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Foreword 

By the dawn of the new millennium, robotics has undergone a major transforma-
tion in scope and dimensions. This expansion has been brought about by the ma-
turity of the field and the advances in its related technologies. From a largely 
dominant industrial focus, robotics has been rapidly expanding into the challenges 
of the human world (human-centered and life-like robotics). The new generation 
of robots is expected to safely and dependably interact and work with humans in 
homes, workplaces, and communities providing support in services, entertainment, 
education, exploration, healthcare, manufacturing, and assistance.  

Beyond its impact on physical robots, the body of knowledge that robotics has 
produced is revealing a much wider range of applications reaching across diverse 
research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-
ences, and virtual simulation, animation, surgery, and sensor networks among oth-
ers. In return, the challenges of the new emerging areas are proving an abundant 
source of stimulation and insights for the field of robotics. It is indeed at the inter-
section of disciplines where the most striking advances happen.  

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to 
the research community the latest advances in the robotics field on the basis of 
their significance and quality. Through a wide and timely dissemination of critical 
research developments in robotics, our objective with this series is to promote 
more exchanges and collaborations among the researchers in the community and 
contribute to further advancements in this rapidly growing field. 

As one of robotics pioneering symposia, the International Symposium on Ro-
botics Research (ISRR) has established over the past two decades some of the 
field's most fundamental and lasting contributions. Since the launching of STAR, 
ISRR and several other thematic symposia in robotics find an important platform 
for closer links and extended reach within the robotics community. 

This 14th edition of "Robotics Research," edited by Cédric Pradalier, Roland 
Siegwart and Gerd Hirzinger, brings a collection of a broad range of topics in ro-
botics. The content of these contributions provides a wide coverage of the current 
state of robotics research: the advances and challenges in its theoretical foundation 
and technology basis, and the developments in its traditional and novel areas of 
applications. 

In addition to the collection of papers presented in the diverse technical areas, 
the symposium hosted the Blue Sky Session, which was organized to highlight the  
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challenges and new research directions in robotics research. The diversity, nov-
elty, and span of the work reveal the field's increased maturity and its expanded 
scope. This 14th edition of ISRR culminates with this important reference on the 
current developments and new directions in the field of robotics – a true tribute to 
its contributors and organizers! 

 
Stanford, California                  Oussama Khatib 
October 2010                           STAR Editor 

 



Preface 
 
 

Cédric Pradalier, Roland Siegwart, and Gerd Hirzinger 

 
 
 
 

This volume contains a collection of papers presented at the 14th International 
Symposium of Robotic Research (ISRR). ISRR is the biennial meeting of the In-
ternational Foundation of Robotic Research (IFRR). It aims at covering the many 
facets of robotic research. The 14th ISRR took place from August 31st to Septem-
ber 3rd, 2009, in Lucerne, Switzerland. 

Nearly 100 researchers from the major robotics research institutions around the 
world, representing all major research areas of robotics, attended the 14th ISRR. 
The technical program featured 48 regular papers, half of them invited, which 
were carefully selected to cover some of the most important and fast emerging re-
search topics in robotics. The presentations of these papers were arranged in 12 
thematic sessions, each of which was chaired by members of the Program Com-
mittee. Additionally, six invited presentation were given by Hugh Durrant-Whyte, 
Daniela Rus, Brad Nelson, Stefan Schaal, Sebastian Thrun and Makoto Kaneko 
during the Blue Sky session, hold on top of Mount Pilatus, a 2132-meter-high 
peak in the vicinity of Lucerne. These talks and the following discussions endeav-
ored to identify and explore the challenges that robotic research will have to ad-
dress in the coming years. As a tradition of the ISRR symposium, one evening was 
dedicated to an open video session, sponsored by Maxon Motors. Under the chair-
manship of Oussama Khatib, the participants showed brief videos about their re-
cent work and achievements, as well as amusing failures. The technical program 
of the 14th ISRR was complemented by a rich social program, which included a 
banquet on Mount Pilatus and a dinner on the shore of the lake of Lucerne with 
robotic demonstrations. 

The scientific program was composed by the ISRR organizing committee with 
a strong support of the IFRR officers and reviewers. As for the previous symposia, 
ISRR 2009 followed up on the successful concept of a mixture of invited contribu-
tions and open submissions. Half of the 48 presentations were therefore invited 
contributions from outstanding researchers selected by the IFRR officers through a 
careful process, and half were chosen among the 66 submissions after peer review. 
This selection process resulted in a truly excellent technical program which, we 
believe, featured some of the very best of robotic research. 

The final structure of this volume differs from that of the technical sessions dur-
ing the conference. Out of the 48 total presentations, the 42 papers which were fi-
nally submitted for publication are organized in 8 sections that encompass the major 
research directions of robotics: Navigation, Control & Planning, Human-Robot In-
teraction, Manipulation and Humanoids, Learning, Mapping, Multi-Robot Systems, 
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and Micro-Robotics. They represent an excellent snapshot of cutting edge research 
in robotics and outline future directions. 

The symposium would not have been possible without the diligent work of a 
great number of people, including the various committee members and technical 
reviewers. Special thanks to Cornelia Della Casa, Eve Lasserre and Luciana Bor-
satti for assisting with the organization of the meetings and for running the registra-
tion desk. Ralf Kästner created the website and oversaw the submission process, 
which is gratefully acknowledged. Jérôme Maye wrote, adapted and performed the 
Robotic Song, which you can have the pleasure to read on the next pages. Oussama 
Khatib, President of IFRR, provided helpful advice all along and was once again a 
central driving force behind the scene. And finally, we thank all the participants of 
the 14th ISRR for making the symposium such an enjoyable and inspiring event, 
both from the technical and social point of view.  

 
 

Dr. Cédric Pradalier 
Prof. Dr. Roland Siegwart 
Autonomous Systems Lab, ETH Zürich 
 
Prof. Dr.-Ing. Gerd Hirzinger 
DLR – Institute for Robotic und Mechatronics 
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The Robotics Song 

 
Lyrics: Jérôme Maye 
Music: Borrowed from “Yellow submarine”, The Beatles 
 
Verse 1: 

F      C        Bb      F 

In the mountains of Lucerne 

 Dm      Gm      Bb    C 

There we meet to celebrate 

F     C     Bb        F 

Our dreams and our vision 

Dm       Gm   Bb      C 

For the world of tomorrow 

Verse 2: 

F       C       Bb    F 

And we speak about robots 

Dm        Gm       Bb      C 

While we drink a glass or two, 

F      C    Bb       F 

What a duty, what a pain 

Dm       Gm    Bb     C 

For the beauty of science 

Chorus: 

F                     C                 

We all share our passion for robotics,  

                                 F 

love for robotics, love for robotics 

F                     C                 

We all share our passion for robotics,  

                                 F 

love for robotics, love for robotics 

Verse 3: 

F       C    Bb              F 

We all come from different lands 

Dm             Gm  Bb         C 

But we always find a common ground 

F       C       Bb        F 

And the piano starts to play... 

 

Musical: C F C F 

Chorus 

 

Verse 4: 

F      C    Bb      F 

Our robots can navigate 

Dm             Gm   Bb        C 

In all kinds of unknown situations 

F      C    Bb           F 

They can learn new behaviors 

Dm      Gm   Bb           C 

Collaborate or even replicate. 

Verse 5: 

F        C   Bb              F 

But one day, that's what we fear 

Dm         Gm   Bb     C 

They won't need us anymore 

F     C    Bb            F 

They will set up conferences 

Dm          Gm   Bb        C 

Where they will talk about us. 

Chorus 

Verse 6: 

F        C     Bb           F 

But of course this won't happen 

Dm              Gm   Bb          C 

We will keep for us all the pleasure 

F     C      Bb          F 

To gather every now and then 

Dm       Gm   Bb       C 

In some fancy destination. 

Verse 7: 

F          C     Bb        F 

And we'll still enjoy the talks 

Dm        Gm  Bb      C 

Of some visionary fellows 

F         C   Bb            F 

And we'll wait for the banquet 

Dm       Gm  Bb       C 

Above all what we prefer 

Chorus x2 
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Navigation

Cédric Pradalier

Navigation is one of the core competencies of mobile robots. Navigating is usu-
ally understood as trying to go somewhere while keeping an estimate of its own lo-
cation. This implicitly encompasses the planning of a path to the destination, the
avoidance of obstacles on the way, and the control of the vehicle on the path. Fur-
thermore, to know where it is – i.e. to localize – the robot often needs to build an
online model of its environment, in effect solving the mapping problem. 

In “Reciprocal n-body Collision Avoidance”, Van den Berg et al. address
the control  problem of multiple robots navigating while avoiding each
other without communication. The key contribution is an algorithm based
on velocity-obstacle providing guaranteed local collision-free motion for
a large number of robots in a cluttered workspace.
In “Unifying Geometric, Probabilistic and Potential Field Approaches to
Multi-Robot Coverage Control”, Schwager et al. also consider the case of
multiple robots but focus on a coverage task. The importance of this work
lies in the fact that it brings together various existing coverage algorithms
in a common framework.
In “Design and Development of an Optimal-Control-Based Framework
for Trajectory Planning, Threat Assessment, and Semi-Autonomous Con-
trol of Passenger Vehicles and Hazard Avoidance Scenarios”, Anderson
et al. use an optimal control framework to optimize the path of a car in
the context of a driving assistance scenario. An essential aspect of this
work is the intelligent merging of control coming from the autonomous
system on one side and a human driver on the other side.
In “Autonomy through SLAM for an Underwater Robot”, Folkesson and
Leonard provide an exhaustive view of the navigation capabilities of an
underwater robot equipped with a sonar system. This chapter provides an
insight on the importance of field testing for achieving robust navigation-
al autonomy.
In “Sensing and Control on the Sphere ”, Corke and Mahony, propose an
overview of the mathematics of spherical geometry applicable to robot-
ics, with a specific focus on sensor fusion, control, and structure from
motion applications. 
In “Estimating Ego-Motion in Panoramic Image Sequences with Inertial
Measurements”, Schill et al. address a problem at the core of any naviga-
tion task for a flying robot, namely the ego-motion estimation. An im-



portant aspect of this work is the focus on robustness to real condition 
and experimental validation with real data.

Together, these papers show some of the key challenges of autonomous naviga-
tion for mobile robots in 2009: in particular, the focus on reliability and experi -
mental validation through long duration experiments and real situations, and the 
management of a team of robots to achieve a joint task.
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Reciprocal n-Body Collision Avoidance�

Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha

Abstract. In this paper, we present a formal approach to reciprocal n-body collision
avoidance, where multiple mobile robots need to avoid collisions with each other
while moving in a common workspace. In our formulation, each robot acts fully in-
dependently, and does not communicate with other robots. Based on the definition
of velocity obstacles [5], we derive sufficient conditions for collision-free motion
by reducing the problem to solving a low-dimensional linear program. We test our
approach on several dense and complex simulation scenarios involving thousands
of robots and compute collision-free actions for all of them in only a few millisec-
onds. To the best of our knowledge, this method is the first that can guarantee local
collision-free motion for a large number of robots in a cluttered workspace.

1 Introduction

Collision avoidance is a fundamental problem in robotics. The problem can gen-
erally be defined in the context of an autonomous mobile robot navigating in an
environment with obstacles and/or other moving entities, where the robot employs a
continuous cycle of sensing and acting. In each cycle, an action for the robot must be
computed based on local observations of the environment, such that the robot stays
free of collisions with the obstacles and the other moving entities, while making
progress towards a goal.1
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The problem of collision avoidance has been well studied for one robot avoid-
ing static or moving obstacles. In this paper, we address the more involved and less
studied problem of reciprocal n-body collision avoidance, where collisions need to
be avoided among multiple robots (or any decision-making entities). This problem
has important applications in many areas in robotics, such as multi-robot naviga-
tion and coordination among swarms of robots [20]. It is also an key component in
crowd simulation for computer graphics and VR [11, 21], modeling of non-player
characters in AI, studying flocks of birds and fish in biology [23], and real-time (air)
traffic control [16]. In this paper, we propose a fast and novel method that simulta-
neously determines actions for many (possibly thousands of) robots that each may
have different objectives. The actions are computed for each robot independently,
without communication among the robots or central coordination. Yet, we prove
that our method guarantees collision-free motion for each of the robots.

We use a simplified robot model, where each robot is assumed to have a sim-
ple shape (circular or convex polygon) moving in a two-dimensional workspace.
Furthermore, we assume that the robot is holonomic, i.e. it can move in any direc-
tion, such that the control input of each robot is simply given by a two-dimensional
velocity vector. Also, we assume that each robot has perfect sensing, and is able
to infer the exact shape, position and velocity of obstacles and other robots in the
environment.
Main results. We present a rigorous approach for reciprocal n-body collision avoid-
ance that provides a sufficient condition for each robot to be collision-free for at
least a fixed amount of time into the future, only assuming that the other robots use
the same collision-avoidance protocol. Our approach is velocity-based. That implies
that each robot takes into account the observed velocity of other robots in order to
avoid collisions with them, and also that the robot selects its own velocity from
its velocity space in which certain regions are marked as ‘forbidden’ because of the
presence of other robots. Our formulation, “optimal reciprocal collision avoidance”,
infers for each other robot a half-plane (in velocity-space) of velocities that are al-
lowed to be selected in order to guarantee collision avoidance. The robot then selects
its optimal velocity from the intersection of all permitted half-planes, which can be
done efficiently using linear programming. Under certain conditions with densely
packed robots, the resulting linear program may be infeasible, in which case we
select the ‘safest possible’ velocity using a three-dimensional linear program.

We experimented with our approach on several complex simulation scenarios
containing thousands of robots. As each robot is independent, we can fully paral-
lellize the computation of the actions for each robot and report very fast real-time
running times. Furthermore, our experiments show that our approach achieves con-
vincing motions that are smooth and collision-free.

The rest of this paper is organized as follows. We start by discussing previous
work in Section 2. In Section 3, we formally define the problem we address in
this paper. We derive the half-plane of permitted velocities for optimal reciprocal
collision avoidance of a robot with respect to another robot in Section 4, and show
how this approach is used to navigate among multiple robots in Section 5. We report
experimental results in Section 6 and conclude in Section 7.
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2 Previous Work

The problem of collision avoidance has been extensively studied. Many approaches
assume the observed obstacles to be static (i.e. non-moving) [2, 4, 6, 7, 13, 14, 24],
and compute an immediate action for the robot that would avert collisions with the
obstacle, in many cases taking into account the robot’s kinematics and dynamics. If
the obstacles are also moving, such approaches typically repeatedly “replan” based
on new readings of the positions of the obstacles. This may work well if the obstacles
move slower than the robot, but among fast obstacles (such as crossing a highway),
the velocity of the obstacles need to be specifically taken into account. This problem
is generally referred to as “asteroid avoidance”, and approaches typically extrapolate
the observed velocities in order to estimate the future positions of obstacles [8, 9,
12, 19, 22, 28].

The problem of collision avoidance becomes harder when the obstacles are
not simply moving without considering their environment, but are also intelligent
decision-making entities that try to avoid collisions as well. Simply considering
them as moving obstacles may lead to oscillations if the other entity considers all
other robots as moving obstacles as well [15, 26]. Therefore, the reactive nature of
the other entities must be specifically taken into account in order to guarantee that
collisions are avoided. Yet, the robot may not be able to communicate with other
entities and may not know their intents. We call this problem reciprocal collision
avoidance, and is the focus of this paper.

Velocity obstacles (VO) [5] have been a successful velocity-based approach to
avoid collisions with moving obstacles; they provide a sufficient and necessary con-
dition for a robot to select velocity that avoids collisions with an obstacle moving at
a known velocity. This approach was extended for robot-robot collision avoidance
with the definition of Reciprocal Velocity Obstacles (RVO) [10, 26], where both
robots were assumed to select a velocity outside the RVO induced by the other robot.
However, this formulation only guarantees collision-avoidance under specific con-
ditions, and does not provide a sufficient condition for collision-avoidance in gen-
eral.2 In this paper, we present the principle of optimal reciprocal collision avoid-
ance (ORCA) that overcomes this limitation; ORCA provides a sufficient condition
for multiple robots to avoid collisions among one another, and thus can guarantee
collision-free navigation.

We note that it is possible to provide a sufficient and necessary condition for
multiple (say n) robots to select collision-avoiding velocities, by defining a com-
posite velocity obstacle in the 2n-dimensional space of velocities of all n robots
[1]. However, this is not only computationally impractical, it also requires central
coordination among robots. This is incompatible with the type of distributed multi-
robot navigation we focus on in this paper, in which each robot independently and
simultaneously selects its velocity from its own 2-D velocity space.

2 In fact, both robots selecting a velocity inside each other’s RVO is a sufficient condition to
end up in a collision.
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3 Problem Definition

The problem we discuss in this paper is formally defined as follows. Let there be a
set of n robots sharing an environment. For simplicity we assume the robots are disc-
shaped and move in the plane R2 (the definitions and algorithms we present in this
paper can easily be extended to translating polygons, and also to higher dimensions).
Each robot A has a current position pA (the center of its disc), a current velocity
vA and a radius rA. These parameters are part of the robot’s external state, i.e. we
assume that they can be observed by other robots. Furthermore, each robot has a
maximum speed vmax

A and a preferred velocity vpref
A , which is the velocity the robot

would assume had no other robots been in its way (for instance a velocity directed
towards the robot’s goal with a magnitude equal to the robot’s preferred speed). We
consider these parameters part of the internal state of the robot, and can therefore
not be observed by other robots.

The task is for each robot A to independently (and simultaneously) select a new
velocity vnew

A for itself such that all robots are guaranteed to be collision-free for at
least a preset amount of time τ when they would continue to move at their new ve-
locity. As a secondary objective, the robots should select their new velocity as close
as possible to their preferred velocity. The robots are not allowed to communicate
with each other, and can only use observations of the other robot’s current position
and velocity. However, each of the robots may assume that the other robots use the
same strategy as itself to select a new velocity.

