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Abstract. This paper unifies and extends several different existing strategies for
multi-robot coverage control, including ones based on Voronoi partitions, proba-
bilistic models, and artificial potential fields. We propose a cost function form for
coverage problems that can be specialized to fit different distributed sensing and
actuation scenarios. We show that controllers based on Voronoi partitions can be
approximated arbitrarily well by simpler methods that do not require the computa-
tion of a Voronoi partition. The performance of three different controllers designed
with the new approach is compared in simulation. We also formally delineate two
classes of multi-agent problems: consensus problems and non-consensus problems.
We show that coverage control is a non-consensus problem and that it requires the
optimization of a nonconvex cost function.

1 Introduction

One of the fundamental problems of multi-robot control is how to deploy a group
of robots to spread out over an environment to carry out sensing, surveillance, data
collection, or distributed servicing tasks. This operation is called coverage control,
and several methods have been proposed to accomplish it in a distributed and effi-
cient way. In this paper we introduce a unifying principle that ties together a number
of common ways of accomplishing coverage control. We show that many of the ex-
isting methods can be described as special instances of gradient descent on a cost
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function. We propose a cost function form that specializes to give some common
algorithms for coverage control, including Voronoi-based controllers, as in [7], con-
trollers based on probabilistic models, as in [15], and artificial potential field-based
controllers, as in [12].

Multi-robot coverage control serves as a prototype for many applications involv-
ing distributed sensing and distributed actuation. As examples of distributed sensing
tasks, coverage control can be used to deploy underwater robots evenly over a coral
reef to monitor coral health, or to deploy wheeled robots with cameras to spread out
over a room for surveillance. Coverage control can also be used for multi-robot ac-
tuation tasks. For example, a coverage controller can be used to position oil clean-up
robots over an oil spill so that they clean up the spill in minimum time. As another
example, coverage control can be used to position de-mining robots to service a
mine field in minimum time.

We describe a framework that is relevant to both sensing and actuation scenarios.
We argue that Voronoi based methods are best suited to distributed actuation tasks,
while a continuous approximation to the Voronoi decomposition is more appropri-
ate for distributed sensing tasks. Furthermore, even in distributed actuation tasks,
using a continuous approximation to the Voronoi cell improves the robustness and
decreases the computational complexity of the controller. The continuous approxi-
mation is easy to compute regardless of the dimension of the space, while an exact
Voronoi computation becomes unwieldy in higher dimensions.

As is typical for gradient based coverage control, the controllers we describe are
provably convergent, robust to individual robot failures, and can adapt to environ-
ments that change slowly with respect to the speed of the robots. The controllers
require that robots know the geometry of the environment and they know their own
position in it using, for example, GPS or an indoor localization system. We also
discuss how to accommodate the constraints of a communication network topology,
but do not analyze this aspect of the problem in detail.

Related Work

Cortés et al. [7] introduced a controller for multi-robot coverage that works by con-
tinually driving the robots toward the centroids of their Voronoi cells. This inher-
ently geometric strategy has seen many recent extensions to robots with a limited
sensing radius in [6], to heterogeneous groups of robots and nonconvex environ-
ments in [18], and to incorporate learning of unknown environments in [21]. A re-
cent text that presents much of this work in a cohesive fashion is [3] and an excellent
overview is given in [16]. Coverage controllers also have been successfully imple-
mented on robotic systems in [20, 19]. In this work we adopt notational conven-
tions from the Voronoi based coverage control literature. Other common methods
for coverage control take a probabilistic perspective. For example [15] proposes an
algorithm for positioning robots to maximize the probability of detecting an event
that occurs in the environment. Distributed dynamic vehicle routing scenarios are
considered in [1, 17], in which events occur according to a random process and are
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serviced by the robot closest to them. Another common coverage control method
is for robots to drive away from one another using artificial potential fields [12].
Despite the rather different models and objectives in these works, there are two
common points which motivate us to find a unifying principle: 1) they all rely upon
an optimization, and 2) they all use controllers that solve this optimization through
the evolution of a dynamical system.

Some existing approaches do not fit under the framework we propose in this pa-
per. A significant body of work has looked at coverage control as a motion planning
problem. A survey of this work can be found in [5], and some significant contribu-
tions can be found in, for example, [4, 14] and the citations therein. Other authors
have proposed information theoretic algorithms which consider placing sensors se-
quentially rather than driving them with a controller. Works such as [10,13] position
sensor nodes to maximize information for the sake of estimating a Gaussian random
process in the environment.

