
AB

LB

w0 48
EB I

AB L2
B

þ s0 � EB ath DTþ 8

3
EB

w2
0

L2
B

� �
: (290)

The force FB generated by the heated beam is shown in Fig. 122 as a function of

the deflection w0 for several temperature changes DT. The curves have been

calculated with (290) and the parameters used for Fig. 120. The temperature

changes correspond to different stresses in the beam, and, therefore, Fig. 122

shows a similar graph as Fig. 54 on page 75.

If a beam as shown in Fig. 121 is pressed by an external force Fa onto the

structure ensuring the predeflection wV, heating of the beam will cause no deflects

until the curve shown in Fig. 122a reaches Fa. In Fig. 122, this is achieved at 100 K.

The black filled circles denote the force and deflection of the beam at certain

temperature changes DT. When the temperature exceeds 100 K, the beam deflects

as indicated in the figure.

If the external force Fa is larger, the beam achieves this force at a larger

temperature (150 K in Fig. 122b). At this temperature, the beam suddenly snaps

up from 5 mm to approximately 11 mm as indicated by the arrow. This is an effect

which might be employed in a microsystem to achieve a certain effect. For example,

a valve or an electrical switch could be opened quickly by a certain amount. If this is

not desired, the predeflection wV needs to be designed larger that the snapping over

deflection wU which can be calculated with (117) (on page 75).

It is also seen in Fig. 122b that a predeflection wV,2 which is designed too small or

no predeflection results in no deflection of the beam even at very high temperatures.

Fig. 120 Deflection of a

heated beam clamped at both

ends as calculated with (289)

Fig. 121 Heated beam

working against an external

force Fa
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The reason why the beam does not deflect without any predeflection is, that it is at its

unstable equilibrium where only small or theoretically no force is necessary to hold

it in position.

The deflection of the heated beam starts at its predeflection wV. Therefore, it

appears to be appropriate to define a deflection s0 starting at wV and to redraw the

characteristic curve of the heated beam clamped at both ends as an actuator (cf.

Fig. 123a, b). Maximum force can be achieved, if for a given temperature the prede-

flection is designed equal to the deflection wU of the snapping over of the beam

resulting in the characteristic curve shown in Fig. 123b.

The characteristic curve is calculated by substituting w0 in (290) by (wU + s0):

FB ¼ 4
AB

LB

wU þ s0½ � 48
EB I

AB L2
B

þ s0 � EB ath DTþ 8

3
EB

wU þ s0½ �2
L2
B

 !
: (291)

The maximum force FU of the actuator is either found from (118) (on page 76)

when the thermal stress is added to the residual stress or from (291) by inserting

(117) (page 75) for wU and setting s0 to zero:

Fig. 123 Redefinition of the deflection s of the heated beam (a) and characteristic curve (b). (c)

The energy output

Fig. 122 Heated beam working against an external force Fa

166 Thermal Actuators



FU ¼ 8

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffi
AB I

p
LB

sk

s0 � ath EB DT
sk

� 1

� �3
2

(292)

The maximum deflection smax is the difference between the predeflection wU and

the deflection without any external force acting (cf. Fig. 123a). It is found by

subtracting (117) from (116) and adding the thermal stress to the residual one:

smax ¼ 3
ffiffiffi
2

p
1� 1ffiffiffi

3
p

� � ffiffiffiffiffiffi
I

AB

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � ath EB DT

sk

� 1

s
: (293)

The energy output WA of the actuator when loaded with a force which is

independent of the deflection is calculated as the product of the force FB (291)

and the deflection s0:

WA ¼ FB s0: (294)

The energy output is drawn in Fig. 123c as a function of the deflection. The

comparison of the characteristic curve and the energy output of a heated beam

clamped at both ends (Fig. 123), and a bimaterial actuator (Fig. 118 on page 162)

shows only small differences. However, the bimaterial actuator is not sensitive to

changes of the stress due to outer forces. The tolerance required to achieve the

suitable predeflection of a heated beam clamped at both endsmay also be very small.

Another kind of thermal actuator is the thermo-pneumatic actuator. A thermo-

pneumatic actuator consists of a chamber closed by a membrane and some means to

heat the gas (mostly air) inside of the chamber. An example is shown in Fig. 124

where a heater coil on the membrane is heated up. As a consequence, the heated air

is expending and generates a pressure drop Dp over the membrane. The pressure

difference bulges up the membrane to a deflection w0. The behavior of a closed gas

volume is described quite well by the ideal gas law:

p V ¼ nmol RG T ¼ V0

Vmol

RG T: (295)

In the above equation, p, V, and T represent pressure, volume, and temperature

of the gas, respectively, while nmol and RG ¼ 8.31 J / (mol K) denote the number of

Fig. 124 Thermo-pneumatic

actuator
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moles of the gas contained in the volume and the gas constant which is a natural

constant. V0 is the volume of the gas when the membrane is not deflected and Vmol

is the volume of a mole of the gas at normal temperature and pressure (22.4 L at

101.3 kPa and 295 K). As an approximation, it is assumed here that the entire gas in

the actuator chamber is heated to the same temperature. In general, this is not true

and the temperature of the heater needs to be much larger than the mean tempera-

ture of the gas. Therefore, the temperature discussed here is a kind of effective

temperature which generates the calculated effects.

When the gas in the actuator is heated and an outer force F0 prevents the deflection

of the membrane, the volume inside the actuator chamber equals V0. The absolute

values of the outer force and the force generated by the actuator are equal to the ratio

of the pressure dropDp over the membrane and its area AM. From (295) it is obtained:

Dp ¼ F0

AM

¼ RG

Vmol

DT ) F0 ¼ AM RG

Vmol

DT: (296)

The above equation shows that the force generated at no deflection of the

membrane is not a function of the volume V0 of the actuator.

The deflection of the membrane itself requires a certain pressure difference

(cf. page 33ff). If an actuator is to be designed, the radius of the membrane will

be chosen so large and its thickness so small that the pressure drop required to

deflect the membrane itself is negligible compared with the effect of outer forces.

Therefore, it appears to be reasonable to neglect the effect of the membrane on force

and deflection in the following calculations. However, it needs to be checked in

every case that this assumption is really true, and, if necessary the following

equations need to be adapted.

If the deflection (i.e., volume change) and pressure difference of a thermo-

pneumatic actuator is to be calculated under the action of outer forces in general,

it helps to assume that the deflection was achieved in two steps. In the first step, the

volume is extended by DV by enhancing the temperature by DT1, while the pressure

is kept constant at the value p0 when the membrane is not deflected. From (295):

DV ¼ V0 RG

Vmol p0
DT1 ) DT1 ¼ Vmol p0

V0 RG

DV: (297)

In the second step, the pressure is enhanced by a temperature change (DT�DT1)

at a constant volume. Equation (295) now results in:

Dp ¼ V0 RG

Vmol V0 þ DVð Þ DT� DT1ð Þ ¼ V0 RG DT� Vmol p0 DV
Vmol V0 þ DVð Þ

¼ RG DT� Vmol p0ðDV=V0Þ
Vmol 1þ DV V0=ð Þð Þ : (298)

Equation (297) was inserted in (298) for DT1. Equation (298) is the characteristic

curve of the thermo-pneumatic actuator. Figure 125a shows this characteristic
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curve for an actuator with a volume V0 of 50 and 100 nL, respectively. The pressure

p0 at no deflection and temperature enhancement DT are 101 kPa and 100 K,

respectively. It is seen that the maximum pressure Dpmax at no deflection of the

membrane is not a function of the volume V0 of the actuator. The characteristic

curves extend over the coordinate axes, i.e., the maximum pressure Dpmax and

maximum volume change DVmax can be exceeded when an outer force or pressure

pushes the membrane more down to negative values or pulls it more up. Maximum

pressure and maximum volume change can easily be calculated by inserting

DV ¼ 0 and Dp ¼ 0 into (298), respectively:

Dpmax ¼ RG DT
Vmol

and DVmax ¼ V0 RG DT
Vmolp0

: (299)

The energy output WA of a thermo-pneumatic actuator is the product of the

generated pressure difference Dp and volume change DV. Thus from (298) it is

obtained:

WA ¼ RG DT� Vmol p0ðDV=V0Þ
Vmol 1þ ðDV=V0Þð Þ DV: (300)

The energy output of the actuator shown in Fig.125a, when working against

a constant load is displayed in Fig.125b for an actuator volume V0 ¼ 100 nL. As for

a piezo, a thermal bimorph or a heated beam clamped at both ends, there is an

optimum volume changeDVopt (optimum deflection for the other actuators) at which

the energy output is maximum. The efficiency at the maximum energy output is only

on the order of 1% instead of approximately 10% for a piezo. This optimum volume

change DVopt is found by calculating the zero of the derivative of (300):

@WA

@DV¼0)DVopt¼V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDVmax

V0

r
�1

� �
¼V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RG DT

Vmol p0

r
�1

� �
: (301)

The volume change DVopt as calculated with the above equation is approxi-

mately half of the maximum volume change DVmax, if the DVmax is small compared

Fig. 125 Characteristic curves of thermo-pneumatic actuators with a volume of 50 and 100 nL,

respectively (a), energy outputWA (b), and optimum volume change for maximum energy output (c)
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with the actuator volume without membrane deflection. Figure 125c shows the

optimum volume change as a function of the maximum one calculated with (301).

The maximum energy output which can be generated is obtained now by

inserting (301) for the volume change into (300):

WA;opt ¼
RG DT�Vmol p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RG DT ðVmol p0Þ=ð Þp � 1

� �
Vmol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RG DT ðVmol p0Þ=ð Þp V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RG DT

Vmol p0

s
� 1

 !
:

(302)

The maximum energy output density is obtained from the above equation by

dividing by V0. If 200�C and 100 kPa are assumed for the maximum possible

temperature change and the environmental pressure, respectively, the maximum

energy output density is 10 mJ/mL.
For most applications not only the volume change but also the deflection of the

thermo-pneumatic actuator is important. The deflection of an actuator with a

circular membrane can be calculated with sufficient accuracy, if a spherical cap is

assumed for the form of the deflected membrane. The volume VW of a spherical cap

with height w0 (corresponding to the membrane deflection) and cap diameter 2RM

(corresponding to the membrane diameter) is given by:

VW ¼ 1

6
p w0 3R2

M þ w2
0

� � � 1

2
p w0 R2

M; (303)

VW is the volume change generated by a temperature change. Therefore, from

(297) the maximum membrane deflection w0,max is obtained now:

VW ¼ V0 RG

Vmol p0
DT � 1

2
p w0;max R2

M ) w0;max ¼ 2

pR2
M

V0 RG

Vmol p0
DT: (304)

If a cylindrical actuator chamber with height hA and radius RM is assumed under

the membrane, its volume is V0 ¼ hA p R2
M, and it is obvious that the maximum

deflection of the membrane is not a function of the lateral dimensions but only of

the height hA of the actuator chamber:

w0;max ¼ 2 hA RG

Vmol p0
DT: (305)

Similarly, the volume change VW is calculated for square membranes. The

volume change is found by integrating the deflection w0 as described by (65) on

page 45 over the entire membrane:

VW ¼
ðaM=2
�aM=2

ðaM=2
�aM=2

w0 1� 4
x2

a2M

� �2
1� 4

y2

a2M

� �2
dx dy ¼ 8

15

� �2
a2M w0: (306)
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In the same way as above, it is found now:

VW ¼ V0 RG

Vmol p0
DT � 8

15

� �2
w0;max a2M ) w0;max ¼ 15

8

� �2
V0 RG

a2M Vmolp0
DT: (307)

If an actuator chamber in the form of a hollow cuboid with height hA is assumed,

the maximum deflection is:

w0;max ¼ 15

8

� �2
hA RG

Vmol p0
DT: (308)

Very large pressure changes can be generated by the phase transition of some

material inside of an actuator chamber (see Fig.126 top). A simple example is a

micro-steam engine: A small quantity of water is enclosed in an actuator chamber

and the water is heated by some means until it is partly evaporated and the vapor

pressure deflects the membrane. The vapor pressure pV is only a function of

temperature T and vaporization heat L of 1 mol:

pV ¼ e
�

L
RG T; (309)

That is, the pressure generated is not a function of the deflection of the mem-

brane as long as there are both liquid and gaseous water in the actuator. If the

deflection of the membrane is changed by an outer force acting on the membrane,

vapor is turned into liquid or vice versa and the pressure remains to be the same

(cf. Fig.126 bottom).

Fig. 126 Thermo-pneumatic

actuator with phase transition

(top) and characteristic curve

(bottom)
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A thermal actuator with phase transition can achieve comparatively large deflec-

tions and large forces even if the volume of the actuator chamber is small. If the

actuator chamber is shallow and the diameter of the membrane is comparatively

large, the deflection of the membrane is not a limiting factor for the volume

expansion. Thus, a volume expansion of a factor of 10 appears to be possible. If

from Fig. 126 a pressure of only 100 kPa is taken and multiplied by a volume

change of 10, an energy output density of 1 MPa ¼ 1,000 mJ/mL is obtained.

However, it is difficult to fill a small amount of liquid into the actuator chamber

and to make sure that the liquid, and especially the vapor, does not leave it again by

diffusion through the membrane.

The thermal energy Wth needed to generate deflection of the membrane consists

of two terms. The first one is the energy necessary to heat up the liquid and the

second one is the energy required for evaporation:

Wth ¼ cp rF Vfl DTþ lV rF DVfl: (310)

Here cp, rF, lV, Vfl, and DT are the heat capacity, density, steam heat, volume,

and temperature change of the liquid, respectively. The first term in the above

equation is needed to generate the actuator pressure, while the second one generates

the deflection of the membrane. In general, the first term is much larger than the

second one. Therefore, in the light of minimizing the energy consumption the

volume of the liquid inside the actuator needs to be chosen not larger than enough

to allow for the desired maximum deflection.

ThemassDmof the liquid which needs to be evaporated to obtain a volume change

DV can be calculated from the mass mmol and the volume Vmol of a mole of a gas:

Dm ¼ DV
Vmol

mmol: (311)

The volume of a mole as a function of temperature and pressure is calculated

from (295) (page 167) and the volume Vfl of a liquid is the ratio of its mass Dm and

density rF. Taking all this together with the above equation yields the minimum

liquid volume Vfl,min required to generate a certain volume change DV:

Vfl;min ¼ DV
rF RG

p

T
mmol: (312)

In general, the efficiency of all thermal actuators cannot be larger than the

efficiency �C of the Carnot process:

ZC ¼ DT
T0

: (313)

In the above equation, T0 and DT are the ambient temperature and the tempera-

ture rise generated for the process. As a consequence, it is advantageous to drive

a thermal actuator high above the ambient temperature. Besides a higher efficiency,

a higher driving temperature also reduces the effect of changes of the ambient
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temperature on the performance of the actuator. In addition, this is necessary to

cope with another typical disadvantage of thermal actuators: In general, it is easy to

heat them up very quickly by an electrical current, but it is difficult to cool them

down in a short time again. Cooling is achieved by heat diffusion in most cases and

that is a comparatively slow process. Therefore, the heat capacity of thermal

actuators needs to be designed as small as possible allowing quick heating and

especially cooling.

In Table 16, the order of magnitude of typical properties of microactuators are

compared with each other. The values are only an orientation for choosing the right

actuator for a certain application and more exact results need to be calculated with

the equations in the corresponding chapters.

Exercises

Problem 24

Figure E22 shows a microvalve which was introduced at the conference Actuator

96 by the company Bosch [51]. On a nearly circular silicon membrane, there are

arranged two annular aluminum stripes. The valve is opened against pressure acting

at the inlet by heating the inner aluminum ring. The geometry of the valve is

designed such that it is closed when the inner ring is not heated.

(a) What is the purpose of the outer aluminum ring? It is not heated to switch the

valve.

Fig. E22 Cross-section of

the microvalve [51]
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(b) It is difficult to calculate the behavior of an annular bimaterial. Therefore,

rectangular bimaterial stripes shall be calculated here which are as wide as the

circumference of the real aluminum and as long as their width.

Calculate maximum force and maximum deflection of the bimaterial stripe.

What is the maximum energy output?

(c) Calculate the thermal energy needed to deflect the bimaterial stripe. Calculate

the ratio to the energy output, and, thus find out the maximum efficiency. Hint:

The energy required to deflect the stripe is approximately the same as the

energy needed to heat it up.

Young’s modulus of Al 70 GPa Young’s modulus of

Si

190 GPa

Circumference of inner

aluminum stripe

1 mm Width of inner

aluminum stripe

3.5 mm

Thickness of aluminum 6.7 mm Thickness of

membrane

12 mm

Thermal expansion of Al 23.8 � 10�6/K Thermal expansion

of Si

2.7 � 10�6/K

Heat capacity of Al 896 J/(kg K) Heat capacity of Si 703 J/(kg K)

Density of aluminum 2,730 kg/m3 Density of silicon 2,330 kg/m3

Temperature increase of

inner aluminum ring

200 K

Problem 25

On the conference Actuator 94, a microvalve with a silicon beam as a switching

element was presented [52]. On the beam, there was a conductor path employed as a

heater. The beam was deflected downward when heated and opened the valve

(cf. Fig. E23).

When the beam is not heated, it lies horizontally on the valve seat and closes the

valve (residual stress s0 ¼ 0). In the drawing, it is not shown that the beam is

deflected a little bit downward also when the valve is closed, because the valve seat

is a bit protruding.

(a) The beam needs to move down for at least a quarter of the diameter of the outlet

to avoid a limitation of the flow through the open valve. How much needs the

beam to be heated to achieve the necessary deflection? (Assume that there is no

Fig. E23 Cross-section of

the microvalve [52]
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pressure drop over the beam when the valve is open and that, therefore, no force

is acting on the beam).

(b) What temperature change is necessary to open the valve against a pressure

difference of 100 kPa?

(c) What predeflection is necessary to allow opening of the valve with the temper-

ature difference calculated at (b).

(d) What is the deflection of a beam over the valve seat with the predeflection from

(c) and the temperature difference from (b)?

Length of the beam 2.6 mm Young’s modulus of Si 190 GPa

Width of the beam 600 mm Thermal expansion of Si 2.3 � 10�6/K

Thickness of the beam 20 mm Residual stress of beam 0 MPa

Diameter of valve outlet 360 mm

Problem 26

A thermo-pneumatic actuator with a cylindrical chamber which is built up as shown

in Fig. 124 (page 167) shall close the inlet of a microvalve against an outer pressure.

With (301) (page 169), the optimum stroke of the actuator can be calculated with

which the energy is used most efficiently.

(a) Please derive from the characteristic curve [(298) on page 168] an equation

with which the counter pressure can be calculated at which the energy of the

actuator is used optimally.

(b) Which counter pressure is optimal with respect to energy consumption, if the

actuator is heated by 100 and 200 K, respectively?

(c) What is the necessary height of the actuator chamber if the stroke is 20 mm at a

temperature enhancement of 200 K and if the energy of the actuator is to be

used optimally?

(d) How large should the radius of the actuator be chosen to achieve the largest

possible efficiency for the actuator?

(e) How many energy is necessary at least to heat up the actuator by 200 K if the

chamber is 30 mm high and has a radius of 500 mm? Assume (unrealistically)

that no heat is lost and only the air in the actuator is to be heated.

(f) How large is the efficiency in this idealized case?

Heat capacity of air at constant pressure 1.005 kJ/(kg K) Density of air 1.29 kg/m3

Pressure in the actuator when deflected without counter pressure 101.3 kPa
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Microoptics

Miniaturized optical components are very popular nowadays. For example, lenses

in cellular phones need to be small and light weight and shall be equipped with an

optical zoom. Micro-optical components are employed also in sensors, for data

transmission, and chemical analysis.

Miniaturization is a disadvantage for optical imaging because every optical

component is an aperture in the optical path and every aperture results in diffrac-

tion. As shown on the left of Fig. 127, light due to its wave nature does not

propagate as straight lines but shows diffraction. The light intensity far behind a

narrow aperture illuminated by parallel light does not show a rectangular profile.

For the same reason, the focus of a lens with diameter DL and focal length fB cannot

be arbitrarily small but the intensity distribution IL is given by the following

equation:

IL ¼ I0
sin p x DL l fB=ð Þð Þ
p x DL l fB=ð Þð Þ

� �2
: (314)

In the above equation, l, x, and I0 are the wavelength of the light used, distance

from the optical axis, and intensity of the light illuminating the aperture, respec-

tively. The intensity distribution calculated with (314) is shown on the right of

Fig. 127. Obviously, a smaller diameter DL of the lens broadens the intensity

distribution. As a consequence, an image projected with a lens becomes sharper

when the lens diameter is enlarged and miniaturization of the lens results in a

diffuse projection. Therefore, there are always other reasons for miniaturization of

optical components which are more important for a certain application than the loss

in sharpness, e.g., small mass, small size, and low cost.

If an optical spectrum is to be analyzed, usually a diffraction grating is

employed. A diffraction grating is a large number of narrow optical apertures

arranged next to each other. Typically, transparent or reflecting parallel slits are

made on a surface which is opaque besides the slits.

To describe how an optical grating works, first only two transparent slits are

considered – a so-called double slit. A plane wave arriving at the two slits can be

considered behind the double slit as two point sources of light which are emitting

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_14, # Springer-Verlag Berlin Heidelberg 2011
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light in phase as spherical waves (cf. Fig. 128a). At certain angles, the wave crests

and wave troughs of these waves coincide. On a screen far behind the double slit,

the light intensity shows maxima at these angles. The formation of maxima is called

constructive interference, the formation of minima where the crest of one wave

compensates the trough of another wave is called destructive interference.

The angles b of maximum intensity are found where the optical path difference

between the two waves is an integer multiple of the wavelength l. Thus, as seen in

Fig. 128b, intensity maxima are found where the following equation is fulfilled:

m l ¼ g sin bð Þ ) sin bð Þ � b ¼ ml
g

: (315)

In the above equation, g is the distance of the centers of the two slits. It is called

the grid constant. m is an integer which is called the diffraction order.

If not only two but also several or many slits with a constant distance g are

employed, the maxima of all the spherical waves propagating from these slits

interfere with each other and generate a grid of narrow maxima of equal intensity

Fig. 128 Light interference behind a double slit (a, b) and a grating (c)

Fig. 127 Optical diffraction

of light waves at an aperture

(left) and a lens (right)

178 Microoptics



on the screen (cf. Fig. 128c). Except the zero order maximum (m ¼ 0), the angle of

constructive interference b is a function of the wavelength. The higher the order of a

maximum is, the more is the spectrum spread and the larger is the resolution for

analyzing it. As a consequence, a grid can be used to separate the light into its colors

and to display and analyze its spectrum.

If the light is not illuminating the grid perpendicular, the angle of incidence

needs also to be taken into account when the position of the maxima are calculated.

Figure 129 shows that the following equation needs to be satisfied for constructive

interference:

m l ¼ g sin að Þ þ sin bð Þð Þ ) sin að Þ þ sin bð Þ ¼ m l
g

� aþ b: (316)

Note that a and b as shown in Fig. 129 are defined to be positive. One of them

can be negative when it is on the opposite side of the dashed line normal to the grid.

By choosing a the designer can control the position of, e.g., the first-order maxi-

mum of a certain wavelength.

Besides transmission grids, there are also reflection grids. As shown in Fig. 130a,

at a reflection grid, the reflected light is subject to interference. The angle b in (316)

is negative in most cases of a reflection gird.

If a grid is to be used with low-intensity light, it is a disadvantage that roughly

half of the light to be analyzed is absorbed. This problem is avoided when a step
grid is employed as shown in Fig. 130b. The light reflected at a step is interfering

with those reflected at the neighboring steps. As a result of the step, there is a phase

difference between light reflected at different steps.

According to the reflection law, the angle ar of the reflected light is the same as

the angle of incidence a (cf. Fig. 131):

a ¼ ar: (317)

Due to the slope angleFSt of the steps, there is a wavelength for which the angles

of reflection and constructive interference coincide. For this wavelength, the so-

called blazewavelength lB, and, to some smaller extent, the neighboring wavelengths

Fig. 129 Interference at a not

perpendicularly illuminated

grid
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the intensity of the interference maximum is enhanced. This effect can be employed

for the design of spectrometers. If the detector is less sensitive in a certain range of

wavelengths, e.g., extreme blue light, this can be compensated partly with a blaze in

this range. Another possibility is that a certain range of the spectrum is of high

importance for analytical purposes.

In Fig. 132, it is seen that the reflection law results in:

a� FSt ¼ FSt � b ) FSt ¼ aþ b
2

: (318)

Note that b in Fig. 132 is negative according to the definition of (316). If b is the

blaze angle for the blaze wavelength lB, both (318) and (316) need to be fulfilled,

and the step angle FSt is derived as:

FSt ¼ m lB
2 g

: (319)

Fig. 130 Reflection grid (a)

and step gird (b)

Mirror

α αr

Fig. 131 Reflection at a

mirror

Fig. 132 Blaze angle at a

step grid
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The blaze angle b at which constructive interference and reflection coincide is a

function of the angle of incidence. It is found from the two above equations:

b ¼ m lB
g

� a: (320)

If the screen shown in Fig. 128b is far behind the double slit, the angles b of light

emitted from the neighboring slits and interfering at a certain position on the screen

are nearly the same. Therefore, (315) and (316) have been derived correctly. In

microtechnique, however, the distance of the screen is never far from the gird.

Therefore, the plain of the grid needs to be bent to achieve that light emitted at the

same difference between incident angle a and diffraction angle b, i.e., the same

phase difference, arrives at the same point. This problem is solved when the light

source (or entrance slit of a spectrometer), the gird, and the screen (or detector of a

spectrometer) are arranged on a circle (cf. Fig. 133a). Such a circle is called a

Rowland circle. It is a geometrical fact that every triangle inside of a given

circumcircle and with one side identical to a certain secant shows the same angle

opposite to the secant (cf. Fig. 133b).

The surfaces of optical components may show only small roughness, because

even a small roughness will result in interference effects. Typically, the compo-

nents need to be even within a margin which is a 20th of the wavelength.

Fig. 133 Rowland circle
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If light is arriving at a mirror at an angle of incidence of 0�, the incident wave is
interfering with the reflected one. As a consequence, the so-called standing wave is
generated and the intensity of the light in front of the mirror shows maxima and

minima (cf. Fig. 134). At the surface of the mirror, there is a minimum and the

distance from one minimum to the next one is half of the wavelength of the light.

This phenomenon is observed when a partly transparent screen is placed very near

to the surface of the mirror and moved back and forth to the mirror. Standing light

waves are also the reason for interference patterns in photo resists on a reflecting

substrate which cause uneven side walls of resist patterns after development.

An optical component suitable for miniaturization which is often used for

analytical purposes is the Fabry-Perot interferometer. It consists of two mirrors

which are arranged in parallel to each other (cf. Fig. 135). At least one of these

mirrors is partly transparent. Therefore, light can enter into the space between the

mirrors and a small part of this light is escaping out of the interferometer again. The

integer multiples of the wavelengths l of the light leaving the interferometer equal

the double distance d between the mirrors:

m l ¼ 2 d: (321)

The reason for this effect is that the standing waves developing on the surfaces of

the two mirrors can only interfere constructively if their minima and maxima

coincide. That is, the standing wave between the mirrors needs to have a minimum

on the surfaces of both mirrors.

Fig. 134 Standing light wave

on a reflecting substrate (left)
and resist edge after

developing (right)

Fig. 135 Fabry-Perot

interferometer and standing

light waves developing inside
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The path of light may also change its direction by refraction. Refraction occurs

when the medium in which the light is propagating shows a change of its refractive

index. The refractive index is the ratio of the velocity of light in vacuum and in the

medium. So, the refractive index of the vacuum equals 1. In a medium, the velocity

of light is a little bit smaller than in vacuum, and, therefore, the refractive index of

media is a little bit larger than 1.

When light is propagating towards a down step in refraction index at an angel of

incidence a larger than 0�, it is partly reflected at an angle ar according to (317), and
partly transmitted at an angle at into the medium with the smaller refraction index

(see Fig. 136a). One side of each wave crest will arrive earlier at the interface than

the other (cf. left side of wave crest in Fig. 136b). The transmitted part of the side

arriving earlier will continue propagating with a larger velocity c1, while the other

side for a small time t retains its former velocity c2. The distances c1t and c2t the

light is traveling within the time t are not equal. Therefore, the direction of

propagation will change to a larger angle at.
From the geometry in Fig. 136b, it is seen that:

c1t ¼ z cos 90� � atð Þ ¼ z sin atð Þ and c2 t ¼ z sin að Þ

) c1 t

sin atð Þ ¼
c2 t

sin að Þ )
c1

c2
¼ n2

n1
¼ sin atð Þ

sin að Þ : (322)

Equation (322) is Snell’s law with which the refraction angle can be calculated.

Since n2 is larger than n1, at a certain angle of incidence aTot, at needs to become

larger than 90�. This would mean that the light goes back into the medium where it

comes from. As a consequence, for angels of incidence larger than aTot, there is no
refraction but only reflection according to the reflection law (317). aTot is called the
angle of total reflection. It can be calculated from (322) by choosing 90� for the

angle at of the transmitted light, i.e., the sine equals 1:

Fig. 136 Reflection and

refraction of light
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sin aTotð Þ ¼ n1

n2
) aTot ¼ arcsin

n1

n2

� �
: (323)

If a layer with a larger refraction index n2 is surrounded by layers with a smaller

one n1, it can be employed as an optical waveguide. Light propagating at an angle

larger than the angle of total reflection is confined in the middle layer. Optical fibers
are based on this principal, but light is also guided in a layer which is extending

laterally and surrounded by layers with a smaller refractive index.

The angle of total reflection limits the maximum angle ymax at which light may

enter or exit an optical waveguide (see Fig. 137). The refraction index n0 outside of

the waveguide is smaller than inside, and the refraction angel at is calculated by

Snell’s law (322). From Fig. 137, it is seen that sin(at) ¼ cos(aTot). Snell’s law is

now:

n0 sin ymaxð Þ ¼ n2 sin atð Þ ¼ n2 cos aTotð Þ: (324)

The sum of the squares of sine and cosine of every angle a equals 1: sin2(a) þ
cos2(a) ¼ 1. If the angle of total reflection is inserted into this equation and (323) is

used for sin(aTot), (324) yields:

n0 sin ymaxð Þ ¼ n2 cos aTotð Þ ¼ n2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

n22

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � n21

q
:¼ NA: (325)

The quantity NA defined in the above equation is the numerical aperture of the
optical waveguide which is a measure of the illumination angle which can be

achieved. The numerical aperture is only a function of the refraction indices of

the materials it is made of, while the maximum angel ymax at which light may enter

into or exit from the waveguide is also a function of the refraction index of the

medium outside the fiber.

In optical waveguides, the component of the light perpendicular to the mirrors

needs to fulfill the condition of standing waves as in a Fabry-Perot interferometer

Fig. 137 Reflection and

refraction of light
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(cf. 321) [78]. As a consequence, the following equation needs to be fulfilled by the

light propagating in the waveguide [53]:

m l ¼ 2 d cos amð Þ ) am ¼ arc cos
m l
2 d

� �
: (326)

In the above equation, am is the angle of incidence inside of the optical fiber

(Fig. 138). Obviously, light can propagate inside an optical fiber only at distinct

angles am. The light propagating at a certain angle is called a mode. The number of

modes is limited because the angle of incidence cannot become larger than the

angle of total reflection:

m � 2 d

l
cos aTotð Þ: (327)

If the height d of the waveguide is small, only a small number or even only one

mode can propagate inside. The kernel of one mode waveguides typically is

approximately 1 mm high, while multimode waveguides have a kernel, 100 mm or

more in height. An advantage of one mode waveguides is that all the light is

traveling the same distance when propagating through the guide. Light which is

reflected at larger angles am of incidence has a longer way to travel, and, therefore,

arrives a bit later than the light of other modes. As a consequence, a data bit

transmitted through several modes becomes wider, while propagating through an

optical fiber. This effect limits the data rate which can be sent through the fiber.

