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Abstract. Previously we presented a new approach to solving dynamic con-
straint satisfaction problems (DCSPs) based on detection of major bottlenecks in
a problem using a weighted-degree method called “random probing”. The present
work extends this approach and the analysis of the performance of this algorithm.
We first show that despite a reduction in search effort, variability in search effort
with random probing after problem perturbation is still pronounced, reflected in
low correlations between performance measures on the original and perturbed
problems. Using an analysis that separates effects based on promise and fail-
firstness, we show that such variability is mostly due to variation in promise.
Moreover, the stability of fail-firstness is greater when random probiing is used
than with non-adaptive heuristics. We then present an enhancement of our orig-
inal probing procedure, called “random probing with solution guidance”, which
improves average performance (as well as solution stability). Finally, we present
an analysis of the nearest solution in the perturbed problem to the solution found
for the original (base) problem. These results show why solution repair methods
do poorly when problems are in a critical complexity region, since there may be
no solutions similar to the original one in the perturbed problem. They also show
that on average probing with solution guidance finds solutions with near-maximal
stability under these conditions.

1 Introduction

A “dynamic constraint satisfaction problem”, or DCSP, is defined as a sequence of
CSPs in which each problem in the sequence is produced from the previous problem
by changes such as addition and/or deletion of constraints [VJ05]. Although several
strategies have been proposed for handling DCSPs, there is still considerable scope for
improvement, in particular, when problems are in the critical complexity region. For
these problems, algorithms that attempt to repair the previous solution can be grossly
inefficient, especially when they are based on complete search [WGF09].

In recent work we found that for hard CSPs, search performance (amount of effort)
can change drastically even after small alterations that do not change the values of the
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basic problem parameters. At the same time, one feature that is not greatly affected
is the set of variables that are the major sources of contention within a problem. It
follows that information derived from assessment of these sources of contention should
enhance performance even after the problem has been altered. This is what we have
found [WGF09]. We also showed that for these problems, a standard DCSP algorithm
like Local Changes is 2-3 orders of magnitude worse, depending on the search heuristic.

More specifically, we showed that a heuristic procedure that uses failures obtained
during iterated sampling (“random probing”) can perform effectively after problem
change, using information obtained before such changes and thus avoiding the cost
of further sampling. The result is a new approach to solving DCSPs based on a robust
strategy for ordering variables rather than solution repair or finding robust solutions.

Here, we show that despite this success, predictability of performance across a set
of DCSPs of similar character, as reflected in the correlations between original and
altered problems, remains fairly low. From an analysis of search performance based on
the Policy Framework of [BPW04, BPW05], we find that problem perturbation affects
measures of promise to a much greater extent than measures of fail-firstness, which
largely explains the anomalous findings.

Based in part on these findings (but also with an eye toward improving solution
stability), we developed an enhanced algorithm which uses information in the solution
to guide value selection (called ”random probing with solution guidance”). This allows
us to gain the benefits obtained by solution repair techniques such as Local Changes;
specifically, search can be strongly limited or avoided entirely when a solution identical
to or very similar to the solution to the base problem is in the set of solutions to the
perturbed problem.

We also present results of a nearest solution analysis, that is, a comparison of the
solution found for the base problem with the closest solution among all solutions to
the perturbed problem. This analysis shows that, for problems in the critical complexity
region, often there are no similar solutions; this is why solution repair methods perform
poorly on average on these problems. On the other hand, random probing with solu-
tion guidance can enhance performance whether or not closely similar solutions can be
found in the perturbed problem.

The next section gives some background material, including descriptions of the prob-
lems used in this study. The third section presents performance data including mean
performance and correlations between performance on the base problems and on the
perturbed problems. The fourth section presents an analysis in terms of measures of
adherence to the promise and fail-first policies. The fifth section describes the random
probing with solution guidance procedure. The sixth section presents the nearest solu-
tion analysis. The last section gives conclusions.

2 Background Material

2.1 Definitions and Notation

Following [DD88] and [Bes91], we define a dynamic constraint satisfaction problem
(DCSP) as a sequence of static CSPs, where each successive CSP is the result of
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changes in the preceding one. As in earlier work, we consider DCSPs with specific
sequence lengths, especially length 1, where “length” is the number of successively
altered problems starting from the first alteration to the initial problem.

