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Preface

This volume contains the selected technical papers from the 2009 ERCIM Work-
shop on Constraint Solving and ConstraintLogic Programmingheld on June 15th–
17th, 2009 at the Technical University of Catalonia (UPC) in Barcelona, Spain.
This event was run on behalf of the ERCIM Working Group on Constraints1.
ERCIM, the European Research Consortium for Informatics and Mathematics,
aims to foster collaborative work within the European research community and
to increase co-operation with European industry. Leading research institutes from
18 European countries are members of ERCIM. The ERCIM Constraints working
group aims to bring together ERCIM researchers that are involved in research on
the subject of constraint programming and related areas.

Constraints have recently emerged as a research area that combines re-
searchers from a number of fields, including artificial intelligence, programming
languages, symbolic computing, and computational logic. Constraint networks
and constraint satisfaction problems have been studied in artificial intelligence
since the 1970s. Systematic use of constraints in programming emerged in the
1980s. The constraint programming process involves the generation of require-
ments (constraints) and the solution of these requirements, by specialised con-
straint solvers. Constraint programming has been successfully applied in nu-
merous domains. Recent applications include computer graphics (to express ge-
ometric coherence in the case of scene analysis), natural language processing
(construction of efficient parsers), database systems (to ensure and/or restore
consistency of the data), operations research problems (like optimization prob-
lems), molecular biology (DNA sequencing), business applications (option trad-
ing), electrical engineering (to locate faults), circuit design (to compute layouts),
etc. Current research in this area deals with various foundational issues, with
implementation aspects and with new applications of constraint programming.
The concept of constraint solving forms the central aspect of this research.

The 2009 workshop programme comprised invited talks from Robert
Nieuwenhuis (UPC, Spain) and Helmut Simonis (UCC, Ireland). The main tech-
nical programme also comprised talks from many constraints researchers on cur-
rent aspects of their research agendas.

We would like to sincerely thank Dolors Padrós (UPC) for her assistance in
preparing for this event, as well as Robert Nieuwenhuis and Helmut Simonis for
their invited talks. We would also like to thank our sponsors who provided the
financial support necessary to make this event a success. Finally, we would like
to sincerely thank the authors of papers, the speakers, and the attendees, for
such an interesting and engaging programme.

Javier Larrosa
Barry O’Sullivan

1 http://wiki.ercim.org/wg/Constraints
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Solving Weighted Argumentation Frameworks
with Soft Constraints�

Stefano Bistarelli1,2, Daniele Pirolandi1, and Francesco Santini1,3

1 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
{bista,pirolandi,francesco.santini}@dmi.unipg.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Dipartimento di Scienze Università “G. d’Annunzio”, Pescara, Italy
santini@sci.unich.it

Abstract. We suggest soft constraints as a mean to parametrically rep-
resent and solve “weighted” Argumentation problems: different kinds of
preference levels related to arguments, e.g. a score representing a “fuzzi-
ness”, a “cost” or a probability level of each argument, can be represented
by choosing different semiring algebraic structures. The novel idea is to
provide a common computational and quantitative framework where the
computation of the classical Dung’s extensions, e.g. the admissible ex-
tension, has an associated score representing “how much good” the set is.
Preference values associated to arguments are clearly more informative
and can be used to prefer a given set of arguments over others with the
same characteristics (e.g. admissibility). Moreover, we propose a map-
ping from weighted Argumentation Frameworks to Soft Constraint Sat-
isfaction Problems (SCSPs); with this mapping we can compute Dung
semantics (e.g. admissible and stable) by solving the related SCSP. To
implement this mapping we use JaCoP, a Java constraint solver.

1 Introduction

Interactions are a core part of all multi-party systems (e.g. multi-agent systems).
Argumentation [11] is based on the exchange and the evaluation of interacting
arguments which may represent information of various kinds, especially beliefs
or goals. Argumentation can be used for modeling some aspects of reasoning, de-
cision making, and dialogue. For instance, when an agent has conflicting beliefs
(viewed as arguments), a (nontrivial) set of plausible consequences can be de-
rived through argumentation from the most acceptable arguments for the agent.
Argumentation can be seen as the process emerging from exchanges of among
agents to persuade each other and and bring about a change in intentions [20,18].
Argumentation has become an important subject of research in Artificial Intel-
ligence and it is also of interest in several disciplines, such as Logic, Philosophy
and Communication Theory [22].
� Research partially supported by MIUR PRIN 20089M932N project: “Innovative and

multi-disciplinary approaches for constraint and preference reasoning”.

J. Larrosa and B. O’Sullivan (Eds.): CSCLP 2009, LNAI 6384, pp. 1–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Many theoretical and practical developments build on Dung’s seminal the-
ory of argumentation. A Dung Argumentation Framework (AF ) is a directed
graph consisting of a set of arguments and a binary conflict based attack re-
lation among them. The sets of arguments to be considered are then defined
under different semantics, where the choice of semantics equates with varying
degrees of scepticism or credulousness. Solutions are defined through application
of an ““acceptability” calculus”, whereby an argument A ∈ Args is said to be
acceptable with respect to S ⊆ Args iff any argument B that attacks A is itself
attacked by some argument C in S (any such C is said to reinstate A). inclu-
sion) set such that all its contained arguments are acceptable with respect to S,
then S is said to be an extension under the preferred semantics. any theory of
argumentation is the selection of acceptable sets of arguments, based on the way
arguments interact. Intuitively, an acceptable set of arguments must be in some
sense coherent and strong enough (e.g. able to defend itself against all attacking
arguments).

The other ingredient in our research is Constraint Programming [23], which is
a powerful paradigm for solving combinatorial search problems that draws on a
wide range of techniques from artificial intelligence, computer science, databases,
programming languages, and operations research. The idea of the semiring-based
formalism [7,5] was to further extend the classical constraint notion by adding the
concept of a structure representing the levels of satisfiability of the constraints.
Such a structure (see Sec. 3 for further details) is a set with two operations:
one + is used to generate an ordering over the preference levels, while × is used
to combine these levels. Because of the properties required on such operations,
this structure is similar to a semiring (see Sec. 3). Problems defined according to
this semiring-based framework are called Soft Constraint Satisfaction Problems
(SCSPs).

In this paper we show that different weighted AFs based on fuzziness, proba-
bility or a preference in general (and already studied in literature, e.g. in [22,3]),
can be modeled and solved with the same soft constraint framework by only
changing the related semiring in order to optimize the different criteria. Also
classical AFs can be represented inside the soft framework by adopting the
Boolean semiring. We provide a mapping from AFs to (S)CSPs in a way that the
solution of the SCSP consists in the “best” desired extension, where “best” is
computed by aggregating (with ×) the preference scores of all the chosen argu-
ments, and comparing the final values (with +). The classical extensions of Dung
can be found with our mapping, i.e. admissible, preferred, complete, stable and
grounded ones. At last, we show an implementation of a CSP with JaCoP [21],
a Java Constraint Programming solver.

Clearly, the classical attack relationship is not enough informative to deal
with problems where we however need to take a decision: suppose a judge must
decide between the arguments of two parties, and often no conclusive demon-
stration of the rightness of one side is possible. The arguments will not have
equal value for the judge and the case will be decided by the judge preferring
one argument over the other [22]. Moreover, having a quantitative framework



Solving Weighted Argumentation Frameworks with Soft Constraints 3

permits us to quantify the aggregation of chosen arguments and to prefer a set
of arguments over another. Examples in the real world are represented by scores
given to comments in Youtube or news in Slashdot, or topics in Discussion Fora
in general [17]. As the set of arguments gets wider, the search of the best solu-
tions becomes a demanding task, and constraint-based frameworks come with
many and powerful solving techniques: notice that deciding if a set is a preferred
extension is a CO-NP -complete problem [4]. Moreover, preference score can be
used to cut not promising solutions during the search and, however, to refine it
by finding the only the best solutions. In this paper we start from qualitative
argumentation [22,3,2] and we move towards a quantitative solution.

Notice that our soft constraint framework is able to solve all crisp and weighted
extensions of Dung shown in Sec. 6 in a parametric way; therefore, the strength
of this paper is to propose a general way to solve AFs.

The remainder of this paper is organized as follows. In Sec. 2 we report the
theory behind Dung Argumentation, while in Sec. 3 we summarize the back-
ground about soft constraints. Section 4 shows the basic idea of weighted AF
based on semirings; in Sec. 5 we propose the mapping from AFs to SCSPs, the
proofs of their solution equivalence and we show a practical encoding in JaCoP.
A comparison with related work is given in Sec. 6. Finally, Sec. 7 presents our
conclusions.

2 Dung Argumentation

In [11], the author has proposed an abstract framework for argumentation in
which he focuses on the definition of the status of arguments. For that purpose,
it can be assumed that a set of arguments is given, as well as the different
conflicts among them. An argument is an abstract entity whose role is solely
determined by its relations to other arguments.

Definition 1. An Argumentation Framework (AF) is a pair 〈Args, R〉 of a set
Args of arguments and a binary relation R on Args called the attack relation.
∀ai, aj ∈ Args, aiR aj means that ai attacks aj. An AF may be represented by
a directed graph (the interaction graph) whose nodes are arguments and edges
represent the attack relation. A set of arguments B attacks an argument a if a is
attacked by an argument of B. A set of arguments B attacks a set of arguments
C if there is an argument b ∈ B which attacks an argument c ∈ C.

The “acceptability” of an argument [11] depends on its membership to some
sets, called extensions. These extensions characterize collective “acceptability”.
Let AF = 〈Args, R〉,B ⊆ Args.

In Fig. 1 we show an example of AF represented as an interaction graph: the
nodes represent the arguments and the directed arrow from c to d represents
the attack of c towards d, that is c R d. Dung [11] gave several semantics to
“acceptability”. These various semantics produce none, one or several acceptable
sets of arguments, called extensions. In Def. 2 we define the concepts of conflict-
free and stable extensions:
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a

b

c d

Fig. 1. An example of Dung Argumentation Framework; e.g. c attacks d

Definition 2. A set B ⊆ Args is conflict-free iff it does not exist two arguments
a and b in B such that a attacks b. A conflict-free set B ⊆ Args is a stable
extension iff for each argument which is not in B, there exists an argument in
B that attacks it.

The other semantics for “acceptability” rely upon the concept of defense:

Definition 3. An argument b is defended by a set B ⊆ Args (or B defends b)
iff for any argument a ∈ Args, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must be a conflict-free set
which defends all its elements. Formally:

Definition 4. A conflict-free set B ⊆ Args is admissible iff each argument in B
is defended by B.

Besides the stable semantics, three semantics refining admissibility have been
introduced by Dung [11]:

Definition 5. A preferred extension is a maximal (w.r.t. cardinality) admissible
subset of Args. An admissible B ⊆ Args is a complete extension iff each argument
which is defended by B is in B. The least (w.r.t. cardinality) complete extension
is the grounded extension.

A stable extension is also a preferred extension and a preferred extension is also
a complete extension. Stable, preferred and complete semantics admit multiple
extensions whereas the grounded semantics ascribes a single extension to a given
argument system.

Notice that deciding if a set is a stable extension or an admissible set can be
computed in polynomial time, but deciding if a set is a preferred extension is a
CO-NP -complete problem [4].

3 Soft Constraints

A c-semiring [7,5] S (or simply semiring in the following) is a tuple 〈A, +,×,0,1〉
where A is a set with two special elements (0,1 ∈ A) and with two operations
+ and × that satisfy certain properties: + is defined over (possibly infinite)
sets of elements of A and thus is commutative, associative, idempotent, it is
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closed and 0 is its unit element and 1 is its absorbing element; × is closed,
associative, commutative, distributes over +, 1 is its unit element, and 0 is
its absorbing element (for the exhaustive definition, please refer to [7]). The +
operation defines a partial order ≤S over A such that a ≤S b iff a + b = b; we
say that a ≤S b if b represents a value better than a. Other properties related
to the two operations are that + and × are monotone on ≤S, 0 is its minimum
and 1 its maximum, 〈A,≤S〉 is a complete lattice and + is its lub. Finally, if
× is idempotent, then + distributes over ×, 〈A,≤S〉 is a complete distributive
lattice and × its glb.

A soft constraint [7,5] may be seen as a constraint where each instantiation
of its variables has an associated preference. Given S = 〈A, +,×,0,1〉 and an
ordered set of variables V over a finite domain D, a soft constraint is a function
which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints
that can be built starting from S, D and V . Any function in C involves all the
variables in V , but we impose that it depends on the assignment of only a finite
subset of them. So, for instance, a binary constraint cx,y over variables x and y, is
a function cx,y : V → D → A, but it depends only on the assignment of variables
{x, y} ⊆ V (the support of the constraint, or scope). Note that cη[v := d1] means
cη′ where η′ is η modified with the assignment v := d1. Note also that cη is the
application of a constraint function c : V → D → A to a function η : V → D;
what we obtain, is a semiring value cη = a. 0̄ and 1̄ respectively represent the
constraint functions associating 0 and 1 to all assignments of domain values (i.e.
the ā function returns the semiring value a).

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η (see also [7,5]). Informally, performing the ⊗ or between
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying the
elements associated by the original constraints to the appropriate sub-tuples.

Given a constraint c ∈ C and a variable v ∈ V , the projection [7,5,6] of c over
V −{v}, written c ⇓(V \{v}) is the constraint c′ such that c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support.
A SCSP [5] defined as P = 〈C, con〉 (C is the set of constraints and con ⊆ V ,

i.e. a subset the problem variables). A problem P is α-consistent if blevel(P ) =
α [5]; P is instead simply “consistent” iff there exists α >S 0 such that P is α-
consistent [5]. P is inconsistent if it is not consistent. The best level of consistency
notion defined as blevel(P ) = Sol(P ) ⇓∅, where Sol(P ) = (

⊗
C) ⇓con [5].

A SCSP Example. Figure 2 shows a weighted CSP as a graph: the semiring
used for this problem is the Weighted semiring, i.e. 〈R+, min, +̂,∞, 0〉 (+̂ is the
arithmetic plus operation). Variables and constraints are represented respectively
by nodes and by undirected arcs (unary for c1 and c3, and binary for c2), and
semiring values are written to the right of each tuple. The variables of interest
(that is the set con) are represented with a double circle (i.e. variable X). Here
we assume that the domain of the variables contains only elements a and b.
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X Y
c1 c3

c2

<a>     1
<b>     9

<a>     5
<b>     5

<a,a>     5
<a,b>     1
<b,a>     2
<b,b>     2

Fig. 2. A soft CSP based on a Weighted semiring

For example, the solution of the weighted CSP of Fig. 2 associates a semiring
element to every domain value of variable X . Such an element is obtained by first
combining all the constraints together. For instance, for the tuple 〈a, a〉 (that is,
X = Y = a), we have to compute the sum of 1 (which is the value assigned to
X = a in constraint c1), 5 (which is the value assigned to 〈X = a, Y = a〉 in
c2) and 5 (which is the value for Y = a in c3). Hence, the resulting value for
this tuple is 11. We can do the same work for tuple 〈a, b〉 → 7, 〈b, a〉 → 16 and
〈b, b〉 → 16. The obtained tuples are then projected over variable x, obtaining
the solution 〈a〉 → 7 and 〈b〉 → 16. The blevel for the example in Fig. 2 is 7
(related to the solution X = a, Y = b).

4 Weighted Argumentation

Weighted argumentation systems [9,12] extend Dung-style abstract argumenta-
tion systems by adding numeric weights to every node (or attack) in the attack
graph, intuitively corresponding to the strength of the attack, or equivalently,
how reluctant we would be to disregard it. To illustrate the need to extend the
classical AF with preferences, we consider two individuals P and Q exchanging
arguments A and B about the weather forecast (the example is taken from [22]):

P: Today will be dry in London since BBC forecast sunshine = A
Q: Today will be wet in London since CNN forecast rain = B

A and B claim contradictory conclusions and so attack each other. Under Dung’s
preferred semantics, there are two different admissible extensions represented by
the sets {A} and {B}, but neither argument is sceptically justified. One solution
is to provide some means for preferring one argument to another in order to find
a more informative answer, for example, the most trustworthy extension. For
example, one might reason that A is preferred to B because the BBC are deemed
more trustworthy than CNN. Suppose to have a fuzzy trust score associated with
each argument, as shown in Fig. 3. This score, (between 0 and 1 that is between
low and high trustworthiness) can be then used to prefer {A} with a score of 0.9
over {B} with a score of 0.7, i.e. forecast from BBC than from CCN.

In some works [16] the preference score is associated with the attack relation-
ship instead of with the argument itself and, thus, it models the “strength” of
the attack, e.g. a fuzzy attack. This model can be cast in ours by composing
these strengths in a value representing the preference of the argument, as in



Solving Weighted Argumentation Frameworks with Soft Constraints 7

BBC
sunshine

CNN
rain

0.9 0.7

Fig. 3. The CNN /BBC example with trust scores

Fig. 4, where the trustworthiness of argument CNN-rain can be computed as
the mathematical mean (or in general a function ◦, as defined also in [8] for
computing the trust of a group of individuals) of the values associated with the
attack towards it, i.e. (0.9 + 0.5)\2 = 0.7. Computing a trust evaluation of a
node by considering a function of the links ending in it is a well-known solution,
e.g. the PageRank of Google [17]. By composing attack and support values, it is
also possible to quantitatively study bipolar argumentation frameworks [1].

BBC
sunshine

CNN
rain

0.9 FOX
sunshine

0.5

Fig. 4. A fuzzy Argumentation Framework with fuzzy scores modeling the attack
strength

Notice that in [22,3,2] the preference among arguments is given in a quali-
tative way, that is argument a is better than argument b, which is better than
argument c; in this section we study the problem from a quantitative point of
view, with scores associated with arguments. We suggest the algebraic semiring
structure (see Sec. 3) as a mean to parametrically represent and solve all the
“weighted” AFs presented in literature (see Sec. 6), i.e. to represent the scores;
in the following we provide some examples on how semirings fulfil these different
tasks.

An argument can be seen as an event that makes the hypothesis true. The
credibility of a hypothesis can then be measured by the total probability that
it is supported by arguments. The proper semiring to solve this problem con-
sists in the Probabilistic semiring [5]: 〈[0..1], max, ×̂, 0, 1〉, where the arithmetic
multiplication (i.e. ×̂) is used to compose the probability values together.

The Fuzzy Argumentation [26] approach enriches the expressive power of the
classical argumentation model by allowing to represent the relative strength
of the attack relationships between arguments, as well as the degree to which
arguments are accepted. In this case, the Fuzzy semiring 〈[0..1], min, max, 0, 1〉
can be used.

In addition, the Weighted semiring 〈R+, min, +̂, 0, 1〉, where +̂ is the arith-
metic plus, can model the (e.g. money) cost of the attack: for example, during
an electoral campaign, a candidate could be interested in how many efforts or
resources he should spend to counteract an argument of the opposing party.
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At last, with the Boolean semiring 〈{true, false},∨,∧, false, true〉 we can
cast the classic AFs originally defined by Dung [11] in the same semiring-based
framework.

Moreover, notice that the cartesian product of two semirings is still a semir-
ing [7,5], and this can be fruitfully used to describe multi-criteria constraint
satisfaction and optimization problems. For example, we can have both a prob-
ability and a fuzzy score given by a couple 〈t, f〉; we can optimize both costs at
the same time.

We can extend the definitions provided in Sec. 3 in order to express all these
weights of the attack relations with a semiring based environment. The following
definitions model the semiring-based problem.

Definition 6. A semiring-based Argumentation Framework (AFS) is a quadru-
ple 〈Args, R, W, S〉 of a semiring S = 〈A, +,×,0,1〉, a set Args of arguments,
the attack binary relation R on Args, and a unary function W : Args −→ A
called the weight function. ∀a ∈ Args, W (a) = s means that a has a preference
level s ∈ A.

Therefore, the weight function W associates each argument with a semiring value
(s ∈ A) that represents the preference expressed for that argument in terms of
cost, fuzziness and so on. For example, using the Fuzzy semiring 〈[0..1], min, max,
0, 1〉 semiring for the problem represented in Fig. 3 allows us to state that the
admissible extension {A} (with a score of 0.9) is better than the other admissi-
ble extension {B} (with a s.core of 0.7) since 0.9 > 0.7. Therefore, with an AFS

our goal is to find the extensions proposed by Dung (e.g. the admissible exten-
sions), but with an associated preference value. Therefore, soft constraints can
be used to solve these problems while considering also the best solution(s) (ac-
cording to the notion of blevel, and to cut the solutions with a preference below a
threshold α.

Example 1. Concerning the interaction graph in Fig. 5, it represents the Weighted
AFS W = (Args, R) with S = 〈R+, min, +̂,∞, 0〉 and Args = {a, b, c, d, e},
R(a, b), R(c, b), R(c, d), R(d, c), R(d, e), R(e, e) and W (a) = 7, W (b) = 20, W (c) =
6, W (d) = 10, W (e) = 12. Notice that e attacks itself, that is in contrast with it-
self, e.g. “We have sunshine and it’s raining” (it may be possible).

5 Mapping AFs to SCSPs

Our second result is a mapping from AF (and AFS) to (S)CSPs. Given an
AFS = 〈Args, R, W, S〉, we define a variable for each argument ai ∈ Args, i.e.
V = {a1, a2, . . . , an} and each of these argument can be taken or not, i.e. the
domain of each variable is D = {1, 0}, and if it is taken, a cost in the semiring
can be assigned, mapping the level of preference of this argument.

To represent the quantitative preference over arguments, in this mapping we
need only unary soft constraints on each variable, while the other constraints
modeling, for example, the conflict-free relationship (see Sec. 2) are crisp even
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Fig. 5. An example of a weighted interaction graph

if represented in the soft framework. We plan to extend also these constraints
to properly-said soft ones as suggested in Sec. 7. In the following explanation,
notice that b attacks a meas that b is a parent of a in the interaction graph,
and c attacks b attacks a means that c is a grandparent of a. To compute the
(weighted) extensions of Dung we need to define specific sets of constraints:

1. Preference constraints. The weight function W (ai) = s (s ∈ A) of an AFS

can be modeled with the unary constraints cai(ai = 1) = s, otherwise, when
ai is assigned to 0), the argument is not taken in the considered extension
an so its cost must not be computed.

2. Conflict-free constraints. Since we want to find the conflict-free sets, if
R(ai, aj) is in the graph we need to prevent the solution to include both
ai and aj in the considered extension: cai,aj(ai = 1, aj = 1) = 0. For the
other possible assignment of the variables ((a = 0, b = 1)(a = 1, b = 0) and
(a = 0, b = 0)), cai,aj = 1, since these assignments are permitted: in these
cases we are choosing only one argument between the two (or none of the
two) and thus, we have no conflict.

3. Admissible constraints. For the admissibility, we need that, if child ar-
gument ai has a parent node af but ai has no grandparent node ag (parent
of af ), then we must avoid to take ai in the extension because it is attacked
and cannot be defended by any ancestor: expressed with a unary constraint,
cai(ai = 1) = 0.

Moreover, if ai has several grandparents ag1, ag2, . . . , agk and only one
parents af (child of ag1, ag2, . . . , agk), we need to add a k + 1-ary constraint
cai,ag1,...,agk

(ai = 1, ag1 = 0, . . . , agk = 0) = 0. The explanation is that at
least a a grandparent must be taken in the admissible set, in order to defend
ai from one of his parents af . Notice that, if a node is not attacked (i.e. he
has no parents), he can be taken or not in the admissible set.

4. Complete constraints. To compute a complete extension B, we need
that each argument ai which is defended by B is in B (see Sec. 2). This
can be enforced by imposing that for each ai taken in the extension, also
all its as1, as2, . . . , ask grandchildren must be taken in the extension, i.e.
cai,as1,...,ask

(ai = 1, as1 = 1, . . . , ask = 1) = 1 and also if ai = 0 this con-
straint is satisfied; 0 otherwise.
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5. Stable constraints. If we have a child node ai with multiple parents
af1, af2, . . . , afk, we need to add the constraint cai,af1,...,afk

(ai = 0, af1 =
0, . . . , afk = 0) = 0. In words, if a node is not taken in the extension (i.e.
ai = 0), then it must be attacked by at least one of the taken nodes, that
is at least a parent of ai needs to be taken in the stable extension (that is,
afj = 1).

Moreover, if a node ai has no parent in the graph, it has to be included
in the stable extension (notice ai cannot be attacked by nodes inside the
extension, since he has no parent). The corresponding unary constraint is
cai(ai = 0) = 0.

Notice that by using the Boolean semiring, also the class of preference constraints
becomes crisp and we can consequently model classical Dung AFs, that is not
weighted frameworks. The following proposition states the equivalence between
solving an AFS and its related SCSP.

Proposition 1 (Solution equivalence). Given an AFS = 〈Args, R, W, S〉 and
S = 〈A, +,×,0,1〉, the solutions of the related SCSP obtained with the mapping
corresponds to find over AFS the best(according to +)

– conflict-fee extensions by using preference and conflict-free constraint classes.
– admissible extensions by using preference, conflict-free and admissible con-

straint classes.
– complete extensions by using preference, conflict-free and complete constraint

classes.
– stable extensions by using preference, conflict and stable constraint classes.

By using the Boolean semiring the solutions of the (S)CSP respectively corre-
spond to all the classical admissible, complete and stable extensions of Dung [11].

Moreover, to find the preferred extension (see Sec. 2) we simply need to find
all the maximal (w.r.t. set inclusion) admissible extensions of Args, that is to
find all the admissible sets (using the first three classes of constraints) and then
returning only those subsets with the highest number of variables assigned to 1.
Similar considerations hold for the grounded extension (see Sec. 2), that is we
need to find all the complete extensions (the first four classes of constraints)
and then to return only those subsets with the lowest number of variables
assigned to 11.

As suggested in Sec. 4, an AFS can be represented as a weighted interaction
graph as in Fig. 5, where we instead suppose to use a Weighted semiring, i.e.
〈R+, min, +̂,∞, 0〉, e.g. the argument a has received 7 negative comments. The
goal in this case is to choose the extensions of Dung and to minimize the sum of
the negative comments at the same time.

Notice that the presented soft constraint framework can be easily used to solve
argumentation problems with additional constraints, as proposed in [10] only for
1 Different interpretations of grounded/preferred extensions can be given by consider-

ing their cost instead of their the cardinality.
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boolean constraints. We can find further requirements on the sets of arguments
which are expected as extensions, like “extensions must contain argument a when
they contain b” or “extensions must not contain one of c or d when they contain
a but do not contain b”.

Solving with JaCoP

The Java Constraint Programming solver [21], JaCoP in short, is a Java li-
brary, which provides Java user with Finite Domain Constraint Programming
paradigm. It provides different type of constraints: most commonly used prim-
itive constraints, such as arithmetical constraints, equalities and inequalities,
logical, reified and conditional constraints, combinatorial (global) constraints.
The last version of JaCoP proposes many features, such as pruning events, mul-
tiple constraint queues, special data structures to handle efficiently backtracking,
iterative constraint processing, and many more [21]. Moreover, it can run also
large examples, e.g. ca. 180000 constraints.

In Fig. 6 we show the definition in JaCoP of all the conflict-free and stable
constraints used to solve the AFS example in Fig. 5. The full description of the
code can be found in Appendix A. Considering for example the first conflict-
free constraint in Fig. 5, v[0], v[1], means that the constraint is between a and b
and (1, 1) that the the constraint is not satisfied if both variables are taken in
the set.

Considering the example in Fig. 5 the admissible sets are: {a}, {c}, {d}, {a, c},
{a, d}. Dung’s semantics induce the following acceptable sets: one stable exten-
sion {a, d}, two preferred extensions PE1 = {a, c}, PE2 = {a, d}, three complete
extensions CE1 = {a, c}, CE2 = {a, d}, CE3 = {a} and the grounded extension
≡ {a}. With our quantitative interpretation of AFs with preferences and con-
sidering the Fuzzy semiring 〈R+, min, +̂,∞, 0〉, we can prefer PE1 over PE2
(W (a)+̂W (c)) = 13, W (a)+̂W (d) = 17 and CE3 over CE1 and CE2, since
W (a) = 7. All these best solutions are obtained by using JaCoP.

6 Related Work

In [26], the authors have developed the notion of fuzzy unification and incor-
porated it into a novel fuzzy argumentation framework for extended logic pro-
gramming: the attacks are associated to a fuzzy strength value, i.e. a V -attack.
As well, a V -argument A is V -acceptable w.r.t. the set Args of V -arguments if
each argument V -attacked A is V -attacked by an argument in Args.

In [3], AFs have been also extended to Value Based Argumentation Frame-
works (VAF ) where V is a generic nonempty set of values and Val is a function
which maps from elements of Args to elements of V .

The work in [2] concerns the “acceptability” of arguments in preference-based
argumentation frameworks. Preferences are represented with a preordering rela-
tionships (partial or total) that resembles the ordering defined by the + operator
of semirings (see Sec. 3).
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     // Defining the Variables of the SCSP         
v[0] = new BooleanVariable(store, "a");         
v[1] = new BooleanVariable(store, "b");         
v[2] = new BooleanVariable(store, "c");         
v[3] = new BooleanVariable(store, "d");         
v[4] = new BooleanVariable(store, "e");

     // conflict-free constraints     
public static void imposeConstraintConflictFree(Store store, BooleanVariable[] v) {         
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[1]}, 
                                                                                                               new int[][]{{1, 1}}));    
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[1]}, 
                                                                                                               new int[][]{{1, 1}}));   
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]}, 
                                                                                                               new int[][]{{1, 1}}));   
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]}, 
                                                                                                               new int[][]{{1, 1}}));    
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]}, 
                                                                                                               new int[][]{{1, 1}}));  
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[4], v[4]}, 
                                                                                                               new int[][]{{1, 1}}));  }
 
    // stable constraints     
public static void imposeConstraintStableExtensions(Store store, BooleanVariable[] v) {        
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]}, 
                                                                                                               new int[][]{{0}}));         
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[2], v[1]}, 
                                                                                                               new int[][]{{0, 0, 0}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]}, 
                                                                                                               new int[][]{{0, 0}}));        

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]}, 
                                                                                                               new int[][]{{0, 0}}));  }

Fig. 6. The conflict-free and stable constraints in JaCoP for the mapping of Fig. 5

Probabilistic Argumentation [15,19]. This theory is an alternative approach
for non-monotonic reasoning under uncertainty. It allows to judge open ques-
tions (hypotheses) about the unknown or future world in the light of the given
knowledge. From a qualitative point of view, the problem is to derive arguments
in favor and against the hypothesis of interest.

In [22] the author has extended Dung’s theory of argumentation to integrate
metalevel argumentation about preferences. Dung’s level of abstraction is pre-
served, so that arguments expressing preferences are distinguished by being the
source of a second attack relation that abstractly characterizes application of
preferences by attacking attacks between the arguments that are the subject of
the preference claims.

A close work is represented by [13]: there the authors introduce and inves-
tigate a natural extension of Dungs well known model of argument systems in
which attacks are associated with a weight, indicating the relative strength of
the attack. A key concept in that framework is the notion of an inconsistency
budget, which characterizes how much inconsistency we are prepared to tolerate:
given an inconsistency budget β, we would be prepared to disregard attacks up
to a total cost of β.
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Comparison. The framework proposed in this paper is able to solve all the
above reported AFs (including the classical Dung framework [11]), both from
the qualitative and (main novelty) quantitative point of view. Since in this paper
we mainly propose a solving framework, we compare it with other related works.

In [13] weights are associated with attacks instead of arguments, as in our
proposal. Moreover, no solving mechanism is proposed to solve the problems
presented in the paper, even if their solution is proved to be difficult in the
paper (e.g. NP-Complete). Moreover, in [13] the combination of the weights and
the preference of the solution correspond to our Weighted semiring, while other
possibilities are not considered.

In [18] crisp constraint have been used to model argumentation as constraint
propagation in Distributed Constraint Satisfaction Problem (DSCP). Different
agents represent the distributed points in the problem. The paper shows the ap-
propriateness of constraints in solving large-scale argumentation systems. How-
ever, it seems to only solve classical problems, (i.e. no qualitative or quantitative
extensions).

The are some frameworks based on Logic Programming-like languages. For
example, the system ASPARTIX [14] is a tool for computing acceptable exten-
sions for a broad range of formalizations of Dung’s argumentation framework
and generalizations thereof, e.g. value-based AFs [3] or preference-based [2]. AS-
PARTIX relies on a fixed disjunctive datalog program which takes an instance
of an argumentation framework as input, and uses the answer-set solver DLV
for computing the type of extension specified by the user. However, ASPARTIX
does not solve any quantitative argumentation case, as well as other Answer Set
Programming systems [24].

In [9] the authors solve over-constrained weighted AF problems, where weights
are associated with arcs and represent the cost of the attack between two argu-
ments. to relax the notion of conflict-free extensions to α-conflict-free ones (and
also for hte other extensions of Dung), in order to include in the same set also
attacking arguments, whose attack costs are not worse than a threshold α.

7 Conclusions and Future Work

In the paper we have revised the notions provided by Dung [11] in order to as-
sociate the argument preference with a weight (taken from a semiring structure)
that represents the “goodness” of the argument in terms of cost, fuzziness, prob-
ability or else. Further on, we have suggested the Dung’s semantics in their soft
version. Moreover, we have presented a mapping from SCSPs to AFs and solved
the obtained SCSP with JaCoP, a Java Constraint Programming solver, thus
finding the solution of the related AF. We have proposed an unifying computa-
tional framework with strong mathematical foundations and solving techniques,
where by only parametrically changing the semiring we can deal with different
weighted (or not) AFs. By having a uniform framework, it may be possible to
see more clearly the relationships between different proposals. It may also offer
the possibility to identify new results concerning classes of these proposals.
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The user only needs to state the problem, while the underlying machinery
is able to efficiently satisfy the constraints. Constraint solving techniques prove
to be able to deal with large scale problems [18], even if the treated problems
are difficult: for example, deciding if a set is a preferred extension is a CO-
NP -complete problem [4]. Practical applications may consist, for example, in
automatically study Discussion Fora where arguments are rated by users.

Notice that our soft constraint framework is able to solve all crisp and weighted
extensions of Dung shown in Sec. 6 in a parametric way; therefore, the strength
of this paper is to propose a general way to solve AFs.

In the future, we would like to cluster arguments according to their (for ex-
ample) coherence, still using soft constraints as the framework to obtain the
solution. This can be useful to check the discrepancies/likeness during a ne-
gotiation process, inside different interviews to the same political candidate or
during discussions in general. As an example, “We do not want immigrants with
the right to vote” is clearly closer to “Immigration must be stopped”, than to
“We need a multicultural and open society in order to enrich the life of everyone
and boost our economy”, and should belong to the same cluster.

At last, we want to generate a small-world network, for example with the Java
Universal Network/Graph Framework (JUNG) [25] in order to test automatically
give an interaction graph as input and test the related performance.
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Appendix A

The appendix shows all the JaCoP [21] code written to solve the AFS proposed
in Fig. 5.

package ExamplesJaCoP;

import JaCoP.constraints.ExtensionalConflictVA;
import JaCoP.core.*;
import JaCoP.search.*;
import java.util.ArrayList;
import java.util.Vector;

public class Argumentation {

static Argumentation m = new Argumentation();
static int size = 5; // number of variables
static int[] weights = {7, 20, 6, 10, 12}; // weights associated with arguments
static String[] labels = {"Conflict free", "Admissible sets", "Stable extensions",

"Complete extensions", "Preferred Extensions", "Ground extensions"};
static int set = 0;
static Store store; // store
static BooleanVariable[] v; // array of variables

public static void main(String[] args) {
// defining the store
store = new Store();

// defining the array of variables
v = new BooleanVariable[size];

// defining the single variable inside the store
v[0] = new BooleanVariable(store, "a");
v[1] = new BooleanVariable(store, "b");
v[2] = new BooleanVariable(store, "c");
v[3] = new BooleanVariable(store, "d");
v[4] = new BooleanVariable(store, "e");

/**
* 0 = conflict free extensions
* 1 = stable set extensions
*/

switch (set) {

case 0: // conflict free
imposeConstraintConflictFree(store, v);
break;

case 1: // stable extensions
imposeConstraintConflictFree(store, v);
imposeConstraintStableExtensions(store, v);
break;

}

/*
* returning the solutions
*/

getSolutions(store, v, set);
System.out.println("");

}

// conflict-free constraints
public static void imposeConstraintConflictFree(Store store, BooleanVariable[] v) {

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[1]},
new int[][]{{1, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[1]},
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new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]},

new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]},

new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]},

new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[4], v[4]},

new int[][]{{1, 1}}));
}

// stable constraints
public static void imposeConstraintStableExtensions(Store store, BooleanVariable[] v) {

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]},
new int[][]{{0}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[2], v[1]},
new int[][]{{0, 0, 0}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]},
new int[][]{{0, 0}}));

// the constraint below is redundant w.r.t. the one just above
//store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]},

new int[][]{{0, 0}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]},

new int[][]{{0, 0}}));
}

public static void getSolutions(Store store, BooleanVariable[] v, int set) {

// search for a solution and print results
Search label = new DepthFirstSearch();
// ordering the solutions
SelectChoicePoint select = new InputOrderSelect(store, v, new IndomainMax());
label.getSolutionListener().searchAll(true);
// record solutions; if not set false
label.getSolutionListener().recordSolutions(true);
boolean result = label.labeling(store, select);
int[][] solutions = label.getSolutionListener().getSolutions();

if (set == 0 || set == 1) {
// printing the solutions
System.out.print(labels[set] + ": ");
for (int i = 0; i < label.getSolutionListener().solutionsNo(); i++) {

System.out.print("(");
for (int j = 0; j < size; j++) {

if (solutions[i][j] == 1) {
System.out.print(v[j].id);

}
}
System.out.print(")");

}

// obtaining the best solutions
Vector<Integer> bestSolutions = getBestSolutions(solutions,

label.getSolutionListener().solutionsNo());
// printing the best solutions
printBestSolutions(bestSolutions, solutions);

}
}

// array as in input and returns the indexes of the best elements
// computing solutions with the best (i.e. lowest) cost
public static Vector<Integer> getBestSolutions(int[][] solutions, int solutionNumber) {
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Vector<Integer> solutionIndexes = new Vector<Integer>();
Integer[] solutionWithWeight = new Integer[2];

int min = Integer.MAX_VALUE;
int solutionWeight = 0;

for (int j = 0; j < solutionNumber; j++) {
solutionWeight = 0;
solutionWithWeight[0] = 0;
solutionWithWeight[1] = 0;

for (int c = 0; c < size; c++) {
if (solutions[j][c] == 1) {

solutionWeight = solutionWeight + weights[j];
}

}

if (solutionWeight < min) {
solutionIndexes.removeAllElements();
min = solutionWeight;
solutionIndexes.add(j);
//System.out.println("index of the added solution " + j);

} else if (solutionWeight == min) {
solutionIndexes.add(j);

}

}

//System.out.println("solution index: " + solutionIndexes.get(0));
return solutionIndexes;

}

public static int getWeigthSolution(int[] solution) {
int weigthSolution = 0;
for (int i = 0; i < size; i++) {

if (solution[i] == 1) {
weigthSolution = weigthSolution + weights[i];

}
}
return solutionWeight;

}

public static void printBestSolutions(Vector<Integer> bestSolutions, int[][] solutions) {
System.out.println("");
System.out.print("Bests " + labels[set] + ": ");
for (int i = 0; i < bestSolutions.size(); i++) {

System.out.print("(");
for (int j = 0; j < size; j++) {

if (solutions[bestSolutions.get(i)][j] == 1) {
System.out.print(v[j].id);

}
}
System.out.print(") = " + getWeigthSolution(solutions[bestSolutions.get(i)]));

}
}

}
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Abstract. Distributed constraint optimization problems with finite domains can
be solved by asynchronous procedures. ADOPT is the reference algorithm for
this kind of problems. Several versions of this algorithm have been proposed,
one of them is BnB-ADOPT which changes the nature of the original algorithm
from best-first to depth-first search. With BnB-ADOPT, we can assure in some
cases that the value of a variable will not be used in the optimal solution. Then,
this value can be deleted unconditionally. The contribution of this work consists
in propagating these unconditionally deleted values using soft arc consistency
techniques, in such a way that they can be known by other variables that share cost
functions. When we propagate these unconditional deletions we may generate
some new deletions that will also be propagated. The global effect is that we
search in a smaller space, causing performance improvements. The effect of the
propagation is evaluated on several benchmarks.

1 Introduction

A classical problem in computer science is finding a global optimum of an aggregation
of some elementary cost functions. Many real life problems can be represented as a
collection of constraints or penalty relations over a set of variables. A constraint opti-
mization algorithm is a solver able to find an assignment to every variable that satisfies
all the constraints or, in case not all constraints can be satisfied, it reduces the total cost
finding the minimum penalty for the resulting variable assignment. When the variables
and constraints of the problem are not centralized and the information is distributed
among several automated agents the problem is a Distributed Constraint Optimization
Problem (DCOP). Cost functions can be distributed for several reasons: privacy issues,
distributed origin of the problem data, high translation costs into a centralized setting,
etc. Distributed resolution involves message passing among agents holding the cost
functions and the involved variables. Agents must cooperate to find the global optimum
(minimum) cost. DCOPs can be found in many real domains for modeling a variety
of multiagent coordination problems such as distributed planning, scheduling, sensor
networks and others.

In distributed search, the first complete algorithm for DCOPs was ADOPT [6],
which has evolved producing different versions as BnB-ADOPT [8] and ADOPT-ng [7].
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BnB-ADOPT changes the search strategy of the original ADOPT from best-first to
depth-first. BnB-ADOPT offers a better performance than ADOPT, it keeps ADOPT
good theoretical properties and requires a relatively simple implementation.