We name this problem “reciprocal n-body collision avoidance”. Note that this
problem cannot be solved using central coordination, as the preferred velocity of
each robot is only known to the robot itself. In Section 4, we present a sufficient
condition for each robot to select a velocity that is collision-free for (at least) τ
time. In Section 5 we show how we use this principle in a continuous cycle for
multi-robot navigation.

4 Reciprocal Collision Avoidance

4.1 Preliminaries

For two robots A and B, the velocity obstacle VOτ
A|B (read: the velocity obstacle for

A induced by B for time window τ) is the set of all relative velocities of A with
respect to B that will result in a collision between A and B at some moment before
time τ [5]. It is formally defined as follows. Let D(p,r) denote an open disc of radius
r centered at p;

D(p,r) = {q |‖q− p‖ < r}, (1)

then:
VOτ

A|B = {v |∃t ∈ [0,τ] :: tv ∈ D(pB − pA,rA + rB)} (2)

The geometric interpretation of velocity obstacles is shown in Fig. 1(b). Note that
VOτ

A|B and VOτ
B|A are symmetric in the origin.
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(a) (b) (c)

Fig. 1 (a) A configuration of two robots A and B. (b) The velocity obstacle VOτ
A|B (gray)

can geometrically be interpreted as a truncated cone with its apex at the origin (in velocity
space) and its legs tangent to the disc of radius rA + rB centered at pB − pA. The amount
of truncation depends on the value of τ; the cone is truncated by an arc of a disc of radius
(rA +rB)/τ centered at (pB −pA)/τ . The velocity obstacle shown here is for τ = 2. (c) The set
of collision-avoiding velocities CAτA|B(VB) for robot A given that robot B selects its velocity

from some set VB (dark gray) is the complement of the Minkowski sum (light gray) of VOτ
A|B

and VB.

Let vA and vB be current the velocities of robots A and B, respectively. The def-
inition of the velocity obstacle implies that if vA − vB ∈ VOτ

A|B, or equivalently if
vB − vA ∈ VOτ

B|A, then A and B will collide at some moment before time τ if they
continue moving at their current velocity. Conversely, if vA − vB �∈ VOτ

A|B, robot A
and B are guaranteed to be collision-free for at least τ time.

More generally, let X ⊕Y denote the Minkowski sum of sets X and Y ;

X ⊕Y = {x + y |x ∈ X , y ∈ Y}, (3)

then for any set VB, if vB ∈ VB and vA �∈ VOτ
A|B ⊕VB, then A and B are guaranteed

to be collision-free at their current velocities for at least τ time. This leads to the
definition of the set of collision-avoiding velocities CAτA|B(VB) for A given that B
selects its velocity from VB (see Fig. 1(c)):

CAτA|B(VB) = {v |v �∈ VOτ
A|B ⊕VB} (4)

We call a pair of sets VA and VB of velocities for A and B reciprocally collision-
avoiding if VA ⊆ CAτA|B(VB) and VB ⊆ CAτB|A(VA). If VA = CAτA|B(VB) and VB =
CAτB|A(VA), we call VA and VB reciprocally maximal.
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4.2 Optimal Reciprocal Collision Avoidance

Given the definitions above, we would like to choose sets of permitted velocities
VA for A and VB for B such that CAτA|B(VB) = VA and CAτB|A(VA) = VB, i.e. they
are reciprocally collision-avoiding and maximal and guarantee that A and B are
collision-free for at least τ time. Also, because A and B are individual robots, they
should be able to infer their set of permitted velocities without communication with
the other robot. There are infinitely many pairs of sets VA and VB that obey these
requirements, but among those we select the pair that maximizes the amount of
permitted velocities “close” to optimization velocities vopt

A for A and vopt
B for B.3 We

denote these sets ORCAτA|B for A and ORCAτB|A for B, and formally define them as

follows. Let |V | denote the measure (i.e. area in R2) of set V ;

Definition 1 (Optimal Reciprocal Collision Avoidance). ORCAτA|B and ORCAτB|A
are defined such that they are reciprocally collision-avoiding and maximal, i.e.
CAτA|B(ORCAτB|A) = ORCAτA|B and CAτB|A(ORCAτA|B) = ORCAτB|A, and such that for
all other pairs of sets of reciprocally collision-avoiding velocities VA and VB (i.e.
VA ⊆ CAτA|B(VB) and VB ⊆ CAτB|A(VA)), and for all radii r > 0,

|ORCAτA|B ∩D(vopt
A ,r)| = |ORCAτB|A ∩D(vopt

B ,r)| ≥

min(|VA ∩D(vopt
A ,r)|, |VB ∩D(vopt

B ,r)|).

This means that ORCAτA|B and ORCAτB|A contain more velocities close to vopt
A and

vopt
B , respectively, than any other pair of sets of reciprocally collision-avoiding ve-

locities. Also, the distribution of permitted velocities is “fair”, as the amount of
velocities close to the optimization velocity is equal for A and B.

We can geometrically construct ORCAτA|B and ORCAτB|A as follows. Let us assume

that A and B adopt velocities vopt
A and vopt

B , respectively, and let us assume that that
causes A and B to be on collision course, i.e. vopt

A −vopt
B ∈ VOτ

A|B. Let u be the vector

from vopt
A − vopt

B to the closest point on the boundary of the velocity obstacle (see
Fig. 2):

u = ( argmin
v∈∂VOτ

A|B

‖v − (vopt
A − vopt

B )‖)− (vopt
A − vopt

B ), (5)

and let n be the outward normal of the boundary of VOτ
A|B at point (vopt

A −vopt
B )+u.

Then, u is the smallest change required to the relative velocity of A and B to avert
collision within τ time. To “share the responsibility” of avoiding collisions among
the robots in a fair way, robot A adapts its velocity by (at least) 1

2 u and assumes that
B takes care of the other half. Hence, the set ORCAτA|B of permitted velocities for A

3 We introduce these optimization velocities to generalize the definition of ORCA. Nomi-
nally, the optimization velocities are equal to the current velocities, such that the robots
have to deviate as little as possible from their current trajectories to avoid collisions. Other
choices are discussed in detail in Section 5.2.
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Fig. 2 The set ORCAτA|B of permitted velocities for A for optimal reciprocal collision avoid-
ance with B is a half-plane delimited by the line perpendicular to u through the point
vopt

A + 1
2 u, where u is the vector from vopt

A − vopt
B to the closest point on the boundary of

VOτ
A|B.

is the half-plane pointing in the direction of n starting at the point vopt
A + 1

2 u. More
formally:

ORCAτA|B = {v |(v − (vopt
A +

1
2

u)) ·n ≥ 0}. (6)

The set ORCAτB|A for B is defined symmetrically (see Fig. 2). The above equations
also apply if A and B are not on a collision course when adopting their optimization
velocities, i.e. vopt

A −vopt
B �∈ VOτ

A|B. In this case, both robots each will take half of the
responsibility to remain on a collision-free trajectory.

It can be seen that ORCAτA|B and ORCAτB|A as constructed above are in fact opti-
mal according to the criterion of Definition 1. Agents A and B can infer ORCAτA|B
and ORCAτB|A, respectively, without communicating with each other, as long the
robots can observe each other’s position, radius, and optimization velocity. In Sec-
tion 5.2, we discuss reasonable choices for the optimization velocity of the robots.

5 n-Body Collision Avoidance

In this section we show how to apply the ORCA principle as defined above to per-
form n-body collision avoidance among multiple moving robots, and discuss how
we can incorporate static obstacles in this framework.
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Fig. 3 A schematic overview of the continuous cycle of sensing and acting that is indepen-
dently executed by each robot.

5.1 Basic Approach

The overall approach is as follows. Each robot A performs a continuous cycle of
sensing and acting with time step Δ t. In each iteration, the robot acquires the radius,
the current position and the current optimization velocity of the other robots (and
of itself). Based on this information, the robot infers the permitted half-plane of
velocities ORCAτA|B with respect to each other robot B. The set of velocities that
are permitted for A with respect to all robots is the intersection of the half-planes
of permitted velocities induced by each other robot, and we denote this set ORCAτA
(see Fig. 4):

ORCAτA = D(0,vmax
A )∩

⋂
B �=A

ORCAτA|B. (7)

Note that this definition also includes the maximum speed constraint on robot A.
Next, the robot selects a new velocity vnew

A for itself that is closest to its preferred

velocity vpref
A amongst all velocities inside the region of permitted velocities:

vnew
A = argmin

v∈ORCAτA

‖v − vpref
A ‖. (8)

We will show below how to compute this velocity efficiently. Finally, the robot
reaches its new position;

pnew
A = pA + vnew

A Δ t, (9)

and the sensing-acting cycle repeats (see Fig. 3).
The key step in the above procedure is to compute the new velocity vnew

A as de-
fined by Equations (7) and (8). This can efficiently be done using linear program-
ming, as ORCAτA is a convex region bounded by linear constraints induced by the
half-planes of permitted velocities with respect to each of the other robots (see Fig.
4). The optimization function is the distance to the preferred velocity vpref

A . Even
though this is a quadratic optimization function, it does not invalidate the linear
programming characteristics, as it has only one local minimum.

We use the efficient algorithm of [3], which adds the constraints one by one in
random order while keeping track of the current optimal new velocity. The algorithm
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(a) (b)

Fig. 4 (a) A configuration with eight robots. Their current velocities are shown using arrows.
(b) The half-planes of permitted velocities for robot A induced by each of the other robots
with τ = 2 and with vopt

∗ = v∗ for all robots (i.e. the optimization velocity equals the current
velocity). The half-planes of E and C coincide. The dashed region is ORCAτA, and contains
the velocities for A that are permitted with respect to all other robots. The arrow indicates the
current velocity of A.

has an expected running time of O(n), where n is the total number of constraints in
the linear program (which equals the number of robots in our case). The fact that we
include a circular constraint for the maximum speed does not significantly alter the
algorithm, and does not affect the running time. The algorithm returns the velocity
in ORCAτA that is closest to vpref

A , and reports failure if the linear program is infea-
sible, i.e. when ORCAτA = /0. If the optimization velocities for the robots are chosen
carefully (as we will discuss in Section 5.2), ORCAτA will never be empty, and hence
there will always be a solution that guarantees that the robots are collision-free for
at least τ time.

We can increase the efficiency of selecting velocities by not including the con-
straints of all other robots, but only of those that are “close” by. In fact, robots B
that are farther away from robot A than (vmax

A + vmax
B )τ will never collide with robot

A within τ time, so they can safely be left out of the linear program when comput-
ing the new velocity for robot A. A minor issue is that robot A does not know the
maximum speed of other robots, but this can be worked around by “guessing” the
maximum speed of other robots to be equal A’s own. We can efficiently find the set
of close-by robots whose constraints should be included using a kD-tree.
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(a) (b) (c)

Fig. 5 (a) A dense configuration with three robots moving towards robot A. The current
velocities of the robots are shown using arrows; robot A has zero velocity. (b) The half-
planes of permitted velocities for robot A induced by each of the other robots with τ = 2 and
vopt
∗ = v∗ for all robots. The region ORCAτA is empty, so avoiding collisions within τ time

cannot be guaranteed. (c) The half-planes of permitted velocities for robot A induced by each
of the other robots with τ = 2 and vopt

∗ = 0 for all robots. The dashed region is ORCAτA.

5.2 Choosing the Optimization Velocity

One issue that we have left open is how to choose vopt
A for each robot A. In order for

the robots to infer the half-planes without communication, vopt
A must be observable

to other robots. Here, we discuss some reasonable possibilities:

• vopt
A = 0 for all robots A. If we set the optimization velocity to zero for all robots,

it is guaranteed that ORCAτA is non-empty for all robots A (see Fig. 5(c)). Hence,
the linear programming algorithm as described above will find a velocity for all
robots that guarantees them to be collision-free for at least τ time. This can be
seen as follows. For any other robot B, the point 0 always lies outside the velocity
obstacle VOτ

A|B (for finite τ). Hence the half-plane ORCAτA|B always includes at
least velocity 0. In fact, the line delimiting ORCAτA|B is perpendicular to the line
connecting the current positions of A and B.
A drawback of setting the optimization velocity to zero is that the behavior of
the robots is unconvincing, as they only take into account the current positions of
the other robots, and not their current velocities. In densely packed conditions,
this may also lead to a global deadlock, as the chosen velocities for the robots
converge to zero when the robots are very close to one another.

• vopt
A = vpref

A (i.e. the preferred velocity) for all robots A. The preferred velocity
is part of the internal state of the robots, so it cannot be observed by the other
robots. Let us, for the sake of the discussion, assume that it is somehow possi-
ble to infer the preferred velocity of the other robots, and that the optimization
velocity is set to the preferred velocity for all robots. This would work well in
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low-density conditions, but, as the magnitude of the optimization velocity in-
creases, it is increasingly more likely that the linear program is infeasible. As
in most cases the preferred velocity has a constant (large) magnitude, regardless
of the density conditions, this would lead to unsafe navigation in even medium
density conditions.

• vopt
A = vA (i.e. the current velocity) for all robots A. Setting the optimization to

the current velocity is the ideal trade-off between the above two choices, as the
current velocity automatically adapts to the situation: it is (very) indicative of the
preferred velocity in low-density cases, and is close to zero in dense scenarios.
Also, the current velocity can be observed by the other robots. Nevertheless,
the linear program may be infeasible in high-density conditions (see Fig. 5(b)).
In this case, choosing a collision-free velocity cannot be guaranteed. Instead,
we select the ‘safest possible’ velocity for the robot using a 3-D linear program
(which we discuss in Section 5.3).

5.3 Densely Packed Conditions

If we choose vopt
A = vA for all robots A, there might not be a single velocity that

satisfies all the constraints of the linear program in situations where the density of
the robots is very high. In other words, the set ORCAτA is empty (see Fig. 5(b)),
and the algorithm of Section 5.1 returns that the linear program is infeasible. In this
case, choosing a collision-free velocity cannot be guaranteed. Instead, we select the
‘safest possible’ velocity for the robot, i.e. the velocity that minimally ‘penetrates’
the constraints induced by the other robots. More formally, let dA|B(v) denote the
signed (Euclidean) distance of velocity v to the edge of the half-plane ORCAτA|B. If
v ∈ ORCAτA|B, then dA|B(v) is negative. We now choose the velocity that minimizes
the maximum distance to any of the half-planes induced by the other robots:

vnew
A = argmin

v∈D(0,vmax
A )

max
B �=A

dA|B(v). (10)

Geometrically, this can be interpreted as moving the edges of the half-planes
ORCAτA|B perpendicularly outward with equal speed, until exactly one velocity be-
comes valid.

We can find this velocity using a three-dimensional linear program. For each
other robot B, the distance function dA|B(v) is a plane in the three-dimensional (v,d)
space. We now look for a point (v∗,d∗) that lies above all planes induced by the
distance functions, and has a minimal d-value. Our new velocity vnew

A is then set
to v∗.

We can use the same randomized algorithm as above to solve this 3-D linear
program. It still runs in O(n) expected time, where n is the number of other robots.
In fact, we can project the problem down on the v-plane, such that all geometric
operations can be performed in 2-D. The 3-D linear program is always feasible, so
it always returns a solution.
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(a) (b) (c)

Fig. 6 (a) A configuration of a robot A and a line-segment obstacle O. (b) Geometric con-
struction of the velocity obstacle VOτ

A|O for τ = 2. (c) The delimiting line of the half-plane

ORCAτA|O is tangent to VOτ
A|O at the closest point on its boundary to vopt

A , which equals 0 in
the case of obstacles.

Note that in these dense cases, the new velocity selected for the robot does not
depend on the robot’s preferred velocity. This means that the robot ‘goes with the
flow’, and its behavior is fully determined by the robots surrounding the robot.

5.4 Static Obstacles

So far we have only discussed how robots avoid collisions with each other, but
typical multi-robot environments also contain (static) obstacles. We can easily in-
corporate those in the above framework. We basically follow the same approach as
above, with a key difference being that obstacles do not move, so the robots should
take full responsibility of avoiding collisions with them.

We can generally assume that obstacles are modeled as a collection of line seg-
ments. Let O be one of such line segments, and let A be a robot with radius rA

positioned at pA. Then, the velocity obstacle VOτ
A|O induced by the obstacle O is

defined as (see Fig. 6(a) and (b)):

VOτ
A|O = {v |∃t ∈ [0,τ] :: tv ∈ O⊕−D(pA,rA)}. (11)

Agent A will collide with obstacle O within τ time if its velocity vA is inside VOτ
A|O,

and it will be collision-free for at least τ time if its velocity is outside the velocity
obstacle. Hence, we could define the region of permitted velocities for A with re-
spect to O as the complement of VOτ

A|O. However, this would disallow us to use the
efficient linear programming algorithm of Section 5.1, as the complement of VOτ

A|O
is a non-convex region. Therefore, we define the set of permitted velocities for A
with respect to O as the half-plane ORCAτA|O whose delimiting line is the tangent

line to VOτ
A|O at the closest point to vopt

A on the boundary of VOτ
A|O (see Fig. 6(c)).
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(a) (b)

Fig. 7 Trace of robots in two small behavioral simulations. Robots are shown as colored
disks which are light at their initial positions and darken as time progresses. (a) Trace of two
simulated robots passing each other. (b) Trace of five simulated robots crossing each other to
antipodal points in a circle.

In case of obstacles, we choose vopt
A = 0 for all robots A. This guarantees that there

always exists a valid velocity for the robot that avoids collisions with the obstacles
within τ time. We can typically use a smaller value of τ with respect to obstacles
than with respect to other robots, as robots should typically not be ‘shy’ to move
towards an obstacle if this is necessary to avoid other robots. On the other hand, the
constraints on the permitted velocities for the robot with respect to obstacles should
be hard, as collisions with obstacles should be avoided at all cost. Therefore, when
the linear program of Section 5.1 is infeasible due to a high density of robots, the
constraints of the obstacles are not relaxed.

