
MAC-DBT Revisited

Roie Zivan, Uri Shapen, Moshe Zazone, and Amnon Meisels

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel
{zivanr,shapenko,moshezaz,am}@cs.bgu.ac.il

Abstract. Dynamic Backtracking (DBT) is a well known algorithm for solving
Constraint Satisfaction Problems. In DBT , variables are allowed to keep their
assignment during backjump, if they are compatible with the set of eliminating
explanations. A previous study has shown that when DBT is combined with
variable ordering heuristics, it performs poorly compared to standard Conflict-
directed Backjumping (CBJ) [Bak94]. In later studies, DBT was enhanced
with constraint propagation methods. The MAC-DBT algorithm was reported
by [JDB00] to be the best performing version, improving on both standard DBT
and on FC-DBT by a large factor.

The present study evaluates the DBT algorithm from a number of aspects.
First we show that the advantage of MAC-DBT over FC-DBT holds only for a
static ordering. When dynamic ordering heuristics are used, FC-DBT outperforms
MAC-DBT. Second, we show theoretically that a combined version of DBT that
uses both FC and MAC performs equal or less computation at each step than
MAC-DBT. An empirical result which presents the advantage of the combined
version on MAC-DBT is also presented. Third, following the study of [Bak94],
we present a version of MAC-DBT and FC-DBT which does not preserve assign-
ments which were jumped over. It uses the Nogood mechanism of DBT only
to determine which values should be restored to the domains of variables. These
versions of MAC-DBT and FC-DBT outperform all previous versions.

1 Introduction

Conflict Based Backjumping (CBJ) is a technique which is known to improve the search
of Constraint Satisfaction Problems (CSP s) by a large factor [Dec03, KvB97, CvB01].
Its efficiency increases when it is combined with forward checking [Pro93]. The down
side of CBJ is that when such a backtrack (back-jump) is performed, assignments of
variables which were assigned later than the culprit assignment are discarded.

Dynamic Backtracking [Gin93] improves on standard CBJ by preserving assign-
ments of non conflicting variables during back-jumps. In the original form of DBT ,
the culprit variable which replaces its assignment is moved to be the last among the
assigned variables. In other words, the new assignment of the culprit variable must be
consistent with all former assignments [Gin93].

Although DBT saves unnecessary assignment attempts and was proposed as an im-
provement to CBJ , a later study by Baker [Bak94] has revealed a major drawback of
DBT . According to Baker, when no specific ordering heuristic is used, DBT performs

J. Larrosa and B. O’Sullivan (Eds.): CSCLP 2009, LNAI 6384, pp. 139–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

140 R. Zivan et al.

better than CBJ . However, when ordering heuristics which are known to improve the
run-time of CSP search algorithms are used [HE80, BR96, DF02], the performance
of DBT is slower than the performance of CBJ . This phenomenon is easy to explain.
Whenever the algorithm performs a back-jump it actually takes a variable which was
placed according to the heuristic in a high position and moves it to a lower position.
Thus, while in CBJ , the variables are ordered according to the specific heuristic, in
DBT the order of variables becomes dependent upon the backjumps performed by the
algorithm [Bak94].

In order to leave the assignments of non conflicting variables without a change on
backjumps, DBT maintains a system of eliminating explanations (Nogoods) [Gin93].
As a result, the DBT algorithm maintains dynamic domains for all variables and can
potentially benefit from the Min-Domain (fail first) heuristic. The present paper demon-
strates empirically that this is the best performing version of DBT .

The DBT algorithm was combined with constraints propagation algorithms in
order to increase its efficiency. The most successful version reported was MAC-
DBT. The MAC-DBT algorithm uses support lists as in the well known AC4 al-
gorithm [MH86, BFR95], in order to maintain Arc Consistency throughout search.
According to [JDB00] MAC-DBT outperforms versions of DBT which use a lower
level of propagation methods (i.e. Forward Checking). Furthermore, MAC-DBT was
also reported to outperform former versions of the MAC algorithm [JDB00, BR96].