In BnB-ADOPT there are cases when a value of a variable will not be used in the
optimal solution. Then, this value can be deleted unconditionally. The contribution of
this work is to remove those values from the DCOP instance, and propagate these un-
conditionally deleted values in such a way that they can be known by other variables.
This is useful because when we propagate unconditional deletions we may generate
some new deletions that will also be propagated (which may generate further deletions,
etc). Propagation is done using soft arc consistency methods, which are adequate for
this kind of problems. This novel combination generates the BnB-ADOPT-AC∗ algo-
rithm. As the domain of the variables is being reduced and the search space becomes
smaller, the performance of BnB-ADOPT-AC∗ improves over BnB-ADOPT, in terms
of the number of messages exchanged or the number of cycles required to achieve the
optimum. Experimental results clearly indicate that this approach pays-off, causing sig-
nificant reductions in the communication cost, and in the number of cycles required.

This paper is organized as follows. In section 2, we present existing approaches for
the centralized and distributed cases of constrained optimization. For the centralized
case, we present the COP definition and some basics of soft arc consistency techniques
specific for the weighted model. For the distributed case, we present the DCOP defini-
tion with a description of BnB-ADOPT. In section 3 we connect soft arc consistency
with BnB-ADOPT, showing how these consistencies can be integrated in the BnB-
ADOPT messages (one extra message is required). Using them, we propagate uncondi-
tionally deleted values. An example of the new algorithm including its trace appears in
section 4. The practical benefits of connecting BnB-ADOPT with soft arc consistency
become apparent in section 5, where the original and the new algorithm are compared
on two diferent benchmarks. The new algorithm substantially decreases the number of
exchanged messages and the number of cycles required to solve tested DCOP instances.
Finally, section 6 contains some conclusions of this work and lines for further research.

2 Preliminaries

2.1 Centralized Case

Distributed Constraint Optimization Problem. A Constraint Optimization Problem
(COP) involves a finite set of variables, each taking a value in a finite domain [1].
Variables are related by cost functions that specify the cost of value tuples on some
variables subsets. Costs are positive natural numbers (including 0 and ∞). A finite COP
is a tuple (X, D, C) where:

– X = {x1, . . . , xn} is a set of n variables;
– D = {D(x1), . . . , D(xn)} is a collection of finite domains; D(xi) is the initial

domain of xi;
– C is a set of cost functions; fi ∈ C specifies the cost of every combination of val-

ues of var(fi) on the ordered set of variables var(fi) = (xi1 , . . . , xir(i) ), that is:
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fi :
∏iri

j=i1
D(xj) �→ N ∪ {0,∞}.

The arity of fi is |var(fi)|.
The overall cost of a complete tuple (involving all variables) is the addition of all indi-
vidual cost functions evaluated on that particular tuple. A solution is a complete tuple
with acceptable overall cost, and it is optimal if its overall cost is minimal. Clearly, this
is an instance of the weighted model for soft constraints [5].

Soft Arc Consistency. Let P = (X,D,C) be a binary COP, (i,a) the notation for variable
i and value a, � the lowest unacceptable cost and ⊥ the minimum allowed cost for the
problem. As [2], we consider the following local consistencies for the weighted case:

– Node consistency (NC): (i,a) is node consistent (NC) if Ci(a) < �. Variable i is
NC if all of its values are NC. A COP is NC if every variable is NC.

– Arc consistency (AC): (i,a) is arc consistent (AC) with respect to constraint Cij if
it is NC and there is a value b ∈ Dj such that Cij(a, b) = ⊥. Value b is called a
support of a. Variable i is AC if all its values are AC with respect to every binary
constraint affecting i. A COP is AC if every variable is AC.

Notice that when (i,a) is not NC we can remove a from the problem, since Ci(a) ≥ �
we can assure that any assignment containing value a for variable i will cost at least �,
so it will not be an acceptable solution.

AC in the weighted case can be enforced applying two basic operations until AC
condition is satisfied: forcing supports to node-consistent values, and pruning node in-
consistent values. Support can be forced by sending (projecting) the minimum cost
from the binary constraints of a value to its unary constraint. The projection of the
binary constraint Cij over the unary constraint Ci for the value a is a flow of costs de-
fined as follows: Let αa be the minimum cost of a with respect to Cij (namely αa =
minb∈Dj Cij (a,b)). The projection consists in adding αa to Ci(a) (namely, Ci(a) =
Ci(a)+αa, ∀a ∈ Di) and subtracting αa from Cij(a, b) (namely, Cij(a, b) = Cij(a, b)
− αa, ∀b ∈ Dj, ∀a ∈ Di). This operation can be seen as if we were assuring that, no
matter which value variable j will take, i will always have to pay αa for value a.

It is worth noting that the systematic application of these two operations does not
change the optimum cost and maintains an optimal solution. On one hand, constraint
projection when applied to a problem P = (X, D, C), produces an equivalent problem
P ′ = (X ′, D′, C′) (X = X ′, D = D′ and the same complete value tuple has the
same cost in P and P ′). On the other hand, although value pruning does not conserve
problem equivalence, it produces a new problem with the same optimum as the original
one. These properties are proved in [3].

Notice that when we prune a value from variable i to ensure AC, we need to recheck
AC over every variable that i is constrained with, since the deleted value could be the
support of the neighbor variable. Therefore, a deleted value in one variable might cause
further deletions in other variables as a result of AC enforcement. The AC check must
be performed until no further values are deleted.

We consider a stronger definition for node consistency and arc consistency [2]. In
general, we can see the minimum cost of all unary constraints in variable xi as the
cost this variable will necessarily have to pay no matter which will be its assignment in
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the final solution. In this same way, all variables from the problem could project there
minimum unitary cost over a zero-ary cost function Cφ, producing a necessary global
cost of any complete assignment. So, we can point to an alternative definition of node
consistency noted NC*, where we have a constant Cφ initially set to ⊥. The idea is
to project unary constraints over Cφ, which will become a global lower bound of the
problem solution.

– Node Consistency* (NC∗): (i,a) is node consistent* (NC∗) if Cφ + Ci(a) < �.
Variable i is NC∗ if: all its values are NC∗ and there exists value a ∈ Di such that
Ci(a) = ⊥. Value a is a support for the variable NC∗. A COP is NC∗ if every
variable is NC∗.

– Arc consistency* (AC∗): (i,a) is arc consistency* (AC∗) with respect to constraint
Cij if it is NC∗ and there is a value b ∈ Dj such that Cij(a, b) = ⊥. Value b is
called a support of a. Variable i is AC∗ if all its values are AC∗ with respect to
every binary constraint affecting i. A COP is AC∗ if every variable is AC∗.

This AC∗ definition simply replaces NC by NC∗ in the previous AC definition. En-
forcing AC∗ is a slightly more difficult task than enforcing AC, because Cφ has to be
updated after the projection of binary constraints over unary constraints, and each time
is updated all domains must be revised for new node-inconsistent values.

In the following, we restrict our work to the weighted model of soft constraints.

2.2 Distributed Case

Distributed COP. A Distributed Constraint Optimization Problem(DCOP), is a COP
where variables, domains and cost functions are distributed among automated agents.
Formally, a DCOP is a 5-tuple (X, D, C, A, α), where X, D, C define a COP and:

– A = {1, . . . , p} is a set of p agents
– α : X → A maps each variable to one agent

Clearly, DCOP significantly generalizes the Distributed Constraint Satisfaction Prob-
lem (DisCSP) framework in which problem solutions are characterized with a desig-
nation of satisfactory or unsatisfactory (in the final solution all constraints must be
satisfied) and do not model problems where solutions have degrees of quality cost.

For simplicity, we assume that each agent holds exactly one variable (so the terms
variable and agents can be used interchangeably) and cost functions are unary and bi-
nary only (in the following a cost function will be denoted as C with the indexes of
variables involved, so Cij is the binary constraint between agent i and j, and Ci is a
unary constraint over agent i). A constraint is known and can be accessed by any agent
that is constrained by it, but not for other agents. To coordinate agents will need to
exchange messages: it is assumed that these messages can have a finite delay but they
will eventually be received, and for a given pair of agents messages are delivered in the
order they were sent.

Although soft arc consistency concepts were introduced in a centralized setting, they
are also applicable to a distributed context without any difference. In the following, we
use these concepts inside algorithms for DCOP solving.
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BnB-ADOPT (Branch and Bound ADOPT). ADOPT [6] was the first complete algo-
rithm for asynchronous distributed constraint optimization. ADOPT allows each agent
to change its value whenever it detects a better local assignment. With this strategy, it
can find the DCOP optimum, or a solution within a user-specified distance from the
optimum, with local communication and polynomial space at each agent.

Aiming at improving ADOPT performance, several ADOPT-based algorithms have
been proposed, ADOPT-ng [7] and BnB-ADOPT [8]. On BnB-ADOPT, while ADOPT
explores the search tree in best-first order, BnB-ADOPT explores the search tree in
depth-first order, testing the children of a node in increasing cost order and pruning
those nodes whose cost is greater than a given threshold. This strategy makes it mem-
ory bounded without having to repeatedly reconstruct partial solutions previously dis-
carded. BnB-ADOPT assumes that an agent can neither observe the cost of constraints
that it is not involved in nor the values that other agents take on, and agents can ex-
change messages with their neighbors only.

Like ADOPT, agents in BnB-ADOPT are arranged in a DFS tree [8]. It also uses
the message passing and communication framework of ADOPT, using three message
types: VALUE, COST and STOP. A generic agent self sends a VALUE message when
it changes value, to inform children and pseudo-children. In response, children send
COST messages to self informing the cost of this new assignment calculated on their
instances with the current information. Finally, STOP messages are sent when the opti-
mum is found, or when an agent discovers that there is no solution. Agent self maintains
the following data structures:

– The current context: the set of (variable,value) assignments representing what self
believes of the assignments of higher agents in its branch of the DFS tree. At the
beginning self has an empty context, during search this context is updated when an
ancestor sends to self a VALUE message. Two context are compatible if they do
not disagree in any assignment of common variables.

– For each value v ∈ D(self) and each child child, it holds: a lower bound
lb(v, child), an upper bound ub(v, child), and a context(v, child). These tables
are updated with the information sent by children in COST messages. If at some
point the context of self becomes incompatible with the context of child, the in-
formation sent by child is considered obsolete and lb( , child), ub( , child) and
context( , child) tables are reinitialized.

With them self calculates its own lower bound LB and upper bound UB, based on its
local cost plus any cost reported by its children:

LB[v] ←
∑

(xi,vi)∈myContext

Cself,xi(v, vi) +
∑

xk∈myChildren

lb[v, xk]

UB[v] ←
∑

(xi,vi)∈myContext

Cself,xi(v, vi) +
∑

xk∈myChildren

ub[v, xk]

LB ← minv∈Dself
LB[v]; UB ← minv∈Dself

UB[v]
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Finally, self also maintains a threshold TH initialized to ∞ (and in the root agent re-
mains always ∞) used for pruning during depth-first search. This value is iteratively
refined as new global upper bounds are found.

At the beginning of the execution, every agent chooses the value that minimizes its
LB and sends a VALUE message to its children and pseudo-children informing the new
assignment. When self receives a VALUE message, it updates its context with the new
assignment and checks if the updated context remains compatible with the children
contexts: if they are not compatible the information provided by that child (stored in
lb, ub and context tables) is treated as obsolete and tables are reinitialized. In VALUE
messages the TH value is also propagated (initially ∞). When self receives a COST
message, the sending child informs of its LB and UB. As these bounds are calculated
depending on values of higher variables, the child must attach the context under which
these costs are calculated. If the sent context is compatible with its own context, self
updates the information received in the lb, ub and context tables. Also, self includes
into its own context any higher variable assignment that does not share a constraint
with self. This is because any change on these variables may cause that the stored lb
and ub for this child become obsolete, so self stores the higher variable to detect that.

Once every message is processed, self decides if it must change its value. If the LB
of the current value is greater than or equal to min(TH, UB), self will change its value
to the one with smallest LB. This means that, for the current context, each agent will
maintain its value until its cost becomes greater or equal that the local upper bound. In
that case the value is proven to be suboptimal and it can be discarded. The condition
holds during the current context only, since the UB is reinitialized to ∞ every time the
context changes involving a child context. Notice that on first iterations the UB for an
agent will be infinite until every child has informed with its corresponding COST (so
an agent will not change its value until all information from its children is received),
but on later iterations it may not be necessary to wait for every child to inform its cost,
since an agent can decide to discard the current value only with partial information if
the LB of its value is already greater than the stored TH, which works as a global upper
bound for that child subtree.

After the agent has decide if it must change its value, it sends a VALUE message to
each child child with its current assignment and the desired threshold, calculated as:

min(TH,UB) −
∑

(xi, di) ∈
myContext

Cself,xi(myV alue, di) −
∑

xj ∈ myChildren
xj �= child

lb[myV alue, xj ]

This desired threshold is used for pruning when a child reaches this value. It can be
seen as an estimated upper bound for the child subtree during the current context, since
we are removing from the parent upper bound its local cost and the informed lb of all
children except for the one the message is been sent to. In the next step the termination
condition is checked, this condition is triggered by the root when LB = UB. This con-
dition can only be achieved when all values in the root domain have been explored or
pruned. Finally, a COST message is sent to the parent informing of the LB and UB costs
under the current context.
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3 Connecting BnB-ADOPT with Soft Arc Consistency

In this section we present our contribution combining the search strategy of BnB-
ADOPT with the inference technique enforcing AC* over the DCOP instance. Due
to the distributed setting this combination requires some care. In a naive approach, each
time an agent needs information of other agents it would generate two messages (the
request and response) which could cause a serious degradation in performance. In our
approach, we try to keep the number of exchanged messages as low as possible, intro-
ducing the required elements to enforce AC∗ in the existing BnB-ADOPT messages,
keeping their meanings for distributed search. Only a new type of message is added.

3.1 Propagating Unconditional Deletions

Let us consider a DCOP instance, where agents are arranged in a DFS tree and each
executes BnB-ADOPT. Imagine the root agent, Droot = {a, b, . . .}. Let us assume
that it takes value a. After a while, root will know cost(a) = lb(a) = ub(a), and it
decides to change its assignment to b, informing to its children with the corresponding
VALUE messages. Children start answering about the cost of b (this is a change of
context in BnB-ADOPT terms) with COST messages. As soon as root realizes that
cost(b) > cost(a), b can be removed from Droot since it will not be in the solution
and it will never be considered again (a similar situation happens if cost(a) > cost(b),
then a can be removed from Droot). Just removing b from Droot will cause no effect in
BnB-ADOPT, because it will not consider b again as possible value for root. However,
if we inform constrained agents that b is no longer in Droot, this may cause some values
of other agents to become unfeasible so they can be deleted as well.

A related situation happens when an internal node of the DFS-tree, agent self , re-
ceives COST messages from its children. A COST message contains the lower bound
computed by BnB-ADOPT, with the context (variable, value) pairs on which this lower
bound was computed. Let us consider COST messages whose context is simply the self
agent with its actual value v. If the sum of the lower bounds of these COST messages
reaches or exceeds �, the value v of self can be deleted. To see this, it is enough to
realize that the lower bound is computed assuming (variable, value) pairs of context: if
this is simply (self , v), the actual cost of v does not depend on the value of any other
agent, so if it reaches or exceeds � it can be deleted.

In these two cases, deletions are unconditional: (i) root values does not depend on
any context (there is no higher agent), and (ii) at an internal node self , we consider the
case of contexts that depend on self only. These deletions can be further propagated
in the same way, decrementing the size of the search space. Any deletion caused by
propagation of unconditional deletions is also unconditional.

To propagate these value deletions to other agents we need to maintain soft arc con-
sistency in the distributed instance. Let us consider variables xi and xj with unitary
costs Ci and Cj , and constrained by cost function Cij . We consider the NC* and AC*
notions defined in section 2.1 following [2]. To apply this idea to DCOPs, we assume
that the distributed instance is initially AC∗ (otherwise, it can be made AC∗ by pre-
processing). If value a is unconditionally deleted from Di, it might happens that value
a ∈ Di were the only support of a value b ∈ Dj . For this reason, after the notification of
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BnB-ADOPT messages:
VALUE(sender, destination, value, threshold)
COST(sender, destination, context[], lb, ub)
STOP(sender,destination)

BnB-ADOPT-AC* messages:
VALUE(sender, destination, value, threshold,�, Cφ)
COST(sender, destination, context[], lb, ub, subtreeContribution)
STOP(sender,destination, emptydomain)
DEL(sender, destination, value)

Fig. 1. Messages of BnB-ADOPT and BnB-ADOPT-AC*

a deletion, directional AC∗ has to be enforced on cost function Cij from i to j (observe
that in the other direction enforcing will cause no change). This has to be done in both
agents i and j, to assure that both maintain the same representation of Cij . In addition,
agent j may pass binary costs to unary costs, which might result that some value b ∈ Dj

becomes not NC∗. In that case, b should be deleted from Dj and its deletion should be
propagated in the same way.

3.2 BnB-ADOPT-AC*

The idea of propagating unconditional deletions can be included in BnB-ADOPT, pro-
ducing the new BnB-ADOPT-AC*, where the semantic of original BnB-ADOPT mes-
sages remains unchanged. New elements are included in these messages: changes with
respect to the original ones appear in Figure 1. BnB-ADOPT-AC* requires some minor
changes with respect to BnB-ADOPT:

– In addition to its own domain, the domain of every variable constrained with self is
also represented in self. The binary constraints between any pairs of agents will be
represented in both agents, they are assumed to be AC*.

– A new message type, DEL, is required. When self deletes value a in D(self),
it sends a DEL message to every agent constrained with it. When self receives a
DEL message, it registers that the message value has been deleted from the domain
of sender, and it enforces AC* on the constraint between self and sender. If, as
result of this enforcing, some value is deleted in D(self) it is propagated as above.

– VALUE messages include � and Cφ. � is initially ∞ and when root reaches its
first global upper bound � becomes a finite value which is propagated downwards,
informing the other agents of the lowest unacceptable cost. Contributions to Cφ are
propagated upwards in COST messages and aggregated in root, forming Cφ, the
minimum global cost of the instance (no matter the values assigned to variables).
Then, Cφ is propagated downwards in VALUE messages.

– COST messages include the contribution of each agent to the global Cφ. Each agent
adds its own contribution with the contributions of all its children, and the result
is included in the next COST message sent to its parent. All these contributions
are finally added in root, forming the global Cφ, which is propagated donwards in
VALUE messages. When there is a deletion Cφ might change, this is propagated.

– A value a ∈ D(xi) that satisfies the deletion condition is immediately deleted.
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Maintaining AC∗ exploits the idea that a constraint Cij is known by both agents i and
j. Both agents keep a copy of the domain of others agent variable and the most updated
representation of Cij , with the purpose of generating as many deletions as possible. If
value a is deleted in D(xi) (which is done by agent i) and the resulting domain is not
empty, this deletion is notified to agent j. Then, agents i and j perform the same process,
directional AC∗ from j to i, which assures that both maintain the same representation
of Cij . If in this process some value of D(xj) should be deleted, this is done by agent
j, which notifies i and the same process repeats.

Theorem 1. BnB-ADOPT-AC∗ computes the optimum cost and terminates.

Proof. BnB-ADOPT performs a distributed depth-first traversal of the search tree de-
fined by the DCOP instance to be solved. BnB-ADOPT-AC∗ does the same, with the
only difference that, in some cases, variable domains may be smaller than initial do-
mains. Messages trigger the same actions as in BnB-ADOPT, they simply include
some extra information and check values for deletion. While BnB-ADOPT performs
distributed search, in addition BnB-ADOPT-AC∗ also enforces AC∗. This may cause
new DEL messages which may only cause further DEL messages.

A value v is removed from Dself because its lower bound cost surpasses � (when
self = root or self is an internal node). The lower bound cost of v is computed including
lower bounds of children whose contexts mention self only (the lower bound calculated
does not depend on any other high variable assignment). It is direct to check that v will
not be in the optimal solution (otherwise, that solution will cost more than �), so v can
be removed from Dself . Enforcing AC∗, values are removed using the projection and
pruning operators of the weighted case of soft arc consistency. It is proven [3] that these
operators do not change the optimum cost of the original instance.

If we would have known those values which are unconditionally not AC* prior start-
ing BnB-ADOPT execution, we could remove them from their corresponding domains
and speed-up BnB-ADOPT performance. However, since � and Cφ are evolving dur-
ing distributed search, removing those values is not possible at the beginning. We will
see that removing those values during algorithm execution has no effect in optimality
and termination. Let us consider v ∈ Dself that is going to be removed. If v is not
the current assignement of xself , self simply will remove v from Dself and inform its
children and pseudochildren of it (via DEL messages). If v is the current assignement
of xself ), removing v will not cause any extra difficulty in algorithm execution: since
BnB-ADOPT-AC∗ is an asynchronous algorithm, any agent can change its value at
any time. After removing v, BnB-ADOPT-AC∗ will follow the same search strategy as
BnB-ADOPT, selecting as new value the one that minimizes the lower bound of avail-
able values in Dself . The termination condition remains unaltered. Since BnB-ADOPT
computes the optimum cost and terminates [8] BnB-ADOPT-AC∗ also does so. �

3.3 Preprocess Code

It is mentioned above that the initial problem is assumed to be AC*. If not, this can be
easily done by preprocess executed on each agent, depicted in Figure 2.
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procedure AC∗-preprocess(�)
initialize;
AC∗(�);
while (¬end) do

msg ← getMsg();
switch(msg.type)

DEL: ProcessDelete(msg); STOP : ProcessStop(msg);

procedure AC∗(�)
for each j ∈ neighbors(self) do

if j > self then
FromBinaryToUnary(self, j);
FromUnaryToCφ(self);
FromBinaryToUnary(j, self);

else
FromBinaryToUnary(j, self);
FromBinaryToUnary(self, j);
FromUnaryToCφ(self);

PruneDomainSelf(�);

procedure FromBinaryToUnary(i, j)
for each a ∈ Di do

v ← argminb∈Dj
{Cij(a, b)}; α ← Cij(a, v);

for each b ∈ Dj do Cij(a, b) ← Cij(a, b) − α;
if i = self then Ci(a) ← Ci(a) + α;

procedure FromUnaryToCφ(i)
v ← argmina∈Di

{Ci(a)}; α ← Ci(v);
myContribution ← myContribution + α;
for each a ∈ Di do Ci(a) ← Ci(a) − α;

procedure PruneDomainSelf(�)
for each a ∈ Dself do if Cself (a) + Cφ ≥ � then DeleteValue(a);

procedure DeleteValue(a)
Dself ← Dself − {a};
FromUnaryToCφ(self);
if Dself = ∅ then

for each j ∈ neighbors(self) do sendMsg:(STOP, self, j, true);
end ← true;

else for each j ∈ neighbors(self) do
sendMsg:(DEL, self, j, a);
FromBinaryToUnary(j, self);

procedure ProcessDelete(msg)
Dsender ← Dsender − {msg.value};
FromBinaryToUnary(self, sender);
FromUnaryToCφ(self);
PruneDomainSelf(�);

procedure ProcessStop(msg)
if (msg.emptyDomain = true) then

for each j ∈ neighbors(self), j �= sender do sendMsg(STOP, self, j, true);
end ←true;

Fig. 2. The preprocess algorithm for enforcing AC∗

After preprocess we will ensure the AC∗ condition. Initially Cφ = 0. Contributions
to Cφ travel in COST messages, Cφ itself travels in VALUE messages, but these mes-
sages are not used in the preprocess (they implement distributed search), so Cφ remains
0 during the preprocess. So the level of soft arc consistency reached is actually AC.
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This does not cause any harm, since after preprocess binary cost functions are projected
on unary ones. The NC∗ condition (with Cφ > 0) will be tested during distributed
search.

– AC∗-preprocess. It performs AC∗ on self. This may cause deletions so DEL
messages are processed until no further deletions are generated.

– AC∗. It performs the projection from binary to unary costs, executing procedure
FromBinaryToUnary on all neighbors of self, plus the projection from unary
to zero-ary costs in self executing FromUnaryToCφ. Projecting binary into unary
costs is done orderly, projecting always first over the higher agent and then over
the lower one in the DFS tree, to maintain a coherent copy of the cost functions on
every agent. PruneDomainSelf(�) checks the NC∗ property on Dself .

– FromBinaryToUnary(i,j). It projects binary costs Cij on unary costs Ci.
When the projection is done over self the unary costs are stored in the agent.

– ProjectOverCφ(i). It projects unary costs on zero-ary costs in myContribution,
which accumulates the contribution of self to the global Cφ.

– PruneDomainSelf. It checks every value in Dself for deletion, enforcing the
NC∗ property.

– DeleteValue(a). self removes value a from Dself . If Dself = ∅, there is no
acceptable solution, so STOP messages are sent to all neighbors, indicating that
there is an empty domain and the process terminates. Otherwise, for all neighbors
j, a DEL message is sent notifying a deletion and directional AC∗ is enforced; this
operation is also done on every neighbor when the DEL message arrives.

– ProcessDelete(j,a). self has received a DEL message, notifying that agent
j has deleted value a from Dj , so self registers this in its Dj copy. Then, it enforces
directional AC∗ in Cself,j . Finally, self checks if it can prune some value from its
domain executing PruneDomainSelf(�).

– ProcessStop(). self has received a STOP message. If it has been caused by an
empty domain, self resends the STOP message to all its neighbors, except sender.
Otherwise, it records the reception of the STOP message.

3.4 BnB-ADOPT-AC∗ Code

In order to use the stronger AC∗ condition in the process phase we need to maintain
up to date the global Cφ. So every time there is a deletion and a call to the method
FromBinaryToUnary, the minimum value from Ci is projected and propagated. In
this way, the Cφ summarizes the obligatory costs from all the variables, not just from
the one currently under investigation. Consequently, when we check the AC* condition
there are more possibilities for pruning.

The process of BnB-ADOPT-AC∗ appears in Figures 3 and 4. The rationale for
the changes is as follows. We assume that if argminv∈Dself

LB(v) is called with
Dself = ∅, nil is returned. The main changes appears in ProcessValuewhen the Cφ

is updated and a better � is founded (3 last lines), in ProcessCost when the subtree
contribution to Cφ is calculated (5 last lines), and in the Backtrack procedure when
a value is found suboptimal and deleted.
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procedure BnB-ADOPT-AC*()
initialize tables and bounds;
InitSelf(); Backtrack();
while (¬end) do

while message queue is not empty do
msg ← getMsg();
switch(msg.type)

V ALUE:ProcessValue(msg); COST :ProcessCost(msg);
STOP : ProcessStop; DEL: ProcessDelete(msg);

Backtrack();

procedure ProcessValue(msg)
if (myContext[sender] �= msg.value) then

myContext[sender] ← msg.value;
CheckCurrentContextWithChildren(); InitSelf();

if sender = myParent then TH ← msg.threshold;
if msg.� < � then � ← msg.�;
if Cφ < msg.Cφ then Cφ ← msg.Cφ;
PruneDomainSelf(�)

procedure ProcessCost(msg)
contextChange ← false;
for each xi ∈ msg.context, xi �∈ myNeighhbors do

if myContext[xi] �= msg.context[xi] then
myContext[xi] ← msg.context[xi]; contextChange ← true;

if contextChange = true then CheckCurrentContextWithChildren();
if isCompatible(myContext,msg.context) then

lb[msg.context[self ], sender] ← msg.lb;
ub[msg.context[self ], sender] ← msg.ub;
tableContext[msg.context[self ], sender] ← msg.context;

if contextChange = true thenInitSelf();
childrenContribution[sender] ← msg.subtreeContribution;
mySubtreeContr = myContribution ;
for each xi ∈ myChildren do

mySubtreeContr = mySubtreeContr + childrenContribution[xi];
if mySubtreeContr > Cφ then Cφ ← mySubtreeContr;

procedure InitSelf()
myV alue ← argminv∈Dself

LB(v); TH ← ∞;

Fig. 3. BnB-ADOPT-AC*, missing procs appear in Fig 2

– BnB-ADOPT-AC*. Includes the reception of DEL messages: this message indi-
cates that a value has been deleted in the domain of the sender. When received, the
ProcessDelete procedure is called.

– InitSelf. The agent takes the value that minimize the LB and initializes its
threshold to ∞.

– ProcessValue. The VALUE message includes the current � and the global Cφ,
which are updated. self checks if it can prune some values from its domain with the
received �. When this message comes from parent(self) the threshold is copied.

– ProcessCost. The COST message includes the children contribution to the
global Cφ. self records this information and calculates the variable mySubtreeContr
accumulating its own contribution plus the contribution of its children. If this is
greater than the current Cφ then the global Cφ is updated.

– Backtrack. Depending wheter self is the root or not, it calls the procedure
CheckForRootDeletions or CheckForInternalDeletions, which
may also trigger unconditional deletions. Then, lower neighbors are informed of
self value, and the termination condition is tested. Finally, when the COST
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procedure Backtrack()
if TH ≤ LB() then TH ← ∞;
if LB(myV alue) ≥ min{TH, UB()} then

if self = root then CheckForRootDeletions();
else CheckForInternalDeletions();
previousV alue ← myV alue; myV alue ← argminv∈Dself

LB(v);
SendValueMessageToLowerNeighbors(myV alue);
if ((self = root∧ LB() = UB()) ∨ (end ∧ LB(myV alue) = UB(myV alue))) then

end ← true;
for each child ∈ myChildren do sendMsg(STOP, self, child, false);

else
mySubtreeContr = myContribution ;
for each xi ∈ myChildren do mySubtreeContr = mySubtreeContr + childrenContribution[xi];
sendMsg(COST, self, myParent, myContext,LB(), UB(), mySubContribution);

procedure CheckForRootDeletions()
if myPreviousV alue ∈ Dself∧ LB(myPreviousV alue) >UB() then
� ← UB(); DeleteValue(myPreviousV alue);

if LB(myV alue) ≥ UB() ∧ UB(myV alue) �= UB() then
� ← UB(); DeleteValue(myV alue);

procedure CheckForInternalDeletions()
for each val ∈ D(self) do

costV alue = 0;
for each child ∈ myChildren do

if tableContext[val, child].variable = self then costV alue = costV alue + lb[val, child];
else costV alue = costV alue + childrenContribution[child];

if costV alue > � then DeleteValue(val);

procedure CheckCurrentContextWithChildren()
for each val ∈ D(self) ∧ child ∈ myChildren do

if ¬isCompatible(myContext, tableContexts[val, child]) then
tableContexts[val, child] ← empty; lb[val, child] ← 0; ub[val, child] ← ∞;

procedure SendValueMessageToLowerNeighbors(myV alue)
cost ← ∑

j∈myP arent∪myP seudoparents Cself,j(myV alue, myContext[j]);
for each child ∈ myChildren do

th ← min{TH,UB()} − cost − ∑
j∈myChildren,j �=child lb[myV alue, j];

sendMsg(V ALUE, self, child, myV alue, th,�, Cφ);

Fig. 4. BnB-ADOPT-AC* (cont.); missing procs appear in Fig 2

message is sent, self calculates the contribution of its subtree to the global Cφ

accumulating its own contribution plus the contribution of its children and this is
included in the COST message.

– CheckForRootDeletions. If root = self and myValue or myPreviousValue
are suboptimal they are deleted unconditionally and a new value is selected. Al-
though discarded values from the root will never be revisited and there is no benefit
in deleting them, the propagation of the DEL message may lead to further deletion.

– CheckForInternalDeletions. self calculates a lower bound for every do-
main value in such a way that its cost do not depend on any variable other than self.
For this, it accumulates the lower bound informed by a child if the context of that
child contains only the variable self (therefore the cost informed do not depend on
any other higher assignation). Otherwise, it accumulates the childrenContribution,
which is the minimum cost this child will have to pay for any higher variable assig-
nation (is context free). If this calculated lower bound is greater than �, we can
remove this value unconditionally from the problem.
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– SendValueMessageToLowerNeighbors.The� and Cφ values are included
in the VALUE message.

4 Example

Consider variables x1, x2 and x3 with domain {a, b} and cost functions as represented
in Figure 5 (left). Enforcing AC∗ on this problem (project on every variable costs from
binary to unary constraints, and then project unary costs over a global Cφ) we get the
equivalent problem of Figure 5 (right). As we have calculated the global Cφ, we already
now that any solution will cost at least 17.

We present for this problem the execution trace of BnB-ADOPT (Table 1, left) and
BnB-ADOPT-AC∗ (Table 1, right). As shown, BnB-ADOPT needs 42 messages and 9
cycles to reach the optimum solution, while BnB-ADOPT-AC∗ only needs 27 messages
and 5 cycles. We will explain briefly why this happends. For a clearer explanation, we
will omit some messages either because they are reiterative or because they are not
relevant to show the benefits of BnB-ADOPT-AC∗. For a more complete and detailed
execution see Table 1.

First, all agents are initialized with value a and they send the correspondent VALUE
messages (Figure 6(a)). Agent x1 begins choosing value b, and receives the correspon-
dent COST message (Figure 6(b)). Later on, x1 tries value a, and receives the corre-
spondent COST message (Figure 6(c)). Now, as all values of x1 has been explored, x1
chooses value b as best value for the current context, and sends a COST to the parent
with an UB of 20 (Figure 6(d)). When x0 receives this COST with UB different from
∞, it decides to change to value b and sends the correspondent VALUE messages to
x1 and x2. When x1 and x2 receive the VALUE, they reinitialize their information (be-
cause context has changed), and they choose the value that minimize their LB under the

x0 

x1 

x2 

{a,b} 

{a,b} 

{a,b} 

C01 

C12 

C02 

C01 :
x0 = a x0 = b

x1 = a 9 2
x1 = b 4 1

C02 :
x0 = a x0 = b

x2 = a 1 9
x2 = b 4 1

C12 :
x1 = a x1 = b

x2 = a 14 15
x2 = b 18 20

C0(a) = C1(a) = C2(a) = 0
C0(b) = C1(b) = C2(b) = 0

Cφ = 0

C01 :
x0 = a x0 = b

x1 = a 4 0
x1 = b 0 0

C02 :
x0 = a x0 = b

x2 = a 0 0
x2 = b 0 1

C12 :
x1 = a x1 = b

x2 = a 0 8
x2 = b 3 0

C0(a) = 5, C1(a) = 15, C2(a) = 0
C0(b) = 2, C1(b) = 15, C2(b) = 4

Cφ = 0

C0(a) = 3, C1(a) = 0, C2(a) = 0
C0(b) = 0, C1(b) = 0, C2(b) = 4

Cφ = 17

Fig. 5. (Left) Simple example with three variables and its inital binary, unary and zeroary cost
functions. (Right) Above line: binary cost functions after proyection on unary ones; below line:
unary cost functions after projecting on zeroary one.
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current context; in this case x1 chooses a again, and x2 chooses b (Figure 6(e)). Agents
x2 and x1 exchange messages until x1 can send a COST message to its parent with
an UB of 21 (Figure 6(f)). When x0 receives this COST, as UB(b) > UB(a), and all
values has been explored, x0 changes its value to a and terminates (Figure 6(g)). Then
x1 and x2 exchange messages until they also terminate (Figures 6(h) and (i)). All states
of Figure 6 indicate the line they represent on the execution trace.

In BnB-ADOPT-AC∗ execution, at Figure 6(d) (line 14 of execution trace), x2 is
capable of delete value b. This is because the global Cφ has been calculated and: C2(b)+
Cφ > � (4+17 > 20). This deletion causes no inmediate effect, but is propagated to x0.
Then, when x0 receives the DEL message (line 17 of execution trace) it reinforces AC∗

on itself, and as result of this x0 can delete value b (line 18 of execution trace), since:
C0(b) + Cφ > � (5+17 > 20). As x0 = b has been found not consistent and deleted,
x0 will not explore this value. So messages sent on Figure 6 (e) and (f) are not sent on
BnB-ADOPT-AC∗ execution. Instead, x0 sends a VALUE message with x0 = a and
terminates (Figure 6 (g)). As we can see, deleting value b from x0 has been beneficial,
and the propagation of DEL messages has produced a positive impact.

x0=a

VALUE: x0=a
VALUE: x0=a

x0=a

b

x0=a

x1=a

x2=a

VALUE: x1=a

x1=b

x2=a

VALUE: x1=bCOST: UB=16;LB=16

x1=a

x2=a

VALUE: x1=aCOST: UB=15;LB=15

Lines 1, 2, 3 Lines 4, 6 Lines 9,11

(a) (b) (c)

x0=a

x1=b

VALUE: x =b

x0=b

x1=a

VALUE: x0=bVALUE: x0=b

x0=b

x1=a

COST: UB=21;LB=21COST: UB=20;LB=20

VALUE: x1=a

x2=a

VALUE: x1=b

Lines 15,16, 20

x2=b

Lines 23, 24

x2=b

Lines 35, 36, 37

COST: UB=19;LB=19COST: UB=16;LB=16

x0=a x0=a x0=a

(d) (e) (f)

x1=a

VALUE: x0=a
STOP

VALUE: x0=a

x1=a

VALUE: x1=aCOST: UB=15; LB=15

x1=b

VALUE: x1=b
STOP

x2=a

Lines 38,39, 41

x2=a

Lines 45, 46

x2=a

Lines 47, 48

(g) (h) (i)

Fig. 6. Message passing example
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Table 1. Trace of BnB-ADOPT and BnB-ADOPT-AC∗ on the example of Figure 5. Messages in
bold are common to both algorithms. Notice that from lines 23 to 37 BnB-ADOPT messages are
saved in BnB-ADOPT-AC∗.

BnB-ADOPT BnB-ADOPT-AC∗

(1) x1 received VALUE: x0 = a x1 received VALUE: x0 = a
(2) x2 received VALUE: x0 = a x2 received VALUE: x0 = a
(3) x2 received VALUE: x1 = a x2 received VALUE: x1 = a
(4) x2 received VALUE: x1 = b x2 received VALUE: x1 = b
(5) x0 received COST: sender=x1, UB= ∞ LB=4 x0 received COST: sender=x1, UB= ∞,LB=4 global C0=17
(6) x1 received COST: sender=x2, UB=16 LB=16 x1 received COST: sender=x2, UB=16, LB=16 global C0=15
(7) x1 received VALUE: x0 = a x1 received VALUE: x0 = a
(8) x2 received VALUE: x0 = a x2 received VALUE: x0 = a
(9) x2 received VALUE: x1 = a x2 received VALUE: x1 = a
(10) x0 received COST: sender=x1, UB=20 LB=9 x0 received COST: sender=x1, UB=20, LB=9 global C0=17
(11) x1 received COST: sender=x2, UB=15 LB=15 x1 received COST: sender=x2, UB=15, LB=15 global C0=17
(12) x1 received VALUE: x0 = a x1 received VALUE: x0 = a
(13) x2 received VALUE: x0 = a x2 received VALUE: x0 = a
(14) x2 delete value b
(15) x2 received VALUE: x1 = b x2 received VALUE: x1 = b
(16) x0 received COST: sender=x1, UB=20 LB=20 x0 received COST: sender=x1, UB=20, LB=20 global C0=17
(17) x0 received DEL: x2 = b
(18) x0 delete value b
(19) x1 received DEL: x2 = b
(20) x1 received COST: sender=x2, UB=16 LB=16 x1 received COST: sender=x2, UB=16, LB=16 global C0=17
(21) x1 delete value a
(22) x1 received DEL: x0 = b
(23) x1 received VALUE: x0 = b
(24) x2 received VALUE: x0 = b
(25) x2 received VALUE: x1 = b
(26) x0 received COST: sender=x1, UB= ∞ LB=1
(27) x1 received COST: sender=x2, UB=21 LB=21
(28) x1 received VALUE: x0 = b
(29) x2 received VALUE: x0 = b
(30) x2 received VALUE: x1 = a
(31) x0 received COST: sender=x1, UB=22 LB=2
(32) x1 received COST: sender=x2, UB=19 LB=19
(33) x1 received VALUE: x0 = b
(34) x2 received VALUE: x0 = b
(35) x2 received VALUE: x1 = a
(36) x0 received COST: sender=x1, UB=21 LB=21
(37) x1 received COST: sender=x2, UB=19 LB=19
(38) x1 received VALUE: x0 = a x1 received VALUE: x0 = a
(39) x1 received STOP x1 received STOP
(40) x2 received DEL: x0 = b
(41) x2 received VALUE: x0 = a x2 received VALUE: x0 = a
(42) x2 received VALUE: x1 = b
(43) x2 received DEL: x1 = a
(44) x1 received COST: sender=x2, UB=16 LB=16
(45) x2 received VALUE: x1 = a
(46) x1 received COST: sender=x2, UB=15 LB=15
(47) x2 received VALUE: x1 = b x2 received VALUE: x1 = b
(48) x2 received STOP x2 received STOP

No more messages... No more messages...
42 total messages 27 total messages
24 VALUE msg , 16 COST msg 13 VALUE msg, 6 COST msg, 6 DEL msg
9 cycles 5 cycles
TOTAL cost: 20 TOTAL cost: 20
OPT. SOLUTION: x0 = a; x1 = b; x2 = a OPT. SOLUTION: x0 = a; x1 = b; x2 = a
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5 Experimental Results

We evaluate the performance of BnB-ADOPT-AC* against BnB-ADOPT on binary
random generated DCOPs and on meeting scheduling structured datasets [9].