In our extended notation, Pij(k) refers to the kth member in the sequence for
DCSPij , where i is the (arbitrary) number of the initial problem in a set of problems,
and j denotes the jth DCSP generated from problem i. However, for DCSPs of length
1 a simpler ij notation is often more perspicuous; in this case Pij is the jth problem
(equivalent in this case to the jth DCSP) generated by perturbing base problem i. For
mean values (shown in some tables), since i values range over the same set, this notation
can be simplified further, to P -j or Pj.

2.2 Experimental Methods

Because they allow for greater control, many of the present experiments were done
with random problems, generated in accordance with Model B [GMP+01]. The base
problems had 50 variables, domain size 10, graph density 0.184 and constraint tightness
0.369. Problems with these parameters have 225 constraints in their constraint graphs.
Although they are in a critical complexity region, these problems are small enough that
they can be readily solved with the algorithms used (together with good heuristics).

For these problems, we restrict our inquiry to the case of addition and deletion of k
constraints from a base CSP. (Other kinds of change are described in [WGF09].) In this
case, the number of constraints remains the same. In addition, changes are carried out
so that additions and deletions do not overlap.

DCSP sequences were formed starting with 25 independently generated initial prob-
lems. In most experiments, three DCSPs of length 1 were used, starting from the same
base problem. Since the effects we observed are so strong, a sample of three was suffi-
cient to show the effects of the particular changes we were interested in.

Search was done with two non-adaptive variable ordering heuristics: maximum for-
ward degree (fd) and the FF2 heuristic of [SG98] (ff2). The latter chooses a variable
that maximises the formula (1 − (1 − pm

2 )di)mi , where mi is the current domain size
of vi, di the future degree of vi, m is the original domain size, and p2 is the original av-
erage tightness. In addition, adaptive heuristics based on weighted degree were tested,
including dom/wdeg, wdeg [BHLS04], and a version of search using dom/wdeg that
uses weights at the start of search obtained by “random probing” [GW07]. This latter
method involves a number of short ‘probes’ of the search space where search is run to a
fixed cutoff and variable selection is random. Constraint weights are updated in the nor-
mal way during probing, but the information is not used until complete search begins.
These heuristics were employed in connection with the maintained arc consistency al-
gorithm using AC-3 (MAC-3). The performance measure reported here is search nodes,
although constraint checks and runtimes were also recorded.

Experiments on problems with ordered domains involved simplified scheduling
problems, used in a recent CSP solver competition1. These were “os-taillard-4” prob-
lems, derived from the Taillard benchmarks [Tai93], with the time window set to the

1 http:/www.cril.univ-artois.fr/˜lecoutre/benchmarks/
benchmarks.html

http:/www.cril.univ-artois.fr/~lecoutre/benchmarks/
benchmarks.html
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best-known value (os-taillard-4-100, solvable) or to 95% of the best-known value
(os-taillard-4-95, insoluble). Each of these sets contained ten problems. For these prob-
lems, constraints prevent two operations that form part of the same job or require the
same resource from overlapping. Specifically, they are disjunctive relations of the form,
(Xi + duri ≤ Xj)

∨
(Xj + durj ≤ Xi), where Xk is the start-time and durk the

duration of operation k. These problems had 16 variables, the domains were ranges of
integers starting from 0, with 100-200 values in a domain, and all variables had the same
degree. In this case, the non-adaptive heuristic used was minimum domain/forward
degree.

Scheduling problems were perturbed by changing upper bounds of a random sample
of domains. In the original problems, domains of the 4-100 problems are all ten units
greater than the corresponding 4-95 problems. Perturbed problems were obtained by
decreasing four domains of the 4-100 problems by ten units or by increasing six of the
domains of the 4-95 problems by ten units. Perturbed problems were selected so that
those generated from the 4-100 set remained solvable, while those generated from the
4-95 set remained insoluble.

For solvable problems, the basic demonstrations of DCSP effects were based on a
search for one solution. To avoid effects due to vagaries of value selection that might
be expected if a single value ordering was used, in these experiments repeated runs
were performed on individual problems, with values chosen randomly. (For scheduling
problems, value ordering was randomised by choosing either the highest or lowest re-
maining value in a domain at random.) For random problems, the number of runs per
problem was always 100; for scheduling problems with solutions the number was 50.
The individual performance datum for each problem is, therefore, mean search nodes
over a set of runs.