We note that the half-planes of permitted velocities with respect to obstacles as
defined above only make sure that the robot avoids collisions with the obstacle; they
do not make the robot move around them. The direction of motion around obstacles
towards the robot’s goal should be reflected in the robot’s preferred velocity, which
could be obtained using (efficient) global path planning techniques.

6 Experimental Results

To test our technique we ran several simulations. We performed both small-scale
simulations to test local behavior and large-scale simulations to analyze perfor-
mance scaling.

Behavioral Results. We first show two scenarios which highlight how robots
smoothly avoid collisions with each other on the local level. In the first, shown
in Fig. 7(a), two robots exchange position. When the robots notice that a collision
is imminent (i.e. it will happen within τ time), they change velocities to smoothly
avoid it. The second scenario shows five robots whose goal is to move across a cir-
cle to the antipodal position. As Fig. 7(b) shows, the robots smoothly spiral around
each other to avoid collisions.
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Fig. 8 Simulation of 1,000 agents trying to move through the center of a circle to antipodal
positions. Robots smoothly move through the congestion that forms in the center.

Fig. 9 Snapshots from simulation of 1,000 virtual agents evacuating an office as part of a
crowd simulation.

Performance Results. In order to test the performance of our method we ran two
large-scale simulations. The first test was a simulation of 1,000 agents in a large
circle moving to antipodal positions as shown in Fig. 8. For the second test, shown
in Fig. 9, we incorporated our optimal reciprocal collision avoidance formulation
into the existing crowd simulation framework of [10]. In this simulation, virtual
agents attempt to evacuate an office environment. The preferred velocity for each
agent is set to follow a globally-planned path out of the office.

Because each agent makes independent decisions, we are able to efficiently paral-
lelize the simulation by distributing the computations for agents across multiple pro-
cessors. We used OpenMP multi-threading to parallelize key computations across
eight Intel Xeon 2.66GHz (Clovertown) cores. Fig. 10(a) shows how our method
scales across various numbers of cores in the Office scenario. There is a fairly good
scaling in all scenarios – with best observed results in nearly linear scaling for a
large number of agents where the constant system overhead becomes far less signif-
icant in the overall computation time.

In terms of absolute performance, Fig. 10(b) shows the running time for various
numbers of agents for both simulations. For 5,000 agents on eight cores, it takes
8 ms (125 frames per second) to solve the collision-avoidance linear program for
every agent in the large circle simulation, and 15.6 ms (64 frames per second) to
update every agent in the office evacuation simulation.
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(a) (b)

Fig. 10 Performance Graphs: (a) Performance scaling on the evacuation simulation for 1 to 8
cores. (b) Runtime for various number of agents on 8 cores (lower is better). Both simulations
scale approximately linearly with the number of agents.

7 Conclusion and Future Work

In this paper, we have presented an efficient method that provides a sufficient con-
dition for multiple robots to select an action that avoids collisions with other robots,
though each acts independently without communication with others. Our approach
to reciprocal n-body collision avoidance exhibits fast running times and smooth,
convincing behavior in our experiments.

We have used a simple robot model, in which kinematics and dynamics are ig-
nored. An important extension for future work is to take such constraints into ac-
count. We can either do this as a post-processing step, in which the computed new
velocity is ‘clamped’ to what the kinematic and dynamic constraints allow. This
would not strictly guarantee avoiding collisions anymore, but it may work well in
practice [25]. A more thorough solution would be to take these factors intrinsically
into account in the derivation of the permitted velocities for the robots. [27] and [19]
provide some interesting ideas in this direction.

In this paper, we have demonstrated results for only 2-D environments. However,
all definitions and the algorithm can be extended to 3-D. This may be interesting
for applications such as autonomous aerial vehicles, or flocking simulation of birds
or fish. Another important direction for future work is to implement the presented
framework on real robots and incorporate sensing uncertainty. This has been done
for reciprocal velocity obstacles in [25]. We believe that we can relatively easily
replace the RVO formulation by our ORCA formulation in that implementation.

References

1. Abe, Y., Yoshiki, M.: Collision avoidance method for multiple autonomous mobile
agents by implicit cooperation. In: IEEE RSJ Int. Conf. Intell. Robot. Syst., pp. 1207–
1212 (2001)

2. Borenstein, J., Koren, Y.: The vector field histogram - fast obstacle avoidance for mobile
robots. IEEE Journal of Robotics and Automation 7(3), 278–288 (1991)



18 J.van den Berg et al.

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer, Heidelberg (2008)

4. Faverjon, B., Tournassoud, P.: A local based approach for path planning of manipulators
with a high number of degrees of freedom. In: IEEE Int. Conf. Robot. Autom., pp. 1152–
1159 (1987)

5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using Velocity Obsta-
cles. Int. Journal of Robotics Research 17(7), 760–772 (1998)

6. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance.
IEEE Robot. Autom. Mag. 4, 23–33 (1997)

7. Fraichard, T., Asama, H.: Inevitable collision states - a step towards safer robots? Ad-
vanced Robotics 18(10), 1001–1024 (2004)

8. Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain en-
vironment combining PVOs and occupancy grid. In: IEEE Int. Conf. Robot. Autom., pp.
1610–1616 (2007)

9. Gil de Lamadrid, J.: Avoidance of Obstacles With Unknown Trajectories: Locally Opti-
mal Paths and Periodic Sensor Readings. Int. Journal of Robotics Research 13(6), 496–
507 (1994)

10. Guy, S., Chhugani, J., Kim, C., Satish, N., Dubey, P., Lin, M., Manocha, D.: Highly par-
allel collision avoidance for multi-agent simulation. In: ACM Symposium on Computer
Animation (2009)

11. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Na-
ture 407, 487–490 (2000)

12. Hsu, D., Kindel, R., Latombe, J., Rock, S.: Randomized kinodynamic motion planning
with moving obstacles. Int. J. Robot. Res. 21(3), 233–255 (2002)

13. Kanehiro, F., Lamiraux, F., Kanoun, O., Yoshida, E., Laumond, J.-P.: A local collision
avoidance method for non-strictly convex polyhedra. In: Robotics: Science and Systems
(2008)

14. Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int.
Journal of Robotics Research 5(1), 90–98 (1986)

15. Kluge, B., Prassler, E.: Reflective navigation: Individual behaviors and group behaviors.
In: IEEE Int. Conf. Robot. Autom., pp. 4172–4177 (2004)

16. Kuchar, J., Chang, L.: Survey of conflict detection and resolution modeling methods. In:
AIAA Guidance, Navigation, and Control Conf. (1997)

17. Lin, M.: Efficient collision detection for animation and robotics. PhD thesis, University
of California, Berkeley (1993)

18. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
19. Martinez-Gomez, L., Fraichard, T.: Collision avoidance in dynamic environments: an

ICS-based solution and its comparative evaluation. In: IEEE Int. Conf. on Robotics and
Automation (2009)

20. McLurkin, J., Demaine, E.: A Distributed Boundary Detection Algorithm for Multi-
Robot Systems (2009) (under review)
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Unifying Geometric, Probabilistic, and Potential
Field Approaches to Multi-robot Coverage
Control

Mac Schwager, Jean-Jacques Slotine, and Daniela Rus

Abstract. This paper unifies and extends several different existing strategies for
multi-robot coverage control, including ones based on Voronoi partitions, proba-
bilistic models, and artificial potential fields. We propose a cost function form for
coverage problems that can be specialized to fit different distributed sensing and
actuation scenarios. We show that controllers based on Voronoi partitions can be
approximated arbitrarily well by simpler methods that do not require the computa-
tion of a Voronoi partition. The performance of three different controllers designed
with the new approach is compared in simulation. We also formally delineate two
classes of multi-agent problems: consensus problems and non-consensus problems.
We show that coverage control is a non-consensus problem and that it requires the
optimization of a nonconvex cost function.

1 Introduction

One of the fundamental problems of multi-robot control is how to deploy a group
of robots to spread out over an environment to carry out sensing, surveillance, data
collection, or distributed servicing tasks. This operation is called coverage control,
and several methods have been proposed to accomplish it in a distributed and effi-
cient way. In this paper we introduce a unifying principle that ties together a number
of common ways of accomplishing coverage control. We show that many of the ex-
isting methods can be described as special instances of gradient descent on a cost
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function. We propose a cost function form that specializes to give some common
algorithms for coverage control, including Voronoi-based controllers, as in [7], con-
trollers based on probabilistic models, as in [15], and artificial potential field-based
controllers, as in [12].

Multi-robot coverage control serves as a prototype for many applications involv-
ing distributed sensing and distributed actuation. As examples of distributed sensing
tasks, coverage control can be used to deploy underwater robots evenly over a coral
reef to monitor coral health, or to deploy wheeled robots with cameras to spread out
over a room for surveillance. Coverage control can also be used for multi-robot ac-
tuation tasks. For example, a coverage controller can be used to position oil clean-up
robots over an oil spill so that they clean up the spill in minimum time. As another
example, coverage control can be used to position de-mining robots to service a
mine field in minimum time.

We describe a framework that is relevant to both sensing and actuation scenarios.
We argue that Voronoi based methods are best suited to distributed actuation tasks,
while a continuous approximation to the Voronoi decomposition is more appropri-
ate for distributed sensing tasks. Furthermore, even in distributed actuation tasks,
using a continuous approximation to the Voronoi cell improves the robustness and
decreases the computational complexity of the controller. The continuous approxi-
mation is easy to compute regardless of the dimension of the space, while an exact
Voronoi computation becomes unwieldy in higher dimensions.

As is typical for gradient based coverage control, the controllers we describe are
provably convergent, robust to individual robot failures, and can adapt to environ-
ments that change slowly with respect to the speed of the robots. The controllers
require that robots know the geometry of the environment and they know their own
position in it using, for example, GPS or an indoor localization system. We also
discuss how to accommodate the constraints of a communication network topology,
but do not analyze this aspect of the problem in detail.

Related Work

Cortés et al. [7] introduced a controller for multi-robot coverage that works by con-
tinually driving the robots toward the centroids of their Voronoi cells. This inher-
ently geometric strategy has seen many recent extensions to robots with a limited
sensing radius in [6], to heterogeneous groups of robots and nonconvex environ-
ments in [18], and to incorporate learning of unknown environments in [21]. A re-
cent text that presents much of this work in a cohesive fashion is [3] and an excellent
overview is given in [16]. Coverage controllers also have been successfully imple-
mented on robotic systems in [20, 19]. In this work we adopt notational conven-
tions from the Voronoi based coverage control literature. Other common methods
for coverage control take a probabilistic perspective. For example [15] proposes an
algorithm for positioning robots to maximize the probability of detecting an event
that occurs in the environment. Distributed dynamic vehicle routing scenarios are
considered in [1, 17], in which events occur according to a random process and are
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serviced by the robot closest to them. Another common coverage control method
is for robots to drive away from one another using artificial potential fields [12].
Despite the rather different models and objectives in these works, there are two
common points which motivate us to find a unifying principle: 1) they all rely upon
an optimization, and 2) they all use controllers that solve this optimization through
the evolution of a dynamical system.

Some existing approaches do not fit under the framework we propose in this pa-
per. A significant body of work has looked at coverage control as a motion planning
problem. A survey of this work can be found in [5], and some significant contribu-
tions can be found in, for example, [4, 14] and the citations therein. Other authors
have proposed information theoretic algorithms which consider placing sensors se-
quentially rather than driving them with a controller. Works such as [10,13] position
sensor nodes to maximize information for the sake of estimating a Gaussian random
process in the environment.

Contributions

In the present work we focus on multi-agent deployment as an optimization prob-
lem. This is advantageous because it is amenable to geometric, probabilistic, and
analytical interpretations, all of which have been seen in a separate light in the past.
Our optimization approach ties together much of the existing literature on coverage
control. Specifically, our contributions are: 1) We propose a cost function, putting
particular emphasis on the role of a mixing function, a previously unrecognized com-
ponent that captures critical assumptions about the coverage task. 2) We introduce
a family of mixing functions with a free parameter, α , and show that different val-
ues of the parameter correspond to different assumptions about the coverage task,
specifically showing that a minimum variance solution (i.e. a probabilistic strategy)
is obtained with a parameter value of α = −1, and Voronoi coverage (a geomet-
ric strategy) is recovered in the limit α → −∞. 3) We prove a new result linking
the convexity of a cost function to the multi-agent phenomenon of consensus. We
show that coverage tasks are fundamentally different from consensus, and that they
require the optimization of a nonconvex cost function. This suggests inherent lim-
itations to gradient descent controller designs, which are pervasive in the coverage
control literature.

The paper is organized as follows. In Section 2 we introduce the cost function,
describing the purpose of each of its parts including the mixing function. We then
produce a class of provably stable distributed coverage controllers by taking the
gradient of the cost function. In Section 3 we derive three special cases of the con-
troller; a Voronoi controller, a minimum variance controller, and a potential field
controller. Section 4 presents our results on the relation between the convexity of a
cost function, and multi-agent consensus. Simulation results are given in Section 5
and conclusions are in Section 6.
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2 Generalized Coverage

In this section we introduce a general multi-agent cost function. We will use this cost
function to define a new class of multi-agent coverage controllers by introducing a
mixing function, which describes how information from different robots should be
combined. We use the cost function to derive a stable gradient descent controller.

2.1 Coverage Cost Function

Let there be n robots1, and let robot i have a position pi ∈ P ⊂ Rdp , where P is the
state space of a robot, and dp is the dimension of the space. The vector of all robot
positions is denoted P = [pT

1 , . . . , pT
n ]T ∈ Pn, and we will call P the configuration

of the robots. We want our robots to cover a bounded region Q ⊂ Rdq , which may
or may not be related to the position space P of the robots. For example, the robots
may be constrained to move in the space that they cover, so P = Q as in [7], or the
robots may hover over a planar region that they cover with cameras, so P ⊂ R3 and
Q ⊂ R2, as in [19].

For each robot, a cost of sensing, or servicing, a point q ∈ Q is given by a
function f (pi,q). For simplicity of analysis we assume that f (pi,q) takes on only
non-negative values, and that it is differentiable with respect to pi.2 The sensor
measurements of the n robots are combined in a function g( f (p1,q), . . . , f (pn,q)),
which we will call the mixing function. The mixing function embodies assump-
tions about the coverage task; that is, by changing the mixing function we can
derive Voronoi based coverage control, probabilistic coverage control, and a vari-
ety of other kinds of distributed controllers.

Combining these elements, we propose to use a cost function of the form

H (P) =
∫

Q
g( f (p1,q), . . . , f (pn,q))φ(q)dq. (1)

where φ : Rdq �→ R>0 (we use the notation R>0 to mean the set of positive real
numbers and Rd

>0 the set of vectors whose components are all positive, and likewise
for R≥0 and Rd

≥0) is a weighting of importance over the region Q. Intuitively, the
cost of the group of robots sensing at a single arbitrary point q is represented by
the integrand g( f (p1,q), . . . , f (pn,q)). Integrating over all points in Q, weighted by
their importance φ(q) gives the total cost of a configuration of the robots. We want
to find controllers that stabilize the robots around configurations P∗ that minimize
H . We will see in Section 4 that for coverage, and many other multi-agent prob-
lems, H is necessarily nonconvex, therefore gradient based controllers will yield
locally optimal robot configurations. The cost function (1) will be shown to subsume

1 We will use the term robot throughout, though the framework is suitable for general mobile
sensing agents, including biological ones.

2 This requirement can be generalized considerably as in [6] to the case where f (pi,q) is
piece-wise continuous with a finite number of jump discontinuities. A finite sensor foot-
print can be modeled with a single jump discontinuity.
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several different kinds of existing coverage cost functions. Drawing out the relations
between these different coverage algorithms will suggest new insights into when one
algorithm should be preferred over another.

2.2 Mixing Function

The mixing function gα : Rn
≥0 �→R describes how information from different robots

should be combined to give an aggregate cost of the robots sensing at a point q.
This is shown graphically in Fig. 1 where the overlap of the two sensors is shown
for illustrative purposes as the intersection of two circles. We propose a mixing
function of the form

gα( f1, . . . , fn) =
( n

∑
i=1

f αi
) 1
α , (2)

with a free parameterα < 0. The arguments fi ≥ 0 are real valued, and in our context
they are given by evaluating the sensor function f (pi,q), hence the notation fi. To
be precise, the expression in (2) is undefined when f j = 0 for some j, therefore in

this case we define gα by its limit, gα( f1, . . . ,0, . . . , fn) = lim f j→0
(
∑n

i=1 f αi
) 1
α = 0.

This mixing function has several important properties. Firstly, notice that for α ≥
1 it is the p-norm of the vector [ f1 · · · fn]T . Specifically, it is convex for α ≥ 1 and as
α → ∞, gα(·) → maxi(·), which is the �∞ norm. However, we are interested in the
regime where α < 0. In this case gα(·) is not a norm because it violates the triangle
inequality. In this regime it is also nonconvex, leading to a nonconvex cost function,
which is a necessary attribute of coverage problems, as we will prove in Section 4.