Contributions

In the present work we focus on multi-agent deployment as an optimization prob-
lem. This is advantageous because it is amenable to geometric, probabilistic, and
analytical interpretations, all of which have been seen in a separate light in the past.
Our optimization approach ties together much of the existing literature on coverage
control. Specifically, our contributions are: 1) We propose a cost function, putting
particular emphasis on the role of a mixing function, a previously unrecognized com-
ponent that captures critical assumptions about the coverage task. 2) We introduce
a family of mixing functions with a free parameter, α , and show that different val-
ues of the parameter correspond to different assumptions about the coverage task,
specifically showing that a minimum variance solution (i.e. a probabilistic strategy)
is obtained with a parameter value of α = −1, and Voronoi coverage (a geomet-
ric strategy) is recovered in the limit α → −∞. 3) We prove a new result linking
the convexity of a cost function to the multi-agent phenomenon of consensus. We
show that coverage tasks are fundamentally different from consensus, and that they
require the optimization of a nonconvex cost function. This suggests inherent lim-
itations to gradient descent controller designs, which are pervasive in the coverage
control literature.

The paper is organized as follows. In Section 2 we introduce the cost function,
describing the purpose of each of its parts including the mixing function. We then
produce a class of provably stable distributed coverage controllers by taking the
gradient of the cost function. In Section 3 we derive three special cases of the con-
troller; a Voronoi controller, a minimum variance controller, and a potential field
controller. Section 4 presents our results on the relation between the convexity of a
cost function, and multi-agent consensus. Simulation results are given in Section 5
and conclusions are in Section 6.



24 M. Schwager, J.-J. Slotine, and D. Rus

2 Generalized Coverage

In this section we introduce a general multi-agent cost function. We will use this cost
function to define a new class of multi-agent coverage controllers by introducing a
mixing function, which describes how information from different robots should be
combined. We use the cost function to derive a stable gradient descent controller.

2.1 Coverage Cost Function

Let there be n robots1, and let robot i have a position pi ∈P ⊂R
dp , where P is the

state space of a robot, and dp is the dimension of the space. The vector of all robot
positions is denoted P = [pT

1 , . . . , pT
n ]T ∈ Pn, and we will call P the configuration

of the robots. We want our robots to cover a bounded region Q ⊂ R
dq , which may

or may not be related to the position space P of the robots. For example, the robots
may be constrained to move in the space that they cover, so P = Q as in [7], or the
robots may hover over a planar region that they cover with cameras, so P ⊂R

3 and
Q ⊂ R

2, as in [19].
For each robot, a cost of sensing, or servicing, a point q ∈ Q is given by a

function f (pi,q). For simplicity of analysis we assume that f (pi,q) takes on only
non-negative values, and that it is differentiable with respect to pi.2 The sensor
measurements of the n robots are combined in a function g( f (p1,q), . . . , f (pn,q)),
which we will call the mixing function. The mixing function embodies assump-
tions about the coverage task; that is, by changing the mixing function we can
derive Voronoi based coverage control, probabilistic coverage control, and a vari-
ety of other kinds of distributed controllers.

Combining these elements, we propose to use a cost function of the form

H (P) =
∫

Q
g( f (p1,q), . . . , f (pn,q))φ(q)dq. (1)

where φ : R
dq �→ R>0 (we use the notation R>0 to mean the set of positive real

numbers and R
d
>0 the set of vectors whose components are all positive, and likewise

for R≥0 and R
d
≥0) is a weighting of importance over the region Q. Intuitively, the

cost of the group of robots sensing at a single arbitrary point q is represented by
the integrand g( f (p1,q), . . . , f (pn,q)). Integrating over all points in Q, weighted by
their importance φ(q) gives the total cost of a configuration of the robots. We want
to find controllers that stabilize the robots around configurations P∗ that minimize
H . We will see in Section 4 that for coverage, and many other multi-agent prob-
lems, H is necessarily nonconvex, therefore gradient based controllers will yield
locally optimal robot configurations. The cost function (1) will be shown to subsume

1 We will use the term robot throughout, though the framework is suitable for general mobile
sensing agents, including biological ones.

2 This requirement can be generalized considerably as in [6] to the case where f (pi,q) is
piece-wise continuous with a finite number of jump discontinuities. A finite sensor foot-
print can be modeled with a single jump discontinuity.
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several different kinds of existing coverage cost functions. Drawing out the relations
between these different coverage algorithms will suggest new insights into when one
algorithm should be preferred over another.