Therefore, one mode fibers allow larger data rates.

Equation (327) can be interpreted also in another way: There is a lower limit for

the wavelength l of light which can propagate through a thin waveguide. Thus, a

waveguide works as a filter:

l � 2 d

m
cos aTotð Þ: (328)

The light confined in an optical waveguide is not able to leave the middle layer

according to classical theory. However, quantum mechanics is needed to describe

all aspects of light propagation in waveguides. According to quantum mechanics,

Fig. 138 Propagation of light

in a waveguide at mode m
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the wave which is employed to describe the light is a measure of the probability that

a light quantum, a so-called photon, is found at a certain position. The wave

function is not zero in the layer with the larger refraction index but extends into

this layer with decreasing amplitude. The part of the wave function which is in the

“forbidden” region is called the evanescent field (cf. Fig. 139). Thus, there is a little
probability that photons exist in the layers with the larger refraction index and even

outside of the entire waveguide. As a consequence, the light inside of the wave-

guide can be affected by media outside. Some sensors employ this effect.

Due to the evanescent field, there is a way for the light in a waveguide to

“tunnel” through the barrier of the lower refractive index into a neighboring region

with higher refraction index. After some time and propagation length, the entire

wave function has shifted to the other waveguide (cf. Fig. 139a), and after the same

distance of propagation it has shifted back into the initial waveguide. A part of the

light is absorbed during tunneling, and, therefore, the amplitude of the wave

function is reducing.

This effect can be employed to distribute light from a single into two wave-

guides. The power as a function of the position x in waveguides 1 and 2, respec-

tively, can be calculated with the following equations:

P1ðxÞ ¼ cos2 kxð Þe�aopx; (329)

P2ðxÞ ¼ sin2 kxð Þe�aopx: (330)

The above equations are plotted in Fig. 139b. The coupling constant k and the

damping constant aop are a function of the geometry of the waveguides and the

modes of the light propagating in them.

When light is to be distributed from one waveguide into two, they need to be

designed in parallel for the distance p/4k, as seen from Fig. 139b and (329) and

(330). Figure 140 shows such a design and as an alternative a so-called Y-coupler.

The Y-coupler is easier to design, because nothing needs to be known about the

wave function and modes in the waveguide, but the angle at the junction may not be

n1

n2

n1

n2

t0 t1 t2 t3 t4
Evanescent field

Wave functions

P1

xπ/2κ

P2

xαope-

a b

Fig. 139 Light tunneling from a waveguide to a neighboring one (a) and power in the two

waveguides (b)
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larger than about 0.5� to avoid too much loss of the light where the required angle of

incidence at the change in refraction index cannot be matched.

In some materials, the refractive index nop is a function of the electric field Eel

applied to them. This is called the electro-optical effect. By employing this effect, it

is possible to modulate the amplitude of light and to switch it on and off. In general,

the refractive index can be described by:

nop ¼ n2 � 1

2
rP n32 Eel � 1

2
rK n32 E2

el: (331)

In the above equation, n2 is the refractive index without any electric field and rP
and rK are material constants: the Pockels constant and the Kerr constant, respec-

tively. Two kinds of the electro-optical effect are distinguished: the Pockels effect
and the Kerr effect. The Pockels effect is linear with the electrical field. It is

represented by the term in (331), which is linear with the electric field. The other

electro-optical effect is the Kerr effect. With the Kerr effect, the refractive index of

a material is changed with the square of the electric field [the last term in (331)].

The part of an electro-optical material in which the Pockels or the Kerr effect is

employed is called a Pockels cell or a Kerr cell, respectively.

Tables 17 and 18 show some materials with comparatively large Pockels and

Kerr constants, respectively.

As described above, the refractive index is the ratio of the velocity of light in a

certain material and in vacuum. Therefore, decreasing the refractive index results in

a smaller delay of the propagating light.

This is employed in a device calledMach-Zehnder interferometer (cf. Fig. 141).
Light coming from the left is distributed into two waveguides and changed in one of

them. After reunification of the waveguides, the two waves interfere resulting in a

changed amplitude.

If a Pockels cell is installed in one of the arms of a Mach-Zehnder interferome-

ter, the delay of the wave in that arm can be manipulated by an electric signal and,

this way, the amplitude of the outgoing light is controlled. The phase shift D’ in a

Pockels cell with length LPZ of a wave which shows a wavelength of l0 in vacuum

is according to (331):

Fig. 140 Distribution of light

from one into two waveguides

by (a) tunneling into a

neighboring waveguide and

(b) a Y-coupler
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Dj ¼ p LPZ

l0
rP n32 Eel: (332)

The light is switched off when the phase shift of the wave is D’ ¼ p. Therefore,
the above equation yields for switching off the light after a Mach-Zehnder interfer-

ometer with a Pockels cell:

Eel ¼ l0
LPZ rP n32

) U ¼ dC l0
LPZ rP n32

: (333)

In the above equation, U and dC are the voltage applied to the electrodes and

their distance, respectively. Light switching with a Pockels cell is very quick. Thus,

light pulses, only a few nanoseconds in length, can be generated and sent as data

bits into an optical fiber.

It is also possible to modulate the intensity of the light by changing the phase

shift in a Pockels cell. If Ie and Ia denote the intensity of the light at the input and

output of the cell, respectively, the modulation is described by:

Ia ¼ Ie cos
2 p LPZ

l0 bPZ
rP n32 U

� �
: (334)

The above equation is shown in Fig. 142. When light is to be modulated with a

Pockels cell, the nearly linear part of the cos2-function around p/4 is used.

Table 18 Kerr constants

Material with Kerr effect Kerr constant rK

Nitrobenzene 2.4 � 10�12 m/V2

Glasses 3 � 10�16 to 2 � 10�25 m/V2

Water 4.4 � 10�14 m/V2

Table 17 Pockels constants

Material with Pockels effect Pockels constant rP

Potassium dihydrogen phosphate (KH2PO4) 3.6 � 10�11 m/V

Deuterated potassium dihydrogen phosphate (KD2PO4) 8 � 10�11 m/V

Lithium niobate (LiNbO3) 37 � 10�11 m/V

Fig. 141 Mach-Zehnder

interferometer with a Pockels

cell (region between the

electrodes) in one of its arms
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There are also devices employing the effect that some materials turn the polari-

zation angle of light (cf. Fig. 143). Before entering into the device, the light passes a

polarization filter. At the end of the device, a second polarization filter is arranged

adjusted for light polarized perpendicular to the first filter. Thus, only light with a

polarization direction turned by 90� in the cell can pass it. This is also a way to

generate data bits which are sent through an optical fiber.

Exercises

Problem 27

The resolution of an optical instrument is defined as the distance between neigh-

boring points of the image which can be distinguished from each other. According

to Lord Rayleigh, two points can be distinguished from each other, if the intensity

maximum of one point lies in the minimum of the neighboring one.

(a) Find a way to calculate the resolution of an ideal lens on the basis of (314)

(page 177). Derive an equation for the calculation of the resolution limit.

(b) It does not help to make the distance of the pixels of a CCD chip narrower than

the resolution of the lens. The lens of the digital camera of a mobile phone has a

diameter of 2 mm and a focus length of 28 mm. Calculate for the wavelength of

visible light with the maximum intensity in the sun light (550 nm) the minimum

distance of pixels which makes sense.

(c) For comparison, calculate the resolution of the lens of a 35 mm camera at the

same wavelength. Assume that the lens of that camera has a diameter of 30 mm

and a focal length of 50 mm.

Fig. 142 Linear part of the

cos2-function marked by a

dashed ellipse

Fig. 143 Device employing

turning of polarization

direction of light for sending

data bits into an optical fiber

Exercises 189



Diffusion

If two liquids are to be mixed in macroscopic applications, it is usual to generate

some turbulence which facilitates mixing very much. Turbulence is achieved when

the Reynolds’ number Re becomes larger than approximately 1,500. The Reynolds’

number is the ratio of inertial and friction forces in a flow. The inertial forces are

described by the product of the density rF of the liquid, a characteristic length L of

the vessel or a rigid structure in interaction with the flow, and the velocity v of the

flow. The frictional forces are described by the viscosity � of the fluid:

Re :¼ rF L

Z
v: (335)

As an example, the Reynolds’ number of a flow in a water pipe can be estimated:

If the flow is generated by a pressure difference of 50 kPa over a pipe, 1,000 m in

length, and 1 cm in diameter, with (177) (on page 108), and the viscosity of water

(10�3 Pa s), the mean velocity of the water is calculated to be 16 cm/s. By inserting

this into (335) together with the density of water (1,000 kg/m3), the Remolds’

number of 1,562 is obtained. This result clearly shows that the flow in a water pipe

is at the limit of a turbulent flow. If we reduce all dimensions by a factor of 1,000,

the diameter, length, and mean flow velocity become 10 mm, 1 m, and 160 mm/s,

respectively. As a result, Reynolds’ number is 0.0016. This example shows that in

most cases there is no turbulent flow in microcapillaries. As a consequence, mixing

of fluids in microtechnique can only hardly be achieved by turbulent flow. The only

remaining possibility is micromixing by diffusion. Fortunately, mixing becomes

quicker when dimensions are scaled down.

Diffusion is due to the motion of atomic and molecular particles. The tempera-

ture of all substances is due to the average kinetic energy of its atomic and

molecular particles. This kinetic energy is the consequence of a random movement

of the particles. That is, the higher the temperature T of a substance is, the quicker

are its particles moving:

1

2
mT v2
� � ¼ 3

2
kB T ) v2

� � ¼ 3
kB T

mT

: (336)
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In the above equation, the left most term is the average kinetic energy of the

particles. The angle bracket indicates that the average of the square of the velocities

has to be calculated. kB denotes the Boltzmann constant (¼1.4 � 10�23 J/K).

Since the molecular particles are moving randomly, the average of the velocity

and the average of the moved distance in a certain time are both zero. Only the

average of velocity and moved distance are not zero. Einstein was the first who

calculated the average of the square of the moved distance s during a time Dt of
particles with radius RT in a fluid with viscosity Z:

s2
� � ¼ kB T

3 p Z RT

: (337)

The random walk of small particles in a liquid can be observed with a micro-

scope. It is called Brownian motion.

Brownian motion of atomic and molecular particles is the reason for diffusion. If

two fluids (gases or liquids) are in contact to each other, the random walk of their

particles results in mixing of the two fluids. Diffusion of gases and liquids also

occurs in rigid bodies when, e.g., the particles of a gas move between the atoms of

the crystal lattice.

Diffusion can be calculated by solving the following differential equation which

is Fick’s second law:

@cF
@t

¼ �D
@2cF

@x2
with D ¼ kB T

6 p Z RT

: (338)

In the above equation, D is the diffusion constant as calculated by Einstein from

the random walk of particles with radius RT moving in a fluid with viscosity � at

temperature T.

Besides the fact that the mean of the velocity squares of the molecular particles is

rising with temperature, (336) shows that smaller particles (with less mass) are

moving faster at the same temperature. As a consequence, very small movable parts

tend to move randomly generating a random noise, e.g., of an acceleration sensor

such as shown in Fig. E15 on page 83. Therefore, there is a limit for reducing the

size of such sensors.

If two fluids with the same density and wettability (capillary forces are the same)

are fed into a single microcapillary, they follow a laminar flow next to each other

(cf. Fig. 144). While they are in contact with each other, diffusion starts and

downstream they get increasingly mixed. There is no equation with which the

time Dt for mixing in a capillary with width bK in a medium with diffusion constant

Fig. 144 Mixing two fluids

coming from the left in a

microcapillary

192 Diffusion



D can be calculated exactly. However, as a rule of the thumb the following equation

is valid [54]:

Dt � b2K
4 D

: (339)

Often it is desirable to reduce mixing time and the overall dimensions of the

mixing capillary, because both result in higher costs. Reducing the flow velocity

requires a shorter capillary; however, the amount of mixed fluid per time is

diminished that way. A large mixing rate is wanted, and, therefore, the objective

is to reduce mixing time and overall dimensions at a given flow rate and cross-

sectional area of the capillary.

A possibility to increase mixing is to raise temperature. According to (338), the

diffusion constant is proportional to temperature. Besides this, the viscosity of most

fluids decreases very much with rising temperature resulting in a diffusion constant

which is increasing nearly with the square of temperature. However, enhancing

temperature is often limited because liquids should not boil and, e.g., organic

substances can be destroyed at comparatively low temperatures.

Another possibility is to keep the cross-section or hydraulic diameter [cf. (176)

on page 107] of the mixing capillary constant by decreasing the width bK (the

direction of diffusion) and increasing the height. This way, the contact area of the

fluids to be mixed is increased and the necessary diffusion depth is reduced.

Reducing the width of a microcapillary is limited because the risk that particles

block it, is higher for narrower channels. Often a minimum width of 100 mm is a

good compromise. Since it is desirable to reduce the mixing time even more than

what can be achieved with a reduced width at constant cross-section, a lot of

designs have been developed which all enhance the contact area and reduce the

necessary diffusion depth. In the following, some of these designs are introduced.

Instead of feeding the fluids into a single capillary in parallel, they can be fed in

sequentially (cf. Fig. 145a). Due to the parabolic profile of the laminar flow, the

contact area of the fluids is increasing downstream rapidly and the necessary

diffusion depth is drastically reduced. If the width of a parabola at the tip of the

following one is taken as an approximate measure for the necessary diffusion depth

d, an equation of the reduction of mixing time is obtained. The length x of the

Fig. 145 Sequential mixing without (a) and with (b) increase of capillary diameter
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parabola from the beginning of the capillary to the peak is calculated from a

parabola equation with the unknown parameter a:

x ¼ a
bK

2

� �2
) a ¼ 4

x

b2K
: (340)

The distance Dx from the peak of one parabola to the next one is according to the

above parabola equation:

Dx ¼ a
d2

4
¼ x

b2K
d2 ) d2

b2K
¼ Dx

x
¼ 1

n
: (341)

In the above equation, n is the number of switchings between the two fluids

during sequential feeding. The comparison with (339) shows that the mixing time

reduces approximately proportional to the inverse of the number of switchings.

Another solution for reducing mixing time is enhancing the cross-sectional area

of a channel with sequential feeding (cf. Fig. 145b). Due to the laminar flow, the

volume of every sequence is spread over the larger diameter and diffusion is

enhanced. If the diameter is increased by a factor of 10, the cross-section is

enhanced and the diffusion depth is reduced by a factor 100, and the mixing time

according to (339) is shortened by a factor 10,000. That is, the mixing time scales

with the inverse of the fourth power of the diameter change.

The disadvantage of micromixers with sequential feed is that some means is

required which provides the switching between the two fluids.

Mixing with parallel feed can be enhanced by ridges on at least one of the walls

of the mixing channel (see Fig. 146) [55]. The ridges are designed at an angle (e.g.,

45�) to the flow direction, and, this way, generate a rotation in the laminar flow

increasing the contact area between the two fluids. As a result, diffusion and mixing

are enhanced significantly. The fabrication of ridges on one wall of a channel can be

comparatively easy, e.g., by polymer molding. Unfortunately, there is no equation

available with which the mixing time can be calculated easily. Thus, Finite Element

calculations or experiments with varying dimensions are necessary to find the

optimum design.

Mixer designs which are easier to understand are those which separate the parallel

flow of two incoming fluids and join them again in a changed arrangement such

that the interface area between the fluids is enhanced. Figure 147 shows a possible

Fig. 146 Section of a mixing

channel with ridges on one

wall
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design. Fluid 1 is entering a wide channel (cf. 147a). From a lower level, Fluid 2

is entering through several (In Fig. 147 there are shown two.) orifices into the

wide channel. This way, several flow stripes are generated next to each other.

These stripes are then entering a narrower channel which brings them into close

contact. Except the stripes directly at the wall, diffusion now can start to both

sides of the stripe. This halves the necessary diffusion depth, and according

to (339), the approximate mixing time as a function of the number of stripes n

generated becomes:

Dt � 4 b2K
4 n2 D

¼ b2K
n2 D

: (342)

The above equation results in a reduction of the mixing time by a factor of 4/n2

compared with mixing in a channel without generating several stripes.

Owing to the parabolic flow profile, it may be an advantage to design the flow

stripes in the center of the wide channel narrower than at the wall, because the

quicker flow results in less time for diffusion.

The width of the wide channel is determined by the minimum width of the

orifices between the channel of fluid 2 and the wide channel. This width is required

to avoid blocking by particles which may occur in the fluid. When the narrowing of

the wide channel to the same width is designed, it needs to be taken into account

that bubbles can block a channel where it gets narrower (cf. page 118f).

Another way to generate flow stripes is to separate a channel with the parallel

flow of two liquids vertically into two flow channels containing the parallel flow of

both fluids, Figure 148a, b shows cross-sections of this channel. Then the two

Fig. 147 Micromixer

injecting one fluid into the

flow of the other one
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channels are joined horizontally (Fig. 148c) and the width is reduced to the half and

the height is doubled achieving the dimensions of the initial channel again

(cf. Fig. 148d). This procedure can be employed several times, each time reducing

the diffusion depth by a factor of 2. If, as an approximation, it is assumed that

mixing starts not before the last step of dividing and reunifying the flow, the mixing

time can be calculated with (342), because a number of parallel flow stripes is

generated there also.

So far passive micromixers have been described. Mixing can be supported also

by active devices which generate an enlarged interface area between the fluids to be

mixed. For example, ultrasound can be employed in a mixing chamber or an

electro-osmotic motion (cf. page 122) can be overlaid to a flow around corners or

other structures in the channel [56]. Figure 149 shows the FEM calculation of the

flow of two liquids through a curved channel. Owing to the laminar flow, only slow

mixing by diffusion occurs (a). If, however, an alternating electric field is applied to

the channel at the region of the curves, fast mixing is observed (b).

Not only atoms and molecules are exchanged by diffusion but also the tempera-

ture itself. As heat conduction is a diffusion process, the concepts employed for

mixing also help to enhance heat exchange. The interface area between the media

Fig. 148 Vertical separation

and horizontal joining a flow
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between which heat is to be exchanged needs to be designed as large as possible.

If a fluid is used to cool or heat another fluid but both fluids shall not be mixed, flow

stripes need to be separated by walls which are as thin as possible. Thus, parallel

channels have to be constructed which are very near to each other in a material

which is a good heat conductor. Such devices are called heat exchangers.
The heat flow Fth from a warm channel to a cold one with a temperature

difference DT through a wall with area A (cf. Fig. 150) is described by the

following equation:

Fth ¼ kW A DT: (343)

The quantity kW in the above equation is the heat transition coefficient. The heat

flow per volume of the heat exchanger is obtained by dividing (343) by the volume V:

Fth

V
¼ kW

A

V
DT: (344)

The ratio of the area of the walls in a microreactor to its volume obviously

becomes larger when the overall size is reduced (cf. page 3), providing a much

larger heat exchange than in a macroscopic heat exchanger. Besides this, the heat

transition coefficient also increases with decreasing dimensions.

The heat transition through a wall consists of three steps (Fig. 151): The heat

transfer from the warmer fluid to the wall, the heat conduction through the wall, and

the heat transfer to the colder fluid. When the temperatures of the fluids are held

constant, the heat flow for all three steps is the same resulting in the following

equation:

Fig. 149 FEM calculation of slow mixing in a curved flow channel (a) and fast mixing in the same

channel (b) with an alternating electro-osmotic motion overlaid to the flow [56]. (Courtesy of

Karlsruhe Institute of Technology, KIT)

Fig. 150 Heat flow through

the wall between channels
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Fth ¼ a1 A DT1 ¼ lth
L

A DT2 ¼ a2 A DT3: (345)

In the above equation, lth, L, a1, a2, and DTi are the heat conductivity of the wall,

the thickness of the wall, the heat transfer coefficients of fluid 1 to the wall and from

the wall to fluid 2, and the temperature differences, respectively, as shown in

Fig. 151. The sum of the temperature steps is the total temperature difference

between the fluids:

DT ¼ DT1 þ DT2 þ DT3: (346)

Equations (345) and (346) result in the following expression:

DT ¼ Fth

a1A
þ L Fth

lthA
þ Fth

a2A
¼ Fth

A

1

a1
þ L

lth
þ 1

a2

� �
¼ Fth

A

1

kW
: (347)

The last term in the above equation is obtained from the comparison with (343)

yielding:

1

kW
¼ 1

a1
þ L

lth
þ 1

a2
: (348)

The heat transfer coefficients ai can be expressed by the heat conductivity lF of
the fluid, the Nusselt number Nu, and the hydraulic diameter Dh of the flow channel:

ai ¼ Nu lF
Dh

: (349)

The Nusselt number is a parameter which describes the heat transfer between a

flowing fluid and a rigid surface. It is a function of the flow velocity and material

constants. Therefore, from (348), it is concluded that decreasing the size of chan-

nels, and, that way reducing the hydraulic diameter and the width of the walls,

results in an increase of the heat transition coefficient kW. The increase in heat flow

Fig. 151 Temperature

distribution due to heat flow

through a wall
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per volume as calculated with (344) due to the larger heat transition coefficient and

the surface to volume ratio can become much larger than a factor 100.

Heat exchangers can also be employed to control the temperature very precisely

at which a chemical reaction takes place. In a microreactor mixing channels can be

surrounded by channels through which a fluid (e.g., water) at the desired tempera-

ture is flowing comparatively quickly. This way, even exothermal reactions which

under other conditions would result in an explosion can be held under control, such

as the reaction of oxygen and hydrogen to water.

Although microreactors have comparatively small outer dimensions, their

throughput can be large and suitable for large scale industrial production, because

the reaction time is nearly the same as the mixing time which according to (339)

(page 193) is proportional to the square of the channel width. The channel width can

be made much smaller in microtechnique than in macroscopic reactors. Besides

this, the chemical reaction at well-controlled temperature yields the desired product

with high efficiency.

A special type of microreactor is a chip for polymerase chain reaction (PCR).

PCR is the biological reaction which is employed to enhance the number of DNA

molecules to ease their analysis. Such PCR chips are under development at different

laboratories. If once they are available at low cost, they could revolutionize medical

diagnosis. Instead of analyzing the symptoms of a patient, it could become possible

to detect the DNA of the virus or bacteria in the blood. Certainly, other applications

would benefit from a generally available and low-cost DNA analysis also, such as

forensic analysis, paternity testing, and detection of hereditary diseases.

For PCR, the helix of the DNA needs to be split into two single strands. This is

achieved by heating the sample up to 95�C for 1 min. Then a special kind of

molecules, so-called primers, which had been added to the sample, needs to be

affixed to certain positions of the DNA. This happens when the sample is held at

55�C for 45 s. In a third step nucleotides, the basic acids from which the DNA is

build up (adenine, guanine, cytosine, and thymine) starting at the primers are added

according to the corresponding acids on the existing DNA strand to complete it to a

double helix again. This is achieved when the temperature of the sample is held at

75�C for 2 min. This way, in a thermal cycle, one double helix is transferred into

two. When the thermal cycle is performed several times, e.g., 20 or 40 times, from

one DNA there are generated millions of copies which in following steps can be

analyzed.

As a consequence, a PCR chip needs to thermally cycle the sample between three

temperatures needed for the process. A simple way to achieve this is to let the sample

flow through a channel which passes through temperature zones (cf. Fig. 152).

The length of the channel in the temperature zones is adapted such that the sample

stays there for the required time. It would also be possible to change the cross-section

of the channel in the different zones to adapt the flow velocity. However, a changing

cross-section enhances the risk that the channel is blocked by particles in the liquid

or by bubbles (cf. page 118f).

In general, the largest problem of microheat exchangers and microreactors is

blocking of the microchannels by particles, algae growing inside, and bubbles.
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Besides this, corrosion may be a problem because the large area of the thin walls is

quickly corroded away.

Exercises

Problem 28

Two different water-based solutions are fed into a mixing channel. The flow

velocity in the channel is 1 cm/s. The radius of the diluted molecules is 0.1 nm

and the width of the mixing channel is 100 mm.

(a) How long must the mixing channel be designed to achieve complete mixture?

(b) For comparison consider a water pipe into which a colorant is leaking. The flow

velocity and the radius of the colorant molecules is the same as in Question (a).

The diameter of the water pipe is 1 cm. After what flow distance are water and

colorant completely mixed?

Hint: Use the diameter of the water pipe as the approximate diffusion depth in

the equation.

Dynamic viscosity 1.002 mPa s Boltzmann constant 1.38 � 10�23 J/K

Temperature 298 K

Problem 29

With the micromixer shown in Fig. 144 (page 192), ethanol and water are mixed in

a 1:1 ratio. The flow velocity of both liquids together is 20 mL/min. The cross-

section of the mixing channel is 100 mm � 100 mm. The diffusion constant of

ethanol in water is at room temperature 0.84 � 10�5 cm2/s. The mixing channel is

arranged such that the lighter ethanol is flowing above the water. This way gravity

nearly does not influence the mixing process. (Otherwise the ethanol would go to

the upper side first and during this mixing can be facilitated.)

Fig. 152 Schematic drawing

of a PCR chip with only three

thermal cycles and three

temperature zones
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(a) Please calculate how long the mixing channel needs to be to obtain complete

mixture of the two liquids.

(b) The mixer from (a) shall not be longer than 4 mm except the inlet and the outlet

part. It shall be arranged in windings on an area which has to be as small as

possible and the distance between the channels cannot be less than 100 mm
because of the fabrication process (see Fig. E24). Please calculate how many

windings are necessary and how wide the mixer needs to be. Ignore the area

needed around the mixer.

(c) Another possibility to reduce the size of the mixer is to design a narrower

channel. Please calculate how wide a mixing capillary needs to be to achieve

complete mixing of ethanol and water in a 4-mm long strait channel. The height

of the channel remains to be 100 mm.

(d) Assume now that the height of the capillary in (c) is increased to 2 mm. How

long must this channel be if its width is 4 mm?

(e) The capillary with a cross-section of 100 mm � 100 mm shall now be split into

several parallel flow stripes and reunified as shown in Fig. 147 on page 195. The

other conditions are not changed. How many parallel flow stripes are necessary

to achieve complete mixing in a 200-mm long channel?

(f) Approximately the same mixing rate as in (e) is achieved, if the flow is split

vertically into two equal parts and reunified horizontally as shown in Fig. 148 so

many times as there are parallel flow stripes in (e). Make a justified guess which

of the two possibilities needs more space, and, therefore, is more expensive.

Assume for simplicity that the mixing starts not before the last reunification of

the flow paths.

Fig. E24 Winding mixing

channel
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Microvalves

Microvalves have a lot of potential applications. They can be employed for dosing

of small liquid volumes, controlling pneumatically or hydraulically driven robots or

machines, and as a pilot valve which switches a larger valve.

Potential advantages of microvalves compared with macroscopic valves are a

smaller size, less weight, less cost, smaller dead volume, shorter switching time,

and less energy consumption. The main problems which occur with microvalves are

small flow through and large pressure drop over the open valve, blocking by

particles and bubbles, and sensitivity to temperature changes. The reason for

these problems is mostly that it is difficult to build an actuator which provides

both large stroke and large force, i.e., the energy generated in a small volume is too

small.

Valves, in general, are classified by the number of ports and the number of

switching states they have. In Fig. 153, a 3/2-way valve is shown. This means that

there are three ports and two possible switching states which correspond to two

possible positions of the valve body. If the valve body is pressed onto the valve seat

of the port which is connected to the pressure supply (on the left in Fig. 153), the

valve is closed and no medium can go into the work port. In this state, the work port

can be vent through the valve which may be necessary, e.g., to move a piston back

into its rest position.

If the valve body is pressed onto the seat of the vent port, the valve is open and

the pressure from the supply reaches the work port, and e.g. let a piston make a

stroke. The vent port is closed in this switching state of the valve.

3/2-way valves are a very common design for valves which are employed to

control the motion of devices. More basic is the design of 2/2-way valves which

only open or close a flow or pressure supply. A 3/2-way valve can be composed of

two 2/2-way valves when the inlet of the one valve and the outlet of the other valve

are connected to the work port and one valve is opened when the other one is closed

and vice versa. There are also more complicated designs such as 6/2-way valves,

but they are needed only for special applications and all can be replaced by a

suitable combination of 2/2-way valves.

The principal design of a 2/2-way valve is shown in Fig. 154. The two designs

shown differ only in the direction of the flow. As a consequence, the valve in

Fig. 154a is open, when the actuator is not powered and the other design results in

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,
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a closed valve when there is no power. These two types of valves are called

normally open and normally closed, respectively. There are macroscopic valves

which are normally open or normally closed independent on which port the higher

pressure is applied. There are applications for which normally closed valves are

needed such as the valves at a pressure or gas support which needs to close to avoid

losses when there is a power break down. For other applications, normally open

valves are required, e.g., a vacuum vessel should be vent for safety reasons when

power is not available. Besides normally open and normally closed valves, there are

also bistable valves which retain their state when power is turned off.

Fig. 154 Schematic drawing

of a 2/2-way valve as

normally open (a) and

normally closed type (b)

Fig. 153 Schematic drawing

of a 3/2-way valve. The valve

body is either in the closed or

the open position
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Valves are also distinguished from each other by their working principle. The

valve body may be moved in flow direction (seat valve, cf. Fig. 155a), perpendicu-

lar to the flow (slide valve, cf. Fig. 155b), or it can be turned in the flow either as

a flap (Fig. 155d) or as a plug (Fig. 155c). The latter design is not suitable for

microtechnique because the sealing between two rigid walls can hardly be achieved

and the friction between them is comparatively large and hard to overcome by a

microdrive.

The fabrication of a flap appears to be possible, but it is difficult to connect a

suitable drive to it. A drive inside of the medium is not desirable, because the

medium could affect the drive or the drive could heat the medium or influence it in a

different way. If the drive is placed outside of the flow channel, it is difficult to seal

the mechanical connection to it. Besides this, a 90� turn is a comparatively large

stroke for a microactuator. Therefore, in the following only the valve types shown

in Fig. 155a, b are discussed in more detail.

If a seat valve is to be closed against a certain pressure difference Dp, the force
FH needs to be overcome by the actuator which equals the product of the pressure

difference and the cross-sectional area A of inner edge of the valve seat. To close

the valve, the work WH needs to be done by the actuator which is calculated from

the product of the force FH and the stroke H of the valve:

FH ¼ Dp A and WH ¼ FH H ¼ Dp A H: (350)

The narrowest part of the flow channel through the valve is the gap between

valve body and valve seat. The flow through the valve is controlled by the height of

Fig. 155 Valve types where the valve body is moving in flow direction (a), perpendicular to it

(b), or turned in the flow as a channel (c) or a flap (d)
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this gap. If a laminar flow is assumed, the pressure drop DpS over the valve seat can
be calculated with the Hagen Poiseuille equation [(175) on page 107]:

DpS ¼ �32
Z LV

D2
h

v ) v ¼ �D2
h

32 Z LV

DpS: (351)

As an approximation, it is assumed here that the gap of the valve corresponds to

a capillary with a length LV which is equal to the width of the valve seat and a width

which is equal to the circumference length US of the valve gap. As a consequence,

the hydraulic diameter Dh [cf. (176) on page 107] is calculated as:

Dh ¼ 4 H US

2 US

¼ 2 H: (352)

The volume flowFF through the valve is calculated from the product of the mean

velocity v of the flow and the cross-sectional area A of the gap. With (351) and

(352) now it is obtained:

FF ¼ v A ¼ v H US ¼ �D2
h H US

32 Z LV

DpS ¼ �H3 US

8 Z LV

DpS: (353)

It needs to be noted that in the above calculation, it is ignored that the direction

of flow is often changed inside of a valve. Besides this, it is assumed above and in

the following that the flow would be laminar. However, especially the flow of a gas

can be turbulent in comparatively wide and short channels of a microvalve. As a

consequence, the real flow can be much smaller (e.g. a factor of 10) than expected

from (353).