The present study investigates the DBT algorithm from a number of aspects. First,
we show that the advantage of MAC-DBT over FC-DBT holds only for a static order-
ing. When dynamic ordering heuristics are used, FC-DBT outperforms MAC-DBT. Sec-
ond, we prove theoretically that a combined version of DBT that uses both FC and
MAC performs equal or less computation than MAC-DBT as presented in [JDB00].
Our empirical results show an advantage of the combined version over MAC-DBT.
Third, we present a version of MAC-DBT which does not preserve assignments which
were jumped over (as in standard CBJ). This turns out to be the best performing ver-
sion of MAC-DBT, which we term MAC-CBJ-NG. It benefits from the Min-domain
heuristic, due to its maintenance of relevant Nogoods. Unlike standard MAC-DBT it
does not harm dynamic ordering by keeping the jumped-over variables assigned. An
analogous version of FC-DBT is FC-CBJ-NG. These versions preserve the properties
of the ordering heuristic but in contrast to standard CBJ do not restore removed values
whose Nogoods are consistent with the partial assignment. These two versions were
found to run faster than all previous versions of DBT .

2 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is composed of a set of n variables
V1, V2, ..., Vn. Each variable can be assigned a single value from a discrete finite
domain. Constraints or relations R are subsets of the Cartesian product of the do-
mains of constrained variables. For a set of constrained variables {Vi, Vj , ..., Vm},
with domains of values for each variable {Di, Dj, ..., Dm}, the constraint is defined
as R ⊆ Di ×Dj × ...×Dm. A binary constraint Rij between any two variables Vj and
Vi is a subset of the Cartesian product of their domains; Rij ⊆ Dj × Di.

MAC-DBT Revisited 141

An assignment (or a label) is a pair 〈var, val〉, where var is a variable and val is a
value from var’s domain that is assigned to it. A partial solution is a consistent set of
assignments of values to a set of variables. A solution to a CSP is a partial solution that
includes assignments to all variables [DF02].

3 MAC-DBT

Dynamic Backtracking (DBT) was first introduced in [Gin93]. DBT improves on
CBJ by enabeling variables which were jumped over on a backjump to keep their
assignments. The DBT algorithm is described next, followed by a description of the
later version of [JDB00]which combined MAC with DBT .

3.1 Dynamic Backtracking

The dynamic backtracking (DBT) algorithm is presented following [Bak94]. We as-
sume in our presentation that the reader is familiar with CBJ [Pro93].

Like any backtrack algorithm, DBT attempts to extend a partial solution. A partial
solution is an ordered set of value assignments to a subset of the CSP variables which
is consistent (i.e. violates no constraints). The algorithm starts by initializing an empty
partial solution and then attempts to extend this partial solution by adding assigned
variables to it. When the partial solution includes assignments to all the variables of the
CSP , the search is terminated successfully.

In every step of the algorithm the next variable to be assigned is selected according
to the heuristic in use, and the values in its current domain are tested. If a value is in
conflict with a previous assignment in the partial solution, it is removed from the current
domain and is stored together with its eliminating Nogood. Otherwise, it is assigned to
the variable and the new assignment is added to the partial solution [Bak94, Gin93].

An order is defined among the assignments in the partial solution. In the simplest
form, this order is simply the order in which the assignments were performed (other
options will be discussed).

Following [Gin93, Bak94], all Nogoods are of the following form:

(v1 = q1) ∧ ... ∧ (vk−1 = qk−1) ⇒ vk �= qk

The left hand side serves as the explanation for the invalidity of the assignment on the
right hand side. An eliminating Nogood is stored as long as its left hand side is consis-
tent with the current partial solution. When a Nogood becomes invalid, it is discarded
and the forbidden value on its right hand side is returned to the current domain of its
variable [Gin93].

When a variable’s current domain empties, the eliminating Nogoods of all its re-
moved values are resolved and a new Nogood which contains the union of all assign-
ments from all Nogoods is generated. The new Nogood is generated as follows. The
right hand side of the generated Nogood, includes the assignment which was ordered
last in the union of all Nogoods (the culprit assignment). The left hand side is a con-
junction of the rest of the assignments in the united set [Gin93, Bak94].

After the new Nogood is generated, all Nogoods of the backtracking variable which
include the culprit assignment are removed and the corresponding values are returned to

142 R. Zivan et al.

the current domain of the backtracking variable. Notice that this assignment to the back-
tracking variable cannot possibly be in conflict with any of the assignments which are
ordered after the culprit assignment. Otherwise, they would have been included in an
eliminating Nogood. The culprit variable on the right hand side of the generated Nogood
is the next to be considered for an assignment attempt, right after its newly created
Nogood is stored. Its new position in the order of the partial solution is after the latest
assignment (i.e. it is moved to a lower place in the order than the position it had before).