2.2 Mixing Function

The mixing function gα : R
n
≥0 �→R describes how information from different robots

should be combined to give an aggregate cost of the robots sensing at a point q.
This is shown graphically in Fig. 1 where the overlap of the two sensors is shown
for illustrative purposes as the intersection of two circles. We propose a mixing
function of the form

gα( f1, . . . , fn) =
( n

∑
i=1

f α
i

) 1
α , (2)

with a free parameter α < 0. The arguments fi ≥ 0 are real valued, and in our context
they are given by evaluating the sensor function f (pi,q), hence the notation fi. To
be precise, the expression in (2) is undefined when f j = 0 for some j, therefore in

this case we define gα by its limit, gα( f1, . . . ,0, . . . , fn) = lim f j→0
(

∑n
i=1 f α

i

) 1
α = 0.

This mixing function has several important properties. Firstly, notice that for α ≥
1 it is the p-norm of the vector [ f1 · · · fn]T . Specifically, it is convex for α ≥ 1 and as
α → ∞, gα(·) → maxi(·), which is the �∞ norm. However, we are interested in the
regime where α < 0. In this case gα(·) is not a norm because it violates the triangle
inequality. In this regime it is also nonconvex, leading to a nonconvex cost function,
which is a necessary attribute of coverage problems, as we will prove in Section 4.

Robot position

Mixing functionSensor cost

Fig. 1 The mixing function is illustrated in this figure. The mixing function determines how
information from the sensors of multiple robots is to be combined, shown graphically as the
intersection of the two circles in the figure.
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One can readily verify3 that as α → −∞, g(·) → mini(·). From an intuitive point
of view, with α < 0, gα(·) is smaller than any of its arguments alone. That is, the
cost of sensing at a point q with robots at pi and p j is smaller than the cost of
sensing with either one of the robots individually. Furthermore, the decrease in gα
from the addition of a second robot is greater than that from the addition of a third
robot, and so on. There is a successively smaller benefit to adding more robots. This
property is often called supermodularity, and has been exploited in a rather different
way in [13]. Plots of level sets of gα( f1, f2) for α = −1 are shown in Fig. 2(a) and
the decrease in gα(·) as the number of arguments grows is shown in Fig. 2(b). In
this work we consider the number of robots to be fixed, but it is useful to illustrate
the supermodularity property of the mixing function by considering the successive
addition of new robots. Including this mixing function in the cost function from (1)
gives

Hα =
∫

Q

( n

∑
i=1

f (pi,q)α) 1
α φ(q)dq. (3)

To model scenarios with a finite sensor footprint, we can also let f (pi,q) be infinite
in some areas, in which case to keep the cost function bounded and differentiable it
becomes necessary to include a prior w in the mixing function, yielding the variation

gα( f1, . . . , fn) =
(

∑n
i=1 f α

i + wα)1/α
. An application of this case was explored in

[19] to design a controller for positioning multiple flying robots with downward
facing cameras.

f
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Fig. 2 The proposed mixing function with α = −1 is shown in this figure. Fig. 2(a) shows
a contour plot of the mixing function with two arguments. The nonlinear decrease in the
function as more sensors are added, a property known as supermodularity, is shown in Fig.
2(b). The plot was generated with each robot fixed at 1 unit from the point q.

3 We know limβ→∞[∑i hβ
i ]1/β = maxi hi. Write limα→−∞[∑i f α

i ]1/α as

limβ→∞[[∑i hβ
i ]1/β ]−1 with hi = 1/ fi and β = −α . We have limβ→∞[[∑i hβ

i ]1/β ]−1 =
[maxi hi]−1 = [ 1

mini fi
]−1 = mini fi.
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2.3 Gradient Control

In order to derive a gradient descent controller, we take the derivative of the cost
function Hα with respect to the state of robot i to get

∂Hα
∂ pi

=
∫

Q

(
f (pi,q)

gα

)α−1 ∂ f (pi,q)
∂ pi

φ(q)dq.

To provide some intuition about the meaning of this function, notice that in the case
that f (pi,q) is strictly increasing, the function inside the integral ( f (pi,q)/gα)α−1

gives an approximation to the indicator function4 of the Voronoi cell of agent i, the
approximation improving as α →−∞. This is shown graphically in Fig. 3. It can be
readily verified that this function is continuous, and that at f (pi,q) = 0 it takes the
value 1, and at f (p j,q) = 0 and j �= i it takes the value 0.

For simplicity, we choose the function f (pi,q) to be

f (pi,q) =
1
2
‖q− pi‖2, so that

∂ f (pi,q)
∂ pi

= −(q− pi).
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) α = −5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) α = −10

Fig. 3 Contour plots of ( f (pi,q)/gα )α−1 are shown for a configuration of ten agent po-
sitions. The Voronoi tessellation is shown as well for comparison. As the parameter α ap-
proaches −∞, ( f (pi,q)/gα )α−1 becomes closer to the indicator function of the Voronoi cell
Vi.