Although the real flow can be much smaller than calculated with the equations

presented here, the principle interrelationships are shown the right way, and,

therefore, help to understand how microvalves should be designed.

A microdrive typically is not able to provide a large stroke and a small stroke

results in quick switching of the valve, because the valve body needs to be moved

only a small distance. The above equation shows that the stroke can be reduced

when the circumference length of the seat is enhanced and its width is reduced.

The minimum width of the seat of a microvalve in most cases is limited by the

minimum dimensions which can be fabricated. Contrary to this, the length of the

circumference can be enlarged, e.g., by employing more than one valve seat as

shown in Fig. 156a, b. Another possibility is to design a winding valve seat such as

shown in Fig. 156c [58]. In both cases, the disadvantage is that the cross-sectional

area of the valve seat is increased. Therefore, a larger actuator force is required; and

it is also a problem for many microactuators to generate large forces. Thus, it can be

concluded that the product of stroke and force which is generated by a suitable

actuator needs to be large enough, which according to (350) is the work or energy

output of the actuator. Besides this, the stroke H enters into (353) with the third
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power and, therefore, it is hard to compensate a smaller stroke by changing other

dimensions, and it remains to be a challenge for designers to achieve a large enough

actuator stroke.

In the above and the following equations, it has not been taken into account that

the flow direction is changed along the flow path. As a result, there is a much larger

flow resistance than calculated, and it should not be expected that the calculated

flow is really achieved. However, the principle interrelationships are described

correctly.

For an open valve, the pressure drop over the valve seat is not the same as the one

over the entire valve, because some feed channels are required to connect the ports

to the valve seat. As an approximation, it is assumed that the feed channels have a

constant cross-section AZ with hydraulic diameter Dh,Z and an overall length Lz.

The volume flow through the entire valve FF is equal to the flow through the valve

gap FS and the feed channels FZ, and the pressure drop DpV over the entire valve is

the sum of the pressure differences over the valve seat DpS and the feed channels

DpZ. According to (353) and (351), the following equations are obtained:

DpV ¼ DpS þ DpZ ¼ 8 Z LV

�H3 US

FS þ 32 Z LZ

�D2
h;z AZ

FZ

¼ � LV

H3 US

þ 4 LZ

D2
h;z AZ

 !
8 Z FF (354)

) FF ¼ �DpV

8 Z LV H3 USð Þ= þ 4 LZ=ðD2
h;z AZÞ

� � ¼:
�DpV
Rfl

: (355)

The comparison of (355) with (353) yields the interrelationship between the

pressure drop over the valve seat and the entire valve:

DpS ¼ 1

1þ 4 H3 US LZ ðD2
h;z AZ LVÞ

.� �DpV: (356)

For an annular valve, seat with radius RZ and width LV this is:

Fig. 156 Valves with an

increased length of the

circumference of the valve

seat. Cross-section (a) and top

view of multiple inlets (b),

and top view of a winding

valve seat (c) [58]
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DpS ¼ R3
Z

R3
Z þ 2 H3 LZ LV=ð ÞDpV: (357)

For a square valve, seat with edge length HZ and width LV this is:

DpS ¼ H3
Z

H3
Z þ 16 H3 LZ LV=ð ÞDpV: (358)

The quantity Rfl in (355) is called the flow resistance of the valve. It will be used

later in this book. The flow as a function of the stroke is called the characteristic

curve of a valve. The characteristic curve of a microvalve calculated with (355) is

shown in Fig. 157 as a function of the width of the valve seat LV. Circular feed

channels and a circular valve seat both with a radius of 100 mm, a length of the feed

channels of 500 mm, a pressure drop of 100 kPa over the valve, and water as the

fluid (� ¼ 1 mPa s) have been assumed.

The flow through the microvalve is increasing with the stroke H and asymptoti-

cally approaching the theoretical limit of a valve without any slit which is obtained

from (355) with an infinitely large stroke or an infinitely small width LV of the valve

seat. As it is difficult to achieve a large stroke, the question arises what minimum

stroke is required. For large strokes, a further enhancement does not yield a

significant rise in flow. Therefore, typically the stroke is designed so large that

90% of the theoretical limit is achieved. For macroscopic valves, the rule of the

thumb is used that the stroke should be as large as half of the radius of the valve

seat. In Fig. 157, this would correspond to 50 mm stroke which would be a suitable

value, if the width of the valve seat is 20 mm. However, even a valve seat with a

width of 50 mm (less than the diameter of a hair!) is hard to fabricate. Thus, this

example shows how important it is for a microvalve to fabricate a small width of the

valve seat and a large stroke.

It is also seen in Fig. 157 and from (355) that the flow is increasing with the third

power of the stroke as long as the stroke is small, because the flow is limited by the

gap between valve seat and valve body. Next to this stroke range, there is a more

linear relationship between flow and stroke. This range is favorable for a valve

which shall be employed for controlling a continuous flow. For this kind of valves, a

somewhat wider valve seat is desirable which allows for a precise adjustment of the

flow (if the actuator is able to provide the necessary stroke length).

Fig. 157 Characteristic

curve of a microvalve for

different widths of the valve

seat and theoretical limits for

valve gap without feed

channels and feed channels

without valve gap

208 Microvalves



When the valve body is moved perpendicular to the flow the valve is called a

slide valve (cf. Fig. 155b). To close the valve, the friction in the bearing of the valve

body needs to be overcome by the actuator. That is, the actuator does not need to

work directly against the pressure over the valve gap. The narrowest part of the flow

channel is the part which is not closed by the slide and the flow is controlled by the

size of that gap.

For simplicity of the calculation, it is assumed now that both the feed channel

and the slide have a rectangular cross-section. The volume flow FS through the gap

of a valve with cross-sectional area Ag, height H, width B, and length LV at a

pressure difference DpS is calculated corresponding to (353) and (351) as:

FS ¼ v Ag ¼ �D2
h H B

32 Z LV

DpS: (359)

The hydraulic diameter of the rectangular gap is calculated according to (176) on

page 107:

Dh ¼ 4H B

2 Hþ 2 B
¼ 2

H B

Hþ B
: (360)

The volume flow FZ through the feed channels with height HZ, width BZ, overall

length LZ, and a pressure drop DpZ is calculated in the same way as for the flow

through the gap of the valve. As in the case of the seat valve, the flow through the

entire valve FF is the same as through the feed channels and the gap:

FF ¼ FZ ¼ FS ¼ �H3
Z B3

Z

8 Z LZ HZ þ BZð Þ2 DpZ ¼ �H3 B3

8 Z LV Hþ Bð Þ2 DpS: (361)

With DpZ ¼ DpV � DpS, it is obtained from the above equation:

DpS ¼ DpV

1þ H3 B3=ðLV Hþ Bð Þ2Þ
� �

LZ HZ þ BZð Þ2= H3
Z B3

Zð Þ
� � : (362)

Thus, the pressure difference over the gap of the slide valve is a function of the

stroke H. In Fig. 158, this interrelationship is shown for a valve at which width BZ

Fig. 158 Pressure difference

over the gap of a slide valve

as a function of the stroke
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and height HZ of the feed channels and the width of the slide B are all 200 mm, the

length of the gap LV and the feed cannels LZ are 20 and 500 mm, respectively, the

pressure difference over the entire valve DpV is 100 kPa, and the fluid is water with

a viscosity of 1 mPa s.

The flow FF through the valve as a function of the pressure difference over the

entire valve is obtained now by inserting (362) into (361):

FF ¼ DpV

8 Z LV HþBð Þ2= H3 B3ð Þ
� �

þ LZ HZþBZð Þ2=ðH3
ZB

3
ZÞ

� �� �¼:
DpV
Rfl

: (363)

The above equation is the characteristic curve of a slide valve. The quantity Rfl is

the flow resistance of the valve. The characteristic curve for a microvalve with the

same parameters as used for Fig. 158 is shown in Fig. 159. The comparison with

Fig. 157 shows that the characteristic curves are very much alike each other, but the

stroke which is necessary to achieve a certain flow is for a slide valve approximately

a factor 2.5 larger than for a seat valve. The larger stroke also results in a longer

switching time. The necessary stroke length can be reduced by decreasing the

length LV of the gap. The limit of the length of the gap is defined by fabrication

and stability issues.

As a consequence, the actuator required for a slide valve needs to achieve a

larger maximum stroke Hmax. The stroke can be reduced, if the width B of the gap is

increased, while the maximum stroke length is reduced such that the hydraulic

diameter remains to be constant.

According to (360), the necessary maximum stroke length for a given hydraulic

diameter Dh as a function of the gap width B is:

Hmax ¼ Dh B

2B� Dh

) lim Hmaxð Þ
B ! 1

¼ Dh

2
: (364)

From the above equation, it is seen that the stroke cannot be reduced to less than

half of the hydraulic diameter, even if the width of the gap is designed very large.

Even if the maximum stroke length is reduced to half of the hydraulic diameter, it is

still a factor of two more than for a seat valve.

Fig. 159 Characteristic

curve of a slide valve for

different length of the gap
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The force FH which needs to be overcome by the actuator of a slide valve is the

friction between the slide and the wall which is the slide bearing. The friction force

is the product of the friction coefficient m and the force which presses the slide

against the wall which can be estimated by the pressure difference DpS over the gap
times the area A of the gap covered by the slide. The area covered by the slide is the

width of the gap B times the difference of the maximum stroke length Hmax and the

actual deflection H of the slide:

FH ¼ m DpS A ¼ m DpS B Hmax � Hð Þ: (365)

The pressure difference DpS over the valve gap is described by (362) and drawn

in Fig. 158, but for simplicity it is approximated by a linear drop over the stroke of

the slide:

DpS ¼ 1� H

Hmax

� �
DpV (366)

) FH ¼ m 1� H

Hmax

� �
DpV B Hmax � Hð Þ

¼ mDpV B Hmax � 2 Hþ H2

Hmax

� �
:

(367)

The maximum actuator force FH,max is required when the valve is nearly

completely closed (H ¼ 0), because the area of the slide exposed to the pressure

difference over the gap is maximum in this case. If the maximum force required to

switch the valve shall be reduced by designing the optimum width BF,opt of the gap

and adopting the maximum stroke Hmax such that a certain hydraulic diameter is

achieved, the maximum force needs to be calculated as a function of the gap width

by inserting (364) into (367) with H ¼ 0:

FH;max ¼ m DpV B Hmax ¼ m DpV
B2 Dh

2 B� Dh

: (368)

The above equation is drawn in Fig. 160 as a function of the gap width for a

pressure difference over the entire valve of 100 kPa, a hydraulic diameter of 200 mm,

and a friction coefficient of 0.3. The minimum of FH,max is found by calculating the

derivative of (368) with respect to the width and setting it equal to zero:

Fig. 160 Maximum

switching force FH,max

required for a slide valve as a

function of the width of the

valve gap B
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qFH;max

qB
¼ mDpV

2BDh B� Dhð Þ
2B� Dhð Þ2 ¼ 0 ) BF;opt ¼ Dh: (369)

If BF,opt from the above equation is input in (364), the resulting maximum stroke

Hmax is also the hydraulic diameter Dh. Thus, the optimum form of the slide with

respect to a minimum force needed for actuation is a square. The maximum forces

required for a slide valve with a square gap and for a seat valve with a square seat of

the same dimensions are:

Slide valve : FH;max ¼ m DpV B2; Seat valve : FH;max ¼ DpV B2: (370)

Thus, for a slide valve, an actuator with a smaller force is sufficient than for a

seat valve. The actual value of the friction coefficient is a function of the roughness

and the materials of slide and wall and can vary in a comparatively large range, but

it will always be much smaller than 1.

When the stroke required to switch a valve is larger for a slide valve and the

force is larger for a seat valve, the question arises which valve type needs less

energy for switching. The energy WH required to switch a slide valve is found by

integrating the force FH over the stroke H. The force is available from (367):

WH ¼
ðHmax

0

FH dH ¼
ðHmax

0

m DpV B Hmax � 2 Hþ H2

Hmax

� �
dH

¼ 1

3
m DpV B H2

max: (371)

In the above equation, Hmax again can be expressed as a function of the width B

of the valve gap at a certain hydraulic diameter Dh with (364):

WH ¼ 1

3
m DpV BH2

max ¼
1

3
m DpV

B3 D2
h

2 B� Dhð Þ2 : (372)

Figure 161 shows the energy required for switching a slide valve as a function of

the width of the valve gap when the hydraulic diameter is held constant (All para-

meters are the same as in Fig. 160). Obviously, there is an optimum width BW,opt of

the gap for which the necessary switching energy is minimal. This optimum is

calculated by setting zero the derivative of (372) with respect to the width and solving

that equation for the width:

Fig. 161 Switching energy

WH of a slide valve as a

function of the width of the

valve gap B
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qWH

qB
¼ 1

3
m DpV B3 D2

h

2 B� 3 Dh

2 B� Dhð Þ3 ¼ 0 ) BW;opt ¼ 3

2
Dh: (373)

Inserting the above result in (364) yields for the maximum stroke length:

Hmax ¼ 3

4
Dh ¼ 1

2
BW;opt: (374)

The minimum energy required for switching the valve is now obtained from

(372) by inserting BW,opt for B:

WH ¼ 9

32
m DpV D3

h: (375)

For a seat valve, the energy required for switching is calculated with (350)

(page 205). If a square valve seat with an edge length B is assumed, and the stroke is

a forth of B, for the energy required for switching it is obtained:

WH ¼ 1

4
DpV D3

h: (376)

For the approximate calculation of the energy required for switching a seat

valve, it was not taken into account that the pressure over the valve body reduces

when it is lifted off the valve seat. This maybe halves the necessary energy. As a

result, the comparison shows that the energy required for valve switching is nearly

the same for seat valves and for slide valves.

If a normally closed seat valve as shown in Fig. 154b or in Fig. E20 (page 204

and 156, respectively) is opened, the switching force decreases during opening

because the pressure drop over the valve body is reduced. The change of the

switching force as a function of the stroke is schematically shown in Fig. 162

Fig. 162 Switching force

and actuator force of a piezo

as a function of stroke
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together with the characteristic curve of a piezo bimorph which could be employed

as a drive (cf. Fig. 105, page 145). As seen in the figure, the forces of both the piezo

and the necessary force for switching are decreasing with the deflection. Thus, the

force of the piezo is sufficient to open the valve. When the valve is to be closed,

the piezo is short-circuited (0 V) and its elastic force starts to push the valve body

back. The more the valve body is moved towards its closed position the stronger the

pressure drop over the valve body becomes and helps to close the valve, although

the force of the piezo is decreasing.

If instead of a seat valve a slide valve is used, the friction force always acts

against the movement of the slide. Therefore, opening of the valve is similar as for a

normally closed seat valve, but the valve can be closed only if the voltage is applied

to the other piezo of the bimorph.

A normally closed seat valve driven with a piezo is shown in Fig. 163 [59].

During assembly of the valve silicone was pressed into the space between piezo and

valve membrane and hardened there. The pressure of the silicone deflected the

piezo a little bit. Therefore, the elastic force of the piezo presses the membrane

down onto the valve seat and keeps the valve closed against a pressure from the

inlet. When voltage is supplied to the piezo, it bulges up for a few micrometers. The

diameter of the piezo is five times larger than the diameter of the movable part of

the membrane. Therefore, the membrane is lifted up 25 times more than the piezo.

This way, the small deflection of the piezo is compensated and the necessary large

stroke of the microvalve of at least 50 mm is achieved.

Filling the chamber between piezo and valve membrane after gluing the piezo

into the valve housing, has also the advantage that fabrication tolerances are not a

problem. A piezo which achieves only a stroke of a few micrometers needs to be

mounted with a tolerance which is much smaller than that. By injecting the silicone

into the chamber at a certain pressure, this problem is circumvented and fabrication

tolerances are compensated. The direct contact of the silicone to the piezo has also

the advantage that mechanical shock is damped and the risk of breaking the piezo is

reduced. However, the disadvantage of this valve is the thermal expansion of the

silicone which is much larger than the one of the housing. As a consequence, the

voltage required to open the valve is a strong function of temperature and at low

temperatures the valve may even open without voltage supplied.

One of the first microvalves developed [60] is schematically shown in Fig. 164.

It employs a thermal bimaterial actuator (cf. page 161f) made of a metallization on

a silicon membrane. The actuator opens the normally closed valve against the

pressure from the inlet which presses the boss onto the valve seat.

Piezo bimorph

Valve 
chamber

Valve seat

Silicone

Membrane

Glue

Inlet Outlet
Fig. 163 Normally closed

piezo seat valve [59]

214 Microvalves



The small thermal expansion of the metallization is enhanced by the bimaterial

effect. As a consequence, it may happen that the valve is already open after

fabrication or closed with a comparatively large force because of residual stress

in the metallization (cf. page 9f). Besides this, due to thermal stress, the valve is

sensitive to temperature changes. At elevated temperatures, the valve may open if

the pressure drop is too small, and at low temperatures more energy is required to

open the valve.

The temperature sensitivity and the risk of residual stress affecting the valve can

be decreased by a second inactive metallization as shown in Fig. E22 on page 173

[51]. However, it may be difficult to find the necessary dimensions and to ensure

that fabrication meets the required tolerances.

Electrostatic actuators are not sensitive to temperature changes. However, they

achieve large forces only at small distances. Therefore, it is interesting to discuss

the microvalve design shown in Fig. 165 [61]. A thin S-shaped foil from nickel is

placed between electrically insulated electrodes at the top and the bottom of the

valve chamber. When a voltage is supplied between the foil and the bottom

electrode, the foil is moving to the right, because this way a larger part of the foil

gets near to the bottom electrode. The bottom port is closed and the top port of the

valve is opened when the foil is moving to the right. The electrostatic force is

mainly working at the edge where the S-shaped foil is near to the bottom electrode or

directly in touch to its insulation layer (The insulation layer is not shown in the figure).

Thus, the electrostatic force can strongly attract the foil and a large stroke is achieved.

Temperature changes will have no significant effect on this type of valve

because the difference in thermal expansion of nickel and the housing made of

silicon only changes a little bit the slope of the S-shaped part of the foil, and no

stress is generated which could affect valve switching. Another advantage is that

power consumption is limited to switching. On the other hand, the long-term

performance of the valve must be observed with care, because folding up and

down the foil may result in wear if the foil is not thin enough, the curvature of

the foil is too large, or the foil material is too brittle.

Nickel foil

Fig. 165 Microvalve with

an S-shaped electrostatic

actuator [61]

Inlet

Outlet
Silicon

Metallization

Boss

Fig. 164 Normally closed

seat valve with a bimaterial

actuator [60]
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The valve shown in Fig. 166 also employs an electrostatic actuator which is

working on a short distance, while a large stroke is achieved by the design of a moving

electrode [62]. In this valve, two circular membranes are placed over concave-curved

electrodes. One membrane is bulging down and is in direct touch to the insulation of

the electrode (The insulation is not shown in the figure), while the other membrane is

bulging up and closing the inlet of the valve. The volumes between themembranes and

the electrodes are connected with each other through a flow channel.

When the valve shall be opened, a voltage is applied between the membrane

bulging up and the electrode below. The electrostatic force attracts the membrane

mainly where it is near to the electrode until the membrane flips over to its down

position. At the same time, the other membrane is pushed up by the air which is

squeezed out of the volume below the downward moving membrane. The elastic

forces of the two membranes keep them in their new positions and no power needs

to be supplied to the valve. Switching back to the closed state of the valve is

achieved by supplying voltage between the other membrane and the electrode

below.

Temperature changes may affect this valve, if the membranes are not made of

the same material as the housing. Besides this, outer forces acting on the housing

will change the voltage required for switching. As in the case of the S-shaped

actuator, long-term performance must be observed with care because wear may

reduce the stability of the membranes.

The valve designs shown in Figs. 165 and 166 enlarge the stroke of an electro-

static actuator while allowing a short distance between the electrodes which yields a

large force. The opposite is also possible. The force required for switching can be

reduced by the design shown in Fig. 167 [63]. The pressure applied to the inlet of

Fig. 166 Bistable

microvalve with an

electrostatic actuator [62]

Fig. 167 Microvalve which

can be switched with reduced

force [63]
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the valve is acting both on the valve body in the direction of the outlet and on the

membrane pulling the valve body back from the outlet. The area on the valve body

between the valve seat and the area of the membrane are adjusted such that the

valve is normally closed. If it shall be opened, a voltage is applied between the

membrane and an electrode on the lower part of the housing. Thus, the membrane

pulls the valve body away from the outlet. The distance between membrane and

counter electrode on the housing needs to be comparatively large in this case,

because a significant stroke is required to open the valve. However, the necessary

force is reduced because the pressure from the inlet is also acting on the membrane,

and, therefore, is balanced a bit.

If the membrane of the valve shown in Fig. 167 is not made of the same material

as the housing, temperature changes will have side effects on the valve because the

residual stress of the membrane will change and the force required to deflect the

membrane is a function of temperature. Similar effects will occur when outer forces

are acting on the housing. Another important issue is the tolerance during fabrica-

tion which needs to be small enough to ensure that the valve is normally closed and

can be opened by the week force of the electrostatic actuator. Besides this, when

only a small force is required to open the valve, it could be switched also by an

impact on the housing.

The time between applying the switching signal to a valve and the rising of the

pressure or the flow behind the valve is an important parameter for many applica-

tions such as pneumatic and hydraulic controls. Before a system behind the valve

can react, the pressure needs to be built up between the valve seat and the system. In

a hydraulic system, the pressure propagates with the speed of sound, and, since

microvalves are very small, this is not an issue. Switching time in a hydraulic

system is just a function of the time required to move the valve body.

In a pneumatic system, this is different, because a certain flow of gas into the

volume between the valve seat and the following system is required until the full

pressure is arriving (cf. Fig. 168). The volume between valve seat and the point

where the pressure rise is required is called the dead volume. The interrelationship
between volume and pressure of a gas in a certain volume in most cases is described

sufficiently well by the ideal gas law (295 on page 167). From this law, it is found

that the gas volume dV which needs to enter the dead volume VT to raise the

pressure p by dp is:

dV ¼ VT

p
dp: (377)

Fig. 168 Dead volume

between a valve and an

actuator
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The volume flow FF through a valve is calculated from the pressure difference

DpV and the flow resistance Rfl of the valve (cf. (355) and (363) on pages 207 and

210, respectively). Together with the above equation it is obtained:

FF ¼ DpV
Rfl

¼ dV

dt
¼ VT

p

dp

dt
) dp

dt
¼ pDpV

VT Rfl

¼ p pe � pð Þ
VT Rfl

: (378)

Separation of variables and integration allows calculating the pressure in the

dead volume as a function of the time after a sudden opening of the valve:

dt ¼ VT Rfl

p pe � pð Þ dp )
ðt
0

dt0 ¼
ðpe
p

VT Rfl

p0 pe � p0ð Þ dp
0 (379)

¼ t ¼ �VT Rfl

pe
ln

pe � pð Þ pe � DpVð Þ
p DpV

� �

) p ¼ pe � DpVð Þpe
DpV e� pe ðVT Rfl= Þð Þt þ pe � DpV

:

(380)

The pressure rise calculated with (380) for a microvalve with a fluidic resistance

of 223 Pa s/mL, a pressure drop of 100 kPa, and a pressure supply of 200 kPa at the

entrance of the valve is shown in Fig. 169 as a function of the dead volume. This

clearly demonstrates the effect of the dead volume on the rise time of the pressure.

The smaller the dead volume is, the quicker the pressure behind the valve will

change when the valve is opened.

According to (380), the pressure difference over the valve reduces by a factor

1/e (�1/2.7) in the pressure rise time tp:

tp ¼ Vt Rfl

pe
: (381)

As a consequence of the above equation, the product of the dead volume Vt and

the fluidic resistance Rfl needs to be minimized when a quick response time of a

pneumatic system is required. That is, fluid channels should be designed as short

and as wide as possible. This means also that the flow path between the valve seat

and the outlet of a microvalve should be designed as short and as wide as possible.

Fig. 169 Pressure rise in

dead volume calculated with

(380)
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The fluidic resistance of a capillary is found from (178) on page 108. In Table 11

on page 110, there are listed some fluidic resistances of capillaries which are often

employed in microtechnique. For a channel with a circular cross-section, the

pressure rise time tp according to (381) is:

tp ¼ 8 Z L2
K

pe R
2
Ka

: (382)

The above equation shows that scaling up or scaling down all linear dimensions

of the channel does not change the pressure rise time. Thus, the switching time of a

pneumatic microvalve could be expected to be the same as for a macroscopic valve.

However, microvalves can achieve shorter switching times because the stroke of

the valve body is smaller, and, therefore, this smaller distance can be covered in a

shorter time.

If only a back flow is to be avoided, a valve does not need an actuator and a

passive valve can be employed. The main application of passive microvalves are

micropumps (see next chapter).

The demands on passive microvalves are similar as on active ones. A small flow

resistance is required in forward direction, the valve needs to be tight in backward

direction and it should open and close as quickly as possible. Of course, as always,

the fabrication cost shall be low and the performance of the valve should not be a

function of parameters such as temperature and humidity.

Typical designs of microvalves are shown in Fig. 170. The valve body is a beam

clamped at one or both ends, a membrane, or a loose part such as a sphere or a

membrane. Besides the expected characteristic of the valve, fabrication issues need

also to be taken into account for the design. Maybe, for an application, a certain

design promises the largest flow but with the available fabrication equipment

another design is favorable, and therefore the best choice.

The flow through an open passive microvalve can be calculated with (355) (on

page 207), but the stroke needs to be calculated from the pressure difference over

Fig. 170 Passive microvalve designs employing as valve body a membrane (a, b), a beam

clamped at one end (c), and, a loose sphere (d)
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the valve seat. If the stroke is not too large, the pressure difference over the valve

seat will be nearly as large as the one which moves the valve body off.

If an elastic beam or membrane is employed as valve body, the deflection w0

(now representing the stroke H) can be calculated with an equation from Table 6 on

page 80. For example, for a beam with Young’s modulus EB, length LB, width bB,

and thickness dB clamed at one end and a circular feed channel with radius RZ, it is

found:

H ¼ 4
L3
B

EB bB d3B
F ¼ 4

L3
B p R3

Z

EB bB d3B
DpS: (383)

The above equation shows that the stroke of a passive valve employing as valve

body a beam clamed at one end is approximately a linear function of the pressure

over the valve seat.

If the valve seat is assumed annular and its radius is the same as the one of the

feed channel, the pressure drop over the valve seat DpS can be expressed by the

pressure difference over the entire valve DpV with (357) (page 208). As a result,

the interrelationship between the stroke of the beam and the pressure difference

over the valve becomes:

DpV ¼ EB bB d3B
4p L3

B R3
Z

2
LZ

LV

H3 þ R3
Z

� �
H: (384)

If the stroke (and the pressure drop over the valve) is small, the first term in the

parenthesis of the above equation can be neglected compared with the second one,

and the stroke can be expressed as a function of the pressure difference over the

valve. This shows that the stroke is a linear function of a small pressure difference:

H ¼ 4p L3
B R3

Z

EB bB d3B
DpV: (385)

If the pressure difference (and the stroke of the beam) is large, the second term in

the parenthesis of (384) can be neglected resulting in:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pL3

B R5
Z LV

EB bB d3B LZ

DpV
4

s
: (386)

The above equation shows that the stroke is only a week function of the pressure

difference over the valve when the stroke is large.

The characteristic curve of a passive valve is the flow through the valve as a

function of the pressure difference. This curve cannot be calculated in general,

because the stroke according to (384) cannot be expressed as a simple function of

the pressure difference. But it is possible to calculate for a given stroke H the

corresponding pressure difference and with this pressure drop and the stroke the
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volume flow according to (355) (page 207). This way the characteristic curve of a

passive microvalve with feed channels with a length of 500 mm, a radius of 100 mm,

and both radius and width of the valve seat of 100 mm was calculated and shown in

Fig. 171. For this calculation, a beam was assumed as valve body with a width of

200 mm, a thickness of 20 mm, and a Young’s modulus of 120 GPa, and the viscosity

of the flow medium was 1 mPa s (water).

Figure 171 shows that for a large stroke H (which is obtained with a long beam)

the flow FF through the passive valve is a linear function of the pressure difference

DpV over the valve. That is what has to be expected from (355): When the stroke is

large, the first term in the parenthesis in the denominator can be neglected, the flow

is only a function of the geometry of the feed channels and is proportional to the

pressure difference. This is the maximum flow which can be achieved for a passive

valve. The maximum flow can be enhanced by widening and shortening the flow

channels and choosing their cross-section as close as possible to a circular one

(resulting in a larger hydraulic diameter).

If the stroke is small, the second term in (355) can be neglected compared with

the first one and the flow is rising with the third power of the stroke. According to

(385), the small stroke of a beam is proportional to the pressure difference over the

valve. Inserting (385) into (355) yields:

) FF ¼ 8
p3 L9

B R6
Z US

Z E3
B b3B d9B LV

Dp4V: (387)

The above equation shows that for a small stroke the flow through a passive

valve with a beam clamped at one end as a valve body is a function of the fourth

power of the pressure drop over the valve.

Every passive valve will show a small stroke when the pressure difference over

the valve is small enough, and nearly every passive valve can show a large stroke

when the pressure difference is large enough (if it is designed properly and does not

break). Thus, the designer will try to choose the materials and dimensions such that

a small pressure difference results in a large stroke and consequently in a large flow

through the valve.

The larger a valve is, the more flow is achieved; but there is a reason not to

increase the dimensions of a passive valve too much: the dead volume. If the

direction of the pressure difference over the valve is reversed, the flow through

Fig. 171 Flow through

passive valves equipped with

beams, 5 and 0.8 mm in

length, respectively, as valve

bodies calculated with (384)

and (355)
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an ideal passive valve should stop immediately. In the reality, however, the fluid

volume between valve body and valve seat in the open position of the valve can

flow in backward direction resulting in a reverse flow as shown in Fig. 172.

The reverse flow of the dead volume takes some time because friction in the feed

channels hinders the flow. Therefore, the valve is not completely closed before the

back flow stopped and the duration of the back flow is called the switching time of

the valve. Obviously a short switching time is desirable.

It is difficult to calculate the dead volume of a valve exactly, because the flow

around the valve body would need to be taken into account. However, as an

approximation, the dead volume can be calculated as the volume between the

valve body of the open valve and the valve seat as shown in Fig. 172a, b. For a

beam or a loose valve body and a circular valve seat, the dead volume VV can be

approximated by the cylinder with the cross-section of the feed channel with radius

RZ and the distance H between valve body and valve seat:

VV ¼ p R2
Z H: (388)

If the valve body is a membrane as shown in Fig. 172b, the dead volume can be

approximated by the volume of the deflected membrane. For a circular membrane

with radius RM according to (303) on page 170, this results in:

VV ¼ 1

2
pR2

M H: (389)

Since the radius of the membrane is always larger than the radius of the feed

channel, a valve with a membrane has a comparatively large dead volume. This

does not necessarily mean that passive membrane valves are the worse solution,

because, e.g., a membrane may easier be fabricated than a beam which more easy

can be broken.