Robot position

Mixing functionSensor cost

Fig. 1 The mixing function is illustrated in this figure. The mixing function determines how
information from the sensors of multiple robots is to be combined, shown graphically as the
intersection of the two circles in the figure.
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One can readily verify3 that as α → −∞, g(·) → mini(·). From an intuitive point
of view, with α < 0, gα(·) is smaller than any of its arguments alone. That is, the
cost of sensing at a point q with robots at pi and p j is smaller than the cost of
sensing with either one of the robots individually. Furthermore, the decrease in gα
from the addition of a second robot is greater than that from the addition of a third
robot, and so on. There is a successively smaller benefit to adding more robots. This
property is often called supermodularity, and has been exploited in a rather different
way in [13]. Plots of level sets of gα( f1, f2) for α = −1 are shown in Fig. 2(a) and
the decrease in gα(·) as the number of arguments grows is shown in Fig. 2(b). In
this work we consider the number of robots to be fixed, but it is useful to illustrate
the supermodularity property of the mixing function by considering the successive
addition of new robots. Including this mixing function in the cost function from (1)
gives

Hα =
∫

Q

( n

∑
i=1

f (pi,q)α
) 1
α φ(q)dq. (3)

To model scenarios with a finite sensor footprint, we can also let f (pi,q) be infinite
in some areas, in which case to keep the cost function bounded and differentiable it
becomes necessary to include a prior w in the mixing function, yielding the variation

gα( f1, . . . , fn) =
(
∑n

i=1 f αi + wα)1/α
. An application of this case was explored in

[19] to design a controller for positioning multiple flying robots with downward
facing cameras.
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Fig. 2 The proposed mixing function with α = −1 is shown in this figure. Fig. 2(a) shows
a contour plot of the mixing function with two arguments. The nonlinear decrease in the
function as more sensors are added, a property known as supermodularity, is shown in Fig.
2(b). The plot was generated with each robot fixed at 1 unit from the point q.

3 We know limβ→∞[∑i hβi ]1/β = maxi hi. Write limα→−∞[∑i f αi ]1/α as

limβ→∞[[∑i hβi ]1/β ]−1 with hi = 1/ fi and β = −α . We have limβ→∞[[∑i hβi ]1/β ]−1 =
[maxi hi]−1 = [ 1

mini fi
]−1 = mini fi.
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2.3 Gradient Control

In order to derive a gradient descent controller, we take the derivative of the cost
function Hα with respect to the state of robot i to get

∂Hα
∂ pi

=
∫

Q

(
f (pi,q)

gα

)α−1 ∂ f (pi,q)
∂ pi

φ(q)dq.

To provide some intuition about the meaning of this function, notice that in the case
that f (pi,q) is strictly increasing, the function inside the integral ( f (pi,q)/gα)α−1

gives an approximation to the indicator function4 of the Voronoi cell of agent i, the
approximation improving as α →−∞. This is shown graphically in Fig. 3. It can be
readily verified that this function is continuous, and that at f (pi,q) = 0 it takes the
value 1, and at f (p j,q) = 0 and j �= i it takes the value 0.

For simplicity, we choose the function f (pi,q) to be

f (pi,q) =
1
2
‖q − pi‖2, so that

∂ f (pi,q)
∂ pi

= −(q − pi).
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Fig. 3 Contour plots of ( f (pi,q)/gα )α−1 are shown for a configuration of ten agent po-
sitions. The Voronoi tessellation is shown as well for comparison. As the parameter α ap-
proaches −∞, ( f (pi,q)/gα )α−1 becomes closer to the indicator function of the Voronoi cell
Vi.

4 The indicator function for a set S ⊂ Q returns 1 for q ∈ S, and 0 otherwise.
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Other choices of f (pi,q) were investigated in [6] and could be used here as well,
including functions with discrete jumps that model a finite senor footprint. This
function represents the cost of a single robot i sensing at the position q. Therefore
the quadratic form is appropriate for light based sensors, such as cameras or laser
scanners. Light intensity drops off as the inverse square of the distance from the
source, so it is reasonable for the cost to be proportional to the square of the distance.
For tasks in which robots have to drive to a point q for servicing, and we want the
cost to be proportional to the distance travelled, it would be more appropriate to use
f (pi,q) = ‖q − pi‖, for example.

We propose to use a gradient-based controller

ṗi = −k
∂Hα
∂ pi

= k
∫

Q

(
f (pi,q)

gα

)α−1

(q − pi)φ(q)dq, (4)

where k > 0 is a positive control gain. We assume that the robots have integrator
dynamics, ṗi = ui, so we can control their velocity directly. We have found experi-
mentally, in [20] for ground vehicles and [19] for quadrotor air vehicles, that this is a
fair assumption as long as a fast inner control loop is in place to track the desired ṗi.

Stability can be proved by a direct application of the following result, the first
part of which is stated in [11] Chapter 9, Section 4 as a corollary to Theorem 1.

Theorem 1 (Stability and Gradient Systems). Let P∗ be a critical point of Hα .
Then P∗ is a locally asymptotically stable equilibrium of the gradient system
Ṗ = −∂Hα/∂P if and only if P∗ is an isolated minimum of Hα .

Corollary 1 (Coverage Control Stability). For a group of robots with closed-loop
dynamics

ṗi = k
∫

Q

(
f (pi,q)

gα

)α−1

(q − pi)φ(q)dq

only configurations P∗ for which Hα (P∗) is an isolated local minimum are locally
asymptotically stable.

Proof: The corollary follows directly from Theorem 1 and the fact that Ṗ =
[ṗT

1 · · · ṗT
n ]T is the negative gradient of kHα , which has the same critical points at

Hα .

Remark 1 (Stability Vs. Convergence). Corollary 1 is somewhat different from
typical stability results in the coverage control literature. It is more common to
use LaSalle’s invariance principle to prove convergence to a configuration where
∂Hα/∂P = 0. The standard proof of this convergence applies also to the controller
in (4). Unfortunately, such configurations are not necessarily local minima; they
may be saddle points or local maxima. Our proof specifies that the system prefers
local minima, not saddle points or maxima.
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Remark 2 (Network Requirements). The computation of the controller requires that
robot i knows the states of all the robots in the network. For this to be feasible there
must either be a global supervisor or a fully connected network communication
topology. It would be more useful if the controller depended only upon the states
of robots with which it communicates. We suggest two methods to accomplish this,
but we do not analyze them in detail in this paper. First, robot i can approximate its
control law simply by computing (4) using only the states of the robots with which
it is in communication. We expect this to give a good approximation because the
function ( f (p j,q)/gα)α−1 depends weakly upon the states of agents that are not
Voronoi neighbors, especially for small values of α , as evident from Fig. 3 . A rig-
orous stability analysis of this approximation scheme is difficult, however. A second
option is for a robot i to use an estimated configuration vector, P̂, in its calculation of
the control law. The estimated configuration can be updated online using a standard
distributed consensus algorithm (a so called “consensus estimator”). We expect that
such a scheme may be amenable to a rigorous stability proof as its architecture is
similar to adaptive control architectures. The investigation of these matters is left
for future work.

3 Deriving Special Cases

In this section we show how the cost function 1 can be specialized to give three
common kinds of coverage controllers, a Voronoi controller, which is geometric in
nature, a minimum variance controller, which has a probabilistic interpretation, and a
potential field controller. We conjecture that other coverage objectives beyond these
three can be achieved with different choices of the mixing function parameter α .

Voronoi Coverage, α → −∞

The Voronoi-based coverage controller described in [7] is based on a gradient de-
scent of the cost function

HV =
n

∑
i=1

∫
Vi

1
2
‖q − pi‖2φ(q)dq,

where Vi = {q ∈ Q | ‖q− pi‖ ≤ ‖q− p j‖,∀ j �= i} is the Voronoi cell of robot i and the
use of the subscript V is to distinguish it from H and Hα . The Voronoi partition
can equivalently be written using the min function as

HV =
∫

Q
min

i
(

1
2
‖q − pi‖2)φ(q)dq,

because a point q is in the Voronoi cell Vi if and only if ‖q − p j‖ is minimized for
j = i. As noted in Section 2.2, limα→−∞ gα( f1, . . . , fn) = mini fi. Therefore HV is a
special instance of (3) with the mixing function g−∞ = limα→−∞gα and f (pi,q) =
1/2‖q − pi‖2.
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The choice of the min function for a mixing function now warrants some reflec-
tion. Consider a distributed actuation scenario in which we want to position robots
so as to service an event that occurs randomly at some point in the environment q.
Suppose any robot is equally capable of rendering the service, robots have to physi-
cally travel to the event to render the service, and our objective is to service an event
as quickly as possible. Naturally, an event should be serviced by the robot that is
closest to it, as it will reach the event the most quickly. In this case, the min function
is the appropriate choice for a mixing function. By using the min function we are
saying that the cost incurred by all the robots due to the event at q is the same as
that incurred by the robot that is closest to q.

On the other hand, consider a sensing task in which an event of interest occurs
randomly at a point q and is sensed at a distance by sensors located on the robots.
In this case the use of the min function is more difficult to justify. Using the min
function in this instance would imply that even though both pi and p j have some
sensory information about the event, the cost function only counts the information
from the one that is closest to q. This seems to be a poor choice of cost function
for sensing, since in such cases we would want to capture the intuition that two
sensors are better than one. The mixing function (2) captures this intuition. Further-
more, even in distributed actuation tasks, using a continuous approximation to the
Voronoi cell improves the robustness of the controller. The discrete, geometric na-
ture of the Voronoi computation combined with the continuous controller can lead to
chattering, and small sensing errors can result in large changes in the control input.
Fortunately, the Voronoi tessellation can be approximated arbitrarily well by choos-
ing a small value of α , thereby preserving the Voronoi controller behavior while
improving robustness.

Minimum Variance Coverage, α = −1

We show in this section that setting the mixing function parameter to α = −1 causes
the robots to minimize the expected variance of their measurement of the location of
a target of interest. As a side effect, we will formulate an optimal Bayesian estimator
for the location of the target given the measurements of the agents.

Suppose our agents are equipped with sensors that give a noisy measurement
of the position of a target in the environment. Let the target position be given
by a random variable q that takes on values in Q, and agent i gives a measure-
ment yi = q + w, where w ∼ N(0, I2

√
f (pi,q)) is a bi-variate normally distributed

random variable, and where I2 is the 2×2 identity matrix. The variance of the
measurement, f (pi,q), is a function of the position of the sensor and the target.
Intuitively one would expect a sensor to localize a target with more precision
the closer the target is to the sensor. Then the measurement likelihood of agent
i is P(yi | q : pi) = 1/(2π f (pi,q))exp{−‖yi − q‖2/(2 f (pi,q))}, and the notation
P(· : pi) is to emphasize that the distribution is a function of the agent position. As-
sume the measurements of different agents conditioned on the target position are
independent. Also, let φ(q) be the prior distribution of the target’s position. Then
Bayes rule gives the posterior distribution,
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P(q | y1, . . . ,yn) = ∏n
i=1 P(yi | q : pi)φ(q)∫

Q∏
n
i=1 P(yi | q : pi)φ(q)dq

. (5)

One can use the posterior to obtain a Bayesian estimate of the position of the event
q given the measurements. For example, one may choose to estimate q using the
mean, the median, or the maximum of the posterior in (5).

Our interest here, however, is not in estimating q. Instead we are interested in
positioning the robots so that whatever estimate of q is obtained is the best possible
one. To this end, we seek to position the robots to minimize the variance of their
combined sensor measurements. The product of measurement likelihoods in the nu-
merator of (5) can be simplified to a single likelihood function, which takes the form
of an un-normalized Gaussian

n

∏
i=1

P(yi | q : pi) = Aexp

{
−‖ȳ− q‖2

2g−1(·)

}
,

whose variance is equivalent to our mixing function g−1(·) =
(
∑n

i=1 f (pi,q)−1
)−1

.
The values of A and ȳare not important in this context. If we want to position the robots
so as to obtain the most decisive information from their sensors, we should move
them to minimize this variance. Notice, however, that g−1( f (p1,q), . . . , f (pn,q)) is
a random variable since it is a function of q. Taking the expectation over q of the
likelihood variance gives our original cost function,

H−1 = Eq[g−1( f (p1,q), . . . , f (pn,q))] =
∫

Q
g−1( f (p1,q), . . . , f (pn,q))φ(q)dq.

(6)

Thus we can interpret the coverage control optimization as finding the agent posi-
tions that minimize the expected variance of the likelihood function for an optimal
Bayes estimator of the position of the target.

A more theoretically appealing criterion would be to position the agents to mini-
mize the variance of the posterior distribution in (5). This gives a considerably more
complicated cost function. The complication of this cost function and the fact that
gradients can not be easily computed makes it a less practical option.

Potential Field Coverage, φ(q) = ∑n
i=1 δ (‖q − pi‖)

The third type of coverage controller we consider is significantly different from the
previous two in that it does not involve an integral over the environment. Instead
it relies on the idea that robots should push away from one another to spread out
over an environment, but should not move too far from one another or else they will
become disconnected. Surprisingly, however, we will show that this rather different
coverage philosophy can be reconciled with our generalized coverage cost function
H in (1).

Let the importance function, φ(q), be given as a sum of delta-Dirac functions
centered at each of the robot positions



32 M. Schwager, J.-J. Slotine, and D. Rus

φ(q) =
n

∑
i=1

δ (‖q − pi‖).

Substituting this for φ(q) in (1), the integral in H can then be evaluated analytically
to give

Hpot =
n

∑
i=1

g( f (p1, pi), . . . , f (pn, pi)),

and setting g( f (p1, pi), . . . , f (pn, pi)) = ∑n
j=1, j �=i f (p j, pi) gives a cost function for

potential field based coverage (as well as models for flocking and herding)

Hpot =
n

∑
i=1

n

∑
j=1, j �=1

f (p j, pi), (7)

where f (p j, pi) can be interpreted as an inter-agent potential function. One choice
for f (p j, pi) is

f (p j, pi) =
1
6
‖p j − pi‖−2 −‖p j − pi‖−1

which, taking the gradient of (7), yields the controller

ṗi = k
n

∑
j=1, j �=i

(
‖p j − pi‖−2 − 1

3
‖p j − pi‖−3

)
p j − pi

‖p j − pi‖
. (8)

Controllers similar to this one have been studied in a number of works, for example
[12, 9, 22, 8]. There are numerous variations on this simple theme in the literature.

Computational Complexity

The gradient controllers described in this work must inevitably be discretized and
implemented in a discrete time control loop. A common criticism of the Voronoi
based coverage controller is that it is computationally intensive. At each iteration
of the loop, a robot must re-compute its Voronoi cell. Additionally, the controller
must compute spatial integrals over a region. In general, a discretized approximation
must be used to compute the integral of φ(q) over the Voronoi cell, which is again
computationally intensive. The two parameters that are important for computation
time are the number of robots n and the number of grid squares in the integral
computation, which we will call m. The typical decentralized algorithm for a single
robot to compute its Voronoi cell (from [7]) runs in O(n) time. The time complexity
for computing a discretized integral is linear in the number of grid squares, and at
each grid square requires a check if the center point is in the Voronoi cell, which is
an O(n) operation. Therefore the time complexity of the integral is in O(nm). The
Voronoi cell must be computed first, followed by the discretized integral, therefore
the standard Voronoi controller has time complexity O(n(m+1)) at each step of the
control loop.

Our controller in (4) does not require the computation of a Voronoi cell, but it
does require the discretized spatial integral over the environment. We do not have
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to check if a point is in a polygon, but the integrand we evaluate, namely gα is
linear in n. Therefore the integral computation still has time complexity O(nm),
which is the time complexity of the controller at each step of the control loop. Yet
as α decreases, the behavior of the controller approaches that of the Voronoi con-
troller. The controller we propose in this paper is therefore significantly simpler in
implementation (since it does not require the Voronoi computation), and it is faster
computationally. Also, as the dimension of the state space increases, it becomes
more difficult to compute and even to store the Voronoi decomposition, whereas the
computation of gα is straightforward in a space of any dimensionality.

4 Convexity and Consensus

Since we treat the multi-agent coverage problem as an optimization, it is natural
to ask what sort of optimization we are dealing with, and what optimization tools
can be brought to bear to solve it. We show in this section that the cost function
in (3) is nonconvex, and that nonconvexity is a required feature of a large class of
multi-agent problems, however undesirable this may be from an optimization per-
spective. Specifically, we demonstrate a link between the convexity of a cost function
and the multi-agent phenomena known as consensus. For our purposes, consensus
describes a multi-agent configuration in which all agents take on the same state,
p1 = p2 = . . . = pn. Consensus is geometrically represented in the state space Pn

as a d-dimensional hyperplane that passes through the origin (from the dp(n − 1)
independent equality constraints). This is illustrated by the diagonal line in Fig. 4
in a simplified 2D setting. We will prove, with some technical assumptions, that a
multi-agent problem with a convex cost function admits at least one globally optimal
consensus solution.

We begin with some basic definitions and facts from convex optimization which
can be found in any standard text on the topic, for example [2]. A set Ω ⊂ Rn is
called convex if, for any two points in Ω , all points along the line segment joining
them are also in Ω . An important consequence of the convexity of Ω is that any
convex combination of points in Ω is also in Ω . A convex combination of m points
xi ∈Ω is one of the form

x =
m

∑
i=1

αixi where
m

∑
i=1

αi = 1 and αi ≥ 0 ∀i.

A function f : Ω �→ R is called convex if

f (αx +(1 −α)y) ≤ α f (x)+ (1 −α) f (y) ∀x,y ∈Ω and ∀α ∈ [0,1].

This is equivalent to saying that the set of all points lying on or above the function
f (x) is a convex set (this set is known as the epigraph of f (x)). A function is called
strictly convex if the ’≤’ can be replaced with a ’<’ in the above relation. Also, we
will use the word minimum to mean minimum or infimum if no minimum exists. We
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now state a theorem that follows from Weierstrass’ Theorem and some well-known
properties of convex functions.

Theorem 2 (Minima of Convex Functions). For a continuous, convex function f :
Ω �→ R, where the domain Ω ⊂ Rn is convex, if any of the following are true:

1. Ω is bounded
2. There exists a scalar γ such that the level set {x ∈Ω | f (x) ≤ γ} is nonempty and

bounded
3. f is such that lim‖x‖→∞ f (x) = ∞

then the set of global minima of f is non-empty and convex.

We will apply this result to our multi-agent scenario. Consider a continuous multi-
agent cost function H : Pn �→ R. As before, an agent i has a state pi ∈ P ⊂ Rd .
It will be more convenient in this section to refer to a configuration of agents as a
tuple (p1, . . . , pn) ∈ Pn, rather than the column vector notation used previously. Let
us assume that agents are anonymous with respect to the cost function, by which we
mean that the positions of any two agents can be interchanged without affecting the
value of the cost function. This is formalized by the following assumption.