4 The indicator function for a set S ⊂ Q returns 1 for q ∈ S, and 0 otherwise.
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Other choices of f (pi,q) were investigated in [6] and could be used here as well,
including functions with discrete jumps that model a finite senor footprint. This
function represents the cost of a single robot i sensing at the position q. Therefore
the quadratic form is appropriate for light based sensors, such as cameras or laser
scanners. Light intensity drops off as the inverse square of the distance from the
source, so it is reasonable for the cost to be proportional to the square of the distance.
For tasks in which robots have to drive to a point q for servicing, and we want the
cost to be proportional to the distance travelled, it would be more appropriate to use
f (pi,q) = ‖q− pi‖, for example.

We propose to use a gradient-based controller

ṗi = −k
∂Hα
∂ pi

= k
∫

Q

(
f (pi,q)

gα

)α−1

(q− pi)φ(q)dq, (4)

where k > 0 is a positive control gain. We assume that the robots have integrator
dynamics, ṗi = ui, so we can control their velocity directly. We have found experi-
mentally, in [20] for ground vehicles and [19] for quadrotor air vehicles, that this is a
fair assumption as long as a fast inner control loop is in place to track the desired ṗi.

Stability can be proved by a direct application of the following result, the first
part of which is stated in [11] Chapter 9, Section 4 as a corollary to Theorem 1.

Theorem 1 (Stability and Gradient Systems). Let P∗ be a critical point of Hα .
Then P∗ is a locally asymptotically stable equilibrium of the gradient system
Ṗ = −∂Hα/∂P if and only if P∗ is an isolated minimum of Hα .

Corollary 1 (Coverage Control Stability). For a group of robots with closed-loop
dynamics

ṗi = k
∫

Q

(
f (pi,q)

gα

)α−1

(q− pi)φ(q)dq

only configurations P∗ for which Hα (P∗) is an isolated local minimum are locally
asymptotically stable.

Proof: The corollary follows directly from Theorem 1 and the fact that Ṗ =
[ṗT

1 · · · ṗT
n ]T is the negative gradient of kHα , which has the same critical points at

Hα .

Remark 1 (Stability Vs. Convergence). Corollary 1 is somewhat different from
typical stability results in the coverage control literature. It is more common to
use LaSalle’s invariance principle to prove convergence to a configuration where
∂Hα/∂P = 0. The standard proof of this convergence applies also to the controller
in (4). Unfortunately, such configurations are not necessarily local minima; they
may be saddle points or local maxima. Our proof specifies that the system prefers
local minima, not saddle points or maxima.
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Remark 2 (Network Requirements). The computation of the controller requires that
robot i knows the states of all the robots in the network. For this to be feasible there
must either be a global supervisor or a fully connected network communication
topology. It would be more useful if the controller depended only upon the states
of robots with which it communicates. We suggest two methods to accomplish this,
but we do not analyze them in detail in this paper. First, robot i can approximate its
control law simply by computing (4) using only the states of the robots with which
it is in communication. We expect this to give a good approximation because the
function ( f (p j,q)/gα)α−1 depends weakly upon the states of agents that are not
Voronoi neighbors, especially for small values of α , as evident from Fig. 3 . A rig-
orous stability analysis of this approximation scheme is difficult, however. A second
option is for a robot i to use an estimated configuration vector, P̂, in its calculation of
the control law. The estimated configuration can be updated online using a standard
distributed consensus algorithm (a so called “consensus estimator”). We expect that
such a scheme may be amenable to a rigorous stability proof as its architecture is
similar to adaptive control architectures. The investigation of these matters is left
for future work.

3 Deriving Special Cases

In this section we show how the cost function 1 can be specialized to give three
common kinds of coverage controllers, a Voronoi controller, which is geometric in
nature, a minimum variance controller, which has a probabilistic interpretation, and a
potential field controller. We conjecture that other coverage objectives beyond these
three can be achieved with different choices of the mixing function parameter α .