Fig. 172 Dead volume of

valves (a) and (b) and reverse

flow due to dead volume (c)

222 Microvalves



When a passive valve is closing, its dead volume needs to be displaced either

around the valve body, through the orifice of a valve membrane, or back into the feed

channel. Which of these cases occurs is a function of the elastic force pulling the

valve body down onto the valve seat, the friction of the flow around or through the

valve body, and the friction in the feed channel. In each of these cases, some time is

needed to close the passive valve. The calculation of that time may be difficult.

The designer of a passive valve will try to reduce the elastic force pulling the

valve body back onto the valve seat because this force would need to be overcome

to open the valve and it is desirable to open the valve even with a small pressure

difference. Therefore, in many cases, it may be assumed that the elastic force can be

neglected and the dead volume is pushed in backward direction only with the

pressure difference over the valve. Thus, the backflow Fb can be estimated with

(178) (on page 108) and the flow resistance Rfl,Z of the feed channels of the valve

which may be found in Table 11 (page 110). The dead volume VV is approximately

the product of the backflow and the switching time tV of the valve:

VV ¼ Fb tV ¼ DpV
Rfl;Z

tV ) tV ¼ Rfl;Z VV

DpV
: (390)

Exercises

Problem 30

You shall design a microvalve which is able to switch pressure differences of up to

1 MPa. The valve shall be switched with a membrane which is equipped with an

electrostatic actuator. The radius of the membrane shall be 5 mm, the minimal

distance between membrane and counter electrode which can be fabricated accu-

rately is 5 mm and a maximum voltage of 200 V can be applied. The length of the

flow channel over the valve seat is 50 mm.

(a) What is the maximum pressure which can be generated with the electrostatic

actuator when the membrane is not deflected?

(b) As a consequence of the result of (a), you decide to build a pressure balanced

valve according to Huff et al. (cf. Fig. 167). How large may the fabrication

tolerance of the radii of the two membranes in the valve be to make sure that the

valve can still work against the desired pressure?

(c) Assume that the valve is employed in a pneumatic system with feed channels

with a radius of 100 mm and an overall length of 10 cm. How many percent of

the pressure drop over the entire system is lost at the valve?

(d) What is the volume flow through the valve for water (viscosity ¼ 1 mPa s),

with the maximum pressure difference of 1 MPa?
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(e) How large is the volume flow through the completely opened valve if a

fabrication tolerance of 2 mm is achieved, and the stroke is enhanced such

that the actuator force is still sufficient?

(f) What could be the reasonwhy the valve should not be designed as described in (e)?

Problem 31

The microvalve shown in Fig. 163 is driven with a circular disk of PZT ceramic

which is glued onto a steel disk. Figure E25 shows the measured nitrogen flow

through the valve as a function of the voltage applied at the actuator. (The unit sccm

means “Standard cm3 per minute” according to cm3/min ¼ 16.7 mL/s at a pressure
of 101.3 kPa and a temperature of 22�C.)

(a) How long was the length of the feed channels to the valve, if they showed the

same diameter (200 mm) as the orifices and feed channels in the valve?

Hint: Compare the graphwith Fig. 157 on page 208 andfind away tomodify (355).

(b) In Fig. E26, there are shown the voltages at which the valve was opening and

closing, respectively, as a function of the over pressure applied to the inlet.

(c) What was the residual pressure of the silicone?

(d) With what force pulls the actuator at the silicone when the valve is opened

without pressure at the inlet?

(e) How many force needs to be applied to overcome material straining when the

valve is opened? Assume that the maximum force of the actuator is available

for that.
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Fig. E25 Nitrogen flow through the valve shown in Fig. 163 as a function of the voltage supplied

to the piezo. (Reprinted from [59] with permission from Elsevier)
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Thickness of PZT disk 200 mm
Young’s modulus of PZT disk 67 GPa

Piezoelectric modulus d31 of PZT disk 190 pm/V

Thickness of steel disk 100 mm
Young’s modulus of steel disk 190 GPa

Diameter of the actuator 10 mm

Viscosity of nitrogen 16.2 mPa s
Diameter of inlet, outlet, and feed channels in the valve 200 mm
Length of the feed channels in the valve 3 mm

Transmission ratio of the silicone hydraulic 1:25

Width of the sealing of the valve seat 200 mm
Diameter of the movable part of the valve membrane 2 mm

Problem 32

In Fig. E27, there is shown the schematic drawing of an active microvalve with an

annular valve seat. The diameter of the seat DS is 0.4 mm and the length LV of the

valve gap is 20 mm. The feed channels are 5 cm long and show a radius of 0.2 mm.

The stroke length H is 0.1 mm. Water with a viscosity of 1 mPa s is flowing through

the valve and the pressure difference over the valve is 500 kPa.

(a) Please calculate the maximum volume flow through the valve.

(b) The actuator can open the valve with a velocity of 2 mm/s. What is the

switching time of this valve?

(c) How can the switching time be reduced to 50% if the same actuator is used?

What is the consequence of that change on the performance of the valve?

(d) Since you need a valve with a reduced switching time but the same perfor-

mance as in (a), you decide to make a redesign. The cross-section of the feed

channels and the actuator are not allowed to be changed. What possibilities are
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Fig. E26 Voltage at which

the valve shown in Fig. 163

is opening (triangles) and
closing (inverted triangles),
as a function of the pressure

applied at the inlet.

(Reprinted from [59] with

permission from Elsevier)
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available for you? Suggest a design for the case that only annular valve seats

can be fabricated. What is the disadvantage of this solution?

Problem 33

The bistable microvalve shown in Fig. 166 (page 216) was designed for an implan-

table drug dosing system. The diameters of the two membranes are 2 mm and their

maximum deflection is 5 mm. A force of 1 mN is needed to snap a membrane to the

other side.

The pressure in the drug reservoir and the tissue inwhich the drug shall be delivered

are 20 and 10 kPa, respectively. The inlet of the valve has a square cross-section with

an area of 0.01 mm2 and a length of 10 mm. The viscosity of the drug is 1.05 mPa s.

Neglect, in the following, the compressibility of the air between the membranes

and the electrodes and, as an approximation, assume that all forces act on the

centers of the membranes.

(a) Calculate the voltage which is required to open the valve, if there is no pressure

difference over the valve. Assume as an approximation that the membrane is

attracted by an electrostatic force which is as large as the one attracting an

annular area at the circumference of the membrane which is 200 mm wide and

has a distance of 0.5 mm from the electrode.

(b) Up to which pressure in the drug reservoir does the membrane remain to be

closed? Assume that a gap between membrane and valve seat is developing

already at a force which is 25% of the elastic force of the membrane.

(c) How long needs the valve to be open to deliver 9.1 mL? Assume that the

membrane of the open valve does not reduce the drug flow and neglect the

effect of feed channels in the system compared with the effect of the inlet orifice.

Problem 34

On page 218f, the time is calculated which is needed for the pressure rise in a

capillary with circular cross-section. What is the corresponding equation for a

rectangular capillary?

Fig. E27 Schematic drawing

of an active microvalve
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Problem 35

The time between the switching pulse and the pressure rise behind the microvalve

shown in Fig. 163 (page 214) is shown in Fig. E28. For this measurement at the end

of the valve, there was connected a 50-mm long hose with an inner diameter of

900 mm. At the end of the hose, a pressure sensor with a dead volume of 15 mL was

mounted. The pressure difference over the valve was 50 kPa over environmental

pressure and nitrogen was used as the fluid.

(a) Please calculate the dead volume of sensor and hose together.

(b) The dead volume of the valve is 0.33 mL. Please calculate the fluidic resistance
of the hose and the valve.

(c) How quick would the pressure rise be in the hose and the sensor alone, if the

microvalve had neither a flow resistance nor a dead volume?

(d) How quick could the pressure rise be, if it would be measured directly at the

outlet of the valve and the actuator would react infinitely quick? Assume that

the pressure rise is a factor e (approximately 2.7) longer than the pressure

rise time.

(e) How quick could the pressure rise time of the entire system (valve with hose

and sensor) be if the actuator would react infinitely quickly?

(f) How could the switching time be further enhanced?

(g) What could have been done better with the measurement described above?

Fig. E28 Switching pulse and pressure rise measured behind the microvalve shown in Fig. 163.

(Reprinted from [59] with permission from Elsevier)
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Problem 36

A slide valve shall be mounted into a microchannel which is 50 mm high and

100 mm wide. With this microchannel a liquid similar as water shall be dosed.

(a) How large needs the stroke of the slide be to achieve 90% of the maximum

flow, if the slide is moving in the direction of the channel height?

Hint: It helps very much if a spreadsheet program is used to solve this problem.

(b) What is the minimum force the actuator needs to provide?

(c) Assume that the actuator consists of two circular piezo disks with the same

thickness such as it is shown in Fig. 110 on page 149. What diameter need these

piezo disks have to produce a stroke of 33 mm?

Problem 37

A pressure difference of 10 kPa is applied over a passive microvalve equipped with

a beam fixed at both ends.

(a) How large is the stroke of that beam, if there is no residual stress when the valve

is closed?

Hint: It is best to use a programmable pocket calculator or a spreadsheet

program to solve this problem.

(b) What is the flow through the valve?

(c) How could the design of the valve be improved?

Viscosity of nitrogen 16.5 mPa s
Diameter of inlet, outlet, and feed channels of the valve 200 mm
Length of feed channels in the valve 1 mm

Width of the sealing area of the valve seat 200 mm
Length of the bar 8 mm

Width of the bar 600 mm
Thickness of the bar 20 mm
Young’s modulus of the bar 120 GPa

Residual stress of the bar 0 MPa
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Micropumps

The main applications for which micropumps have been developed are drug

delivery and taking and transporting of samples for analysis. It is much easier to

build a micropump than a microvalve, and much more publications exist on

micropumps than on microvalves. The problem with micropumps is that up to

now there is no large market for them. Many tasks which could be done by

micropumps can be done by even easier devices. For example, drug delivery can

be done by an infusion bottle hanged up.

Typical specifications for micropumps are the maximum flow rate and counter

pressure, accuracy of dosing and flow rate, delivery of gases and liquids, self

priming, tolerance against particles and bubbles in the fluid, life time, small

dimensions and weight (with power supply and electronics), small energy con-

sumption, small temperature change and pulsation of the fluid, chemical and

biological inertness, and low price.

Most micropumps are reciprocating pumps, i.e., an actuator is continuously

reducing and enlarging the volume of a pump chamber. Passive valves at the inlet

and the outlet cause the in and out flow to go only into one direction. Figure 173

shows the principle of such a pump. The pressure at the inlet pe is smaller than the

one at the outlet pa and both may be different than the reference pressure pR
(typically from the environment), which is acting on the backside of the actuator.

The performance of a micropump certainly is a function of its actuator. There are

only a few actuator principles such as the lateral capacitive force (cf. page 132), the

evaporation of a liquid in a closed volume (cf. page 171), and an external pneumatic

or hydraulic drive for which the force is not a function of the stroke. Nearly all other

actuators show a characteristic curve which is similar to the one of a piezo or

bimaterial actuator. For example, compare the characteristic curves in Fig. 125a

(page 169), Fig. 123b (page 166), and Fig. 101 (page 140) or Fig. 118 (page 162).

Therefore, the following discussion assumes a piezo actuator.

For the application of an actuator for a micropump, it is best to draw the

characteristic curve as the generated pressure difference DpA over the volume

displacement DVA as shown in Fig. 174. The characteristic curve is defined by

the maximum pressure difference Dpmax which is achieved if the actuator is

hindered from deflecting and the maximum volume displacement DVmax which is

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_17, # Springer-Verlag Berlin Heidelberg 2011
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obtained when there are no outer forces acting. The characteristic curve is described

by the following equation:

DpA ¼ Dpmax 1� DVA

DVmax

� �
) DVA ¼ DVmax 1� DpA

Dpmax

� �
: (391)

The above equation is right when the maximum voltage Umax is applied to the

piezo. If the piezo is short-circuited, the curve is shifted such that it touches the

origin, and the characteristic curve is described by:

DpA ¼ � Dpmax

DVmax

DVA or DVA ¼ �DVmax

Dpmax

DpA: (392)

When the actuator is powered, it raises the pressure in the pump chamber until it

becomes larger than the pressure at the outlet (A in Fig. 174). At this point of the

pump cycle, the actuator overcomes the pressure difference between the outlet and

the reference pressure (pa�pR). The outlet valve opens and the actuator pushes fluid

out through that valve. While doing so, the pressure which can be generated by the

actuator is reducing with the volume which has been displaced, until the actuator is

no longer able to overcome the pressure difference (B). Then the actuator is moving

back (discharged if it is a piezo) and the lower characteristic curve is valid. The

pressure in the pump chamber by the actuator now can be made smaller than the

inlet pressure. Therefore, the outlet valve is closing, the inlet valve opens and

Fig. 174 Characteristic

curve of a typical micropump

actuator

Inlet 
pressure pe

Pump
chamber

Actuator

Reference
pressure PR

Outlet 
Pressure pa

Fig. 173 Schematic cross-

section of a reciprocating

micropump
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the pressure drops a bit below the pressure at the inlet. At this point of the pump

cycle (C), the pressure acting on the actuator is the difference between inlet

pressure and reference pressure (pe�pR). Fluid is taken in through the inlet valve

until the actuator can no longer provide enough underpressure (D). Then, a new

pump cycle is started by powering the actuator again.

The volume VA which is pumped during one cycle is found in Fig. 174 as the

distance between the vertical dotted lines. It is calculated from the difference of the

displaced volume DVA at B [(391) with DpA ¼ pa�pR] and at D [(392) with

DpA ¼ pe�pR]:

VA ¼ DVmax 1� pa � pR

Dpmax

� �
� DVmax � pe � pR

Dpmax

� �

¼ DVmax 1� pa � pe

Dpmax

� �
: (393)

The displaced volume DVA at D in Fig. 174 is denoted here as DVA0 for later use

in this chapter:

DVA0 :¼ DVmax � pe � pR

Dpmax

� �
: (394)

The pump cycle between the characteristic curves of the actuator and the volume

displaced per pump cycle do not contain the information how long a pump cycle

lasts. This is a function of the flow through the valves. The flow Fa through the

outlet valve with flow resistance Rfl is calculated with (355) (page 207). The

pressure difference DpV over the valve is with (391):

DpV ¼ pR þ DpA � pa ¼ pR � pa þ Dpmax 1� DVA

DVmax

� �
(395)

) Fa ¼ �DpV
Rfl

¼
pR � pa þ Dpmax 1� DVA

DVmax

� �

Rfl

¼ @DVA

@t
: (396)

The flow through the outlet valve as described by the above equation is equal to

the derivative of the volume displacement of the actuator. As a consequence, the

volume displacement as a function of time can be calculated by separation of

variables and integration of the above equation:

)
ðt
0

dt0

Rfl

¼
ðDVA

DVA0

dDVA
0

pR � pa þ Dpmax � Dpmax

DVmax

DVA
0

(397)

) t

Rfl

¼ �DVmax

Dpmax

ln

pR � pa þ Dpmax � Dpmax

DVmax

DVA

pR � pa þ Dpmax � Dpmax

DVmax

DVA0

0
BB@

1
CCA (398)
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) DVA ¼
 
pR � pa

Dpmax

þ 1

!
DVmax

� pR � pa

Dpmax

þ 1

� �
DVmax � DVA0

� �
e
�

Dpmax

DVmax

t

Rfl

(399)

In the above equations, it was assumed that the flow resistance Rfl of the valve is

not a function of time. In general this is not true, but the valves of a pump should be

designed such that the stroke for most of time is large to allow a flow which is

limited only by the cross-section of the feed channels (cf. Fig. 157 on page 208).

Thus, a constant flow resistance of the valves appears to be a suitable approximation.

Inserting (394) into (399) yields:

DVA ¼ DVmax

pR � pa

Dpmax

þ 1

� �
� pe � pa

Dpmax

þ 1

� �
e
�
Dpmax

DVmax

t

Rfl

2
64

3
75 (400)

The flow through the outlet valve is now obtained by either inserting the above

equation into (396) or by differentiating the above equation with respect to time:

Fa ¼ Dpmax � DpP
Rfl

e
�
Dpmax

DVmax

t

Rfl (401)

In the above equation, the pressure drop over the pump was denoted as DpP ¼
pa – pe.

The flow through the outlet valve as a function of time and the radius RZ of the

feed channels and the valve seat calculated with (401) is shown in Fig. 175. A pump

actuator was assumed which is able to generate a maximum pressure difference

Dpmax of 20 kPa and a maximum volume displacement DVmax of 100 nL. The

pressure difference over the pump DpP was 10 kPa and water (viscosity ¼ 1 mPa s)

was used as the fluid. The flow resistance Rfl of the valve was calculated with (355)

(page 207) for a passive valve with circular cross-section and feed channels and a

large stroke (the first term in the large parenthesis in the denominator is neglected).

The length of the feed channels was assumed to be 500 mm.

In Fig. 175, the flow through the outlet valve of the pump is increasing with the

size of the valve and the feed channels. This is due to the decreasing friction of the

fluid in the feed channels. Thus, it appears as if it would be best to design as large

feed channels as possible. This is not true, because the dead volume of the valves

has a major effect and has not been taken into account in the above calculation.

Fig. 175 Flow through the

outlet valve of a micropump

as a function of time and the

radius of the feed channel.

The dead volume of the valve

is not taken into account
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The volume delivered with each pump stroke is not the volume VA shown in

Fig. 174, but the actuator needs to displace the dead volume of the passive valves

before fluid is leaving the outlet valve.

A certain pressure difference is necessary to open the outlet valve. Therefore, the

point A in Fig. 176 is a bit above the pressure (pa – pR) which is necessary to

overcome the pressure at the outlet. This is not taken into account here. Instead

Fig. 176 shows at A the effect of stiction of a valve what may occur.

Then fluid is displaced out of the pump chamber and leaves through the outlet

valve. When point B is reached, no more fluid can be displaced by the actuator and it

is necessary to discharge the piezo and switch to the lower characteristic curve. As a

consequence, the outlet valve is closing and its dead volume Va is flowing backward.

The pressure in the pump chamber is decreasing now until it is below the

pressure at the inlet (pe – pR) and is able to open the inlet valve (C in Fig. 176).

The actuator is moving back then until it is no longer able to produce a pressure

which is less than the pressure at the inlet (D). The piezo is charged again and the

inlet valve is closing. As a result, the dead volume Ve of the inlet valve is displaced

by the actuator in backward direction. After that the next pumping cycle is starting.

The volume VF which is delivered by one pump cycle is the distance VA between

the dotted lines in Fig. 174 (page 230) [(calculated with (393)] minus the dead

volumes of inlet Ve and outlet Va valve:

VF ¼ VA � Ve � Va ¼ DVmax 1� pa � pe

Dpmax

� �
� Ve � Va (402)

The volume displaced by the actuator as a function of time can now be calculated

with (399), if the dead volume of the inlet valve Ve is added to DVA0 in (394)

(page 231):

DVA¼DVmax

pR�pa

Dpmax

þ1

� �
� pe�pa

Dpmax

þ1� Ve

DVmax

� �
e
�
Dpmax

DVmax

t

Rfl

2
64

3
75 (403)

Fig. 176 Characteristic

curve of a typical micropump

actuator
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The flow Fa through the outlet valve as a function of time is obtained when the

above equation is inserted into (396) or by differentiating the above equation with

respect to time:

Fa ¼ 1� Ve DVmax=ð Þð ÞDpmax � DpP
Rfl

e
�

Dpmax

DVmax

t

Rfl (404)

The dead volume of the inlet valve was calculated according to (388) (page 222),

and the stroke was assumed to be as large as half of the radius of the feed channel:

Ve ¼ p R2
Z H ¼ 1

2
p R3

Z: (405)

The flow Fa through the outlet valve calculated with (404) and (405) is shown in

Fig. 177. The same parameters were used as for Fig. 175. The comparison of these

two figures shows that the volume flow through the outlet valve is rising with the

radius of the valve seat and the feed channels. However, if the dead volume of the

valves is taken into account, there is an optimum radius. If this optimum radius is

exceeded, the flow through the outlet valve becomes smaller again, although the

time which is required to empty the pump chamber gets shorter. The reason for this

is that the pressure difference which is available to push the fluid through the outlet

valve is smaller for a larger dead volume and the volume which can be delivered by

one pump stroke is reduced also. This is recognized in Fig. 176: the position of the

point A is moving to the right when the dead volume of the inlet valve becomes

larger.

On the other hand, for small radii of feed channels and valve seats, the volume

flow Fa through the outlet valve is rising with increasing radii because the flow

resistance Rfl is decreasing.

The flow rate of a reciprocating pump consists of repeated strokes of fluid

volumes leaving the outlet. This is shown in Fig. 178 for different pumping

frequencies. At a low frequency (Fig. 178a), nearly all of the volume in the actuator

is delivered before the actuator is switched to its lower characteristic curve at the

time tf. Then the outlet valve is closing and its dead volume is flowing in backward

direction during the switching time of the valve.

Next the intake stroke starts, the inlet valve opens, and fluid is sucked into the

pump chamber. The actuator is switched to its upper characteristic curve and the

dead volume of the inlet valve is flowing in backward direction. No flow is observed

at the outlet during this time.

Fig. 177 Flow through the

outlet valve of a micropump

as a function of time and the

radius of the feed channel

calculated with (404) and for

the dead volumes of the

valves (405)
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A new pump cycle starts when the outlet valve opens again and fluid is pressed

out of the pump chamber.

When the pump frequency is low (cf. Fig. 178a), most of the time there is only a

small or even no volume flow at the outlet of the pump. At a somewhat higher

frequency (Fig. 178b), only the part with a large flow through the outlet valve is used

and the part with a smaller flow rate is forgone to start the next pump cycle earlier. As

a consequence, the mean volume flow generated by the pump (the integral over Fa

divided by the time of a pump cycle) is larger than at a lower frequency.

If the frequency is enhanced even more, the volume delivered in a pump cycle in

forward direction is not much more than flowing backward, and the actuator is only

moving the dead volume of the valves back and forth. As a result, there is an

optimum frequency at which the pump delivers the maximum possible flow.

The volume VF delivered by one pump stroke is the displaced volume DVA at the

time tF when the actuator is switched from the upper characteristic curve to the

Fig. 178 Flow Fa through the outlet valve of a pump as a function of time for (a) a low, (b) a

medium, and (c) a high frequency of the pump actuator. The dashed area represents the delivered

volume
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lower one (B in Fig. 176) minus the dead volume Va of the outlet valve. This

volume VF delivered by one pump stroke needs to be multiplied with the pump

frequency fP to obtain the flow rate FP of the pump. With (403) it is obtained:

FP ¼ fPVF ¼ fP DVA tFð Þ � DVAð0Þ � Va½ � (406)

) FP ¼ fP DVmax 1� DpP
Dpmax

� Ve

DVmax

� �
1� e

�
Dpmax

DVmax

tf

Rfl

2
64

3
75� Va

8><
>:

9>=
>; (407)

The time tf when the actuator is switched from one characteristic curve to the

other can be estimated from the switching time of the valves and the frequency of the

pump actuator. If it is assumed that the switching time tV of inlet and outlet valve are

the same and the duration of intake and outtake stroke are equal, it is obtained:

tf ¼ 1

2

1

fP
� tV (408)

The switching times tV of inlet and outlet valves are estimated by (390) on page 223.

The dead volume of the valves is taken from (405) and the flow resistance Rfl of the

valves was calculated with (355) (page 207) for a passive valve with circular cross-

section and feed channels and a large stroke [the first term in the large parenthesis in the

denominator of (355) is neglected]. The pressure difference over the valves during the

back flowwas estimated by the maximum pressureDpmax which the actuator is able to

generate:

Rfl;Z ¼ 8Z
4 LZ

D2
h;z AZ

¼ 8 Z LZ

p R4
z

and tV ¼ Rfl;Z VV

DpV
¼ 4 Z LZ

RZ Dpmax

(409)

By inserting (408) and (409) into (407), the flow rate of a pump was calculated as

a function of the driving frequency, and the radii of the feed channels and the valve

seats. For the other parameters, the same values as for the calculation shown in

Fig. 175 were used. In Fig. 179, the result of this calculation is shown.

For small frequencies, the flow rate is increasing proportional to the frequency

because the volume displaced by each pump stroke is delivered more often. At higher

frequencies, the volume VF delivered by each pump stroke is decreasing because the

actuator is switched to the lower characteristic curve before all the volume which

could be displaced by the actuator has left the outlet valve and because VF is no longer

large compared with the dead volume of the valves. However, the flow rate is

Fig. 179 Flow FP of a

micropump as a function of

actuator frequency f and the

radius RZ of feed channels

and valve seats as calculated

with (407)
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decreasingwith increasing frequency at very high frequencies (The scale is in kHz.). It

is virtually impossible for a pump actuator to generate such high frequencies. In the

literature, there was reported on a micropump which started to pump in reverse

direction when the resonance frequency of the moving fluid and the valves was

approached [64]. Here the effect of the acceleration of the fluid and the valve bodies

and resonance effects have not been taken into account. Such effects occur only at

large flow velocities which rarely are found at micropumps.

It is also seen in Fig. 179 that the slope of the curve at small frequencies is a

function of the radius of feed channels and the valve seats. The effect of the size of

the valves and feed channels is seen better when the pump flow calculated with

(407) is drawn as a function of the radius of these components (cf. Fig. 180).

In Fig. 180a, the pump flow is shown for different actuator frequencies. It is

clearly seen that the radius RZ at which the largest flow is achieved is a function of

frequency. If the radius is a bit larger than the optimum value, not much of the

possible flow is lost. However, if the size of the valves and feed channels is only a

bit too small, this may cause a remarkable loss in flow.

It is also seen in that figure that the maximum radius RZ,max at which a flow can

be generated is not a function of frequency. Figure 180b shows that RZ,max is a

function of the counter pressure DpP. For a given radius of the feed channels, there

is maximum counter pressure DpP,m which limits the range of operation of the

pump. At RZ,max, the flow resistance Rfl of the feed channels and the valves is very

small and the exponential function in (407) can be neglected compared with 1. At

RZ,max, the flow calculated with (407) is zero:

0¼ fP DVmax 1� DpP
Dpmax

� �
�Ve�Va

� �
) DpP;m¼ 1�VeþVa

DVmax

� �
Dpmax: (410)

The above equation means that the maximum pressure DpP which can be

generated by a pump is only a function of the maximum pressure Dpmax generated

by the actuator, the ratio of the sum of the dead volumes of inlet Ve and outlet Va valve

Fig. 180 Flow FP of a

micropump as a function of the

radius RZ of feed channels and

valve seats and (a) the actuator

frequency f and (b) the counter

pressure DpP, respectively,
calculated with (407)
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and the maximum volume DVmax which can be displaced by the actuator. The maxi-

mum pressure of a pump is a function of the size of the valves, because their dead

volume is a function of that size. If (405) is employed to calculate the dead volume, the

maximum pressureDpP,max of a pump as a function of the radius RZ of the valve seat is:

DpP;m ¼ 1� p R3
Z

DVmax

� �
Dpmax: (411)

The maximum pressure DpP,m generated by the pump with the parameters used

above was calculated with the above equation and drawn as a function of RZ in

Fig. 181. It is clearly seen that the largest pressure can be generated with a pump

which has very small valves. The smaller the valves are the more the maximum

pressure DpP,m generated by the pump approaches the maximum pressure Dpmax

generated by the actuator. However, small valves will result in a small flow

(cf. Fig. 180). Therefore, a compromise needs to be made between a large flow

and a large pressure generated.

The flow generated by a pump as a function of the counter pressure is called the

characteristic curve of the pump. This curve is obtained when (407) is plotted as a

function of the counter pressure. Figure 182 shows the characteristic curve of a

pump with the parameters used above for different radii of feed channels and valve

seats. The characteristic curve is a straight line between the maximum flow FP,m

and the maximum pressure DpP,m which can be generated by the pump.

Obviously, the flow is rising for small valves with their size while the maximum

pressure which can be achieved is nearly not changing (see also Fig. 181). In this

example, the optimum radius is reached at approximately 65 mm. When the radius

RZ exceeds this value, the characteristic curve is shifting left and down nearly

Fig. 181 Maximum pressure

DpP,m which can be generated

with a pump as a function of

the radius RZ of feed

channels and valve seats

Fig. 182 Characteristic

curve of a pump as a function

of the radius RZ of feed

channels and valve seats
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parallel. Thus, maximum flow rate and maximum pressure both are reducing when

the radii RZ of the feed channels and the valves are increasing.

If the dead volume and the flow resistance of the valves would have no effect on

maximum flow rate and maximum pressure DpP,m which can be generated by the

pump, the maximum flow FP,m would be equal to the frequency times the maxi-

mum pressure which can be generated by the actuator (20 mL/s in Fig. 182) and the
maximum pressure generated by the pump would be equal to the maximum

pressure Dpmax of the actuator (20 kPa in Fig. 182). It is seen in the figure that at

the optimum radius these values are nearly reached (19.8 mL/s and 19.8 kPa,

respectively). However, even larger flow rates can be achieved, if active valves

are employed and the flow resistance of the valve is reduced by designing them

larger. The disadvantage of this concept is that three actuators and a suitable

electronic control are required. An additional advantage is that a pump with active

valves can pump also in reverse direction.

The fluidic power of a pump PP is the product of the flow rate FP and the counter

pressure DpP. Thus, the fluidic power is calculated as the product of (407) with the

counter pressure. Since the characteristic curve is a linear function of the pressure,

the result of multiplying with the pressure is a parabola and the maximum PP,m of

that parabola is a forth of the product of maximum counter pressure DpP,m and

maximum flow rate FP,m:

pP;max ¼ 1

4
FP;m Dpp;m (412)

The fluidic power for the graphs shown in Fig. 182 is drawn in Fig. 183. The

input power of the piezo actuator is not much affected by the counter pressure and

the flow generated (cf. page 150). Therefore, the power output shown in Fig. 183 is

nearly proportional to the efficiency of the pump. If micropumps are to be designed

for portable or implantable devices which are powered by batteries, this may be an

important issue. Since the fluidic power PP is a parabolic function of the counter

pressure, fluidic power and efficiency of a pump are maximum at half of the

maximum counter pressure PP,m. Therefore, when energy consumption of a pump

is a concern, it should be designed such that the typical counter pressure is half of

the maximum counter pressure.

When the radii RZ of the feed channels and the valve seats are increased, the

maximum of the fluidic power is increasing, while the optimum counter pressure is

nearly not decreasing. When the maximum fluidic power which can be achieved by

Fig. 183 Fluidic power of a

micropump as a function of

the counter pressure and the

radii of feed channels and the

valve seats
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increasing the radii RZ is exceeded, the optimum counter pressure and the maxi-

mum fluidic power are decreasing.

When a pump is employed for a dosing application, it is desirable that the flow

rate is not or only a week function of the counter pressure. This can be achieved by

limiting the maximum stroke of the actuator (designing a very shallow pump

chamber) to much less than the maximum stroke which the actuator could perform

without that restriction. As a consequence, the pressure generated by the actuator

during the stroke is nearly constant.

Even better is employing an actuator for which the force generated is not a function

of the stroke such as the lateral capacitive force (cf. page 132), evaporation of a liquid

in a closed volume (cf. page 171), and an external pneumatic or hydraulic drive.

Another option is to design two small pumps working in series instead of a larger

pumpwith the same volume. The first of the two pumps needs to be driven such that its

outtake stroke is over before the intake of the second pump starts. If both pumps are

driven in phase, they behave similar as a single pump with a larger pump chamber.