Assumption 1 (Anonymity of Agents) The cost function H is such that

H (. . . , pi, . . . , p j, . . .) = H (. . . , p j, . . . , pi, . . .) ∀i, j ∈ {1, . . . ,n}.

Assumption 1 is in keeping with the ethos of complex, multi-agent systems, where
the emphasis is on the global patterns that result from the interactions of many
identical agents. Furthermore, let us assume that H and Pn satisfy at least one of
the three properties in Theorem 2. Now we give the main result of this section.

Theorem 3 (Convexity and Consensus). Under Assumption 1, if the cost function
H (p1, . . . , pn) is continuous and convex, Pn is convex, and one of the conditions in
Theorem 2 is satisfied, then H (p1, . . . , pn) has a global minimum such that pi = p j

∀i, j ∈ {1, . . . ,n}.

Proof: Our argument rests upon Assumption 1 and the fact from Theorem 2 that
the set of minima of a convex function H is a convex set. Let h∗ be the set of
minima, and let (. . . , p∗

i , . . . , p∗
j , . . .) be an optimal solution in that set. By Assump-

tion 1, (. . . , p∗
j , . . . , p∗

i , . . .) is also an optimal solution for any i and j. Therefore all
permutations of components in (p∗

1, . . . , p∗
n) are optima. Then by convexity of h∗,

all convex combinations of points in h∗ are in h∗. In particular, the point (p̄, . . . , p̄),
where p̄ = 1/n∑n

i=1 pi is an optimal solution (since it is a convex combination of
permutations of (p1, . . . , pn)). �
We show a geometric schematic of the proof argument in Fig. 4. The proof uses
the fact that the convex set of minima must intersect the consensus hyperplane (the
hyperplane where pi = p j ∀i, j) at at least one point. A simple corollary follows.

Corollary 2 (Strict Convexity). If the conditions of Theorem 3 are met and the cost
function H (p1, . . . , pn) is strictly convex, then the minimum is unique and is such
that pi = p j ∀i, j ∈ {1, . . . ,n}.
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Consensus Line

p1

p2

p1 = p2

(p1*, p2*)

(p2*, p1*)

Set of minima is convex 
since       is convex 

Consensus Solution

Fig. 4 This schematic shows the geometrical intuition behind the proof of Theorem 3 in a
simplified 2D setting. Corollary 2 is proved by noticing that the set of minima is a single
point (the consensus solution) if H is strictly convex.

Proof: A strictly convex function has at most one minimum over a convex
domain. �

Remark 3 (Coverage is Nonconvex). Theorem 3 delineates two classes of multi-
agent behaviors reminiscent of complexity classes in the theory of computation.
One class, which we will call consensus behaviors, can be described as optimizing
a convex cost function. The other class, which we will call non-consensus behav-
iors, is fundamentally different in that it can only be described with nonconvex cost
functions. This is important because if we wish to design an optimization to solve a
multi-agent problem, and we know that the problem cannot be solved satisfactorily
by all the agents taking the same state, then we must use a nonconvex cost function.
Likewise if we observe a multi-agent behavior in nature which cannot be described
by all agents reaching the same state (the construction of a termite nest, for exam-
ple), then an optimization-based explanation of this behavior must be nonconvex.

This is directly applicable to coverage problems. Indeed, coverage cannot be
achieved with all agents moving to the same place, therefore coverage problems
must involve the optimization of a nonconvex cost function. Our parameterized cost
function Hα from (3) is nonconvex for α < 1 and is convex for α ≥ 1 because
Hα inherits the convexity properties of gα . Correspondingly, we see that the robots
become more highly aggregated as α approaches 1, and the robots all move to a
common final position (i.e. consensus) when α ≥ 1. Theorem 3 explains why this is
the case, and suggests that the search for a convex cost function for coverage control
is futile.

From an algorithmic point of view, however, this is unfortunate. Convex opti-
mization has a powerful and well characterized tool set, but nonconvex optimization
requires generally less efficient solution tools with looser guarantees. Distributed
coverage controllers that use gradient methods (such as those in this paper) guaran-
tee convergence to local optima, which is all one can expect for a nonconvex opti-
mization. This points toward an open question for future work: are there nonconvex
optimization methods not based on gradient descent that can be implemented in a
multi-agent setting?
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5 Simulation Results

The controller for the three scenarios described in Section 3 were simulated in a
Matlab environment. The environment Q was taken to be a unit square, and the
function φ(q) was set to be the sum of two Gaussian functions, one centered at
(.2, .2) and the other at (.8, .8), both with variance .2. We expect to see a higher
density of robots around areas of large φ(q). In our case, the robots group around
the Gaussian centers.

The results of a simulation with ten robots using the Voronoi based controller,
which corresponds to α → −∞, is shown in Figs. 5(a) and 5(d). Similar plots are
shown for the minimum variance controller, with α = −1, in Figs. 5(b) and 5(e).
Comparison of the two controllers shows that the Voronoi based controller causes
the robots to spread out more, while as α increases, the robots group more closely
together. When α > 1, the cost function becomes convex, and the robots all move
to the same position, which corroborates our results relating convexity to consensus
(this is not shown in the plots).

The third scenario shown in Figs. 5(c) and 5(f) uses the potential field controller
from (8). This controller uses a sum of delta-Dirac functions for φ(q) rather than
a sum of Gaussians, which causes the robots to arrange themselves in the close-
packed lattice pattern.
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Fig. 5 Trajectories and final configurations are shown for ten robots using the gradient control
law with the Voronoi controller (5(a), 5(d)), the minimum variance controller (5(b), 5(e)), and
a potential field controller (5(c), 5(f)). The Voronoi tessellation is shown for all scenarios for
comparison, even though the right two controllers do not use the Voronoi cells for control.
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6 Conclusion

In this paper we introduce a unifying optimization framework for multi-robot cov-
erage control that brings together several different existing coverage algorithms. We
point out that important properties of the underlying coverage objective are em-
bodied in the way sensor information or actuator capabilities are combined from
different robots. We propose a parameterized function to accomplish this combina-
tion, where different parameter values are shown to lead to different kinds coverage
algorithms. Finally, we prove that for coverage problems the underlying optimiza-
tion is necessarily nonconvex, making global optimization an unrealistic objective,
especially for gradient descent controllers.

Our work invites an immediate extension, which is how to approximate the gra-
dient controller over a communication graph. We outlined two methods for doing
this. In the future the stability and robustness properties of these methods should
be characterized and other methods should be investigated as well. Also our recog-
nition that coverage problems stem from nonconvex optimizations suggests some
new research directions. Gradient descent controllers, which are the most common
type in the coverage control literature, can only be expected to find local minima.
Therefore it is worthwhile to look for other nonconvex optimization methods that
can be implemented in a multi-agent setting. We expect that these open questions
will motivate new results for coverage control.
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Design and Development of an Optimal-
Control-Based Framework for Trajectory 
Planning, Threat Assessment, and Semi-
autonomous Control of Passenger Vehicles in 
Hazard Avoidance Scenarios 

Sterling J. Anderson, Steven C. Peters, Tom E. Pilutti, and Karl Iagnemma*& 

Abstract. This paper describes the design of an optimal-control-based active 
safety framework that performs trajectory planning, threat assessment, and semi-
autonomous control of passenger vehicles in hazard avoidance scenarios. This 
framework allows for multiple actuation modes, diverse trajectory-planning objec-
tives, and varying levels of autonomy. A model predictive controller iteratively 
plans a best-case vehicle trajectory through a navigable corridor as a constrained 
optimal control problem. The framework then uses this trajectory to assess the 
threat posed to the vehicle and intervenes in proportion to this threat. This ap-
proach minimizes controller intervention while ensuring that the vehicle does not 
depart from a navigable corridor of travel. Simulation and experimental results are 
presented here to demonstrate the framework’s ability to incorporate configurable 
intervention laws while sharing control with a human driver. 

1   Introduction 

Recent traffic safety reports from the National Highway Traffic and Safety  
Administration show that in 2007 alone, over 41,000 people were killed and an-
other 2.5 million injured in motor vehicle accidents in the United States [1]. The 
longstanding presence of passive safety systems in motor vehicles, combined with 
the ever-increasing influence of active systems, has contributed to a decline in 
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these numbers from previous years. Still, the need for improved collision avoid-
ance technologies remains significant.  

Recent developments in onboard sensing, lane detection, obstacle recognition, 
and drive-by-wire capabilities have facilitated active safety systems that share 
steering and/or braking control with the driver [2,3]. These active safety systems 
operating with a “human in the loop” generally attempt to honor driver intentions, 
opposing them only when doing otherwise would lead to a collision or loss of con-
trol. Such modification of the driver’s intended trajectory requires that these sys-
tems assess the threat posed to a vehicle in order determine when and how 
strongly to intervene. Such systems should honor safe driver inputs and maneuvers 
while intervening when necessary to correct or override those deemed unsafe. 

Among existing proposals for semi-autonomous vehicle navigation, lane-
keeping systems using audible warnings [4], haptic alerts [5], steering torque over-
lays [6], and various combinations of these have been developed with mixed  
results [7]. In a recent subproject of the European PReVENT consortium, a lane-
keeping system was designed to prevent lane departure by perceiving the  
environment, making heuristic-based trajectory planning decisions based on per-
ceived threat, and implementing warning mechanisms or a slight steering torque 
overlay when the vehicle drifts from the desired trajectory [8]. 

Many of the navigation systems developed in previous work address only one 
piece of the active safety problem. While some use planning algorithms such as 
rapidly-exploring random trees [3], evolutionary programming [9] or potential 
fields analysis [10] to plan a safe vehicle path, others simply begin with this path 
presumed [11]. The threat posed by a particular path is seldom assessed by the 
controller itself and is often only estimated by a simple threat metric such as lat-
eral or longitudinal acceleration required to avoid a road hazard [12]. Finally, haz-
ard avoidance is commonly performed using one or more actuation methods 
(steering, differential braking, etc.) without explicitly accounting for the effect of 
driver inputs on the vehicle trajectory [8]. Such controllers selectively replace 
(rather than assist) the driver in performing the driving task. 

Yu addressed this problem in mobility aids for the elderly by designing an 
adaptive shared controller which allocates control authority between the human 
user and a controller in proportion to the user’s performance [13]. These metrics 
and the associated intervention are designed to act on current and past user per-
formance, however, and do not anticipate future states or performance. This reac-
tive approach to semi-autonomy, while sufficient to control low-speed mobility 
aids, is not well suited for higher-speed applications with significant inertia effects 
and no pre-planned trajectory. 

In this paper, a framework for passenger vehicle active safety is developed that 
performs vehicle trajectory planning, threat assessment, and hazard avoidance in a 
unified manner. This framework leverages the predictive and constraint-handling 
capabilities of Model Predictive Control (MPC) to plan trajectories through a pre-
selected corridor, assess the threat this path poses to the vehicle, and regulate 
driver and controller inputs to maintain that threat below a given threshold.  
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The next section describes the semi-autonomous control framework and its  
associated trajectory prediction, control law, threat assessment, and intervention 
law. Simulation setup and results are then presented, followed by experimental 
setup and results, and the paper closes with general conclusions. 

2   Framework Description 

The framework described below leverages the predictive- and constraint-handling 
capabilities of MPC to perform trajectory planning, threat assessment, and hazard 
avoidance. First, an objective function is established to capture desirable perform-
ance characteristics of a safe or “optimal” vehicle path. Boundaries tracing the 
edges of the drivable road surface are assumed to have been derived from for-
ward-looking sensor data and a higher-level corridor planner. These boundaries 
establish constraints on the vehicle’s projected position. This constraint data, to-
gether with a model of the vehicle dynamics is then used to calculate an optimal 
sequence of inputs and the associated vehicle trajectory. The predicted trajectory 
is assumed to be a “best-case” scenario and used to establish the minimum threat 
posed to the vehicle given its current state and a series of best-case inputs. This 
threat is then used to calculate the necessary intervention required to prevent de-
parture from the navigable region of travel and driver/controller inputs are scaled 
accordingly. Fig. 1 shows a block diagram of this system.  

 

Fig. 1 Diagram of an active safety system 

In this paper it is assumed that road lane data is available and that road hazards 
have been detected, located, and mapped into a 2-dimensional corridor of travel. 
Existing systems and previous work in onboard sensing and sensor fusion justify 
this as a reasonable assumption [14]. Radar, LIDAR, and vision-based lane-
recognition systems [3,15], along with various sensor fusion approaches [16] have 
been proposed to provide the lane, position, and environmental information 
needed by this framework. 

Additionally, where multiple corridor options exist (such as cases where the 
roadway branches or the vehicle must circumnavigate an obstacle in the center of 
the lane), it is assumed that a high-level path planner has selected a single corridor 
through which the vehicle should travel. 
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2.1   Vehicle Path Planning 

The best-case (or baseline) path through a given region of the state space is estab-
lished by a model predictive controller. As described in later sections, metrics 
from this predicted path will be used to assess threat. 

Model Predictive Control is a finite-horizon optimal control scheme that itera-
tively minimizes a performance objective defined for a forward-simulated plant 
model subject to performance and input constraints. Stated another way, MPC 
uses a model of the plant to predict future vehicle state evolution and optimize a 
set of inputs such that this prediction satisfies constraints and minimizes a user-
defined objective function. At each time step, t, the current plant state is sampled 
and a cost-minimizing control sequence spanning from time t to the end of a con-
trol horizon of n sampling intervals, t+n∆t, is computed subject to inequality con-
straints. The first element in this input sequence is implemented at the current time 
and the process is repeated at subsequent time steps. The basic MPC problem 
setup is described in [17]. 

The vehicle model used in MPC accounts for the kinematics of a 4-wheeled  
vehicle, along with its lateral and yaw dynamics. Vehicle states include the posi-
tion of its center of gravity [x, y], its yaw angle ψ , yaw rate ψ , and sideslip angle 

β, as illustrated in Fig. 2. Table 1 defines and quantifies this model’s parameters. 

 

Fig. 2 Vehicle model used in MPC controller 

Table 1 Vehicle model parameters 

Symbol Description Value [units] 

m Total vehicle mass 2220 [kg] 

Izz Yaw moment of inertia 3344 [kg·m2] 

xf C.g. distance to front wheels 1.43 [m] 

xr C.g. distance to rear wheels 1.47 [m] 

yw Track width 1.44 [m] 

Cf Front cornering stiffness 1433 [N/deg] 

Cr Rear cornering stiffness 1433 [N/deg] 

μ Surface friction coefficient 1 
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Tire compliance is included in the model by approximating lateral tire force 
(Fy) as the product of wheel cornering stiffness (C) and wheel sideslip (α or β for 
front or rear wheels respectively) as in 

αCFy =                                                               
(1) 

Linearized about a constant speed and assuming small slip angles, the equations of 
motion for this model are (where δ represents the steering angle input) 

Vx =                                                                    (2) 

( )βψ +=Vy                                                                (3) 
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where Cf and Cr represent the cornering stiffness of the lumped front wheels and 
the lumped rear wheels, and xf and xr are the longitudinal distances from the c.g. of 
the front and rear wheels, respectively. 

2.1.1   Constraint Setup and Objective Function Description 

As mentioned above, this framework assumes that the environment has been de-
lineated previously. The boundaries of the navigable road surface at each timestep 
are then described by the constraint vectors 
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In (6), yy
max and yy

min represent the upper and lower limits on the vehicle lateral 
position (y) and must satisfy 

0minmax >− yy yy                                                                                  (7) 

in order for the constraint space to remain feasible. 
By enforcing vehicle position constraints at the boundaries of the navigable  

region of the road surface (i.e. the lane edges on an unobstructed road), the con-
troller forces the MPC-generated path to remain within the constraint-bounded 
corridor whenever dynamically feasible. Coupling this lateral position constraint 
with input constraints umin/max, input rate constraints Δumin/max, and vehicle  
dynamic considerations, the corridor delineated by yy

max and yy
min translates to a 

safe operating region within the state space. 
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The controller’s projected path through this constraint-imposed region is 
shaped by the performance objectives established in the MPC cost function. While 
many options exist for characterizing desirable vehicle trajectories, here, the total 
sideslip angle at the front wheels (α) was chosen as the trajectory characteristic to 
be minimized in the objective function. This choice was motivated by the strong 
influence front wheel sideslip has on the controllability of front-wheel-steered ve-
hicles since cornering friction begins to decrease above critical slip angles. In [18] 
it is shown that limiting tire slip angle to avoid this strongly nonlinear (and possi-
bly unstable) region of the tire force curve can significantly enhance vehicle sta-
bility and performance. Further, the linearized tire compliance model described 
here does not account for this decrease, motivating the suppression of front wheel 
slip angles to reduce controller-plant model mismatch. Finally, trajectories that 
minimize wheel slip also tend to minimize lateral acceleration and yaw rates, lead-
ing to a safer and more comfortable ride. 

The MPC objective function with weighting matrices R(·) then takes the form 
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where ε represents constraint violation and was included to soften select position 
constraints as maxmaxminmin

jjjjj VyyVy εε +≤≤− . 
In summary, the MPC controller uses vehicle position, input magnitude, and 

input rate constraints to satisfy safety requirements, while minimizing front wheel 
slip to maximize controllability. 

2.2   Threat Assessment 

The vehicle path calculated by the MPC controller is assumed to be the best-case 
or safest path through the environment. As such, key metrics from this prediction 
are used to assess instantaneous threat posed to the vehicle. By setting constraint 
violation weights (ρε) significantly higher than the competing minimization weight 
(Rα) on front wheel sideslip, a hierarchy of objectives is created in order to force 
the optimal solutions to satisfy corridor constraints before minimizing front wheel 
sideslip. When constraints are not active, as illustrated by the gray vehicle in  
Fig. 3, front wheel sideslip – and the corresponding controllability threat – is mini-
mized. When the solution is constrained, predicted front wheel sideslip increases 
with the severity of the maneuver required to remain within the navigable  
corridor. 