The variables that were originally assigned after the culprit variable stay assigned.
That is in contrast with CBJ (or FC-CBJ [Pro93]) that discards these assignments.

3.2 DBT with MAC

Enhancing a backtracking algorithm with look ahead methods (FC, AC) provides a
significant improvement in performance [Pro93, KvB97, BR96, CvB01] and a solid
basis for the ordering heuristics which use the size of domains of unassigned vari-
ables [HE80, BR96].

As mentioned above, the DBT algorithm was enhanced with MAC in [JDB00].
In MAC-DBT, after each assignment to a variable vi, all the values left in the current
domain of vi are entered into a queue (Q) and then an arc consistency method based on
AC4 is performed. Explanations for the removal of values from the domains of unas-
signed variables are stored as in standard DBT . For a detailed description of MAC-DBT
the reader is referred to the original paper [JDB00]. Following [JDB00], in our imple-
mentation for MAC we used the methodolgy of AC4. That means that we hold a support
list for each [variable, value] pair. While this approach is considered less attractive in
general for MAC than the most cutting edge algorithms for arc consistency (AC7 for
example ensures the space complexity of AC3 while preserving the time complexity of
AC4 [BFR95]). The use of support lists is essential in MAC-DBT for the generation of
Nogood eplanations for values which are removed as a result of AC. The explanation
for a value removal is explained by the explenations for the removal of its supporters in
the corresponding list.

4 Improving MAC-DBT

The contribution of the present paper is centered on improving the MAC-DBT algorithm
in two different directions which are combined into a single algorithm. The first im-
provement adresses the weakness of the DBT algorithm reported by [Bak94] when
ordering heuristics are used. It proposes a version of DBT that does not keep the assign-
ments of “jumped-over” variables. The second improvement adresses the MAC method
of [JDB00] and proposes a combined version of FC and MAC to improve its run time.

4.1 CBJ-NG

The MAC-DBT algorithm of [JDB00] still suffers from the phenomenon reported
by [Bak94], that the DBT algorithm abolishes the benefits of the variable ordering
heuristic used. Standard CBJ combined with look ahead methods, avoids this prob-
lem by discarding the assignment of variables that it jumps-over. This way, the order of

MAC-DBT Revisited 143

variables according to the desired heuristic is preserved. However, in contrast to DBT ,
in standard CBJ explanations for the removal of values are not stored and therefore on
backtracks the entire domain of a variable which was jumped over is restored [Pro93].

The first improvement we propose is to combine DBT and CBJ into CBJ-NG.
This algorithm benefits from the dynamic ordering of CBJ and from the maintenance
of Nogood explanations of DBT . The algorithm uses one of two look ahead methods,
FC or MAC, and the resulting algorithms are termed FC-CBJ-NG and MAC-CBJ-NG,
respectively.

During the search process of FC-CBJ-NG and MAC-CBJ-NG variables are selected
to be assigned according to a heursitic. Conflicting values of unassigned variables are
filtered out by forward checking or by AC. These values are associated with explicit
nogoods (Nogoods which derive explicitly from the problem’s initial constraints) that
explain their immediate removal as in DBT [Gin93].

When a current domain of an unassigned variable is exhausted, the Nogood expla-
nations of its removed values are resolved and the result is a generation of an inexplicit
(resolved) Nogood. Among the assignments of variables that appear in the generated
Nogood, the assigned variable that is last ordered in the partial assignment is selected
as the target of the backtrack (the culprit).

If the culprit is not the last assigned variable, the assignments of variables that were
assigned after the culprit are discarded and their assigned values are returned to the
current domains of these variables. Eliminating explanations that contain removed or
discarded assignment are discarded as well, and the values that were eliminated by
them are also returned to their current domains.

In contrast to standard CBJ, values of variables, whose assignment was discarded and
their Nogood explanation is still consistent with the resulting partial assignment, are not
returned to their variable’s current domain. This forms a solid basis for ordering heuris-
tics that are based on dynamic domain sizes of unassigned variables [HE80, BR96].