3 Basic Results

3.1 Non-adaptive Search Heuristics

This section includes some previous results (in some cases extended) to set the stage
for the present work. Figure 1 (taken from [WGF09]) shows the extent of variation that
can occur after small alterations, in this case addition and deletion of five constraints.

Table 1 shows the grand means for search with fd and ff2 across all 75 of the
altered CSPs (i.e. the altered problems from the three sets of 25 DCSPs).

Table 1. Search Performance on Altered Problems: Non-Adaptive Heuristics

fd ff2

5c 2601 3561
Notes. <50,10,0.184,0.369> problems. Single solution
search with repeated runs on each problem. “5c” is
5 deletions and additions. Mean search nodes.

Table 2 shows correlations for two sets of experiments (with the two different non-
adaptive heuristics), where five constraints were added and deleted. Both here and in
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Fig. 1. Scatter plot of search effort (mean nodes over 100 runs) with fd on original versus Pi3(1)
problems with five constraints added and deleted. (Overall correlation in performance between
the 25 original and altered problems is 0.24. Taken from [WGF09].)

Figure 1, vagaries in search effort due to value ordering can be ruled out, since the
statistics are based on means of 100 runs per problem with random value selection. In
addition, our earlier work ruled out number of solutions as the major factor underlying
such variation [WGF09]. These results show that even small changes can have a marked
effect on search, and affect the relative difficulty of finding solutions in problems before
and after alteration.

Table 2. Correlations with Performance on Original Problems after Alteration: Non-Adaptive
Heuristics

fd ff2
condit P1 P2 P3 P1 P2 P3
5c .49 .83 .24 .34 .54 .31
Notes. <50,10,0.184,0.369> problems. Single solution
search with repeated runs on each problem. “5c” is
5 deletions and additions. Pj = P

−j(1); thus, P1, P2
and P3 refer to three separate sets of DCSPs of length 1.

Table 3 shows correlations for os-taillard-4 problems for the non-adaptive heuris-
tic, minimum domain over forward degree. Across five sets of perturbed problems, the
mean number of search nodes was 257,695 for the 4-95 problems and 391,236 for the
4-100 problems.

Again, there are cases where small changes affect performance to such a degree that
the correlations are negligible. That the correlations are often high is not surprising
given the nature of the changes to the problems (and the global nature of the correlation
coefficient). What is interesting is that even under these conditions changes in perfor-
mance can occur that are sufficiently marked so that an ensemble measure of similarity
can be affected. Moreover, it is possible to obtain marked differences (reflected in neg-
ligible correlation coefficients) even for problems without solutions.
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Table 3. Correlations with Performance on Original Problems after Alteration for OS-Taillard
Problems

d/fd
problems P1 P2 P3 P4 P5
4-95 .03 .98 .99 1.00 .98
4-100 .51 .98 .99 .96 .13
Notes. Problems perturbed by incrementing or decre-
menting domains. Means for 4-100 problems based on
50 runs per problem with randomised value ordering
as described under Methods.

3.2 Adaptive Search Heuristics

A major finding in previous work was that despite their marked effects on search, the
changes just described often do not greatly affect the locations of major points of con-
tention (bottleneck variables). Therefore, a heuristic that assesses major sources of con-
tention should perform well, even when using information from the base problem on a
perturbed problem. Since the constraint weights obtained from random probing distin-
guish points of high contention [GW07, WG08], the usefulness of this information is
not lost in the face of changes such as these. This is shown in Table 4 for the same prob-
lems used in Tables 1 and 2. Data are for four methods (the first three of which were
used in [WGF09]): (i) dom/wdeg with no restarting, (ii) independent random probing
for each problem (rndi), (iii) a single phase of random probing on the original prob-
lems (rndi-orig), after which these weights were used with the original and each of
its altered problems (on each of the 100 runs with random value ordering), (iv) a strat-
egy in which weights obtained from dom/wdeg on the base problem were used at the
beginning of search with a perturbed problem. In the third and fourth cases, the new
constraints in an altered problem were given an initial weight of 1.

For these problems, random probing improves search performance in comparison
with dom/wdeg, and there is relatively little fall-off if weights from the base problem
are used. However, if weights from dom/wdeg are re-used, search performance is dis-
tinctly inferior to that found with weights obtained from probing. In fact, it is slightly
worse than the original dom/wdeg heuristic, which starts search with no information
other than degree. This shows the importance of gaining information about contention
through random sampling of failures instead of in association with CSP search. It is also
consistent with the proposal that random probing provides information about global
sources of contention, in (partial) contrast to dom/wdeg [GW07].