The dark vehicle in Fig. 3 illustrates how the MPC-predicted optimal vehicle 
trajectory might appear as the tire slip angles and corresponding threat increase in 
the presence of an active constraint. As predicted sideslip approaches tire-
cornering-friction-imposed limits, the threat of leaving the navigable corridor  
increases. 
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Fig. 3 Obstacle avoidance scenario showing MPC trajectory plans and corresponding threat 

Various approaches are available to reduce the vector α to a scalar threat metric Φ. 
In this work, 

( ) ( )pkkkk +++=Φ ααα 21max
                                      

 (9) 

was chosen for its good empirical performance when used to regulate controller 
intervention (described in the next section). 

2.3   Hazard Avoidance 

Given a best-case vehicle path through the environment and a corresponding 
threat, desired inputs from the driver and controller are blended and applied to the 
vehicle. This blending is performed based on the threat assessment: a low pre-
dicted threat causes more of the driver’s input and less of the controller’s input to 
be applied to the vehicle, while high threat allows controller input to dominate that 
of the driver. This “scaled intervention” may thereby allow for a smooth transition 
in control authority from driver to controller as threat increases. 

Denoting the current driver input by udr and the current controller input by 
uMPC, the blended input seen by the vehicle, uv , is defined as 

( ) ( )( ) drMPCv uKuKu Φ−+Φ= 1                                           
 (10) 

The intervention function K is used to translate predicted vehicle threat (Ф) into a 
scalar blending gain. This function is bounded by 0 and 1 and may be linear, 
piecewise-linear, or nonlinear. Linear and piecewise-linear forms of this function 
may be described by   
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In (11), the shape of K is described by the threat level at which the  
semi-autonomous controller engages (Φeng) and the level at which it is given full 
control authority and effectively acts as an autonomous controller (Φaut). 

Using predicted threat (Ф) as calculated in (9) with an appropriate cost function 
formulation of the form (8) ensures that 1) the threat metric regulating controller 
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intervention is minimized in the path plan (and associated control calculation) and 
2) the controller maintains full control authority when constraints are binding.  

Increasing Φeng widens the “low threat” band in which the driver’s inputs are 
unaffected by the controller. While this provides greater driver freedom for low-
threat situations, this freedom comes at the cost of increasing the rate of controller 
intervention when Φeng is exceeded. This increased rate of intervention may  
adversely affect driver experience, as discussed in the results below. 

Increasing the value of Φaut, on the other hand, delays complete controller in-
tervention until more severe maneuvers are predicted. The friction-limited bounds 
on the linear region of the tire force curve (1) suggest a natural upper limit of Φ≤ 5 
degrees on surfaces with a friction coefficient of 1.0 in order to ensure that by the 
time the predicted maneuver required to remain within the safe region of the state 
space reaches this level of severity, the controller has full control authority and 
can – unless unforeseen constraints dictate otherwise – guide the vehicle to safety. 

3   Simulation Setup 

Controller performance was simulated using a vehicle plant model provided by re-
searchers at Ford. This model describes longitudinal and lateral tire forces with the 
semi-empirical Pacejka tire model where the longitudinal and cornering forces are 
assumed to depend on the normal force, tire slip angle, surface friction, and longi-
tudinal slip [19]. 

The vehicle model described by (2-5), with the parameters given in Table 1 was 
used in the receding horizon controller. Controller parameters are defined and 
quantified in Table 2 and vehicle velocity was chosen as 14 meters per second. 

Table 2 Controller parameters 

Symbol Description Value [units] 

p Prediction horizon 40 

n Control horizon 20 

Ry
(α) Weight on front wheel slip 0.2657 

Ru Weight on steering input 0.01 

RΔu Weight on steering input rate (Δ per Δt) 0.01 

umin/max Steering input constraints ± 10 [deg] 

Δumin/max Steering input rate (per Δt) constraints ± .75 [deg]  (15 deg/s) 

yy
min/max Lateral position constraints  Scenario-dependent 

ρε Weight on constraint violation 1 x 105 

[Фeng Фaut] Thresholds for controller intervention {[0 3],[1 3],[0 4],[2 4]}º 

V Variable constraint relaxation on vehicle position [1.25, ···, 1.25, 0.01] 
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4   Simulation Results 

Simulation results were obtained for various maneuvers, driver inputs, objective 
function configurations, and intervention laws. Results below are shown for dou-
ble lane change maneuvers with a driver steer input δdriver = 0. This driver behavior 
was intended to simulate a drowsy or otherwise inattentive driver. 

Semi-autonomous controllers using varying threat thresholds for controller en-
gagement (Фeng) and full autonomy (Фaut) successfully satisfied safety constraints 
while allowing significant driver control whenever possible. In the figure legends 
below, sideslip thresholds Фeng and Фaut (in units of degrees) are labeled as [Фeng  
Фaut]. 

 

Fig. 4 Simulation results showing the effect of intervention thresholds ([Фeng  Фaut] = [0 3], 
[1 3]) on semi-autonomous corridor-tracking performance 

 

Fig. 5 Simulation results showing the effect of different intervention thresholds ([Фeng  Фaut] =  
[0 4], [2 4]) on semi-autonomous corridor-tracking performance 
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As Fig. 4 and Fig. 5 illustrate, increasing Фeng delays controller intervention K 
at the cost of more rapid increases and more frequent saturation of the control au-
thority allotment. This late intervention, while allowing the human driver greater 
autonomy far away from constraints/hazards, often requires a similar average  
control authority allotment as it must rapidly and forcefully regain control of the 
vehicle if the driver does not make the correction on their own. For example, in-
creasing Фeng from 0 to 1 deg as shown in Fig. 4 ultimately decreased the average 
intervention K over the entire maneuver by only 12 %. Similar results were  
observed over the entire range of interest in Фeng and Фaut (0≤Фeng≤ 2 and 2.5≤ 
Фaut≤ 5), with average intervention K varying by less than 0.19. These results sug-
gest that over the course of some maneuvers, this framework tends to average out 
controller intervention for various Фeng and Фaut settings, allowing for considerable 
driver preference tuning without dramatically changing average K. 

5   Experimental Setup 

Experimental testing was performed using a test vehicle and three human drivers. 
Driver and actuator steering inputs were coupled via an Active Front Steer (AFS) 
system. An inertial and GPS navigation system was used to measure vehicle posi-
tion, sideslip, yaw angle, and yaw rate while a 1 GHz dSPACE processor ran con-
troller code and interfaced with steering actuators. 

Three common scenarios, including lane keeping, hazard avoidance, and multi-
le hazard avoidance were used to analyze system performance. In each scenario, 
obstacles, hazards, and driver targets were represented to the driver by cones and 
lane markings and to the controller by a constrained corridor (with onboard sens-
ing and constraint mapping assumed to have been performed previously by “vir-
tual sensors” and high-level planners respectively).  

Lane keeping experiments tested the threat assessment and intervention charac-
teristics of the controller when the driver maneuvered inside and outside of the 
given lane. Six pairs of cones were set up along ~200 meters of the 3.35-meter-
wide lane to guide the driver’s intended path. As shown in Fig. 6 (not to scale), the 
second and third sets of cones required the driver to steer the vehicle to the edge of 
the safe lane while the final two targets required that he attempt to leave the lane. 

 

Fig. 6 Lane keeping test setup showing circles where cones were placed to guide the human 
driver’s (unassisted) path. Lane boundaries delineated by dashed lines were represented as 
constraints yy

min and yy
max to the controller 
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Hazard avoidance tests required that the vehicle avoid an obstacle in the current 
lane of travel. In these tests, the vehicle was driven at a constant velocity in the center 
of a lane with the driver holding the steering wheel at δ = 0 as if drowsy or inatten-
tive. A row of cones blocked the vehicle’s lane of travel, requiring the controller to: 
1) plan a stable lane change maneuver around them, 2) assess the threat posed by that 
maneuver, and 3) intervene as necessary to avoid the hazard. Fig. 7 illustrates this test 
setup.  

 

Fig. 7 Hazard avoidance test setup showing hazard cone placement (large circles) and lane 
boundaries (dashed) enforced by the controller 

Multiple hazard avoidance experiments tested the controller’s ability to navigate 
more complex road/hazard setups that required maneuvers with appreciable load 
transfer. In these tests (illustrated in Fig. 8), both lanes of travel were blocked at dif-
ferent locations, forcing the vehicle to change lanes to avoid the first hazard, then 
change lanes again to avoid the second as in a double-lane-change maneuver.  

 

Fig. 8 Multiple hazard avoidance test setup showing hazard cone placement (circles) and 
lane boundaries (dashed) 

Hazard avoidance and multiple hazard avoidance tests were conducted using two 
different types of driver inputs. Drowsy, inattentive, or otherwise impaired drivers 
were represented by a constant driver steer input of zero degrees. In these tests, the 
unassisted driver’s path formed a straight line directly through the obstacle(s). To rep-
resent active driver steer inputs, the drivers were asked in separate tests to steer either  
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around or into the obstacles. The urgency of these driver steer events was varied – 
sometimes avoiding the obstacle(s) with a smooth input and other times, steering at 
the last minute. Controller parameters were chosen as defined in Table 2. Experi-
ments were conducted at 5, 10, and 14 meters per second. 

6   Experimental Results 

The semi-autonomous framework proved capable of keeping the vehicle within 
the navigable corridor for each of the maneuvers tested, with three different hu-
man drivers, and using multiple intervention laws. Additionally, the 50 ms sample 
time proved sufficient for control calculations. 

Fig. 9 shows the results of lane-keeping tests.  

 

Fig. 9 Results of lane keeping tests with no controller action (dashed), and semi-
autonomous controller intervention (dotted, solid, and dash-dot) 

The dashed black line in Fig. 9 represents the vehicle trajectory under complete 
driver control (K = 0), and is shown here and in subsequent plots as a reference for 
the trajectory the driver would have followed had the semi-autonomous controller 
not engaged. Note that for multiple engagement (Φeng) and autonomous (Φaut) in-
tervention thresholds, the semi-autonomous controller successfully kept the driver 
within the navigable corridor while allowing him significant control authority as 
long as he remained inside the navigable corridor (x~-20m to x~70m). Only when 
the vehicle was about to depart from the corridor did the controller intervene. In 
each case, this intervention was early and large enough to arrest departure. The 
slight intervention observed between x~10m and  x~50m illustrates the frame-
work’s response to a predicted trajectory that required appreciable sideslip in  
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order to remain within the lane. When the driver corrected the vehicle heading, K 
returned to approximately zero. Also note that the inclusion of a low-threat “dead-
band” ([1 3] and [2 4]) removed much of the noise seen for the experiment with-
out a deadband ([0 3]). 

Fig. 10 shows the results of multiple hazard avoidance experiments. 

 

Fig. 10 Results of hazard avoidance tests with no controller action (dashed), fully-
autonomous control (dotted), and semi-autonomous control (solid and dash-dot) 

Similar to the lane keeping results shown in Fig. 9, controller intervention in 
hazard avoidance tests was sufficient to maintain the driver’s natural/unassisted 
trajectory for as long as possible before taking control. When the framework did 
intervene, it allocated enough control authority to the controller to avert corridor 
departure or loss of control. Note that the trajectory oscillation observed in the    
[0 3] semi-autonomous experiment was a result of an overcorrection on the part of 
the controller at x~65m. The vehicle trajectory proceeded to rebound from of yy

max 
because the driver’s input remained at δdriver = 0. Were the driver more attentive as 
a result of the first intervention incident, the low levels of K directly following the 
initial rebound would have allowed him significant control authority to correct and 
straighten out the vehicle.  

Fig. 10 also shows the results of an autonomous experiment in which the con-
troller was given full control authority (K=1). Notice that for the given driver in-
put (δdriver = 0), the vehicle path under semi-autonomous control closely resembles 
the “best case” path achieved using autonomous control while exerting only an 
average intervention level (K) of 0.34. 

Fig. 11 compares a semi-autonomous multi-hazard-avoidance maneuver to an 
autonomous maneuver (K=1). 
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Fig. 11 Multiple hazard avoidance tests showing the similarity between vehicle trajectories 
under semi-autonomous (solid and dash-dot) and autonomous (dotted) control 

Notice that both semi-autonomous controller configurations delayed interven-
tion until the driver’s inputs put the vehicle at risk of leaving the navigable road 
surface. When the framework did intervene, it allocated enough control authority 
to the controller to avert safe lane departure or loss of control. Even with average 
controller intervention Kave=0.44, the ultimate vehicle trajectory using the semi-
autonomous controller very closely resembles the “best case” trajectory taken by 
the autonomous controller. This arises from the selective nature of the semi-
autonomous system – it intervenes only when necessary, then relinquishes control 
to the driver once predicted threat to the vehicle has been reduced. 

Fig. 12 shows experiments in which the driver was instructed to swerve at the 
last minute to avoid hazards. 

 

Fig. 12 Multiple hazard avoidance tests showing the vehicle trajectory with an unassisted driver 
input (dashed) and autonomous controller (solid), and semi-autonomous controller (dash-dot). In 
each case, the driver swerved to avoid hazards 
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As Fig. 12 shows, intervention by the semi-autonomous controller slightly pre-
ceded an otherwise-late driver reaction. The combined effect of both inputs was 
then sufficient to avoid both road hazards. 

In each of experimental results shown above, the shared-adaptive controller be-
haves as a stable closed-loop system. While this was also true of all of the other 
simulated and experimental results conducted to date, no rigorous stability proof is 
presented in this paper. 

7   Conclusions 

This paper presented an optimal-control-based framework that performs trajectory 
planning, threat assessment, and semi-autonomous control of passenger vehicles 
in hazard avoidance. This framework has been shown in simulation and experi-
ment to satisfy position, input, and dynamic vehicle constraints using multiple 
threat metrics and intervention laws. Additionally, this framework has been shown 
to provide significant autonomy to a human driver, intervening only as necessary 
to keep the vehicle under control and within the navigable roadway corridor. 
Simulation and experimental results have shown this control framework to be sta-
ble even in the presence of system-inherent time delays, though a rigorous stabil-
ity proof is a topic of current investigation. 

Finally, while human factors have not been studied in depth here, it is expected 
that with additional investigation, a best-case, or average driver-preferred inter-
vention law may be described and intervention settings tuned accordingly. Further 
work is needed before this research is road-ready. 
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Autonomy through SLAM for an Underwater
Robot

John Folkesson and John Leonard

Abstract. An autonomous underwater vehicle (AUV) is achieved that integrates
state of the art simultaneous localization and mapping (SLAM) into the decision
processes. This autonomy is used to carry out undersea target reacquisition missions
that would otherwise be impossible with a low-cost platform. The AUV requires
only simple sensors and operates without navigation equipment such as Doppler Ve-
locity Log, inertial navigation or acoustic beacons. Demonstrations of the capability
show that the vehicle can carry out the task in an ocean environment. The system
includes a forward looking sonar and a set of simple vehicle sensors. The function-
ality includes feature tracking using a graphical square root smoothing SLAM algo-
rithm, global localization using multiple EKF estimators, and knowledge adaptive
mission execution. The global localization incorporates a unique robust matching
criteria which utilizes both positive and negative information. Separate match hy-
potheses are maintained by each EKF estimator allowing all matching decisions to
be reversible.

1 Introduction

The underwater ocean environment poses tremendous challenges to an autonomous
underwater vehicle (AUV). Some of these are common to those faced by a remotely
operated vehicle (ROV). Hull integrity under pressure, vehicle locomotion, power
source, control, and stable vehicle attitude are all special constraints for underwater
systems. Operating without physical, radio, or visual contact to the vehicle implies
an increased degree of autonomy. To achieve autonomy further challenges must be
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addressed that relate to the machine’s decision making. These challenges are mainly
in the areas of perception, localization, and reasoning. All three of these areas must
accurately deal with uncertainties. Perception is limited by the physical properties
of water; localization is made difficult by the presence of tides, wind driven currents,
and wave surge, which can easily disorient a robot while underwater.

Underwater machine proprioception uses a vehicle model and the actuation sig-
nals, often implemented as the prediction step of an extended Kalman filter (EKF).
Additional proprioception can be provided by an inertial sensor. Available extero-
ceptive sensors are depth, altitude, gravitation, and magnetic field. These sensors
give absolute measurements of four of the six degrees of freedom (DOF) for the
vehicle motion. The other two DOF are the position in the horizontal plane or local
grid. When the motion of the vehicle in this plane is estimated solely using pro-
prioceptive localization, the errors in this so called dead-reckoning estimate grow
without bound.

There are sensors to give absolute measurements of these horizontal plane mo-
tions. One can augment the natural environment with acoustic beacons to set up
an underwater system analogous to the satellite global positioning system (GPS)
for open air systems. Recent state-of-the-art work with these long baseline (LBL)
navigation systems is provided by Yoerger et al. [1]. Another common technique is
to obtain Doppler velocity measurements using a Doppler Velocity Log (DVL), as
illustrate by Whitcomb et al. [2]. These techniques are the solutions of choice for
many types of missions in which low cost of the AUV is not a primary concern.

Errors in localization will lead to decision mistakes and failed missions. In some
cases absolute localizations is less important than localization relative to some un-
derwater features such as pipelines, cables, moored objects, or bottom objects.
These cases require correct interpretation of exteroceptive sensors capable of detect-
ing the features. The most useful underwater exteroceptive sensor for this process
is sonar. Sound travels well under all conditions while light is useful only in clear
water at short range. The sonar data can be formed into an image that can be pro-
cessed using some of the same tools used to process camera images. The projective
geometry and the interpretation of images is different so, for example, shadows are
formed on the far side of objects relative to a sound source. These shadows give a
great deal of information to a skilled human analyst.