4.2 FC-CBJ-NG and MAC-FC-CBJ-NG

The pseudo code of FC-CBJ-NG and MAC-CBJ-NG is presented in Algorithms 1, 2
and 3. The italic lines are code that one needs to perform in order to transform the
FC-CBJ-NG algorithm into MAC-FC-CBJ-NG. The pseudo code of both algorithms is
described next.

Procedure initialize (line 2) performs initialization of the algorithms’ data structures.
Most of these operations are basic and technical, therefore they are not described in
detail. If MAC-FC is performed, the initialize procedure computes the support lists for
all values [MH86]. In this phase an empty domain generates a report that there is no
solution [MH86].

The variables that are handled in lines 3-5 are assumed to be global and accessible
by all procedures. assigned: is a stack that holds the already assigned variables in a
LIFO order of their assignment. unassigned: is a pool of the unassigned varibles. The
variable Pseudo is intially pushed into the stack, in order to simplify the code. The
unassigned pool contains all the variables that participate in the problem. consistent
is a boolean variable which indicates whether the problem is consistent.

144 R. Zivan et al.

The loop in lines 6-16 follows the standard form of [Pro93] for CSP search algo-
rithms. Arc consistency is applied before labeling (line 8). The procedure label(var)
(Algorithm 2) tries to assign one value val from the current domain of the unassigned
variable var. If the assignment is successful, consistency remains true, and the assigned
variable is entered into the assigned stack. Conflicting values are removed from the cur-
rent domains of future variables. When MAC is used their repspective pairs are inserted
into the global queue Q for AC inspection. It is done by the procedure check forward.
If the assignment fails (a domain of an unassigned variable empties), state restoration is
handled by procedure undo reductions, and val is removed from the current domain
of var along with its eliminating Nogood. When MAC is performed the pair (var, val)
is inserted into the reduction set of the variable that is last assigned. The reduction set of
a varaible contains removed values whose eliminating nogoods are consistent with the
assignment. These eliminating Nogoods are identified only after the assignment of that
variable. The pair (var, val) is also inserted into Q, as the removal of val may cause
the problem to violate the arc consistency property. At the end, the current domain of
var is inspected for consistency (e.g non-emptiness).

Algorithm 1. MAC-FC/FC-CBJ-NG
1: procedure MAC-FC/FC-CBJ-NG

2: initialize()
3: unassigned← variables
4: assigned← pseudoVar
5: consistent← true
6: while unassigned.size() > 0 do
7: if consistent then
8: consistent← check AC()
9: end if

10: if consistent then
11: next var← select next var(unassigned)
12: consistent← label(next var)
13: else
14: consistent← unlabel()
15: end if
16: end while
17: report solution
18: end procedure

Procedure unlabel (in Algorithm 2) generally removes the assignment of an
assigned variable. A value is removed if the current domain of an unassigned variable
empties. The Nogood that explains this removal is resolved (line 2). If the Nogood is
empty, the algorithm terminates unsuccessfully (a no solution is reported) (lines 3-6).
Otherwise, the right hand side RHS variable, which is called culprit, is unassigned. The
assignments of variables ordered after the culprit variable are discarded. In the repeat
loop, these variables are extracted from the assigned stack and a restoration operation
is performed by a call to undo reductions. Note that when a variable is extracted its
reduction set is unified with the reduction set of the former assigned variable. This

MAC-DBT Revisited 145

Algorithm 2. Procedures Label and Unlabel

1: procedure LABEL(var)
2: select value from var.current domain
3: var.assignment← value
4: consistent← check forward(var)
5: if not consistent then
6: remove var.assignment from var.current domain
7: nogood← resolve nogoods(empty domain var)
8: store(nogood)
9: undo reductions(var)

10: lastAssigned← assigned.head()
11: add (var,var.assignment) to lastAssigned.reduction
12: Q← (var,var.assignment)
13: if var.current domain = φ then
14: empty domain var← var
15: end if
16: else
17: unassigned.remove(var)
18: assigned.push(var)
19: end if
20: return var.current domain �= φ
21: end procedure

1: procedure UNLABEL
2: nogood← resolve nogoods(empty domain var)
3: if nogood = φ then
4: report no solution
5: stop
6: end if
7: culprit← nogood.RHS variable
8: remove var.assignment from var.current domain
9: store(nogood)