The binary random DCOP sets are characterized by 〈n, d, p1〉, where n is the num-
ber of variables (#agents), d is the number of values per variable and p1 the network
connectivity defined as the ratio of existing cost functions. The cost of the tuples are
selected from a uniform distribution of costs. Two types of binary cost functions are
used, small and large. Small cost functions extract costs from the set {0, . . . , 10} while
large ones extract costs from the set {0, . . . , 1000}. The proportion of large cost func-
tions is 1/4 of the total number of cost functions (this is done to introduce some vari-
ability among tuple costs; using a unique type of cost function causes that all tuples
look pretty similar from an optimization view). We tested 〈n = 10, d = 10, p1 =
0.2, 0.3, 0.4, 0.5, 0.6, 0.7〉. Results of the execution appear in Table 2 (up), averaged
over 50 instances.

The meeting scheduling structured datasets defines a DCOP equivalent to problems
involving join events. On the presented formulation variables represent events, and each
variable assigns a starting time for the event. Utility functions are constructed in such
a way that when the DCOP is solved we obtain solutions congruent to the original
problem. We present 4 cases with domain 10: case A (8 variables), case B (10 variables),
case C (12 variables) and case D (12 variables). Results of the execution appear in Table
2 (down) , averaged over 30 instances.

Table 2 shows the number of messages exchanged (#VALUE, #COST, #DEL and the
total number of messages), the number of cycles, the non-concurrent constraint checks
and the average number of deletions in the domains of all variables. We evaluate the effi-
ciency of the algorithm by a discrete event simulator. The total number of messages ex-
changed gives us a measure of the communication cost. The number of non-concurrent
constraint checks [4] give us a measure of the computational effort needed to reach the
solution. Finally, the cycles needed to solve the problem are the number of iterations
that the simulator must perform until the solution is found. One cycle consist in ev-
ery agent reading all incoming messages, performing local computation, and sending
messages to neighbors.

BnB-ADOPT-AC∗ proved to be beneficial in the overall message passing for the
connectivities tested, requiring less total messages than BnB-ADOPT (remember that
it adds new DEL messages). The propagation of deletions contribute to diminish the
search effort, decreasing the number of COST and VALUE messages exchanged. When
the number of saved COST and VALUE messages is greater than the number of DEL
messages, propagation pays off and causes an overall message decrement. We assume
the usual case where the communication time is higher than computation time, then the
total elapsed time is dominated by the communication time. In this case reducing the
number of messages is beneficial, and also agents will need to process less information
coming from their neighbors.

We also observe a clear decrement in the number of cycles required. The number
of cycles often has been taken as a rough estimator of the efficiency of a distributed
algorithm. We believe that it is a useful measure to compare algorithms that behave in
a similar way. This is the case for BnB-ADOPT and BnB-ADOPT-AC∗. Both send, per
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Table 2. Results of BnB-ADOPT and BnB-ADOPT-AC* on: (up) random DCOP instances of 10
agents and 10 values per agent for p1 = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7; (down) Meting Scheduling,
cases A (8 variables), B (10 variables), C (12 variables) and D (12 variables)

p1 alg #VALUE #COST #DEL #Messages #Cycles #NCCC #Del val
BnB-ADOPT 346 333 0 688 39 1,981 0

0.2 BnB-ADOPT-AC* 264 233 143 633 28 9,347 77
BnB-ADOPT 469,565 306,909 0 776,483 34,220 7,182,257 0

0.3 BnB-ADOPT-AC* 81,783 53,078 193 135,064 5,916 804,565 65
BnB-ADOPT 9,583,678 4,902,157 0 14,485,844 547,459 132,524,817 0

0.4 BnB-ADOPT-AC* 1,969,416 996,734 211 2,966,371 110,975 19,535,420 56
BnB-ADOPT 20,502,753 8,243,684 0 28,746,447 918,069 252,830,882 0

0.5 BnB-ADOPT-AC* 8,709,646 3,437,056 247 12,146,959 382,322 97,612,718 52
BnB-ADOPT 17,617,714 6,134,986 0 23,752,710 685,054 189,687,091 0

0.6 BnB-ADOPT-AC* 8,381,955 2,836,996 298 11,219,259 315,597 92,735,325 53
BnB-ADOPT 43,880,642 12,861,780 0 56,742,432 1,432,992 427,607,102 0

0.7 BnB-ADOPT-AC* 40,861,959 11,932,584 163 52,794,716 1,329,283 394,671,491 25

p1 alg #VALUE #COST #DEL #Messages #Cycles #NCCC #Del val
BnB-ADOPT 66,641 29,845 0 96,493 4,427 697,774 0

A BnB-ADOPT-AC* 20,381 8,999 177 29,565 1,306 208,116 43
BnB-ADOPT 118,708 63,934 0 182,652 7,150 879,417 0

B BnB-ADOPT-AC* 43,797 23,399 153 67,358 2,615 303,634 44
BnB-ADOPT 20,664 13,698 0 34,374 1,278 167,058 0

C BnB-ADOPT-AC* 5,351 3,490 208 9,062 325 46,162 73
BnB-ADOPT 28,784 18,934 0 47,729 1,733 155,833 0

D BnB-ADOPT-AC* 8,968 5,828 208 15,017 533 51,755 74

agent and per cycle, one COST message to the agent’s parent and one VALUE message
to each agent child and pseudochild. In addition, BnB-ADOPT-AC∗ sends DEL mes-
sages in some cycles. If BnB-ADOPT-AC∗ needs less cycles to find the optimum means
that, in the same communication conditions, it will find the optimum faster than BnB-
ADOPT. Finding the optimum means exhausting the search space: BnB-ADOPT-AC∗

does it more efficiently than BnB-ADOPT.
Computation effort measured as the number of non-concurrent constraint checks also

decreases. This is the combination of two opposite trends: agents are doing more work
processing new DEL messages but less work processing less VALUE and COST mes-
sages. The overall picture indicates that adding DEL messages makes smaller agent
domains, so it reduces the search space. To explore this reduced search space in a dis-
tributed way, less VALUE and COST messages are needed. This decrement is higher
than DEL messages increment.

6 Conclusions

In this work we have connected the BnB-ADOPT algorithm with some forms of soft
arc consistency (weighted case) aiming at detecting and pruning values which would
not be in the optimal solution, with the final goal of improving search efficiency. These
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deletions are unconditional and do not rely on any previous variable assignment. The
transformations introduced (projecting costs from binary to unary, from unary to zero-
ary, and pruning values not NC∗) assure that the optimum of the transformed problem
remains the same as the original one.

According to experimental results, propagation of unconditional deletions provides
substantial benefits for the sets tested. A new message DEL has been introduced for the
propagation of deleted values. However, the increment in the number of messages due
to the generation of new DEL messages has been compensated by a decrement in the
number of COST and VALUE messages used to solve the problem. BnB-ADOPT-AC*
has been proved to be beneficial regarding the total number of messages exchanged,
the number of non-concurrent constraint checks performed and the number of cycles
required to find the optimum.

As future work, we consider the use of other soft local consistencies such as DAC*
or FDAC* [3]. We also consider the application of these techniques in other ADOPT-
based algorithms like ADOPT-ng [7].
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Abstract. To make constraint programming easier to use by the non-
programmers, a lot of work has been devoted to the design of front-
end modelling languages using logical and algebraic notations instead
of programming constructs. The transformation to an executable con-
straint program can be performed by fundamentally two compilation
schemas: either by a static expansion of the model in a flat constraint
satisfaction problem (e.g. Zinc, Rules2CP, Essence) or by generation of
procedural code (e.g. OPL, Comet). In this paper, we compare both
compilation schemas. For this, we consider the rule-based modelling lan-
guage Rules2CP with its static exansion mechanism and describe with
a formal system a new compilation schema which proceeds by genera-
tion of procedural code. We analyze the complexity of both compilation
schemas, and present some performance figures of both the compilation
process and the generated code on a benchmark of scheduling and bin
packing problems.

1 Introduction

Constraint programming is a programming paradigm which relies on two compo-
nents: a constraint component which manages posting and checking satisfiability
and entailment of constraints over some fixed computational domain, and a pro-
gramming component which makes it possible to state the constraints of a given
problem and define a search procedure for solving it. To make constraint pro-
gramming easier to use by non-programmers, a lot of work has been devoted
to the design of front-end modelling languages using logical and algebraic no-
tations instead of programming constructs, e.g. OPL[14,7], Comet [10] , Zinc
[11,3], Essence [6] or Rules2CP [4,5,2].

Such modelling languages for constraint programming offer a high-level of
abstraction for stating constraint problems, and rely on default, possibly param-
eterized or adaptive, search strategies. The transformation to an executable con-
straint program can be performed by fundamentally two compilation schemas:
either by a static expansion of the model in a flat constraint satisfaction prob-
lem, or by generation of procedural code. The first schema by static expansion
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has been adopted by Zinc, Essence and Rules2CP, while the second schema by
code generation has been implemented for OPL and Comet.

In this paper, we compare both compilation schemas. For this, we consider
the rule-based modelling language Rules2CP with its static exansion mechanism
described in [4], and introduce a new compilation schema which proceeds by
generation of procedural code. With this new implementation, called Cream, we
show that the code generation schema exhibits a time overhead of approxima-
tively a factor 2 at runtime w.r.t. the statically expanded code. However, we
show that the size of the procedural code is linear, which must be compared to
the potentially exponential size of the expanded code. In particular, for problems
where the search space is defined dynamically by values of variables at runtime,
the code generation schema is the only viable one.

Furthermore, in a rule-based modelling language such as Rules2CP, the search
tree is represented by a logical formula and search tree ordering heuristics can
be expressed declaratively by pattern-matching on the rules’ left-hand sides [5].
Compared with other modelling languages capable of expressing search heuris-
tics, such as OPL/Comet for instance, rule-based pattern matching eliminates
the need to program with lists and indices and to introduce data structures for
defining the ordering criteria. Compared with Zinc, this mechanism provides a
possible mean to define heuristics for the default search procedure. The price to
pay for this expressivity however is in the compilation process which becomes
more complicated. This was our original motivation for defining the transforma-
tions with a formal system.

The rest of the paper is organized as follows. The next section defines the
syntax of Rules2CP, its polymorphic type system and the declarative semantics
of the language. Section 3 defines the static expansion schema with a formal
system that is reused in section 4 to define the code generation schema and to
analyze their complexity. Section 5 evaluates the performance of both compila-
tion schema and generated code on a benchmark of n-queens, scheduling and
bin packing problems. Finally we conclude on the merits of each compilation
schema.

2 Rules2CP Syntax and Declarative Semantics

2.1 Syntax

There are four data structures in Rules2CP:

– integer constants, with basic arithmetic operators and comparisons.
– finite domain variables, with indexicals and the equality constraint in addi-

tion to the operators shared with integer constants.
– lists, constructed by enumeration, interval between two integers and con-

catenation, and browsed with quantifiers and aggregators.
– records, with labeled fields used for projection.

The Rules2CP syntax is summarized in table 1. The non-terminal variable and
ident range over a countable set of names. The non-terminal integer ranges over
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a finite interval D ⊆ N which includes at least the values 0 and 1. Underlined
non-terminal var mark the binders which affect the underlined expr .

The sets of bound and free variables in an expression e, denoted bv(e) and
fv(e) respectively, are defined in the standard way: a variable is bound if it is
in the scope of a binder (let or foldl) or if it appears in the left-hand side of a
clause. Any assignment ν : var → D is homomorphically extended to a function
ν̃ : expr → expr .

Table 1. Rules2CP syntax

program ::= clause ... clause
clause ::= domain ident := { ident,...,ident }

| object ident(var,...,var) := expr

| rule ident(var,...,var) := expr

| heuristics ident(var,...,var) := heuristics
| query expr

expr ::= variable | integer | error

| expr op expr where op ∈ {+, -, *, /}
| expr rel expr where rel ∈ {=, #, =<, <, >, >=}
| expr logop expr where logop ∈ {and, or, implies, equiv}
| not expr
| ident(expr,...,expr)
| let(var := expr, expr)

| [expr,...,expr] | [expr .. expr] | expr ++ expr
| length(expr) | nth(expr, expr)
| {ident: expr,...,ident: expr} | expr:ident
| foldl(var from expr,var in expr,expr)

| minimize(expr,expr) | maximize(expr,expr)
| search(heuristics,expr) | constraint(expr)
| dynamic(expr) | static(expr)

heuristics ::= conjunctive(expr for ident(var,...,var))
| disjunctive(expr for ident(var,...,var))
| ident(expr,...,expr)
| nil | heuristics and heuristics

Free variables are not allowed in rule definitions. Free variables in object
definitions are allowed and denote finite-domain variables. They are indexed by
the head of the definition. For instance, the following definition introduces a new
finite-domain variable in the field row for each value of I.

object queen(I) := { row : _, column : I }.

The concrete Rules2CP implementation introduces some syntactic sugar:

– the let-construction is recursively extended for multiple bindings. For all n,
the let of n+1 bindings let(X0:=e0,...,Xn:=en,e) is defined with the sim-
ple let and the let of n bindings: let(X0:=e0,let(X1:=e1,...,Xn:=en,e)).

– forall(X in l, e) is a synonym for foldl(A from 1, X in l, A and
e) where A is a fresh variable.
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– exists(X in l, e) is foldl(A from 0, X in l, A or e) where A is a
fresh variable.

– map(X in l, e) is foldl(A from [], X in l, A ++ [e]) where A is a
fresh variable.

– reverse(l) is foldl(A from [], X in l, [X] ++ A) where A and X
are fresh variables.

– foldr(A from i, X in l, e) is foldl(A from i,X in reverse(l), e)
where A is a fresh variable.

Example 1. The classical (unavoidable) n-queens problem can be modelled in
Rules2CP as follows. First, the board of queens can be defined by the following
object definitions:

object queen(I) := { row : _, column : I }.
object board(N) := map(I in [1 .. N], queen(I)).

For each integer I, queen(I) defines one record representing the queen in column
I. Then, the goal is to post the constraints over the list of queens B and assign
values to the free variables.

? let(N := 4, B := board(N),
queens_constraints(B, N) and
queens_labeling(variables(B), N)).

The predicate queens_constraints is defined by the following rules.

rule queens_constraints(B, N) := domain(B, 1, N) and safe(B).

rule safe(L) :=
all_different(L) and
forall(Q in L, forall(R in L,
let(I := Q:column, J := R:column,
I < J implies
Q:row # J - I + R:row and
Q:row # I - J + R:row))).

The rule safe(L) ensures that every queen in the list L is on a safe position:
the global constraint all_different prevents row attacks and simple binary
difference constraints prevents diagonal attacks.

The rule for queens_labeling(Vars, N) defines the search through a logical
formula which induces a basic labeling search tree on variables Vars.

rule queens_labeling(Vars, N) :=
search(mo(N), forall(Var in Vars, queens_labeling_var(Var, N))).

rule queens_labeling_var(Var) :=
exists(Val in [1 .. N], queens_labeling_val(Var, Val)).

rule queens_labeling_val(Var, Val) := Var = Val.
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The parameter mo(N) for search refers to the middle out heuristics which is
defined by the following rule:

heuristics mo(N) :=
disjunctive(least(abs(N/2 - Val))

for queens_labeling_val(Var, Val)).

This statement specifies that the disjunctive formulae derived from
queens_labeling_val must be ordered by increasing value of abs(N/2 - Val)
(middle out ordering of values).

2.2 Type System

Rules2CP integrates a type system with five type constructors:

– int for integer values.
– fd for finite domain variables.
– constraint for first-order logic formulas.
– [τ] for (homogeneous) lists whose elements have type τ .
– {f1 :: τ1, ..., fn:: τn} for records with the fields f1, . . . , fn carrying

values of type τ1, . . . , τn respectively.

A free variable in a Rules2CP program is always an FD variable. The boolean
values true and false are not distinguished from the integers 1 and 0.

The type system enjoys a type inference algorithm à la Hindley-Milner: typing
rules are driven by the syntax of the expression and induce type equality con-
straints solved by unification. Type schemes with universal quantification are
given to polymorphic definitions and rules where arguments are not completely
specified.

Arithmetic operators and comparisons are overloaded to deal with both in-
teger values and FD variables. For example, the addition operator is typed
int + int :: int if both arguments are known to be of type int, otherwise it
is typed fd + fd :: fd. It is worth noting that Hindley-Milner does not allow
ad-hoc overloading in general. Here we made the choice to use int to follow
statically known integer values and fd for model variables. Some constructions
are specific to integer values: in particular, the list interval constructor has type
[int .. int] :: [int]. Indexical built-ins transform FD variables into integer
values: min(fd) :: int and max(fd) :: int.

Records are typed with row types [12], and two records are equal when they
have the same set of fields and when fields of the same name carry values of
equal types.

Example 2. Let us consider the two following rules defining the area and volume
of an object. The argument X is only accessed by projection and can be of
any record type containing at least the fields width and height (and depth for
volume).
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area(X) = X:width * X:height
volume(X) = area(X) * X:depth

In the inferred type,

area({ height: fd, width: fd , A }) :: fd
volume ({ depth: fd , height: fd, width: fd , A }) :: fd

the unknown other fields are symbolized by a row variable. Such a row type
containing a row variable is said to be open. Row types without row variables
are closed.

In the following shape object definition

shape(Id) = { id: Id, width = _, height = _ }

the parameter Id can be of any type. The type inferred for shape is polymorphic
and parameterized by a type variable A given to the argument Id. The other ar-
guments are model variables (free variables at the right-hand side of a definition)
and are therefore typed with fd.

shape(A) :: { id: A, width: fd, height: fd }

The Hindley-Milner type inference with row types is known to be decidable with
a theoretical PSPACE-hard time complexity [8]. However, this worst-case time
complexity does not exhibit in practice and the type inference algorithm is very
efficient.

2.3 Declarative Semantics

Let M be a Rules2CP model. Let O(M) be the set of all the objects of M,
let R(M) be the set of all the rules, and Q(M) be the set of all the queries of
M. Queries are interpreted conjunctively: the query associated to M is q(M) =∧

q∈Q(M) q.
This section will characterize the solutions of the Rules2CP model M. A

solution is an assignment of all the free variables of M which satisfies all the
constraints of M. Free variables occurs in the query q(M) and in object defi-
nitions. The free variables in object definitions are distinct for each instance of
the object. The arguments of an object are restricted to belong to the following
grammar.

indexable ::= integer
| [indexable,...,indexable]
| {ident: expr,...,ident: expr}uid

Each indexable value v defines an index id(v) which serves to index the free
variables appearing in the object definition.

id : indexable → index
i ∈ integer �→ constant(i)
[i1,...,in] �→ [id(i1),...,id(in)]

{ident: expr,...,ident: expr}uid �→ uid(uid)
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An assignment for M is a tuple (νQ, νO), where:

– νQ : fv(q(M)) → D
– νO is a family of assignments which maps every object o ∈ O(M) and every

tuple (i1, . . . , in) ∈ indexn, where n is the arity of the head of d, to an
assignment νO

o(i1,...,in) : fv(o) → D

Table 2. Small-step reduction semantics defining the success semantics of Rules2CP
(without distinguishing optimization from satisfaction predicates)

n ∈ N op n′ ∈ N → n op n′

n ∈ N rel n′ ∈ N → δ(n rel n′)

n ∈ {0, 1} logop n′ ∈ {0, 1} → δ(n = 1 logop n′ = 1)

not n ∈ {0, 1} → δ(n = 0)

e → ν̃Q(e)
if query e ∈ Q(M)

o(e1,...,en) → ν̃O
o(id(e1),...,id(en))(e)[X1 := e1, . . . , Xn := en]

if d = object o(X1,...,Xn) := e ∈ O(M)
and (e1, . . . , en) ∈ indexablen

p(e1,...,en) → e[X1 := e1, . . . , Xn := en]
if d = rule p(X1,...,Xn) := e ∈ R(M)

let(x := v,e) → e[x := v]

[n ∈ N .. n′ ∈ N] →
{
[n, n + 1,...,n′] if n ≤ n′

[] otherwise

[e1,...,en] ++ [e′1,...,e
′
n] → [e1,...,en,e

′
1,...,e

′
n]

length([e1, ..., en]) → n

nth(i ∈ {1, . . . , n}, [e1, ..., en]) → ei

{f1: e1,...,fn: en}:fi → ei

foldl(A from i,X in [e1,...,en],e) → i �e e1 �e · · · �e en

where u �e v = e[A := u, X := v]

minimize(g,k)
maximize(g,k)
search(h,g)

constraint(g)
static(g)
dynamic(g)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

→ g

Let δ be the reification operator: δ(�) = 1 and δ(⊥) = 0. A solution for a
model M is an assignment (νQ, νO) for which the query of M is reduced to 1
by the small-step reduction described in table 2.
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Definition 1. The set of observables Os(M) for the success semantics of M is
the set of solutions of M.

Os(M) = {(νQ, νO) | νQ(q(M)) ∗→ 1}

3 Static Expansion Schema

The static expansion schema is defined by two transformations, the first one
producing intermediate code:

1. −−〈stc〉−→ expands a query to the deterministic code which adds the con-
straints

2. −−〈 stc
srch〉−→ expands the search code.

The elimination of negations in formulae by descending them to the constraints
with De Morgans laws are part of transformations, but are not presented.

3.1 Deterministic Code Generation

Built-in operators. Reification transforms boolean values in integers and log-
ical operators in artihmetic operators. Partial evaluation occurs on arithmetic,
comparison and logical operators.

e1 −−〈stc〉−→ e′1 e2 −−〈stc〉−→ e′2
e1 op e2 −−〈stc〉−→ e′1 op e′2

e1 −−〈stc〉−→ e′1 e2 −−〈stc〉−→ e′2
e1 rel e2 −−〈stc〉−→ reify(e′1 rel e′2)

e1 −−〈stc〉−→ e′1 e2 −−〈stc〉−→ e′2
e1 logop e2 −−〈stc〉−→ reify(e′1 = 1 logop e′2 = 1)

e −−〈stc〉−→ e′

not e −−〈stc〉−→ reify(e′ = 0)

Definitions and calls. Within this static expansion schema, definitions are
fully expanded. Free variables in object definitions are indexed and stored in a
table νO.

a1 −−〈stc〉−→ a′
1

. . .
an −−〈stc〉−→ a′

n

e[X1 := a′
1, . . . , Xn := a′

n] −−〈stc〉−→ e′

p(a1,...,an)−−〈stc〉−→ e′

{
r = rule p(X1,...,Xn) := e ∈ R(M)
fv(r) = ∅
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a1 −−〈stc〉−→ a′
1

. . .
an −−〈stc〉−→ a′

n

σ(e)[X1 := a′
1, . . . , Xn := a′

n] −−〈stc〉−→ e′

p(a1,...,an)−−〈stc〉−→ e′

⎧⎪⎨
⎪⎩

d = object o(X1,...,Xn) := e ∈ R(M)
σ = νO

o(id(a′
1),...,id(a′

n))

dom(σ) = fv(d)

Lists. If its bounds are statically instantiated, a range is reduced to the list of
integers that it contains by partial evaluation.

e1 −−〈stc〉−→ l . . . en −−〈stc〉−→ u

[e1 .. e2]−−〈stc〉−→ [l, l + 1,..., u]

{
l, u ∈ N

l ≤ u

l1 −−〈stc〉−→ [d1, . . . , dn] l2 −−〈stc〉−→ [e1, . . . , em]
l1 ++ l2 −−〈stc〉−→ [d1,...,dn, e1,...,en]

e1 −−〈stc〉−→ e′1 . . . en −−〈stc〉−→ e′n
[e1,...,en]−−〈stc〉−→ [e′1,...,e

′
n]

Records. Record projection need the record to be statically instantiated.

ei −−〈stc〉−→ e′i
{f1: e1,...,fn: en }:fi −−〈stc〉−→ e′i

fi ∈ {f1, . . . , fn}

e1 −−〈stc〉−→ e′1 . . . en −−〈stc〉−→ e′n
{f1: e1,...,fn: en } −−〈stc〉−→ {f1: e′1,...,fn: e′n }

Let-binding. Substitutions are implicitly operated modulo alpha-conversion.

v −−〈stc〉−→ v′

let(X := v, e)−−〈stc〉−→ e[X := v′]

Combinators. Combinators are expanded and require their list and initial
element arguments to be statically instantiated.

i −−〈stc〉−→ i0 l −−〈stc〉−→ [e1, . . . , en]
i0 �e e1 −−〈stc〉−→ i1

i1 �e e2 −−〈stc〉−→ i2 . . . in−1 �e en −−〈stc〉−→ in

foldl(A from i, X in l, e)−−〈stc〉−→ in

where u �e v = e[A := u, X := v].
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Search. By default, a logic formula f defines a reified constraint. In the context
of a search(f) predicate, f defines a search tree.

f −−〈 stc
srch〉−→ f ′

search(f)−−〈stc〉−→ f ′
f −−〈stc〉−→ f ′

constraint(f)−−〈stc〉−→ f ′

A predicate minimize(f, c) minimizes the value of the finite domaine variable
V denoted by c following a branch and bound search. f is a formula implicitly
interpreted as a search tree that constrain V to an assignment.

search(e)−−〈 stc
srch〉−→ e′ c−−〈stc〉−→V

p(e, c)−−〈stc〉−→ p(e′, V )

{
p ∈ {minimize,

maximize}

Dynamic mode. It is possible to dynamically evaluate (see Sec. 4) an expres-
sion instead of statically expand it with the predicate dynamic/1.

e −−〈dyn〉−→ e′

dynamic(e)−−〈stc〉−→ e′
e −−〈stc〉−→ e′

static(e)−−〈stc〉−→ e′

Example 3. For the n-queens model presented in example 1, the static expansion
compilation schema procudes the following intermediate code for n = 4:

domain([Q_1_1,Q_2_1,Q_3_1,Q_4_1], 1, 4) and
all_different([Q_1_1,Q_2_1,Q_3_1,Q_4_1]) and
Q_1_1 # 1+Q_2_1 and Q_1_1 # -1+Q_2_1 and
Q_1_1 # 2+Q_3_1 and Q_1_1 # -2+Q_3_1 and
Q_1_1 # 3+Q_4_1 and Q_1_1 # -3+Q_4_1 and
Q_2_1 # 1+Q_3_1 and Q_2_1 # -1+Q_3_1 and
Q_2_1 # 2+Q_4_1 and Q_2_1 # -2+Q_4_1 and
Q_3_1 # 1+Q_4_1 and Q_3_1 # -1+Q_4_1 and

search(Q_1_1 = 2 or Q_1_1 = 3 or Q_1_1 = 1 or Q_1_1 = 4 and
Q_2_1 = 2 or Q_2_1 = 3 or Q_2_1 = 1 or Q_2_1 = 4 and
Q_3_1 = 2 or Q_3_1 = 3 or Q_3_1 = 1 or Q_3_1 = 4 and
Q_4_1 = 2 or Q_4_1 = 3 or Q_4_1 = 1 or Q_4_1 = 4)

It is worth noting that the complete cartesian product of all queens is not gener-
ated for the binary difference constraints thanks to the partial evaluation mech-
anism.

3.2 Non-deterministic Code Generation

By the −−〈 stc
srch〉−→ transformation, the conjunction operator and becomes a se-

quence operator and the disjunction operator or becomes a non-deterministic
choice operator.

The formula f is expanded following −−〈stc〉−→ schema and the modification
described above is operated giving a non-deterministic code f ′ : f −−〈 stc

srch〉−→f ′.
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3.3 Correctness and Complexity of the Static Expansion Schema

Proposition 1. Given a Rule2CP model M, let M′ such that M −−〈stc〉−→
M′, then Os(M) = Os(M′) ( i.e., −−〈stc〉−→ preserves the model declarative
semantics.)

Proof. For every assignment (νQ, νO) for M, we check inductively on the deriva-
tion of −−〈stc〉−→ and −−〈 stc

srch〉−→ that νQ(M) ∗→ νQ(M′). Most of derivations
are independent from assignment and verify this property by definition. Calls
to object definitions are restricted to indexable arguments and the table νO is
used for indexation. −−〈 stc

srch〉−→ schema does not change the set of solutions with
respect to −−〈stc〉−→.

Definition 2. Given a Rule2CP model M, the fold rank α(s) of a symbol s is
defined inductively by:

α(s) = 0 if s is not the head symbol of a declaration or rule in M,
α(s) =max{n + α(s′) | L = R ∈ M, s is the head symbol of L and R con-
tains a nesting of n fold operators or quantifiers on an expression containing
symbol s′}.

The fold rank of M is the maximum fold rank of the symbols in M.

Definition 3. the definition rank ρ(s) of a symbol s is defined inductively by:

ρ(s) = 0 if s is not the head symbol of a clause in M,
ρ(s) = n + 1, if s is the head symbol of a clause in M and n is the greatest
definition rank of the symbols in the right hand side of the clause.

The definition rank of M is the maximum definition rank of the symbols defined
in M.

Proposition 2. [4] For any Rules2CP model M, the size of the generated pro-
gram is in O(la ∗ br), where l is the maximum length of the lists in M (or at
least 1), a is the fold rank of M, b is the maximum size of the declaration and
rule bodies in M, and r is the definition rank of M.

Example 4. The fold rank of the n-queens model presented in example 1 is 2.
Therefore the size of the generated program is in O(l2). The bound is tight in
this example.

Example 5. The exponential size of the generated code in the definition rank of
the model can be reached with the following model:

rule c1(A) := c2(A+1) and c2(2*A)
rule c2(A) := c3(A+1) and c3(2*A)
...
rule cn(A) := c(A+1) and c(2*A)
rule c(A) := A # 666

In this example, the generated code for the query c1(X) is of size 2n.
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4 The Dynamic Compilation Schema

The dynamic compilation schema is defined by two transformations which pro-
duce intermediate code. The first transformation, noted −−〈dyn〉−→, expands a
query to a deterministic code which adds the constraints and calls the dynamic
search part. The second transformation, noted −−〈 dyn

srch〉−→, rewrites the search
part to a non-deterministic code which performs the reordering and search. The
intermediate code follows the syntax of Rules2CP programs but allows recursion.
Search-tree directives S are eliminated and reformulated by −−〈 dyn

srch〉−→.
It is worth noting that the operator or represents a reified ∨-constraint in

the deterministic code, and a choice-point in the non-deterministic code. The
syntactic construction delay(p(X)) is introduced in the intermediate code to
denote the symbolic term p(X) as opposed to a call to the definition p(X).
Such an intermediate code is then straightforward to translate to a Prolog or
Java program.

To illustrate dynamic compilation, let us consider two rule definitions that
constrain the shape of objects in a simple two-dimensional placement problem
of thin sticks, where the sticks can be either short (from 1 to 5 units), normal
(from 11 to 15 units) or long (from 21 to 25 units). A stick is a 1-unit wide
rectangle which can be either horizontal or vertical.

shape constraint(O) = exists(S, [1, 11 , 21],
shape stick(O, S, S + 4)).

shape stick(O, Min, Max) = domain(O:w, Min, Max) and O:h = 1

or domain(O:h, Min, Max) and O:w = 1.

The compilation scheme for fold described in the next section transforms the
expression shape constraint(S) into a code computing the same answers as
the following unfolded expression:

((1≤S:w and S:w≤1+4) and S:h=1) or ((1≤S:h and S:h≤1+4) and S:w=1)
or (((11≤S:w and S:w≤11+4) and S:h=1) or ((11≤S:h and S:h≤11+4) and S:w=1)

or (((21≤S:w and S:w≤21+4) and S:h=1) or ((21≤S:h and S:h≤21+4) and S:w=1)
or false)).

(1)

4.1 Transformation of the Query to Deterministic Code

V � ·−−〈dyn〉−→· reformulates search directives inductively over the structure of
Rules2CP expressions as follows. V is supposed to contain all the free variables
appearing in the expression: V is used to pass the context to auxiliary definitions
introduced by the translation.

Each definition p(X) = e is translated in the intermediate code to the defi-
nition: pd(X) = e′, where fv(e) � e−−〈dyn〉−→ e′. Then, translated calls rely on
these definitions: V � p(X) −−〈dyn〉−→ pd(X)

Recursive predicates iterating on lists are generated for each fold.

V � l −−〈dyn〉−→ l′ V � i −−〈dyn〉−→ i′

V � foldl(A from i, X in l, e)−−〈dyn〉−→ q(l′, i′, V )
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with q a new predicate symbol described by the following definitions, where all
variables are fresh with respect to V :

q([], I, V ) = I.

q([H | T], I, V ) = q(T, e′, V ). V � e[A := I, X := H ] −−〈dyn〉−→ e′

Other cases for −−〈dyn〉−→ are defined homomorphically with respect to sub-
expressions, taking care of scopes and name clashes: e.g.,

V � d −−〈dyn〉−→ d′ V · X � e[V := X ]−−〈dyn〉−→ e′

V � let(V = d in e)−−〈dyn〉−→ let(X = d′ in e′)

where X is a fresh variable.
Search directives rely on the search transformation (defined in Sec. 4.2).

V � h −−〈dyn〉−→ conjunctive(o1
∧) ... and conjunctive(on

∧) and
disjunctive(o1

∨) ... and disjunctive(om
∨ )

([o1
∧, . . . , on

∧], [o1
∨, . . . , om

∨ ]); V � e −−〈 dyn
srch〉−→ e′

V � search(h, e)−−〈dyn〉−→ e′

4.2 Transformation of the Search to Non-deterministic Code

The compilation of the search-strategy relies on the notion of O-layers in a tree:
for O ∈ {∧,∨}, we call O-layer of an ∧/∨-tree any maximal tree sub-graph with
either only ∧-nodes or only ∨-nodes.

The following ∧/∨-tree corresponds to the expression (1) given in the previous
section, where layers have been circled:

∨∨∧
∧

1≤S:w S:w≤1+4 S:h=1 ∧
∧

1≤S:h S:h≤1+4 S:w=1

∨∨∧
∧

11≤S:w S:w≤11+4 S:h=1 ∧
∧

11≤S:h S:h≤11+4 S:w=1

∨∨∧
∧

21≤S:w S:w≤21+4 S:h=1 ∧
∧

21≤S:h S:h≤21+4 S:w=1

false
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The definition of O-layers is generalized for Rules2CP expression syntax trees,
by letting layers go through let-bindings, definition calls, and in the right-hand
side of implies and through the tree intentionnaly constructed by fold. The
child nodes of a layer are the nodes which are child of a node in the layer without
being themselve in the layer. The root O-layer is the O-layer containing the root
node if it is not the dual of O, or the empty layer otherwise. By convention,
the root node is the (only) child of the empty layer. Tree reordering is applied
between all the child nodes of each O-layer: criteria defined for O ∈ {∧,∨}
associate a vector of scores to each child and children are reordered according
to their scores, lexicographically (the score returned by the first criterion for O
is considered first, then, in case of equality, the score of the second criterion for
O, and so on).

Neither the tree (due to fold over arbitrary lists) nor the scores (due to
indexicals) are supposed to be completely known at compile-time. Therefore,
the transformation generates code for computing the reordering at execution-
time rather than computing the reordering statically.

For a fixed pair of criteria (o∧, o∨), (o∧, o∨); V � ·−−〈 dyn
srch〉−→· produces code

which reorders the root O-layer of the tree and explores its children sequentially.
c∧ and c∨ are current score vectors (they have the same dimension than o∧
and o∨ respectively). Initially, scores are c−∞

∧ and c−∞
∨ , vectors whose every

component equals to bottom, since no criteria apply outside any definition. V �
·−−〈 dyn

srch〉−→· is arbitrarily defined as (c−∞
∧ , c−∞

∨ ); V � ·−−〈 dyn
srch(∧)〉−→· to initiate

the transformation (the root layer, possibly empty, can always be considered
as being an ∧-layer). · −−〈 dyn

srch(O)〉−→ · relies on the auxiliary transformation

(c∧, c∨); V � · −−〈 dyn
list(O)〉−→ · which produces code computing an associative

list: for each child node of the O-layer, the score vector of the node is associated
to the definition to call to explore the child recursively.

(c∧, c∨); V � e −−〈 dyn
list(O)〉−→ e′

(c∧, c∨); V � e −−〈 dyn
srch(O)〉−→ iter predicatesO(e

′)

where iter predicatesO(L) is an internal function which iteratively selects
the item of L which has the best score, executes the associated definition, then
consider the other items recursively, either in conjunction or in disjunction, ac-
cording to O.

Definitions and calls. For each definition p(X) = e, the compilation pro-
duces two definitions in the intermediate code, one for each kind of layer:

(u(C∧, o∧, p(X)), C∨); fv(e) � e −−〈 dyn
srch(∧)〉−→ e′

(o∧, o∨); V � rule p(X) := e −−〈 dyn
srch(∧)〉−→ p∧(C∧, C∨, X) = e′

(C∧, u(C∨, o∨, p(X))); fv(e) � e −−〈 dyn
srch(∨)〉−→ e′

(o∧, o∨); V � rule p(X) := e −−〈 dyn
srch(∨)〉−→ p∨(C∧, C∨, X) = e′
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where the function u(c, o, p(X)) calculates the score vector c′, where compo-
nents corresponding to criteria matching p(X) are updated:

u(−→ci ,
−−−−−−−−−−−→
ei for pi(Xi), p(X)) =

−→
c′i

where:

c′i =

{
σ(ei) if σ(pi(Xi)) = p(X)

ci otherwise

Calls rely on one of these two definitions, depending on the kind of the current
layer.

(c∧, c∨); V � p(X)−−〈 dyn
list(O)〉−→ pO(c∧, c∨, X)

Boolean operators. −−〈 dyn
list(∧)〉−→ aggregates lists in the root ∧-layer. A new

predicate q is introduced for each child node of the ∧-layer.

(c∧, c∨); V 	 a −−〈 dyn
list(∧)〉−→ a′ (c∧, c∨); V 	 b −−〈 dyn

list(∧)〉−→ b′

(c∧, c∨); V 	 a and b −−〈 dyn
list(∧)〉−→ append(a′

, b′)

(c∧, c∨); V 	 a or b −−〈 dyn
list(∧)〉−→ [{costs = c∧,

predicate = delay(q(c∧, c∨, V )) }]

where q applies the transformation recursively to the sub-∨-layer (all variables
are fresh with respect to V ):

q(C∧, C∨, V ) = e. (C∧, C∨); V � a or b −−〈 dyn
srch(∨)〉−→ e

Dual definitions hold for −−〈 dyn
list(∨)〉−→

Filtering

V � a −−〈dyn〉−→ a′ (c∧, c∨); V � b −−〈 dyn
list(O)〉−→ b′

(c∧, c∨); V � a implies b −−〈 dyn
list(O)〉−→ filter(cO, a′, b′)

where, filter(c, e, e′) is an internal function which returns e′ if e is true,
and returns the singleton list [{ costs = c, predicate = delay(true) }]
otherwise.
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Let-binding

V � v −−〈dyn〉−→ v′ (c∧, c∨); V · Y � e[X := Y ] −−〈 dyn
list(O)〉−→ e′

(c∧, c∨); V � let(X = v in e)−−〈 dyn
list(O)〉−→ let(Y = v′, e′)

where Y is a fresh variable.

Aggregators. Aggregators use a special source symbol, rec, to handle
recursion.

V 	 reverse(l) −−〈dyn〉−→ l′

(c∧, c∨); V 	 foldl(A from i, X in l, e)−−〈 dyn
list(O)〉−→ qO(l

′
, c∧, c∨, V )

where qO is a new predicate symbol described by the following definitions (all
variables are fresh with respect to V ):

qO([],C∧,C∨,V ) = i′.

qO([H | T],C∧,C∨,V ) = e′.

(C∧, C∨); V 	 i −−〈 dyn
list(O)〉−→ i′

(C∧, C∨); V · H 	
e[A := rec(q, T, V ), X := H ] −−〈

dyn
list(O)〉−→ e′

and rec is translated to a recursive call to q:

(c∧, c∨); V · H � rec(q, T, V )−−〈 dyn
list(O)〉−→ qO(T, c∧, c∨, V )

Constraints and sub-search directives. Constraints and sub-search direc-
tives are children of the layer, therefore the transformation produces singleton
lists associating their score to a fresh predicate q.

(c∧, c∨); V � e −−〈 dyn
list(O)〉−→ [{costs = cO,

predicate = delay(q(V )) }]
where q applies the transformation recursively (all variables are fresh with
respect to V ):

q(V ) = e′. V � e −−〈dyn〉−→ e′

Property 1. There are O(d · s) pd-, p∨- and p∧-definitions in intermediate code,
where d is the number of definitions in the Rules2CP code and s is the number of
search clauses. Each definition in the intermediate code, including the auxiliary
definitions for fold and sub-layers, has a size linear in the size of the original
Rules2CP definition. In particular, if there is one search clause, the intermediate
code has a size linear in the size of the original Rules2CP code. The complexity
of the transformation is linear in the size of the generated code.

Proof. −−〈dyn〉−→ and −−〈dyn
list 〉−→ are inductive transformations where each step

linearly composes results of the sub-transformations, either in auxiliary defini-
tions or in-place expressions. Therefore, there exists a multiplicative constant
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factor between the size of the generated definitions and the size of the original
Rules2CP definition. For each Rules2CP definition p(X), there is one definition
pd in the intermediate code, plus two definitions p∨ and p∧ by search clauses.

This complexity result contrasts with Rules2CP transformation complexity[4]
where definition unfolding leads to exponential code size in the worst case.

Example 6. Consider the result of transforming the 4-queens Rules2CP model by
the dynamic compilation schema. Instead of expanding rule definitions as in the
static schema, the dynamic schema generates one definition of the intermediate
code for each definition, e.g. safe/1 and queens_constraints/1, as follows:

safe(L) =
all_different(rcp_variables(L)) and safe_foldl_2(L, 1, []).

queens_constraints(B, N) =
domain(rcp_variables(B), 1, N) and safe(B).