Table 4. Search Results with Weighted Degree Heuristics: Random Problems

dom/wdeg rndi rndi-orig d/wdg-orig
1617 1170 1216 1764
Notes. Mean search nodes across all altered problems. First
three values from [WGF09].
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Table 5 shows correlations for the weighted degree strategies for the same DCSPs
as in Tables 1-2. Somewhat surprisingly, these correlations are very similar to the corre-
sponding values found with non-adaptive heuristics. This shows that variability following
problem perturbation does not decrease when these strategies are used. The variability is
of the same degree when weighted degree (wdeg) is used in place of dom/wdeg, thus re-
moving effects related to dynamic domain size. At the same time, variability is somewhat
less when the original weights from probing are used with the perturbed problems.

A roughly similar situation obtains with the scheduling problems, as shown in
Tables 6 and 7.

Table 5. Correlations with Performance on Original Problems after Alteration: Adaptive
Heuristics

condit P1 P2 P3 P1 P2 P3 P1 P2 P3
d/wdeg rndi-d/wdeg rndi-orig-d/wdeg

5c .49 .82 .26 .58 .76 .38 .59 .80 .43
wdeg rndi-orig-wdeg

5c .40 .82 .29 .61 .81 .60
Notes. See Table 2.

Table 6. Search Results with Weighted Degree Heuristics: Scheduling Problems

problems dom/wdeg rndi rndi-orig
taillard-4-95 16,745 4139 5198
taillard-4-100 11,340 7972 5999

Notes. Mean search nodes across all altered problems.
Open shop scheduling problems. From [WGF09].

Table 7. Correlations with Performance on Original Problems after Alteration: Adaptive
Heuristics

algorithm P1 P2 P3 P4 P5
os-taillard-4-95

d/wdg .90 .97 .89 .84 .89
rndi .45 .37 .19 .70 .82
rndi-orig .42 .24 .09 .09 .22

os-taillard-4-100
d/wdg .15 .99 .99 .90 .97
rndi .81 .51 .86 .81 .76
rndi-orig 1.00 .98 .99 .98 .86
Notes. Open shop scheduling problems. P1-P5 refer
to five separate sets of DCSPs of length 1.

4 Changes in Promise and Fail-Firstness

The results in the last section leave us with a puzzle: random probing is effective in
reducing search effort with perturbed problems, but we still find the same striking
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variation in performance after small perturbations that we saw with non-adaptive heuris-
tics, reflected in moderate to low correlations between the original and perturbed prob-
lems with respect to search effort.

A possible explanation for this discrepancy can be couched in terms of the recently
developed Policy Framework of [BPW04, BPW05]. In this framework for backtrack
search, search is considered to always be in one of two states: (i) it is on a solution
path, i.e. the present partial assignment can be extended to a solution, (ii) a mistake
has been made, and search is in an insoluble subtree. In each case, an ideal policy for
making a decision can be characterised, i.e. a policy that would be optimal if it could
actually be realised. In the first case, an optimal policy would maximise the likelihood
of remaining on the solution path; in the second, an optimal policy would minimise
the size of the refutation (insoluble subtree) needed to prove the incorrectness of the
initial wrong assignment. These policies are referred to as the “promise” and ”fail-first”
policies. Although they cannot be realised in practice, they can be used to characterise
good (or bad) performance of variable ordering heuristics. This is because there are
measures of adherence to each policy that can be used to assess performance, which are
referred to by the same names [BPW04, BPW05, Wal06].

The promise measure is basically a sum of probabilities across all complete search
paths. Values can vary between 0 and 1, where a value of 1 means that any value in any
domain will lead to a solution. The fail-first measure is the mean “mistake tree” size,
where a mistake tree is an insoluble subtree rooted at the first non-viable assignment
(i.e. the initial ‘mistake’). A larger mean mistake tree size therefore indicates poorer
fail-firstness. To avoid artifacts that might arise because of variations in fail-firstness at
different search depths, comparisons for fail-firstness were restricted to mistakes made
at the same level of search.