Voronoi Coverage, α →−∞

The Voronoi-based coverage controller described in [7] is based on a gradient de-
scent of the cost function

HV =
n

∑
i=1

∫
Vi

1
2
‖q− pi‖2φ(q)dq,

where Vi = {q∈Q | ‖q− pi‖≤ ‖q− p j‖,∀ j �= i} is the Voronoi cell of robot i and the
use of the subscript V is to distinguish it from H and Hα . The Voronoi partition
can equivalently be written using the min function as

HV =
∫

Q
min

i
(

1
2
‖q− pi‖2)φ(q)dq,

because a point q is in the Voronoi cell Vi if and only if ‖q− p j‖ is minimized for
j = i. As noted in Section 2.2, limα→−∞ gα( f1, . . . , fn) = mini fi. Therefore HV is a
special instance of (3) with the mixing function g−∞ = limα→−∞gα and f (pi,q) =
1/2‖q− pi‖2.
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The choice of the min function for a mixing function now warrants some reflec-
tion. Consider a distributed actuation scenario in which we want to position robots
so as to service an event that occurs randomly at some point in the environment q.
Suppose any robot is equally capable of rendering the service, robots have to physi-
cally travel to the event to render the service, and our objective is to service an event
as quickly as possible. Naturally, an event should be serviced by the robot that is
closest to it, as it will reach the event the most quickly. In this case, the min function
is the appropriate choice for a mixing function. By using the min function we are
saying that the cost incurred by all the robots due to the event at q is the same as
that incurred by the robot that is closest to q.

On the other hand, consider a sensing task in which an event of interest occurs
randomly at a point q and is sensed at a distance by sensors located on the robots.
In this case the use of the min function is more difficult to justify. Using the min
function in this instance would imply that even though both pi and p j have some
sensory information about the event, the cost function only counts the information
from the one that is closest to q. This seems to be a poor choice of cost function
for sensing, since in such cases we would want to capture the intuition that two
sensors are better than one. The mixing function (2) captures this intuition. Further-
more, even in distributed actuation tasks, using a continuous approximation to the
Voronoi cell improves the robustness of the controller. The discrete, geometric na-
ture of the Voronoi computation combined with the continuous controller can lead to
chattering, and small sensing errors can result in large changes in the control input.
Fortunately, the Voronoi tessellation can be approximated arbitrarily well by choos-
ing a small value of α , thereby preserving the Voronoi controller behavior while
improving robustness.

Minimum Variance Coverage, α = −1

We show in this section that setting the mixing function parameter to α =−1 causes
the robots to minimize the expected variance of their measurement of the location of
a target of interest. As a side effect, we will formulate an optimal Bayesian estimator
for the location of the target given the measurements of the agents.

Suppose our agents are equipped with sensors that give a noisy measurement
of the position of a target in the environment. Let the target position be given
by a random variable q that takes on values in Q, and agent i gives a measure-
ment yi = q + w, where w ∼ N(0, I2

√
f (pi,q)) is a bi-variate normally distributed

random variable, and where I2 is the 2×2 identity matrix. The variance of the
measurement, f (pi,q), is a function of the position of the sensor and the target.
Intuitively one would expect a sensor to localize a target with more precision
the closer the target is to the sensor. Then the measurement likelihood of agent
i is P(yi | q : pi) = 1/(2π f (pi,q))exp{−‖yi − q‖2/(2 f (pi,q))}, and the notation
P(· : pi) is to emphasize that the distribution is a function of the agent position. As-
sume the measurements of different agents conditioned on the target position are
independent. Also, let φ(q) be the prior distribution of the target’s position. Then
Bayes rule gives the posterior distribution,



A Unified Framework for Multi-robot Coverage Control 31

P(q | y1, . . . ,yn) = ∏n
i=1 P(yi | q : pi)φ(q)∫

Q ∏n
i=1 P(yi | q : pi)φ(q)dq

. (5)

One can use the posterior to obtain a Bayesian estimate of the position of the event
q given the measurements. For example, one may choose to estimate q using the
mean, the median, or the maximum of the posterior in (5).

Our interest here, however, is not in estimating q. Instead we are interested in
positioning the robots so that whatever estimate of q is obtained is the best possible
one. To this end, we seek to position the robots to minimize the variance of their
combined sensor measurements. The product of measurement likelihoods in the nu-
merator of (5) can be simplified to a single likelihood function, which takes the form
of an un-normalized Gaussian

n

∏
i=1

P(yi | q : pi) = Aexp

{
−‖ȳ−q‖2

2g−1(·)
}

,

whose variance is equivalent to our mixing function g−1(·) =
(
∑n

i=1 f (pi,q)−1
)−1

.
The values of A and ȳare not important in this context. If we want to position the robots
so as to obtain the most decisive information from their sensors, we should move
them to minimize this variance. Notice, however, that g−1( f (p1,q), . . . , f (pn,q)) is
a random variable since it is a function of q. Taking the expectation over q of the
likelihood variance gives our original cost function,

H−1 = Eq[g−1( f (p1,q), . . . , f (pn,q))] =
∫

Q
g−1( f (p1,q), . . . , f (pn,q))φ(q)dq.

(6)

Thus we can interpret the coverage control optimization as finding the agent posi-
tions that minimize the expected variance of the likelihood function for an optimal
Bayes estimator of the position of the target.