Similarly, one (recursive) definition is generated for each aggregator of the model,
e.g. the two nested universal quantifiers:

safe_foldl_2([], I_safe_foldl_2, _) = I_safe_foldl_2.
safe_foldl_2([Q_2 | Tail_2], I_safe_foldl_2, []) =
safe_foldl_2(Tail_2, I_safe_foldl_2 and
safe_foldl_3(L,1,Q_2), []).

safe_foldl_3([], I_safe_foldl_3, _) = I_safe_foldl_3.
safe_foldl_3([R_3 | Tail_3], I_safe_foldl_3, [Q_2]) =
safe_foldl_3(Tail_3,

(I_safe_foldl_3 and
let(I := rcp_att(Q_2, column),

J := rcp_att(R_3, column),
I < J implies
rcp_att(Q_2, row) # J - I + rcp_att(R_3, row) and
rcp_att(Q_2, row) # I - J + rcp_att(R_3, row))),

[Q_2]).

As for the search component, all rules in the scope of a search predicate generate
two definitions of the intermediate code, one for a use in a conjunctive context
and one for the disjunctive context.

When compiled with the dynamic schema, the model presented in the example
1 can be advantageously modified by writing the rule queens_labeling_var as
follows:

rule queens_labeling_var(Var) :=
exists(Val in [domain_min(Var) .. domain_max(Var)],

queens_labeling_val(Var, Val)).
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Here, the existential quantifier ranges over the actual bounds of queen variables
instead of [1 .. N] as in the static version, thus allowing the search to benefit
from propagation.

Similarly, the search tree ordering heuristics can be written with a dynamic
criterion as follows:

heuristics mo :=
disjunctive(
least(abs((domain_max(Var) - domain_min(Var))/2 - Val))
for queens_labeling_val(Var, Val)).

5 Evaluation

In this section, we first compare the compilation times and run times of Rules2CP
and Cream. The performances are measured on classical N-Queens, Bridge
Scheduling, and Open-Shop Scheduling problems. Then, we report performances
of Cream on the Optimal Rectangle Packing problem which illustrates the need
for dynamic search strategies that cannot be compiled with the static expansion
schema.

5.1 Comparison of Both Compilation Schemes

The Bridge problem consists in finding a schedule, involving 46 tasks subject to
precedence, distance and resource requirement constraints, that minimizes the
time to build a five-segment bridge [14] p. 209.

The Open-Shop problem consists in finding the non-preemptive schedule with
minimal completion time of a set J of n jobs, consisting each of m tasks, on a
set M of m machines. The processing times are given by a m × n-matrix P , in
which pij ≥ 0 is the processing time of task Tij ∈ T of job Jj to be done on
machine Mi. The tasks of a job can be processed in any order, but only one
at a time. Similarly, a machine can process only one task at a time. Here, the
j6-4 (n = m = 6) and j7-1 (n = m = 7) Open-Shop problem instances (Brucker
et al. [1]) are considered.

Table 3 compares the compilation and execution runtimes in seconds in Cream
with those obtained in Rules2CP.

In all N-Queens instances, the “first-fail variables selection heuristics” is ap-
plied. In Rules2CP, first-fail is handled by the SICStus labeling/2 built-in,
whereas in Cream selection is handled by generated code (leaning on the
domain size/1 predicate in this case).

In all scheduling problem instances, the same heuristics on disjunctive formu-
lae with static criterion “schedule first the task that has the greatest duration”
was used. The implementation of the Cream compiler is a proof of concept of the
transformations presented in Sec. 4, and no effort has been made yet to improve
performances.

When heuristics on formulae are involved, the compilation in Cream is about
twice faster than in Rules2CP because ordering is delayed to execution time and
partial evaluation does not occur.
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Table 3. Rules2CP and Cream programs runtimes in seconds

Rules2CP Cream
Compilation Solving Compilation Solving

8-Queens 0.070 0.000 0.020 0.000
16-Queens 0.290 0.000 0.020 0.020
32-Queens 1.840 0.005 0.020 0.080
64-Queens 15.430 0.030 0.020 0.340
96-Queens 58.510 0.060 0.020 0.740

Bridge 0.360 0.150 0.200 0.370
Open-Shop j6-4 1.370 160 0.790 325
Open-Shop j7-1 2.150 1454 1.310 2327

On the one hand, Cream yields structured constraint programs including (re-
cursive) clauses as a programmer would have written the model in Prolog. On the
other hand, Rules2CP produces optimized flatten constraint programs by com-
plete expansion of definitions and record projections with partial evaluation.

Solving runtimes of constraint programs generated by Cream are twice slower
than those generated by Rules2CP. This overhead is explained by the following
reasons: (a) in both Rules2CP and Cream, finite domain variables are global
variables. But in constraint programs generated with Cream, they are handled
by a backtrackable table associating names with actual variables. Whereas pro-
grams generated by Rules2CP does not need such a mechanism because of the
complete expansion scheme; (b) In Rules2CP, partial evaluation at compile-time
avoids the need of Prolog tests for handling logical implication as it is the case
in programs generated with Cream; (c) record projections, finite domain arith-
metic expressions computation, and goal calls in general are yet other sources of
overhead. As we considered optimization problems, this aggregation of overheads
for one call of the search goal is to multiply by the number of iterations of the
branch and bound algorithm; (d) finally, priority queues could advantageously
substitute for lists of pairs to enumerate children of layers.

It is worth noticing that these points are mainly implementation details and
should be avoided in future work by an optimizing compiler.

5.2 Dynamic Search Strategies

Our work on rule-base modelling languages for constraint programming origi-
nates from the EU project Net-WMS1 which aims at solving real-size non-pure
bin packing problems of the automotive industry. Three-dimensional Packing
problems tackled in this project involve many business constraints, in addi-
tion to pure containment and non-overlapping constraints. To solve efficiently
these problems, it is mandatory to benefit as much as possible from propagation
during the search. Hence the need of expressing dynamic search strategies which
depend on the values or domains of variables at runtime.
1 http://net-wms.ercim.org
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Table 4. Optimal Rectangle Packing problem runtimes in seconds (Linux / Intel Core2
CPU, 2.83GHz)

n Compilation Solving
Cream Cream Reference

18 0.650 17 9
19 0.700 17 8
20 0.780 30 17
21 0.810 100 63
22 0.870 430 297
23 0.930 2700 1939
24 0.980 3900 2887
25 1.060 27020 20713

The Optimal Rectangle Packing problem, also known as Korf’s benchmark
[9], consists in finding the smallest rectangle containing n squares of sizes Si = i
for 1 ≤ i ≤ n. In [13], Simonis and O’Sullivan have provided a simple but
efficient dynamic search strategy for solving this problem in SICStus Prolog,
improving the best known runtimes obtained by Korf up to a factor of 300.
We have transposed their model in Cream and report the performance figures
obtained with the same SICStus Prolog system in table 4.

Table 4 shows that with fast compilation times, Cream generates SICStus
Prolog code nearly as efficient as the hand-written SICStus Prolog program of
[13] for the different instances of the problem.

6 Conclusion

Modelling languages for stating combinatorial optimization problems can be
interpreted to produce executable constraint programs by fundamentally two
compilation schemas: the static expansion schema and the procedural code gen-
eration schema. We have shown that the static expansion schema may generate
constraint programs of exponential size in the level of nesting of definitions
(which remains limited in practice), while the code generation schema generates
code of linear size. In our implementation of both schemas for the rule-based
modelling language Rules2CP, we have shown that the code generation schema
exhibits a time overhead of approximatively a factor 2 at runtime w.r.t. the stat-
ically expanded code. Furthermore the code generation schema makes it possible
to benefit from propagation during search by executing dynamical search strate-
gies specified in Rules2CP with a good efficiency as shown on optimal rectangle
packing problems. All these results thus militate in favor of the procedural code
generation schema which should probably be preferred to the static expansion
schema.

The declarative specification of ordering heuristics by pattern matching
on rules’ left-hand sides introduced in Rules2CP should also be applicable to
other modelling languages that use definitions, such as Zinc [11,3] for instance.
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A natural extension for future work is the specification of more complex search
procedures which are currently limited in our system to depth-first backtracking
and branch and bound search.

Acknowledgements. We acknowledge support from European FP6 Strep
project Net-WMS, and discussions with the partners of this project. Special
thanks go to Sylvain Soliman for his insights and to Sunrinderjeet Singh who
developped the Rules2CP models for Open-Shop.

References

1. Brucker, P., Hurink, J., Jurisch, B., Wöstmann, B.: A branch & bound algorithm for
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Solving the Static Design Routing and Wavelength
Assignment Problem
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Abstract. In this paper we present a hybrid model for the static design vari-
ant of the routing and wavelength assignment problem in directed networks, an
important benchmark problem in optical network design. Our solution uses a de-
composition into a MIP model for the routing aspect, combined with a graph
coloring step modelled using either MIP (Coin-OR), SAT (minisat) or finite do-
main constraints (ECLiPSe). We consider two possible objective functions, one
minimizing the maximal number of frequencies used on any of the links, the other
minimizing the total number of frequencies used. We compare the models on a set
of benchmark tests, results show that the constraint model is much more scalable
than the alternatives considered, and is the only one producing proven optimal or
near optimal results when minimizing the total number of wavelengths.

1 Introduction

The routing and wavelength assignment problem (RWA) [10,1,17] in optical networks
considers a network where demands can be transported on different optical wavelengths
through the network. Each accepted demand is allocated a path from its source to its
sink, as well as a specific wavelength. Demands routed over the same link must be
allocated to different wavelengths, while demands whose paths are link disjoint may
use the same wavelength.

The RWA problem is a well studied, important problem in optical network design, for
which many problem variants have been considered. Depending on the technology used,
the network may be assumed to be directed or undirected. The static design problem
considers the problem of allocating all given demands on the network topology, using
the minimal number of frequencies. The demand acceptance problem considers a fixed,
given number of frequencies on all links in the network. The objective is to accept
the maximal number of demands in the network. In this paper we discuss the static
design problem in a directed network, while a constraint-based solution for the demand
acceptance problem has been described in [13].

More formally, we are considering a directed network G = (N, E) of nodes N and
edges E. A demand d ∈ D is between source s(d) and sink t(d). We use the notation
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from Cisco Systems and the Silicon Valley Community Foundation is gratefully acknowledged.
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In(n) and Out(n) to denote all edges entering resp. leaving node n. An a priori upper
bound on the number of available wavelengths is required, we use the set Λ for this
purpose.

Figure 1 shows one of the example networks we will use in the evaluation, with just
two demands (5-13) and (1-12). On the left, the demands are allocated to different fre-
quencies (colours), and thus can share link 8-9, on the right they use the same frequency,
and therefore must be routed on link disjoint paths.

Assigned different frequencies Assigned link disjoint paths
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Fig. 1. Example Network nsf with 2 Demands

1.1 Basic Problem

We can formulate a basic model of the problem with two sets of 0/1 integer variables.
Variables yλ

d denote whether demand d is accepted using wavelength λ, variables xλ
de

state whether edge e is used to transport demand d on wavelength λ.

min max
e∈E

∑
d∈D,λ∈Λ

xλ
de (1)

s.t.

yλ
d ∈ {0, 1}, xλ

de ∈ {0, 1} (2)

∀d ∈ D :
∑
λ∈Λ

yλ
d = 1 (3)

∀e ∈ E, ∀λ ∈ Λ :
∑
d∈D

xλ
de ≤ 1 (4)

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈In(s(d))

xλ
de = 0,

∑
e∈Out(s(d))

xλ
de = yλ

d (5)

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈Out(t(d))

xλ
de = 0,

∑
e∈In(t(d))

xλ
de = yλ

d (6)

∀d ∈ D, ∀λ ∈ Λ, ∀n ∈ N \ {s(d), t(d)} :
∑

e∈In(n)

xλ
de =

∑
e∈Out(n)

xλ
de (7)
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Constraint (2) enforces integrality of the solution, constraint (3) states that all demands
must be accepted and must use exactly one wavelength. The clash constraint (4) states
that on each edge, only one demand may use any given wavelength. We further have
constraints (5) and (6), which link the x and y variables at the source (resp. sink) of each
demand. Finally, constraint (7) enforces flow balance on all other nodes of the network.

1.2 Extended Problem

Note that this model minimizes the maximal number of frequencies used on any link,
not the overall number of frequencies. For this we have to introduce another set of 0/1
indicator variables zλ which state whether wavelength λ is used by any demand in the
network. The objective is then to minimize the sum of the zλ variables. We also impose
inequality constraints between xλ

de and zλ variables in constraint (11) of the following,
extended model which force the indicator variable for a frequency to be set as soon as
one demand uses the frequency.

It is not clear a priori whether the basic or the extended model capture the objective
of minimizing the number of frequencies used, we will have to consider both alterna-
tives in our solution approach. Both variants occur in the literature [5], without a clear
indication which would be more relevant in practice.

min
∑
λ∈Λ

zλ (8)

s.t.

zλ ∈ {0, 1}, yλ
d ∈ {0, 1}, xλ

de ∈ {0, 1} (9)

∀d ∈ D :
∑
λ∈Λ

yλ
d = 1 (10)

∀d ∈ D, ∀e ∈ E, ∀λ ∈ Λ : xλ
de ≤ zλ (11)

∀e ∈ E, ∀λ ∈ Λ :
∑
d∈D

xλ
de ≤ 1 (12)

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈In(s(d))

xλ
de = 0,

∑
e∈Out(s(d))

xλ
de = yλ

d (13)

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈Out(t(d))

xλ
de = 0,

∑
e∈In(t(d))

xλ
de = yλ

d (14)

∀d ∈ D, ∀λ ∈ Λ, ∀n ∈ N \ {s(d), t(d)} :
∑

e∈In(n)

xλ
de =

∑
e∈Out(n)

xλ
de (15)

Figure 2 shows the difference between the basic and extended cost on a small example
with three nodes 1, 2, 3 and three demands A, B, C. On each directed link we need
only two colours, that means that the basic model has cost 2, but overall we need three
colours for a feasible solution, the extended model therefore has cost 3.
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Fig. 2. Difference Between Basic and Extended Cost

1.3 Contribution and Related Work

As the complete model is quite hard to solve, it has been suggested before [1] that a
two-step decomposition into a routing and a wavelength assignment phase would be
a good solution technique for this problem. We re-use this idea, but strengthen it by
improving each phase with some new techniques.

The main contributions of this paper are

– a comparison of different, generic solution methods for the generated graph color-
ing problem, using MIP, SAT and finite domain constraint programming,

– a new, very accurate lower bound to the RWA problem based on a resource-based
relaxation of an existing, source aggregation MIP solution,

– experimental results showing that using constraint programming very high quality
solutions are obtained by this method in seconds, significantly outperforming the
other techniques,

– results indicate that the basic problem is relatively easy to solve with a variety of
techniques, while the extended problem is much harder.

The RWA problem has been studied using many different solution methods, see [4]
for an overview. We can distinguish two main approaches. Greedy heuristics use local
search techniques to accept demands incrementally, providing fast solutions for large
problem cases, but without a formal guarantee of solution quality. Alternatively, com-
plete methods, mainly based on ILP (Integer Linear Programming) techniques, can pro-
vide optimal solutions, but are restricted in the problem size handled [5,6].

The static design problem considered here requires a somewhat different solution
approach than the demand acceptance problem discussed in [13]. It uses a similar two-
phase decomposition, but the relaxation of the second phase is much simpler, handled
by adding additional frequencies rather than using explanation techniques to identify
demands to be removed from the problem. At the same time, the resource MIP prob-
lems seems more difficult to solve for the static design case, restricting scalability with
regards to network size.

A general overview of constraint applications in the network domain is given in [12].
Smith in [14] discusses a design problem for optical networks, but this is restricted to a
ring topology, and minimizes the need for ADM multiplexers.

The RWA problem considered here is not too far removed from the static design
problem in MPLS traffic engineering (MPLS-TE) in IP networks, which has been ap-
proached with multiple hybrid constraint solution techniques as described in [8,7,12].
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The main difference is that demands in the MPLS-TE problem have integer sizes and
overall link capacity limits are enforced instead of clash constraints. Note that the choice
of objective function (static design vs. demand acceptance) also plays a major role in
influencing the solution methods for MPLS-TE.

2 Source Aggregation

The direct formulation of the problem based on (1) or (8) does not scale well for increas-
ing network size or number of demands. A possible improvement has been described
in the literature for the RWA by aggregating flows for all demands originating in the
same source node. This removes some of the symmetries that have to be considered and
reduces the problem sensitivity to increasing number of demands. We can adjust the
source aggregation model used in [13] based on [5] to the different objective functions
discussed here, this leads to the following model for the basic problem:

min zmax (16)

s.t.

zmax ∈ {0, 1...|Λ|}, xλ
se ∈ {0, 1} (17)

∀e ∈ E, ∀λ ∈ Λ :
∑
s∈N

xλ
se ≤ 1 (18)

∀s ∈ N, ∀λ ∈ Λ :
∑

e∈In(s)

xλ
se = 0 (19)

∀s ∈ N, ∀d ∈ Ds, ∀λ ∈ Λ :
∑

e∈In(d)

xλ
se ≥

∑
e∈Out(d)

xλ
se (20)

∀s ∈ N, ∀d ∈ Ds :
∑
λ∈Λ

∑
e∈In(d)

xλ
se =

∑
λ∈Λ

∑
e∈Out(d)

xλ
se + Psd (21)

∀s ∈ N, ∀n �= s, n /∈ Ds, ∀λ ∈ Λ :
∑

e∈In(n)

xλ
se =

∑
e∈Out(n)

xλ
se (22)

∀e∈E :
∑
s∈N

∑
λ∈Λ

xλ
se ≤ zmax (23)

Constraints (17) define the integrality conditions. Constraint (18) specifies the clash
constraint between demands from different sources. Constraint (19) states that demands
originating in s can not be routed through s, while constraints (20) and (21) consider
the destinations of demands originating in s and state that the correct number Psd of
demands must be dropped in each node. Constraint (22) enforces flow balance at all
other nodes of the network. The integer objective value zmax is linked to the decision
variables via the inequalities (23) which bound the cost by the maximal number of
frequencies used on any link of the network.

If we change the objective function to handle the extended problem, we find that the
model can no longer solve realistic problem instances.
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3 Solution Approach

In this section we describe our solution approach which is based on a simple decom-
position strategy already proposed in [1]. A solution to the static design RWA problem
must consider the following three activities:

1. Choose path for each demand
2. Assign wavelength for each demand
3. Minimize number of wavelengths used (basic or extended model)

We choose a decomposition technique which handles the first step with a MIP program
which assigns paths to the demands while minimizing the maximal number of demands
routed over a link. The second and third step are expressed as a graph coloring problem
where the nodes are demands and disequality constraints (edges) are imposed between
any two demands which are routed over the same link in the network. The overall so-
lution approach is shown in Figure 3. When using the MIP-MIP decomposition, the
graph coloring problem is solved as an optimization problem, minimizing the number
of wavelengths used. In the MIP-SAT/FD decomposition, we use a feasibility check for
the graph coloring problem. We start with the minimal number of wavelengths required
by the solution of the first phase. If we find a solution, the overall problem is solved to
optimality. If the problem is infeasible (or the solver times out), we increase the number
of wavelengths considered until we find a good, but possibly sub-optimal solution.

MIP - MIP Based Decomposition MIP - SAT/FD based decomposition

MIP Resource Model
Optimization Problem

Extract Accepted Demands

MIP Graph Coloring
Optimization Problem

Solution

MIP Resource Model
Optimization Problem

Extract Accepted Demands

SAT/FD Graph Coloring
Decision Problem

Solved?

Solution

Increase Nr
Wavelengths

Yes

No

Fig. 3. Solution Approach

3.1 Phase 1

The input for phase 1 is a demand matrix, an example for the nsf network is shown in
Figure 4. The colours encode the minimal distance between the nodes.
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1 2 3 4

Fig. 4. Sample Demand Matrix (100 Demands) for nsf Network

The first phase of the decomposition is a MIP model which minimizes the maximum
number of demands routed over any link in the network. The model is a relaxation of
the complete model (16), obtained by ignoring allocated frequencies and instead only
counting the number of demands routed over each link. Integer variables zse state how
many demands originating in s are routed over edge e. The domain of these variables is
limited by Ts, the total number of demands originating in s.

min zmax (24)

s.t.

zmax ∈ {0, 1...|Λ|}, zse ∈ {0, 1...Ts} (25)

∀s ∈ N :
∑

e∈In(s)

zse = 0 (26)

∀s ∈ N, ∀d ∈ Ds :
∑

e∈In(d)

zse =
∑

e∈Out(d)

zse + Psd (27)

∀s ∈ N, ∀n �= s, n /∈ Ds :
∑

e∈In(n)

zse =
∑

e∈Out(n)

zse (28)

∀e∈E :
∑
s∈N

zse ≤ zmax (29)

Constraint (25) describes the integrality constraints, note that the variables have integer
(not 0/1) domains. The clash constraint (4) has disappeared, the capacity limit for each
link is handled as part of the objective function. Constraint (26) limits the use of the
source node, while constraint (27) describes the balance around the destination nodes,
using Psd, the (fixed) number of demands from s to d. Finally, constraint (28) imposes
flow balance for all other nodes. Constraints (29) link the objective to the decision
variables.
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The solution to (24) does not immediately return the routing for each demand, this
requires a non-deterministic, but backtrack-free program to construct the paths, while at
the same time removing possible loops from the solution. Figure 5 shows the result of
phase 1 for source node 3, i.e. the third row in the demand matrix of Figure 4. Numbers
in the nodes state how many demands originating in S end in that node, numbers on
the edges state how many demands from the source are routed over them. The figure
highlights a situation where we have multiple paths between the source S in node 3 and
one of the destinations (node 11, marked A). We can freely choose which demand to
send over which path, as long as we satisfy the capacity restrictions.

S

1

2 1

1 1

2
A

1

1

3

3

4

4

3

2

1

3

1 1

1

2

Fig. 5. Phase 1: Example Solution for Source Node 3 (Marked S)

3.2 Phase 2

The graph coloring problem for the second phase is expressed with three different solvers,
a MIP optimization problem, and a SAT or finite domain decision procedure. All work
on the same graph coloring instance, where each demand is a node, and two nodes (de-
mands) are linked if they are routed over the same edge in the network. The MIP and SAT
models use 0/1 integer variables xλ

d , which state whether demand d is using wavelength
λ. The finite domain model uses variables yd which range over values 1 to Λ, the num-
ber of wavelengths considered in the model. As constraints it uses Alldifferent
constraints instead of binary disequalities, which allows us to use stronger propagation
methods [15].

Figure 6 shows the resource requirements computed for the sample demand matrix.
The numbers (and colours) on the edges denote how many demands are routed over
them, this corresponds to the size of the Alldifferent constraints required for that
link. Note that the largest number of demands (13) is used on only 5 of the links. These
will be the most difficult constraints to satisfy, as the number of variables is equal to the
number of colours.
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Fig. 6. Phase 2: Resource Requirements

We use the predicate p(d, e) to denote if demand d was routed over edge e in the
solution of the phase 1 problem.

Phase 2 MIP Formulations. The graph coloring problem leads to a simple MIP for-
mulation for the second phase of the basic problem:

min zmax (30)

s.t.

xλ
d ∈ {0, 1},zmax ∈ {0, 1, ..., |Λ|} (31)

∀d∈D :
∑
λ∈Λ

xλ
d = 1 (32)

∀e∈E∀λ∈Λ :
∑

{d∈D | p(d,e)}
xλ

d ≤ 1 (33)

∀e∈E :
∑
λ∈Λ

∑
{d∈D | p(d,e)}

xλ
d ≤ zmax (34)

The objective is to minimize the integer variable zmax which is bounded by the maximal
number of frequencies used on any edge of the network. Constraint (32) states that each
demand must be assigned to a frequency, constraint (33) imposes the clash condition
that only one demand can use a given frequency on each link, and constraint (34) links
the cost and the decision variables.

We can obtain a model for the extended problem by adding 0/1 decision variables
zλ which indicate if frequency λ is used by any of the demands. We link the new
zλ variables to the xλ

d variables by inequality (40), and update the objective function
with inequality (41). We keep inequalities (39), without them the linear relaxation only
produces a very weak lower bound of 1.
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min zmax (35)

s.t.

xλ
d ∈ {0, 1}, zλ ∈ {0, 1},zmax ∈ {0, 1, ..., |Λ|} (36)

∀d∈D :
∑
λ∈Λ

xλ
d = 1 (37)

∀e∈E∀λ∈Λ :
∑

{d∈D | p(d,e)}
xλ

d ≤ 1 (38)

∀e∈E :
∑
λ∈Λ

∑
{d∈D | p(d,e)}

xλ
d ≤ zmax (39)

∀d∈D∀λ∈Λ : xλ
d ≤ zλ (40)∑

λ∈Λ

zλ ≤ zmax (41)

Phase 2 Finite Domain Model. For the finite domain model, we use variables yd which
range over all possible frequencies. To express the objective of the basic problem, we
need to consider how many different frequencies are used on each link. We can use the
NValue constraint [2] to count the number of different values used, leading to a model:

min max
e∈E

ne (42)

s.t.

yd ∈ {0, 1..., |Λ|}, ne ∈ {0, 1..., |Λ|} (43)

∀e∈E : nvalue(ne, {yd | p(d, e)}) (44)

∀e∈E : alldifferent({yd | p(d, e)}) (45)

Since the NValue and Alldifferent constraints are expressed over the same vari-
able sets, the problem can be drastically simplified. We know that the values in the
Alldifferent constraint must be pairwise different, and therefore find that the num-
ber of different values is equal to the number of variables in the constraint. The largest
Alldifferent constraint will be set up on some link where the optimal cost was
reached in phase1. The finite domain model for the basic problem therefore is no longer
an optimization problem, but a feasibility problem over arbitrary domains:

yd ∈ {0, 1..., |Λ|} (46)

∀e∈E : alldifferent({yd | p(d, e)}) (47)

For the extended problem, the phase 2 finite domain model is

min max
d∈D

yd (48)

s.t.

yd ∈ {0, 1..., |Λ|} (49)

∀e∈E : alldifferent({yd | p(d, e)}) (50)



Solving the Static Design Routing and Wavelength Assignment Problem 69

We use “optimization from below”, and try out increasing values C for the objective
until we find a feasible solution. The (fixed) objective serves as upper bound on the
domain of the yd variables for each of the instances tested:

yd ∈ {0, 1..., C} (51)

∀e∈E : alldifferent({yd | p(d, e)}) (52)

Phase 2 SAT Formulation. A SAT model for the second phase can be derived using
the xλ

d variables and the clauses

∀d∈D∀λ1,λ2∈Λ s.t. λ1 �=λ2 : ¬xλ1
d ∨ ¬xλ2

d (53)

∀d∈D :
∨
λ∈Λ

xλ
d (54)

∀e∈E∀λ∈Λ, d1, d2 ∈ D s.t. p(d1, e) ∧ p(d2, e) ∧ d1 �= d2 : ¬xλ
d1

∨ ¬xλ
d2

(55)

Constraints (53) state that a demand can not be assigned to more than one frequency,
constraints (54) impose the other condition that each demand must be allocated to at
least one frequency, and constraints (55) impose the clash constraints between any two
demands routed over the same edge of the network. Alternatively, instead of the clausal
representation, it is also possible to use the linear constraints of the MIP model directly
in a Pseudo-Boolean solver.

4 Experimental Results

Most of the published results on the RWA problem use randomly generated demands
on a few given network structures. We also use this approach and generate given num-
bers of demands between randomly chosen source and sink nodes. Multiple demands
between the same nodes are allowed, but source and sink must be different.

In the literature we found four actual optical network topologies used in experiments.
Their size is quite small, ranging from 14 to 27 nodes.

nsf 14 nodes, 42 edges
eon 20 nodes, 78 edges
mci 19 nodes, 64 edges
brezil 27 nodes, 140 edges

We explored different combinations of number of demands (100-600 demands in in-
crements of 100) for each of the network topologies and created 100 random problem
instances for each combination.

4.1 Basic Problem

The basic problem seems to be relatively well behaved, Table 1 shows some results for
the complete (non-decomposed), source aggregation MIP model described in section 2.
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Table 1. Selected Full MIP Examples (Basic Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg LP
Gap

Max LP
Gap

Avg LP
Time

Max LP
Time

Avg MIP
Time

Max MIP
Time

brezil 100 50 100 4.24 4.57 0.33 0.90 165.65 686.55 277.14 1139.03
brezil 200 50 15 7.62 7.93 0.32 0.75 585.18 2022.48 861.74 2301.67
eon 100 50 100 6.36 6.65 0.29 0.75 13.69 43.94 33.62 70.92
eon 200 50 100 11.54 11.77 0.23 0.75 27.17 147.25 65.51 257.97
eon 300 50 100 16.62 16.89 0.27 0.75 33.08 143.49 121.27 517.50
eon 400 50 100 21.47 21.85 0.38 0.75 19.87 92.49 116.64 363.53
eon 500 50 100 26.43 26.62 0.19 0.75 23.44 99.09 162.55 468.56
eon 600 50 100 31.36 31.63 0.27 0.75 28.94 73.19 232.91 542.83
mci 100 50 100 7.67 7.81 0.14 0.83 8.45 26.36 20.27 42.42
mci 200 50 100 13.42 13.58 0.16 0.80 13.45 45.88 38.79 161.02
mci 300 50 100 19.24 19.37 0.13 0.80 15.56 97.48 55.78 239.11
mci 400 50 100 25.00 25.14 0.14 0.80 18.37 58.34 109.85 484.69
mci 500 50 100 30.45 30.58 0.13 0.80 16.46 50.08 129.90 454.33
mci 600 50 100 36.00 36.11 0.11 0.80 27.50 99.06 257.70 599.44
nsf 100 50 100 7.97 8.38 0.41 0.90 3.09 5.22 8.17 14.55
nsf 200 50 100 15.06 15.45 0.39 0.75 3.36 5.44 12.75 29.45
nsf 300 50 100 21.96 22.29 0.33 0.75 3.20 5.45 17.01 39.17
nsf 400 50 100 28.81 29.18 0.37 0.75 3.49 6.31 27.36 78.66
nsf 500 50 100 35.79 36.13 0.34 0.79 4.97 11.75 54.60 125.30
nsf 600 50 100 42.52 42.94 0.42 0.75 8.06 15.84 88.72 272.26

Table 2. Selected MIP-MIP Decomposition Examples (Basic Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
MIP2

Max LP
Gap

Max MIP2
Gap

Avg MIP
Time

Max MIP
Time

Avg MIP2
Time

Max MIP2
Time

brezil 100 150 100 4.24 4.57 4.57 0.90 0.00 0.41 0.59 0.91 1.53
brezil 200 150 100 7.92 8.26 8.26 0.75 0.00 0.46 0.58 4.45 5.97
brezil 300 150 100 11.51 11.92 11.92 0.80 0.00 0.47 0.63 8.08 9.64
brezil 400 150 100 15.10 15.45 15.45 0.75 0.00 0.51 0.70 10.93 15.84
brezil 500 150 100 18.76 19.10 19.10 0.75 0.00 0.48 0.64 13.09 17.84
brezil 600 150 100 22.32 22.61 22.61 0.75 0.00 0.51 0.66 16.77 20.56
eon 100 150 100 6.36 6.65 6.65 0.75 0.00 0.13 0.16 1.51 3.03
eon 200 150 100 11.54 11.77 11.77 0.75 0.00 0.14 0.19 5.27 7.66
eon 300 150 100 16.62 16.89 16.89 0.75 0.00 0.14 0.19 5.60 8.56
eon 400 150 100 21.47 21.85 21.85 0.75 0.00 0.17 0.22 7.38 12.11
eon 500 150 100 26.43 26.62 26.62 0.75 0.00 0.15 0.17 9.58 17.89
eon 600 150 99 31.36 31.63 31.63 0.75 0.00 0.17 0.20 14.04 27.50
mci 100 150 100 7.67 7.81 7.81 0.83 0.00 0.08 0.26 2.08 3.13
mci 200 150 100 13.42 13.58 13.58 0.80 0.00 0.09 0.09 5.36 7.69
mci 300 150 100 19.24 19.37 19.37 0.80 0.00 0.09 0.11 5.83 7.73
mci 400 150 100 25.00 25.14 25.14 0.80 0.00 0.10 0.13 8.71 12.76
mci 500 150 100 30.45 30.58 30.58 0.80 0.00 0.10 0.13 13.89 22.41
mci 600 150 100 36.00 36.11 36.11 0.80 0.00 0.11 0.14 22.56 43.58
nsf 100 150 100 7.97 8.38 8.38 0.90 0.00 0.04 0.05 2.38 3.64
nsf 200 150 100 15.06 15.45 15.45 0.75 0.00 0.04 0.06 1.81 4.39
nsf 300 150 100 21.96 22.29 22.29 0.75 0.00 0.04 0.06 1.98 6.33
nsf 400 150 100 28.81 29.18 29.18 0.75 0.00 0.06 0.08 3.54 12.34
nsf 500 150 100 35.79 36.13 36.13 0.79 0.00 0.05 0.06 5.77 9.38
nsf 600 150 100 42.52 42.94 42.94 0.75 0.00 0.06 0.08 9.09 16.19

Multiple problem instances for the brezil network with 200 or more demands did not
find feasible solutions within 1 hour, for the other example networks solutions were
found within 10 minutes.

The decomposition seems to work very well for the basic problem. Table 2 shows
results for the MIP-MIP decomposition, Table 3 shows results for the MIP-FD decom-
position, which finds the optimal solution for nearly all instances in less than a second.
The SAT model (results shown in Table 4) is nearly as efficient.
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Table 3. Selected Finite Domain Examples (Basic Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Max LP
Gap

Max FD
Gap

Avg MIP
Time

Max MIP
Time

Avg FD
Time

Max FD
Time

brezil 100 150 100 4.24 4.57 4.57 0.90 0.00 0.43 0.59 0.01 0.02
brezil 200 150 100 7.92 8.26 8.26 0.75 0.00 0.47 0.58 0.03 0.05
brezil 300 150 99 11.51 11.92 11.93 0.80 1.00 0.49 0.63 0.07 0.09
brezil 400 150 100 15.10 15.45 15.45 0.75 0.00 0.48 0.69 0.13 0.16
brezil 500 150 100 18.76 19.10 19.10 0.75 0.00 0.48 0.64 0.23 0.27
brezil 600 150 100 22.32 22.61 22.61 0.75 0.00 0.49 0.64 0.31 0.36
eon 100 150 100 6.36 6.65 6.65 0.75 0.00 0.15 0.17 0.01 0.02
eon 200 150 100 11.54 11.77 11.77 0.75 0.00 0.15 0.19 0.04 0.06
eon 300 150 100 16.62 16.89 16.89 0.75 0.00 0.16 0.19 0.09 0.11
eon 400 150 100 21.47 21.85 21.85 0.75 0.00 0.16 0.17 0.16 0.20
eon 500 150 100 26.43 26.62 26.62 0.75 0.00 0.16 0.17 0.29 0.33
eon 600 150 100 31.36 31.63 31.63 0.75 0.00 0.16 0.19 0.40 0.47
mci 100 150 100 7.67 7.81 7.81 0.83 0.00 0.10 0.19 0.01 0.02
mci 200 150 100 13.42 13.58 13.58 0.80 0.00 0.10 0.13 0.05 0.06
mci 300 150 100 19.24 19.37 19.37 0.80 0.00 0.10 0.13 0.10 0.13
mci 400 150 100 25.00 25.14 25.14 0.80 0.00 0.11 0.13 0.19 0.20
mci 500 150 100 30.45 30.58 30.58 0.80 0.00 0.11 0.13 0.29 0.41
mci 600 150 100 36.00 36.11 36.11 0.80 0.00 0.11 0.13 0.45 0.55
nsf 100 150 100 7.97 8.38 8.38 0.90 0.00 0.05 0.06 0.02 0.02
nsf 200 150 100 15.06 15.45 15.45 0.75 0.00 0.06 0.06 0.05 0.06
nsf 300 150 100 21.96 22.29 22.29 0.75 0.00 0.06 0.06 0.10 0.13
nsf 400 150 100 28.81 29.18 29.18 0.75 0.00 0.06 0.08 0.17 0.20
nsf 500 150 100 35.79 36.13 36.13 0.79 0.00 0.06 0.06 0.31 0.34
nsf 600 150 100 42.52 42.94 42.94 0.75 0.00 0.06 0.06 0.43 0.48

Table 4. Selected SAT Examples (Basic Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
SAT

Max LP
Gap

Max SAT
Gap

Avg MIP
Time

Max MIP
Time

Avg SAT
Time

Max SAT
Time

brezil 100 150 100 4.24 4.57 4.57 0.90 0.00 0.37 0.59 0.03 0.05
brezil 200 150 100 7.92 8.26 8.26 0.75 0.00 0.41 0.59 0.07 0.09
brezil 300 150 100 11.51 11.92 11.92 0.80 0.00 0.41 0.59 0.15 0.20
brezil 400 150 100 15.10 15.45 15.45 0.75 0.00 0.43 0.56 0.27 0.38
brezil 500 150 100 18.76 19.10 19.10 0.75 0.00 0.42 0.52 0.44 0.58
brezil 600 150 100 22.32 22.61 22.61 0.75 0.00 0.42 0.58 0.69 0.88
eon 100 150 100 6.36 6.65 6.65 0.75 0.00 0.14 0.16 0.04 0.06
eon 200 150 100 11.54 11.77 11.77 0.75 0.00 0.14 0.17 0.10 0.13
eon 300 150 100 16.62 16.89 16.89 0.75 0.00 0.14 0.17 0.24 0.31
eon 400 150 100 21.47 21.85 21.85 0.75 0.00 0.13 0.16 0.45 0.61
eon 500 150 100 26.43 26.62 26.62 0.75 0.00 0.13 0.25 0.76 1.08
eon 600 150 100 31.36 31.63 31.63 0.75 0.00 0.14 0.31 1.20 1.73
mci 100 150 100 7.67 7.81 7.81 0.83 0.00 0.13 0.23 0.05 0.08
mci 200 150 100 13.42 13.58 13.58 0.80 0.00 0.10 0.13 0.12 0.17
mci 300 150 100 19.24 19.37 19.37 0.80 0.00 0.09 0.13 0.29 0.42
mci 400 150 100 25.00 25.14 25.14 0.80 0.00 0.10 0.13 0.56 0.78
mci 500 150 100 30.45 30.58 30.58 0.80 0.00 0.10 0.27 0.97 1.41
mci 600 150 100 36.00 36.11 36.11 0.80 0.00 0.10 0.25 1.55 2.33
nsf 100 150 100 7.97 8.38 8.38 0.90 0.00 0.06 0.11 0.05 0.08
nsf 200 150 100 15.06 15.45 15.45 0.75 0.00 0.05 0.06 0.15 0.19
nsf 300 150 100 21.96 22.29 22.29 0.75 0.00 0.05 0.06 0.35 0.44
nsf 400 150 100 28.81 29.18 29.18 0.75 0.00 0.05 0.06 0.71 0.92
nsf 500 150 100 35.79 36.13 36.13 0.79 0.00 0.05 0.17 1.26 1.55
nsf 600 150 100 42.52 42.94 42.94 0.75 0.00 0.05 0.06 2.07 2.42
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4.2 Extended Problem

The problem seems to be much more difficult if we consider the extended formulation
minimizing the total number of frequencies used. The complete source aggregation
model is not able to solve problem instances of the given sizes consistently. Table 5
shows some results for the MIP-MIP decomposition run with a timeout of 1000 seconds.
After the timeout we either use the best feasible, integer solution or declare the problem
as unsolved if no feasible solution has been found.