10: repeat
11: var← assigned.pop()
12: undo reductions(var)
13: unassigned.add(var)
14: lastAssigned← assigned.head()
15: add var.reduction to lastAssigned.reduction
16: if var �= culprit then
17: var.reduction← φ
18: else
19: add (culprit,culprit.assignment) to lastAssigned.reduction
20: add culprit.reduction to lastAssigned.reduction
21: Q← culprit.reduction
22: culprit.reduction← φ
23: if culprit.current domain = φ then
24: empty domain var← culprit
25: end if
26: return culprit.current domain �= φ
27: end if
28: until var = culprit
29: end procedure

146 R. Zivan et al.

Algorithm 3. Procedures FC and check AC
1: procedure CHECK FORWARD(var1)
2: foreach(var2 ∈ unassigned)
3: foreach(val2 ∈ var2.current domain)
4: if not check(var1, var1.assignment, var2, val2) then
5: remove val2 from var2.current domain
6: nogood← (var1 = var1.assignment→ var2 �= val2)
7: store(nogood)
8: Q.add((var2,val2))
9: if var2.current domain = φ then

10: empty domain var← var2
11: return false
12: end if
13: end if
14: return true
15: end procedure

1: procedure UNDO REDUCTIONS(culprit)
2: foreach(var ∈ unassigned)
3: foreach(val ∈ var.domain/var.current domain)
4: nogood← store.get(var,val)
5: if nogood.contains(culprit) then
6: store.remove(nogood)
7: remove((var,val) from culprit.reduction � if exists..
8: insert val into var.current domain
9: end if

10: end procedure

1: procedure CHECK AC � used only in MAC
2: while Q �= φ do
3: (var1,val1)← Q.extract()
4: foreach(var2 ∈ set of variables constrained with var1)
5: if var2 ∈ unassigned then
6: foreach(val2 ∈ support(var1,var2,val1))
7: if support(var2,var1,val2) ∩ var1.current domain = φ then
8: remove val2 from var2.current domain
9: nogood← resolve nogood(support(var2,var1,val2))

10: store(var2, nogood)
11: lastAssigned← assigned.head()
12: add (var2,val2) to lastAssigned.reduction
13: Q.add((var2,val2))
14: end if
15: if var2.current domain = φ then
16: empty domain var← var2
17: return false
18: end if
19: end if
20: end while
21: return true
22: end procedure

MAC-DBT Revisited 147

ensures that all reduced values whose eliminating Nogoods remain consistent from the
time that the culprit was assigned - when the problem was arc consistent - are accu-
mulated. The respective pairs of these values are inserted into Q, and will be examined
before the next assignment if the current domain of the culprit variable is consistent.

Procedure undo reductions removes eliminating nogoods that contain the given
unassined variable in their explanations. It returns the previously eliminated values to
the current domains of the variables they belong to. If MAC is performed these values
are removed from the reduction set of the given variable.

Procedure check AC is similar to the main procedure of AC4 [MH86]. It extracts
pairs of the form (var, val) from the global queue Q until the queue is emptied. Values
of the current domain of unassigned variables, constrained with var, are checked for
support (compatible value) in the current domain of var. If there is no support for a
value val′ of a variable var′, then val′ is removed and the Nogood is resolved. In this
case the pair (var′, val′) is inserted into Q. The pair is also added to the reduction set
of the last assigned variable. The procedure stops if it finds an empty current domain
or if the Q is emptied. This implies that the problem is arc consistent.

4.3 FC Saves Computation

Let us analyze the computational advantage of performing FC separately, as in
Algorithm 1, over the version proposed in [JDB00]. The equivalence of the two meth-
ods generates the same removals in unassigned variables. Denote by t, the amount of
computations spent by AC4 when iterating over the values that are removed from the
current domains of unassigned variables, as a result of direct conflict with the assign-
ment of vi (all values that would have been removed by FC). Consider the set of all
values that belong to current domains of unassigned variables constrained with vi. Now,
consider a division of this set into twon non intersecting subsets, S - the current set of
values that are compatible with the assignment of vi, and R - the current set of values
that are in conflict with that assignment. The FC procedure visits each value in the cur-
rent domains of the unassigned variables just once, therefore the time spent by applying
FC and than AC is:

t + |R| + |S|
The method for maintaining AC that is proposed in [JDB00] performs FC by inserting
all unassigned values of the current domain of variable i into the Q of removed values.
We denote by d, the number of values that were inserted into Q. Each ”removed” value
triggers a check of support for each val ∈ S. Each val ∈ R is examined with respect
to the number of supporters that are retained in the current domain(vi). This number
is greater or equal to 1. Assuming that the expected number of values checked (lager
or equal to the number of supporters) for each val ∈ R, before it is removed from the
current domain is k, we conclude that the computations performed are at least:

t + d · |S| + k · |R|
The cases in which d = 0 can be easily checked in advance (no computation needed
during search) therefore the values of d and k are always greater or equal to 1. We can
easily see that applying FC separately, as proposed in the present paper, generates less
or equal computation than the method proposed in [JDB00].