It must be emphasized that these measures are not simply assessments of various
features of search like mean depth of failure, backtracks at a given level of search, etc.
Instead, they are genuine quality-of-search measures, just like total search nodes or
run-time. This holds by virtue of their association with two forms of optimal decision
making associated with the two conditions of search described above. The rationale for
using these policy-based measures is that they give us a more articulated assessment
of performance, based on a partition of the states of search into those that can lead
to a solution and those that cannot. Put another way, the Policy Framework allows us
to define quality-of-search measures specific to each of the two fundamentally distinct
types of search-state.

Given this framework, a hypothesis that could explain the improvement in search
in spite of continuing variability for individual problems is that the latter is due to
variability in promise, i.e. in adherence to the promise policy. Random probing was,
in fact, devised as a fail-first strategy [GW07], and previous work has shown that this
strategy affects fail-firstness without greatly affecting promise [WG08].

In this work, we used a sampling strategy for assessing adherence to the fail-first
policy that is superior to that used in earlier work [BPW05, Wal06]. In earlier work
mean mistake tree size was found in connection with an all-solutions search; this meant
that sample sizes were not equal either across problems or at different levels of search.
Moreover, with this method, there is a confounding factor in that use of a given heuristic
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above the level of the mistake may affect the efficiency of finding a refutation once a
mistake has been made. In the present work, sampling was confined to mistakes at a
single level of search, k. Variables and values were chosen at random down to this
designated level of search. Below that, search was done with the heuristic being tested.
Runs were discarded if a solution was found given the randomly chosen assignments.
Otherwise, once search returned to the level of the mistake, the size of the mistake
tree (i.e. of the refutation) could be calculated. In addition, for levels > 1, a further
criterion was imposed. This is that there had to be a solution based on the original
partial assignment for the first k-1 variables assigned. This condition ensures that the
mistake at level k is the first mistake, and therefore is the true root of the insoluble
subtree. If this condition is not met, this means that there is an invalid assignment above
level k, and this will affect the average size of the mistake tree as well as introducing
unwanted bias into the sampling procedure.

In the present work, the sample size was 100. Thus, for every problem and every
level of the first mistake, data were collected for the same number of mistake-trees
before obtaining a mean tree size. In addition, seven new sets of DCSPs were tested
along with the three original sets.

Table 8. Correlations with Original Problems (Non-adaptive Heuristics)

fd ff2
measure P1 P2 P3 x(1-10) P1 P2 P3 x(1-10)
prom .22 .74 .34 .46 .50 .43 .16 .41
ff-1 .59 .83 .88 .78 .73 .72 .60 .68
ff-2 .67 .75 .87 .82 .58 .63 .72 .75
ff-3 .82 .80 .77 .81 .70 .83 .80 .78
Notes. <50,10,0.184,0.369> problems. 5 constraints added
and deleted. “prom” is promise measure. “ff-k” referes to mis-
take trees rooted at level k. Mean is for ten sets of DCSPs
(the three original sets are also shown individually).

For adaptive heuristics, there is the additional problem that promise and fail-firstness
vary in the course of search. To avoid these effects, analysis was restricted to random
probing with “frozen” weights, using the weights obtained from the base problems.
This means that weights are not updated during search with the perturbed problems.
Admittedly, this may elevate the correlations found.

Table 8 (based on the same problems used in Tables 1-2) gives a summary account
of these differences in the form of correlations between each successive set of altered
problems and the base problem set, for the non-adaptive heuristics, maximum forward
degree and FF2. Again, lower correlations reflect changes in magnitude as well as dif-
ferences in relative magnitude across an entire problem set. These data show that much
greater variation occurs in connection with promise than with fail-firstness.

The results in Table 9 show that using heuristics based on contention information still
results in low correlations for promise, while correlations for fail-firstness are higher
than those found for non-adaptive heuristics.
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Table 9. Correlations with Original Problems (Adaptive Heuristic)

rndi-orig-frz
measure P1 P2 P3 x(1-10)
prom .82 .66 .22 .36
ff-1 .81 .88 .92 .90
ff-2 .82 .83 .93 .87
ff-3 .79 .87 .86 .86
Notes. See Table 8.