If the two pumps are not driven in phase, each of them needs to overcome a

smaller counter pressure and they have a smaller maximum flow rate, because their

pump chambers are smaller than the chamber of a single pump with the same

volume as both pumps together. The resulting characteristic curves are shown in

Fig. 184a. If the maximum volume Vmax displaced by the actuator and the dead

volumes of inlet Ve and outlet Va valves are all reduced by the same factor, e.g. 2,

the maximum flow FP,m is also reduced by that factor (cf. 407) and the maximum

pressure generated by such a small pump is not changing (cf. 410). If two pumps are

working in series and are driven with a phase shift, the maximum pressure gener-

ated by both pumps together is doubled. As shown in Fig. 184a, the slope of the

characteristic curve of the coupled pumps is significantly reduced compared with

the larger single pump and a change of the counter pressure DpP has a much smaller

effect on the flow rate FP. The flow rate can be adjusted then by choosing the

driving frequency of the actuator.

Another interesting effect of coupled pumps driven not in phase is that the

maximum efficiency of pumping is shifted to a larger counter pressure. This is

Fig. 184 (a) Characteristic

curve of a pump, a small

pump, and two small pumps

in series driven with a phase

shift and (b) fluidic power of

these pumps
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shown in Fig. 184b. Since the maximum fluidic power is a fourth of the product of

maximum flow FP,m and maximum counter pressure DpP,m (cf. 412), the maximum

fluidic power of two small coupled pumpswith half of themaximumflow is the same

as for a larger pump. But the maximum is at a larger counter pressure and a certain

change of the counter pressure does not affect the fluidic power so much. Therefore,

coupling two or even more pumps may save battery power in certain applications.

Leaking valves show a similar effect as larger dead volumes. Thus, in all

equations such as (407) (page 236) and (410), the volume lost by leaking needs to

be added to the dead volume of the inlet Ve or outlet Va valve, and both the flow rate

and the pressure which can be generated by the pump are decreasing.

When a liquid is pumped and a gas bubble is in the pump chamber, the volume of

the bubble is decreased and increased by the pressure change in the pump. This

volume changes DVB do not contribute to the flow rate of the pump and need to be

subtracted from the volume VF which is pumped with each pump cycle. The

volume change of the bubble has a similar effect as the dead volumes of inlet Ve

and outlet Va valve (cf. Fig. 176 on page 233). When the pressure in the pump

chamber is increased by the actuator, the dead volume of the inlet valve is displaced

out of the pump and the volume of the bubble is decreased by DVB, and when the

pressure in the pump is decreased again, the dead volume of the outlet valve is

flowing in backward direction and the volume of the bubble is increased before new

liquid is taken into the pump. Therefore, the effect of a bubble is similar to the one

of larger dead volumes of inlet and outlet valve.

The volume change DVB of the bubble in the pump chamber can be calculated

with the ideal gas law [(295) on page 167] which means that the product of pressure

and volume of the bubble is constant (as long as the temperature does not change).

When the inlet valve opens, the pressure and volume of the bubble are denoted by

pe and VB,e, respectively. When the outlet vale opens and when there is a pressure of

101.3 kPa, they are denoted by pa, VB,a, and by p0, VB,0, respectively:

pe VB;e ¼ pa VB;a ¼ p0 VB;0 (413)

) DVB ¼ VB;e � VB;a ¼ 1

pe
� 1

pa

� �
p0 VB;0 ¼ DpP

pe pa
p0 VB;0: (414)

Inserting this into (407) (page 236) as an additional dead volume of inlet and

outlet valve yields:

FP¼ fP DVmax 1� DpP
Dpmax

� �
�Ve�DVB

� �
1�e

�
Dpmax

DVmax

tf

Rfl

2
64

3
75�Va�DVB

8><
>:

9>=
>;

(415)

As a consequence of the above equation, the pump is no longer able to pump any

liquid when the bubble becomes too large. Thus, besides the problem that bubbles can

block the valves because the gap over the valve seat is narrower than the feed channels
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(cf. page 118), the volume change of bubbles in the pump chamber decreases or even

stops the flow. Specialmicrostructures before amicropump can separate bubbles from

the liquid flow to avoid such problems with bubbles (cf. page 118).

The volume of a bubble is limited by the dead volume VP of the pump which is

defined as the inner volume of the pump between the valve seats of inlet and outlet

valve. The flow rate calculated with (415) can be larger than zero when the term in

the curly braces is larger than zero. The exponential function can be assumed to be

zero because the time of the delivering pulse of the pump will be made large to

achieve a larger flow rate:

DVmax 1� DpP
Dpmax

� �
� Ve þ Va þ 2

DpP
pe pa

p0 VP (416)

) VP � DVmax 1� DpP
Dpmax

� �
� Ve � Va

� �
pe pa

2 p0 DpP
(417)

If the dead volume VP of a pump is small enough to fulfill the above equation,

the pump is also able to pump a gas. As a consequence, a pump with such a small

dead volume is also self-priming, i.e., the pump can pump the air out of a pipe or

hose connected to its inlet, and, this way, suck in a liquid. Besides this, it has to be

concluded that the dead volume of a pump should be as small as possible to achieve

a large flow rate and especially a large pressure.

According to (414), the volume change DVB of a bubble in the pump chamber is

proportional to the pressure difference over the pump DpP. That is, a bubble has only
little effect on the flow rate when the pressure difference over the pump is small. The

larger the counter pressure is, themore the flow rate is decreased by the volume change

of the pump. In Fig. 185, this is shown for the case that the bubble is as large as the

dead volume of the pump, i.e., only gas is pumped. The same parameters are assumed

as for Fig. 182 and a radius RZ of 65 mm. The characteristic curves of the pump

pumping an incompressible fluid is shown together with the curves of a compressible

gas and a dead volume VP of the pump which is a factor of 2 (200 nL) and 4 (400 nL)

larger than the maximum displacement DVmax of the actuator, respectively.

The maximum counter pressure DpP,m which can be generated by a pump

pumping a compressible fluid is found when the flow rate calculated with (415) is

zero. This is the case when the term in the curly braces is zero. The exponential

Fig. 185 Characteristic

curve of a micropump

pumping an incompressible

fluid and a compressible gas

with (theoretically) the same

viscosity
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function can be assumed to be zero because the time of the delivering pulse of the

pump will be made large to achieve a larger counter pressure:

DpP;m ¼ DVmax � Ve � Va

2
po Vp

pe pa
þ DVmax

Dpmax

(418)

As shown above, both the maximum counter pressure and the maximum flow rate

are reduced by the need to open or close the valves and to pump their dead volumes.

This can be avoidedwhen a pumpwith active valves is employed.As a result, the pump

cycle is as shown in Fig. 174 instead of Fig. 176 (on page 230 and 233, respectively).

The flow through the outlet valve is calculated with (401) and the flow passes through

the outlet the quicker, the larger the radii of the feed channels and the valve are (cf.

Fig. 175, page 232). Thus, a pump with active valves achieves a larger maximum flow

rate and a largermaximumcounter pressure. The reason for this is that the energy of the

pump actuator is only used for pumping the fluid and not to open and close the valves.

However, this energy is provided now by the actuators of the valves, and a similar

result could be obtained with a somewhat larger pump actuator and passive valves.

A clear advantage of a pump with active valves is that the pump direction can be

reversed by controlling valve switching. Therefore, a pump with active valves may

replace two pumps and additional valves in certain applications. A special case of a

pump with active valves is a peristaltic pump, which employs three or more equal

pump chambers driven in consecutive order (cf. Fig. 186).

A pump delivering air which shows a dead volume of the valves as large as the

pump chamber is shown in Fig. 187 [65]. In a pump chamber which is formed by

two bell-shaped walls, there are mounted two membranes. In the membranes, there

are orifices staggered to each other such that no air can pass through when the

membranes are in touch to each other.

Therefore, the pump is sealed when both membranes are at the bottom of the pump

chamber (Fig. 187a). Both membranes are insulated to the surrounding and contain

electrodes. The membranes are held down by applying a voltage between the upper

membrane and the bottom of the pump chamber. Then, voltage is applied between the

Fig. 186 Pump cycle of a

peristaltic pump
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lower membrane and the upper part of the pump chamber. This way, both membranes

are moving up and delivering air to the outlet of the pump and taking in fresh air

through the inlet (Fig. 187b). Since electrostatic forces are strong only at small

distances, the bell-shaped walls facilitate moving of the membranes. The movement

starts at the rim of themembraneswhere there is only a small distance to the upper wall

and then continues until the entiremembranes are in touch to the upperwall (Fig. 187c).

Then only the lower membrane is attracted down to the bottom of the pump

chamber and no air is entering or leaving the pump, because the outlet is sealed by

the upper membrane (Fig. 187d). During this membrane movement, the flow

resistance of the orifices of the membrane needs to be overcome. The upper

membrane follows the lower one in the next step and again no air enters or leaves

the pump because the lower membrane seals the inlet (Fig. 187e).

Obviously, the air volume in the pump chamber in every pump cycle needs to

pass through the membranes two times, and, therefore, is the dead volume of the

“valves”.

Fig. 187 Cycle of a pump

with two electrostatically

driven membranes [65]. #
[1997] IEEE

Fig. 188 Valveless

micropump
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For certain applications, it may be an advantage of this pump that it can be driven

in backward direction.

It is also possible to design valves without any moving mechanical parts. Pumps

employing such valves are sometimes called “valveless” pumps. Their valves consist

of nozzleswhich show a larger flow resistance in one direction than in the opposite one

(see Fig. 188). The back flow in the undesired direction is compensated by a larger

flow in the desired one. However, such valves have a huge dead volume, and, as a

consequence, they are not able to work against large counter pressures. Besides this,

they are open in both directionswhen the actuator is not running and they achieve only

a small efficiency. It is an advantage of such pumps that their valves are very rugged

and easy to fabricate. However, other kinds of valves are also rugged enough.

The pumps described so far are all reciprocating pumps which generate a more

or less pulsing flow. For some applications, this is not desirable. Solutions for that

problem are aperiodic pumps. One aperiodic pumping principle has already been

described earlier in this book: the electro-osmotic micropump (cf. page 122).

Another possibility is to design a small chamber and fill it with a sorption agent

which draws in a liquid continuously until it is completely filled [66].

Another interesting design is the electrohydrodynamic pump (EHD) [67]. AnEHD

consists of two gratings which spread across a channel. Between the gratings there is a

certain distance. One grating is fabricated such that it shows a sharp edge pointing to

the other grating.When the negative pole of a voltage is applied to the grating with the

sharp edge and the positive to the other one, electrons are injected from the sharp edges

into the liquid and they are accelerated towards the grating with the positive pole. Due

to friction in the liquid not only the electrons but also the entire liquid is accelerated.

The EHD principle only works if the liquid is not conductive. Therefore, water

cannot be delivered but certain oils. Large flows are achieved but only a very small

pressure difference can be overcome.

Exercises

Problem 38

Figure E29 shows the cross-section of a micropump [68]. The properties of the

pump are listed in the following table.

Diameter of pump chamber and actuator 12 mm

Deflection of the piezo actuator 20 mm
Length of the edge of the quadratic valves 1.5 mm

Length of the valve gap in the direction of the flow 500 mm
Stroke of the valve 30 mm
Diameter of the feed channels of the valve 0.4 mm

Length of the feed channels of each valve 1 mm

Viscosity of water 1 mPa s

Maximum pressure difference Dpmax generated by the actuator 100 kPa
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(a) Please calculate the maximum volume change generated by the actuator.

(b) Please calculate the length of the pump pulse. At what frequency does the

micropump achieve the maximum flow rate if the switching times of the valves

are negligibly short and the maximum volume change generated by the actuator

is 1 mL?
(c) In the valves of the pump, freely movable square plates from polymer are

installed as valve bodies as shown in Fig. E30. The length of the edges of these

plates is 1.4 mm. Please calculate the dead volume of the passive valves.

Neglect the volume of the grooves in the upper part.

(d) What is the switching time of the passive valve according to (390) (page 223),

if water is used as the fluid? Assume that the length of the feed channels and the

pressure drop over them are 1 mm and 50 kPa, respectively.

(e) How could the design be improved?

Problem 39

It is your objective to design flap valves for a micropump. Assume that the mass of

the fluid and the valve body can be neglected. As an approximation, assume that the

pump is driven at its optimum frequency and that the stroke of the valves is large

Pump chamber

Outlet valve Inlef valve

Valve body

Piezo

Fig. E29 Micropump with a piezo actuator and polymer plates as valve bodies. (Reprinted from

[68] with permission from Elsevier)

Fig. E30 Valve of the

micropump shown in

Fig. E29. (Reprinted from

[68] with permission from

Elsevier)
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also at the beginning of the pump pulses. The following data are available for the

calculation.

Maximum volume change generated by the actuator DVmax 600 nL

Maximum pressure difference generated by the actuator Dpmax 24 kPa

Pressure difference between inlet and outlet pa � pe 12 kPa

Length of the feed channels to the valves 400 mm
Viscosity of water 1 mPa s

Length of the valve beam 1 mm

Young’s modulus of the beam 120 GPa

Thickness of the beam 10 mm

(a) Calculate the radius of feed channels and inlet and outlet (assumed to be equal)

required for the maximum flow rate of the pump.

(b) What is the maximum flow rate that can be achieved?

(c) With which tolerance needs the radius of the valve orifice RZ to be manufac-

tured, if the flow rate may deviate from the maximum flow rate calculated in (b)

not more than 0.1 mL/s? Assume for this calculation that all other dimensions

are exactly kept to the desired measures. (Hint: For this problem, it is advanta-

geous to employ a spreadsheet program.)

Problem 40

For this problem, the data of the following table are given:

Radius of the glass sphere 200 mm
Density of glass 2,600 kg/m3

Radius of the feed channels 100 mm
Acceleration of gravity 9.81 m/s2

Length of the feed channels 1 mm

Length of the valve gap 200 mm
Young’s modulus of silicon 130 GPa

Width of the beam 600 mm
Thickness of the beam 20 mm
Viscosity of water 1 mPa s

Maximum pressure difference generated by the actuator Dpmax 200 kPa

Maximum volume change generated by the actuator DVmax 1 mL

Derive the equation for the flow of a micropump without counter pressure, if

instead of a flap valve a freely moving sphere is employed in the passive valves.

Please follow the subsequent questions:

(a) If the sphere is made of glass with a diameter of 400 mm, what is the minimum

pressure difference required to lift the sphere in the gravitational field and to

open the valve? Please neglect the buoyant force of the sphere in the fluid and

any stiction.
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(b) How large should be the stroke of the valve (Rule of thumb)?

(c) The stroke as a function of the pressure drop for a sphere cannot be found easily

because it is a function of the flow situation inside of the valve. However, it

appears to be reasonable to assume that the sphere is moved up to a stop 55 mm
above the valve seat when the pressure difference is 60 Pa.

Please calculate how long a 600-mm wide and 20-mm thick beam from silicon

needs to be which is employed instead of the sphere in (a). The beam shall show

a stroke of 55 mm at a pressure difference of 60 Pa.

(d) What is the dead volume of the microvalve (stroke ¼ 55 mm)?

(e) Calculate the switching time of the valve, if the effective pressure difference

over the feed channels is 80 Pa.

(f) Please calculate the pump pulse time on the one hand with the approximation

of widely opened valves and on the other hand with the effect of the valve gap.

(g) Why is it advantageous to limit the stroke of the valves (both for a sphere and a

beam) by a stop above the valve seat?

(h) What is the maximum pump frequency, if the switching time of the valves is

taken into account and the pump pulse time is 150 ms? (The question whether

the actuator is able to generate this frequency is not discussed here.)

(i) What is the delivered flow volume per pump pulse without counter pressure?

(j) What is the maximum flow rate of the pump without counter pressure?

Problem 41

For a diagnostic device, a liquid flow (Z ¼ 1 mPa s) of 1.5 mL/s shall be delivered
against a pressure difference of 50 kPa. You have micropumps with flap valves on

stock which fulfill the following specifications:

Radius of the feed channels 24 mm
Length of the feed channels 0.5 mm

Length of the valve gap 200 mm
Young’s modulus of the beam 0.6 GPa

Length of the beam 1 mm

Thickness of the beam 15 mm
Maximum pressure difference generated by the actuator Dpmax 100 kPa

Maximum volume change generated by the actuator DVmax 50 mL

(a) Can the objective be fulfilled by the micropump?

(b) The flow rate at a counter pressure of 50 kPa now shall be enhanced. To achieve

this, you first try to change the size of the feed channels. What radius should the

feed channels obtain to achieve the maximum possible flow rate at the given

counter pressure? How large is the maximum flow rate? Howmuch can the flow

rate be enhanced by changing the diameter of the feed channels? (A spreadsheet

program or a programmable pocket calculator will help to solve this problem.)
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(c) Now prove the alternative that two down sized micropumps driven in series are

employed, if each of them achieves half of the flow rate calculated in (a) but the

same maximum pressure. What is in this case the flow rate at 50 kPa counter

pressure?

(d) Calculate the fluidic power of the pump in (b) at a counter pressure of 50 kPa.

Problem 42

For the following problem, the data of the following table are given:

Diameter of the pump chamber 4 mm

Minimum flow rate 100 mL/h
Maximum counter pressure 20 kPa

Piezo electric modulus d31 �2.14 � 10�10 m/V

Thickness of the piezo layer 100 mm
Absolute permittivity 8.9 � 10�12 A s/(V m)

Relative permittivity of air 1

Young’s modulus of piezo ceramic 66.6 GPa

Young’s modulus of silicon dioxide 73 GPa

Gas constant RG 8.314 J/(mol K)

For an insulin pump, an actuator needs to be chosen. An insulin pump can be

mounted outside of the skin and deliver through a catheter into the body. As an

alternative, the pump can be implanted into the body. Figure E31 shows an example

of an implantable micropump.

(a) Please calculate the voltage required to achieve the pressure difference with the

piezo actuator. The piezo has the same diameter as the pump chamber and is

glued onto a carrier from silicon dioxide, 50 mm in thickness. The thickness of

the glue can be neglected.

(b) The voltage calculated in (a) is just enough to overcome the counter pressure

but is not sufficient to deliver against this pressure. Therefore, you decide to

apply 128 V. Please calculate the frequency at which the pump needs to run to

achieve the specified flow rate at a counter pressure of 20 kPa. Do not take into

account the dead volume of the valves.

Fig. E31 Implantable micropump [69] (Courtesy of Debiotech SA/Switzerland)
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(c) Please calculate the minimum voltage required to achieve the specified pressure

difference by an electrostatic actuator. Neglect the elastic force of the mem-

brane and assume that there is air between the electrodes. The distance between

membrane and counter electrode is 10 mm.

(d) If for an implantable pump for safety reasons there is allowed only a voltage

smaller than 36 V, how needs the design to be changed to achieve the required

counter pressure.

(e) How much would a thermo-pneumatic actuator need to be heated up to achieve

the required pressure difference?

(f) For some applications, a micropump driven hydraulically by the blood pressure

could be of interest. It could, e.g., be self-controlling when some drug against

high blood pressure is delivered more when the blood pressure or the pulse beat

is high. How large would the flow rate of such a pump be if its displaced volume

per pulse is 0.02 mL at a typical heart frequency of 1 Hz?
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Microdosing

Dosing of small amounts of liquids is a widespread application of microfluidics.

The most common application is ink-jet printers, but dosing of adhesives and

lubricants, and chemical and biological substances in pharmaceutical industry

also occur often. Obviously, smaller amounts of a liquid can be dosed precisely

when miniature devices are used.

Microdosing can be achieved by employing a micropump with a well-defined

stroke which is only a week or even no function of the counter pressure (cf. page

240). A reservoir with a well-defined pressure and a microvalve opened for a well-

defined time and a well-defined stroke can also be employed for microdosing. Less

accuracy is required for a microvalve or a micropump when they are combined with

a precise flow sensor (cf. page 289). However, the combination of an actuator with a

flow sensor is more complex than a single device and the control loop needs to

achieve the required precision also.

The most numerous microdosing systems are the heads of ink-jet printers. Such

heads include a feed channel to the reservoir, a heater, and an orifice where the ink

is ejected from (Fig. 189a). The heater consists of a conductor path with which an

ink is evaporated generating a bubble in the liquid ink (Fig. 189b). The bubble then

ejects an ink droplet through the orifice (Fig. 189c). After the droplet has been

ejected and the bubbles condensate back into liquid ink, the feed channel is filled

again by capillary force.

If the heater is supported by a membrane as shown in Fig. 189, the generated heat

is not so much absorbed by the housing of the printer head but contributes more to

the evaporating of ink and ejecting of the droplet. However, a printer head with the

heater on the solid housing may be easier to fabricate and more rugged.

Droplets can also be ejected from a device with a piezo generating a quick

pressure rise in a liquid column. Such devices are employed for dosing small

amounts of, e.g., lubricants or adhesives applied to the bearings of, e.g., watches

or small parts which are to be joined, respectively.
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Fig. 189 Ejection of a droplet from an ink-jet printer
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Analogies of Physical Domains

In microtechnique, often several basic components are combined to devices and

several devices to systems. The basic elements employed in a system can belong to

different physical domains such as mechanical, fluidic, electrical, and thermal. This

chapter describes how to calculate the behavior of coupled elements and systems

with the help of analogies.

The behavior of all physical systems is calculated from the laws of conservation

of energy and momentum, or equilibrium of forces. As a consequence, different

systems which show an analogy between their equations of energy and forces have

the same analogy in the equations of motion, etc.

There are three types of energy: potential energy, kinetic energy, and energy lost

by dissipation. Similarly, there are three types of forces: elastic forces, inertial

forces, and frictional forces. As an example, the equations of energy and forces for a

mass mK fixed to the end of a spring with spring constant k (cf. Fig. 63 on page 89)

damped with a damping constant DR and of an electrical circuit with a resistance

Rel, a coil with inductance Lel, and a capacitor with capacitance Cel in series (cf.

Fig. 190) are as following:

The comparison of the above equations shows that they are analog to each other,

if the following quantities are substituted by each other:

x $ Qel; v $ Iel; am $ _Iel; k $ 1

Cel

; mK $ Lel; DR $ Rel:

Since all properties of both systems are calculated from their energy or force

equations, the equation for a property of one system can be found from the solution

of the other system just by the analogy.

For example, from (133) on page 89 the resonance frequency fr ¼ 2 p or of a

mass fixed to a spring is known, and from the analogy above for an electrical circuit

with a capacitor and a coil it is found:

fr ¼ 1

2p

ffiffiffiffiffiffiffi
k

mK

r
! fr ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Cel Lel

r
: (419)
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The influence of the electrical resistance on the resonance frequency of an

electrical circuit may be found in a text book on electrotechnique and the influence

of mechanical damping on the resonance frequency of a mass fixed to a spring can

be derived from that:

fr ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

CelLel

� R2
el

4L2
el

s
! fr ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

mK

� D2
R

4m2
K

s
: (420)

Such conclusions may be drawn only if the energy equations or equivalently the

force equations really have the same form. For example, it would be wrong to

derive from the above analogy the resonance frequency of a pendulum, because the

gravitational force is not included in the set of equations above and has another

form as the equations of the elastic force above, i.e., it is not proportional to x or Qel,

respectively:

F ¼ mK ge: (421)

There is also an analogy to fluidic systems. The friction in a capillary is

described by an equation [(178), page 108] which is similar to the frictional force

in Table 19.

FR ¼ DR v $ Dp ¼ Rfl FF ) FR $ Dp; DR $ Rfl; v $ FF: (422)

Table 19 Equations of the energies and forces employed for the calculation of the behavior of a

mass fixed to a spring and an electrical circuit consisting of a capacitor, a coil, and a resistance

Mass fixed to a spring Electrical circuit

Potential energy 1

2
k x2

1

2

Q2
el

Cel

Kinetic energy 1

2
mK v2

1

2
Lel I

2
el

Dissipated energy DR v
2 t Rel I

2
el t

Elastic force FK ¼ k x
U ¼ Qel

Cel

Inertial force FI ¼ mK am U ¼ Lel
_Iel

Frictional force FR ¼ DR v U ¼ Rel Iel

FR= – DRv

FI = mk  am

U = Lel Iel

U = Rel Iel

1
Cel

U = — Qel

Fk = k w0

v

Fig. 190 Mass fixed to a

spring compared with

capacitor, coil, and resistance

in series
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A very simple example is the combination of microchannels to a system of

channels which, e.g., may serve as a filter for particles in a fluid. Figure 191 shows

an example. The designer of such a filter needs to know, what is the throughput of

the filter as a function of the pressure difference Dp. The flow FF through a single

capillary with fluidic resistance Rfl is known from the Hagen Poiseuille equation

(175) (page 107) and (178) (page 108), respectively.

The volume flow through two capillaries in series is the same in each capillary,

because the fluid can neither disappear nor appear in between. The pressure drop

over both capillaries obviously is the sum of the pressure differences over the

individual ones (cf. Fig. 192a). With (422) it is obtained:

Dp ¼ Dp1 þ Dp2 ¼ Rfl;1FF þ Rfl;2FF ¼ RflFF ) Rfl ¼ Rfl;1 þ Rfl;2: (423)

When two capillaries are arranged in parallel (Fig. 192b), the pressure difference

is the same over both capillaries and the overall volume flow is the sum of the flows

through the two capillaries. With (422) it is obtained:

FF ¼ FF;1 þ FF;2 ¼ Dp
Rfl;1

þ Dp
Rfl;2

¼ Dp
Rfl

) 1

Rfl

¼ 1

Rfl;1
þ 1

Rfl;2
: (424)

Obviously, the flow resistances of channel systems are calculated in the same

way as the electrical resistance of a system of resistances. Besides this, (422) is of

the same kind as Ohm’s law, if the pressure difference is associated with the voltage

and the volume flow with the electrical current.

To fulfill the analogy to the elastic and the inertial force, a fluidic inductance Lfl

and a fluidic capacity Cfl need to be defined in a suitable way. If, e.g., a membrane is

Fig. 191 Flow through a

system of microchannels

Fig. 192 Pressure and

volume flow at capillaries (a)

in series and (b) parallel to

each other
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build in a flow channel as shown in Fig. 193a, the interrelationship between

deflection and pressure difference is described by (53) (page 38). If the deflections

w0 are small compared with the thickness dM of the membrane, the third term in the

parenthesis can be neglected. The deflection of the membrane can be expressed by

the displaced volume V employing (303) (page 170) resulting in:

Dp ¼ 8 dM

p R4
M

4

3

d2M
R2
M

EM

1� n2M
þ s0

� �
V: (425)

The analogy in (422) results in:

v ¼ qx
qt

$ FF ¼ qV
qt

) x $ V: (426)

Comparing the above equation with the equations of the elastic force in Table 19

now yields the definition of the fluidic capacity Cfl:

Fk ¼ kx $ U ¼ Qel

Cel

$ Dp ¼ V

Cfl

: (427)

Comparing (425) and (427) now yields the fluidic capacity Cfl of the given

problem:

Cfl � p R4
M

8 dM

1

ð4=3Þ d2M R2
M

�� �
EM 1� n2M

�� �þ s0

: (428)

If different physical domains are to be coupled, the energy flow leaving one

domain needs to be the same as the energy flow entering the other domain. A simple

Fig. 193 Capillary with a

membrane (a) and analog

electrical circuit (b)

Table 20 Devices of different physical domains which are analog to each other

Fluidics Electronics Mechanics

Pump Voltage source Engine

Passive valve Diode Ratchet

Active valve Transistor Brake

Hydraulic press Transformer Gear or lever
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example is the electroosmotic actuator (cf. page 122f). A volume flow FF is

generated by a voltage U applied to a capillary filled with a polar liquid such as

water. The energy flow, i.e., the power, of the electric Pel and the fluidic Pfl domain,

respectively, are:

Pel ¼ U Iel ¼ Pfl ¼ Dp FF: (429)

The electroosmotic actuator can be drawn as an equivalent circuit together with

the electrical circuit of the electronics as shown in Fig. 194a. The electrical current

Iel and the flow FF can be expressed by voltage U and electrical resistance Rel and

pressure difference Dp and fluidic resistance Rfl, respectively:

Pel ¼ U2

Rel

and Pfl ¼ Dp2

Rfl

) Rel ¼ U2

Dp2
Rfl: (430)

The pressure difference DpEOF driving the fluid as a function of the voltage is

calculated with (214) (page 124):

DpEOF ¼ 32

D2
h

e0 er U z: (431)

Inserting the above equation and the flow resistance Rfl [(178) on page 108] into

(430), yields the electrical resistance of the electroosmotic actuator:

Rel ¼ D2
h Z LE

32 A e20 e2r z2
: (432)

The electroosmotic actuator may also be drawn as a simplified schematic

equivalent circuit which shows the electric and fluidic circuit combined and some-

times allows an easier understanding of the interrelationships (cf. Fig. 194b).

In general, the equivalent circuits of microsystems are much more complex than

in the case of the electroosmotic actuator. The head of an ink-jet printer shown in

Fig. 189 (page 252) could be depicted by an equivalent circuit (cf. Fig. 195)

showing the electrical resistance of the heater Rfl, voltage U applied to the heater,

temperature change generated by the heater DT, accelerated mass mF $ Lm of the

Fig. 194 Coupled electrical and fluidic circuit (a) and simplified combined circuit (b)

Analogies of Physical Domains 257



droplet ejected from the printer, thermal resistance Rth describing the heat loss to

the environment, fluidic capacity Cfl of the bubble, thermal capacity Cth of the

bubble and the liquid ink, flow resistance Rfl of the channel to the reservoir, and

fluidic inductance Lfl of the accelerated liquid ink in the channel.

Such an equivalent circuit may help to understand the interrelationships of the

components of the microsystem. For example, it becomes clear that the mass and

flow resistance of the liquid in the channel to the reservoir should be designed much

larger than the mass of a droplet. From the response time of the circuit, it can be

estimated how large the thermal resistance and fluidic and thermal capacitance

should be to achieve ejection of a droplet of the desired size in the desired time.

However, it remains to be difficult to calculate the time response of a complex

circuit. Fortunately, there are computer programs available which have been devel-

oped to simulate electronic circuits. Such programs can be employed to calculate, e.

g., the time response of the equivalent circuit of the ink-jet printer, and, that way,

solve the problem of the microsystems comprising several physical domains.

Besides the above, analogies can help to find a solution for a problem. If there is

a problem in one physical domain; e.g., a force is too week, it may help to have a

look on the same problem in another physical domain. A force in the mechanical

domain can correspond to a voltage in the electronic domain. If a voltage is too

small, it can be enhanced with a transformer which results in less current at more

voltage. Now the analogy may go back into the mechanical domain and it may be

found that a lever in the mechanical domain corresponds to a transformer in the

electrical domain. In the simple case described here, certainly it was clear that a

lever could solve the problem but changing the point of view by moving to another

analog domain may help also to solve more complex problems.

The analogy of devices from different physical domains is not limited to the case

of a transformer and a lever. Table 20 shows a list of analog devices which, e.g.,

have analog characteristic curves.

Table 21 shows possible analogies.

Fig. 195 Cross-section and

equivalent circuit of an ink-jet

printer
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Exercises

Problem 43

A microfluidic filter as shown in Fig. 191 (page 255) consists of several simple

capillaries as shown in Fig. E32. The dimensions of the capillaries are shown in the

figure. All channels are 1 mm in height. When water (viscosity: 1 mPa s) is entering

into this capillary system at a pressure difference of 3 Pa, what is the volume flow at

the outlet? Please perform the calculation as if the flow would go straight through

the channels. In reality, at each corner, there is an additional flow resistance which

does not enter into the calculation.