Table 5. Selected MIP-MIP Decomposition Examples (Extended Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
MIP2

Max LP
Gap

Max MIP2
Gap

Avg MIP
Time

Max MIP
Time

Avg MIP2
Time

Max MIP2
Time

brezil 100 50 94 4.24 4.57 4.63 0.90 1.00 0.35 0.53 53.59 962.72
brezil 200 50 99 7.92 8.26 8.27 0.75 1.00 0.38 0.52 141.04 331.05
brezil 300 50 88 11.48 11.87 11.94 0.80 2.00 0.38 0.50 444.64 995.14
eon 100 50 100 6.36 6.65 6.65 0.75 0.00 0.13 0.16 19.70 61.98
eon 200 50 100 11.54 11.77 11.77 0.75 0.00 0.14 0.17 188.55 925.44
mci 100 50 100 7.67 7.81 7.81 0.83 0.00 0.09 0.11 26.27 79.55
mci 200 50 96 13.42 13.58 13.63 0.80 2.00 0.10 0.13 271.65 992.88
nsf 100 50 99 7.97 8.38 8.39 0.90 1.00 0.05 0.06 29.43 967.70
nsf 200 50 99 15.06 15.45 15.46 0.75 1.00 0.05 0.06 208.72 998.00

Table 6. Selected Finite Domain Examples (Extended Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Max LP
Gap

Max FD
Gap

Avg MIP
Time

Max MIP
Time

Avg FD
Time

Max FD
Time

brezil 100 150 95 4.24 4.57 4.62 0.90 1.00 0.44 0.61 0.02 0.11
brezil 200 150 99 7.92 8.26 8.27 0.75 1.00 0.48 0.59 0.06 0.09
brezil 300 150 99 11.51 11.92 11.94 0.80 2.00 0.49 0.64 0.12 0.19
brezil 400 150 99 15.10 15.45 15.46 0.75 1.00 0.50 0.69 0.23 0.31
brezil 500 150 96 18.76 19.10 19.16 0.75 3.00 0.50 0.66 0.93 60.63
brezil 600 150 97 22.32 22.61 22.64 0.75 1.00 0.51 0.64 0.45 0.97
eon 100 150 100 6.36 6.65 6.65 0.75 0.00 0.15 0.16 0.02 0.03
eon 200 150 100 11.54 11.77 11.77 0.75 0.00 0.16 0.19 0.07 0.16
eon 300 150 100 16.62 16.89 16.89 0.75 0.00 0.16 0.19 0.16 0.24
eon 400 150 100 21.47 21.85 21.85 0.75 0.00 0.16 0.19 0.26 0.38
eon 500 150 100 26.43 26.62 26.62 0.75 0.00 0.17 0.22 0.44 0.64
eon 600 150 100 31.36 31.63 31.63 0.75 0.00 0.17 0.20 0.60 0.98
mci 100 150 100 7.67 7.81 7.81 0.83 0.00 0.10 0.19 0.02 0.05
mci 200 150 100 13.42 13.58 13.58 0.80 0.00 0.10 0.13 0.08 0.13
mci 300 150 100 19.24 19.37 19.37 0.80 0.00 0.11 0.13 0.17 0.55
mci 400 150 100 25.00 25.14 25.14 0.80 0.00 0.11 0.14 0.32 0.58
mci 500 150 100 30.45 30.58 30.58 0.80 0.00 0.11 0.14 0.48 1.47
mci 600 150 100 36.00 36.11 36.11 0.80 0.00 0.12 0.14 0.68 1.20
nsf 100 150 99 7.97 8.38 8.39 0.90 1.00 0.06 0.08 0.03 0.03
nsf 200 150 100 15.06 15.45 15.45 0.75 0.00 0.06 0.06 0.07 0.13
nsf 300 150 100 21.96 22.29 22.29 0.75 0.00 0.06 0.06 0.15 0.19
nsf 400 150 100 28.81 29.18 29.18 0.75 0.00 0.06 0.08 0.26 0.55
nsf 500 150 100 35.79 36.13 36.13 0.79 0.00 0.06 0.08 0.42 0.53
nsf 600 150 100 42.52 42.94 42.94 0.75 0.00 0.06 0.08 0.58 0.74

Table 6 shows the result for the finite domain solver. The entries summarize the
results over 100 runs with the same parameters, but different random seeds. The column
Opt. tells how many solutions were proven optimal. The columns Avg LP, Avg MIP and
Avg FD show the average cost obtained by the LP relaxation of the first phase MIP
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Table 7. Selected SAT Examples (Extended Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
SAT

Max LP
Gap

Max SAT
Gap

Avg MIP
Time

Max MIP
Time

Avg SAT
Time

Max SAT
Time

brezil 100 150 96 4.24 4.57 4.61 0.90 1.00 0.38 0.63 0.02 0.05
brezil 200 150 99 7.92 8.26 8.27 0.75 1.00 0.41 0.56 0.06 2.39
brezil 300 150 98 11.51 11.92 11.95 0.80 2.00 0.42 0.61 3.09 200.08
brezil 400 150 99 15.10 15.45 15.46 0.75 1.00 0.42 0.58 1.21 100.22
brezil 500 150 95 18.76 19.10 19.17 0.75 3.00 0.42 0.53 7.83 300.48
brezil 600 150 82 22.32 22.61 22.79 0.75 1.00 0.42 0.56 21.69 170.00
eon 100 150 100 6.36 6.65 6.65 0.75 0.00 0.14 0.19 0.02 0.03
eon 200 150 100 11.54 11.77 11.77 0.75 0.00 0.15 0.17 0.06 0.11
eon 300 150 100 16.62 16.89 16.89 0.75 0.00 0.15 0.17 0.19 0.39
eon 400 150 100 21.47 21.85 21.85 0.75 0.00 0.15 0.17 0.57 1.58
eon 500 150 87 26.43 26.62 26.75 0.75 1.00 0.15 0.22 15.32 102.84
eon 600 150 42 31.36 31.63 32.24 0.75 2.00 0.15 0.19 66.10 202.98
mci 100 150 100 7.67 7.81 7.81 0.84 0.00 0.10 0.20 0.02 0.03
mci 200 150 100 13.42 13.58 13.58 0.80 0.00 0.10 0.13 0.08 0.14
mci 300 150 100 19.24 19.37 19.37 0.80 0.00 0.10 0.13 0.27 0.64
mci 400 150 97 25.00 25.14 25.17 0.80 1.00 0.10 0.13 4.15 100.77
mci 500 150 78 30.45 30.58 30.80 0.80 1.00 0.10 0.13 24.33 103.81
mci 600 150 33 36.00 36.11 36.87 0.80 2.00 0.11 0.20 76.84 204.42
nsf 100 150 99 7.97 8.38 8.39 0.90 1.00 0.05 0.08 0.09 6.55
nsf 200 150 100 15.06 15.45 15.45 0.75 0.00 0.05 0.06 0.10 0.22
nsf 300 150 100 21.96 22.29 22.29 0.75 0.00 0.06 0.08 0.48 1.70
nsf 400 150 90 28.81 29.18 29.28 0.75 1.00 0.06 0.06 11.46 110.38
nsf 500 150 41 35.79 36.13 36.81 0.79 2.00 0.06 0.16 70.70 218.00
nsf 600 150 23 42.52 42.94 43.93 0.75 3.00 0.06 0.09 104.04 301.59

resource model, the MIP model itself and the total number of frequencies required by
the finite domain solver. The LP relaxation already is a very good approximation of the
total cost, the MIP-LP gap never exceeds 0.90. The next column, Max FD Gap, shows
the largest gap between MIP and FD solution, i.e. the number of frequencies added due
to infeasibility or time out of the graph coloring model. This value never exceeds 3 in
the examples shown. We then show average and maximal run times for the first and
second phases of the decomposition on a Windows XP laptop with a 2.4GHz processor
and 2GB of memory. Results were obtained using ECLiPSe 6.0 [16] with the eplex
library [11] for the Coin-OR [9] CLP/CBC MIP solver.

Table 7 show corresponding results for the SAT model using minisat 1.14 [3], with
a timeout of 100 seconds for each instance and each tested upper bound of the domain.
If a timeout occurs, the problem is re-run adding frequencies until a solution is found
within the timeout period. For increasing problem sizes the number of optimal solutions
decreases sharply, in contrast to the finite domain model, while execution times are
increasing significantly.

The hybrid model using the finite domain model is able to deal with much larger
number of demands, as Table 8 shows. We consider the brezil network, and increase
the number of demands up to 2000. The solving time for the first phase is not affected,
as the model is not dependent on the number of demands, they only affect the upper
bound of the domains Ts and the size of the coefficients Psd. In the second phase the
number of variables increases with the number of demands, and the Alldifferent
constraints operate on larger number of variables, but the number of constraints is given
by the topology and does not change.
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Table 8. Increasing Demand Number (Extended Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Max LP
Gap

Max FD
Gap

Avg MIP
Time

Max MIP
Time

Avg FD
Time

Max FD
Time

brezil 700 150 97 25.69 26.06 26.13 0.75 3.00 0.51 0.64 1.83 60.59
brezil 800 150 96 29.34 29.66 29.72 0.75 3.00 0.50 0.59 1.42 60.95
brezil 900 150 98 32.81 33.14 33.17 0.75 2.00 0.50 0.61 1.30 31.36
brezil 1000 150 99 36.34 36.68 36.69 0.75 1.00 0.50 0.63 1.24 2.13
brezil 1100 150 99 39.80 40.16 40.17 0.75 1.00 0.50 0.63 1.49 2.20
brezil 1200 150 99 43.28 43.61 43.62 0.75 1.00 0.50 0.63 2.24 46.16
brezil 1300 150 98 46.54 46.89 46.94 0.75 3.00 0.50 0.61 3.03 64.45
brezil 1400 150 99 49.85 50.21 50.23 0.75 2.00 0.50 0.63 2.79 33.95
brezil 1500 150 99 53.46 53.87 53.89 0.75 2.00 0.50 0.61 3.18 34.47
brezil 1600 150 98 56.95 57.28 57.30 0.75 1.00 0.50 0.59 4.49 72.05
brezil 1700 150 99 60.33 60.65 60.66 0.75 1.00 0.51 0.64 3.61 8.92
brezil 1800 150 99 63.93 64.25 64.26 0.75 1.00 0.51 0.61 4.08 9.49
brezil 1900 150 100 67.41 67.77 67.77 0.75 0.00 0.50 0.61 4.73 10.48
brezil 2000 150 99 70.83 71.09 71.10 0.75 1.00 0.51 0.66 6.05 94.73

Table 9. Increasing Network Size (Extended Problem, 100 Runs Each)

Network Dem. λ Opt.
Avg
LP

Avg
MIP

Avg
FD

Max LP
Gap

Max FD
Gap

Avg MIP
Time

Max MIP
Time

Avg FD
Time

Max FD
Time

r30 500 30 100 7.81 8.12 8.12 0.97 0.00 1.73 5.92 0.16 0.27
r40 500 30 100 4.14 4.52 4.52 0.92 0.00 12.42 177.45 0.13 0.19
r50 500 30 97 2.39 2.88 2.91 0.95 1.00 77.35 696.73 0.11 0.14
r60 500 30 100 1.57 2.05 2.05 0.86 0.00 127.75 245.25 0.10 0.13

The model is much more dependent on the size of the network. We consider in
Table 9 random networks with 30-60 nodes, with a 0.25 probability for a link be-
tween two nodes. The times for the MIP (first) part of the model increase quickly with
network size, and soon dominate the total execution times, while the second phase is
barely affected. It is interesting that the execution times increase much more rapidly for
the static design problem than for the demand acceptance problem discussed in [13],
where network sizes up to 100 nodes can be solved within 30 seconds using the same
environment.

5 Summary

In this paper we have considered some variants of the routing and wavelength assign-
ment problem for optical networks. For the static design problem two possible objective
functions have been proposed in the literature: The basic problem minimizing the max-
imal number of frequencies required on any link, and the extended problem minimizing
the total number of frequencies used in the network. A decomposition into a MIP based
routing part with a graph coloring second phase works very well in producing high qual-
ity solutions. Both the LP relaxation and the MIP solution of the first phase produce very
accurate lower bounds on the total cost. The graph coloring problem in the basic model
can be solved successfully by either MIP, SAT or finite domain constraint programming,
constraint programming is slightly faster than SAT on the problem instances considered,
and significantly faster than MIP. For the extended problem, constraint programming is
much more stable and significantly faster than any of the competing methods.
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Together with the results in [13] this shows that a decomposition of the RWA problem
into MIP and FD phases can be highly successful, producing proven optimal or near-
optimal results for a large set of problem instances.
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3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Jaumard, B., Meyer, C., Thiongane, B.: ILP formulations for the routing and wavelength
assignment problem: Symmetric systems. In: Resende, M., Pardalos, P. (eds.) Handbook of
Optimization in Telecommunications, pp. 637–677. Springer, Heidelberg (2006)

5. Jaumard, B., Meyer, C., Thiongane, B.: Comparison of ILP formulations for the RWA prob-
lem. Optical Switching and Networking 4(3-4), 157–172 (2007)

6. Jaumard, B., Meyer, C., Thiongane, B.: On column generation formulations for the RWA
problem. Discrete Applied Mathematics 157, 1291–1308 (2009)

7. Lever, J.: A local search/constraint propagation hybrid for a network routing problem. Inter-
national Journal on Artificial Intelligence Tools 14(1-2), 43–60 (2005)

8. Liatsos, V., Novello, S., El Sakkout, H.: A probe backtrack search algorithm for network
routing. In: Proceedings of the Third International Workshop on Cooperative Solvers in Con-
straint Programming, CoSolv 2003, Kinsale, Ireland (September 2003)

9. Lougee-Heimer, R.: The common optimization interface for operations research. IBM Jour-
nal of Research and Development 47, 57–66 (2003)

10. Ramaswami, R., Sivarajan, K.N.: Routing and wavelength assignment in all-optical net-
works. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995)

11. Shen, K., Schimpf, J.: Eplex: Harnessing mathematical programming solvers for constraint
logic programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 622–636. Springer,
Heidelberg (2005)

12. Simonis, H.: Constraint applications in networks. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

13. Simonis, H.: A hybrid constraint model for the routing and wavelength assignment problem.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 104–118. Springer, Heidelberg (2009)

14. Smith, B.M.: Symmetry and search in a network design problem. In: Barták, R., Milano, M.
(eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 336–350. Springer, Heidelberg (2005)

15. van Hoeve, W.J.: The alldifferent constraint: A survey. CoRR, cs.PL/0105015 (2001)
16. Wallace, M., Novello, S., Schimpf, J.: ECLiPSe: A platform for constraint logic program-

ming. ICL Systems Journal 12(1) (May 1997)
17. Zang, H., Jue, J.P., Mukherjee, B.: A review of routing and wavelength assignment ap-

proaches for wavelength-routed optical WDM networks. Optical Networks Magazine, 47–60
(January 2000)



A Resource Cost Aware Cumulative

Helmut Simonis and Tarik Hadzic�

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis,t.hadzic}@4c.ucc.ie

Abstract. We motivate and introduce an extension of the well-known cumula-
tive constraint which deals with time and volume dependent cost of resources.
Our research is primarily interested in scheduling problems under time and vol-
ume variable electricity costs, but the constraint equally applies to manpower
scheduling when hourly rates differ over time and/or extra personnel incur higher
hourly rates. We present a number of possible lower bounds on the cost, including
a min-cost flow, different LP and MIP models, as well as greedy algorithms, and
provide a theoretical and experimental comparison of the different methods.

1 Introduction

The cumulative constraint [1,2] has long been a key global constraint allowing the ef-
fective modeling and resolution of complex scheduling problems with constraint pro-
gramming. However, it is not adequate to handle problems where resource costs change
with time and use, and thus must be considered as part of the scheduling. This problem
increasingly arises with electricity cost, where time variable tariffs become more and
more widespread. With the prices for electricity rising globally, the contribution of en-
ergy costs to total manufacturing cost is steadily increasing, thus making an effective
solution of this problem more and more important. Figure 1 gives an example of the
whole-sale price in the Irish electricity market for a sample day, in half hour intervals.
Note that the range of prices varies by more than a factor of three, and the largest dif-
ference between two consecutive half-hour time periods is more than 50 units. Hence,
large cost savings might be possible if the schedule of electricity-consuming activities
takes that cost into account.

The problem of time and volume dependent resource cost equally arises in man-
power scheduling, where hourly rates can depend on time, and extra personnel typi-
cally incurs higher costs. We suggest extending the standard CP scheduling framework
to variable resource cost scenarios by developing a cost-aware extension of the cu-
mulative constraint, CumulativeCost. The new constraint should support both the
standard feasibility reasoning as well as reasoning about the cost of the schedule. As a
first step in this direction we formally describe the semantics of CumulativeCost
and discuss a number of algorithms for producing high quality lower-bounds (used for
bounding or pruning during optimization) for this constraint. The proposed algorithms
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Fig. 1. Irish Electricity Price (Source: http://allislandmarket.com/)

are compared both theoretically and experimentally. Previous research on the cumula-
tive constraint has focused along three lines: 1) improvement of the reasoning methods
used inside the constraint propagation, see [10,7,8] for some recent results. 2) apply-
ing the constraint to new, sometimes surprising problem types, for example expressing
producer/consumer constraints [9] or placement problems [4], and 3) extending the ba-
sic model to cover new features, like negative resource height, or non-rectangular task
shapes [3,5]. The focus of this paper belongs to the last category.

2 The CumulativeCost Constraint

We start by formally defining our new constraint. It is an extension of the classical
cumulative constraint [1]

Cumulative([s1, s2, ...sn], [d1, d2, ...dn], [r1, r2, ...rn], l, p),

describing n tasks with start si, fixed duration di and resource use ri, with an overall
resource limit l and a scheduling period end p. Our new constraint is denoted as

CumulativeCost(Areas,Tasks, l, p,cost).

The Areas argument is a collection of m areas {A1, . . . , Am}, which do not overlap and
partition the entire available resource area [0, p]×[0, l]. Each area Aj has a fixed position
xj , yj , fixed width wj and height hj , and fixed per-unit cost cj . Consider the running
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example in Fig. 2 (left). It has 5 areas, each of width 1 and height 3. Our definition
allows that an area Aj could start above the bottom level (yj > 0). This reflects the fact
that the unit-cost does not only depend on the time of resource consumption but also
on its volume. In our electricity example, in some environments, a limited amount of
renewable energy may be available at low marginal cost, generated by wind-power or
reclaimed process heat. Depending on the tariff, the electricity price may also be linked
to the current consumption, enforcing higher values if an agreed limit is exceeded. We
choose the numbering of the areas so that they are ordered by non-decreasing cost
(i ≤ j ⇒ ci ≤ cj); in our example costs are 0, 1, 2, 3, 4. There could be more than one
area defined over the same time slot t (possibly spanning over other time-slots as well).
If that is the case, we require that the area ”above” has a higher cost. The electricity
consumed over a certain volume threshold might cost more. The Tasks argument is a
collection of n tasks. Each task Ti is described by its start si (between its earliest start
si and latest start si), and fixed duration di and resource use ri. In our example, we
have three tasks with durations 1, 2, 1 and resource use 2, 2, 3. The initial start times are
s1 ∈ [2, 5], s2 ∈ [1, 5], s3 ∈ [0, 5]. For a given task allocation, variable aj states how
many resource units of area Aj are used. For the optimal solution in our example we
have a1 = 2, a2 = 3, a3 = 2, a4 = 0, a5 = 2. Finally, we can define our constraint:

Definition 1. Constraint CumulativeCost expresses the following relationships:

∀ 0 ≤ t < p : prt :=
∑

{i|si≤t<si+di}
ri ≤ l (1)

∀ 1 ≤ i ≤ n : 0 ≤ si ≤ si < si + di ≤ si + di ≤ p (2)

ov(t, prt, Aj) :=

{
max(0, min(yj + hj , prt) − yj) xj ≤ t < xj + wj

0 otherwise
(3)

∀ 1 ≤ j ≤ m : aj =
∑

0≤t<p

ov(t, prt, Aj) (4)

cost =
m∑

j=1

ajcj (5)

For each time point t we first define the resource profile prt (the amount of resource
consumed at time t). That profile must be below the overall resource limit l, as in the
standard cumulative. The term ov(t, prt, Aj) denotes the intersection of the profile at
time t with area Aj , and the sum of all such intersections is the total resource usage aj .
The cost is computed by weighting each intersection aj with the per-unit cost cj of the
area.

Note that our constraint is a strict generalization of the standard cumulative. Since
enforcing generalized arc consistency (GAC) for Cumulative is NP-hard [6], the
complexity of enforcing GAC over CumulativeCost is NP-hard as well. In the re-
mainder of the paper we study the ability of CumulativeCost to reason about the
cost through computation of lower bounds.
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Problem and Optimal Solution Element Model
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Fig. 2. An example with 3 tasks and 5 areas. Areas are drawn as rounded rectangles at the top, the
tasks to be placed below, each with a line indicating its earliest start and latest end. The optimal
placement of tasks has cost 15 (left). The Element model produces a lower bound 6 (right).

3 Decomposition with Cumulative

We first present a number of models where we decompose the CumulativeCost into
a standard Cumulative and some other constraint(s) which allow the computation of
a lower bound for the cost variable. This cost component exchanges information with
the Cumulative constraint only through domain restrictions on the si variables.

3.1 Element Model

The first approach is to decompose the constraint into a Cumulative constraint and
a set of Element constraints. For a variable x ∈ {1, . . . , n} and a variable y ∈
{v1, . . . , vn}, the element constraint element(x, [v1, v2, ..., vn], y) denotes that y =
vx. For each task i and start time t we precompute a cost of having a task Ti starting
at time t in the cheapest area overlapping the time slot t (the bottom area). This value,
denoted as vit, is only a lower bound, and is incapable of expressing the cost if the task
starts at t but in a higher (more expensive) area. A lower bound can then be expressed as

lb = min
n∑

i=1

ui

∀ 1 ≤ i ≤ n : element(si, [vi1, vi2, ..., vip], ui)

This lower bound can significantly underestimate the optimal cost since each task is
assumed to be placed at its “cheapest” start time, even if the overall available volume



80 H. Simonis and T. Hadzic

would be exceeded. In our example, the vit values for each start time are displayed
above the time-lines for each task in Figure 2 (right). The lowest cost values for the
tasks are 0, 6 and 0, resp., leading to a total lower bound estimate of 6.

3.2 Flow Model

We can also describe our problem as a min-cost flow model, where the flow cost pro-
vides a lower bound to the cost variable of our constraint. We need to move the flow∑

i diri from tasks to areas. Figure 3 shows the flow graph used, where the tasks Ti are
linked to the areas Aj through flow variables fij which indicate how much volume of
task i is contained in area j. The sum of all flows aj through all areas must be equal to
the total task volume. Only the links from Aj to the terminal T have non-zero cost cj .
The lower bound estimate is a min-cost flow.

S T

t1

...

ti

...

tn

A1

...

Aj

...

Am

diri aj

fi1

fij

fim

∑
i diri

Fig. 3. Flow Graph

The model can also be expressed by a set of equations and inequalities.

lb = min
m∑

j=1

ajcj (6)

∀ 1 ≤ j ≤ m : aj =
n∑

i=1

fij (7)

∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ m : fij ≤ fij ≤ fij (8)

∀ 1 ≤ j ≤ m : 0 ≤ aj ≤ aj ≤ aj ≤ wjhj (9)

∀ 1 ≤ i ≤ n :
m∑

j=1

fij = diri (10)

∀ 1 ≤ i ≤ n :
n∑

i=1

diri =
m∑

j=1

aj (11)

While the flow model avoids placing too much work in the cheapest areas, it does allow
splitting tasks over several, even non-contiguous areas to reduce overall cost, i.e. it
ignores resource use and non-preemptiveness of tasks (Fig. 4, right).
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The quality of the bound lb can be improved by computing tight upper bounds fij .
Given a task i with domain d(si), we can compute the maximal overlap between the
task and the area j as:

fij = max
t∈d(si)

max(0, (min(xj + wj , t + di) − max(xj , t))) ∗ min(hj , ri) (12)

For the running example, the computed fij values are shown in Table 1 and the minimal
cost flow is shown in Fig. 4. Its cost is 3 ∗ 0 + 3 ∗ 1 + 2 ∗ 2 +1 ∗ 3 = 10. Note how both
tasks 1 and 2 are split into multiple pieces.

Flow Graph Assignment
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Fig. 4. Example Flow Bound

3.3 LP Models

The quality of the lower bound can be further improved by adding to the flow model
some linear constraints, which limit how much of some task can be placed into low-
cost areas. These models are no longer flows, but general LP models. We consider two
variations denoted as LP1 and LP2. We obtain LP1 by adding equations (13) to the LP
formulation of the flow model (Constraints 6-11).

∀ 1 ≤ j ≤ m :
n∑

i=1

j∑
k=1

fik =
j∑

k=1

ak ≤ Bj =
n∑

i=1

bij (13)

The bij values tell us how much of task i can be placed into the combination of cheaper
areas {A1, A2, ...Aj}. Note that this is a stronger estimate, since bij ≤ ∑j

k=1 fij .
Therefore, the LP models dominate the flow model, but require a more expensive LP
optimization at each step. Bj denotes the total amount of resources (from all tasks) that
is possible to place into the first j areas. We can compute the bij values with a sweep
along the time axis.

Table 1 shows the fij , bij and Bj values for the running example. The flow solution
in Fig. 4 does not satisfy equation (13) for j = 3, as a1 + a2 + a3 = 3 + 3 + 2 = 8 >
b13 + b23 + b33 = 2+ 2+3 = 7. Solving the LP model finds an improved bound of 11.
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Table 1. fij , bij and Bj Values for Example

fij 1 2 3 4 5
1 2 0 0 2 2
2 2 0 2 2 2
3 3 3 3 3 3

bij 1 2 3 4 5
1 2 2 2 2 2
2 2 2 2 4 4
3 3 3 3 3 3
Bj 7 7 7 9 9

The LP2 model in principle may produce potentially even stronger bounds by replac-
ing constraints (13) with more detailed constraints on individual bij :

∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ m :
j∑

k=1

fik ≤ bij (14)

In our example though, this model produces the same bound as model LP1.

4 Coarse Models and Greedy Algorithms

If we want to avoid running an LP solver inside our constraint propagator, we can derive
other lower bounds based on greedy algorithms.

4.1 Model A

We can compute a lower bound through a coarser model (denoted as Model A) which
has m variables uj , denoting the total amount of work going into Aj .

lb = min
m∑

j=1

ujcj (15)

∀ 1 ≤ j ≤ m : uj ≤ wjhj (16)

∀ 1 ≤ j ≤ m : uj ≤
n∑

i=1

fij (17)

m∑
j=1

uj =
n∑

i=1

diri (18)

It can be shown that this bound can be achieved by Algorithm A, which can be described
by the recursive equations:

lb =
m∑

j=1

ujcj (19)

∀ 1 ≤ j ≤ m : uj = min(
n∑

i=1

diri −
j−1∑
k=1

uk,

n∑
i=1

fij , wjhj) (20)

The algorithm tries to fill the cheapest areas first as far as possible. For each area we
compute the minimum of the remaining unallocated task area, and the maximum amount
that can be placed into the area based on the fij bounds and the overall area size.
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4.2 Model B

We can form a stronger model (Model B) by extending Model A with the constraints:

∀ 1 ≤ j ≤ m :
j∑

k=1

uk ≤ Bj =
n∑

i=1

bij (21)

It can be shown that the lower-bound can be computed through Algorithm B, which
extends Algorithm A by also considering the Bj bounds (constraints (13)) and is recur-
sively defined as:

lb =
m∑

j=1

ujcj (22)

∀ 1 ≤ j ≤ m : uj = min(
n∑

i=1

diri −
j−1∑
k=1

uk,

n∑
i=1

fij , wjhj ,

n∑
i=1

bij −
j−1∑
k=1

uk) (23)

Both algorithms A and B only compute a bound on the cost, and do not produce a com-
plete assignment of tasks to areas. On the other hand, they only require a single iteration
over the areas, provided the fij and bij bounds are known. Figure 5 compares the ex-
ecution of algorithms A and B on the running example (top) and shows the resulting
area utilization (bottom). Algorithm A computes a bound of 9, which is weaker than the
Flow Model (lb = 10). Algorithm B produces 11, the same as models LP1 and LP2.
Note that we can not easily determine which tasks are used to fill which area.

5 Direct Model

All previous models relied on a decomposition using a standard cumulative constraint to
enforce overall resource limits. We now extend the model of the cumulative constraint
given in [6] to handle the cost component directly (equations (24)-(33)).

We introduce binary variables yit which state whether task i starts at time t. For
each task, exactly one of these variables will be one (constraint (30)). Equations (29)
connect the si and yit variables. Continuous variables prt describe the resource profile
at each time point t, all values must be below the resource limit l. The profile is used in
two ways: In (31), the profile is built by cumulating all active tasks at each time-point.
In (32), the profile overlaps all areas active at a time-point, where the contribution of
area j at time-point t is called zjt (a continuous variable ranging between zero and hj).
Adding all contributions of an area leads to the resource use aj for area j. This model
combines the start-time based model of the cumulative with a standard LP formulation
of the convex, piece-wise linear cost of the resource profile at each time point. Note that
this model relies on the objective function to fill up cheaper areas to capacity before
using more expensive ones. Enforcing the integrality in (26) leads to a mixed integer
programming model DMIP, relaxing the integrality constraint leads to the LP model
DLP. The MIP model solves the cumulative-cost constraint to optimality, thus providing
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Algorithm A Algorithm B

uj rem
∑n

i=1 fij wjhj lb
3 9 7 3 0
3 6 7 3 3
3 3 5 3 9
0 0 - - 9
0 0 - - 9

uj rem
∑n

i=1 fij wjhj

∑n
i=1 bij −

∑j−1
k=1 uk lb

3 9 7 3 7 0
3 6 7 3 7-3 3
1 3 5 3 7-6 5
2 2 7 3 9-7 11
0 0 - - - 11
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Fig. 5. Execution of algorithms A and B on the running example

an exact bound for the constraint. We can ignore the actual solution if we want to use
the constraint in a larger constraint problem.

lb = min
m∑

j=1

ajcj (24)

∀ 0 ≤ t < p : prt ∈ [0, l] (25)

∀ 1 ≤ i ≤ n, 0 ≤ t < p : yit ∈ {0, 1} (26)

∀ 1 ≤ j ≤ m, ∀ xj ≤ t < xj + wj : zjt ∈ [0, hj ] (27)

∀ 1 ≤ j ≤ m : 0 ≤ aj ≤ aj ≤ aj ≤ wjhj (28)

∀ 1 ≤ i ≤ n : si =
p−1∑
t=0

tyit (29)

∀ 1 ≤ i ≤ n :
p−1∑
t=0

yit = 1 (30)

∀ 0 ≤ t < p : prt =
∑

t′≤t<t′+di

yit′ri (31)

∀ 0 ≤ t < p : prt =
m∑

j=1

zjt (32)

∀ 1 ≤ j ≤ m : aj =
xj+wj−1∑

t=xj

zjt (33)

Example. Figure 6 shows the solutions of DLP and DMIP on the running example.
The linear model on the left uses fractional assignments for task 2, splitting it into
two segments. This leads to a bound of 12, while the DMIP model computes a bound
of 15.
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Fig. 6. Direct Model Example

6 Comparison

We now want to compare the relative strength of the different algorithms. We first define
the concept of strength in our context.

Definition 2. We call algorithm q stronger than algorithm p if its computed lower
bound lbq is always greater than or equal to lbp, and for some instances is strictly
greater than.

Theorem 1. The relative strength of the algorithms can be shown as a diagram, where
a line p → q indicates that algorithm q is stronger than algorithm p, and a dotted line
between two algorithms states that they are incomparable.

Element

Alg A

Flow

Alg B

LP 1 LP 2 DLP DMIP

Proof. We need two lemmas, which are presented without proof:

Lemma 1. Every solution of the Flow Model is a solution of Model A.

Lemma 2. Every solution of the model LP1 is a solution of Model B.

This suffices to show that the Flow Model is stronger than Model A, and Model LP1
is stronger than Model B. The other “stronger” relations are immediate. All “incompa-
rable” results follow from experimental outcomes. Figure 7 shows as example where
the Element Model and Algorithm A outperform the model DLP. Table 4 below shows
cases where the Element Model is stronger than Model A and Model LP2, and where
the Flow Model outperforms Algorithm B.

Why are so many of the models presented incomparable? They all provide different
relaxations of the basic constraints which make up the CumulativeCost constraint.
In Table 2 we compare our methods based on four main concepts, whether the algo-
rithms respect the capacity limits for each single area, or for (some of the) multiple
areas, whether the earliest start/latest end limits for the start times are respected, and
whether the tasks are placed as rectangles with the given width and height. Each method
respects a different subset of the constraints. Methods are comparable if for all concepts
one model is stronger than the other, but incomparable if they relax different concepts.
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lb(Element)=2 > lb(DLP)=0
lb(Alg A)=2 > lb(DLP)=0

0 ← c1

4

1

1

1 ← c2

0 4

2

2

Fig. 7. Example: Element and Flow Models stronger than DLP

Table 2. Model Satisfies Basic Constraints/Complexity

Method
Single
Area

Capacity

Multi
Area

Capacity

Earliest Start
Latest End

Task
Profile

Model
Setup

Variables Constraints

Element no no yes yes O(npm) - -
Flow yes no yes ≤ height O(nm) O(nm) O(n + m)
LP 1 yes Bj yes ≤ height O(nm2) O(nm) O(n + m)
LP 2 yes bij yes ≤ height O(nm2) O(nm) O(nm)

Alg A yes no no no O(nm) - -
Alg B yes Bj no no O(nm2) - -
DLP yes yes yes width O(np + mp) O(n + m + p)

DMIP yes yes yes yes O(np + mp) O(n + m + p)

Without space for a detailed complexity analysis, we just list on the right side of
Table 2 the main worst-case results for each method. We differentiate the time required
to preprocess and generate the constraints, and the number of variables and constraints
for the LP and MIP models. Recall that n is the number of tasks, m the number of areas
and p the length of the scheduling period. Note that these numbers do not estimate the
time for computing the lower bounds but for setting-up the models.

7 Experiments

We implemented all algorithms discussed in the paper, referring to them as {DMIP,
Element, Algo A, Algo B, Flow, LP1, LP2, DLP}. For convenience we denote them also
as Algo0, . . . , Algo7. We evaluated their performance over a number of instances, de-
noted E. Each instance e ∈ E is defined by the areas A1, . . . , Am and tasks T1, . . . , Tn.
In all experiments we use a day-long time horizon divided into 48 half-hour areas and
two cost settings. In the first setting for each half-hour period we fix a price to given
values from a real-world price distribution (Fig. 1) over all the task specifications. We
denote this as a fixed cost distribution (cost = fixed). Alternatively, for each area we
choose a random cost from interval [0, 100], for each task specification. We refer to
this as a random cost distribution (cost = random). In both cases the costs are nor-
malized by subtracting the minimal cost cmin = minm

j=1cj from each area cost. For a
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given n, dmax, rmax, Δ we generate tasks T1, . . . , Tn with randomly selected durations
di ∈ [1, dmax] and resource consumptions ri ∈ [1, rmax], i = 1, . . . , n. Δ denotes the
maximal distance between the earliest and latest start time. For a given Δ we randomly
select the interval si ∈ [si, si] so that 0 ≤ si−si ≤ Δ. One of the major parameters we
consider is utilization defined as a portion of the total available area that must be covered
by the tasks: util =

∑n
i=1 diri/(l · p). In the experiments we first decide the desired

level of utilization, util, and then select a corresponding capacity limit l = �
∑ n

i=1 diri

util·p �.
Hence, each instance scenario is obtained by specifying (n, dmax, rmax, Δ, util, cost).

We used Choco v2.1.11 as the underlying constraint solver, and CPLEX v12.12 as a
MIP/LP solver. The experiments ran as a single thread on a Dual Quad Core Xeon CPU,
2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, running
Linux 2.6.25 x64. All the reported times are in milliseconds.

General Comparison. In the first set of experiments we compare the quality of the
bounds for all algorithms presented. Let vali denote a value (lower bound) returned by
Algoi. The DMIP algorithm, Algo0 solves the problem exactly, yielding the value val0
equal to the optimum. For other algorithms i we define its quality qi as vali/val0.

For a given instance we say that Algoi is optimal if qi = 100%. For all algorithms
except DMIP (i.e. i > 0), we say that they are the best if they have the maximal lower
bound over the non-exact algorithms, i.e. qi = maxj>0qj . Note that the algorithm
might be best but not optimal. For a given scenario (n, dmax, rmax, Δ, util, cost) we
generate 100 instances, and compute the following values: 1) number of times that
the algorithm was optimal or best 2) average and minimal quality qi, 3) average and
maximal execution time. We evaluate the algorithms over scenarios with n = 100
tasks, dmax = 8, rmax = 8, Δ = 10, util ∈ {30%, 50%, 70%, 80%} and cost ∈
{fixed, random}. This leads in total to eight instance scenarios presented in Table
3. The first column indicates the scenario (utilization and cost distribution). The last
eight columns indicate the values described above for each algorithm. First note that
the bound estimates for algorithms B, LP1, LP2 are on average consistently higher than
95% over all scenarios, but that DLP provides exceptionally high bounds, on average
over 99.6% for each scenario. While algorithms A and Flow can provide weaker bounds
for lower utilization, the bounds improve for higher utilization. Algorithm Element on
the other hand performs better for lower utilization (since its bound ignores capacity l)
and deteriorates with higher utilization.

We also performed experiments over unrestricted initial domains, i.e. where si ∈
[0, p − 1]. While most of the algorithms improved their bound estimation, Element
performed much worse for the fixed cost distribution, reaching quality as low as 12%
for high utilization. On the other hand, reducing Δ to 5 significantly improved the
quality of Element, while slightly weakening the quality of other algorithms. In all the
cases, the worst-case quality of DLP was still higher than 98.6%.

Aggregate Pairwise Comparison. In Table 4 we compare all algorithms over the entire
set of instances that were generated under varying scenarios involving 100 tasks. For

1 http://choco-solver.net
2 http://www-01.ibm.com/software/integration/optimization/cplex/

http://choco-solver.net
http://www-01.ibm.com/software/integration/optimization/cplex/
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Table 3. Evaluation of algorithms for dmax = rmax = 8 and Δ = 10 with varying util and cost

Scenario Key DMIP Element A B Flow LP1 LP2 DLP
util=30 Opt/Best 100 - 92 92 0 0 0 0 0 0 0 0 0 0 93 100

fixed Avg/Min Quality 100.0 100.0 99.998 99.876 57.268 33.055 99.77 99.337 97.429 94.665 99.77 99.337 99.77 99.337 99.999 99.994
Avg/Max Time 29 194 185 509 8 73 12 126 34 138 150 277 211 617 111 380

util=50 Opt/Best 100 - 2 2 0 0 0 0 0 0 0 0 0 0 7 100
fixed Avg/Min Quality 100.0 100.0 99.038 94.641 68.789 54.22 99.131 95.963 97.816 95.89 99.407 97.773 99.435 97.913 99.948 99.358

Avg/Max Time 89 2,108 176 243 6 12 7 94 33 130 139 274 194 275 96 181
util=70 Opt/Best 100 - 0 0 0 0 0 0 0 1 0 5 0 6 1 100

fixed Avg/Min Quality 100.0 100.0 93.541 81.603 84.572 69.953 96.495 87.884 99.1 96.994 99.24 97.838 99.346 98.071 99.764 98.992
Avg/Max Time 2,107 32,666 177 242 7 103 8 72 34 97 136 239 213 1,798 110 1,551

util=80 Opt/Best 100 - 0 0 0 0 0 1 0 4 0 20 0 21 0 100
fixed Avg/Min Quality 100.0 100.0 88.561 70.901 92.633 81.302 96.163 89.437 99.34 96.728 99.354 96.737 99.392 96.737 99.649 98.528

Avg/Max Time 13,017 246,762 206 450 10 67 15 96 38 124 156 235 220 426 125 299
util=30 Opt/Best 100 - 94 94 0 0 0 0 0 0 0 0 0 0 97 100
random Avg/Min Quality 100.0 100.0 99.996 99.872 58.094 41.953 96.965 93.237 73.759 54.641 96.965 93.237 96.966 93.254 99.999 99.977

Avg/Max Time 29 154 192 427 7 24 8 42 32 94 145 224 203 361 99 274
util=50 Opt/Best 100 - 0 0 2 8 2 8 2 8 2 8 2 8 5 100
random Avg/Min Quality 100.0 100.0 88.277 30.379 76.457 57.049 96.585 92.563 83.314 69.178 96.619 92.604 96.861 93.242 99.93 99.724

Avg/Max Time 2,452 62,168 202 814 10 99 13 131 43 177 165 380 238 903 108 327
util=70 Opt/Best 100 - 0 0 0 0 0 0 0 0 0 0 0 0 0 100
random Avg/Min Quality 100.0 100.0 91.045 72.06 89.784 75.822 95.242 90.496 92.953 84.277 95.953 92.24 96.947 94.012 99.697 99.374

Avg/Max Time 72,438 2,719,666 226 436 13 74 26 98 70 178 223 543 280 566 152 428
util=80 Opt/Best 100 - 0 0 0 0 0 0 0 0 0 0 0 0 0 100
random Avg/Min Quality 100.0 100.0 86.377 72.566 94.813 88.039 96.092 89.233 97.231 93.919 97.658 94.917 98.426 96.342 99.626 99.161

Avg/Max Time 684,660 8,121,775 320 2,148 16 100 31 180 63 370 223 1,586 363 23,91 286 7,242

any two algorithms Algoi and Algoj let Eij = {e ∈ E | qei > qej} denote the set of
instances where Algoi outperforms Algoj . Let numij = |Eij | denote the number of
such instances, while avgij and maxij denote the average and maximal difference in
quality over Eij . In the (i, j)-th cell of Table 4 we show (numij , avgij , maxij). In ap-
proximately 2000 instances DLP strictly outperforms all other non-exact algorithms in
more than 1700 cases and is never outperformed by another. Algorithm B outperforms
Flow (1107 cases) more often than Flow outperforming B (333 cases). Furthermore,
LP2 outperforms LP1 in about 700 cases. Interestingly, even though Element produces
on average weaker bounds, it is able to outperform all non-exact algorithms except DLP
on some instances.