If alterations of this sort have greater effects on promise than fail-firstness, then cor-
relations for search effort before and after perturbation should be also be high when
problems have no solutions. (In this case, the only policy in force is the fail-first pol-
icy.) This is, in fact, what is found. Table 10 shows results for three sets of perturbed
problems; again, correlations are between performance on base problems and each of
three sets of perturbed problems. Problems have parameters similar to those used in
earlier tables, although the density was increased slightly to reduce the probability of
generating problems with solutions.

The weighted-degree heuristics also had consistently high correlations for these in-
soluble problems. In terms of average nodes over the 75 perturbed problems, there was
little fall-off between rndi-orig and rndi (3812 and 3778 resp.), while both improved
over dom/wdeg (5268 nodes). These results match those found for the soluble problem
set.

Unfortunately, it has not been possible to obtain similar kinds of data for the schedul-
ing problems, using a non-adaptive heuristic like dom/fwddegree. This is because of
the large number of solutions (making promise calculations difficult) and the large size
of the mistake trees for some problems (making fail-firstness calculations difficult).

Table 10. Correlations for Insoluble Problems: Non-Adaptive and Adaptive Heuristics

heuristics P1 P2 P3
fd .80 .85 .84
ff2 .90 .91 .93
dom/wdeg .88 .91 .86
rndi .84 .86 .89
rndi-orig .90 .91 .86
Notes. <50,10,0.19,0.369> problems. Both base and
perturbed problems were insoluble. Perturbations were
adding and deleting 5 constraints. “Pj” = P

−j(1).

Table 11 gives data on the mean size of insoluble sub-trees for different heuristics
for each of the first three levels of search, i.e. when mistakes are made at levels 1, 2,
and 3. As one would expect, the size decreases quickly with increasing mistake-depth.
In addition, differences in mean size among heuristics correspond to differences in total
search nodes found in ordinary search (cf. Tables 1 and 4), although they are higher
than values that would be obtained if the first k variables were selected by the same
heuristic.
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Table 11. Mean Size of Mistake Tree for Each of the First Three Levels of Search

level fd ff2 rndi-orig
1 2448 3575 1241
2 749 978 394
3 249 312 142
Notes. Means over 275 problems, 100 subtrees per
problem at each depth.

5 An Enhanced Probing Procedure

Since variability is already small for fail-firstness, this suggests that further improve-
ments in this direction will be difficult. On the other hand, we do not know of any
variable ordering methods that improve promise specifically, since in most cases an or-
dering that enhances promise also enhances fail-firstness [Wal06]. However, promise
can be improved by value orderings as well as by variable orderings (and in fact the
concept was only extended to the latter recently [BPW04]).

In this connection, an obvious approach is to piggy-back a solution guidance strat-
egy onto the basic probing procedure. Specifically, we should start testing values in a
domain by using the original assignment to that variable. This will allow us to catch
those cases where the original solution is still valid, or where there is a solution that is
very similar to the original one. We tried this, and in addition we enhanced this strategy
with a novel value ordering heuristic, used after the initial value selection. This was to
choose as the next candidate assignment the one that was consistent with the highest
number of original assignments in the unassigned variables. We call this method “prob-
ing with solution guidance”. (Note that it is the search that is solution-guided, not the
probing. Guiding the probing procedure in this way would, of course, make no sense
since it would undermine the sampling strategy.)

With this enhancement mean search effort was reduced significantly, both for dom/
wdeg and for random probing. For dom/wdeg the mean search nodes across 75 per-
turbed problems (P1-P3) was 954. For rndi-orig the mean was 701. These are grand
means, since the measure of search effort for each problem was the mean of 100 runs
in which the base was solved using random value ordering, and the solution obtained
was used in the manner described above with the perturbed problem. The reduction
in search effort found here was due to the fact that search was greatly abbreviated if
the original solution was still valid or if a solution was available that was close to the
original with respect to number of common assignments. This also resulted in a smaller
mean difference between dom/wdeg and rndi-orig.

This new method has the added benefit of improving solution stability (the degree of
similarity between the solution to the original problem and the solution to the altered
problem). In fact, as shown elsewhere, with this new method there is a small but definite
improvement over Local Changes, an algorithm designed to minimise the difference
between the old solution and the one found after problem change [VS94].
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6 Nearest Solution Analysis

In trying to understand the performance of DCSP algorithms, an important aspect of the
problem is the changed solution set after perturbation. Evaluations of this sort may help
us understand why solution repair techniques such as Local Changes perform poorly
when problems are in the critical complexity region, in contrast to contention-based
methods.