The so-called delta-wye conversion in electrotechnique is shown in Fig. E33. It

can help to solve the problem, but is not necessarily needed.

Problem 44

A micropump does not produce a continuous pressure but superimposes it with a

sine wave pressure fluctuation. This is inappropriate for the intended application.

Therefore, the pressure generated shall be made smoother by designing downstream

of the pump a constriction and a membrane. Figure E34 shows the constriction and

the membrane together with an electronic equivalent circuit and the equation

describing the voltage change due to the circuit.

The constriction is 3 mm, 100 mm, and 100 mm in length, height, and width,

respectively. The fluid is water, i.e., the viscosity is 1 mPa s. Radius, thickness,

Poisson’s ratio, and Young’s modulus of the membrane are 1 mm, 10 mm, 0.5, and

2 MPa, respectively, and there is no residual stress.

Table 21 Analog quantities in different physical domains. Other analogies between the same

quantities are also possible as a function of the given problem

Electronics Mechanics Rotation Fluidics Thermodynamics

Potential U F Mt Dp T

Status Qel x j V S

Flow Iel v o FF _S
_Iel am _o _FF

Rel DR DR Rfl Rth

Cel 1/k 1/k Cfl Cth

Lel mK Im Lfl

Energy flow U Iel F v Mt o Dp FF T _S ¼ _Qth

Energy U Qel F x Mt j Dp V T S ¼ Qth

The denominations are found on page viif

Exercises 259



(a) Calculate the pressure fluctuations expected behind the membrane when their

frequency and amplitude are 1 Hz and 200 Pa, respectively, before the con-

striction.

(b) As a consequence of the constriction, the flow rate is much reduced. Experi-

ments show that a width and a height of the constriction should be 500 mm.

Please calculate how large the circular membrane needs to be to achieve the

same smoothening effect as in (a).

=
RD1

RD1 + RD2 + RD3

RD2RY1

=
RD2

RD1 + RD2 + RD3

RD3RY2

=
RD3

RD1 + RD2 + RD3

RD1RY3

Fig. E33 Delta-wye

configuration in

electrotechnique

1
=

Rel
2 w2 Cel

2+1Ue

Ua

Fig. E34 Fluidic system and

electronic equivalent circuit

Fig. E32 A system of

microchannels. All measures

are given in millimeters
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Mechanical Devices for Electronics

Electromechanical switches, also called relays, are devices which are designed to

switch an electrical current by a voltage employing some mechanical means. For

most applications, currents are switched by a transistor and this is the cheapest

known way to control the flow of a current.

However, for certain applications, transistors are not suitable. For example, high

frequency signals cannot be switched off by a transistor. Transistors are a kind of

capacitor from the point of view of the signal which can overcome the distance

between source and drain, if its frequency is high enough. Other examples are

devices which for safety reasons are not allowed to be realized as a microelectronic

circuit. For example, the switch stopping a robot when a person enters into its

working range in some countries must be a mechanical switch.

In the past, relays have been employed to provide a save interruption of an

electrical circuit. Microtechnique allows constructing relays which are smaller,

lighter, and cheaper. Figure 196 shows how an electromechanical switch may

look as [70]. A beam is attracted by the electrostatic force of the control signal

and closes an electrical circuit.

If the output line would be realized just by one contact of the beam and a

counter electrode on the substrate, the beam could be deflected down by a large

voltage at the output. Therefore, a small bridge is closing the contacts between

the output electrodes when the beam is deflected down by the voltage applied to

the control electrode. This design also reduces capacitive coupling between the

output electrodes.

If the distance of the control electrode with area AC from the non-deflected beam

is d0, the electrostatic force FC pulling down a beam as a function of the deflection

w0 is according to (222) (page 131):

FC ¼ 1

2

e0 er AC

d0 � w0ð Þ2 U
2: (433)

The elastic force FB of a beam clamped at one end is described by (97) on

page 66. Electrostatic and elastic forces are shown in one graph in Fig. 197 as a

function of the deflection w0 of a beam with a Young’s modulus EB, distance LB
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between the center of the control electrode and the fixation point of the beam, width

bB, and thickness dB of 120 GPa, 550 mm, 40 mm, and 2 mm, respectively, which is

mounted at d0 ¼ 5 mm above the control electrode.

Figure 197 shows that at a low voltage such as 3 V the electrostatic force is larger

than the elastic force of the beam only up to a deflection of 0.6 mm. As a

consequence, there is a stable equilibrium of forces at that deflection and the

beam would not move beyond that point. There is another equilibrium of forces

at 3.1 mm which is instable. That is, a beam deflected more than 3.1 mm will bend

completely down and a beam deflected less will go back to the stable position at

0.6 mm.

When the voltage is larger than 3.9 V, there is no stable position for the beam and

it is completely bent down. The voltage necessary to bend the beam completely

down is called the pull-in-voltage. Obviously, this is the desired situation and an

algorithm is required to find the pull-in-voltage as a function of the geometrical and

material parameters of the beam.

At the equilibrium of forces, the electrostatic force according to (433) and the

elastic force of the beam [(97) on page 66] are equal:

FC ¼ 1

2

e0 er AC

d0 � w0ð Þ2 U
2 ¼ FB ¼ 3

EB I

L3
B

w0

) w0 d0 � w0ð Þ2 ¼ e0 er AC L3
B

6 EB I
U2: (434)

Both sides of the above equation are drawn in Fig. 198 for the parameters used in

Fig. 197. The left term is a polymomial and the right one is a constant with respect

to the deflection. The crossing points of the two curves mark the equilibrium of

Fig. 197 Elastic force FB of a

beam and electrostatic force

FC pulling it down as a

function of deflection w0 and

applied voltage

Fig. 196 Electromechanical

switch [70]. # [1997] IEEE
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forces. The pull-in-voltage is achieved when the constant described by the right

side of (434) is larger than the maximum of the left side of the equation.

The maximum of the left side of (434) is found by differentiating it with respect

to the deflection, calculating the zero, and inserting it into (434) again. This way,

the pull-in-voltage Up is found:

4

27
d30 ¼

e0 er AC L3
B

6 EB I
U2

p ) Up ¼ 2

3
d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

EB I d0

e0 er AC L3
B

s
: (435)

When the switch is closed, a voltage Umin smaller than Up is sufficient to keep it

closed. Umin can be calculated from the equilibrium of elastic and electrostatic

forces of the closed switch. The distance di of the control electrodes of a closed

switch need to be larger than zero because a short-circuit must be avoided. The

corresponding equation of (434) for a closed switch is:

FC ¼ 1

2

e0 er AC

d2i
U2

min ¼ FB ¼ 3
EB I

L3
B

d0 � dið Þ

) Umin ¼ di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

EB I

e0 er AC L3
B

d0 � dið Þ
s

: (436)

If the voltage becomes smaller than Umin, the switch will not open completely

but go to its stable position. To completely open the switch, the voltage at the

control electrode needs to be set back to zero.

Electromechanical filters are another kind of mechanical devices employed in

electronics. Devices for mobile communication such as cellular phones, radios,

television, WLAN, and communication satellites need to filter out a certain fre-

quency band on which the desired information is sent.

There are several ways how to modulate a carrier frequency to transport infor-

mation with it. Figure 199a shows an electromagnetic signal sent at a carrier

frequency and modulated with a signal frequency which contains the information,

e.g., an acoustic signal. The envelope curve of the curve shown in Fig. 199a

describes the signal. A Fourier transformation of the signal shown in Fig. 199a is

displayed in Fig. 199b. The carrier frequency is surrounded by the so-called side

Fig. 198 Left and right side

of (434)
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bands which contain the desired information. Different information are broadcast

simultaneously by a lot of stations at different carrier frequencies resulting in a lot

of frequencies at which information is transmitted (Fig. 199c). There are techniques

available which allow transmitting only one side band suppressing the carrier

frequency and the second side band. This allows to send simultaneously more

information in a given frequency range. Transmitting digital information results

in much narrower frequency bands because only the on and off state of the carrier

frequency needs to be detected.

In any case, the receiver of a communication device needs to be tuned to a

certain frequency band to record only the desired information. Therefore, some

band pass filter is required which filters out the desired frequency band. The sharper

the band pass filter is the more information can be transmitted simultaneously at

neighboring frequencies.

An electronic filter is shown schematically in Fig. 200a. The capacitor sup-

presses low frequencies, while the coil suppresses high frequencies. As a result,

there is a certain frequency called the resonance frequency fr which is passing the

filter best while other frequencies are suppressed. Figure 200b shows the transfer

function of the filter shown in Fig. 200a, which describes the ratio of the voltage

amplitudes of a sine signal at the output Uout and at the input Uin as a function of

their frequency.

The transfer function in Fig. 200b does not show the desired form, because it

filters out only one resonance frequency. Instead, it is necessary to provide a circuit

with a rectangular transfer function, which allows all frequencies in a certain range

to pass the filter and suppresses all other frequencies. Such a transfer function is

approximated by a serial connection of several filters with neighboring resonance

frequencies. Figure 200c shows the schematic drawing of a filter composed of three

individual filters, and Fig. 200d shows their transfer function which contains the

three individual resonances frequencies.

The resonance frequency of an electronic filter can be calculated with (420)

(page 254), which also describes the resonance frequency of a system composed of

a mass and a spring. That is, instead of an electronic filter containing a capacitor and

Fig. 199 (a) Transmitted

signal, (b) frequency

spectrum of the signal, and (c)

frequency spectrum as

received by an antenna and

necessary filter characteristic

to separate the desired

information
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a coil, a mechanical vibrating structure can be employed which comprises a spring

and a mass as schematically shown in Fig. 201. The resistor in the electronic filter

corresponds to the damping of the moving mass of the mechanical system.

A difference between the electronic and the mechanical filter is that the mechan-

ical filter is only a week function of temperature (because Young’s modulus is a

function of temperature) and damping can be reduced more by suitable designs and

evacuating the filter housing. Therefore, with mechanical filters, a transfer function

with sharper edges can be constructed. Besides this, the resonance frequency of a

mechanical filter can be adjusted by simply applying a voltage (see below).

A measure of the sharpness of the edges of the transfer function of a filter is the

so-called quality factor Q which is defined as 2p times the ratio of the potential

energy per period of the oscillator and the energy loss per period. The quality factor

is related to the angular frequency at the resonanceor and the damping constant DR:

Q ¼ or

DR

�
ffiffiffiffiffiffiffiffiffiffiffi
k mK

p
DR

with FR ¼ DR v: (437)

Electronic filters have quality factors of some hundred, while micromechanical

filters achieve more than 10,000.

Fig. 201 Electronic and

mechanical resonator

Blocks low
frequencies

Allow only one frequency to pass

Uin

Uin UoutRel Rel Rel

C1 C2 C3L2L1 L3

Cel Lel Rel Uout
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Fig. 200 (a) Electronic filter, (b) transfer function of the filter shown in (a), (c) electronic band

pass filter, and (d) transfer function of the band pass filter
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To excite a mechanical resonator composed of a spring and a mass by an

electrical signal, an electrostatic actuator is a simple solution. Such an arrangement

is shown in Fig. 202. It consists of two mechanical resonators coupled by an

intermediate spring.

An alternating voltage applied to the input electrode results in a mechanical

vibration of the resonator system. It is necessary to apply a bias voltage to the

resonator because otherwise the resonator would be attracted both by the positive

and the negative half-wave of the signal resulting in a vibration with the doubled

frequency. The bias voltage is also required to generate a signal at the output

electrode when the capacity of the output is changing due to the moving resonator.

As shown in Fig. 203a, the resonator is excited to larger vibrations at its

resonance frequency, and therefore out of a frequency mix at the inlet mainly the

resonance frequency is transmitted to the output. A combination of two (cf.

Fig. 202) or more resonators at adjacent resonance frequencies results in a transfer

function which is close to the desired one. At frequencies far below the resonance of

the mechanical oscillator, there is no phase shift between the input signal and the

vibration, and as a consequence there is also no phase shift between the input and

the output voltage. However, at the resonance, there is a phase shift of �p/2 and at

higher frequencies it is �p (cf. Fig. 203b).

At the output, there is a capacitance Cel varying with the frequency and phase of

the resonator. The constant bias voltage UB is applied to the capacitor. In general,

the electrical current Iel generated at a capacitor is calculated from the charge

change as a function of time:

Qel ¼ CelU ) qQel

qt
¼ Iel ¼ qCel

qt
UB: (438)

Fig. 202 Electromechanical

filter consisting of two

resonators. All bright
structures are cantilevers

Fig. 203 Schematic drawing

of amplitude and phase of

beam vibrations
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The capacitance of comb electrodes is a linear function of their overlapping

length [cf. (223) on page 132], and therefore varies with the same phase and relative

amplitude as the deflection of the resonator. Denoting the capacity of the output

electrode in the idle state of the resonator by C0 and the maximum capacity change

due to the vibrating beam by DC it is obtained:

Cel ¼ C0 þ DC sin o tþ jð Þ ) Iel ¼ qCel

qt
UB

¼ DC o sin o tþ j� p
2

� �
UB:

(439)

In the above calculation, it has been taken into account that the derivative of a

sine function is the same as a shift by �p/2. Thus, the current leaving the output

electrode has a phase shift of�p/2 plus the phase ’ of the beam. Figure 203c shows

the phase of the output current. The current signal then can be converted into a

voltage, in the easiest case by a resistance mounted in series to the output electrode.

The amplitude of the current signal is proportional to (DC o) and DC is a

function of o because the amplitude of the beam vibration is a function of the

frequency o/(2 p) as shown in Fig. 203a. As a consequence, the maximum of the

transfer function is at a frequency which is a bit larger than the resonance frequency

of the beam.

The resonance frequencies of the resonators can be tuned by additional electro-

des such as shown in Fig. 202. When the resonators are not deflected, they are in an

unstable equilibrium (cf. Fig. 96 on page 132). The force acting on the resonator is

composed of the elastic force of the beams which can be expressed by their spring

constant km and the electrostatic force described by (225) (page 133):

FB ¼ �km xþ 1

2
e0 er AC U2 1

dC � xð Þ2 �
1

dC þ xð Þ2
 !

: (440)

The deflections x of electromechanical filters usually are small. Therefore, it is a

good approximation to calculate the Taylor expansion at x ¼ 0:

FB ¼ FBðxÞ þ qFB
qx

����
x¼0

x ¼ �k xþ 2e0 er AC U2 dC x

¼ �km þ kelð Þx with kel :¼ 2 e0 er AC U2 dC: (441)

In the above equation, kel is the so-called electrical spring constant. By applying

a voltage to the tuning electrodes, the spring constant of the resonators can be

diminished and thus the resonance frequency of the resonators [calculated with

(420) on page 254] and the transfer function of the filter can be tuned in the desired

way. The tunable range is limited because too large deflections of the beam result in

a nonlinear transfer function and the electrodes should not touch each other and
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generate a short-circuit. It needs to be noted that the bias voltage applied to inlet and

outlet electrodes also results in an electrical spring constant which has to be taken

into account when the resonance frequency is calculated.

A simpler design which can be employed as an electromechanical filter is just a

beam mounted above an electrode (cf. Fig. 204). As described above, it is necessary

to apply some bias voltage UB to the beam to achieve a beam vibration with the

same frequency as the input voltage. The beam together with the counter electrode

forms a capacitor with a capacity which is a function of frequency. In this case,

the calculation of the transfer function is more complex than for the filter shown

in Fig. 202 because both the capacity Cel and the voltage U are a function of

time:

Qel ¼ CelU ) qQel

qt
¼ Iel ¼ qCel

qt
Uþ Cel

qU
qt

: (442)

The capacity consists of two parts: The constant capacity of the beam in its idle

state C0 and a part varying as a function of time with the frequency f ¼ o/(2 p) and
phase ’ of the beam vibrations. The capacity is not a linear function of the

deflection of the beam because it is moving normal to the electrode. However, if

the deflection is small compared with the beam’s distance to the counter electrode

in the idle state, the varying part of the capacity can be approximated by a sine

function with an amplitude DC which is a function of the amplitude of the beam

vibrations:

Cel ¼ C0 þ DC oð Þ sin o tþ jð Þ: (443)

The voltage is the sum of the constant bias UB and the varying part of the input

signal. Beam vibrations are generated by the input signal, therefore the frequency of

beam vibration and input are the same:

U ¼ UB þ DU sin o tð Þ: (444)

Inserting the above (443) and (444) into (442) yields (Again the derivative of a

sine function is a phase shift of �p/2.):

Iel ¼ o DC sin o tþ j� p
2

� �
UB þ oDC sin o tþ j� p

2

� �
DU sin o tð Þþ

C0 oDU sin o t� p
2

� �
þ DC sin o tþ jð ÞoDU sin o t� p

2

� �
:

(445)

Fig. 204 Cross-section of a

vibrating beam employed as

an electromechanical filter
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In the above equation, the terms including the product of DC and DU can be

neglected when they are small compared with C0 and UB, respectively. The second

of the remaining two terms describes the current generated at a constant capacity.

The first term describes the effect of the vibrating beam. Therefore, the equivalent

circuit of the device approximately can be drawn as the capacity C0 of the beam

in its idle state and parallel to this the vibrating beam described by an induc-

tance (Lm ¼ mK), a capacitor (Cm ¼ 1/km), and a resistor (Rm ¼ DR) (cf.

Fig. 205).

However, this is only an approximate view and the resonance frequency should

be calculated by a numerical analysis of (445). Figure 206 shows the result of an

analytical calculation of the amplitude and phase of Iel with (445) as a function of

frequency. For DC, the deflection of a vibrating beam was approximated by a

Gaussian curve around the resonance frequency fr and a width of 2 fr as shown in

Fig. 206a. (It is the advantage of electromechanical filters that the width is much

less than shown here. However, the relative position of the maxima can be recog-

nized more clearly at a larger width.) The phase of the vibrating beam was

approximated by a hyperbolic tangent function as shown in Fig. 206b. The shape

of the curve describing the amplitude of the output current (Fig. 206d) is a function

of the ratio of the products of [UB DC(o)] and [C0 DU]. For the calculation shown

in Fig. 206, the ratio UB/C0 was 1.7. Far from the resonance, DC(o) is small and the

current output is only the one of a capacitor which is increasing proportional to

frequency.

Fig. 205 Equivalent circuit

of a vibrating beam employed

as an electromechanical filter

Fig. 206 Assumed amplitude

(a) and phase (b) of the

vibrating beam shown in

Fig. 204; and amplitude (d)

and phase (c) of the current

output calculated with (445)

Mechanical Devices for Electronics 269



In the near of the resonance, a maximum and a minimum occur below and above

the resonance frequency of the beam. The phase of the output signal (Fig. 206c) is

shifting to -p at the beam resonance, while at other frequencies it is -p/2 as expected
for a capacitor. The output current shown in Fig. 206d is not suitable as a band pass

filter. However, a combination of such devices can result in a transfer function with

very steep slopes. The overall rise of the signal due to the constant capacity C0 can

be eliminated with an additional electronic filter which does not require a sharp and

temperature stable edge. It needs to be noted that there is an electrical spring

constant also for a simple beam over an electrode, and therefore, the resonance

will be changed by and can be tuned with the bias voltage.

It is the purpose of electromechanical filters to obtain sharp edges of the transfer

function. Therefore, damping of the mechanical vibration should be reduced as

much as possible. Damping is mostly due to friction of the oscillating structure in

the surrounding air and also due to sound emission. As a consequence, it is usual to

mount the device in an evacuated housing.

Exercises

Problem 45

Please calculate the minimum switching voltage for the electrostatic switch shown

in Fig. 196 (page 262). Do not take into account, the orifice in the beam in the near

of its fixation. The dimensions and properties of the beam required for the calcula-

tion are shown in the following table:

Young’s modulus of beam 120 GPa

Width of beam 20 mm
Thickness of beam 2 mm
Length of switching electrode 40 mm
Width of switching electrode 15 mm
Distance between beam fixation and end of switching electrode 50 mm
Relative permittivity 1

Distance between beam in idle state and substrate 1 mm
Thickness of isolation layer between touching electrodes 500 nm

(a) Calculate also how much the voltage needs to be lowered again to open the

relay and at what acceleration the switch will open and close, respectively.

(b) The result of (a) indicates that the orifice near the fixation of the beam is

absolutely necessary. What could also be done to enhance the movability of

the beam?

(c) What is the electrical capacity of the signal line of the open relay when the

overlapping area is 2 � 2 mm2?
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Problem 46

The resonance frequency of an electromechanical filter can be tuned by the bias

voltage.

(a) Calculate the resonance frequency of such a filter made of a beam fixed at both

ends. Perform the calculation both with and without bias voltage. The required

quantities are given in the following table:

Relative permittivity 1

Absolute permittivity 8.9 � 10�12 A s/(V m)

Young’s modulus of beam 120 GPa

Residual stress of beam 0 MPa

Width of beam 100 mm
Length of beam 200 mm
Thickness of beam 10 mm
Density of the spring 2.33 � 103 kg/m3

Distance between beam in idle state and substrate when no voltage is

applied

1 mm

Distance between beam in idle state and substrate when bias voltage is

applied

0.77 mm

Inner area of one capacitor plate 100 � 100 mm2

Bias voltage 135 V

(b) Please calculate the quality factor of the filter in (a) due to the squeeze-film

effect of the air in the gap between beam and substrate. Assume a spring

constant of 10,000 Pa m, a beam mass of 0.4 mg, and a dynamic viscosity of

air of 18.2 mPa s. As an approximation, assume that the entire beam is moving

up and down without bending at a distance of 0.77 mm to the substrate.

Problem 47

Please calculate the quality factor and the resonance frequency of the filter shown in

Fig. E35. Neglect the mass of the spring beam for the calculation of the quality

factor but not for the calculation of the resonance frequency.

The properties required for the calculation are found in the following table:

Young’s modulus of beam 120 GPa

Width of beam 10 mm
Length of beam 200 mm
Thickness of beam 10 mm
Density of the material 2.33 � 103 kg/m3

Distance to the substrate 2 mm
Viscosity of air 18.2 mPa s
Area of movable structures 2.50 � 10�2 mm2

Mass of beams mB 163 ng

Central mass m0 419 ng
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Problem 48

An acoustical microswitch shall close an electrical contact when a certain fre-

quency appears. For this, a beam is fabricated with a circular area, 2 mm in

diameter, at its end (cf. Fig. E36). A voltage can be applied between the beam

and a counter electrode. The beam shall be deflected by an acoustic signal so much

that it touches the counter electrode and, this way, generates a short-circuit.

The quantities required for the calculation are given in the following table:

Relative permittivity 1

Absolute permittivity 8.9 � 10�12 A s/(V m)

Young’s modulus of beam 120 GPa

Residual stress of the beam 0 MPa

Width of beam 300 mm
Length of beam 3 mm

Thickness of beam 10 mm
Density of beam 2.33 � 103 kg/m3

Distance between beam and counter electrode when no voltage is applied 2 mm
Voltage applied to the beam 0.1 V

(a) A microphone measures the pressure of an acoustical wave emitted by a source.

At a distance of 0.5m from the source, the pressure is 1 Pa. It reduces proportional

to the inverse of the distance. When the frequency of the acoustic wave is not

the same as the resonance frequency of the beam, as an approximation it can be

m0

Spring
beams

Fig. E35 Electromechanical

filter. Only the black areas
are fixed to the substrate

Counter electrode

Beam

LB FP
bB

dB

Fig. E36 Acoustical

microswitch

272 Mechanical Devices for Electronics



assumed that the acoustical pressure is applied once to the area at the end of

the beam.

What force FP is acting at the end of the beam when it is placed 7 m away from

the source? Is this force alone (with no voltage applied) enough to deflect the

beam so much that it touches the counter electrode?

(b) A voltage applied between the end of the beam and the counter electrode helps

to close the switch. Is the switch closed with the help of the electrostatic force?

Verify that the switch is closed by the additional electrostatic force just 70 nm.

(c) When the beam is excited at its resonance frequency, its amplitude is signifi-

cantly enhanced and the switch is closed. What resonance frequency has to be

expected? (Ignore squeeze-film effect and electrostatic force.)

(d) Why is only such a small voltage applied to the beam?
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Pressure Sensors

Pressure sensors play an important role in microsystem industries. They are

employed in a lot of different application such as triggering for side air bags and

monitoring tire pressure in cars, detecting the elevation for hiking or paragliding,

and flow measuring (cf. page 299f).

The main advantages of miniaturized pressure sensors are low cost, small size

and weight, and quick response time in pneumatic applications. A pressure change

cannot be measured before the fluid has adopted the change. This is delayed in

compressible fluids because some fluid needs to flow into or off the sensor and this

takes some time. The time required to change the pressure in the dead volume VT of

a pressure sensor as a function of the flow resistance Rfl of the feed channel and the

final pressure pe can be approximated with (381) on page 218. Obviously, the small

dead volume of a miniaturized pressure sensor is an advantage and the flow

resistance of the feed channel needs to be designed as large as possible.

Pressure sensors contain a membrane deflected by the pressure difference to be

measured. The deflection of a membrane as a function of the pressure difference

is calculated with the equations shown in Table 2 (page 50). Equation (53) (on

page 38) describes the interrelationship between pressure and deflection of a circular

membrane in general:

Dp ¼ 4 dM w0

R2
M

4

3

d2M
R2
M

EM

1� n2M
þ s0 þ 64

105

w2
0

R2
M

EM

1� n2M

� �
: (53)

For noncircular membranes, the interrelationship between pressure difference

Dp and deflection w0 is described by a similar equation [cf. (67), page 46].

Therefore, in the following, a circular membrane is assumed representative for all

membrane shapes.

The first, second, and third term in the parenthesis of (53) describe the effects of

bending moments, residual stress, and stress due to straining, respectively. The

second term describing the effect of the residual stress is disturbing because the

stress of a micromembrane is easily changed by outer forces acting on the sensor

housing. Therefore, it is usual to mount the membrane at the free end of a

tube where the stress of the housing is kept away from the sensing membrane

(cf. Fig. 207).

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_21, # Springer-Verlag Berlin Heidelberg 2011
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The third term in the parenthesis of (53) represents the stress change of the

neutral fiber (cf. page 5) and the entire membrane due to the straining of the

membrane generated by its deflection. This term is responsible for a nonlinear

interrelationship between pressure difference and membrane deflection. Therefore,

for a linear characteristic curve, it is required that the deflection w0 of the membrane

is much less than its thickness dM. As a consequence, the third term in the

parenthesis is much smaller than the first one, and, the deflection is a linear function

of the pressure difference.

The deflection of the membrane can be detected by strain gauges, as a capacity

change, or the frequency change of a resonating microstructure. When strain gauges

are employed, it is necessary to compensate for changes of their electrical resistance

as a function of temperature. This is accomplished by employing a bridge (cf.

Fig. 39 on page 54).

The potentiometer is adjusted such that the output voltage Um of the bridge is

zero when the membrane is not deflected. Therefore, the output voltage is equal to

the change of the voltage drop over one of the resistance, e.g. R2:

U2 ¼ R2

R1 þ R2

U0 ) Um ¼ @U2

@R1

DR1 þ @U2

@R2

DR2

¼ U0

�R2 DR1

R1 þ R2ð Þ2 þ
R1 DR2

R1 þ R2ð Þ2
 !

: (446)

If R1 equals R2 ¼ Rel, the above equation results in:

Um ¼ U0

4 Rel

DR2 � DR1ð Þ: (447)

The resistance changes of radial and tangential strain gauges on a thick circular

membrane can be calculated with (83) and (84) on page 56, respectively, and an

example is shown in Fig. 40c. Inserting the resistance changes of radial and

tangential strain gauges into the above equation for R1 and R2, respectively, yields:

Um ¼ 3

32

U0 Dp
EM d2M

1� n2M
� �

1� 2 nð Þr2t þ 1þ 2 nð Þr2r
� �

: (448)

In the above equation, rt and rr are the effective distances of tangential and radial

strain gauges, respectively, from the center of the membrane. Young’s modulus,

Fig. 207 Schematic cross-

section of a pressure sensor

mounted at the free end of a

tube
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thickness of the membrane, pressure drop, Poisson’s ratio of membrane, and strain

gauges are denoted by EM, dM, Dp, nM, and n, respectively. Equation (448)

describes the measured voltage Um as a function of the pressure drop Dp, when
radial and tangential strain gauges on a thick circular membrane are combined to a

half bridge. That is, (448) is the characteristic curve of the pressure sensor.

However, the stress of the membrane has not been taken into account for the

calculation.

The effect of residual stress can be included in the calculation, if the resistance

change is calculated with (89) and (90) (page 57) as a function of membrane

deflection w0 and inserted into (447):

Um ¼ U0 dM w0

2 R4
M

1� 2 nð Þr2t þ 1þ 2 nð Þr2r
� �

: (449)

The above equation describes the output voltage of radial and tangential strain

gauges from metal on the surface of a thick circular membrane. Equation (449)

shows that the output voltage is a linear function of membrane deflection and it is

not a function of Young’s modulus, Poisson’s ratio, and residual stress. Each

combination of pressure and membrane properties which yields a certain deflection

will result in the same output voltage.

The effect of residual stress on output voltage Um can be calculated now by

inserting the deflection w0 as a function of the pressure drop into (449). Since the

membrane is thick, its deflection is smaller than its thickness and the third term

in the parenthesis of (53) can be neglected. As a result, the output voltage is

obtained as a function of the pressure difference Dp and the residual stress s0 of
the membrane:

Um ¼ 1

8

1� 2 nð Þr2t þ 1þ 2 nð Þr2r
4=3 EM ð1� n2MÞ

�� �
d2M þ R2

M s0

U0 Dp: (450)

The above equation is the characteristic curve of the pressure sensor as a

function of the residual stress. It shows that the output voltage Um is a linear

function of the pressure difference. If the deflection gets larger, the characteristic

curve of the pressure sensor needs to be calculated in a different way: The output

voltage as a function of membrane deflection is calculated with (449), the pressure

difference as a function of deflection is calculated with (53), and the output voltage

is drawn over the pressure difference. In Fig. 208a, the characteristic curve calcu-

lated this way is shown for a membrane with radius, thickness, Young’s modulus,

and Poisson’s ratio of 1 mm, 20 mm, 120 GPa, and 0.3, respectively. On the

membrane, there are radial and transversal metal strain gauges at effective radii

of 600 and 900 mm, respectively, with a Poisson’s ratio of 0.3. The voltage support

U0 is 10 V.

As seen in Fig. 208a, the characteristic curve of a thick membrane is linear, if its

deflection is small compared with its thickness (20 mm). The slope, i.e., the sensi-

tivity of the sensor, is a strong function of residual stress. That is, the reason why
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pressure sensors are mounted at the free end of a tube or a similar arrangement which

avoids that outer forces can change membrane stress (cf. Fig. 207).When membrane

deflection gets larger, the characteristic curve is no longer linear, especially when

there is some compressive residual stress on the order of magnitude of the critical

stress. In the example shown in Fig. 208a, the critical stress calculated with (54)

(page 41) is -70 MPa.

If the membrane is deflected more than its thickness, it is called a thin membrane

and the resistance change of radial and transversal strain gauges from metal on a

circular membrane as a function of deflection can be calculated with (92) and (93)

on page 59. Inserting (92) and (93) into (447) yields the output voltage of a pressure

sensor employing a circular thin membrane with radius RM:

Um ¼ 1

6
U0

w2
0

R4
M

1� nð Þr2t þ 1þ nð Þr2r
� �

: (451)

The resistance change of a thin membrane is due to the strain of its neutral fiber.

Therefore, the output voltage is a function of the square of membrane deflection.