148 R. Zivan et al.

5 Correctness of MAC-FC-CBJ-NG

Let us first assume the correctness of the standard DBT algorithm (as proved
in [Gin93]) and prove that after the addition of forward checking, of MAC and the elim-
ination of assignments after each backtrack, it is still sound, complete and it terminates.

Soundness is immediate since after each successful assignment the partial solution
is consistent. Therefore, when the partial solution includes an assignment for each
variable the search is terminated and a consistent solution is reported.

As in the case of standard DBT and MAC-DBT, the completeness of MAC-FC-CBJ-
NG derives from exploring the entire search space except for sub search spaces which
were found not to contain a solution. One needs to prove that the sub search spaces which
MAC-FC-CBJ-NG does not search do not contain solutions. Sub search spaces are pruned
by Nogoods. It is enough to prove the consistency of the set of Nogoods generated by
MAC-FC-CBJ-NG. In other words, that the assignment of values removed by Nogoods
never leads to solutions. For standard DBT this is proven in the original paper [Gin93].

The consistency property of Nogoods generated by MAC-FC-CBJ-NG can be shown
as follows. First, observe that during the forward-checking and arc-consistency opera-
tions, Nogoods are standardly stored as explanations to removed values in the domain
of future variables. Next, consider the case of a backtrack. It is easy to see that Nogoods
of the future variables are resolved identically to those of standard DBT. Each Nogood
is either an explicit Nogood, which is actually a constraint of the original problem, or a
resolved Nogood which is a union of explicit Nogoods. In both cases any assignment
which includes such a Nogood cannot be part of a solution. This proves the complete-
ness of MAC-FC-DBT.

Last, we need to prove that the algorithm terminates. To this end we need to prove
that the algorithm cannot enter an infinite loop. In other words, that a partial assignment
cannot be produced by the algorithm more than once. We prove by induction on the
number of variables of the CSP , n. For a CSP with a single variable, each of the
values is considered exactly once. Assuming correctness of the argument for CSPs
with k variables, for all k < n, we prove that in the case of a CSP with n variables the
argument is still valid. Given a CSP of size n we assign the first variable and prune the
inconsistent values of the unassigned variables using FC and MAC. The induced CSP
is of size n − 1 in which according to the induction assumption the same assignment
would not be generated twice. After the search of this induced CSP is completed,
the result can be either a solution to the complete CSP , a non solution as a result
of the production of an empty Nogood or a Nogood which includes the assignment
of the first variable alone. In the first two cases we are done. In the third case, after the
first variable replaced its assignment, it will never assign this value again. Therefore,
none of the previous partial assignments can be produced again. This is true for each of
the assignments of the first variable.

6 Experimental Evaluation

The common approach in evaluating the performance of CSP algorithms is to mea-
sure time in logical steps to eliminate implementation and technical parameters from

MAC-DBT Revisited 149

Fig. 1. Constraints checks performed by FC-DBT, MAC-DBT and MAC-FC-DBT on low density
CSPs (p1 = 0.3) with static ordering

Fig. 2. Same as Figure 1 for high density CSPs (p1 = 0.7)

affecting the results. We present results in both number of constraints checks and in
CPU time [Pro96, KvB97].

The experiments were conducted on two problem scenarios: Random CSPs and
on structured problems that represent a realistic scenario - Meeting Scheduling Prob-
lems [GW99].

Random CSPs are parametrized by n variables, k values in each domain, a con-
straints density of p1 and a tightness p2 which are commonly used in experimental
evaluations of CSP algorithms [Smi96]. Two sets of experiments were performed on
random problems. Both were conducted on CSPs with 20 variables (n = 20) and 10
values in the domain of each variable (k = 10). Two values of constraints density were
used, p1 = 0.3 and p1 = 0.7. The tightness value p2, was varied between 0.1 and 0.9, in
order to cover all ranges of problem difficulty. For each of the pairs of fixed density and
tightness (p1, p2), 50 different random problems were solved by each algorithm and the
results presented are an average of these 50 runs.