Table 4. Comparison of algorithms over all instances generated for experiments with n = 100
tasks

Element A B Flow LP1 LP2 DLP

DMIP 1802 26.39 88.62 1944 17.47 68.55 1944 3.99 30.71 1944 9.85 68.55 1944 3.49 30.71 1944 3.24 30.71 1387 0.18 1.47
EL - - - 1034 25.62 66.95 656 3.0 22.07 856 15.65 65.82 650 3.01 22.07 621 3.04 22.07

A 1052 38.1 88.61 - - - - - - - - - - - - - - -
B 1429 29.22 88.61 1439 18.22 66.65 - - - 1107 11.02 51.86 - - - - - -

FLW 1230 33.97 88.61 1184 12.51 64.35 333 2.39 10.49 - - - - - - - - -
LP1 1436 29.74 88.61 1441 18.86 66.65 726 1.33 10.51 1413 8.75 51.86 - - - - - -
LP2 1465 29.44 88.61 1441 19.19 66.65 846 1.71 10.64 1425 9.02 51.86 690 0.7 5.09 - - -
DLP 1802 26.24 88.61 1752 19.24 68.55 1751 4.28 30.71 1747 10.82 68.55 1727 3.78 30.71 1725 3.51 30.71 - - -

Varying Number of Tasks. Finally, we evaluated the effect of increasing the number of
tasks. We considered scenarios n ∈ {50, 100, 200, 400} where dmax = 8, rmax = 8,
Δ = 10, util = 70 and cost = random.The results are reported in Table 5. We
can notice that all algorithms improve the quality of their bounds with an increase in
the number of tasks. While the time to compute the bounds grows for the non-exact
algorithms, interestingly this is not always the case for the DMIP model. The average
time to compute the optimal value peaks for n = 100 (72 seconds on average) and then
reduces to 24 and 9 seconds for n = 200 and n = 400 respectively.
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Table 5. Evaluation of algorithms for random cost distribution, Δ = 10 and util = 70

Scenario Key DMIP Element A B Flow LP1 LP2 DLP
n=50 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Avg/Min Quality 100.0 100.0 89.331 71.865 88.833 70.372 93.991 86.143 92.384 84.589 94.863 87.417 95.899 89.937 98.664 95.523
Avg/Max Time 1,334 31,426 102 314 8 83 6 36 23 78 93 254 132 298 75 233

n=100 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Avg/Min Quality 100.0 100.0 91.045 72.06 89.784 75.822 95.242 90.496 92.953 84.277 95.953 92.24 96.947 94.012 99.697 99.374

Avg/Max Time 72,438 2,719,666 226 436 13 74 26 98 70 178 223 543 280 566 152 428
n=200 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Avg/Min Quality 100.0 100.0 92.537 84.06 89.819 79.862 95.885 93.01 92.566 83.516 96.48 93.328 97.158 93.885 99.936 99.833
Avg/Max Time 24,491 233,349 395 700 19 148 22 113 83 208 341 533 468 638 226 456

n=400 Opt/Best 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Avg/Min Quality 100.0 100.0 93.239 86.419 90.417 84.205 96.3 92.721 92.939 86.658 96.716 93.275 97.23 95.013 99.985 99.961

Avg/Max Time 9,379 158,564 831 1,222 31 164 36 189 181 305 923 3,053 1,214 3,434 484 871

8 Conclusions and Future Work

We have introduced the CumulativeCost constraint, a resource cost-aware exten-
sion of the standard cumulative constraint, and suggested a number of algorithms to
compute lower bounds on its cost. We compared the algorithms both theoretically and
experimentally and discovered that while most of the approaches are mutually incom-
parable, the DLP model clearly dominates all other algorithms for the experiments con-
sidered. Deriving lower bounds is a necessary first step towards the development of
the CumulativeCost constraint. We plan to evaluate the performance of the con-
straint in a number of real-life scheduling problems, which first requires development
of domain filtering algorithms and specialized variable/value ordering heuristics.
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Abstract. This article presents a generic scheme for adding strong local
consistencies to the set of features of constraint solvers, which is notably
applicable to event-based constraint solvers. We encapsulate a subset of
constraints into a global constraint. This approach allows a solver to
use different levels of consistency for different subsets of constraints in
the same model. Moreover, we show how strong consistencies can be
applied with different kinds of constraints, including user-defined con-
straints. We experiment our technique with a coarse-grained algorithm
for Max-RPC, called Max-RPCrm, and a variant of it, L-Max-RPCrm.
Experiments confirm the interest of strong consistencies for Constraint
Programming tools.

1 Introduction

This paper presents a generic framework for integrating strong local consistencies
into Constraint Programming (CP) tools, especially event-based solvers. It is
successfully experimented using Max-RPCrm and L-Max-RPCrm, recent coarse-
grained algorithms for Max-RPC and a variant of this consistency [25].

The most successful techniques for solving problems with CP are based on
local consistencies. Local consistencies remove values or assignments that cannot
belong to a solution. To enforce a given level of local consistency, propagators
are associated with constraints. A propagator is complete when it eliminates all
the values that cannot satisfy the constraint. One of the reasons for which CP is
currently applied with success to real-world problems is that some propagators
are encoded through filtering algorithms, which exploit the semantics of the
constraints. Filtering algorithms are often derived from well-known Operations
Research techniques. This provides powerful implementations of propagators.
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Many solvers use an AC-5 based propagation scheme [23]. We call them event-
based solvers. Each propagator is called according to the events that occur in
the domains of the variables involved in its constraint. For instance, an event
may be a value deleted by another constraint. At each node of the search tree,
the pruning is performed within the constraints. The fixed point is obtained by
propagating events among all the constraints. In this context, generalized arc-
consistency (GAC) is, a priori, the highest level of local consistency that can be
enforced (all propagators are complete).

On the other hand, local consistencies that are stronger than GAC [9,6] re-
quire to take into account several constraints at a time in order to be enforced.
Therefore, it is considered that such strong consistencies cannot easily be inte-
grated into CP toolkits, especially event-based solvers. Toolkits do not feature
those consistencies,1 and they are not used for solving real-life problems.

This article demonstrates that strong local consistencies are wrongly excluded
from CP tools. We present a new generic paradigm to add strong local consis-
tencies to the set of features of constraint solvers. Our idea is to define a global
constraint [7,1,19], which encapsulates a subset of constraints of the model. The
strong consistency is enforced on this subset of constraints. Usually, a global
constraint represents a sub-problem with fixed semantics. It is not the case for
our global constraint: it is used to apply a propagation technique on a given
subset of constraints, as it was done in [20] in the context of over-constrained
problems. Our scheme may be connected to Bessière & Régin’s “on the fly” sub-
problem solving [5]. However, there is a fundamental divergence as our scheme
is aimed at encoding strong consistencies. Thus, we keep a local evaluation of
the supports for each constraint in the encapsulated model.

This approach provides some new possibilities compared with the state of the
art. A first improvement is the ability to use different levels of consistency for
different subsets of constraints in the same constraint model. This feature is an
alternative to the heuristics for dynamically switching between different levels
of consistency during search [21]. A second one is to apply strong consistencies
to all kinds of constraints, including user-defined constraints or arithmetical
expressions. Finally, within the global constraint, it is possible to define any
strategy for handling events. One may order events variable per variable instead
of considering successively each encaspulated constraint. Event-based solvers
generally do not provide such a level of precision.

We experiment our framework with the Max-RPC strong consistency [8], using
the Choco CP solver [15]. We use a coarse-grained algorithm for Max-RPC, called
Max-RPCrm [25]. This algorithm exploits backtrack-stable data structures in a
similar way to AC-3rm [17].

Section 2 presents the background about constraint networks and local con-
sistencies useful to understand our contributions. Section 3 presents the generic
integration scheme and it specialization to specific strong local consistencies.

1 Some strong consistencies such as SAC [3] can be implemented using assignment
and propagation methods, and some solvers may feature such ones.
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Section 4 describes Max-RPCrm and L-Max-RPCrm. Section 5 details the
experimental evaluation of our work. Finally, we discuss the perspectives and
we conclude.

2 Background

A constraint network N is a triple (X ,D ,C ) which consists of :
– a set of n variables X ,
– a set of domains D , where the domain dom(X) ∈ D of the variable X is the

finite set of at most d values that the variable X can take, and
– a set C of e constraints that specify the allowed combinations of values for

given subsets of variables.

A variable/value couple (X, v) will be denoted Xv. An instantiation I is a
set of variable/values couples. I is valid iff for any variable X involved in I,
v ∈ dom(X). A relation R of arity k is any set of instantiations of the form
{Xa, Yb, . . . , Zc}, where a, b, . . . , c are values from a given universe.

A constraint C of arity k is a pair (vars(C), rel(C)), where vars(C) is a set of
k variables and rel(C) is a relation of arity k. I[X ] denotes the value of X in the
instantiation I. CXY ...Z denotes a constraint such that vars(C) = {X,Y, . . . , Z}.
Given a constraint C, an instantiation I of vars(C) (or of a superset of vars(C),
considering only the variables in vars(C)), satisfies C iff I ∈ rel(C). We say that
I is allowed by C.

A solution of a constraint network N (X ,D ,C ) is an instantiation IS of all
variables in X such that (1.) ∀X ∈ X , IS [X ] ∈ dom(X) (IS is valid), and
(2.) IS satisfies (is allowed by) all the constraints in C .

2.1 Local Consistencies
Definition 1 (Support). Let C be a constraint and X ∈ vars(C). A support
for a value a ∈ dom(X) w.r.t. C is an instantiation I ∈ rel(C) such that I[X ] = a.

Definition 2 (Arc-consistency). Let C be a constraint and X ∈ vars(C).
Value a ∈ dom(X) is arc-consistent w.r.t. C iff it has a support in C. C is
arc-consistent iff ∀X ∈ vars(C), dom(X) is arc-consistent.
N (X ,D ,C ) is arc-consistent iff ∀X ∈ X , ∀a ∈ dom(X), ∀C ∈ C , a is arc-

consistent w.r.t. C.

Definition 3 (Closure). Let N (X ,D ,C ) be a constraint network, Φ a local
consistency (e.g., AC) and C a set of constraints ⊆ C . Φ(D , C) is the closure
of D for Φ on C, i.e. the set of domains obtained from D where ∀X, all values
a ∈ dom(X) that are not Φ-consistent w.r.t. a constraint in C have been removed.

For GAC and for most consistencies, the closure is unique. In CP systems, a prop-
agator is associated with each constraint to enforce GAC or weaker forms of local
consistencies. On the other hand, local consistencies stronger than GAC [9,6] re-
quire to take into account more than one constraint at a time to be enforced.
This fact have made them excluded from most of CP solvers, until now.
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2.2 Strong Local Consistencies

This paper focuses on domain filtering consistencies [9], which only prune values
from domains and leave the structure of the constraint network unchanged.

Binary Constraint Networks. Firstly, w.r.t. binary constraint networks, as
it is mentioned in [6], (i, j)-consistency [11] is a generic concept that captures
many local consistencies. A binary constraint network is (i, j)-consistent iff it
has non-empty domains and any consistent instantiation of i variables can be
extended to a consistent instantiation involving j additional variables. Thus, AC
is a (1, 1)-consistency.

A binary constraint network N that has non empty domains is :

Path Consistent (PC) iff it is (2, 1)-consistent.
Path Inverse Consistent (PIC) [12] iff it is (1, 2)-consistent.
Restricted Path Consistent (RPC) [2] iff it is (1, 1)-consistent and for all

values a that have a single consistent extension b to some variable, the pair
of values (a, b) forms a (2, 1)-consistent instantiation.

Max-Restricted Path Consistent (Max-RPC) [8] iff it is (1, 1)-consistent
and for each valueXa, and each variable Y ∈ X \X , one consistent extension
Yb of Xa is (2, 1)-consistent (that is, can be extended to any third variable).

Singleton Arc-Consistent (SAC) [3] iff each value is SAC, and a value Xa
is SAC if the subproblem built by assigning a to X can be made AC (the
principle is very close to shaving, except that here the whole domains are
considered).

Non-binary Constraint Networks. Concerning non binary constraint net-
works, relational arc- and (i, j)-consistencies [10] provide the concepts useful to
extend local consistencies defined for binary constraint networks to the non-
binary case. A constraint network N that has non empty domains is:

Relational AC (relAC) iff any consistent assignment for all but one of the
variables in a constraint can be extended to the last variable, so as to satisfy
the constraint.

Relational (i, j)-consistent iff any consistent instantiation for i of the vari-
ables in a set of j constraints can be extended to all the variables in the set.

From these notions, new domain filtering consistencies for non-binary constraints
inspired by the definitions of RPC, PIC and Max-RPC were proposed in [6].
Moreover, some interesting results were obtained using pairwise consistency. A
constraint network N that has non empty domains is :

Pairwise Consistent (PWC) [14] iff it has no empty relations and any lo-
cally consistent instanciation from the relation of a constraint can be consis-
tently extended to any other constraint that intersects with this. One may
apply both PWC and GAC.
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Fig. 1. A strong consistency global constraint CΦ, used to enforce the strong local
consistency on a subset of constraints C Φ. N ′ is the new network obtained when
replacing CΦ by the global constraint.

Pairwise Inverse Consistent (PWIC) [22] iff for each value Xa, there is a
support for a w.r.t. all constraints involving X , such that the supports in all
constraints that overlap on more variables than X have the same values.

3 A Global Constraint for Domain Filtering Consistencies

This section presents an object-oriented generic scheme for integrating domain
filtering consistencies in constraint solvers, and its specialization for Max-RPC.
Given a local consistency Φ, the principle is to deal with the subset C Φ of
constraints on which Φ should be applied, within a new global constraint CΦ
added to the constraint network. Constraints in C Φ are connected to CΦ instead
of being included into the initial constraint networkN (see Figure 1). In this way,
events related to constraints in C Φ are handled in a closed world, independently
from the propagation queue of the solver.

3.1 A Generic Scheme

As it is depicted by Figure 2, AbstractStrongConsistency is the abstract class
that will be concretely specialized for implementing CΦ, the global constraint
that enforces Φ. The constraint network corresponding to C Φ is stored within this
global constraint. In this way, we obtain a very versatile framework to implement
any consistency algorithm within the event-based solver.

We encapsulate the constraints and variables of the original network in order
to rebuild the constraint graph involving only the constraints in C Φ, thanks to
SCConstraint (Strong Consistency Constraint) and SCVariable (Strong Con-
sistency Variable) classes. In Figure 1, in N ′ all constraints of C Φ are discon-
nected from the original variables of the solver. Variables of the global constraint
are encapsulated in SCVariables, and the constraints in SCConstraints. In N ′,
variable Z is connected to the constraints CUZ , CWZ and CΦ from the point on
view of the solver. Within the constraint CΦ, the SCVariable Z is connected to
the dotted SCConstraints towards the SCVariables T, V, X and Y.



Integrating Strong Local Consistencies into Constraint Solvers 95

AbstractStrongConsistency

SCConstraint SCVariable

IterableConstraint SolverVariable
Solver events

* *
* *

1 1
*

Fig. 2. UML Class diagram [13] of the integration of strong local consistencies into
event-based solvers. Arrows describe association relations with cardinalities, either
one (1) or many (*).

Note that the original constraints of the problem can be kept in place, so
that they can perform their standard pruning task before the stronger consis-
tency is applied. For best efficiency, however, the solver should feature constraint
prioritization (see e.g., [26]): propagating the weaker constraints after the strong
consistency constraint would be useless.

Mapping the Constraints. We need to identify a lowest common denomi-
nator among local consistencies, which will be implemented using the services
provided by the constraints of the solver. In Figure 2, this is materialized by the
abstract class IterableConstraint. Within solvers, and notably event-based
solvers, constraints are implemented with propagators. While some consistencies
such as SAC can be implemented using those propagators, this is not true for
most other consistencies. Indeed, the generic concepts that capture those con-
sistencies are (relational) (i, j)-consistencies (see section 2.2). Therefore, they
rather rely on the notion of allowed and valid instantiations, and it is required
to be able to iterate over and export these, as it is performed to handle logi-
cal connectives in [18]. Moreover, algorithms that seek optimal worst-case time
complexities memorize which instantiations have already been considered. This
usually requires that a given iterator over the instantiations of a constraint al-
ways delivers the instantiations in the same order (generally lexicographic), and
the ability to start the iteration from any given instantiation.

To give access to and iterate over the supports, the methods firstSupport
and nextSupport are specified in IterableConstraint, a subclass of the ab-
stract constraint class of the solver.

Generic iterators. The firstSupport and nextSupport services are not usually
available in most constraint solvers. However, a generic implementation can be
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SolverConstraint
check
propagate

IterableConstraint
firstSupport
nextSupport

Adapter
firstSupport
nextSupport

1

Fig. 3. A generic implementation of support iterator functions, given the constraints
provided by a solver. Following the UML specifications, open triangle arrows describe
generalization relations.

devised, either by relying on constraint checkers2 (all valid instantiations are
checked until an allowed one is found), or by using directly the propagator of
the constraint. To perform this, one can simply build a search tree which enu-
merates the solutions to the CSP composed of the constraint and the variables
it involves. These implementations are wrapped in an Adapter class that spe-
cializes the required IterableConstraint superclass, and handles any solver
constraint with a constraint checker, as depicted by Figure 3. In this way, no
modification is made on the constraints of the solver.

Specialized iterators. For some constraints, more efficient, ad-hoc algorithms for
firstSupport and nextSupport functions can be provided (e.g., for positive
table constraints [4]). As IterableConstraint specializes SolverConstraint
(see Figure 3), it is sufficient to specialize IterableConstraint for this purpose.

Some strong consistencies such as Path Consistency may be implemented by
directly using the propagators of the constraints [16]. Our framework also allows
these implementations, since the original propagators of the constraints are still
available.

Mapping the Variables. Mapping the variables is simpler, as our framework
only requires basic operations on domains, i.e., iterate over values in the current
domain and remove values. Class SCVariable is used for representing the con-
straint subnetwork (vars(CΦ),D ,C Φ). A link is kept with the solver variable for
operation on domains.

2 A constraint checker checks whether a given instantiation is allowed by the constraint
or not.
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AbstractStrongConsistency

SCConstraint SCVariable

MaxRPCMaxRPCConstraint MaxRPCVariable

* *
* *

Fig. 4. Diagram of the integration of Max-RPC into event-based solvers

The main feature of SCVariable is to “hide” the external constraints from
the point of view of the AbstractStrongConsistency class implementations.
Moreover, it may prove to be very useful to specialize the SCVariable class to
add data structures required by the strong consistency implementation.

Variable Degree-Based Heuristics. Some popular variable ordering heuris-
tics for binary constraints networks, such as Brelaz, dom/ddeg or dom/wdeg,
rely on the structure of the constraint graph in order to select the next variable
to instantiate. Since constraints in C Φ are not connected to the model, they
are no longer taken into account by the heuristics of the solver. To overcome
this issue, we made the heuristics ask directly for the score of a variable to the
AbstractStrongConsistency constraints that imply this variable. The global
constraint is thus able to compute the corresponding dynamic (weighted) degrees
of each variable within their subnetwork C Φ.

3.2 A Concrete Specialization: Max-RPC

Figure 4 depicts the specialization of our framework to a particular domain
filtering consistency for binary networks, Max-RPC [8]. The class MaxRPC de-
fines the global constraint that will be used in constraint models. It extends the
abstract class AbstractStrongConsistency to implement the propagation al-
gorithm of Max-RPC. Moreover, implementing Max-RPC requires to deal with
3-cliques in the constraint graph, to check extensions of a consistent instantia-
tion to any third variable. SCConstraint and SCVariable classes are specialized
to efficiently manipulate 3-cliques.

4 A Coarse Grained Algorithm for Max-RPC

This section presents the implementation of Max-RPC we used in section 5 to
experiment our approach.
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Algorithm 1. MaxRPC(P = (X ,C ), Y )
Y : the set of variables modified since the last call to MaxRPC

1 Q ← Y ;
2 while Q �= ∅ do
3 pick X from Q ;
4 foreach Y ∈ X | ∃CXY ∈ C do
5 foreach v ∈ dom(Y ) do if revise(CXY , Yv, true) then Q← Q∪ {Y };
6 foreach (Y,Z) ∈X 2 | ∃(CXY , CY Z , CXZ) ∈ C 3 do
7 foreach v ∈ dom(Y ) do if revisePC(CY Z , Yv,X) then Q ← Q ∪ {Y };
8 foreach v ∈ dom(Z) do if revisePC(CY Z , Zv,X) then Q← Q ∪ {Z};

Algorithm 2. revisePC(CY Z , Ya, X): boolean
Y : the variable to revise because PC supports in X may have been lost

1 if pcRes[CY Z , Ya][X] ∈ dom(X) then return false ;
2 b← findPCSupport(Ya, Zlast[CYZ ,Ya],X) ;
3 if b = ⊥ then return revise(CY Z , Ya, false) ;
4 pcRes[CY Z , Ya][X]← b; return false;

Max-RPCrm [25] is a coarse-grained algorithm for Max-RPC. This algorithm
exploits backtrack-stable data structures inspired from AC-3rm [17]. rm stands
for multidirectional residues; a residue is a support which has been stored dur-
ing the execution of the procedure that proves that a given value is AC. During
forthcoming calls, this procedure simply checks whether that support is still valid
before searching for another support from scratch. The data structures are stable
on backtrack (they do not need to be reinitialized nor restored), hence a minimal
overhead on the management of data. Despite being theoretically suboptimal in
the worst case, Lecoutre & Hemery showed in [17] that AC-3rm behaves better
than the optimal algorithm in most cases. In [25], authors demonstrate that us-
ing a coarse-grained approach is also especially interesting for the strong local
consistency Max-RPC. With g being the maximal number of constraints involv-
ing a single variable, c the number of 3-cliques and s the maximal number of
3-cliques related to the same constraint (s < g < n and e ≤ ng/2), the worst-case
time complexity for Max-RPCrm is O(eg+ ed3 + csd4) and its space complexity
is O(ed + cd).

L-Max-RPCrm is a variant of Max-RPCrm that computes a relaxation of
Max-RPC with a worst-case time complexity in O(eg + ed3 + cd4) and a space
complexity in O(c + ed) (that is, a space complexity very close to best AC
algorithms). The pruning performed by L-Max-RPCrm is strictly stronger than
that of AC.

Algorithms 1 to 4 describe Max-RPCrm and L-Max-RPCrm. In this algorithm,
Lines 6-8 of Algorithm 1 and Lines of 5-8 of Algorithm 3 are added to a standard
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Algorithm 3. revise(CXY , Ya, supportIsPC ): boolean
Ya: the value of Y to revise against CXY – supports in X may have been lost
supportIsPC : false if one of pcRes[CXY , Ya] is no longer valid

1 if supportIsPC∧res[CXY , Ya] ∈ dom(X) then return false ;
2 b← firstSupport(CXY , {Ya})[X] ;
3 while b �= ⊥ do
4 PConsistent← true ;
5 foreach Z ∈X | (X,Y,Z) form a 3-clique do
6 c← findPCSupport(Ya,Xb, Z) ;
7 if c = ⊥ then PConsistent ← false ; break;
8 currentPcRes[Z]← c ;
9 if PConsistent then

10 res[CXY , Ya]← b ; res[CXY ,Xb]← a ;
11 pcRes[CXY , Ya]← pcRes[CXY ,Xb]← currentPcRes ;
12 return false ;
13 b← nextSupport(CXY , {Ya}, {Xb, Ya})[X] ;
14 remove a from dom(Y ) ; return true ;

Algorithm 4. findPCSupport(Xa, Yb, Z): value
1 c1 ← firstSupport(CXZ , {Xa})[Z] ;
2 c2 ← firstSupport(CY Z , {Yb})[Z] ;
3 while c1 �= ⊥ ∧ c2 �= ⊥ ∧ c1 �= c2 do
4 if c1 < c2 then
5 c1 ← nextSupport(CXZ , {Xa}, {Xa, Zc2−1})[Z] ;
6 else
7 c2 ← nextSupport(CY Z , {Yb}, {Yb, Zc1−1})[Z] ;

8 if c1 = c2 then return c1 ;
9 return ⊥ ;

AC-3rm algorithm. L-Max-RPCrm removes the memory and time overhead
caused by the pcRes data structure and the calls to the revisePC function.
The principle is to modify Algorithm 1 by removing the foreach do loop on
Lines 6-8. The revisePC function and pcRes data structure are no longer use-
ful and can be removed, together with Lines 8 and 11 of Algorithm 3 (greyed
parts in the algorithms). The obtained algorithm achieves an approximation of
Max-RPC, which is stronger than AC. It ensures that all the values that were
not Max-RPC before the call to L-Max-RPCrm will be filtered. The consistency
enforced by L-Max-RPCrm in not monotonous and will depend on the order
in which the modified variables are picked from Q, but its filtering power is
only slightly weaker than that of Max-RPC on random problems, despite the
significant gains in space and time complexities.
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Fig. 5. Initial propagation: CPU time, memory and % of removed values against tight-
ness on homogeneous random problems (200 variables, 30 values, 15/30% density)

5 Experiments

The aim of our experiments is to show the practicability of our approach. We
evaluate (1.) the eventual overload of the integration, and (2.) the interest of
mixing various consistencies, as is made possible thanks to our scheme.

We implemented the diagram of Figure 4 in Choco [15], using the algo-
rithm for Max-RPC described in section 4. In our experiments, Max-RPCrm and
L-Max-RPCrm are compared to Choco’s native AC-3rm filtering algorithm.

5.1 Evaluating the Overload

On the figures, each point is the median result over 50 generated binary random
problem of various characteristics. A binary random problem is characterized
by a quadruple (n, d, γ, t) whose elements respectively represent the number of
variables, the number of values, the density3 of the constraint graph and the
tightness4 of the constraints.

Single Propagation. Figure 5 compares the time and memory used for the
initial propagation on rather large problems (200 variables, 30 values), as well
as the percentage of removed values. In our experiments, only constraints that
form a 3-clique are mapped to the global constraint. A low density leads to a
3 The density is the proportion of constraints in the graph w.r.t. the maximal number

of possible constraints, i.e. γ = e/
(
n
2

)
.

4 The tightness is the proportion of instantiations forbidden by each constraint.
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Fig. 6. Full search: cpu time and nodes against tightness on homogeneous random
problems (105-110 variables, 20-25 values)

low number of 3-cliques, hence experimental results are coherent with theoretical
complexities.

Full Search. Figure 6 depicts experiments with a systematic search algorithm,
where the various levels of consistency are maintained throughout search. The
variable ordering heuristic is dom/ddeg (the process of weighting constraints
with dom/wdeg is not defined when more than one constraint lead to a domain
wipeout). We use the problem (105, 20, 5%, t) as a reference (top left graphs)
and increase successively the number of values (top right), of variables (bottom
left) and density (bottom right).

Results in [8,25] showed that maintaining Max-RPC in a dedicated solver
was interesting for large and sparse problems, compared with maintaining AC.
Our results show that encoding Max-RPC within a global constraint leads to
the same conclusions, hence that our scheme has no incidence on computation
costs.
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Table 1. Mixing two levels of consistency in the same model

AC-3rm L-Max-RPCrm AC-3rm+L-Max-RPCrm

(35, 17, 44%, 31%) cpu (s) 6.1 11.6 non
nodes 21.4k 8.6k applicable

(105, 20, 5%, 65%) cpu (s) 20.0 16.9 non
nodes 38.4 k 19.8 k applicable

(35, 17, 44%, 31%)
+(105, 20, 5%, 65%)

cpu (s) 96.8 103.2 85.1
nodes 200.9k 107.2k 173.4k

(110, 20, 5%, 64%) cpu (s) 73.0 54.7 non
nodes 126.3k 56.6k applicable

(35, 17, 44%, 31%)
+(110, 20, 5%, 64%)

cpu (s) 408.0 272.6 259.1
nodes 773.0k 272.6k 316.5k

5.2 Mixing Local Consistencies

A new feature provided by our approach is the ability to mix various levels of
local consistency for solving a given constraint network, each on some a priori
disjoint subsets of constraints.5

Table 1 shows the effectiveness of the new possibility of mixing two levels of
consistency within the same model. The first two rows correspond to the median
results over 50 instances of problems (35, 17, 44%, 31%) and (105, 20, 5%, 65%).
The first problem is better resolved by using AC-3rm while the second one shows
better results with L-Max-RPCrm.

The third row corresponds to instances where two problems are concatened
and linked with a single additional loose constraint. On the last two columns,
we maintain AC on the denser part of the model, and L-Max-RPC on the rest.
The dom/ddeg variable ordering heuristic will lead the search algorithm to solve
firstly the denser, satisfiable part of problem, and then thrashes as it proves that
the second part of the model is unsatisfiable.

Our results show that mixing the two consistencies entails a faster solving,
which emphasizes the interest of our approach. The last two rows present the
results with larger problems.

6 Conclusion and Perspectives

This paper presented a generic scheme for adding strong local consistencies to
the set of features of constraint solvers. This technique allows a solver to use
different levels of consistency for different subsets of constraints in the same
model. The soundness of this feature is validated by our experiments. A major
5 Such constraints can share variables.
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interest of our schema is that strong consistencies can be applied with different
kinds of constraints, including user-defined constraints.

Although our contribution is not restricted to event-based solvers, we un-
derline that an important motivation for providing this scheme was to bridge
the gap between strong consistencies and event-based constraint toolkits. Such
toolkits put together many scientific contributions of the community. They pro-
vide users with advanced APIs that allow to use a catalog of global constraints
with powerful filtering algorithms, to implement new constraints, to define spe-
cific search strategies, to hybrid CP with other solving techniques such as Local
Search (e.g., Comet [24]), or to integrate explanations (e.g., Choco [15]). Our
approach adds to this list of features the use of strong consistencies.

Future works include the practical use of our framework with other strong
local consistencies, as well as a study of some criteria for decomposing a con-
straint network, in order to automatize the use of different levels of consistency
for different subsets of constraints. This second perspective may allow to link
our approach with the heuristics for adapting the level of consistency during the
search process [21].

Further, since a given local consistency can be applied only on a subset of
constraints, a perspective opened by our work is to identify specific families of
constraints for which a given strong consistency can be achieved more efficiently.
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Abstract. Previously we presented a new approach to solving dynamic con-
straint satisfaction problems (DCSPs) based on detection of major bottlenecks in
a problem using a weighted-degree method called “random probing”. The present
work extends this approach and the analysis of the performance of this algorithm.
We first show that despite a reduction in search effort, variability in search effort
with random probing after problem perturbation is still pronounced, reflected in
low correlations between performance measures on the original and perturbed
problems. Using an analysis that separates effects based on promise and fail-
firstness, we show that such variability is mostly due to variation in promise.
Moreover, the stability of fail-firstness is greater when random probiing is used
than with non-adaptive heuristics. We then present an enhancement of our orig-
inal probing procedure, called “random probing with solution guidance”, which
improves average performance (as well as solution stability). Finally, we present
an analysis of the nearest solution in the perturbed problem to the solution found
for the original (base) problem. These results show why solution repair methods
do poorly when problems are in a critical complexity region, since there may be
no solutions similar to the original one in the perturbed problem. They also show
that on average probing with solution guidance finds solutions with near-maximal
stability under these conditions.

1 Introduction

A “dynamic constraint satisfaction problem”, or DCSP, is defined as a sequence of
CSPs in which each problem in the sequence is produced from the previous problem
by changes such as addition and/or deletion of constraints [VJ05]. Although several
strategies have been proposed for handling DCSPs, there is still considerable scope for
improvement, in particular, when problems are in the critical complexity region. For
these problems, algorithms that attempt to repair the previous solution can be grossly
inefficient, especially when they are based on complete search [WGF09].

In recent work we found that for hard CSPs, search performance (amount of effort)
can change drastically even after small alterations that do not change the values of the

� This work was supported by Science Foundation Ireland under Grant 05/IN/I886. We thank
E. Hebrard for contributing the experiment shown in Figure 2.

J. Larrosa and B. O’Sullivan (Eds.): CSCLP 2009, LNAI 6384, pp. 105–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



106 R.J. Wallace, D. Grimes, and E.C. Freuder

basic problem parameters. At the same time, one feature that is not greatly affected
is the set of variables that are the major sources of contention within a problem. It
follows that information derived from assessment of these sources of contention should
enhance performance even after the problem has been altered. This is what we have
found [WGF09]. We also showed that for these problems, a standard DCSP algorithm
like Local Changes is 2-3 orders of magnitude worse, depending on the search heuristic.

More specifically, we showed that a heuristic procedure that uses failures obtained
during iterated sampling (“random probing”) can perform effectively after problem
change, using information obtained before such changes and thus avoiding the cost
of further sampling. The result is a new approach to solving DCSPs based on a robust
strategy for ordering variables rather than solution repair or finding robust solutions.

Here, we show that despite this success, predictability of performance across a set
of DCSPs of similar character, as reflected in the correlations between original and
altered problems, remains fairly low. From an analysis of search performance based on
the Policy Framework of [BPW04, BPW05], we find that problem perturbation affects
measures of promise to a much greater extent than measures of fail-firstness, which
largely explains the anomalous findings.

Based in part on these findings (but also with an eye toward improving solution
stability), we developed an enhanced algorithm which uses information in the solution
to guide value selection (called ”random probing with solution guidance”). This allows
us to gain the benefits obtained by solution repair techniques such as Local Changes;
specifically, search can be strongly limited or avoided entirely when a solution identical
to or very similar to the solution to the base problem is in the set of solutions to the
perturbed problem.

We also present results of a nearest solution analysis, that is, a comparison of the
solution found for the base problem with the closest solution among all solutions to
the perturbed problem. This analysis shows that, for problems in the critical complexity
region, often there are no similar solutions; this is why solution repair methods perform
poorly on average on these problems. On the other hand, random probing with solu-
tion guidance can enhance performance whether or not closely similar solutions can be
found in the perturbed problem.

The next section gives some background material, including descriptions of the prob-
lems used in this study. The third section presents performance data including mean
performance and correlations between performance on the base problems and on the
perturbed problems. The fourth section presents an analysis in terms of measures of
adherence to the promise and fail-first policies. The fifth section describes the random
probing with solution guidance procedure. The sixth section presents the nearest solu-
tion analysis. The last section gives conclusions.

2 Background Material

2.1 Definitions and Notation

Following [DD88] and [Bes91], we define a dynamic constraint satisfaction problem
(DCSP) as a sequence of static CSPs, where each successive CSP is the result of
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changes in the preceding one. As in earlier work, we consider DCSPs with specific
sequence lengths, especially length 1, where “length” is the number of successively
altered problems starting from the first alteration to the initial problem.

In our extended notation, Pij(k) refers to the kth member in the sequence for
DCSPij , where i is the (arbitrary) number of the initial problem in a set of problems,
and j denotes the jth DCSP generated from problem i. However, for DCSPs of length
1 a simpler ij notation is often more perspicuous; in this case Pij is the jth problem
(equivalent in this case to the jth DCSP) generated by perturbing base problem i. For
mean values (shown in some tables), since i values range over the same set, this notation
can be simplified further, to P -j or Pj.

2.2 Experimental Methods

Because they allow for greater control, many of the present experiments were done
with random problems, generated in accordance with Model B [GMP+01]. The base
problems had 50 variables, domain size 10, graph density 0.184 and constraint tightness
0.369. Problems with these parameters have 225 constraints in their constraint graphs.
Although they are in a critical complexity region, these problems are small enough that
they can be readily solved with the algorithms used (together with good heuristics).

For these problems, we restrict our inquiry to the case of addition and deletion of k
constraints from a base CSP. (Other kinds of change are described in [WGF09].) In this
case, the number of constraints remains the same. In addition, changes are carried out
so that additions and deletions do not overlap.

DCSP sequences were formed starting with 25 independently generated initial prob-
lems. In most experiments, three DCSPs of length 1 were used, starting from the same
base problem. Since the effects we observed are so strong, a sample of three was suffi-
cient to show the effects of the particular changes we were interested in.

Search was done with two non-adaptive variable ordering heuristics: maximum for-
ward degree (fd) and the FF2 heuristic of [SG98] (ff2). The latter chooses a variable
that maximises the formula (1 − (1 − pm

2 )di)mi , where mi is the current domain size
of vi, di the future degree of vi, m is the original domain size, and p2 is the original av-
erage tightness. In addition, adaptive heuristics based on weighted degree were tested,
including dom/wdeg, wdeg [BHLS04], and a version of search using dom/wdeg that
uses weights at the start of search obtained by “random probing” [GW07]. This latter
method involves a number of short ‘probes’ of the search space where search is run to a
fixed cutoff and variable selection is random. Constraint weights are updated in the nor-
mal way during probing, but the information is not used until complete search begins.
These heuristics were employed in connection with the maintained arc consistency al-
gorithm using AC-3 (MAC-3). The performance measure reported here is search nodes,
although constraint checks and runtimes were also recorded.

Experiments on problems with ordered domains involved simplified scheduling
problems, used in a recent CSP solver competition1. These were “os-taillard-4” prob-
lems, derived from the Taillard benchmarks [Tai93], with the time window set to the

1 http:/www.cril.univ-artois.fr/˜lecoutre/benchmarks/
benchmarks.html

http:/www.cril.univ-artois.fr/~lecoutre/benchmarks/
benchmarks.html
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best-known value (os-taillard-4-100, solvable) or to 95% of the best-known value
(os-taillard-4-95, insoluble). Each of these sets contained ten problems. For these prob-
lems, constraints prevent two operations that form part of the same job or require the
same resource from overlapping. Specifically, they are disjunctive relations of the form,
(Xi + duri ≤ Xj)

∨
(Xj + durj ≤ Xi), where Xk is the start-time and durk the

duration of operation k. These problems had 16 variables, the domains were ranges of
integers starting from 0, with 100-200 values in a domain, and all variables had the same
degree. In this case, the non-adaptive heuristic used was minimum domain/forward
degree.

Scheduling problems were perturbed by changing upper bounds of a random sample
of domains. In the original problems, domains of the 4-100 problems are all ten units
greater than the corresponding 4-95 problems. Perturbed problems were obtained by
decreasing four domains of the 4-100 problems by ten units or by increasing six of the
domains of the 4-95 problems by ten units. Perturbed problems were selected so that
those generated from the 4-100 set remained solvable, while those generated from the
4-95 set remained insoluble.

For solvable problems, the basic demonstrations of DCSP effects were based on a
search for one solution. To avoid effects due to vagaries of value selection that might
be expected if a single value ordering was used, in these experiments repeated runs
were performed on individual problems, with values chosen randomly. (For scheduling
problems, value ordering was randomised by choosing either the highest or lowest re-
maining value in a domain at random.) For random problems, the number of runs per
problem was always 100; for scheduling problems with solutions the number was 50.
The individual performance datum for each problem is, therefore, mean search nodes
over a set of runs.

3 Basic Results

3.1 Non-adaptive Search Heuristics

This section includes some previous results (in some cases extended) to set the stage
for the present work. Figure 1 (taken from [WGF09]) shows the extent of variation that
can occur after small alterations, in this case addition and deletion of five constraints.

Table 1 shows the grand means for search with fd and ff2 across all 75 of the
altered CSPs (i.e. the altered problems from the three sets of 25 DCSPs).

Table 1. Search Performance on Altered Problems: Non-Adaptive Heuristics

fd ff2
5c 2601 3561
Notes. <50,10,0.184,0.369> problems. Single solution
search with repeated runs on each problem. “5c” is
5 deletions and additions. Mean search nodes.

Table 2 shows correlations for two sets of experiments (with the two different non-
adaptive heuristics), where five constraints were added and deleted. Both here and in
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Fig. 1. Scatter plot of search effort (mean nodes over 100 runs) with fd on original versus Pi3(1)
problems with five constraints added and deleted. (Overall correlation in performance between
the 25 original and altered problems is 0.24. Taken from [WGF09].)

Figure 1, vagaries in search effort due to value ordering can be ruled out, since the
statistics are based on means of 100 runs per problem with random value selection. In
addition, our earlier work ruled out number of solutions as the major factor underlying
such variation [WGF09]. These results show that even small changes can have a marked
effect on search, and affect the relative difficulty of finding solutions in problems before
and after alteration.

Table 2. Correlations with Performance on Original Problems after Alteration: Non-Adaptive
Heuristics

fd ff2
condit P1 P2 P3 P1 P2 P3
5c .49 .83 .24 .34 .54 .31
Notes. <50,10,0.184,0.369> problems. Single solution
search with repeated runs on each problem. “5c” is
5 deletions and additions. Pj = P

−j(1); thus, P1, P2
and P3 refer to three separate sets of DCSPs of length 1.

Table 3 shows correlations for os-taillard-4 problems for the non-adaptive heuris-
tic, minimum domain over forward degree. Across five sets of perturbed problems, the
mean number of search nodes was 257,695 for the 4-95 problems and 391,236 for the
4-100 problems.

Again, there are cases where small changes affect performance to such a degree that
the correlations are negligible. That the correlations are often high is not surprising
given the nature of the changes to the problems (and the global nature of the correlation
coefficient). What is interesting is that even under these conditions changes in perfor-
mance can occur that are sufficiently marked so that an ensemble measure of similarity
can be affected. Moreover, it is possible to obtain marked differences (reflected in neg-
ligible correlation coefficients) even for problems without solutions.
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Table 3. Correlations with Performance on Original Problems after Alteration for OS-Taillard
Problems

d/fd
problems P1 P2 P3 P4 P5
4-95 .03 .98 .99 1.00 .98
4-100 .51 .98 .99 .96 .13
Notes. Problems perturbed by incrementing or decre-
menting domains. Means for 4-100 problems based on
50 runs per problem with randomised value ordering
as described under Methods.

3.2 Adaptive Search Heuristics

A major finding in previous work was that despite their marked effects on search, the
changes just described often do not greatly affect the locations of major points of con-
tention (bottleneck variables). Therefore, a heuristic that assesses major sources of con-
tention should perform well, even when using information from the base problem on a
perturbed problem. Since the constraint weights obtained from random probing distin-
guish points of high contention [GW07, WG08], the usefulness of this information is
not lost in the face of changes such as these. This is shown in Table 4 for the same prob-
lems used in Tables 1 and 2. Data are for four methods (the first three of which were
used in [WGF09]): (i) dom/wdeg with no restarting, (ii) independent random probing
for each problem (rndi), (iii) a single phase of random probing on the original prob-
lems (rndi-orig), after which these weights were used with the original and each of
its altered problems (on each of the 100 runs with random value ordering), (iv) a strat-
egy in which weights obtained from dom/wdeg on the base problem were used at the
beginning of search with a perturbed problem. In the third and fourth cases, the new
constraints in an altered problem were given an initial weight of 1.