Figure 208b shows the characteristic curve of a pressure sensor with the same

parameters as the one in Fig. 208a but with a thickness of just dM ¼ 2 mm instead of

20 mm. The pressure difference was calculated with (53) as for Fig. 208a, but the

output voltage was obtained from (451). The scale on the right of Fig. 208b shows

that the output voltage is a quadratic function of membrane deflection w0.

The difference between a thick and a thin membrane is just its deflection.

Therefore, a thick membrane becomes a thin one when the pressure drop Dp is

enhanced and the deflection w0 gets larger than membrane thickness dM. The

resistance change of radial and tangential strain gauges on circular thick and thin

Fig. 208 Characteristic

curves of pressure sensors

with (a) a thick and (b) a thin

membrane as a function of

residual membrane stress s0;

and membrane deflection w0

corresponding to output

voltage Um
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membranes are shown in Fig. 40 (page 56) and 42 (page 59), respectively. The

resistance of a radial strain gauge at the rim of a thick membrane becomes smaller

with increasing deflection, but it becomes larger when the deflection is larger than

membrane thickness and the membrane is called a thin membrane. For a transversal

strain gauge, the situation is similar but with the opposite trend as a function of

increasing deflection. As a consequence, there is a certain range of deflections

which are about as large as the thickness of the membrane where the characteristic

curve is ambiguous (cf. Fig. 209a).

To avoid that a pressure sensor designed with a thick membrane enters the

ambiguous range, it may be appropriate to mount a membrane stop as shown in

Fig. 209c at a distance corresponding to the thickness of the membrane. The

electronic of such a sensor can detect an overload when a certain threshold is

overcome or when the membrane touches the stop.

If the measurement range shall not be restricted to pressures at which the

membrane is clearly thick or thin, there are several ways to avoid the ambiguity

of the characteristic curve: Strain gauges in the center, strain gauges at the neutral

fiber of the membrane, or deflecting the membrane to the side opposite to the strain

gauges.

If strain gauges are arranged at the center of the membrane, the sign of the

resistance change does not differ for thick and thin membranes, and, therefore, the

characteristic curvewill not be linear but unambiguouswhen themembrane deflection

makes the transfer from a thick to a thin membrane. To achieve a compensation

Fig. 209 Characteristic

curve of pressure sensor when

membrane deflection exceeds

its thickness
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for temperature changes affecting the electrical resistance, a second position for

conductor paths is required which shows a different resistance change when the

membrane is deflected. This may be accomplished by a second membrane next to

the first one having one or more large holes and similar conductor paths as the first

membrane (cf. Fig. 209b). The conductor paths of both membranes can then be

combined to a bridge as shown in Fig. 39 on page 54.

Another way to avoid the ambiguity of the characteristic curve is to place the

strain gauges at the neutral fiber inside the membrane. This way, only the strain of

the neutral fiber is detected and bending of the membrane will show no effect on

the measurement. The output voltage then has to be calculated with (451) also

for membrane deflections smaller than membrane thickness. A disadvantage of

arranging strain gauges in the neutral fiber of a membrane is that it cannot be

distinguished between up and down deflections of the membrane because the output

is a function of the square of deflection. This is not important, if the reference

pressure is a vacuum but may be a problem when a pressure difference is to be

measured.

The fourth (and for most cases the best) solution to avoid ambiguous output

signals is to make sure that the membrane is deflected into the direction opposite to

the side where the strain gauges are placed. This way, the sign of the resistance

change shown in Fig. 40 (page 56) is reversed and the trend of the resistance change

of strain gauges at the rim of the membrane does not change with the transition from

a thick to a thin membrane.

Most often a square thick silicon membrane is employed for pressure sensors

with p-doped strain gauges in a monocrystalline membrane. This is described on

page 61f. The strain gauges are orientated parallel to the <110>-direction of the

silicon lattice. They are arranged parallel and perpendicular to the edges at the rim

of the square membrane as shown in Fig. 44 (page 61).

As an approximation, the radial sR and tangential sT stress of a circular thick

membrane with radius RM calculated with (79) and (80) (page 55), respectively, are

used instead of the stresses perpendicular and parallel to the edge of a square

membrane with an edge length aM ¼ 2 RM:

sR ¼ 3

8

Dp
d2M

a2M
4

1þ nMð Þ � r2 3þ nMð Þ
� �

; (452)

sT ¼ 3

8

Dp
d2M

a2M
4

1þ nMð Þ � r2 1þ 3 nMð Þ
� �

: (453)

In the above equations, r is the effective distance of the strain gauges from the

center of the membrane. Therefore, r will be a bit less than aM/2. The effective

distance between membrane center and strain gauges perpendicular rr and parallel rt
to the edges may be different. As a consequence, it needs to be distinguished

between the stresses of perpendicular (sR,r and sT,r) and parallel (sR,t and sT,t)
strain gauges. Equations (452) and (453) are inserted into (22) on page 23 and the
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piezoresistive coefficients of p-doped silicon in Table 1 (page 25) yielding for the

resistance change of perpendicular DRel,R and parallel DRel,T strain gauges:

DRel;R

Rel

¼ pl sR;r þ pt sT;r þ aT DT: (454)

DRel;T

Rel

¼ pl sT;t þ pt sR;t þ aT DT: (455)

Inserting the above two equations into (447), yields the output voltage of a half

bridge on a square thick membrane from monocrystalline silicon. Usually on such a

membrane, there is not a half bride but a full bridge as shown in Fig. 39 on page 54.

As a consequence, the output voltage is doubled and the characteristic curve of a
thick square silicon membrane is:

Um ¼ 3

16

U0 Dp
d2M

� pl r2t 1þ 3 nMð Þ � r2r 3þ nMð Þ� �� pt r2r 1þ 3 nMð Þ � r2t 3þ nMð Þ� �� �
:

(456)

The above equation does not include the effects of residual stress and stress due

to straining on the characteristic curve. To include these, first the characteristic

curve as a function of membrane deflection w0 is calculated by replacing the

pressure difference Dp in the above equation by the pressure difference necessary

to deflect a thick square membrane by w0 (found in Table 2 on page 50):

Um ¼ 99

8

U0 EM dM w0

a4M

� pl r2t 1þ 3 nMð Þ � r2r 3þ nMð Þ� �� pt r2r 1þ 3 nMð Þ � r2t 3þ nMð Þ� �
1� n2M

: (457)

Then, the output voltage calculated with the above equation for certain values of

the deflection is plotted over the pressure difference calculated for the same

deflections as calculated with (67) on page 46 which is also found in Table 2.

The characteristic curve of a silicon pressure sensor calculated with (67) and (457)

is shown in Fig. 210. The same parameters were used as for Fig. 208a with the

exception of the effective radius of the radial strain gauges which was assumed to

be 800 mm instead of 600 mm. Figure 210 shows that the characteristic curve of a

silicon pressure sensor is similar for metal strain gauges on a membrane, but the

output signal of the silicon sensor is much larger because of the larger gauge factors

of monocrystalline silicon. The output of a real silicon sensor will be approximately

20% less as shown in Fig. 210 because, for the calculation, the same Young’s

modulus (120 GPa) and Poisson’s ratio (0.3) were used as for Fig. 208 to allow for a

better comparison.
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In capacitive pressure sensors, the deflection of the membrane is measured as

the capacity change between the membrane and a counter electrode as shown in

Fig. 211a. Similar as for strain gauges, it is advantageous to arrange the capacitor

between membrane and counter electrode in a bridge to measure small capacitance

changes starting from 0 V. Different than in the case of strain gauges, the bridge is

not needed to compensate for temperature changes because the electrostatic force is

not a function of temperature. The other electronic elements in the bridge do not

need to be capacitors but also may be ohmic resistances, if their resistance is not

affected too much by temperature changes. In any case, the output is an alternating

voltage with an amplitude which is a function of membrane deflection and pressure

difference.

The capacitance between two flat electrodes is given in (221) on page 133.

Obviously, the capacitance is not a linear function of the distance between the

electrodes. Besides this, the deflected membrane is not flat, and, as a consequence,

the electric field is concentrated at the membrane center. Therefore, no linear

characteristic curve can be achieved.

An interesting alternative is a balanced pressure sensor. In such a sensor, the

pressure force is compensated by an electrostatic force. The principal design of

such a sensor is shown in Fig. 211b. A voltage is applied between the membrane

and the electrode above it, and this voltage is controlled such that the membrane is

held in its idle state. The voltage Um necessary to hold the membrane then is

a measure of the pressure difference Dp. The position of the membrane can be

Fig. 210 Characteristic

curves of a silicon pressure

sensor as a function of

membrane stress

Fig. 211 Capacitive pressure

sensors
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determined either by strain gauges or by the capacity between membrane and

another electrode, e.g., below it.

If the membrane is held in its idle state, electrostatic force FC and pressure need

to be equal. The electrostatic force acting on a flat membrane at a distance dC to an

electrode with area AC is calculated with (222) (on page 131):

FC ¼ 1

2
e0 er

AC

d2C
U2

m ¼ Dp AM ) Um ¼ dC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Dp AM

e0 er AC

s
: (458)

The above equation shows that the characteristic curve of a pressure sensor

compensating the pressure by an electrostatic force is a root function (cf. Fig. 212).

It also shows that it is only a function of the geometry of electrodes and membrane

but not a function of the elastic properties of the membrane and its thickness. Since

the dimensions of the sensor only vary very little with temperature, the characteris-

tic curve is only a week function of temperature.

It needs to be noted that comparatively large voltages are required to compensate

usual pressure differences. If very small pressure differences are to be measured,

this is an advantage because the sensor is very sensitive. If the measurement range

shall be extended to larger pressures, the design can be changed as shown in

Fig. 211c and the ratio of the areas of membrane AM and electrodes AC can be

reduced [74].

In principle, a linear characteristic curve can also be achieved. To the upper

electrode in Fig. 211b or c, a DC voltage of +U0 can be applied and to the lower

electrode a voltage �U0. If there is no pressure difference and the membrane is

connected to earth potential, the membrane is attracted to both electrodes by the

same force and it is in an instable equilibrium of forces between the electrodes.

When some pressure difference is acting on the membrane, a voltage DU has to

be applied to the membrane to hold it in its idle state. The membrane is lifted up by

the voltage U0�DU and pulled down by U0+DU. The resulting force is equal to the
force generated by the pressure difference and can be calculated according to (222)

(page 131):

FC ¼ 1

2
e0 er

AC

d2C
U0�DUð Þ2� U0þDUð Þ2

h i
¼ 2 e0 er

AC

d2C
U0 DU¼AM Dp (459)

) DU ¼ AM

AC

d2C
2 e0 er U0

Dp: (460)

Fig. 212 Characteristic

curves of pressure sensors

balanced by an electrostatic

force
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The voltage DU applied to the membrane now is the measure of the pressure

difference and the equation above is the characteristic curve of the sensor. The

characteristic curve is linear and it is only a function of the ratio of the areas of

membrane and electrodes, their distance dC, and the voltage supplied to the

stationary electrodes U0. Balanced pressure sensors are similar to the balanced

acceleration sensors described on page 305f. The pressure force Dp AM in (458) and

(460) is just replaced by the acceleration force am m0 in (490) (page 305) and (491)

(page 306), respectively. In Fig. 212, there are shown the characteristic curves of

pressure sensors balanced by one electrode and in an instable equilibrium. A

distance of 1 mm was assumed between membrane and electrodes and a driving

voltage of 10 V in the case of the instable equilibrium.

The pressure range which can be measured is limited by the maximum voltage

which can be supplied to the electrodes. It is reasonable assuming the voltage DU
applied to the membrane not larger than U0 applied to the electrodes. In Fig. 212,

10 V correspond to a maximum pressure of 450 and 1,780 Pa. Of course, it needs to

be made sure that the membrane needs to be thin and large enough to show an easily

detectable deflection when a small pressure is applied.

The deflection of the membrane of a pressure sensor can also be measured by a

vibrating microstructure whose frequency is a measure of the pressure difference.

Sensors with a frequency output are called frequency analog sensors. The advan-

tage of a frequency as the output signal is that it is hardly affected by electromag-

netic noise.

On the other hand, there is a mechanism required which excites a microstructure

to vibrations which are a function of the measurand. Typically, the resonance

frequency of a beam clamped at both ends is employed. Heating such a beam

(cf. page 164), driving it as a piezo (cf. page 144), or electrostatically attracting it

(cf. page 131) are methods to excite vibrations. In Fig. 213, it is shown how, in

principle, resonance vibrations can be excited and observed. Typically, the deflec-

tion of a microstructure is excited by some actuator and from its vibrations a signal

is derived with a sensor. This sensor signal is amplified and employed to drive the

actuator again. After a view deflections, the microstructure is vibrating at its

resonance frequency. As a sensor either strain gauges, the change of the capacity

between the vibrating beam and a counter electrode, or the piezoelectric effect can

be employed.

A vibrating beam can be etched into the surface of the membrane of a pressure

sensor (cf. Fig. E3 on page 16) [14]. The membrane is deflected by a pressure

difference and the strain at its surface is transferred to the beam. The fundamental

Fig. 213 Principle of driving

a frequency analog sensor
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frequency f1 of a beam as a function of its stress s is described by the equation

found in Table 10 on page 102:

f1 ¼ 11:2

p LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

LB mB

þ bB dB LB

4 p2
s

r
: (461)

The strain e of a circular membrane at its center is obtained from (81) and (82) on

page 55 and 56. It can also be employed as an approximation for the stress of a

square membrane with an edge length aM ¼ 2 RM:

e ¼ 3

8

Dp R2
M

EM d2M
1� n2M
� �) sD ¼ eEB ¼ 3

8

EB

EM

R2
M

d2M
1� n2M
� �

Dp: (462)

In the above equation, the stress sD due to straining of the beam is calculated by

Hooke’s law. It differs from the stress of the membrane [calculated with (79) and

(80) on page 55] by the power of Poisson’s ratio even if beam and membrane have

the same Young’s modulus, because the beam is strained only in longitudinal

direction.

Inserting (462) into (461) and taking into account that there may have been some

residual stress s0 in the beam when the membrane is not deflected yields:

f1 ¼ 11:2

p LB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB I

LB mB

þ bB dB LB

4 p2
s0 þ 3

8

EB

EM

R2
M

d2M
1� n2Mð ÞDp

� �s
: (463)

A difficulty of frequency analog sensors is that the measured frequency could not

be the desired resonance of the beam but another resonance, e.g., of the membrane

or another part of the sensor. It is also necessary to make sure that the beam itself

does not vibrate in an undesired mode, e.g., perpendicular to the expected direction

or in a higher resonance. The frequency may not be altered by particles attached to

the beam or by a fluid surrounding it. Therefore, it is desirable to mount the beam

inside of the reference vacuum of the sensor.

If the dimensions are chosen such that the bending moments are dominating the

frequency [In (463) the first term in the square root is much larger than the second

one.], the characteristic curve is nearly linear. The ratio of membrane radius to

thickness should be large to make the second term in the parenthesis large com-

pared with the residual stress and insensitive to changes of that stress. In Fig. 214,

the characteristic curve calculated with (463) is shown for a sensor equipped with a

membrane, 20 mm and 2 cm in thickness and radius, respectively, and a beam,

4 mm, 2 mm, and 2 mm in length, width, and thickness, respectively. Membrane

and beam are assumed to be fabricated from silicon (EB ¼ 150 GPa, n ¼ 0.3,

r ¼ 2,330 kg/m3). The sensor is based on the ability to measure the resonance

frequency with high precision. If the frequency is not measured by counting the

number of vibrations in a certain time but by measuring the time between two zero

crossings, a remarkable reaction time on the order of 1 ms can be achieved.
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In principle, the membrane itself could be employed as the resonating micro-

structure. However, it cannot be avoided that the membrane is in contact to the

fluid whose pressure is to be measured. Therefore, the characteristic curve would

be a function of the properties of the fluid, which contributes to the vibrating mass,

may contain particles which stick to the membrane and enhance the vibrating

mass, and damp membrane vibrations by its viscosity and sound emission (cf.

page 92f.).

Certainly, it is also very important to make sure that outer forces or temper-

ature changes do not alter the residual stress of the vibrating microstructure.

There always will remain an effect of temperature changes on Young’s modulus

and the dimensions of the microstructure which needs to be acceptable or

compensated.

Exercises

Problem 49

(a) Which output voltage is expected for a pressure sensor deflected by a pressure

difference of 100 kPa? The sensor is equipped with radial and tangential strain

gauges on a circular thick membrane. Properties and dimensions of the sensor

are shown in the following table:

Voltage supply 5 V

Thickness of the membrane 5 mm
Radius of the membrane 1 mm

Young’s modulus of the membrane 120 GPa

Poison’s ratio of the membrane 0.3

Poison’s ratio of strain gauges 0.3

Effective radius of tangential conductor paths 900 mm
Effective radius of radial conductor paths 700 mm

(b) By how many percent is the output signal of the pressure sensor changed, if the

membrane gets a residual stress of 100 MPa?

Fig. 214 Characteristic

curve of a frequency analog

pressure sensor
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Problem 50

A pressure sensor is equipped with a thin circular membrane. On the membrane,

there are radial and tangential strain gauges from gold. Properties and dimensions

are given in the following table. The two strain gauges on the membrane are

combined to a half bridge as shown in Fig. 39 on page 54. The potentiometer is a

part of the electronics which is not on the membrane.

Effective radius of tangential

strain gauge

4 mm Young’s modulus of membrane 120 GPa

Thickness of strain gauges 100 nm Effective radius of radial

conductor paths

4.5 mm

Width of strain gauges 5 mm Radius of membrane 5 mm

Poison’s ratio of membrane 0.3 Membrane thickness 2 mm
Poison’s ratio of strain gauges 0.3 Specific electrical resistance of

gold

22 � 10�9 O m

Length of each strain gauge 25 mm Residual stress of membrane 150 MPa

(a) What is the maximum supply voltage, if power consumption of the sensor shall

be limited to 1 mW?

(b) Calculate the characteristic curve between 0 and 100 kPa, if the supply voltage

is 10 V.

Hint: Employing Excel or a similar code will help very much.

(c) What is the smallest pressure which can be measured, if the signal needs to be at

least 1 mV to be distinguished from noise?

(d) Now instead of the sensor described above, an electrostatic pressure sensor

with pressure compensation shall be investigated. The distance between mem-

brane and counter electrode is 1 mm (e0 ¼ 8.9 � 10�12 A s/(V m), er ¼ 1).

What is the minimum pressure required for an output voltage of 1 mV?

Problem 51

The pressure sensor shown in Fig. E3 on page 16 is a so-called frequency analog

sensor. That is, its output signal is a frequency. Which frequency is expected at a

pressure of 1 Pa and 100 kPa, respectively?

Thickness of beam 20 mm Poison’s ratio of membrane 0.45

Width of beam 100 mm Density of beam 2,330 kg/m3

Length of beam 500 mm Radius of membrane 2 mm

Young’s modulus of beam and membrane 100 GPa Thickness of membrane 100 mm
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Flow Sensors

The measurement of volume flow or flow velocity has a lot of applications in

modern life. For example, for the control of the engine of a car with low exhaust

emission, it is essential to know the fuel and air flow to the engine. In industry, it is

necessary to apply well-defined amounts of lubricant into the bearing of gear

wheels of watches or to dose glue onto small areas next to positions where no

bond is desired. It is evident that, in chemical and pharmaceutical industry, mixing

of substances in the correct ratio is important.

There is a variety of measurement principles in use and several ways are known

how microsensors for flow meters can be built. In the following, the most important

principles which can be employed in microsensors are introduced, i.e., thermal flow

sensors and the measurement of the pressure difference over a capillary.

Maybe the simplest flow sensor is just a thin wire heated by an electrical current.

When a fluid is passing the wire, it takes away a part of the heat and lowers the

temperature of the wire. Thus, the temperature of the wire is a measure of the flow

velocity. The temperature of the wire can be determined from its electrical resis-

tance, which is nearly a linear function of temperature [cf. (18) and (19), page 22].

Figure 215a, b shows a micro-flow sensor employing such a wire. This kind of

flow sensors is called hot-wire anemometers (Anemos is the Greek word for wind.).

In Fig. 215b, a constant current is going through the wire. If the temperature of the

wire is lowered by the flow, its resistance is decreased and the voltage measured

over the wire becomes smaller.

Obviously, the reaction time of the sensor gets short, if the temperature of the

wire is quickly changed by the flow. Therefore, the wire should have a small

volume and a large surface area. In microtechnique, this is achieved with a thin

conductor path on a thin carrier membrane as shown in Fig. 215c. The velocity of

the fluid develops a parabolic profile when it gets in contact to the membrane.

Directly on the surface of the membrane and the heater, the flow velocity is zero.

Therefore, no heat could be taken away from the heater, if there would be no heat

transfer by diffusion. As an approximation, it can be assumed that over a certain

diffusion length there would be no heat transport by convection, but only by

diffusion and behind that length the heat is taken away by the fluid.

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_22, # Springer-Verlag Berlin Heidelberg 2011
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As a consequence of the development of the parabolic profile, the diffusion

length gets the longer, the larger the distance LR is from the edge of the membrane

to the center of the heater. The heat QK transported away by the flow is a function of

the thermal conductivity lF, the viscosity �, and density rF of the fluid, the

temperature difference DT between hot wire and fluid, the area AS of the heater

wire, and the mean flow velocity v far away from the membrane. QK is estimated

with King’s law [71]:

QK ¼ a lF AS DT
ffiffiffiffiffiffiffiffiffiffiffi
rF v

LR Z

r
: (464)

King’s law shows that the heat taken away from the heater is a function of the

square root of the flow velocity. It was derived for laminar flows not effected by

nearby channel walls [71]. Obviously, in microtechnique this is not fulfilled. The

constant (a) up to now cannot be calculated analytically in any way but needs to be

measured during calibration of the sensor.

Equation (464) actually is applicable for a conductor path which is narrow

compared with its distance LR to the rim. However, the designer will try to make

LR as small as possible to achieve a sensitive sensor. Therefore, the heat transported

away from the sensor needs to be calculated from the following integral:

Fig. 215 Photo of a micro-

hot-wire anemometer (a), a

schematic top view (b), and

cross-section of a heater wire

on a membrane (c)
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QK ¼
ðLRþðbL=2Þ

LR�ðbL=2Þ
a lF LL DT

ffiffiffiffiffiffiffiffiffi
rF v

b Z

r
db

¼ a lF LL DT
ffiffiffiffiffiffiffiffiffi
rF v

Z

r
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR þ bL

2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR � bL

2

r !
: (465)

The area AS of the heater wire in the above equation is calculated from the

product of its length LL (perpendicular to the flow direction) and its width bL (in

flow direction). If the heater is not a flat conductor path but a cylindrical wire with

radius RB, it appears to be a good approximation to use half of the circumference of

the wire for the width bL ¼ p RB and the distance to the rim is LR ¼ ½ p RB. If the

heater is mounted in the center of a microchannel, it is cooled by the flow from both

sides, and therefore, the area is doubled and a factor of two has to be multiplied to

the equation:

QK ¼ 4 a lF LL DT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p RB rF v

Z

s
¼ 4 a lF LL DT

p RB rF v

Z

� �0:5

: (466)

Some measurements show that the exponent in the above equation can differ

from 0.5 and tends to be near 0.3.

For a heater mounted next to the rim of a supporting membrane (LR ¼ bL/2), the

difference between (465) and (464) is 41%. However, this is normally not discov-

ered because the constant (a) cannot be obtained from calculation. The constant (a)

is a function of the position of the heater in the channel and the flow profile around

the heater.

King’s law only describes the heat taken off the heater by the flow of the fluid.

Much more heat is taken away by heat conduction of the heater towards the

sidewalls of the channel. Besides this, there is also the heat conductivity of the

fluid which will transport heat to the side walls even if there is no flow. The heat

taken away by heat conduction is entered now into (465) by the quantity Le which

describes how much heat power per temperature difference is conducted off the

wire. The unit of Le is W/K:

QK ¼ 2 a lF LL DT
ffiffiffiffiffiffiffiffiffi
rF v

Z

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR þ bL

2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR � bL

2

r !
þ Le DT: (467)

There are two principle ways how to drive an anemometer. One possibility is to

drive the wire with constant electrical power (This is similar to constant voltage or

constant current.) and to detect the temperature of the wire as a measure of the flow.

As a result of this, the heat flow QK in (467) is constant and the temperature

difference DT is calculated as:
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DT ¼ QK

2 a lF LL

ffiffiffiffiffiffiffi
rF v
Z

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR þ ðbL=2Þ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR � ðbL=2Þ

p� �þ Le

: (468)

The other possibility to drive an anemometer is to employ an electronic circuit

which keeps the temperature (resistance) of the wire constant by adapting the

power. In this case, the electrical power which is equal to the heat flow QK is a

measure of the flow and can be calculated with (467). Figure 216a, b shows the

characteristic curves of an anemometer with a distance of the heater to the edge of

the membrane of 10 mm, a heater length LL and width bL of 0.5 mm and 0.1 mm,

respectively, and water as the fluid [� ¼ 1 mPa s, rF ¼ 1,000 kg/m3, lF ¼ 0.6

W/(m K)] calculated with (467) at a temperature difference of 10�C and with (468)

at a heating power of 234 mW, respectively. The heater is assumed to be in the

center of the channel and an extra factor of 2 was applied in both equations. For

Le and the constant (a), 8 mW/K and 8 were used, respectively.

In Fig. 216a, b, there are also shown the calculations without heat conduction to

demonstrate that it is important to take it into account. If heat conduction is reduced

by a suitable design, e.g., employing a thin supporting membrane with small heat

conductivity, the sensor is more sensitive.

The electronics required to drive a hot-wire anemometer at constant current is

comparatively simple. On the other hand, when the anemometer is driven at

constant temperature, its reaction time is much shorter because it is not necessary

to wait for the temperature change. The reaction time with temperature change can

be calculated from the power balance at the wire. The electrical power Pel input to

the wire goes to the fluid according to King’s law, to the walls of the channel due to

heat conductivity, and to the temperature change of the wire (To ease the following

calculation, it is assumed that there is no distance of the heater to the rim of the

carrier membrane and that it is mounted in the center of the flow channel. The

calculation can easily be extended to the general case.):

Fig. 216 King’s law (a) and

temperature difference of a

hot-wire anemometer driven

at constant electrical power

(b) calculated with (467)

and (468)

292 Flow Sensors



Pel ¼ 4 a lF LL DT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF v

Z

s
þ Le DTþ CD

dT

dt
: (469)

The first term on the right side of the above equation is the heat loss of the wire

due to King’s law. The second term is the heat conducted to the wall. The third term

is the power required to change the temperature of the wire and its carrier mem-

brane which together have a heat capacity CD.

Equation (469) is a differential equation which can be solved with the following

ansatz which contains the reaction time of the anemometer tA, the temperature

difference between wire and fluid before DTa and a long time after DTe the velocity

of the fluid has changed:

DT ¼ DTe þ DTa � DTeð Þe�t=tA : (470)

When the flow velocity and the electrical power are constant, after some time the

temperature difference between wire and fluid is also constant and the last term in

(469) is zero, resulting in:

Pel ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF v

Z

s
þ Le

 !
DT: (471)

The above equation needs to be fulfilled both before (index of velocity and

temperature difference is a) and after (index e) a change of the mean flow velocity:

Pel ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF va

Z

s
þLe

 !
DTa ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF ve

Z

s
þ Le

 !
DTe (472)

) DTa¼ Pel

4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbL rF va=ZÞ
p þ Le

and DTe¼ Pel

4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbL rF ve=ZÞ
p þ Le

:

(473)

Now the ansatz (470) is inserted into the differential equation (469):

Pel ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF ve

Z

s
þ Le

 !
DTe þ DTa � DTe½ �e�t=tA
� �

� CD

tA
DTa � DTe½ �e�t=tA :

(474)

At the time t ¼ 0, when the velocity change occurs, the above equation yields:

Pel ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF ve

Z

s
þ Le

 !
DTa � CD

tA
DTa � DTe½ �: (475)

Flow Sensors 293



From the above equation, the reaction time can be calculated. With (473), it can

be expressed in different ways:

tA ¼ CD DTa � DTe½ �
4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbL rF ve=ZÞ
p þ Le

� �
DTa � Pel

¼ CD

4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbL rF ve=ZÞ
p þ Le

¼ CD

Pel
DTe: (476)

It can be concluded that for a short reaction time tA of the sensor the heat

capacity CD of the heater and its carrier should be small, the area of the heater

should be large, the distance LR of the heater to the edge of the carrier membrane

should be short, and the sensor should be placed where the flow velocity is large.

Large heat conductivity to the channel walls reduces the reaction time. However,

the sensitivity of the sensor is also reduced by large heat conductivity and the power

consumption of the sensor is increasing. As a consequence, the carrier and the

heater should be designed as thin as possible and the connection to the channel

walls should be narrow and long. The distance of the heater to the walls should be as

large as possible, i.e., in the center of the flow channel. Making the channel wider at

the position of the sensor does not appear to solve the problem because the flow

velocity is reduced that way.

The hot-wire anemometer has a simple design and can achieve short reaction

times on the order of milliseconds. However, there are also disadvantages: It is not

possible to detect the direction of the flow, the characteristic curve of the sensor is

not linear and it is a function of temperature, density, heat conductivity, and

viscosity of the fluid. Therefore, reliable measurements are only possible when

the properties of the fluid are known and the temperature is kept constant. Besides

this, gas bubbles in a liquid or droplets in a gas may disturb the measurement very

much or even can destroy the heater when cooling suddenly has to be provided only

by a gas bubble.

The direction of flow can be detected when two more wires are added to the

heater as shown in Fig. 217a. The heated fluid is transported by the moving fluid to

one of the additional wires which serve as temperature sensors. The electrical

resistance of the sensing wires is measured with a small electrical current not

significantly heating up these wires. The temperature (resistance) difference of

the two conductor paths neighboring the heater is employed as a measure of the

flow velocity. The temperature difference of the two sensing wires is no longer a

function of the temperature of the fluid, and the warmer wire indicates the direction

of the flow. When both sensing wires are combined in one branch of a Wheatstone

bridge, the sign of the output signal indicates the direction of the flow. The output

signal is much smaller than the one of an anemometer, but the characteristic curve is

similar as the one shown in Fig. 216 because the heat taken away from the heater

partly arrives at the downstream sensing wire and the upstream wire is not influ-

enced. The response time is longer because it takes some time for the heat to travel

with the fluid to the sensing wire and to heat it up.
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When the heat transport by the flow is smaller than by heat diffusion, the

situation changes and the flow sensor is no longer called an anemometer but a

calorimeter. The heat is mainly transported away from the heater by the heat

conductivity of the fluid and the temperature distribution around the heater is

only altered by the flow as indicated in Fig. 217b. The characteristic curve of a

calorimeter (cf. Fig. 217c) is nearly linear up to a critical flow velocity vk at which

the heat transport by the flow is quicker than by diffusion. When the critical flow

velocity is exceeded, the flow sensor works as an anemometer and shows a

characteristic curve similar as in Fig. 216b.

The critical flow velocity is a function of the distance L between sensing wire

and heater, heat conductivity lF, specific heat capacity cf, and density rF of the

fluid. It can be estimated by the following equation [72]:

vk ¼ lF
rF cf L

) Lk ¼ lF
rF cf v

(477)

As shown in the above equation the transition between hot-wire anemometer and

calorimeter can also be interpreted as a critical distance Lk between sensing wires

and heater. When the distance is larger, the sensor works as an anemometer,

otherwise as a calorimeter.

Obviously, every sensor has two ranges of flow measurement. If it is not known

in which range the sensor is working, the output signal is ambiguous. To solve that

problem, it is possible to drive the heater as an anemometer and to measure, in

addition, the temperature difference between two sensing wires upstream and

downstream. Another possibility is to mount more than one pair of sensing wires

and to compare the results of all wire pairs. The results which coincide are the right

ones.