There are a number of different types of sonar systems that produce images com-
parable to camera images. Side-scan sonar can form narrow sonar beams restricted
to a plane perpendicular to the sonar array. The returns from these beams can be
pieced together over the trajectory of the vehicle to give a detailed image of the
sea floor. Forward looking sonars can generally see in a pie slice shaped wedge in
front of the sonar. They usually have good angular resolution over a span of angles
about an axis and good range resolution. The resolution in beam angles to the axis
is relatively wide forming the wedge as the sound propagates.

Information from one sonar image is of limited use to the AUV. It is the re-
peated observation of the same objects that helps to remove disturbances from the
motion estimate. It is also by tracking objects over many images that noise can be
distinguished from the features of interest which can then be recognized as being
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relevant to the mission goals. Thus knowledge acquired from these observations can
be compared to knowledge acquired prior to and during the current mission. As
such, the state of the vehicle can depend on the observations and the mission execu-
tion becomes adaptive to these observations. Missions that would be impossible to
carry out even with perfect absolute localization can now be envisioned as feasible
with imperfect absolute localization. This is the power of the autonomous intelligent
machine.

Our system is designed to carry out target reacquisition missions at low cost
and without the use of pre-set acoustic beacons as positioning aids. The use of a
DVL to correct for the effects of water currents is not part of the system, for cost
considerations. The current state of the art for these types of reacquisition missions
is to use human divers; this is impossible or undesirable for many situations, and
an AUV-based system that could attach itself to a target offers many advantages.
The system will find a specified moored target using an a priori map of the area’s
features. These features can be various moored or bottom objects that happen to be
in the area. The a priori map is made using an AUV equipped with sophisticated
sensors and a side-scan sonar. The mission critical decision centers on the position
of the vehicle relative to this a priori map. The method to make this decision is
to use SLAM to build a map of the sonar observations [3, 4, 5, 6, 7] and match
this map to the a priori map in an EKF [8, 9, 10, 11]. Several EKF estimators are
run in parallel allowing multiple match hypotheses to be considered. All matching
decisions are reversible in that one of the hypotheses (known as the null hypothesis)
makes no matches between the features; this null hypothesis can then be copied
to any of the other estimators essentially resetting them and allowing them to be
matched differently.

The local map building is done in a tracking filter. This computation is both accu-
rately and efficiently carried out using a Square Root Smoothing SLAM algorithm.
The tracking filter implements the algorithm as a graph over the vehicle states and
feature positions. The information tracked over a number of frames is consolidated
into composite measurements and used to update the bank of EKF estimators at a
low frequency. Thus problems of complexity as the size of the slam graph grows
are avoided by cutting off sections of the graph periodically and feeding them as
single measurements of both features and AUV pose to the EKF estimators. One
gets the accuracy of the graphical square root slam model that re-linearizes all mea-
surements about the current solution without any explosion of complexity. At the
same time one can use several EKF estimators updated with these accurate mea-
surements at low frequency to allow multiple hypotheses and reversible decisions.
As the matching is also done at this low frequency, the matching algorithm can be
of higher complexity.

2 Mission Scenario

The mission starts with a survey of an undersea region containing moored and bot-
tom features by an AUV equipped with sophisticated navigation and side-scan sonar.
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This data is analyzed by an expert and an a priori map of features is produced. One
of the moored features is identified as the target of interest to be reacquired. The
a priori map and chosen target are input to our AUV system and then the vehicle
is released from a distance of between 100 to 1,500 m from the field (Fig. 1). The
AUV travels to a point about 70 m out and dives on the field. It surveys the field and
builds a SLAM map of the features. When the AUV has achieved good localization
relative to the a priori map, it will attempt to ‘capture’ the target. That is, still using
the features for navigation, it will maneuver to drive its V shaped grippers into the
mooring line of the target. At that point it will close the grippers tightly on the line
and become attached.

Fig. 1 The iRobot Ranger AUV is equipped with a Blueview Blazed Array sonar in the nose
section. It is launched by hand.

3 System Components

The AUV is a Ranger manufactured by iRobot and equipped with depth sensor,
altimeter, GPS, a 3D compass, and a Blueview Blazed Array forward looking sonar
(FLS) as shown in Fig. 1.

The software system consists of 7 functional modules. A robust and fast detector
finds virtually all the interesting features in the sonar images with a few false pos-
itives. These are fed to a tracking filter that is able to filter out the false positives
from the real objects and form ’composite measurements’ out of the sonar and mo-
tion measurements over a section of the path. These composite measurements are
then input to the bank of EKF SLAM estimators. These try to match the a priori
map to the SLAM map using a special matching criteria described in a later section.
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The output of these estimators as well as information on the currently tracked
features is passed to the interpreter which extracts information relative to the current
mission objectives. This information is requested by the mission executor and used
to make the high level decisions leading to a control output sent to the actuators.
Final capture of the target is done using a sonar servo PID controller.

In addition, there is a dead reckoning service which provides motion estimates
to the tracking filter, the EKF estimators, the mission executor, and the sonar servo
control. This dead-reckoning service uses a detailed model of the robot and envi-
ronment along with two separate EKF estimators to provide estimates of the motion
with and without GPS. (GPS is of no use underwater but is used to initialize the
position before dives.)

4 Sonar Feature Detector

The Blazed Array FLS has two sonar heads, a vertical and a horizontal, giving a
position in 3D for features detected in both. The field of view of each head is 45
degrees by 30 degrees. The returns are given as range and angle in the plane of
the 45 degree direction. Thus measurements have a large uncertainty perpendicular
to this plane, extending outward in a 30 degree wedge shape. The effective range
of the sonar is 40 m for good sonar reflectors and about 20 m for normal bottom
objects such as rocks. Thus to get enough detections of normal bottom objects to be
of real use the robot must pass within about 5 m of the object. This makes finding
the objects of the a priori map a challenge as currents can easily throw the AUV
off by more than this amount. The cruising speed of the Ranger is about 1.2 knot.
The currents encountered during our validation testing were typically more than 0.5
knot and vary with time, depth, and in the horizontal plane.

The sonar horizontal head has been modified to tilt downward at 5 degrees to
give a better view of the bottom targets. The formation of vertical and horizontal
images out of the raw sonar data using the Blueview SDK library takes about 180
ms of processor time per ping. The feature detection algorithm then adds about 18
ms or 10% to this time. The steps used to process the images are as follows:

1. Form a 200 x 629 image of the vertical head sonar data, (in Fig. 2 the images
are rotated 90 degrees).

2. Down-sample this to 50 columns (rows in Fig. 2).
3. Find sea bottom, altitude, and relative slope using line extraction.
4. If slope (pitch) is too far from level flight stop.
5. Form a 200 x 629 image of the horizontal head sonar data.
6. Down-sample this to 50 columns (rows in Fig. 2).
7. Use the altitude from step 3 to select one out of a number of averaged back-

ground images each for a specific altitude range.
8. Low pass filter the current horizontal image into the background image.
9. Subtract the background image (noise) from the horizontal image to form two

separate images, one the normalized image and the other the shadow image.
10. Segment vertical image into bottom and open water.
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Fig. 2 Here is an example of the vertical (upper) and horizontal (lower) sonar head images.
The top pair are the input to the detection module and the bottom pair show the output feature
detections highlighted as circles for shadows and squares as edges. The images are rotated
to show the range increasing from right to left. The white hash marks are spaced at 10, 20,
and 30 m in the horizontal images for scale reference. The polar angle is shown in the as
increasing downward in the images and has a total range of 45 degrees. The bright arc in the
upper images is the sea bed and would appear as a straight line if plotted in Cartesian space
instead of polar coordinates as shown here. The near-field region of open water is barely seen
in these images due to the AUV pitch. It would normally be a wider darker region along the
right edge of the horizontal image, here seen very narrow.

11. Segment horizontal image into three regions near field open water, ranges where
the bottom is sufficiently bright to see shadows, and the remaining range out to
40 m.

12. Low pass filter the image segments pixels along each bearing (column) to
smooth them eliminating very small features and noise.

13. Search for edges as gradients in each segment with thresholds based on the
average background image level. (This gives some adaption to different bottom
types.)

14. Search for shadows (below noise floor) in bottom segment coupled with an ad-
jacent bright area closer to the sonar from the object that created the shadow.

15. Then select for output any feature found in both heads and the strongest remain-
ing detections in each segment.

Step 3 allows the algorithm to process differently based on the altitude and pitch of
the vehicle which is important as the esonification of the bottom will be dependent
on these. Thus the image can be segmented into regions of open water and sea floor.
The regions of open water are much less noisy and can therefore have lower de-
tection thresholds. The down-sampling steps, 2 and 6, are crucial to fast processing
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without the loss of information. The sonar has an angular resolution of 1 degree so
that 50 columns will be sufficiently fine for the 45 degree field of view. The aver-
aged background images at each altitude are important for normalizing the image
(step 9) and for detecting shadows (step 14). In step 9 the normalized pixels will be
set to the difference when positive or 0 while the the shadow pixels will be set to
minus the difference when this is positive or 0.

5 Mapping

The mapping approach utilizes the strengths of two SLAM methods each focused on
separate aspects of the mapping problem. One aspect involves the tracking of feature
detections and using them to improve the dead-reckoning over local map areas of 10-
50 m in size. The other aspect involves piecing these local map estimates together to
give an estimate of the map over the entire field and to then provide information on
uncertainties to the map matching algorithm. Fig. 3 provides an aid to understanding
the workings of the various parts of the mapping approach.

The feature tracking uses an accurate Square Root Smoother [12, 13] as pre-
viously described in [14, 15]. The inputs to this incremental Gaussian estimator
are the sonar detections of features and the dead-reckoning estimates between the
sonar measurements. The filter estimates the Gaussian Maximum Likelihood state
along with a representation of its covariance. The state vector consists of the loca-
tions of the observed features and the all the poses of the AUV at these observation
times. This representation allows us to delay initialization of features until we have
gathered enough information on them. The initialization can then add all the previ-
ous measurements. Thus information is neither lost nor approximated. At any point
the entire estimator can be re-linearized around the current state which improves
consistency of the estimate. Thus the tracking filter avoids two of the problems en-
countered in SLAM estimation, consistency and loss of information. The trade off
is increased computational complexity. This complexity is limited by the relatively
small size of the local maps.

Periodically a section of the path along with all its measurements is cut out and
formed into an independent estimator for just that subset of measurements. Then all
variables for the intermediate pose states are eliminated by marginalizing them out
forming a composite measurement with a state vector consisting of the starting and
ending AUV poses and the feature locations. This mean and covariance estimate can
then be used in an update of the bank of EKF estimators. The composite measure-
ments are local maps of the features seen along a section of the robot path. These
local maps are then joined using the bank of EKF estimators.

The EKF estimators have a state that consists of the AUV pose at the time of
the last update and the locations of all features, both from the a priori map and the
composite measurements. Thus the EKF SLAM filters first augment the state with
the new pose and features, then do an EKF update step on the features locations
and the two poses, then marginalize out the earlier pose and merge any features that
were tracked between two adjacent local maps. There is no explicit prediction step.
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Fig. 3 We illustrate the compression of information in the various stages of mapping. We
use an EKF in block (A) to combine the motion measurements of depth, altitude, compass,
and actuation from sensors (S) into dead-reckoning estimates synchronized with the sonar
feature detections. These are then used in block (B) to add nodes to the square root smoother
graph. This smoother performs the feature tracking function eliminating false detections and
forming maximum likelihood Gaussian estimates of the remaining detections. As this graph
grows, sections are periodically cut-off reducing the number of nodes in the remaining graph.
The cut-off section becomes an independent smoother graph. In block (C) we form composite
measurements (M) out of the cut-off section of the graph and feed it to the bank of EKF
estimators for matching to the a priori map. These composite measurements (M) of features
and poses are local maps. The GPS measurements also update the EKF Bank. The EKF Bank
also perform the current estimation. The current estimate from the most aggressive EKF is
used by (A) to provide predictions to (B).
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Each EKF estimator of the bank, numbered 0 to n-1, can match the features ob-
served on the local maps to the features of the a priori map. These matches can
be different for each estimator and the EKF will compute the maximum likelihood
mean given the chosen match. The EKFs can also compute the Mahalanobis dis-
tance corresponding to the match. Thus the bank of estimators allows parallel match
hypotheses to be continuously evaluated and updated. Any estimator’s state can be
copied into another estimator. Thus incorrect matches can be copied over once a
better match is found. Estimator number 0, the most conservative, allows no match-
ing at all and on each iteration is used to reset estimator number 1 to this state. All
the estimators are then matched. The matching criteria are increasingly aggressive
as the estimator number increases. If this then produces a match better (more likely)
than any higher numbered estimator it is copied to those estimators. The likelihood
is measured using the Unseen Match Scale described in Sect. 6.

6 Matching

Matching correctly to the a priori map is the most critical decision of each mission.
We base our matching algorithm on a quantity we call the Unseen Match Scale
(UMS). The goal is to capture the likelihood of a given match hypothesis h. The
use of negative information is illustrated in Fig. 4. We see that only hypothesis (c)
can explain the negative information of not having seen both previously mapped
features (the x’s) on the recent local map. We match one prior map feature to the
recently observed feature (the dot) while the other prior map feature has not yet been
scanned by the sonar. The UMS quantifies this information as follows:
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Fig. 4 Illustration of the Unseen Match Scale. The figure shows three match hypotheses. The
shaded area shows the part of the environment scanned by the sonar on a recent local map
with the dotted line showing the area of the last image. The small rectangle is the AUV at
the last pose, the two x’s are features from the a priori or earlier local map, and the dot is
a feature on the most recent local map. Hypothesis (a) illustrates the unmatched situation
(the null hypothesis). Hypothesis (b) cannot explain why one x was not seen. Hypothesis (c)
explains why we have only one dot.



64 J. Folkesson and J. Leonard

UMS(h) = −ΛN + Dh +Uh (1)

The UMS has three terms. The first term is proportional to the number of matched
feature pairs1, N, where Λ is a parameter. The second is the Mahalanobis distance
of the match as computed using the EKF covariance matrix. The third is the unseen
feature energy defined as:

Uh = ln(P(unseen|null))− ln(P(unseen|h)) (2)

This expression is the negative of the log of the probability of all the unseen fea-
tures normalized relative to the null hypothesis of making no new matches. Unseen
features are features that were predicted to be in the robot’s sensor field of view but
were not initialized in the map. That is, these features are seen on one local map but
are not seen on an overlapping local map. In Fig. 4, hypothesis (a) has three unseen
features, (b) has one, and (c) has none.

We must compute the probability of the unseen features. For that we need several
concepts. We form coarse grids over the area of each local map. Thus the same
chain of local maps described in the last section will now be linked to a chain of
grids summarizing the search for features by the sonar over the sections of path
corresponding to the local maps. As the robot moves scanning the sea and sea floor
with its sonar, we increment a counter in each scanned grid cell for each scan. This
gives us a table containing the number of times each cell was scanned. We denote
these numbers as sig, where i is the cell index and g is the index of the local grid.

We refer to the probability that the feature will be detected when the cell contain-
ing it is scanned as the feature’s visibility, v. The feature will be initialized on the
map if it is detected a number of times. We call this the detection threshold, nd .

We define Q f g(h) as the probability of not initializing feature f predicted to lie
in grid cell i of grid g. It can be computed from a binomial distribution.

Q f g(h) =
nd−1

∑
j=0

(
j

sig

)
v(sig− j)(1 − v) j. (3)

The sum is over the number of times the feature may have been detected without
being initialized.2 We can form these sums for every feature and every local map
on which it was not initialized. We can then compute the unseen feature energy of
eq. (2) as the sum of these Q f g over all the unseen features.

1 This is the criteria used in the standard Joint Compatibility Branch and Bound
algorithm[16] along with a threshold on the Mahalanobis distance.

2 The cells i of eq. (3) are inferred based on the match of h. This is done by computing the
new state generated by making the match. The new feature states will then imply a new
transform to the local grid frames based on the features seen on the grids. This then is used
to transform the unseen features to the grids and finally find the cell i that the feature falls
in. See the appendix for other details.
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− ln(P(unseen|h)) = − ∑
f gεunseen

lnQ f g(h) (4)

Notice we get a contribution here that can be directly traced to a particular feature
on a particular local map. High values for the unseen feature energy contribution,
− lnQ f g, indicate a prime candidate feature f for matching to features on the corre-
sponding local grid g. This allows directed searches of the match hypothesis space.

Matched features are no longer unseen. Thus, the sum over unseen features will
not include terms from the grids that had any feature matched to the feature we
are considering. That gives a gain for matching that is not arbitrary or heuristic,
but rather is precisely computed based on the simple statistics accumulated on the
grids. The only parameter selected by hand isΛ . A probabilistic interpretation forΛ
is presented in [17]. For the results presented here, good results have been obtained
with Λ either set to zero or given a small value.

The complexity of calculating the Q f g will be less than the number of features
times the number of grids. Only features that fall on the local grid need to have
Q f g calculated. Thus the complexity is dependent on the path of the robot and the
success of the matching. If the complexity were to become a problem, one could
address this by considering only matches between features on the most recent grids
and the rest of the grids. Thus we would give up trying to make matches that we
failed to make on earlier iterations. That would then result in constant complexity
as the map grew. Typically the complexity is not a problem so long as the matching
is working properly. In that case the features are merged and no longer considered
as unseen. Thus the number of Q f g to be computed is reduced.

We must estimate the feature’s visibility, v. We do this by examining the grids
on which the feature was seen. We divide the number of detections by the sum of
the sig for the feature.3 We sum the sig using a Gaussian weighting over a window
around the feature’s predicted cell.

While the unseen feature energy, Uh of eq. (2), normally decreases as matches
are added to the hypothesis, it does not always decrease, because the new state for
the features given the match hypothesis h may imply a transformation which causes
more overlap of local grids and a higher value for some Q f g. Hence, some matches
result in a decrease in the value of unseen feature energy.