For these problems, random probing improves search performance in comparison
with dom/wdeg, and there is relatively little fall-off if weights from the base problem
are used. However, if weights from dom/wdeg are re-used, search performance is dis-
tinctly inferior to that found with weights obtained from probing. In fact, it is slightly
worse than the original dom/wdeg heuristic, which starts search with no information
other than degree. This shows the importance of gaining information about contention
through random sampling of failures instead of in association with CSP search. It is also
consistent with the proposal that random probing provides information about global
sources of contention, in (partial) contrast to dom/wdeg [GW07].

Table 4. Search Results with Weighted Degree Heuristics: Random Problems

dom/wdeg rndi rndi-orig d/wdg-orig
1617 1170 1216 1764
Notes. Mean search nodes across all altered problems. First
three values from [WGF09].
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Table 5 shows correlations for the weighted degree strategies for the same DCSPs
as in Tables 1-2. Somewhat surprisingly, these correlations are very similar to the corre-
sponding values found with non-adaptive heuristics. This shows that variability following
problem perturbation does not decrease when these strategies are used. The variability is
of the same degree when weighted degree (wdeg) is used in place of dom/wdeg, thus re-
moving effects related to dynamic domain size. At the same time, variability is somewhat
less when the original weights from probing are used with the perturbed problems.

A roughly similar situation obtains with the scheduling problems, as shown in
Tables 6 and 7.

Table 5. Correlations with Performance on Original Problems after Alteration: Adaptive
Heuristics

condit P1 P2 P3 P1 P2 P3 P1 P2 P3
d/wdeg rndi-d/wdeg rndi-orig-d/wdeg

5c .49 .82 .26 .58 .76 .38 .59 .80 .43
wdeg rndi-orig-wdeg

5c .40 .82 .29 .61 .81 .60
Notes. See Table 2.

Table 6. Search Results with Weighted Degree Heuristics: Scheduling Problems

problems dom/wdeg rndi rndi-orig
taillard-4-95 16,745 4139 5198
taillard-4-100 11,340 7972 5999

Notes. Mean search nodes across all altered problems.
Open shop scheduling problems. From [WGF09].

Table 7. Correlations with Performance on Original Problems after Alteration: Adaptive
Heuristics

algorithm P1 P2 P3 P4 P5
os-taillard-4-95

d/wdg .90 .97 .89 .84 .89
rndi .45 .37 .19 .70 .82
rndi-orig .42 .24 .09 .09 .22

os-taillard-4-100
d/wdg .15 .99 .99 .90 .97
rndi .81 .51 .86 .81 .76
rndi-orig 1.00 .98 .99 .98 .86
Notes. Open shop scheduling problems. P1-P5 refer
to five separate sets of DCSPs of length 1.

4 Changes in Promise and Fail-Firstness

The results in the last section leave us with a puzzle: random probing is effective in
reducing search effort with perturbed problems, but we still find the same striking
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variation in performance after small perturbations that we saw with non-adaptive heuris-
tics, reflected in moderate to low correlations between the original and perturbed prob-
lems with respect to search effort.

A possible explanation for this discrepancy can be couched in terms of the recently
developed Policy Framework of [BPW04, BPW05]. In this framework for backtrack
search, search is considered to always be in one of two states: (i) it is on a solution
path, i.e. the present partial assignment can be extended to a solution, (ii) a mistake
has been made, and search is in an insoluble subtree. In each case, an ideal policy for
making a decision can be characterised, i.e. a policy that would be optimal if it could
actually be realised. In the first case, an optimal policy would maximise the likelihood
of remaining on the solution path; in the second, an optimal policy would minimise
the size of the refutation (insoluble subtree) needed to prove the incorrectness of the
initial wrong assignment. These policies are referred to as the “promise” and ”fail-first”
policies. Although they cannot be realised in practice, they can be used to characterise
good (or bad) performance of variable ordering heuristics. This is because there are
measures of adherence to each policy that can be used to assess performance, which are
referred to by the same names [BPW04, BPW05, Wal06].

The promise measure is basically a sum of probabilities across all complete search
paths. Values can vary between 0 and 1, where a value of 1 means that any value in any
domain will lead to a solution. The fail-first measure is the mean “mistake tree” size,
where a mistake tree is an insoluble subtree rooted at the first non-viable assignment
(i.e. the initial ‘mistake’). A larger mean mistake tree size therefore indicates poorer
fail-firstness. To avoid artifacts that might arise because of variations in fail-firstness at
different search depths, comparisons for fail-firstness were restricted to mistakes made
at the same level of search.

It must be emphasized that these measures are not simply assessments of various
features of search like mean depth of failure, backtracks at a given level of search, etc.
Instead, they are genuine quality-of-search measures, just like total search nodes or
run-time. This holds by virtue of their association with two forms of optimal decision
making associated with the two conditions of search described above. The rationale for
using these policy-based measures is that they give us a more articulated assessment
of performance, based on a partition of the states of search into those that can lead
to a solution and those that cannot. Put another way, the Policy Framework allows us
to define quality-of-search measures specific to each of the two fundamentally distinct
types of search-state.

Given this framework, a hypothesis that could explain the improvement in search
in spite of continuing variability for individual problems is that the latter is due to
variability in promise, i.e. in adherence to the promise policy. Random probing was,
in fact, devised as a fail-first strategy [GW07], and previous work has shown that this
strategy affects fail-firstness without greatly affecting promise [WG08].

In this work, we used a sampling strategy for assessing adherence to the fail-first
policy that is superior to that used in earlier work [BPW05, Wal06]. In earlier work
mean mistake tree size was found in connection with an all-solutions search; this meant
that sample sizes were not equal either across problems or at different levels of search.
Moreover, with this method, there is a confounding factor in that use of a given heuristic
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above the level of the mistake may affect the efficiency of finding a refutation once a
mistake has been made. In the present work, sampling was confined to mistakes at a
single level of search, k. Variables and values were chosen at random down to this
designated level of search. Below that, search was done with the heuristic being tested.
Runs were discarded if a solution was found given the randomly chosen assignments.
Otherwise, once search returned to the level of the mistake, the size of the mistake
tree (i.e. of the refutation) could be calculated. In addition, for levels > 1, a further
criterion was imposed. This is that there had to be a solution based on the original
partial assignment for the first k-1 variables assigned. This condition ensures that the
mistake at level k is the first mistake, and therefore is the true root of the insoluble
subtree. If this condition is not met, this means that there is an invalid assignment above
level k, and this will affect the average size of the mistake tree as well as introducing
unwanted bias into the sampling procedure.

In the present work, the sample size was 100. Thus, for every problem and every
level of the first mistake, data were collected for the same number of mistake-trees
before obtaining a mean tree size. In addition, seven new sets of DCSPs were tested
along with the three original sets.

Table 8. Correlations with Original Problems (Non-adaptive Heuristics)

fd ff2
measure P1 P2 P3 x(1-10) P1 P2 P3 x(1-10)
prom .22 .74 .34 .46 .50 .43 .16 .41
ff-1 .59 .83 .88 .78 .73 .72 .60 .68
ff-2 .67 .75 .87 .82 .58 .63 .72 .75
ff-3 .82 .80 .77 .81 .70 .83 .80 .78
Notes. <50,10,0.184,0.369> problems. 5 constraints added
and deleted. “prom” is promise measure. “ff-k” referes to mis-
take trees rooted at level k. Mean is for ten sets of DCSPs
(the three original sets are also shown individually).

For adaptive heuristics, there is the additional problem that promise and fail-firstness
vary in the course of search. To avoid these effects, analysis was restricted to random
probing with “frozen” weights, using the weights obtained from the base problems.
This means that weights are not updated during search with the perturbed problems.
Admittedly, this may elevate the correlations found.

Table 8 (based on the same problems used in Tables 1-2) gives a summary account
of these differences in the form of correlations between each successive set of altered
problems and the base problem set, for the non-adaptive heuristics, maximum forward
degree and FF2. Again, lower correlations reflect changes in magnitude as well as dif-
ferences in relative magnitude across an entire problem set. These data show that much
greater variation occurs in connection with promise than with fail-firstness.

The results in Table 9 show that using heuristics based on contention information still
results in low correlations for promise, while correlations for fail-firstness are higher
than those found for non-adaptive heuristics.
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Table 9. Correlations with Original Problems (Adaptive Heuristic)

rndi-orig-frz
measure P1 P2 P3 x(1-10)
prom .82 .66 .22 .36
ff-1 .81 .88 .92 .90
ff-2 .82 .83 .93 .87
ff-3 .79 .87 .86 .86
Notes. See Table 8.

If alterations of this sort have greater effects on promise than fail-firstness, then cor-
relations for search effort before and after perturbation should be also be high when
problems have no solutions. (In this case, the only policy in force is the fail-first pol-
icy.) This is, in fact, what is found. Table 10 shows results for three sets of perturbed
problems; again, correlations are between performance on base problems and each of
three sets of perturbed problems. Problems have parameters similar to those used in
earlier tables, although the density was increased slightly to reduce the probability of
generating problems with solutions.

The weighted-degree heuristics also had consistently high correlations for these in-
soluble problems. In terms of average nodes over the 75 perturbed problems, there was
little fall-off between rndi-orig and rndi (3812 and 3778 resp.), while both improved
over dom/wdeg (5268 nodes). These results match those found for the soluble problem
set.

Unfortunately, it has not been possible to obtain similar kinds of data for the schedul-
ing problems, using a non-adaptive heuristic like dom/fwddegree. This is because of
the large number of solutions (making promise calculations difficult) and the large size
of the mistake trees for some problems (making fail-firstness calculations difficult).

Table 10. Correlations for Insoluble Problems: Non-Adaptive and Adaptive Heuristics

heuristics P1 P2 P3
fd .80 .85 .84
ff2 .90 .91 .93
dom/wdeg .88 .91 .86
rndi .84 .86 .89
rndi-orig .90 .91 .86
Notes. <50,10,0.19,0.369> problems. Both base and
perturbed problems were insoluble. Perturbations were
adding and deleting 5 constraints. “Pj” = P

−j(1).

Table 11 gives data on the mean size of insoluble sub-trees for different heuristics
for each of the first three levels of search, i.e. when mistakes are made at levels 1, 2,
and 3. As one would expect, the size decreases quickly with increasing mistake-depth.
In addition, differences in mean size among heuristics correspond to differences in total
search nodes found in ordinary search (cf. Tables 1 and 4), although they are higher
than values that would be obtained if the first k variables were selected by the same
heuristic.
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Table 11. Mean Size of Mistake Tree for Each of the First Three Levels of Search

level fd ff2 rndi-orig
1 2448 3575 1241
2 749 978 394
3 249 312 142
Notes. Means over 275 problems, 100 subtrees per
problem at each depth.

5 An Enhanced Probing Procedure

Since variability is already small for fail-firstness, this suggests that further improve-
ments in this direction will be difficult. On the other hand, we do not know of any
variable ordering methods that improve promise specifically, since in most cases an or-
dering that enhances promise also enhances fail-firstness [Wal06]. However, promise
can be improved by value orderings as well as by variable orderings (and in fact the
concept was only extended to the latter recently [BPW04]).

In this connection, an obvious approach is to piggy-back a solution guidance strat-
egy onto the basic probing procedure. Specifically, we should start testing values in a
domain by using the original assignment to that variable. This will allow us to catch
those cases where the original solution is still valid, or where there is a solution that is
very similar to the original one. We tried this, and in addition we enhanced this strategy
with a novel value ordering heuristic, used after the initial value selection. This was to
choose as the next candidate assignment the one that was consistent with the highest
number of original assignments in the unassigned variables. We call this method “prob-
ing with solution guidance”. (Note that it is the search that is solution-guided, not the
probing. Guiding the probing procedure in this way would, of course, make no sense
since it would undermine the sampling strategy.)

With this enhancement mean search effort was reduced significantly, both for dom/
wdeg and for random probing. For dom/wdeg the mean search nodes across 75 per-
turbed problems (P1-P3) was 954. For rndi-orig the mean was 701. These are grand
means, since the measure of search effort for each problem was the mean of 100 runs
in which the base was solved using random value ordering, and the solution obtained
was used in the manner described above with the perturbed problem. The reduction
in search effort found here was due to the fact that search was greatly abbreviated if
the original solution was still valid or if a solution was available that was close to the
original with respect to number of common assignments. This also resulted in a smaller
mean difference between dom/wdeg and rndi-orig.

This new method has the added benefit of improving solution stability (the degree of
similarity between the solution to the original problem and the solution to the altered
problem). In fact, as shown elsewhere, with this new method there is a small but definite
improvement over Local Changes, an algorithm designed to minimise the difference
between the old solution and the one found after problem change [VS94].
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6 Nearest Solution Analysis

In trying to understand the performance of DCSP algorithms, an important aspect of the
problem is the changed solution set after perturbation. Evaluations of this sort may help
us understand why solution repair techniques such as Local Changes perform poorly
when problems are in the critical complexity region, in contrast to contention-based
methods.

Earlier results showed that the number of solutions can change drastically after the
kind of change we are considering [WGF09]. However, we also found that number of
solutions is only weakly correlated with search effort.

Another aspect of change pertains to the elements in the solution set. If these change
appreciably, then expected search effort should also change. Following [VS94], we can
assess such change by calculating the Hamming distances between the solution found
for the original problem and solutions in the perturbed problem. In particular, given a
solution to the base problem, we can determine the Hamming distance of the nearest
solution (minimal Hamming distance) in the perturbed problem. This can be done us-
ing limited discrepancy search (Figure 2) or with branch-and-bound search, where the
number of differing assignments serves as the bound. For problems with 50 variables,
Hamming distances can range from 0 (meaning the solution found for the base prob-
lem is still a solution for the perturbed problem) to 50 (meaning no assignment in the
solution to the base problem is part of any solution for the perturbed problem).

Fig. 2. Distance between the solution to the original problem and the nearest solution in the
perturbed problem. Points are based on 100 or 500 randomly generated problems of 50 variables
having the given tightness value.

Note that here we are not interested in similarity of the search path, but similarity
between solutions. Nor do we need to consider the relation of the changes in assign-
ments to the constraint graph, since, given a solution all constraints are satisfied. Our
only concern is the amount of change necessary to employ the new solution rather than
the original one, which only involves altering assignments. The amount of such change
is, of course, directly measured by the Hamming distance.
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Since the problems we have dealt with so far are in the critical complexity region,
we first wanted to know how this affected the minimal Hamming distance. In these
experiments, problems with the same basic parameters were used, except that constraint
tightness was varied. (In addition, only three constraints were added and deleted in each
perturbation.) dom/wdeg was used to find a solution to the original problem generated.
The most important result is that once one enters the critical complexity region, the
minimal Hamming distance rises sharply, and the average approaches the maximum
possible (Figure 2).

In subsequent experiments, we used the 5c problems discussed in Section 3. Each
of the 25 base problems used previously was solved 100 times using dom/wdeg with
random value ordering. For each solution, the minimum Hamming distance was deter-
mined for one of the 75 perturbed problems. The average, minimum, maximum and
median (minimal) Hamming distance for each problem are shown in Figure 3. For clar-
ity, problems are ordered according to their average minimal Hamming distance over
the 100 runs. For the 75 perturbed problems, the average minimal Hamming distance
(over 100 runs) varied between 0.4 and 42.7, with a grand mean of 21.2. For 57 of the
perturbed problems, there was at least one run where a solution was obtained for the
base problem that gave a minimal Hamming distance of 0 when compared with all so-
lutions to the perturbed problem. On the other hand, only 12% of the 7500 runs gave
minimal Hamming distances of 0 for this comparison.
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Fig. 3. Hamming distances between solution found for the base problem and closest solution in
perturbed problem. Graphs show average minimal distance (solid line) together with the mini-
mum, maximum and median value for each perturbed problem, based on 100 test runs.

Additional insight into these results can be obtained from complete distribution data
for individual problems. Figure 4 illustrates the variation in such data using three per-
turbed problems. For clarity, Hamming distances were ordered from smallest to largest
across the hundred runs for each problem. For problem P11-2 (the eleventh problem
in the second set of DCSPs), the minimal Hamming distance was always low, indicat-
ing that the solution set always contained similar solutions to the one found for the
base problem. In contrast, for P6-2 the minimal Hamming distance was always ≥ 40.



118 R.J. Wallace, D. Grimes, and E.C. Freuder

Fig. 4. Hamming distances of nearest solutions based on 100 different solutions to the corre-
sponding base problem, for three different perturbed problems

Most problems fell between these extremes. An example, P23-1, is shown in the figure;
here,the minimal Hamming distance ranged from 0 to 38.

These results give a clear indication of why solution reuse methods are often in-
efficient with hard problems. This is because when problems are hard, often none of
the solutions in the perturbed problem are sufficiently close to the original solution for
complete methods to gain from solution reuse.

For the three problems whose data are shown in Figure 4, the “weight profiles” (the
summed weights of adjacent constraints for each variable) obtained after probing on the
original problem and on the perturbed problem were highly correlated (≥ 0.92). This
is typical (see [WGF09]), and is, of course, the basis for the strategy of using weights
from probes of the base problem with perturbed problems. At the same time, variation
in performance after perturbation was found for all three problems, and was not related
to the minimal Hamming distances.

On the other hand, a solution reuse procedure like Local Changes showed differences
that were related to the minimal Hamming distance. For example, for Local Changes
with min-conflicts (look-back) value ordering and ff2 for variable selection, nodes
explored were 3, 374,495, and 457,750, for problems P11-2, P23-1, and P6-2, respec-
tively. The same ordering was found using fd, although in this case search effort for
the latter two problems was one or two orders of magnitude greater.

As might be expected, for probing with solution guidance there is also a clear relation
between the nearest solution and performance. This can be seen in Figure 5, which
shows the results for individual runs for the three problems, in increasing order of search
nodes. (For P11-2, the number of search nodes is always the minimum value of 50,
although the minimal Hamming distance is not always 0. This probably reflects the
winnowing effects of constraint propagation.)

In this case, these relationships are not reflected in a global measure like the correla-
tion coefficient. This is because, as noted above, most problems show a large range for
the minimal Hamming distance, depending on the solution found for the base problem.
Thus, for Local Changes the correlation between mean minimal Hamming distance and
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Fig. 5. Performance of probing with solution guidance with base-problem weights across 100
runs for the three perturbed problems in Figure 4
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Fig. 6. Solution stability of adaptive heuristics using search with solution guidance, in comparison
with average minimal Hamming distance from the earlier tests shown in Figure 3

search performance was 0.24, which is negligible. Interestingly, for rndi-orig with so-
lution guidance, the correlation was 0.53, still small but appreciably greater than that
for Local Changes.

A final analysis shows that for probing with solution guidance, stability is in fact
close to optimal. Figure 6 compares assessments of solution stability using the solution-
based value ordering heuristic. Assessments were made by calculating the Hamming
distance between the solution found for the original problem and that found for the per-
turbed problem; this was done 100 times for each perturbed problem. These averages
are compared with the average minimal Hamming distance found for the same prob-
lems in the previous set of tests (cf. Figure 3). In the majority of cases, the means are
comparable for each problem. (Naturally, the means based on single solution compar-
isons are usually higher than the corresponding mean minimal distances.) This indicates
that with this method stability is close to the best value possible for these problems.
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7 Summary and Conclusions

In earlier work we presented a new approach for solving a range of DCSPs that was
much more effective than previous methods. We also presented a rationale for this
strategy. However, as shown in the present paper, an apparent paradox arises when we
perform the same correlational analysis as we did in earlier work with non-adaptive
heuristics. This analysis shows that, in spite of using information about problem fea-
tures that remain stable in the face of change, we still find marked variation in perfor-
mance, reflected in modest or low correlations.

In this paper, we consider the hypothesis that, since random probing enhances fail-
firstness but not promise, the variability is related to variability in promise. Our results
show that this hypothesis is largely correct. Of additional interest is the demonstration
that random probing methods give greater predictability in performance with respect
to fail-firstness than do non-adaptive heuristics. Here, we would also point out that
this analysis demonstrates the usefulness of the Policy Framework for generating and
testing hypotheses about heuristic performance.

This analysis was also useful in showing us where to look for improvements in per-
formance − by showing us where not to look. In other words, since the issue involved
promise rather than fail-firstness, this led us to consider strategies related to the former
policy. Guided by this insight, we were able to devise a value ordering strategy which
gives a large portion of the benefits of solution repair strategies such as Local Changes
(with respect to performance and solution stability), without giving up any of the benefit
of our basic contention-based strategy. Thus, mean search effort was reduced because
search was avoided in those cases where the old solution was still viable or there was a
viable solution that was very close to the original one.

This work also extends the analysis of the characteristics of DCSPs, a hitherto ne-
glected area. We show that for difficult problems the solution set can change dramati-
cally. As a result, it is often the case that there is no solution to the perturbed problem
that is similar to the solution found for the original problem. This provides an expla-
nation of why solution repair methods do not fare well for hard problems. This also
suggests that the present methods, which rely on assessing the ‘deep structure’ of the
problem, will probably be more robust in general than solution reuse methods.
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Abstract. In this article a constraint-based modeling of clinical path-
ways, in particular of surgical pathways, is introduced and used for an
optimized scheduling of their tasks. The addressed optimization criteria
are based on practical experiences in the area of Constraint Programming
applications in medical work flow management. Objective functions hav-
ing empirical evidence for their adequacy in the considered use cases are
formally presented. It is shown how they are respected while scheduling
clinical pathways.

1 Introduction

Increasing cost in health care and payment on the basis of case-based lump
sums (Diagnosis Related Groups – DRG) requires a more efficient, reliable and
smooth treatment of patients. One popular approach is the standardization of
treatments on the basis of medical work flows – so called clinical pathways.

The aim of this paper is the presentation of constraint-based modeling ap-
proaches and scheduling techniques for clinical pathways. Clinical pathways are
predefined work flows similar to those in traditional (i.e. industrial) scheduling
thus suitable for Constraint Programming techniques [3]. In this paper activities
in clinical processes, their required resources, their temporal relationships are
considered as well as the constraints resulting from the clinical infrastructure
and hospital organization. The general structure of clinical pathways and their
basics are completed by specialized approaches addressing in particular surg-
eries. The reason is that surgeries play a central role for the economic situation
of a hospital. Well-organized and resource efficient surgical treatment of patients
increases work quality and patient satisfaction while decreasing costs and thus
the risk of financial loss.

In health care there are particular scheduling approaches for nurse and physi-
cian rostering [7,16,17], appointment scheduling [10] surgery scheduling [5] –
sometimes with integrated rostering. However, a holistic approach for clinical
pathways seems to be missing.

2 Modeling Clinical Pathways

A clinical pathway is a standardized medical work flow. It consists of a sequence
of medical activities like diagnosis, preparation, treatment (e.g. surgery), care,
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training (e.g. physiotherapy) etc. In general, a medical activity has to be pro-
cessed within an earliest start time and a latest completion time and within
a minimal and maximal duration. Furthermore, a medical activity in general
requires several kinds of resources to be performed like nurses, doctors (e.g. sur-
geons, anesthetists), devices (e.g. MRT), rooms, instruments, consumables etc.

2.1 Tasks

In the context of finite-domain Constraint Programming a medical activity will
be represented by at least one task formally specified by the following definition:

Definition 1 (Task). A task is a non-preemptive activity with a start time,
a duration and an end time. Due to the fact that these times are in general
restricted but a-priori undetermined they will be represented by finite-domain
variables: Each task t has

– a start time variable t.start restricted by t.start ∈ St where St is a finite set
of non-negative integer values.1

– a duration variable t.duration restricted by t.duration ∈ Dt where Dt is a
finite set of non-negative integer values.

– an end time variable t.end restricted by t.end ∈ Et where Et is a finite set
of integer values.

For each task t the constraint t.start + t.duration = t.end has to be satisfied.
Furthermore, a task requires some capacity from a resource out of set of re-

sources; thus each task t has

– a capacity variable t.capacity restricted by t.capacity ∈ Ct where Ct is a finite
set of non-negative integer values.

– a resource identifier variable t.resourceId restricted by t.resourceId ∈ Rt where
Rt is a finite set of resource identifiers (cf. Section 2.2 below).

In some cases tasks are optional, i.e. they are not necessarily performed. This can
be modeled either with a possible duration of zero, i.e. duration ∈ {0, p, . . . , q}
where 0 < p ≤ q holds or with an additional Boolean flag isOptional deciding
whether the corresponding task is optional (1 [true]) or mandatory (0 [false]).

2.2 Resources

Constraint-based scheduling knows several kinds of resources. In the context of
clinical pathways a task requires in general either

– an exclusive resource: it performs at most one activity at the same time, e.g.
a surgeon, an operating room, a clinical device etc.

– or an alternative exclusive resource: it offers an assortment of exclusive re-
sources, however, one has to be chosen, e.g. similar operating rooms, a col-
lections of the same medical instruments etc.

1 Object-oriented notation is used within this article.
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– or a cumulative resource: it offers a limited quantity of its capacity, i.e. other
tasks can be performed concurrently, e.g. a pool of nurses, consumables,
power etc.

– or an alternative cumulative resource: it offers an assortment of cumulative
resources, however, one has to be chosen, e.g. storages of consumables, pools
of nurses etc.

It is assumed that each resource r has a unique integral identifier idr, i.e. a
“number” such that there is a bijection mapping resources to identifiers and
vice versa.

In constraint-based scheduling these resources are represented by adequate
constraints. If there are cumulative resources the corresponding constraints that
has to be satisfied ar defined accordingly:

Definition 2 (Alternative Cumulative Constraint). Let a set of tasks T
and a set of cumulative resources R be given. Each resource r ∈ R has a unique
identifier idr and an integral capacity Cr > 0. Then, the alternative cumulative
constraint is satisfied for R, T and Tr = {t ∈ T | t.resourceId = idr} for any
r ∈ R if the following inequality holds:

∀i ∈ [min
t∈T

St, max
t∈T

Et − 1] ∀r ∈ R ∀t ∈ Tr |
∑

t.start≤i<t.end

t.capacity ≤ Cr.

It has to be pointed out, that this definition is a special case of the cumulatives
constraints presented in [4] but generalizes the cumulative constraint originally
introduced in [1]:

Definition 3 (Cumulative Constraint). Let a set of tasks T and a cumula-
tive resource r with integral capacity Cr > 0 be given such that Rt = {r} holds
for each task t ∈ T . Then, the cumulative constraint is satisfied for T and r if
and only if

∀i ∈ [min
t∈T

St, max
t∈T

Et − 1] ∀t ∈ T |
∑

t.start≤i<t.end

t.capacity ≤ Cr

holds.

In general, pruning techniques for cumulative constraints, in particular for the
cumulatives constraint (cf. [4]) support tasks with possibly zero duration and
thus optional tasks.

In the special case where consumables have to be represented, cumulative
resources can be used for an adequate modeling (cf. [19]). However, there are al-
ternative approaches using specialized algorithms considering consumers as well
as producers of consumables to be stored in so-called reservoirs or inventories
with restricted capacities [14,15].

Alternative exclusive resource constraints are special cases of alternative cu-
mulative constraints and exclusive resource constraints are special cases of cu-
mulative constraints. The restriction is that the capacities of all resources is one:
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Cr = 1 for each considered resource r. Obviously the capacity requirements of
all considered tasks must be one, too. Otherwise, the task will neither require
the resource (its capacity is zero) nor the constraint will be satisfied because the
capacity of the task is greater than one.

However, other definitions are introduced for exclusive constraints in order
to highlight the differences with respect to cumulative constraints, in particular
there are specialized algorithms to handle these constraints (cf. [3]).

Definition 4 (Alternative Exclusive Resource Constraint). Let a set of
tasks T and a set of exclusive resources R be given. Each task t ∈ T requires
an unary capacity, i.e. t.capacity = 1 and each resource r ∈ R has an unique
identifier idr and an unary capacity Cr = 1, too. Then, the alternative exclusive
resource constraint holds for T and R if

∀s ∈ T ∀t ∈ T \ {s} ∀r ∈ R |
(s.resourceId = r ∧ t.resourceId = r) =⇒ (s.end ≤ t.start ∨ t.end ≤ s.start)

is satisfied.

This definition generalizes the definition of exclusive resource constraints:2

Definition 5 (Exclusive Resource Constraint). Let a set of tasks T and
an exclusive resource R be given such that t.capacity = 1 and Rt = {r} holds
for each task t ∈ T and the resource r has an unique identifier idr and Cr = 1
holds. Then, the exclusive resource constraint holds for T and r if

∀s ∈ T ∀t ∈ T \ {s} | s.end ≤ t.start ∨ t.end ≤ s.start

is satisfied.

In general, pruning techniques for exclusive resource constraints support tasks
with possibly zero duration and thus optional tasks. In particular, there are
specialized pruning algorithms for optional tasks on exclusive resources [21].
All these algorithms are adopted for alternative exclusive resource constraints
(cf. [13,25]).

If a medical activity requires several resources this will be modeled by several
tasks – one task for each required (alternative) resource. All these tasks will have
identical start times, durations and end times.

Example 1. Within the clinical pathway for a surgery the actual operation op
requires an operating room, a surgeon, an anesthetist and some nurses. There
are three operating rooms or1, or2, or3, two qualified surgeons su1, su2 and
four anesthetists an1, . . . , an4 available. Two of the five available nurses are
required. Obviously the operating room the surgeon and the anesthetist are
exclusive resources because they will not treat any other patient while operat-
ing. The available nurses are considered as one cumulative resource pool np

2 Exclusive resources are also called “single” resources or “one-machine” resources.
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offering a capacity of 5 (nurses). Thus this multi-resource activity op will
be modeled by four task op1, . . . , op4 with op1.start ≡ · · · ≡ op4.start,
Sop1 ≡ · · · ≡ Sop4 , op1.duration ≡ · · · ≡ op4.duration, Dop1 ≡ · · · ≡ Dop4 ,
op1.end ≡ · · · ≡ op4.end, and Eop1 ≡ · · · ≡ Eop4 . Furthermore, op1.capacity ∈
{1}, op1.resourceId ∈ {idor1, idor2 , idor3}, op2.capacity ∈ {1}, op2.resourceId ∈
{idsu1 , idsu2}, op3.capacity ∈ {1}, op3.resourceId ∈ {idan1, . . . , idan4}, and
op4.capacity ∈ {2}, op4.resourceId ∈ {idnp}.
In Example 1 all considered resources are independent from each other, thus
their identifiers are pairwise different by definition. For a practical implemen-
tation of this model in a Constraint Programming system, however, resources
are identified by their corresponding constraints and an additional relative in-
dex ranging from 0 (or 1) to a maximal index in case of alternative constraints.
Consequently, a bijection has to realized that maps identifiers to the according
constraints and indexes in case of alternatives.

In clinical practice, often the situation arises that the resources in alterna-
tives are also considered individually or alternative resources share some of their
individuals. In both cases, it has to be ensured that all tasks competing for an
individual resource in different contexts are related by the according constraints
as demonstrated in the following example:

Example 2. Within the clinical pathway for a surgery the actual operation re-
quires that the (a-priori known) leading surgeon is supported by any other (a-
priori unknown) assisting surgeon out of a pool of assistants. In general, this
pool of assistants consists of surgeons having also leading positions but never
both at the same time.

Using the presented modeling approach it is easy to master situations with shared
resources:

– use an “all-purpose” alternative cumulative constraint for all cumulative
resources and

– use another “all-purpose” alternative exclusive resource constraint for all
exclusive resources.

However, it is recommended to use as much as possible “special-purpose” con-
straints for alternative resources for highest flexibility, i.e. in order to adapt the
used pruning algorithms individually or reduce their overall runtime (see below).

Thus we suggest to apply the following rules while they are applicable:

– for each individual resource occurring in alternatives use the same identifier
and ignore the constraint for the individual resource.3

– for any pair of alternatives sharing individual resources use the same iden-
tifier for each shared individual and replace the constraints for the pair by
one alternative resource constraint covering the individual resources of the
pair.

3 It is not really necessary to ignore the redundant constraint.
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More formally, let R1, . . . , Rn be the possible domains of any resource variables.
Then, let P = P1 	 . . . 	 Pm be the partition4 of R1 ∪ . . . ∪ Rn such that

– if Ri ∩ Pk �= ∅ holds for any i ∈ {1, . . . , n} and any k ∈ {1, . . . , m} then
Ri ⊆ Pk holds, too,

– for each k ∈ {1, . . . , m} and each non-empty subset P ′ � Pk there is a Ri

with i ∈ {1, . . . , n} such that Ri ∩ Pk �= ∅ holds, however,Ri �⊆ P ′ holds.

A Union-Find algorithm – the classical algorithm was introduced by Tarjan [20]
– will compute this partition efficiently. Therefore, we start with the singular sets
{r1}, . . . , {rk} of all considered resources: {r1, . . . , rk} = R1∪ . . .∪Rn. Then, for
each pair of different resources rp and rq the sets containing them are united if
there is a set Ri such that rp, rq ⊆ Ri holds for 1 ≤ i ≤ n and 1 ≤ p < q ≤ k.

Obviously, it holds

|T1|n + · · · + |Tm|n < (|T1| + · · · + |Tm|)n

if T1, . . . , Tm are the non-empty task sets to be scheduled independently on
the resources in P1, . . . , Pm.5 Assuming polynomial runtime of the pruning algo-
rithms it means that the overall runtime of the pruning for the “special-purpose”
alternative resource constraints is less than the runtime of the pruning for an
“all-purpose” alternative resource constraint.

The application of these rules in the situation presented in Example 2 results
in the following constraint model:

Example 3 (Continuation of Example 2). Let the clinical pathways for surg-
eries require an (a-priori known) leading surgeon and sometimes require any
other (a-priori unknown) assisting surgeon. Then all potentially leading or as-
sisting surgeons will be considered commonly in an alternative exclusive resource
constraint.

2.3 Temporal Relationships

The activities of clinical pathways are in general temporally related. There are
absolute/relative and intra-/inter-pathway relationships. In the absolute case
tasks can take up to three different roles:

– Successors : each successor s of a task t starts after the end of t within a given
offset. It holds t.end + offsett,s = s.start where the delay offsett,s is either an
integer value or a finite-domain variable. Choosing the delay appropriately
it is possible to model several situations, e.g.
• offsett,s ∈ [0, MAX HORIZON]: t must be finished before s will start,

which is equivalent to t.end ≤ s.start if the value MAX HORIZON is
sufficiently large.

4 Such a partition is uniquely defined.
5 N.B. T1, . . . , Tm define a partition as well.
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• offsett,s ∈ [−5, 5]: t must be finished at most five time units before/after
t will start.

– Predecessors : for each predecessor p of a task t it holds that t is a successor
of p.

– Concurrent activities: for any two concurrent tasks c an d it holds c.start +
startOffc,d = d.start and/or c.end + endOffc,d = d.end where the delays
startOffc,d and endOffc,d are either integer values or finite-domain variables.
Choosing the delays appropriately it is possible to model several situations:
• c.start − 5 = d.start: c starts five time units later than d
• c.end+ endOffc,d = d.end with endOffc,d ∈ [0, MAX HORIZON]: c finishes

not-after the end of d.

These relations are complete in the sense of Allen [2] because any temporal
relationship between the start times and end times of any two a-priori known
activities are specifiable. Alternatively, the temporal relationships of start times
and end times are representable as a Simple Temporal Problem according to [8]:

Definition 6 (Temporal Constraints). Let a set of start and end time vari-
ables E be given. Then the temporal constraints T (E) on E are constituted by
a set of of inequalities e − e′ ≤ d where d is an integer constant and e, e′ are
in E.

The situation becomes more complicated if the (temporal) relations between
two medical activities in different clinical pathways depend on the chronological
order of the “crucial” tasks of these pathways, e.g. the actual operations in the
clinical pathway of two different surgeries. In practice, often the situation arises
that a task xa of a clinical pathway a is related to a task yb of another clinical
pathway b by a constraint ca,b, e.g. ca,b ≡ xa.end + offsetxa,yb

= yb.start, if
the operating task opa of pathway a is the direct predecessor of the operating
task opb of pathway b in the commonly used operating room. This means that the
conditional constraint between xa and yb has to be satisfied only if the operation
of a is scheduled directly before the operation of b.

The proposed constraint-based approach to handle this situation adequately
uses a sequence dependent setup costs constraint:

Definition 7 (Sequence Dependent Setup Costs). Let a sequence of tasks
T = t1, . . . , tn with n > 1 be given. It is assumed that these tasks have to be
scheduled in linear order, i.e. it holds

ti.end ≤ tj .start ∨ tj .end ≤ ti.start for 1 ≤ i < j ≤ n.

It is further assumed that for each pair of tasks (ti, tj) with 1 ≤ i, j ≤ n there is
an non-negative integer cost value costi,j .

Then, for each task tj in the sequence T (1 ≤ j ≤ n) the finite domain
variable setupCost(tj , T ) defines the sequence dependent setup cost of tj (with
respect to T ) if this variable is constrained to
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setupCost(tj , T ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

costi,j if there is a task ti with 1 ≤ i ≤ n such that
ti.end ≤ tj .start holds and for each task tk

with 1 ≤ k ≤ n, k �= i, k �= j it holds
tk.start < ti.end or tj .start < tk.end,

0 otherwise.

This means that the setup cost of a task tj is determined by its direct predeces-
sor ti – if there is any: ti is scheduled before tj and there is not any other task
scheduled between ti and tj.

Now, let op1, . . . , opn be the operations to be performed concurrently in the
operating room of opa and opb, i.e. 1 ≤ a, b ≤ n holds. Further, let costValuei,j =
i for 1 ≤ i, j ≤ n.

Then, it is possible to trigger the constraint ca,b conditionally using reified
constraints, i.e. logical connections (implication, disjunction etc.) of possibly
negated constraints:

(setupCost(opb) = a) =⇒ ca,b.

A rather similar situation is given, if the preparation time for one task in a clinical
pathway depends on another task in another pathway. This occurs, e.g. due to
cleaning and autoclaving times resulting from a previously performed treatment.
An adequate constraint-based model of this situation is usually based on sequence
dependent setup times constraints. (cf. [9] for a survey and a definition and [24]
for a modeling and pruning algorithms).

2.4 Infrastructural and Organizational Relationships

Among the presented treatment-specific relationships there are additional re-
strictions on the activities of clinical pathways. Some of them are of organi-
zational nature while others are caused by the infrastructure of the medical
institution:

– time slots for some activities, sometimes depending on the used resources,
e.g. working or operating hours etc.

– (sequence dependent) setup or transfer times, e.g. for autoclaving surgical
instruments or for the transportation of the patients from one location to
another.

– the location of stations, devices, treatment rooms etc. and the connections
between them, e.g. corridors, entrance and exit doors etc.

2.5 Relating Times and Locations

In general, for some tasks there are alternative time slots available in order to
process these tasks. However, some of the alternative time slots are only available
for some alternative resources and vice versa.
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Example 4. On Tuesdays the orthopedic surgeries either has to be performed
between 08:00 and 10:30 or between 16:00 and 20:30. However, in the morning
there are only the operating rooms numbered 4 and 5 available for orthopedic
surgeries and in the afternoon only the rooms with number 1 and 3.

In Constraint Programming it is suitable to model these dependencies between
time slots and resources using so called element constraints.

Definition 8 (Element Constraint). Let a sequence of integers values and/or
finite-domain variables element0, . . . , elementn−1 (n > 0) be given. Further, let
value and index be two finite domain variables. Then, the element constraint

value = 〈element0, . . . , elementn−1〉[index]

holds for these entities if value = elementindex is satisfied.

Example 5 (Continuation of Example 4). Let s1, . . . , sk be the orthopedic
surgery tasks to be scheduled next Tuesday according to the spatiotemporal
relationships presented in Example 4. The time granularity for scheduling is 5
minutes per time unit. Thus the whole day (0:00 to 24:00) is represented by the
interval [0, 288] and e.g. 8 o’clock in morning by 96. It is assumed that each
surgery task is additionally defined by

– its variable slot start slotStart ∈ {96, 192},
– its variable slot end slotEnd ∈ {126, 246},
– an a.m./p.m. selector variable ampm ∈ {0, 1},
– a finite-domain variable for the operating rooms available during the morning

slot amOR ∈ {4, 5},
– another finite-domain variable for the operating rooms available during the

afternoon slot pmOR ∈ {1, 3}.
Then, for 1 ≤ i ≤ n the constraints

si.slotStart = 〈96, 192〉[si.ampm]
si.slotEnd = 〈126, 246〉[s.i.ampm]

si.resourceId = 〈si.amORs, si.pmORs〉[si.ampm]
si.slotStart ≤ si.start

si.end ≤ si.slotEnd

model the spatiotemporal relationships presented in Example 4 adequately. Ev-
idence of this modeling is given by examination of the two cases: ampm = 0 and
ampm = 1.

In general, element constraints are very appropriate to relate times and/or lo-
cations, e.g. to assign the induction and recovery rooms to their according op-
erating room, to assign the transportation times from the hospital wards to the
treatment locations etc.
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2.6 Room-Specific Relationships

In particular, spatiotemporal relationships in hospitals are sometimes very spe-
cific: In one practical application, the situation arises that a newly operated
patient treated in one specific operating room has to pass the related induction
room in order to end up in the related recovery room. For several reasons (in-
fection risk, privacy etc.) it has to be ensured that there is no other patient in
the induction room while moving the newly operated patient from the operat-
ing room into the recovery room. – The following constraint-based approach is
proposed to consider this “design-specific” situation adequately:

For each surgery i there is a task for induction indi and another task for
recovery reci in its clinical pathway. Obviously, the induction task is before the
real surgery task si and the recovery task is afterwards:

indi.start < indi.end ≤ si.start < si.end ≤ reci.start.