A common disadvantage of all the principles discussed so far is that the

characteristic curves are a function of the properties of the fluid such as viscosity,

density, heat capacity, and heat conductivity. As a consequence, a calibration is

Fig. 217 Hot-wire anemometer (a), calorimeter (b), and characteristic curve of a calorimeter (c)
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required for each kind of fluid, and it is not possible to obtain a reliable flow

measurement of an unknown fluid. This disadvantage can be partly avoided by a

flow time measurement [75]. The heater injects only short heat pulses into the flow

and the arrival time of the pulses is measured with sensing wires. Heat conductivity

and parabolic flow profile distribute the heat pulse over a longer time, but the

temperature peak travels with the speed of the fluid. Only the time required for

heating up the fluid by the heater and the sensing wire by the fluid is a function of

the properties of the fluid. Therefore, the flow time between heater and sensing wire

need to be large compared with the time required for heating or cooling the wire (on

the order of ms).

To estimate the time for a temperature change of the heating wire when the

electrical current is switched on, (469) is employed again. Since this is the same

differential equation as before, the ansatz 470 can be used again. Contrary to the

calculation of the response time of a calorimeter, the flow velocity does not change

now but the heating power is switched on at t ¼ 0. As a consequence, the boundary

conditions are changed: Before switching on the electrical power, the temperature

of the heater and the fluid are the same resulting in DTa ¼ 0; and the temperature

difference DTe a long time after switching on the power is according to (471):

Pel ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF v

Z

s
þ Le

 !
DTe

) DTe ¼ Pel

4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbL rF v=ZÞp þ Le

: (478)

Inserting DTa ¼ 0 into (470) yields:

DT ¼ DTe 1� e�t=tA
� �

; (479)

inserting the above equation into (469) results in

Pel ¼ 4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bL rF v

Z

s
þ Le

 !
DTe 1� e�t=tA

� �
þ CD DTe

tA
e�t=tA ; (480)

and at t ¼ 0 it is obtained with (478):

Pel ¼ CD DTe

tA
) tA ¼ CD DTe

Pel
¼ CD

4 a lF LL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbL rF v=ZÞp þ Le

: (481)

The above equation is only an estimate of the time required to heat up the fluid to

a constant temperature. The heating time should be approximately three times

larger than tA to achieve the optimum fluid temperature. The time required to

heat up the sensing wire will also be on the order of 3 tA. Really, the time required
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for sensing has to be calculated a bit different, because on the one hand only the

wire and not the fluid has to be heated and on the other hand the heat capacity of

the fluid will show some influence, if it is not much larger than the one of the wire,

because the fluid will get cooler while the wire warms up. tA is a function of the

properties of the fluid and the wire; therefore, the distance between heater and

sensing wire needs to be much larger than 6 tA times the mean flow velocity to

obtain a result which is not a function of the properties of the fluid. This is the case

even for comparatively fast flows because the critical distance Lk [(cf. (477)] is

required between heater and sensing wire making sure that the flow time is

measured and not the time of heat conduction. Lk typically is much larger than

the distance the fluid flows in the short time of heating up.

On the other hand, the time of arrival of the temperature peak can be measured

with more precision in the near of the heater where the heat pulse is not jet

distributed so much. As a result, the sensing wire should be placed not far from

the critical distance expected for the slowest flow.

The characteristic curve of a flow time measurement is easily calculated. If the

distance of a sensing wire to the heater is L and the flow velocity in the near of the

wire is v, the flow time t is given by:

t ¼ L

v
: (482)

The characteristic curve of a flow time sensor is shown in Fig. 218. A short

reaction time of the sensor can be achieved when the distance L between heater and

sensing wire is short. However, for larger flows, the slope of the characteristic curve

is very small for small L and the sensitivity of the sensor is low. Therefore, a

combination of several wires appears to be a good choice allowing for both a short

response time for small flows and high accuracy for large flows.

If not the traveling time of the heated fluid from the heater to a sensing wire is

measured, but the traveling time from one sensing wire to another one, the time

required for heating the fluid cannot affect the measurement. Besides this, the

heating up of the two sensing wires should require the same time. Thus, it could

be expected that the flow could be measured without any knowledge of the proper-

ties of the fluid. Measurements, however, show that this is not true. The measured

flow times are a function of the kind of fluid. A possible explanation of this

observation is that the viscosity of the fluid is a function of temperature and the

flow profile in the center of the channel where the fluid is heated is changed.

Fig. 218 Characteristic

curve of a flow time sensor for

different distances L between

heater and sensing wire
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Although the flow time measurement is a function of fluid parameters, it is much

less sensitive on these parameters than anemometers and calorimeters. Therefore, it

is an option to employ a flow time measurement from time to time to recalibrate a

sensor anyway consisting of several wires. Disadvantages of flow time measure-

ment are that the reaction time is very large and that the slope of the characteristic

curve is very small at large flow velocities. The heat capacity of the fluid needs to be

large enough to heat sensing wires.

Flow time measurement is only a week function of the properties of the fluid.

However, it does not work with gasses because their heat capacity is very small and

the transported heat is not sufficient to heat up enough the sensing wire. There are

also applications such as dosing of drugs for which heating up the fluid is not

desirable. An alternative which avoids such problems is the measurement of the

volume displaced by the flow.
The volume displacement can be measured with a device such as shown in

Fig. 219 [76]. The flow is entering into a chamber limited by a membrane. The

membrane is deflected by the flow and, that way, displaces the fluid on the side

opposite to the entering flow. Thus, the flow entering the device is the same as the

flow leaving on the opposite side. When the membrane is approaching the chamber

wall, valves at the inlet and outlet of the chamber are switched such that the

direction of membrane movement is reversed.

Strain gauges in or on the membrane record its deflection, which is a linear

function of the displaced volume [(303), page 170], if the deflection is small

compared with the thickness of the membrane (cf. page 38f). When strain gauges

from metal are placed on the surface of the membrane, the output of a half bridge,

including radial and tangential strain gauges, is described by (449) (page 277) as a

function of membrane deflection w0. The output voltage as a function of the

displaced volume VW is obtained by inserting the deflection from (303) into (449):

Um ¼ U0 dM VW

p R6
M

1� 2 nð Þr2t þ 1þ 2 nð Þr2r
� �

: (483)

When the strain gauges are placed in the neutral fiber (cf. page 6) of the

membrane, they measure its strain and not the bending. As a consequence, the

Fig. 219 Measurement of the

volume displaced by the flow

[76]. The flow is deflecting a

membrane (a) When the

membrane approaches the

chamber wall, valves are

switched which direct the

flow to the opposite side of

the membrane (b)
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resistance is a function of the square of the deflection [The third term of (53) on

page 38 describes the strain of the neutral fiber.] and the displaced volume. The

output voltage as a function of the displaced volume VW is obtained by inserting the

deflection from (303) into (451) (page 478):

Um ¼ 2

3
U0

V2
W

p2 R8
M

1� nð Þr2t þ 1þ nð Þr2r
� �

: (484)

Similarly, the output voltage as a function of the displaced volume VW is

calculated for a monocrystalline silicon membrane etched into a (100) wafer with

p-doped stain gauges on the surface. The strain gauges are orientated parallel and

perpendicular to the edges of the square membrane. In this case, the displaced

volume is described by (306) on page 170. The membrane deflection calculated

with that equation is then inserted into (457) (page 281):

Um ¼ 43:5
U0 EM dM VW

a6M

� pl r2t 1þ 3 nMð Þ � r2r 3þ nMð Þ	 
� pt r2r 1þ 3 nMð Þ � r2t 3þ nMð Þ	 

1� n2M

: (485)

There are two ways how to drive this kind of sensor: It is possible to detect the

position of the membrane with the strain gauges as a function of time or to count the

number of valve switchings in a certain time. The latter method requires simpler

electronics, while the former one is more accurate. Every switching of the valves

results in a small flow generated by the difference in the dead volumes of the valves.

Maybe the flow generated by the difference in the dead volumes is still detected and

no faulty measurement occurs, but a flow sensor should not generate any flow.

Therefore, a chamber with a large diameter is desirable which does not require

frequent valve switching.

Another important principle of flow sensors is to measure the pressure drop over
a capillary or constriction. Figure 220a shows a schematic drawing of this type of

flow sensor. The pressure drop can be calculated with (188) on page 112 which

consists of two terms. The first term is called the Torricelli equation and is a

quadratic function of the volume flow FF. The second term is the Hagen Poiseuille

equation and a linear function of volume flow:

Dp ¼ �w
rF
2

1

A2
1

� 1

A2
2

� �
F2

F � 32
ZLF

D2
h

FF

A2

: (188)

The viscosity � of the fluid is a strong function of temperature. Therefore, the

Hagen Poiseuille equation yields a sensor with a linear characteristic curve sensi-

tive to temperature changes, while the Torricelli equation results in small cross

sensitivity and a nonlinear characteristic curve. This is shown in Fig. 220b by an

Flow Sensors 299



example calculation with (188). In both cases, viscosity, density, radius of the

circular flow channel, and the quantity w were assumed to be 1 mPa s, 1,000 kg/m3,

200 mm, and 0.64, respectively. In one case, a radius and length of the constriction

of 195 mm and 7 mm, respectively, have been used and in the other case 180 mm and

20 mm, respectively. It is clearly seen that the longer constriction results in a more

linear characteristic curve of the senor. Thus, by designing length LF of the

constriction and cross-sectional areas of constriction A2 and flow channel A1 either

a linear or a less cross-sensitive flow sensor can be obtained [77].

Exercises

Problem 52

In a flow sensor, there is mounted in the middle of the flow channel a 20-mm thick

carrier foil from polyimide with conductor paths from gold. In the following table,

all data required for the calculations are shown.

Total length of the conductor path

of the heater

200 mm Density of conductor paths 19,000 kg/m3

Effective distance of conductor

paths to the rim of the carrier

foil

220 mm Specific heat capacitance of

conductor paths

0.13 kJ/(kg K)

Distance between heater and

measurement wire

200 mm Specific heat capacitance of

carrier membrane

1 kJ/(kg K)

Width of conductor paths 5 mm Heat conductivity of water 0.6 W/(K m)

Thickness of conductor paths 100 nm Dynamic viscosity of air at

20�C
18.2 mPa s

Density of carrier membrane 1.1 kg/m3 Density of water 1,000 kg/m3

Electrical resistance of each

conductor path

10 O Allowed temperature

enhancement

10 K

(continued)

Fig. 220 Measurement of the

pressure difference over a

constriction (a) and

characteristic curves of such a

sensor with a short (20 mm)

and a long (7 mm)

constriction (b)
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Width of channel 200 mm Heat conductivity of air 0.025 W/(K m)

Height of channel 200 mm Density of air 1.20 kg/m3

Temperature of medical 20�C Flow rate 2.40 mL/min

Dynamic viscosity of water at 20�C 1 mPa s

(a) For dosing of a medical, first the flow velocity shall be measured by a conductor

path as an anemometer. The maximum temperature difference to the environ-

ment shall be limited to 10 K because otherwise the medical could be damaged.

The physical properties of the medical are the same as those of water. The

constant (a) was measured before to be 0.2. Please calculate the heat power

transported away from the wire by the flowing medical, by heat conductivity

through the fluid to the channel walls, and the electrical power required keeping

the wire at its temperature.

(b) It cannot bemade sure that there are no air bubbles in themedical. Please calculate

the temperature enhancement when a bubble reaches the heater. Assume that

the total area of the heater is in contact to the bubble and that the bubble extends

over the entire cross-section of the channel. The electrical power of the heater

shall not be changed when the bubble arrives and is constant at 130 mW. Do not

take into account for your calculation the heat stored in carrier foil and heater.

(c) How much would the heater get hotter, if there would be no heat conductivity?

(d) Is the sensor discussed above an anemometer or a calorimeter? (The specific

heat capacity of is 4,182 J/(kg K).)

(e) What is the reaction time of the flow sensor if it is arranged in a bridge driven at

a constant electrical current of 1 mA and the temperature of the heater is 10 K

above the environment? Calculate the reaction time with and without the effect

of the heat capacity of the carrier membrane.

Problem 53

To minimize the influence of temperature on the measurement, a flow sensor as

shown in Fig. E37 with a circular cross-section can be employed.

(a) Please calculate the Hagen-Poiseuille part and the Torricelli part of the pressure

difference, if water is the fluid. Do you expect a large cross sensitivity of the

sensor to temperature changes?

The data needed for the calculation are shown in the following table:

Water flow to be measured 100 mL/min

Density of water 1,000 kg/m3

Viscosity of water 1 mPa s

Diameter of capillary 1 mm

Diameter of aperture 100 mm
Thickness of membrane (¼ Length of channel) 10 mm
w 1
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(b) Another possibility to get a flow sensor which is only a week function of

temperature is to mount instead of an aperture several wires in a flow channel

and to measure the flow time of a heat pulse. What distance is required between

heater and sensing wire to avoid the measurement to be disturbed by heat

diffusion at the conditions at (a). What is the reaction time of the sensor?

Heat conductivity of water 0.6 W/(K m)

Specific heat capacity of water 4,182 kJ/(K kg)

Problem 54

Figure 219 on page 298 shows a volume flow sensor which is independent on the

kind of the fluid.

Radius of membrane 3 mm Residual stress of membrane 100 MPa

Thickness of membrane 2 mm Flow 10 mL/s
Young’s modulus of membrane 4 GPa Chamber depth below and above membrane 100 mm

(a) What volume is passing through the sensor between two switchings of the

valves? (Assume that the membrane is allowed just to touch bottom or ceiling

of the chamber.)

(b) The switching time of the valves needs to be much shorter than the time

between two switchings of the valves, e.g., 1% of it. Otherwise, some fluid

could flow uncontrolled and not detected during switching. How short must the

switching time of the valves be?

(c) How needs the design of the sensor to be changed if the valves cannot achieve

the required short switching time?

(d) What is the maximum pressure loss and pressure gain generated in the fluid

because the membrane has to be deflected and tends to return into its idle state,

respectively?

Fig. E37 Flow sensor with

an aperture
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Inertial Sensors

Inertial sensors are both sensors of acceleration and yaw rate (angular velocity).

The first large application of acceleration sensors was triggering air bags in cars.

Nowadays, there are a lot of other applications such as the detection of the direction

in which a cellular phone is held, controllers of computer games, and detection of

the position of a GPS device as long as the contact to the satellites is lost.

Nearly, all acceleration sensors employ a seismic mass fixed to a beam. The

earliest design is shown in Fig. E15 on page 83 [38]. The mass is deflected when

accelerated and the deflection is measured.

If the deflection is measured with strain gauges on the surface of the beam, the

strain eB can be calculated with (98) (page 67) assuming as an approximation that

the force F acting at the end of the beam in transversal direction is the mass m0 of

the seismic mass multiplied by the acceleration am:

eB ¼ dB

2

m0ðLB � xÞ
EB I

am: (486)

If the beam is etched into single crystalline silicon and longitudinal and trans-

versal strain gauges are fabricated by p-doping (cf. Fig. 221a), the resistance change

can be calculated with (22) on page 23:

DRel ¼ Rel pl sl þ pb sb þ aT DTð Þ: (22)

To calculate the resistance change, besides the piezoresistive coefficients in

longitudinal pL and transversal pb direction of the strain gauges, respectively, the

stresses sL and sb of the beam at the position of the strain gauges need to be known.

Since the beam is fixed only in longitudinal direction, there is only longitudinal

stress which can be calculated by Hooke’s law. As a result, the resistance changes

of longitudinal DRel,l and transversal DRel,t strain gauges on the beam are:

DRel;l

Rel

¼ pl EB eB þ aT DT ¼ pl
dB

2

m0 LB � xlð Þ
I

am þ aT DT; (487)

W.K. Schomburg, Introduction to Microsystem Design, RWTHedition,

DOI 10.1007/978-3-642-19489-4_23, # Springer-Verlag Berlin Heidelberg 2011
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DRel;t

Rel

¼ pt EB eB þ aT DT ¼ pt
dB

2

m0 LB � xtð Þ
I

am þ aT DT: (488)

In the above equations, EB, dB, LB, I, and xl, xt, are Young’s modulus, thickness,

length, area momentum of inertia of the beam, and the effective distances to the

fixation point of the beam of longitudinal and transversal strain gauges, respec-

tively. The output signal Um of a half bridge supplied with voltage U0 is found by

inserting these equations into (447) (page 276):

Um ¼ U0

4 Rel

DR2 � DR1ð Þ ¼ U0 dB m0

8 I
LB � xlð Þpl � LB � xtð Þpt½ �am: (489)

The piezoresistive coefficients need to be chosen according to the orientation of

the beam relative to the crystal lattice of the silicon (cf. Fig. 17 on page 25).

Equation (489) is the characteristic curve of an acceleration sensor consisting of

a seismic mass at the free end of a beam clamped at one end when the deflection of

the mass is measured by strain gauges from silicon which are arranged longitudinal

and transversal on the surface of the beam. This characteristic curve is a linear

function of the acceleration. In Fig. 222a, there is shown a characteristic curve

calculated with (489) with support voltage U0, beam length LB, width bB, thickness

dB, seismic mass m0, effective position of longitudinal xl and transversal xt strain

gauges from p-silicon in <110>-direction, and piezoresistive coefficients of longi-

tudinal pl and transversal pt straining of 3 V, 500 mm, 50 mm, 20 mm, 4.7 mg,

100 mm, 300 mm, 0.72/GPa, and �0.66/GPa, respectively.

In principle, it is possible to measure the deflection of a beam also with strain

gauges from metal on the surface of the beam. The disadvantage of this approach is

that the beam needs to be small in order to be sensitive and economic. As a

consequence, the metal conductor paths cannot be very long, and, therefore, their

resistance is small. Heating of the beam must be avoided, because it changes both

Young’s modulus and electrical resistance. Thus, the supply voltage U0 of a bridge

needs to be low and only very small output signals can be achieved.

Fig. 221 Schematic cross-

sectional view of an

acceleration sensor with (a)

moving and (b) balanced

seismic mass
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Acceleration sensors should be sensitive and show a large resonance frequency

to allow the measurement of quick acceleration changes. The resonance frequency

of a beam clamped at one end is large, if its thickness is large, its length is short, and

the mass at the end of the beam is small [cf. (165) on page 98]. Unfortunately, all

this results in small sensitivity according to (489).

Both high sensitivity and quick reaction time can be obtained with balanced
acceleration sensors. In this kind of sensors, the acceleration force is balanced by

some force such that the seismic mass is not moving. If the mass always (nearly)

stays in its idle position, the properties of the beam such as Young’s modulus,

geometry, and resonance frequency do not influence the performance of the sensor.

This is the same principle as described for pressure sensors on page 282f. As shown

in Fig. 221b, the seismic mass can be held, e.g., by an electrostatic force. The

position of the mass can be measured by strain gauges on the beam or by a small

alternating voltage applied to the electrodes in series with another capacitor or

resistance. The applied alternating voltage should not change the beam deflection

much. Thus, it may be an advantage to employ small electrodes to which a larger

alternating voltage can be applied without significantly moving the beam.

Inertial force and electrostatic force are equal, if the beam is in its idle position.

Thus, the voltage Um required to balance acceleration and electrostatic force can be

calculated from (222) (page 131):

1

2
e0 er

AC

d2C
U2

m ¼ am m0 ) Um ¼ dC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m0 am

e0 er AC

r
: (490)

The above equation shows that the voltage required holding the beam in its idle

position is only a function of the area AC of the electrodes, its distance dC, and

(approximately) the mass m0 at the end of the beam. It is no function of the

properties of the beam (besides the fact that the mass of the beam also is acceler-

ated). As a consequence, fabrication tolerances can be larger. The reaction time of

the sensor is a function of the sensitivity of the position measurement, flexibility of

Fig. 222 Characteristic

curves of acceleration sensors

with (a) moving and (b)

balanced seismic mass
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the beam, and how fast the electronic is which keeps the beam in place. As a

consequence, the beam should be designed thin and long and with a comparatively

large mass at its end.

The characteristic curve of an acceleration sensor with a seismic mass held by

the electrostatic force in the idle position of the beam as calculated with (490) is

shown in Fig. 222b compared with the measurement of the beam displacement with

strain gauges from monocrystalline silicon according to (489). Area of and distance

between the electrodes were assumed to be 2 � 2 mm2 and 1 mm, respectively. All

other parameters were the same as for Fig. 222a.

The characteristic curve described by (490) is not linear and only accelerations

in one direction can be detected. These disadvantages can be avoided by the design

shown in Fig. 223a or b. When there is no acceleration, the seismic mass is put to

ground potential and it is attracted both to the upper and the lower electrode by the

same electrostatic force. Therefore, it is in an instable equilibrium. When accelera-

tion occurs, the voltage DU at the seismic mass is adapted such that the mass stays

in its idle position.

The forces acting at the seismic mass are the acceleration and the electrostatic

forces pulling it up and down as calculated with (225) (page 133):

FC;n ¼ 1

2
e0 er AC

U0þDUð Þ2
d2C

� U0�DUð Þ2
d2C

 !
¼ 2

e0 er AC

d2C
U0 DU¼ am m0

)DU¼ m0 d
2
C

2 e0 er AC U0

am: (491)

The above equation is the characteristic curve of sensors as shown in Fig. 223a

or b. It is shown in Fig. 222b with the same parameters as used for the calculation of

the seismic mass balanced by one electrode according to (490).

When an acceleration sensor is designed, as for the design of any sensor cross

sensitivities need to be considered. In general, the largest cross sensitivity is due to

temperature changes. If the seismic mass is fixed at the free end of only one beam,

temperature and other effects such as bending or straining of the substrate do

not affect the characteristic curve. However, Young’s modulus of the beam is a

Fig. 223 Balanced acceleration sensors. (a) Cross-section of a sensor etched into silicon, (b) top

view of a sensor fabricated by surface micromachining
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function of temperature. This will have no effect on balanced acceleration sensors

because the properties of the beam do not change their characteristic curves.

Acceleration sensors may also be sensitive to accelerations in directions other

than the desired one or to angular accelerations. In Fig. 223a, the beam is in the line

of the center of mass of the seismic mass. This way bending of the beam due to

acceleration longitudinal to the beam is avoided. The influence of an acceleration

perpendicular to the plane of the cross-section shown in Fig. 223a may be reduced

by two parallel beams or a beam which is much wider than thick. Strain gauges may

also be arranged such that their combination to a bridge compensates the effect of

beam bending in a direction in which the sensor shall be insensitive (cf. Problem 13

on page 82). If a system of acceleration sensors measuring in all three directions is

constructed, it may also be a strategy to compensate the signal from the sensor of

one direction with the signals of the other directions.

Angular velocity sensors, also called yaw rate sensors, are employed mainly in

automobiles for electronic stability control (ESC) and other applications in cars.

The measurement of angular velocity is based on the Coriolis acceleration which

appears to act on a moving body in a rotating system. The Coriolis acceleration is a

fictitious acceleration because it is just the interpretation of a rotating observer who

tries to understand why a mass is deflected although there appears to be no reason

for that if the own rotation is not taken into account. In Fig. 224a, there is shown

how a mass is oscillating back and forth (e.g., at the end of a spring) in an inertial

system. Figure 224b shows the same motion but in addition there is shown a rotating

system, and in Fig. 224c the oscillation is shown from the point of view of an

observer rotating together with the system. In the rotating system, the mass appears

to fulfill an additional secondary oscillation perpendicular to the primary one.

Fig. 224 Oscillator (arrow)
as a function of time in a

resting (a) with a rotating (b)

and observed in the rotating

(c) coordinate system
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This principal is employed for the measurement of angular velocity. There are a

lot of ways how the Coriolis acceleration is measured. Here just an example is

shown which explains the principle. In Fig. 225, there is shown the schematic top

view of a yaw rate sensor. Only the dark parts are fixed to the substrate and the

whole rest is movable and supported by the beams which act as springs. An

alternating voltage applied to the actuator electrodes generates a primary oscillation

of the entire structure. When the oscillating structure is rotating, a secondary

oscillation is generated which is measured with the sensing electrodes.

The position x of the body moved by the primary oscillation as a function of time

t is described by a sine function:

xðtÞ ¼ A0 sinðotÞ ) (492)

vðtÞ ¼ @x

@t
¼ A0 o cosðotÞ: (493)

In the above equation, A0 is the amplitude of the primary oscillation and v is the

velocity of the body due to the primary oscillation.

The Coriolis acceleration ac in general is calculated from the cross product of

the vectors of the velocity v of the moving mass and the angular velocity O of the

rotating system by the following equation:

aC ¼ 2 v�V ¼ 2 v O sinðaÞ: (494)

In the above equation, a is the angle between the vectors of the velocity and

the angular velocity of the rotation. The sensor shown in Fig. 225 shall measure the

angular velocity around an axis perpendicular to the plane shown. Therefore, the

sine of a is zero and inserting (493) into (494) yields:

aC ¼ 2 A0 o O cosðotÞ: (495)

Fig. 225 Principle of an

angular velocity sensor
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Obviously, a large Coriolis acceleration can be achieved when amplitude and

frequency of the primary oscillation are large. Thus, it is an advantage to drive the

device at its resonance frequency. Detection is eased when the beams supporting

the sensing electrodes are also oscillating at their resonance.
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Characteristic curves of actuators

Actuator Figure Page Actuator Figure Page

Bimaterial 118 162 Thermal 116 160

Capacitive/electrostatic 98 134 Thermal, bimaterial 118 162

Electroosmotic pump 91 125

Phase transition 126 171 Thermomechanic (heated beam) 123b 166

Piezo bimorph 105 145 Thermo-pneumatic 125a 169

Piezo general 111 150 Valve, active 157 208

Piezo, single 101 140 Valve, passive 171 221

Pump 182 238

Characteristic curves of sensors

Sensor Figure Page

Piezo 102 142

Flow (anemometer) 216 292

Flow (calorimeter) 217c 295

Flow (flow time) 218 297

Flow (pressure drop over constriction) 220b 300

Pressure (metal strain gauges) 208 278

Pressure (silicon strain gauges) 210 282

Pressure (balanced) 212 283

Pressure (frequency analog) 214 286

Acceleration 222 305



Index

A

Acceleration sensor

balanced, 305

general, 303

Actuator

bimaterial, 161

capacitive, 131

comb drive, 132

di-electrophoresis, 127

electroosmosis, 122

electrostatic, 131

heated beam, 164

phase transition, 171

piezo, 137

piezo bimorph, 144

piezo bimorph with carrier, 148

piezo, circular plate, 149

piezo on carrier, 146

pump, 229

thermal, 159

thermo-pneumatic, 167

valves, 203

Additive mass, 92

Adhesion of thin films, 10

Analogies of physical domains, 253–259

Angular velocity sensor, 307

B

Beam

bi-stable, 75

clamped at both ends, 71

compressive stress, 75

critical stress, 74

deflected in parallel, 76

folded, 77

frequency parameters, 96, 98

general, 65

loaded with own weight, 69

torsional deflection, 78

vibrations, 94

Bending, 5

Bending of thin films, 9–15

Bernoulli equation, 109

Bimaterial actuator, 161

Bimorph

piezo, 144

thermal, 161

Bi-stable

beam, 75

membrane, 39

Blaze, 179

Brownian motion, 192

Bubble, 118

Bubble in pump chamber, 241

Burst pressure, 44

C

Cabrera’s equation, 33

Capacitive force, 131–135

Capillary

electroosmosis, 122

flow resistance, 109

force, 114

friction, 107

gas bubble, 118

general, 107

hydraulic diameter, 107

squeeze film effect, 119

stokes friction, 122

stop groove, 117

Capillary force, 114

Coanda effect, 113

Comb drive, 132

Compressive stress

beams, 75

in membrane, 39
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Conductor paths, 21–26

Corrugated membrane, 48

Critcal distance, 295

Critical flow velocity, 295

Critical stress

beam, 71, 74, 75

membrane, 41, 42, 92

Crystalline structure, 13

Crystal orientation, 23

D

Dead volume, 217, 221

Debey-H€uckel length, 122
Deflection

beams, 65

beams, longitudinal, 70

circular thin membrane, 30

membranes, 50

thick membranes, 34

thin membranes, 33

Di-electrophoresis, 127

Diffraction grating, 177

Diffusion, 191–200

Dosing, 251

Double-slit, 177

E

Elastic deformations, 5–7

Electrical spring constant, 267

Electro-mechanical filter, 263

Electro-mechanical switch, 261

Electro-optical effect, 187

Electroosmosis, 122

Electroosmotic pump, 125

Electrophoresis, 126

Electrostatic force, 131–135

Evanescent field, 186

F

Fabry-Perot interferometer, 182

Flexible membrane, 30

Flow sensor

anemometer, 289

calorimeter, 295

critcal distance, 295

critical flow velocity, 295

flow time measurement, 296

general, 289

King’s law, 290

pressure drop, 299

volume displacement, 298

G

Gauge factor, 22

H

Hagen Poiseuille equation, 107

Heated beam, 164

Heat exchanger, 197

H€uckel equation, 126
Hydraulic diameter, 107

I

Ink jet printer, 251

Interference, 178

K

Kerr effect, 187

King’s law, 290

L

Lotus effect, 119

M

Mach-Zehnder interferometer, 187

Membrane

bi-stable, 39

with a boss, 47

with compressive stress, 39

corrugated, 48

flexible, 30

general, 29

thick, 29

thin, 29

vibrations, 85

Micro membrane sensors, 87

Micro mixers, 192

Micro optics, 177–189

Miller indices, 23

Mono-crystalline silicon

general, 23

piezo-resistive coefficient, 23, 25

Poisson’s ratio, 50

shear modulus, 79

strain gauges, 61

Young’s modulus, 50

N

Numerical aperture, 184

O

Optical fiber, 184

Optical wave guide, 184

P

Phase transition actuator, 171

Piezo

bimorph, 144

bimorph with carrier, 148
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circular plate, 149

ferroelectric, 137

general, 137

on inactive carrier, 146

pyroelectric effect, 153

sensor, 141

Piezoelectric effect, 137–156

Piezo-resistive coefficient, 23

Pockels effect, 187

Polymerase chain reaction, 199

Pressure sensor

balanced, 282

capacitve, 282

frequency analog, 284

general, 275

metal strain gauges, 276

silicon strain gauges, 280

Pull in voltage, 262

Pump

with active valves, 243

aperiodic, 245

electroosmotic, 125

fluidic power, 239

gas bubble, 241

general, 229

in series, 241

valveless, 245

R

Rayleigh method, 89

Recrystallization, 14

Refraction, 183

Relay, 261

Residual stress

beam, 73

beam vibrations, 100

compressive, 39

general, 5

membrane, 31, 38, 91

thin films, 9

Response time, 218

Reynolds’ number, 191

Ritz method, 34

Rowland circle, 181

S

Scaling laws, 3–4

Snell’s law, 183

Squeeze film effect, 119

Standing wave, 182

Step grid, 179

Stokes friction, 122

Stop groove, 117

Strain gauges

on beams, 68

general, 21

on membranes, 53

from metal, 54

from mono-crystalline silicon, 61

Stress due to straining, 5

Stress gradient, 10

Super hydrophobic surface, 119

T

Thermal actuators, 159–173

Thermo-pneumatic actuator, 167

Thick membrane, 29

Thin films, 9–15

Thin membrane, 29

Total reflection, 183

V

Valve

active, 203

passive, 219

Vibrations

additive mass, 92

beams, 94

damping, 92

emission of sound, 93

general, 85

membranes, 85

Y

Yaw rate sensor, 307
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