A more theoretically appealing criterion would be to position the agents to mini-
mize the variance of the posterior distribution in (5). This gives a considerably more
complicated cost function. The complication of this cost function and the fact that
gradients can not be easily computed makes it a less practical option.

Potential Field Coverage, φ(q) = ∑n
i=1 δ (‖q− pi‖)

The third type of coverage controller we consider is significantly different from the
previous two in that it does not involve an integral over the environment. Instead
it relies on the idea that robots should push away from one another to spread out
over an environment, but should not move too far from one another or else they will
become disconnected. Surprisingly, however, we will show that this rather different
coverage philosophy can be reconciled with our generalized coverage cost function
H in (1).

Let the importance function, φ(q), be given as a sum of delta-Dirac functions
centered at each of the robot positions



32 M. Schwager, J.-J. Slotine, and D. Rus

φ(q) =
n

∑
i=1

δ (‖q− pi‖).

Substituting this for φ(q) in (1), the integral in H can then be evaluated analytically
to give

Hpot =
n

∑
i=1

g( f (p1, pi), . . . , f (pn, pi)),

and setting g( f (p1, pi), . . . , f (pn, pi)) = ∑n
j=1, j �=i f (p j, pi) gives a cost function for

potential field based coverage (as well as models for flocking and herding)

Hpot =
n

∑
i=1

n

∑
j=1, j �=1

f (p j, pi), (7)

where f (p j, pi) can be interpreted as an inter-agent potential function. One choice
for f (p j, pi) is

f (p j, pi) =
1
6
‖p j − pi‖−2 −‖p j − pi‖−1

which, taking the gradient of (7), yields the controller

ṗi = k
n

∑
j=1, j �=i

(
‖p j − pi‖−2 − 1

3
‖p j − pi‖−3

)
p j − pi

‖p j − pi‖ . (8)

Controllers similar to this one have been studied in a number of works, for example
[12, 9, 22, 8]. There are numerous variations on this simple theme in the literature.

Computational Complexity

The gradient controllers described in this work must inevitably be discretized and
implemented in a discrete time control loop. A common criticism of the Voronoi
based coverage controller is that it is computationally intensive. At each iteration
of the loop, a robot must re-compute its Voronoi cell. Additionally, the controller
must compute spatial integrals over a region. In general, a discretized approximation
must be used to compute the integral of φ(q) over the Voronoi cell, which is again
computationally intensive. The two parameters that are important for computation
time are the number of robots n and the number of grid squares in the integral
computation, which we will call m. The typical decentralized algorithm for a single
robot to compute its Voronoi cell (from [7]) runs in O(n) time. The time complexity
for computing a discretized integral is linear in the number of grid squares, and at
each grid square requires a check if the center point is in the Voronoi cell, which is
an O(n) operation. Therefore the time complexity of the integral is in O(nm). The
Voronoi cell must be computed first, followed by the discretized integral, therefore
the standard Voronoi controller has time complexity O(n(m+1)) at each step of the
control loop.

Our controller in (4) does not require the computation of a Voronoi cell, but it
does require the discretized spatial integral over the environment. We do not have
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to check if a point is in a polygon, but the integrand we evaluate, namely gα is
linear in n. Therefore the integral computation still has time complexity O(nm),
which is the time complexity of the controller at each step of the control loop. Yet
as α decreases, the behavior of the controller approaches that of the Voronoi con-
troller. The controller we propose in this paper is therefore significantly simpler in
implementation (since it does not require the Voronoi computation), and it is faster
computationally. Also, as the dimension of the state space increases, it becomes
more difficult to compute and even to store the Voronoi decomposition, whereas the
computation of gα is straightforward in a space of any dimensionality.

4 Convexity and Consensus

Since we treat the multi-agent coverage problem as an optimization, it is natural
to ask what sort of optimization we are dealing with, and what optimization tools
can be brought to bear to solve it. We show in this section that the cost function
in (3) is nonconvex, and that nonconvexity is a required feature of a large class of
multi-agent problems, however undesirable this may be from an optimization per-
spective. Specifically, we demonstrate a link between the convexity of a cost function
and the multi-agent phenomena known as consensus. For our purposes, consensus
describes a multi-agent configuration in which all agents take on the same state,
p1 = p2 = . . . = pn. Consensus is geometrically represented in the state space Pn

as a d-dimensional hyperplane that passes through the origin (from the dp(n− 1)
independent equality constraints). This is illustrated by the diagonal line in Fig. 4
in a simplified 2D setting. We will prove, with some technical assumptions, that a
multi-agent problem with a convex cost function admits at least one globally optimal
consensus solution.