In the first set of experiments, DBT with three different lookahead methods was
compared, Forward Check (FC-DBT), MAC (MAC-DBT) and a combined lookahead
version that use both FC and MAC (MAC-FC-DBT).

The left hand side (LHS) of Figure 1 presents the number of constraints checks per-
formed by the three versions of the algorithm with static ordering on low density CSPs
(p1 = 0.3). MAC-DBT outperforms FC-DBT, as reported by [JDB00]. The algorithm

150 R. Zivan et al.

Fig. 3. Constraints checks and CPU-time performed by FC-DBT, MAC-DBT and MAC-FC-DBT
with dynamic (min-domain / degree) ordering (p1 = 0.3)

Fig. 4. Same as Figure 5 for high density CSPs (p1 = 0.7)

proposed in the present paper (that performs FC seperately of AC4) MAC-FC-DBT
outperfroms both MAC-DBT and FC-DBT. A closer look at the difference between
MAC-FC-DBT and MAC-DBT is presented on the right hand side of the (RHS)figure.
Note that in this experiment all algorithms perform DBT and not CBJ-NG. They all
preserve the jumped over assignments on a backtrack as in [Gin93, Bak94, JDB00].

The LHS of Figure 2 presents similar results for high density CSPs (p1 = 0.7). In
this case the difference between FC-DBT and MAC-DBT is much smaller. The RHS of
Figure 2 presents the same results in CPU time and is presented in order to show the
similarity between these two measures.

Figure 3 presents a comparison between the same versions of the algorithm when
using the min-domain/degree heuristic [BR96]. The results in constraints checks (LHS)
and in CPU time (RHS) show clearly the advantage of FC-DBT on both versions of
MAC-DBT when ordering heuristics are used. Similar results for high density CSPs are
presented in Figure 4. The difference in favor of FC is higher on dense CSPs.

In the second set of experiments FC-DBT and MAC-FC-DBT are compared with
the well known FC-CBJ algorithm and with the two proposed versions which perform
backjumping as in CBJ but store Nogoods as in DBT (see Section 3.1), our proposed
algorithms MAC-FC-CBJ-NG and FC-CBJ-NG (Algorithms 1, 2 and 3). All algorithms
use the min-domain/degree heuristic.

MAC-DBT Revisited 151

Fig. 5. Constraints checks and CPU-time for low density CSPs (p1 = 0.3)

Fig. 6. Same as Figure 3 for high density CSPs (p1 = 0.7)

Figure 5 presents a comparison between different versions of the algorithm on low
density random CSPs. The results show a large difference between the FC algorithms
and the MAC algorithms. However, there are small differences between the different
versions. Similar results were obtained for high density random CSPs (Figure 6).

In the third set of experiments, the algorithms are compared when solving struc-
tured problems, Meeting Scheduling [GW99]. In this special class of problems, vari-
ables represent meetings between agents. Arrival constraints exist between meetings of
the same agent. The tightness of the problem grows with the number of meetings per
agent [GW99].

Figure 7 presents the performance of the algorithms, solving random meeting
scheduling problems with 40 meetings (variables), domain size of 12 time slots, 18
agents and arrival constraints which were randomly selected between 2 to 6 [GW99].
The results in constraints checks (LHS) and in CPU-time are again very similar. On
structured problems the differences between the different versions of MAC-DBT are
much smaller than the differences between the different versions of FC. Still, the
best performing algorithm is the FC version which performs CBJ and uses DBT
Nogoods. To emphasize its advantage, the results of the most successful versions of
MAC and FC are presented in Figure 8. In the case of structured problems the largest
difference in performance is for tight problems.

152 R. Zivan et al.

Fig. 7. Constraints checks and CPU-time performed by the different algorithms on Random Meet-
ing Scheduling Problems

Fig. 8. Constraints checks and CPU-time performed by the best versions of MAC and FC on
Random Meeting Scheduling Problems

7 Discussion

Dynamic Backtracking (DBT) was proposed by [Gin93] as a mechanism that enables
the search algorithm to perform backjumping while preserving the assignments of vari-
ables which were jumped over. The proposed algorithm was found to harm the effect of
ordering heuristics and to perform poorly compared to standard conflict directed back-
jumping when powerfull ordering heuristics are used [Bak94].