Earlier results showed that the number of solutions can change drastically after the
kind of change we are considering [WGF09]. However, we also found that number of
solutions is only weakly correlated with search effort.

Another aspect of change pertains to the elements in the solution set. If these change
appreciably, then expected search effort should also change. Following [VS94], we can
assess such change by calculating the Hamming distances between the solution found
for the original problem and solutions in the perturbed problem. In particular, given a
solution to the base problem, we can determine the Hamming distance of the nearest
solution (minimal Hamming distance) in the perturbed problem. This can be done us-
ing limited discrepancy search (Figure 2) or with branch-and-bound search, where the
number of differing assignments serves as the bound. For problems with 50 variables,
Hamming distances can range from 0 (meaning the solution found for the base prob-
lem is still a solution for the perturbed problem) to 50 (meaning no assignment in the
solution to the base problem is part of any solution for the perturbed problem).

Fig. 2. Distance between the solution to the original problem and the nearest solution in the
perturbed problem. Points are based on 100 or 500 randomly generated problems of 50 variables
having the given tightness value.

Note that here we are not interested in similarity of the search path, but similarity
between solutions. Nor do we need to consider the relation of the changes in assign-
ments to the constraint graph, since, given a solution all constraints are satisfied. Our
only concern is the amount of change necessary to employ the new solution rather than
the original one, which only involves altering assignments. The amount of such change
is, of course, directly measured by the Hamming distance.
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Since the problems we have dealt with so far are in the critical complexity region,
we first wanted to know how this affected the minimal Hamming distance. In these
experiments, problems with the same basic parameters were used, except that constraint
tightness was varied. (In addition, only three constraints were added and deleted in each
perturbation.) dom/wdeg was used to find a solution to the original problem generated.
The most important result is that once one enters the critical complexity region, the
minimal Hamming distance rises sharply, and the average approaches the maximum
possible (Figure 2).

In subsequent experiments, we used the 5c problems discussed in Section 3. Each
of the 25 base problems used previously was solved 100 times using dom/wdeg with
random value ordering. For each solution, the minimum Hamming distance was deter-
mined for one of the 75 perturbed problems. The average, minimum, maximum and
median (minimal) Hamming distance for each problem are shown in Figure 3. For clar-
ity, problems are ordered according to their average minimal Hamming distance over
the 100 runs. For the 75 perturbed problems, the average minimal Hamming distance
(over 100 runs) varied between 0.4 and 42.7, with a grand mean of 21.2. For 57 of the
perturbed problems, there was at least one run where a solution was obtained for the
base problem that gave a minimal Hamming distance of 0 when compared with all so-
lutions to the perturbed problem. On the other hand, only 12% of the 7500 runs gave
minimal Hamming distances of 0 for this comparison.
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Fig. 3. Hamming distances between solution found for the base problem and closest solution in
perturbed problem. Graphs show average minimal distance (solid line) together with the mini-
mum, maximum and median value for each perturbed problem, based on 100 test runs.

Additional insight into these results can be obtained from complete distribution data
for individual problems. Figure 4 illustrates the variation in such data using three per-
turbed problems. For clarity, Hamming distances were ordered from smallest to largest
across the hundred runs for each problem. For problem P11-2 (the eleventh problem
in the second set of DCSPs), the minimal Hamming distance was always low, indicat-
ing that the solution set always contained similar solutions to the one found for the
base problem. In contrast, for P6-2 the minimal Hamming distance was always ≥ 40.
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Fig. 4. Hamming distances of nearest solutions based on 100 different solutions to the corre-
sponding base problem, for three different perturbed problems

Most problems fell between these extremes. An example, P23-1, is shown in the figure;
here,the minimal Hamming distance ranged from 0 to 38.

These results give a clear indication of why solution reuse methods are often in-
efficient with hard problems. This is because when problems are hard, often none of
the solutions in the perturbed problem are sufficiently close to the original solution for
complete methods to gain from solution reuse.

For the three problems whose data are shown in Figure 4, the “weight profiles” (the
summed weights of adjacent constraints for each variable) obtained after probing on the
original problem and on the perturbed problem were highly correlated (≥ 0.92). This
is typical (see [WGF09]), and is, of course, the basis for the strategy of using weights
from probes of the base problem with perturbed problems. At the same time, variation
in performance after perturbation was found for all three problems, and was not related
to the minimal Hamming distances.