We begin with some basic definitions and facts from convex optimization which
can be found in any standard text on the topic, for example [2]. A set Ω ⊂ R

n is
called convex if, for any two points in Ω , all points along the line segment joining
them are also in Ω . An important consequence of the convexity of Ω is that any
convex combination of points in Ω is also in Ω . A convex combination of m points
xi ∈ Ω is one of the form

x =
m

∑
i=1

αixi where
m

∑
i=1

αi = 1 and αi ≥ 0 ∀i.

A function f : Ω �→ R is called convex if

f (αx +(1−α)y)≤ α f (x)+ (1−α) f (y) ∀x,y ∈ Ω and ∀α ∈ [0,1].

This is equivalent to saying that the set of all points lying on or above the function
f (x) is a convex set (this set is known as the epigraph of f (x)). A function is called
strictly convex if the ’≤’ can be replaced with a ’<’ in the above relation. Also, we
will use the word minimum to mean minimum or infimum if no minimum exists. We
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now state a theorem that follows from Weierstrass’ Theorem and some well-known
properties of convex functions.

Theorem 2 (Minima of Convex Functions). For a continuous, convex function f :
Ω �→ R, where the domain Ω ⊂ R

n is convex, if any of the following are true:

1. Ω is bounded
2. There exists a scalar γ such that the level set {x ∈ Ω | f (x)≤ γ} is nonempty and

bounded
3. f is such that lim‖x‖→∞ f (x) = ∞

then the set of global minima of f is non-empty and convex.

We will apply this result to our multi-agent scenario. Consider a continuous multi-
agent cost function H : Pn �→ R. As before, an agent i has a state pi ∈ P ⊂ R

d .
It will be more convenient in this section to refer to a configuration of agents as a
tuple (p1, . . . , pn)∈Pn, rather than the column vector notation used previously. Let
us assume that agents are anonymous with respect to the cost function, by which we
mean that the positions of any two agents can be interchanged without affecting the
value of the cost function. This is formalized by the following assumption.

Assumption 1 (Anonymity of Agents) The cost function H is such that

H (. . . , pi, . . . , p j, . . .) = H (. . . , p j, . . . , pi, . . .) ∀i, j ∈ {1, . . . ,n}.

Assumption 1 is in keeping with the ethos of complex, multi-agent systems, where
the emphasis is on the global patterns that result from the interactions of many
identical agents. Furthermore, let us assume that H and Pn satisfy at least one of
the three properties in Theorem 2. Now we give the main result of this section.

Theorem 3 (Convexity and Consensus). Under Assumption 1, if the cost function
H (p1, . . . , pn) is continuous and convex, Pn is convex, and one of the conditions in
Theorem 2 is satisfied, then H (p1, . . . , pn) has a global minimum such that pi = p j

∀i, j ∈ {1, . . . ,n}.

Proof: Our argument rests upon Assumption 1 and the fact from Theorem 2 that
the set of minima of a convex function H is a convex set. Let h∗ be the set of
minima, and let (. . . , p∗i , . . . , p∗j , . . .) be an optimal solution in that set. By Assump-
tion 1, (. . . , p∗j , . . . , p∗i , . . .) is also an optimal solution for any i and j. Therefore all
permutations of components in (p∗1, . . . , p∗n) are optima. Then by convexity of h∗,
all convex combinations of points in h∗ are in h∗. In particular, the point (p̄, . . . , p̄),
where p̄ = 1/n∑n

i=1 pi is an optimal solution (since it is a convex combination of
permutations of (p1, . . . , pn)). �
We show a geometric schematic of the proof argument in Fig. 4. The proof uses
the fact that the convex set of minima must intersect the consensus hyperplane (the
hyperplane where pi = p j ∀i, j) at at least one point. A simple corollary follows.

Corollary 2 (Strict Convexity). If the conditions of Theorem 3 are met and the cost
function H (p1, . . . , pn) is strictly convex, then the minimum is unique and is such
that pi = p j ∀i, j ∈ {1, . . . ,n}.
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Consensus Line

p1

p2

p1 = p2

(p1*, p2*)

(p2*, p1*)

Set of minima is convex 
since       is convex 

Consensus Solution

Fig. 4 This schematic shows the geometrical intuition behind the proof of Theorem 3 in a
simplified 2D setting. Corollary 2 is proved by noticing that the set of minima is a single
point (the consensus solution) if H is strictly convex.