Then, for any two surgeries a and b potentially performed in this special oper-
ating room numbered idor, i.e. Ra � idor, Rb � idor, the reified constraint

sa.resourceId = idor ∧ sb.resourceId = idor

=⇒ (recb.start − inda.start) · (reca.start − indb.start) < 0

is stated. Alternatively, e.g. if the used Constraint Programming system does
not support such reified constraints, the following approach

(recb.start − inda.start) · (reca.start − indb.start)
< ((sa.resourceId − idor)2 + (sb.resourceId − idor)2) · BIG INTEGER.

is suitable, too, if the integer value BIG INTEGER is sufficiently large. In the case
that non-linear arithmetics are not supported, another alternative modeling is
suggested using the Kronecker operator:

Definition 9 (Kronecker Operator). Let an integer value val and a finite-
domain variable var be given. Then, the Kronecker operator is defined by

δval(var) =

{
1 if var = val,
0 otherwise.

Using the Kronecker operator, the following simplified alternative

(recb.start − inda.start) · (reca.start − indb.start)
< (2 − δidor (sa.resourceId) − δidor (sb.resourceId)) · BIG INTEGER.

is also suitable, if the integer value BIG INTEGER is sufficiently large.
All three approaches models the situation correctly. Evidence is given by the

following considerations: If at least one of both surgery tasks is not performed
in the considered operating room, then the implication is satisfied and the right-
hand-sides of the inequalities become large enough such that they dominate



132 A. Wolf

the left-hand-sides of the inequalities. Now, it is assumed that both surgeries
are performed in the considered operating room. Then, the condition of the
implication is satisfied and its conclusion is identical with both inequalities,
because their left-hand-sides become zero.

Without loss of generality, it is further assumed that surgery a is performed
before b.6 Due to the order of the tasks in the clinical pathways of surgeries it
holds inda.start < recb.start. It follows immediately that

recb.start − inda.start > 0 and thus reca.start − indb.start < 0.

This means that the recovery of surgery a has already started (in the recovery
room after leaving the induction room) before the induction of surgery b starts:
reca.start < indb.start.

3 Scheduling Clinical Pathways

The challenge in constraint-based scheduling of clinical pathways is the deter-
mination of values for the start, duration, and end variables of all tasks in the
pathways such that all all inter- and intra-pathway constraints (see Section 2)
are satisfiable, e.g. there are values for the remaining variables such that all
constraints are satisfied.

3.1 Optimization

Practical experiences show that optimized scheduling of clinical pathways is
rather difficult. Beyond the intrinsic complexity of optimization, the reasons are
that the criteria in a clinical context are manifold, informal, and sometimes con-
tradicting each other. There is currently neither a generally accepted objective
function nor an according scheduling strategy to be customized via appropriate
parameter setting. Different contexts require specialized solutions. Some evi-
dence is given by the following two cases:

Workload Balancing in Surgery Slots. Practical experiences in surgical
pathway scheduling have shown that a balancing of the workload within the
time slots of the actual surgery tasks is often favored.

The chosen scheduling approach uses the work load factor in percent:
workloadFactor ∈ [0, 100]. For a proper consideration of this objective the
constraint-based model has to be extended: for each slot si with maximal slot
duration msdi (e.g. the difference between the latest slot end and the earliest
slot start), with variable slot start slotStarti and variable slot end slotEndi the
constraint

slotEndi ≤ slotStarti +
msdi

100
· workloadFactor

6 The factors of the product on the left-hand-side are symmetric with respect to the
surgeries.
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has to be added. More weak criteria like “the surgery tasks should be – if possible
– in the chronological order of their requests” following the principle: “first-come,
first-served” are difficult to model. Even if penalties for offending this principle
are not quantified. In such a case, it is suggested to use an appropriate heuristic
search strategy instead of a (strong) branch-and-bound optimization.

This scheduling strategy distributes the surgery tasks over the available slots
according to their time and location restrictions (cf. Section 2.5). The algorithm
is based on the invariant that the already distributed surgery tasks are con-
strained to be in linear order in their slots and realizes a depth-first chronological
backtracking search:

While there are not yet distributed surgery tasks

– sort the slots according to their work load – lowest load first.
– select the next task according to “first-come, first-served”.
– while there is a next slot, try to insert the task into the linear order already

established there without causing an inconsistency:
• start with the last position (after all tasks) first.
• finish either with success if such position is found or continue with the

next slot otherwise.
– if scheduling fails, backtrack to the last recently scheduled task and try

another position and/or slot. Otherwise continue with the next task.

This scheduling strategy is completed by a depth-first chronological backtracking
labeling strategy. The labeling tries to determine the values of the necessary
variables such that all remaining variables will be fixed, too. If the labeling fails,
search backtracks to the task distribution until either another distribution of
tasks is found or finitely fails because there is no admissible schedule.

A workload balancing distribution of tasks (without linear task orders) can be
seen as a preprocessing for a more “local” optimization strategy. Such a strategy
on individual operating slots and rooms is addressed in the following:

Optimized Sequencing of Surgeries. In one practical application the chal-
lenge is an optimized sequencing of the actual surgery tasks in surgical pathways.
In this context the operating rooms and the time slots are already allocated to
each surgery task (cf. Section 3.1). Furthermore, there are two operating tables
in alternating use: while one table is currently used in the operating room the
other is altered for the next surgery. Additionally, all surgeries have priority
scores (e.g. high scores for surgeries with a high anesthetic risk) and they have
to be performed without break: the next surgery starts directly after the current.

The optimization criteria are manifold:

– minimize the delays of the surgeries according to its scores, i.e. apply the
principle: “the higher the score the earlier the surgery”,

– reduce the costs for the preparations and alterations of the tables,
– reducing the delays of the surgeries is the primary optimization criterion

while the cost reduction has secondary importance.
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It is proposed to use a weighted sum to represent all these criteria adequately
in an objective function. Therefore, for each surgery s let

– its priority score s.score be an integer value,
– its bedding type s.type be an integer value determining the sequence depen-

dent preparation/alternation cost for this surgery.

For each bedding type t let initalCostt be a non-negative integer value deter-
mining the cost for the initial preparation of an operating table for a surgery of
type t. For each pair of bedding types s, t let alterationCosts,t be a non-negative
integer value determining the cost for the alteration of an operating table from
type s to type t.

Thus, for the sequence of surgeries S = s1, . . . , sn, (n > 1) to be scheduled
a permutation σ : {1, . . . , n} → {1, . . . , n} and a labeling of the start times
s1.start, . . . , sn.start has to be found such that

sσ(i).start = sσ(i−1).start + sσ(i−1).duration

is satisfied for 1 ≤ i ≤ n and the sum

initalCostsσ(1).type + initialCostsσ(2).type

+
n−2∑
i=1

alterationCostsσ(i).type,sσ(i+2).type +
n∑

j=1

α · sσ(j).score · sσ(j).start

is minimal. – Here, the value of the parameter α adjusts the importance of the
delay of surgeries with respect to the costs: the larger the value the higher the
importance.

Due to the fact that the order of the surgeries is a-priori unknown, i.e. it has
to be determined during an optimized scheduling, appropriate constraints have
to be used to model this objective adequately in Constraint Programming. First
of all there is a specialized cost constraint required taking the alteration of the
operation tables into account:

Definition 10 (Sequence Dependent Alternating Setup Costs). Let a
sequence of tasks T = t1, . . . , tn with n > 1 be given. It is assumed that these
tasks have to be scheduled in linear order, i.e. it holds

ti.end ≤ tj .start ∨ tj .end ≤ ti.start for 1 ≤ i < j ≤ n.

It is further assumed that each task ti with 1 ≤ i ≤ n has a specific type t.type
(an integer value) and there is a non-negative integer cost value initalCostt.type

and that for each pair of tasks (ti, tj) with 1 ≤ i, j ≤ n there is a non-negative
integer cost value alterationCostti.type,tj .type.

Then, for each task tj in the sequence T (1 ≤ j ≤ n) the finite domain variable
alternatingSetupCost(tj , T ) defines the sequence dependent alteration setup cost
of tj (with respect to T ) if this variable is constrained to
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alternatingSetupCost(tj , T )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

alterationCostth.type,tj .type if there are two tasks th, ti with 1 ≤ h, i ≤ n

such that th.end ≤ ti.start ∧ ti.end ≤ tj .start

holds and for each task tk with 1 ≤ k ≤ n,

k �= i, k �= h, k �= j it holds tk.end ≤ th.start

or tj .end ≤ tk.start,

initialCosttj .type otherwise.

This means that the alternating setup cost of a task tj is determined by the
direct predecessor th of its direct predecessor ti – if there are any: th is scheduled
before ti, ti is scheduled before tj and there is neither a task scheduled between
th and ti nor between ti and tj .

This constraint is sufficient for a constraint-based modeling of the proposed
objective

n∑
i=1

alternatingSetupCost(si, S) + α · si.score · si.start

which is independent of the a-priori unknown permutation and correct by defi-
nition of the alternating setup costs constraint and because any permutation of
the weighted start times will not change their sum.7

3.2 Implementation

The realized scheduling of clinical pathways is based on the presented model-
ing approaches (cf. Section 2). In particular, schedulers are realized for surgical
pathways. The schedulers are implemented in Java combining object-orientation
of the host language with Constraint Programming supported by the constraint
solver library firstCS [11,23].

The pruning algorithms for the sequence dependent setup costs constraints are
based on adjacency matrices. These matrices are used to maintain the transitive
closure of the task order relation. For instance, possible predecessors (or pre-
predecessors in the case of alternating costs) are used to restrict the domain of
a task’s cost variable or the maximal gap between two task is used to determine
whether a task is a direct predecessor of another task thus determining the cost
value of the direct successor task. For sequence dependent setup times, however,
the implementation of the according constraint is based on the results presented
in [6,24].

For the heuristic workload balancing the combined scheduling and labeling
presented in Section 3.1 is implemented as described there. For efficiency rea-
sons – this strategy is applied on-line while the surgeries are agreed between the

7 Addition is associative and commutative.
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physicians and their patients – this “heuristic optimization” is chosen. The com-
puted schedules are accepted by the physicians and the patients because they
are (mostly) conform with their expectations.

The optimized sequencing of surgeries presented in Section 3.1 uses in the
first version a weighted task sum constraint – cf. e.g. [12,18] for its definition
and pruning algorithms – and a task labeler which labels the start times of the
considered tasks after finding a linear task order with depth-first, chronologi-
cal backtracking search (cf. [12, Section 13.3]). Optimization uses a dichotomic
branch-and-bound approach. However, this first approach performs rather bad
in some use cases. For improving the runtime of this scheduler a specialized
weighted task sum constraint [26] is investigated addressing the delay of the
surgery start times. The improved pruning algorithms takes into account that
the weighted addends are the start times of tasks to be scheduled in linear or-
der yielding better approximations of the sum’s lower bound. Furthermore, the
labeling is replaced by a simplified search algorithm appropriate for task schedul-
ing without breaks [22]. These modifications performs well even with the chosen
dichotomic branch-and-bound optimization of the weighted sum.

Practical applications of the realized scheduling in hospitals have shown that
the implementation performs well. In general – even optimal – schedules are
computed within a few seconds on a modern PC, however in rare cases the
branch-and-bound optimization is interrupted after a individually set time limit
yielding sub-optimal but acceptable solutions.

4 Conclusion

There are modelings for clinical pathways presented. The considered modeling
aspects reach from intra- to inter-path relationships addressing spatiotemporal
and sequence dependent constraints. It is shown how these modelings are applied
in practical applications to schedule clinical tasks on medical resources while
balancing workload or minimizing costs and delays.
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21. Viĺım, P., Barták, R., Čepek, O.: Unary resource constraint with optional activities.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 62–76. Springer, Heidelberg
(2004)

22. Wolf, A.: Reduce-to-the-opt – a specialized search algorithm for contiguous task
scheduling. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP
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Abstract. Dynamic Backtracking (DBT ) is a well known algorithm for solving
Constraint Satisfaction Problems. In DBT , variables are allowed to keep their
assignment during backjump, if they are compatible with the set of eliminating
explanations. A previous study has shown that when DBT is combined with
variable ordering heuristics, it performs poorly compared to standard Conflict-
directed Backjumping (CBJ) [Bak94]. In later studies, DBT was enhanced
with constraint propagation methods. The MAC-DBT algorithm was reported
by [JDB00] to be the best performing version, improving on both standard DBT
and on FC-DBT by a large factor.

The present study evaluates the DBT algorithm from a number of aspects.
First we show that the advantage of MAC-DBT over FC-DBT holds only for a
static ordering. When dynamic ordering heuristics are used, FC-DBT outperforms
MAC-DBT. Second, we show theoretically that a combined version of DBT that
uses both FC and MAC performs equal or less computation at each step than
MAC-DBT. An empirical result which presents the advantage of the combined
version on MAC-DBT is also presented. Third, following the study of [Bak94],
we present a version of MAC-DBT and FC-DBT which does not preserve assign-
ments which were jumped over. It uses the Nogood mechanism of DBT only
to determine which values should be restored to the domains of variables. These
versions of MAC-DBT and FC-DBT outperform all previous versions.

1 Introduction

Conflict Based Backjumping (CBJ) is a technique which is known to improve the search
of Constraint Satisfaction Problems (CSP s) by a large factor [Dec03, KvB97, CvB01].
Its efficiency increases when it is combined with forward checking [Pro93]. The down
side of CBJ is that when such a backtrack (back-jump) is performed, assignments of
variables which were assigned later than the culprit assignment are discarded.

Dynamic Backtracking [Gin93] improves on standard CBJ by preserving assign-
ments of non conflicting variables during back-jumps. In the original form of DBT ,
the culprit variable which replaces its assignment is moved to be the last among the
assigned variables. In other words, the new assignment of the culprit variable must be
consistent with all former assignments [Gin93].

Although DBT saves unnecessary assignment attempts and was proposed as an im-
provement to CBJ , a later study by Baker [Bak94] has revealed a major drawback of
DBT . According to Baker, when no specific ordering heuristic is used, DBT performs
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better than CBJ . However, when ordering heuristics which are known to improve the
run-time of CSP search algorithms are used [HE80, BR96, DF02], the performance
of DBT is slower than the performance of CBJ . This phenomenon is easy to explain.
Whenever the algorithm performs a back-jump it actually takes a variable which was
placed according to the heuristic in a high position and moves it to a lower position.
Thus, while in CBJ , the variables are ordered according to the specific heuristic, in
DBT the order of variables becomes dependent upon the backjumps performed by the
algorithm [Bak94].

In order to leave the assignments of non conflicting variables without a change on
backjumps, DBT maintains a system of eliminating explanations (Nogoods) [Gin93].
As a result, the DBT algorithm maintains dynamic domains for all variables and can
potentially benefit from the Min-Domain (fail first) heuristic. The present paper demon-
strates empirically that this is the best performing version of DBT .

The DBT algorithm was combined with constraints propagation algorithms in
order to increase its efficiency. The most successful version reported was MAC-
DBT. The MAC-DBT algorithm uses support lists as in the well known AC4 al-
gorithm [MH86, BFR95], in order to maintain Arc Consistency throughout search.
According to [JDB00] MAC-DBT outperforms versions of DBT which use a lower
level of propagation methods (i.e. Forward Checking). Furthermore, MAC-DBT was
also reported to outperform former versions of the MAC algorithm [JDB00, BR96].

The present study investigates the DBT algorithm from a number of aspects. First,
we show that the advantage of MAC-DBT over FC-DBT holds only for a static order-
ing. When dynamic ordering heuristics are used, FC-DBT outperforms MAC-DBT. Sec-
ond, we prove theoretically that a combined version of DBT that uses both FC and
MAC performs equal or less computation than MAC-DBT as presented in [JDB00].
Our empirical results show an advantage of the combined version over MAC-DBT.
Third, we present a version of MAC-DBT which does not preserve assignments which
were jumped over (as in standard CBJ). This turns out to be the best performing ver-
sion of MAC-DBT, which we term MAC-CBJ-NG. It benefits from the Min-domain
heuristic, due to its maintenance of relevant Nogoods. Unlike standard MAC-DBT it
does not harm dynamic ordering by keeping the jumped-over variables assigned. An
analogous version of FC-DBT is FC-CBJ-NG. These versions preserve the properties
of the ordering heuristic but in contrast to standard CBJ do not restore removed values
whose Nogoods are consistent with the partial assignment. These two versions were
found to run faster than all previous versions of DBT .

2 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is composed of a set of n variables
V1, V2, ..., Vn. Each variable can be assigned a single value from a discrete finite
domain. Constraints or relations R are subsets of the Cartesian product of the do-
mains of constrained variables. For a set of constrained variables {Vi, Vj , ..., Vm},
with domains of values for each variable {Di, Dj, ..., Dm}, the constraint is defined
as R ⊆ Di ×Dj × ...×Dm. A binary constraint Rij between any two variables Vj and
Vi is a subset of the Cartesian product of their domains; Rij ⊆ Dj × Di.
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An assignment (or a label) is a pair 〈var, val〉, where var is a variable and val is a
value from var’s domain that is assigned to it. A partial solution is a consistent set of
assignments of values to a set of variables. A solution to a CSP is a partial solution that
includes assignments to all variables [DF02].

3 MAC-DBT

Dynamic Backtracking (DBT ) was first introduced in [Gin93]. DBT improves on
CBJ by enabeling variables which were jumped over on a backjump to keep their
assignments. The DBT algorithm is described next, followed by a description of the
later version of [JDB00]which combined MAC with DBT .

3.1 Dynamic Backtracking

The dynamic backtracking (DBT ) algorithm is presented following [Bak94]. We as-
sume in our presentation that the reader is familiar with CBJ [Pro93].

Like any backtrack algorithm, DBT attempts to extend a partial solution. A partial
solution is an ordered set of value assignments to a subset of the CSP variables which
is consistent (i.e. violates no constraints). The algorithm starts by initializing an empty
partial solution and then attempts to extend this partial solution by adding assigned
variables to it. When the partial solution includes assignments to all the variables of the
CSP , the search is terminated successfully.

In every step of the algorithm the next variable to be assigned is selected according
to the heuristic in use, and the values in its current domain are tested. If a value is in
conflict with a previous assignment in the partial solution, it is removed from the current
domain and is stored together with its eliminating Nogood. Otherwise, it is assigned to
the variable and the new assignment is added to the partial solution [Bak94, Gin93].

An order is defined among the assignments in the partial solution. In the simplest
form, this order is simply the order in which the assignments were performed (other
options will be discussed).

Following [Gin93, Bak94], all Nogoods are of the following form:

(v1 = q1) ∧ ... ∧ (vk−1 = qk−1) ⇒ vk �= qk

The left hand side serves as the explanation for the invalidity of the assignment on the
right hand side. An eliminating Nogood is stored as long as its left hand side is consis-
tent with the current partial solution. When a Nogood becomes invalid, it is discarded
and the forbidden value on its right hand side is returned to the current domain of its
variable [Gin93].

When a variable’s current domain empties, the eliminating Nogoods of all its re-
moved values are resolved and a new Nogood which contains the union of all assign-
ments from all Nogoods is generated. The new Nogood is generated as follows. The
right hand side of the generated Nogood, includes the assignment which was ordered
last in the union of all Nogoods (the culprit assignment). The left hand side is a con-
junction of the rest of the assignments in the united set [Gin93, Bak94].

After the new Nogood is generated, all Nogoods of the backtracking variable which
include the culprit assignment are removed and the corresponding values are returned to
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the current domain of the backtracking variable. Notice that this assignment to the back-
tracking variable cannot possibly be in conflict with any of the assignments which are
ordered after the culprit assignment. Otherwise, they would have been included in an
eliminating Nogood. The culprit variable on the right hand side of the generated Nogood
is the next to be considered for an assignment attempt, right after its newly created
Nogood is stored. Its new position in the order of the partial solution is after the latest
assignment (i.e. it is moved to a lower place in the order than the position it had before).

The variables that were originally assigned after the culprit variable stay assigned.
That is in contrast with CBJ (or FC-CBJ [Pro93]) that discards these assignments.

3.2 DBT with MAC

Enhancing a backtracking algorithm with look ahead methods (FC, AC) provides a
significant improvement in performance [Pro93, KvB97, BR96, CvB01] and a solid
basis for the ordering heuristics which use the size of domains of unassigned vari-
ables [HE80, BR96].

As mentioned above, the DBT algorithm was enhanced with MAC in [JDB00].
In MAC-DBT, after each assignment to a variable vi, all the values left in the current
domain of vi are entered into a queue (Q) and then an arc consistency method based on
AC4 is performed. Explanations for the removal of values from the domains of unas-
signed variables are stored as in standard DBT . For a detailed description of MAC-DBT
the reader is referred to the original paper [JDB00]. Following [JDB00], in our imple-
mentation for MAC we used the methodolgy of AC4. That means that we hold a support
list for each [variable, value] pair. While this approach is considered less attractive in
general for MAC than the most cutting edge algorithms for arc consistency (AC7 for
example ensures the space complexity of AC3 while preserving the time complexity of
AC4 [BFR95]). The use of support lists is essential in MAC-DBT for the generation of
Nogood eplanations for values which are removed as a result of AC. The explanation
for a value removal is explained by the explenations for the removal of its supporters in
the corresponding list.

4 Improving MAC-DBT

The contribution of the present paper is centered on improving the MAC-DBT algorithm
in two different directions which are combined into a single algorithm. The first im-
provement adresses the weakness of the DBT algorithm reported by [Bak94] when
ordering heuristics are used. It proposes a version of DBT that does not keep the assign-
ments of “jumped-over” variables. The second improvement adresses the MAC method
of [JDB00] and proposes a combined version of FC and MAC to improve its run time.

4.1 CBJ-NG

The MAC-DBT algorithm of [JDB00] still suffers from the phenomenon reported
by [Bak94], that the DBT algorithm abolishes the benefits of the variable ordering
heuristic used. Standard CBJ combined with look ahead methods, avoids this prob-
lem by discarding the assignment of variables that it jumps-over. This way, the order of
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variables according to the desired heuristic is preserved. However, in contrast to DBT ,
in standard CBJ explanations for the removal of values are not stored and therefore on
backtracks the entire domain of a variable which was jumped over is restored [Pro93].

The first improvement we propose is to combine DBT and CBJ into CBJ-NG.
This algorithm benefits from the dynamic ordering of CBJ and from the maintenance
of Nogood explanations of DBT . The algorithm uses one of two look ahead methods,
FC or MAC, and the resulting algorithms are termed FC-CBJ-NG and MAC-CBJ-NG,
respectively.

During the search process of FC-CBJ-NG and MAC-CBJ-NG variables are selected
to be assigned according to a heursitic. Conflicting values of unassigned variables are
filtered out by forward checking or by AC. These values are associated with explicit
nogoods (Nogoods which derive explicitly from the problem’s initial constraints) that
explain their immediate removal as in DBT [Gin93].

When a current domain of an unassigned variable is exhausted, the Nogood expla-
nations of its removed values are resolved and the result is a generation of an inexplicit
(resolved) Nogood. Among the assignments of variables that appear in the generated
Nogood, the assigned variable that is last ordered in the partial assignment is selected
as the target of the backtrack (the culprit).

If the culprit is not the last assigned variable, the assignments of variables that were
assigned after the culprit are discarded and their assigned values are returned to the
current domains of these variables. Eliminating explanations that contain removed or
discarded assignment are discarded as well, and the values that were eliminated by
them are also returned to their current domains.

In contrast to standard CBJ, values of variables, whose assignment was discarded and
their Nogood explanation is still consistent with the resulting partial assignment, are not
returned to their variable’s current domain. This forms a solid basis for ordering heuris-
tics that are based on dynamic domain sizes of unassigned variables [HE80, BR96].

4.2 FC-CBJ-NG and MAC-FC-CBJ-NG

The pseudo code of FC-CBJ-NG and MAC-CBJ-NG is presented in Algorithms 1, 2
and 3. The italic lines are code that one needs to perform in order to transform the
FC-CBJ-NG algorithm into MAC-FC-CBJ-NG. The pseudo code of both algorithms is
described next.

Procedure initialize (line 2) performs initialization of the algorithms’ data structures.
Most of these operations are basic and technical, therefore they are not described in
detail. If MAC-FC is performed, the initialize procedure computes the support lists for
all values [MH86]. In this phase an empty domain generates a report that there is no
solution [MH86].

The variables that are handled in lines 3-5 are assumed to be global and accessible
by all procedures. assigned: is a stack that holds the already assigned variables in a
LIFO order of their assignment. unassigned: is a pool of the unassigned varibles. The
variable Pseudo is intially pushed into the stack, in order to simplify the code. The
unassigned pool contains all the variables that participate in the problem. consistent
is a boolean variable which indicates whether the problem is consistent.
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The loop in lines 6-16 follows the standard form of [Pro93] for CSP search algo-
rithms. Arc consistency is applied before labeling (line 8). The procedure label(var)
(Algorithm 2) tries to assign one value val from the current domain of the unassigned
variable var. If the assignment is successful, consistency remains true, and the assigned
variable is entered into the assigned stack. Conflicting values are removed from the cur-
rent domains of future variables. When MAC is used their repspective pairs are inserted
into the global queue Q for AC inspection. It is done by the procedure check forward.
If the assignment fails (a domain of an unassigned variable empties), state restoration is
handled by procedure undo reductions, and val is removed from the current domain
of var along with its eliminating Nogood. When MAC is performed the pair (var, val)
is inserted into the reduction set of the variable that is last assigned. The reduction set of
a varaible contains removed values whose eliminating nogoods are consistent with the
assignment. These eliminating Nogoods are identified only after the assignment of that
variable. The pair (var, val) is also inserted into Q, as the removal of val may cause
the problem to violate the arc consistency property. At the end, the current domain of
var is inspected for consistency (e.g non-emptiness).

Algorithm 1. MAC-FC/FC-CBJ-NG
1: procedure MAC-FC/FC-CBJ-NG

2: initialize()
3: unassigned ← variables
4: assigned ← pseudoVar
5: consistent ← true
6: while unassigned.size() > 0 do
7: if consistent then
8: consistent ← check AC()
9: end if

10: if consistent then
11: next var ← select next var(unassigned)
12: consistent ← label(next var)
13: else
14: consistent ← unlabel()
15: end if
16: end while
17: report solution
18: end procedure

Procedure unlabel (in Algorithm 2) generally removes the assignment of an
assigned variable. A value is removed if the current domain of an unassigned variable
empties. The Nogood that explains this removal is resolved (line 2). If the Nogood is
empty, the algorithm terminates unsuccessfully (a no solution is reported) (lines 3-6).
Otherwise, the right hand side RHS variable, which is called culprit, is unassigned. The
assignments of variables ordered after the culprit variable are discarded. In the repeat
loop, these variables are extracted from the assigned stack and a restoration operation
is performed by a call to undo reductions. Note that when a variable is extracted its
reduction set is unified with the reduction set of the former assigned variable. This
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Algorithm 2. Procedures Label and Unlabel

1: procedure LABEL(var)
2: select value from var.current domain
3: var.assignment← value
4: consistent← check forward(var)
5: if not consistent then

6: remove var.assignment from var.current domain
7: nogood← resolve nogoods(empty domain var)
8: store(nogood)
9: undo reductions(var)

10: lastAssigned← assigned.head()
11: add (var,var.assignment) to lastAssigned.reduction
12: Q← (var,var.assignment)
13: if var.current domain = φ then

14: empty domain var← var
15: end if

16: else

17: unassigned.remove(var)
18: assigned.push(var)
19: end if

20: return var.current domain �= φ
21: end procedure

1: procedure UNLABEL
2: nogood← resolve nogoods(empty domain var)
3: if nogood = φ then

4: report no solution
5: stop
6: end if

7: culprit← nogood.RHS variable
8: remove var.assignment from var.current domain
9: store(nogood)

10: repeat

11: var← assigned.pop()
12: undo reductions(var)

13: unassigned.add(var)
14: lastAssigned← assigned.head()
15: add var.reduction to lastAssigned.reduction
16: if var �= culprit then

17: var.reduction← φ
18: else

19: add (culprit,culprit.assignment) to lastAssigned.reduction
20: add culprit.reduction to lastAssigned.reduction
21: Q← culprit.reduction
22: culprit.reduction← φ
23: if culprit.current domain = φ then

24: empty domain var← culprit
25: end if

26: return culprit.current domain �= φ
27: end if

28: until var = culprit
29: end procedure
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Algorithm 3. Procedures FC and check AC
1: procedure CHECK FORWARD(var1)
2: foreach(var2 ∈ unassigned)
3: foreach(val2 ∈ var2.current domain)
4: if not check(var1, var1.assignment, var2, val2) then
5: remove val2 from var2.current domain
6: nogood ← (var1 = var1.assignment → var2 �= val2)
7: store(nogood)
8: Q.add((var2,val2))
9: if var2.current domain = φ then

10: empty domain var ← var2
11: return false
12: end if
13: end if
14: return true
15: end procedure

1: procedure UNDO REDUCTIONS(culprit)
2: foreach(var ∈ unassigned)
3: foreach(val ∈ var.domain/var.current domain)
4: nogood ← store.get(var,val)
5: if nogood.contains(culprit) then
6: store.remove(nogood)
7: remove((var,val) from culprit.reduction � if exists..
8: insert val into var.current domain
9: end if

10: end procedure

1: procedure CHECK AC � used only in MAC
2: while Q �= φ do
3: (var1,val1) ← Q.extract()
4: foreach(var2 ∈ set of variables constrained with var1)
5: if var2 ∈ unassigned then
6: foreach(val2 ∈ support(var1,var2,val1))
7: if support(var2,var1,val2) ∩ var1.current domain = φ then
8: remove val2 from var2.current domain
9: nogood ← resolve nogood(support(var2,var1,val2))

10: store(var2, nogood)
11: lastAssigned ← assigned.head()
12: add (var2,val2) to lastAssigned.reduction
13: Q.add((var2,val2))
14: end if
15: if var2.current domain = φ then
16: empty domain var ← var2
17: return false
18: end if
19: end if
20: end while
21: return true
22: end procedure
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ensures that all reduced values whose eliminating Nogoods remain consistent from the
time that the culprit was assigned - when the problem was arc consistent - are accu-
mulated. The respective pairs of these values are inserted into Q, and will be examined
before the next assignment if the current domain of the culprit variable is consistent.

Procedure undo reductions removes eliminating nogoods that contain the given
unassined variable in their explanations. It returns the previously eliminated values to
the current domains of the variables they belong to. If MAC is performed these values
are removed from the reduction set of the given variable.

Procedure check AC is similar to the main procedure of AC4 [MH86]. It extracts
pairs of the form (var, val) from the global queue Q until the queue is emptied. Values
of the current domain of unassigned variables, constrained with var, are checked for
support (compatible value) in the current domain of var. If there is no support for a
value val′ of a variable var′, then val′ is removed and the Nogood is resolved. In this
case the pair (var′, val′) is inserted into Q. The pair is also added to the reduction set
of the last assigned variable. The procedure stops if it finds an empty current domain
or if the Q is emptied. This implies that the problem is arc consistent.

4.3 FC Saves Computation

Let us analyze the computational advantage of performing FC separately, as in
Algorithm 1, over the version proposed in [JDB00]. The equivalence of the two meth-
ods generates the same removals in unassigned variables. Denote by t, the amount of
computations spent by AC4 when iterating over the values that are removed from the
current domains of unassigned variables, as a result of direct conflict with the assign-
ment of vi (all values that would have been removed by FC). Consider the set of all
values that belong to current domains of unassigned variables constrained with vi. Now,
consider a division of this set into twon non intersecting subsets, S - the current set of
values that are compatible with the assignment of vi, and R - the current set of values
that are in conflict with that assignment. The FC procedure visits each value in the cur-
rent domains of the unassigned variables just once, therefore the time spent by applying
FC and than AC is:

t + |R| + |S|
The method for maintaining AC that is proposed in [JDB00] performs FC by inserting
all unassigned values of the current domain of variable i into the Q of removed values.
We denote by d, the number of values that were inserted into Q. Each ”removed” value
triggers a check of support for each val ∈ S. Each val ∈ R is examined with respect
to the number of supporters that are retained in the current domain(vi). This number
is greater or equal to 1. Assuming that the expected number of values checked (lager
or equal to the number of supporters) for each val ∈ R, before it is removed from the
current domain is k, we conclude that the computations performed are at least:

t + d · |S| + k · |R|
The cases in which d = 0 can be easily checked in advance (no computation needed
during search) therefore the values of d and k are always greater or equal to 1. We can
easily see that applying FC separately, as proposed in the present paper, generates less
or equal computation than the method proposed in [JDB00].
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5 Correctness of MAC-FC-CBJ-NG

Let us first assume the correctness of the standard DBT algorithm (as proved
in [Gin93]) and prove that after the addition of forward checking, of MAC and the elim-
ination of assignments after each backtrack, it is still sound, complete and it terminates.

Soundness is immediate since after each successful assignment the partial solution
is consistent. Therefore, when the partial solution includes an assignment for each
variable the search is terminated and a consistent solution is reported.

As in the case of standard DBT and MAC-DBT, the completeness of MAC-FC-CBJ-
NG derives from exploring the entire search space except for sub search spaces which
were found not to contain a solution. One needs to prove that the sub search spaces which
MAC-FC-CBJ-NG does not search do not contain solutions. Sub search spaces are pruned
by Nogoods. It is enough to prove the consistency of the set of Nogoods generated by
MAC-FC-CBJ-NG. In other words, that the assignment of values removed by Nogoods
never leads to solutions. For standard DBT this is proven in the original paper [Gin93].

The consistency property of Nogoods generated by MAC-FC-CBJ-NG can be shown
as follows. First, observe that during the forward-checking and arc-consistency opera-
tions, Nogoods are standardly stored as explanations to removed values in the domain
of future variables. Next, consider the case of a backtrack. It is easy to see that Nogoods
of the future variables are resolved identically to those of standard DBT. Each Nogood
is either an explicit Nogood, which is actually a constraint of the original problem, or a
resolved Nogood which is a union of explicit Nogoods. In both cases any assignment
which includes such a Nogood cannot be part of a solution. This proves the complete-
ness of MAC-FC-DBT.

Last, we need to prove that the algorithm terminates. To this end we need to prove
that the algorithm cannot enter an infinite loop. In other words, that a partial assignment
cannot be produced by the algorithm more than once. We prove by induction on the
number of variables of the CSP , n. For a CSP with a single variable, each of the
values is considered exactly once. Assuming correctness of the argument for CSPs
with k variables, for all k < n, we prove that in the case of a CSP with n variables the
argument is still valid. Given a CSP of size n we assign the first variable and prune the
inconsistent values of the unassigned variables using FC and MAC. The induced CSP
is of size n − 1 in which according to the induction assumption the same assignment
would not be generated twice. After the search of this induced CSP is completed,
the result can be either a solution to the complete CSP , a non solution as a result
of the production of an empty Nogood or a Nogood which includes the assignment
of the first variable alone. In the first two cases we are done. In the third case, after the
first variable replaced its assignment, it will never assign this value again. Therefore,
none of the previous partial assignments can be produced again. This is true for each of
the assignments of the first variable.

6 Experimental Evaluation

The common approach in evaluating the performance of CSP algorithms is to mea-
sure time in logical steps to eliminate implementation and technical parameters from
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Fig. 1. Constraints checks performed by FC-DBT, MAC-DBT and MAC-FC-DBT on low density
CSPs (p1 = 0.3) with static ordering

Fig. 2. Same as Figure 1 for high density CSPs (p1 = 0.7)

affecting the results. We present results in both number of constraints checks and in
CPU time [Pro96, KvB97].

The experiments were conducted on two problem scenarios: Random CSPs and
on structured problems that represent a realistic scenario - Meeting Scheduling Prob-
lems [GW99].

Random CSPs are parametrized by n variables, k values in each domain, a con-
straints density of p1 and a tightness p2 which are commonly used in experimental
evaluations of CSP algorithms [Smi96]. Two sets of experiments were performed on
random problems. Both were conducted on CSPs with 20 variables (n = 20) and 10
values in the domain of each variable (k = 10). Two values of constraints density were
used, p1 = 0.3 and p1 = 0.7. The tightness value p2, was varied between 0.1 and 0.9, in
order to cover all ranges of problem difficulty. For each of the pairs of fixed density and
tightness (p1, p2), 50 different random problems were solved by each algorithm and the
results presented are an average of these 50 runs.

In the first set of experiments, DBT with three different lookahead methods was
compared, Forward Check (FC-DBT), MAC (MAC-DBT) and a combined lookahead
version that use both FC and MAC (MAC-FC-DBT).

The left hand side (LHS) of Figure 1 presents the number of constraints checks per-
formed by the three versions of the algorithm with static ordering on low density CSPs
(p1 = 0.3). MAC-DBT outperforms FC-DBT, as reported by [JDB00]. The algorithm
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Fig. 3. Constraints checks and CPU-time performed by FC-DBT, MAC-DBT and MAC-FC-DBT
with dynamic (min-domain / degree) ordering (p1 = 0.3)

Fig. 4. Same as Figure 5 for high density CSPs (p1 = 0.7)

proposed in the present paper (that performs FC seperately of AC4) MAC-FC-DBT
outperfroms both MAC-DBT and FC-DBT. A closer look at the difference between
MAC-FC-DBT and MAC-DBT is presented on the right hand side of the (RHS)figure.
Note that in this experiment all algorithms perform DBT and not CBJ-NG. They all
preserve the jumped over assignments on a backtrack as in [Gin93, Bak94, JDB00].

The LHS of Figure 2 presents similar results for high density CSPs (p1 = 0.7). In
this case the difference between FC-DBT and MAC-DBT is much smaller. The RHS of
Figure 2 presents the same results in CPU time and is presented in order to show the
similarity between these two measures.

Figure 3 presents a comparison between the same versions of the algorithm when
using the min-domain/degree heuristic [BR96]. The results in constraints checks (LHS)
and in CPU time (RHS) show clearly the advantage of FC-DBT on both versions of
MAC-DBT when ordering heuristics are used. Similar results for high density CSPs are
presented in Figure 4. The difference in favor of FC is higher on dense CSPs.

In the second set of experiments FC-DBT and MAC-FC-DBT are compared with
the well known FC-CBJ algorithm and with the two proposed versions which perform
backjumping as in CBJ but store Nogoods as in DBT (see Section 3.1), our proposed
algorithms MAC-FC-CBJ-NG and FC-CBJ-NG (Algorithms 1, 2 and 3). All algorithms
use the min-domain/degree heuristic.
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Fig. 5. Constraints checks and CPU-time for low density CSPs (p1 = 0.3)

Fig. 6. Same as Figure 3 for high density CSPs (p1 = 0.7)

Figure 5 presents a comparison between different versions of the algorithm on low
density random CSPs. The results show a large difference between the FC algorithms
and the MAC algorithms. However, there are small differences between the different
versions. Similar results were obtained for high density random CSPs (Figure 6).

In the third set of experiments, the algorithms are compared when solving struc-
tured problems, Meeting Scheduling [GW99]. In this special class of problems, vari-
ables represent meetings between agents. Arrival constraints exist between meetings of
the same agent. The tightness of the problem grows with the number of meetings per
agent [GW99].

Figure 7 presents the performance of the algorithms, solving random meeting
scheduling problems with 40 meetings (variables), domain size of 12 time slots, 18
agents and arrival constraints which were randomly selected between 2 to 6 [GW99].
The results in constraints checks (LHS) and in CPU-time are again very similar. On
structured problems the differences between the different versions of MAC-DBT are
much smaller than the differences between the different versions of FC. Still, the
best performing algorithm is the FC version which performs CBJ and uses DBT
Nogoods. To emphasize its advantage, the results of the most successful versions of
MAC and FC are presented in Figure 8. In the case of structured problems the largest
difference in performance is for tight problems.
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Fig. 7. Constraints checks and CPU-time performed by the different algorithms on Random Meet-
ing Scheduling Problems

Fig. 8. Constraints checks and CPU-time performed by the best versions of MAC and FC on
Random Meeting Scheduling Problems

7 Discussion

Dynamic Backtracking (DBT ) was proposed by [Gin93] as a mechanism that enables
the search algorithm to perform backjumping while preserving the assignments of vari-
ables which were jumped over. The proposed algorithm was found to harm the effect of
ordering heuristics and to perform poorly compared to standard conflict directed back-
jumping when powerfull ordering heuristics are used [Bak94].

Enhancing DBT with local consistency methods (FC, MAC) was proposed
by [JDB00] who found that the most successful version is MAC-DBT. This version was
also found to outperform standard versions of MAC[MOSHE PLEASE ADD THE
REFERENCE].

The results presented in the present paper demonstrate that the advantage of MAC-
DBT over FC-DBT exists only when static order is maintained. When dynamic ordering
heuristic is used, FC-DBT runs faster than MAC-DBT. Our presented results, both theo-
retical and empirical, show clearly the advantage of performing a combined version of
MAC-DBT with explicit froward-checking, over the MAC-DBT of [JDB00].
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The best performing algorithms presented in this paper do not preserve assignments
which were jumped over (as in [Gin93]). As a result, the properties of the ordering
heuristic are preserved in contrast to standard DBT . Both versions of DBT with looka-
head (FC and MAC) benefit from using the DBT mechanism for storing Nogood
explanations. The benefit arises from the ability to determine which value should be
restored to a variable’s domain. Updated domains during backjumping enhance order-
ing heuristics that are based on domain size. The algorithms proposed by the present
paper FC-CBJ-NG and MAC-CBJ-NG, improve on both MAC-DBT and FC-DBT. The
best performing algorithm was found to be FC-CBJ-NG. Its advantage over all other
versions is most pronounced on structured (Meeting Scheduling) problems.
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