On the other hand, a solution reuse procedure like Local Changes showed differences
that were related to the minimal Hamming distance. For example, for Local Changes
with min-conflicts (look-back) value ordering and ff2 for variable selection, nodes
explored were 3, 374,495, and 457,750, for problems P11-2, P23-1, and P6-2, respec-
tively. The same ordering was found using fd, although in this case search effort for
the latter two problems was one or two orders of magnitude greater.

As might be expected, for probing with solution guidance there is also a clear relation
between the nearest solution and performance. This can be seen in Figure 5, which
shows the results for individual runs for the three problems, in increasing order of search
nodes. (For P11-2, the number of search nodes is always the minimum value of 50,
although the minimal Hamming distance is not always 0. This probably reflects the
winnowing effects of constraint propagation.)

In this case, these relationships are not reflected in a global measure like the correla-
tion coefficient. This is because, as noted above, most problems show a large range for
the minimal Hamming distance, depending on the solution found for the base problem.
Thus, for Local Changes the correlation between mean minimal Hamming distance and



DCSPs: Relations among Search Strategies, Solution Sets and Algorithm Performance 119

0 20 40 60 80 100

Run Number

0

1000

2000

3000

4000

S
ea

rc
h 

P
er

fo
rm

an
ce

 (N
od

es
)

6-2
11-2
23-1

Fig. 5. Performance of probing with solution guidance with base-problem weights across 100
runs for the three perturbed problems in Figure 4
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Fig. 6. Solution stability of adaptive heuristics using search with solution guidance, in comparison
with average minimal Hamming distance from the earlier tests shown in Figure 3

search performance was 0.24, which is negligible. Interestingly, for rndi-orig with so-
lution guidance, the correlation was 0.53, still small but appreciably greater than that
for Local Changes.

A final analysis shows that for probing with solution guidance, stability is in fact
close to optimal. Figure 6 compares assessments of solution stability using the solution-
based value ordering heuristic. Assessments were made by calculating the Hamming
distance between the solution found for the original problem and that found for the per-
turbed problem; this was done 100 times for each perturbed problem. These averages
are compared with the average minimal Hamming distance found for the same prob-
lems in the previous set of tests (cf. Figure 3). In the majority of cases, the means are
comparable for each problem. (Naturally, the means based on single solution compar-
isons are usually higher than the corresponding mean minimal distances.) This indicates
that with this method stability is close to the best value possible for these problems.
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7 Summary and Conclusions

In earlier work we presented a new approach for solving a range of DCSPs that was
much more effective than previous methods. We also presented a rationale for this
strategy. However, as shown in the present paper, an apparent paradox arises when we
perform the same correlational analysis as we did in earlier work with non-adaptive
heuristics. This analysis shows that, in spite of using information about problem fea-
tures that remain stable in the face of change, we still find marked variation in perfor-
mance, reflected in modest or low correlations.

In this paper, we consider the hypothesis that, since random probing enhances fail-
firstness but not promise, the variability is related to variability in promise. Our results
show that this hypothesis is largely correct. Of additional interest is the demonstration
that random probing methods give greater predictability in performance with respect
to fail-firstness than do non-adaptive heuristics. Here, we would also point out that
this analysis demonstrates the usefulness of the Policy Framework for generating and
testing hypotheses about heuristic performance.

This analysis was also useful in showing us where to look for improvements in per-
formance − by showing us where not to look. In other words, since the issue involved
promise rather than fail-firstness, this led us to consider strategies related to the former
policy. Guided by this insight, we were able to devise a value ordering strategy which
gives a large portion of the benefits of solution repair strategies such as Local Changes
(with respect to performance and solution stability), without giving up any of the benefit
of our basic contention-based strategy. Thus, mean search effort was reduced because
search was avoided in those cases where the old solution was still viable or there was a
viable solution that was very close to the original one.

This work also extends the analysis of the characteristics of DCSPs, a hitherto ne-
glected area. We show that for difficult problems the solution set can change dramati-
cally. As a result, it is often the case that there is no solution to the perturbed problem
that is similar to the solution found for the original problem. This provides an expla-
nation of why solution repair methods do not fare well for hard problems. This also
suggests that the present methods, which rely on assessing the ‘deep structure’ of the
problem, will probably be more robust in general than solution reuse methods.
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