Proof: A strictly convex function has at most one minimum over a convex
domain. �

Remark 3 (Coverage is Nonconvex). Theorem 3 delineates two classes of multi-
agent behaviors reminiscent of complexity classes in the theory of computation.
One class, which we will call consensus behaviors, can be described as optimizing
a convex cost function. The other class, which we will call non-consensus behav-
iors, is fundamentally different in that it can only be described with nonconvex cost
functions. This is important because if we wish to design an optimization to solve a
multi-agent problem, and we know that the problem cannot be solved satisfactorily
by all the agents taking the same state, then we must use a nonconvex cost function.
Likewise if we observe a multi-agent behavior in nature which cannot be described
by all agents reaching the same state (the construction of a termite nest, for exam-
ple), then an optimization-based explanation of this behavior must be nonconvex.

This is directly applicable to coverage problems. Indeed, coverage cannot be
achieved with all agents moving to the same place, therefore coverage problems
must involve the optimization of a nonconvex cost function. Our parameterized cost
function Hα from (3) is nonconvex for α < 1 and is convex for α ≥ 1 because
Hα inherits the convexity properties of gα . Correspondingly, we see that the robots
become more highly aggregated as α approaches 1, and the robots all move to a
common final position (i.e. consensus) when α ≥ 1. Theorem 3 explains why this is
the case, and suggests that the search for a convex cost function for coverage control
is futile.

From an algorithmic point of view, however, this is unfortunate. Convex opti-
mization has a powerful and well characterized tool set, but nonconvex optimization
requires generally less efficient solution tools with looser guarantees. Distributed
coverage controllers that use gradient methods (such as those in this paper) guaran-
tee convergence to local optima, which is all one can expect for a nonconvex opti-
mization. This points toward an open question for future work: are there nonconvex
optimization methods not based on gradient descent that can be implemented in a
multi-agent setting?
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5 Simulation Results

The controller for the three scenarios described in Section 3 were simulated in a
Matlab environment. The environment Q was taken to be a unit square, and the
function φ(q) was set to be the sum of two Gaussian functions, one centered at
(.2, .2) and the other at (.8, .8), both with variance .2. We expect to see a higher
density of robots around areas of large φ(q). In our case, the robots group around
the Gaussian centers.

The results of a simulation with ten robots using the Voronoi based controller,
which corresponds to α → −∞, is shown in Figs. 5(a) and 5(d). Similar plots are
shown for the minimum variance controller, with α = −1, in Figs. 5(b) and 5(e).
Comparison of the two controllers shows that the Voronoi based controller causes
the robots to spread out more, while as α increases, the robots group more closely
together. When α > 1, the cost function becomes convex, and the robots all move
to the same position, which corroborates our results relating convexity to consensus
(this is not shown in the plots).

The third scenario shown in Figs. 5(c) and 5(f) uses the potential field controller
from (8). This controller uses a sum of delta-Dirac functions for φ(q) rather than
a sum of Gaussians, which causes the robots to arrange themselves in the close-
packed lattice pattern.

0 0.5 1
0
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1

(a) Trajectory Voronoi

0 0.5 1
0

0.5

1

(b) Trajectory α = −1

0 0.5 1
0
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1

(c) Trajectory Pot. Field

0 0.5 1
0

0.5

1

(d) Final Config. Voronoi
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0

0.5

1

(e) Final Config. α = −1
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0

0.5

1

(f) Final Config. Pot. Field

Fig. 5 Trajectories and final configurations are shown for ten robots using the gradient control
law with the Voronoi controller (5(a), 5(d)), the minimum variance controller (5(b), 5(e)), and
a potential field controller (5(c), 5(f)). The Voronoi tessellation is shown for all scenarios for
comparison, even though the right two controllers do not use the Voronoi cells for control.
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6 Conclusion

In this paper we introduce a unifying optimization framework for multi-robot cov-
erage control that brings together several different existing coverage algorithms. We
point out that important properties of the underlying coverage objective are em-
bodied in the way sensor information or actuator capabilities are combined from
different robots. We propose a parameterized function to accomplish this combina-
tion, where different parameter values are shown to lead to different kinds coverage
algorithms. Finally, we prove that for coverage problems the underlying optimiza-
tion is necessarily nonconvex, making global optimization an unrealistic objective,
especially for gradient descent controllers.

Our work invites an immediate extension, which is how to approximate the gra-
dient controller over a communication graph. We outlined two methods for doing
this. In the future the stability and robustness properties of these methods should
be characterized and other methods should be investigated as well. Also our recog-
nition that coverage problems stem from nonconvex optimizations suggests some
new research directions. Gradient descent controllers, which are the most common
type in the coverage control literature, can only be expected to find local minima.
Therefore it is worthwhile to look for other nonconvex optimization methods that
can be implemented in a multi-agent setting. We expect that these open questions
will motivate new results for coverage control.
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