Enhancing DBT with local consistency methods (FC, MAC) was proposed
by [JDB00] who found that the most successful version is MAC-DBT. This version was
also found to outperform standard versions of MAC[MOSHE PLEASE ADD THE
REFERENCE].

The results presented in the present paper demonstrate that the advantage of MAC-
DBT over FC-DBT exists only when static order is maintained. When dynamic ordering
heuristic is used, FC-DBT runs faster than MAC-DBT. Our presented results, both theo-
retical and empirical, show clearly the advantage of performing a combined version of
MAC-DBT with explicit froward-checking, over the MAC-DBT of [JDB00].

MAC-DBT Revisited 153

The best performing algorithms presented in this paper do not preserve assignments
which were jumped over (as in [Gin93]). As a result, the properties of the ordering
heuristic are preserved in contrast to standard DBT . Both versions of DBT with looka-
head (FC and MAC) benefit from using the DBT mechanism for storing Nogood
explanations. The benefit arises from the ability to determine which value should be
restored to a variable’s domain. Updated domains during backjumping enhance order-
ing heuristics that are based on domain size. The algorithms proposed by the present
paper FC-CBJ-NG and MAC-CBJ-NG, improve on both MAC-DBT and FC-DBT. The
best performing algorithm was found to be FC-CBJ-NG. Its advantage over all other
versions is most pronounced on structured (Meeting Scheduling) problems.

References

[Bak94] Baker, A.B.: The hazards of fancy backtracking. In: Proceedings of the 12th Na-
tional Conference on Artificial Intelligence (AAAI 1994), Seattle, WA, USA, July
31 - August 4, vol. 1, pp. 288–293. AAAI Press, Menlo Park (1994)

[BFR95] Bessière, C., Freuder, E., Régin, J.: Using inference to reduce arc consistency
computation. In: IJCAI 1995, pp. 592–598 (1995)

[BR96] Bessière, C., Regin, J.C.: Mac and combined heuristics: two reasons to forsake fc
(and cbj?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118,
pp. 61–75. Springer, Heidelberg (1996)

[CvB01] Chen, X., van Beek, P.: Conflict-directed backjumping revisited. Journal of Arti-
ficial Intelligence Research (JAIR) 14, 53–81 (2001)

[Dec03] Dechter, R.: Constraint Processing. Morgan Kaufman, San Francisco (2003)
[DF02] Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction

problems. Artificial Intelligence 136(2), 147–188 (2002)
[Gin93] Ginsberg, M.L.: Dynamic backtracking. J. of Artificial Intelligence Research 1,

25–46 (1993)
[GW99] Gent, I.P., Walsh, T.: Csplib: a benchmark library for constraints. Technical report,

Technical report APES-09-1999 (1999),
http://csplib.cs.strath.ac.uk/; A shorter version appears in the
Proceedings of the 5th International Conference on Principles and Practices of
Constraint Programming (CP 1999)

[HE80] Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence 14, 263–313 (1980)

[JDB00] Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within dy-
namic backtracking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 249–261.
Springer, Heidelberg (2000)

[KvB97] Kondrak, G., van Beek, P.: A theoretical evaluation of selected backtracking algo-
rithms. Artificial Intelligence 21, 365–387 (1997)

[MH86] Mohr, R., Henderson, T.C.: Arc and path consistence revisited. Artif. Intell. 28(2),
225–233 (1986)

[Pro93] Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence 9, 268–299 (1993)

[Pro96] Prosser, P.: An empirical study of phase transitions in binary constraint satisfaction
problems. Artificial Intelligence 81, 81–109 (1996)

[Smi96] Smith, B.M.: Locating the phase transition in binary constraint satisfaction prob-
lems. Artificial Intelligence 81, 155–181 (1996)

http://csplib.cs.strath.ac.uk/

	MAC-DBT Revisited
	Introduction
	Constraint Satisfaction Problems
	MAC-DBT
	Dynamic Backtracking
	DBT with MAC

	Improving MAC-DBT
	CBJ-NG
	FC-CBJ-NG and MAC-FC-CBJ-NG
	FC Saves Computation

	Correctness of MAC-FC-CBJ-NG
	Experimental Evaluation
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