All matches result in a decrease in the first term of the UMS eq. (1). The decrease
in value may more than offset the inevitable increase from the second term of the
UMS. The match with the lowest UMS is tested to see if it is ambiguous. If not,
the match is made. In order to test ambiguity, the difference between the UMS for
all matches, including null, and the UMS for the best match is checked. We thresh-
old this difference with a parameter which we call the ambiguity parameter. We
will make the match if this ambiguity parameter is less than the difference for all
matches that conflict with the candidate match. Matches that agree with the candi-
date match, that is they give the same match pairs for all features in common, are

3 In [18] they use the negative information of not observing a feature to remove spurious
measurements from the map. This is another example of the usefulness of negative infor-
mation. We could, in the same spirit, remove features with very low values of v.
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not conflicting.4 The null hypothesis is considered conflicting as are hypotheses that
for some feature in common give a matched feature that is both different from and
local to the matched feature of the best hypothesis. By local we mean that the two
features are on the same local grid. Local features are always considered impossible
to match to one another. If they were the same the local map builder should have
matched them.

Using this measure we can say that the conflicting hypotheses have an energy or
minus log likelihood that is higher than the one chosen by more than the ambiguity
parameter.

By adjusting this ambiguity parameter we are able to set levels of aggressiveness
in matching. We utilize this when running multiple hypotheses in the bank of par-
allel EKF SLAM estimators. Normally the more aggressive hypothesis will have a
lower total energy as calculated by the accumulated total of the UMS for all matches
merged. Occasionally the aggressive match will be wrong and then a more conser-
vative hypothesis may eventually be able to find the true match lowering its energy
below the aggressive one. When this happens we can copy the lower energy solu-
tion to the aggressive matcher’s estimator and continue. In that way the aggressive
matcher always has the most likely solution given the data and the implied search
of all the parallel run estimators.

7 Field Testing

The system has been extensively tested and refined over 11 sea trials starting in 2006
each lasting from 2 to 3 weeks. We started in benign environments with unrealistic
highly reflective moored targets that were easily detectable in the FLS from 60 m
and progressed to less ideal sea conditions, normal moored targets, and bottom fea-
tures including natural features not detectable past 20 m range. Finally control and
attachment to the target were added.

The UMS matching algorithm was first validated in an A/B comparison test in
St. Andrews Bay, Florida in June 2007 in which the UMS and Joint Compatibility
Branch and Bound (JCBB) criteria were alternately used over 18 trials on a field
of strong reflective moored targets. The bay has a tidal current that gave the AUV
significant dead-reckoning errors on most trials. The AUV was released about 100
m from the field and from 8 directions. The AUV made a single pass of the field
and had to decide on the match before finishing the pass. The trials were paired so
as to give nearly equal starting conditions for the two algorithms. A success was de-
fined as achieving a correct match to the field followed by the vehicle’s successfully
exiting the field and then re-approaching it again in a movement of mock capture
toward the correct target. No actual attachment was done. The results of the live
test are summarized in table 1. The difference in the frequencies is positive by 1.41

4 The reason we need to introduce the concept of not conflicting is that a hypothesis that
is correct but not complete might have a UMS very close to the correct and complete
hypothesis. This is true if the left out pair(s) of the incomplete hypothesis do not change
the energy by very much.
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standard deviations. This gives a 91% significance to the difference and indicates
that the UMS did outperform the simpler JCBB matching criteria.

To give an unambiguous comparison in the live test, we only used one match hy-
pothesis. We later ran the data off line with 4 hypotheses and got the improved result
shown in the table5. Of the four missions it could not match, two were UMS runs
and two were JCBB runs. This gives some measure of the fairness of the random
elements of each run.

Table 1 In the 2007 tests the Joint Compatibility criteria, JCBB, uses a threshold on the
Mahalanobis distance of the multiple pair match and chooses the most pairs. This was com-
pared to the UMS criteria and the difference in rates was considered as proof that the UMS
performed better. In the 2008 tests we used both moored and bottom targets which were de-
tectable from between 20 and 40 m. In the March 2009 test there was no matching done as
we tested the control to attachment on a single moored target in a test pond. In the June 2009
tests we added better modeling and estimation of currents along with better feature modeling.

Selected Test Results

Match Criteria Runs n Successes Frequency
√

s2
n/n

Bright Targets - June 2007:
UMS 9 6 67% 17%
JCBB 9 3 33% 17%

UMS - JCBB 33% 24%

UMS Multi-hypothesis 18 14 78% 10%

Normal Targets - June 2008:
UMS Multi-hypothesis 9 3 33% 17%

No Current - March 2009:
One Feature 17 17 100%

Normal Targets - June 2009:
UMS Multi-hypothesis (all) 26 17 65% 9%

Next the detection of features in the sonar images was substantially improved
from a simple intensity detector in the horizontal image to the detection algorithm
described in Sect. 4. We added a PID control and grippers to the robot to enable ac-
tual capture of the mooring lines of the target. We tested in Narragansett Bay, Rhode
Island in June 2008, on a field consisting of various man-made and naturally occur-
ring objects on the sea bottom. Again the bay had a significant tidal current which
gave us substantial dead-reckoning errors. We did nine capture runs. Two of the

5 On one of the failed multi-hypothesis runs the solution was switched to the correct match
after the robot had returned to the surface, too late to be considered a success.
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runs resulted in the AUV hitting the mooring line and breaking off the gripper arm,
which we considered a success for the software system. We captured the mooring
line on the ninth run of the day for an overall success rate of 33%.

We then improved the final target capture with the addition of sonar servoing of
heading and altitude for the PID control. In March 2009, we performed tests in a
man made test pond to evaluate the terminal homing behavior with one target and
no current. In 17 missions in which the SLAM algorithm locked on to the target, the
vehicle successfully latched onto the line all 17 trials. This provides validation for
the final capture phase.

The overall robustness of the system was further improved via two further re-
finements to the matching algorithm that are described in the appendix. We also
improved the model and estimation of current variation with depth. In June of 2009
the entire system was tested in the Gulf of Mexico. 15 objects were placed with a
nominal 12-15 m spacing and forming three parallel lines. Three of the objects were
moored while the others were bottom objects. Over a two week period the system
was evaluated by running 26 missions of which 17 resulted in attaching to the cho-
sen target. We found that the success rate depended strongly on the initial approach
to the field. By having the robot travel in a straight heading towards the center of
the field along the direction of the current we achieved 16 of 18 successes with the
other 8 trials using other strategies. Surface currents ranged from 0.4 to 1.0 knots.

Of the 9 failed missions 4 had no match and 5 miss-matched. No mission man-
aged to make a successful second attempt after getting a new GPS fix but 2 timed
out after making a correct match. The miss-matches typically occurred after initially
missing the field and accumulating large dead-reckoning errors. Five of the success-
ful runs had initial miss-matches that were corrected before capture was attempted.
In all failures there were too large dead-reckoning errors on reaching the field. The
dead-reckoning errors were attributed to disturbances in the water which can not be
estimated and compensated for. We have succeeded in developing a model of the
variation of ocean currents with depth but this only can remove the disturbances
that matches the model. No variation in the horizontal plane can be estimated. The
model parameters are estimated on the fly during GPS pop-ups during the initial
approach and prior to the final dive into the field.

8 Conclusions

This paper has presented a summary of a field deployed AUV navigation system
that achieves a high level of autonomy to perform a challenging real-world mission.
We have worked methodically towards creating a robust system to reliably reacquire
underwater targets, reducing the danger to the manned personnel that typically per-
form these missions. We first broke the problem into specialized functional mod-
ules and optimized each separately. By adding new functionality and refinements
based on repeated testing at sea, incremental improvements have accumulated to
give the AUV a robust autonomy. The value of the system has been comprehen-
sively demonstrated in numerous field trials over a three-year period. Continued
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testing is in progress to improve the target capture success rate of the overall system
for increasingly difficult ocean conditions.
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Appendix

A few refinements must be made to the simple formula of eq. (3) in the actual
implementation. First, the prediction of the feature location and the grid number sig

are uncertain. We therefore use a Gaussian window over the grid cells and sum the
contributions from adjacent cells near the predicted feature location. This gives a
more continuous scale. Second, the details of the local map formation are such that
features can be initialized by being detected nd times in total on adjacent local maps.
So we need to sum over the local maps before and after as well.6

Third, a minor adjustment needs to be made to avoid numerical problems such as
extremely small probabilities. The Q f g are limited to avoid their becoming too small.
This is done by performing the following transformation on the values computed as
described above and in the main text:

Q f g ← p ∗ Q f g +(1 − p) (5)

We call p the model probability as it is the probability that our model of the features
is correct. We used p = 0.99.

Two additional refinements were added to the algorithm this year. A fourth re-
finement is to accumulate grids at a number of depths and then use the grid at the
observed feature’s depth of the computation. A fifth refinement accumulated grids at
three ranges from the robot: 0-8 m, 8-20 m, and 20-40 m. This adjustment allowed
us to model the fact that some features are not visible from the longer distances.

6 This is straightforward but the resulting formulas are too complex to include here due to
space limitations.



Sensing and Control on the Sphere

Peter Corke and Robert Mahony

Abstract. The advantages of a spherical imaging model are increasingly well rec-
ognized within the robotics community. Perhaps less well known is the use of the
sphere for attitude estimation, control and scene structure estimation. This paper
proposes the sphere as a unifying concept, not just for cameras, but for sensor fu-
sion, estimation and control. We review and summarize relevant work in these areas
and illustrate this with relevant simulation examples for spherical visual servoing
and scene structure estimation.

1 Introduction

In the last few years there has been growing interest in image processing opera-
tions performed on the sphere stemming from a number of important developments.
Firstly, a wide perceptual field is important for robotic path planning and colli-
sion avoidance and led researchers to adopt, or develop, wide-angle viewing sys-
tems [5, 32, 35]. Secondly, the mathematical techniques for spherical imaging have
matured, for example the unified imaging model [16], spherical scale-space [3] and
spherical SIFT [18]. Thirdly, as purely vision-based navigation becomes possible
the ambiguity between rotation and translation which is problematic in a perspective
camera image can be overcome by using wide angle imagery. Finally, there is a bio-
logical inspiration from small flying insects which use very wide angle eyes, some-
times combined with gyroscopic sensors to perform complex navigation tasks [6].

Pose estimation, including both position and attitude estimation, is a key
requirement for autonomous operation of robotic vehicles. For aerial and underwater
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Fig. 1 The coordinate system. P is a world point, mapped to p on the surface of the unit
sphere represented by the angles θ and φ .

robots, attitude estimation is especially important. Micro-Electro-Mechanical Sys-
tems (MEMS) technology has led to a range of low-cost and compact light-weight
inertial measurement units that can be used to provide reliable measurements of an-
gular velocity, direction of gravity and altitude. Sensors for magnetic field direction
are also available. Good quality, lightweight and low-cost fisheye or catadioptric
camera systems are available to provide additional information such as the orienta-
tion of vertical edges in the environment [28] or the plane of the horizon [6]. None
of these sensors estimate full attitude, in SO(3), directly and it turns out that the
attitude estimation problem is best tackled using sphere-based measurements.

Optical flow is an important low-level image cue that encodes both ego-motion
and scene structure. We discuss the spherical optical-flow equation and its advan-
tages for detecting key ego-motion parameters such as direction of motion. The op-
tical flow equations can be inverted to create an image-based visual servoing (IBVS)
system as well as a structure from motion estimator.

The next section, Section 2, derives the optical flow equation and image Jacobian
for the sphere, and then in Section 3 we briefly recall the unified imaging model
that can be used to create a spherical image from one or more cameras that could be
perspective, fisheye or catadioptric. Section 4 describes sensor fusion on the sphere
for the case of attitude and full-pose estimation. Section 5 inverts the optical flow
equation to effect control on the spherical image plane and Section 6 outlines the
advantages of the sphere for the structure from motion problem.

2 Spherical Optical Flow

As for the case of a perspective camera [21] we assume that the camera is moving
with translational velocity T = (tx, ty, tz) and angular velocity ω = (ωx, ωy, ωz)
in the camera frame. A world point, P, with camera relative coordinates cP =
(X , Y, Z)T has camera-relative velocity
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˙cP = − cωe × cP + cTe (1)

which can be written in scalar form as

ẋ = zωy − yωz + tx (2)

ẏ = xωz − zωx + ty (3)

ż = yωx − xωy + tz (4)

The world point P is projected, Figure 1, to p on the surface of the unit sphere

x =
X
R

, y =
Y
R

, and z =
Z
R

(5)

where the focal point is at the center of the sphere and the radial distance to the point
is R =

√
X2 +Y 2 + Z2. The spherical surface constraint x2 + y2 + z2 = 1 means that

one of the Cartesian coordinates is redundant, and we will instead use a minimal
spherical coordinate system comprising the angle of colatitude

θ = sin−1 r, θ = [0, π) (6)

and the azimuth angle

φ = tan−1 y
x
, φ = [0, 2π) (7)

yielding the point feature vector f = (θ , φ). Other spherical image features are pos-
sible such as lines or moments [37].

Taking the derivatives of (6) and (7) with respect to time and substituting (2) –
(4) as well as

X = Z tanθ cosφ , Y = Z tanθ sinφ , Z = Rcosθ . (8)

we obtain, in matrix form, the spherical optical flow equation[
θ̇
φ̇

]
= J(θ , φ , R)

[
tx ty tz ωx ωy ωz

]T
(9)

where

J(θ , φ , R) =

⎡
⎢⎣ cos(φ)cos(θ)

R(t)
sin(φ)cos(θ)

R(t) − sin(θ)
R(t)

... −sin(φ) cos (φ) 0

− sin(φ)
R(t)sin(θ)

cos(φ)
R(t)sin(θ) 0

... − cos(φ)cos(θ)
sin(θ) − sin(φ)cos(θ)

sin(θ) 1

⎤
⎥⎦ (10)

is the image feature Jacobian or optical flow equation in terms of the spherical point
feature f = (θ , φ).

There are important similarities to the Jacobian derived for projective cameras in
polar coordinates [8,22]. Firstly, the constant elements 0 and 1 fall at the same place,
indicating that colatitude is invariant to rotation about the optical axis, that azimuth
angle is invariant to optical axis translation, but equal to optical axis rotation. As for
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Fig. 2 Spherical optical flow patterns for canonical motion along and about x-, y- and z-axes

all image Jacobians the translational sub-matrix (the first 3 columns) is a function
of point depth 1/R. Note also that the Jacobian is not defined at the poles where
sinθ = 0.

The optical flow patterns on the sphere, for canonical motions, are shown in
Figure 2. We note the distinctly different flow patterns for each Cartesian velocity
component. A perspective camera with its optical axis aligned with the z-axis has a
field of view equivalent to a polar cap, and within that small region of the sphere we
can see that the flow due to tx and ωy are close to indistinguishable, as are ty and ωx.
This is a consequence of making a 2-DOF measurement (optical flow) of a 6-DOF
phenomena (spatial velocity) leading to a null-space of order 4; in this some motions
are linearly dependent (the indistinguishable flows) and some are unobservable (two
are null at the pole).

We can also partition the Jacobian [10] into a translational and rotational part

[
θ̇
φ̇

]
=

1
R

Jt(θ , φ)

⎡
⎣ tx

ty
tz

⎤
⎦+ Jω(θ , φ)

⎡
⎣ωx

ωy

ωz

⎤
⎦ (11)

which is important for both control and structure estimation. For points at infinity
the first term will be zero.

Optical flow on the sphere can be calculated using a range of approaches, either
on the sphere, or on the camera’s image plane and mapped to the sphere as discussed
in the next section.
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3 Mapping Cameras to the Sphere

Recent and growing interest in wide-angle viewing systems [5, 32, 35] has been
driven by application need for path planning and collision avoidance and also the
availability of new cameras. For instance high-quality glass fisheye lenses with just
over a hemispherical field of view have been used by researchers for several years
now, and lower-quality low-cost plastic fisheye lenses suitable for small aerial robots
have also been investigated [34]. Reasonable quality, lightweight and or catadioptric
camera systems are also available.

The unified model of Geyer and Daniilidis [16] provides a convenient framework
to consider very different types of cameras such as standard perspective, catadioptric
and many types of fisheye lens. The projection model is a two-step process and the
key concepts are shown in Figure 3. Firstly, the world point P is projected to the
surface of the unit sphere with a focal point at the center of the sphere. The center
of the sphere is a distance m from the image plane along its normal z-axis. Secondly
the point p is re-projected to the image plane m with a focal point at a distance l
along the z-axis, where l is a function of the imaging geometry.

Commonly used mirrors have a parabolic or hyperbolic cross-section, and for
these l = ε the eccentricity of the conic section: l = 1 for a parabola and 0 < ε < 1
for a hyperbola. This class of mirrors result in a central camera with a single effec-
tive viewpoint, that is, all rays in space intersect at a single point. Mirrors commonly
used in robotics, for example [12,35], have an equiangular model and the viewpoint
lies along a short locus (the caustic) within the mirror. In practice this difference
in focal point is very small compared to the world scale and such mirrors are well

image plane
m(u, v)

z

P(X , Y, Z)

p(x, y, z)

m

l

Fig. 3 Unified imaging model of Geyer and Daniilidis [16].
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approximated by the central model. Subsequent work [40] showed that many fish-
eye cameras could also be included in this framework, generally with l > 1. For a
perspective camera l = 0 and the first and second projection rays overlap.

We can invert the unified model and project an image, features or optical flow
from a camera image plane (perspective, fisheye or catadioptric) to the sphere for
subsequent processing. In [18] catadioptric and fisheye images were projected to
the sphere for scale-space computation using a spherical equivalent of the Gaussian
kernel. In [34] sparse optical flow was projected to the sphere for focus of expansion
detection.

True spherical cameras are under development [25, 29] but until they become a
reality we must be content with partial spherical views from a camera, or a mosaic
view from multiple cameras (such as the Point Grey Ladybug camera). The spherical
framework allows the mapping of multiple cameras with different orientations and
different fields of view and projection models to the sphere from their individual
image planes, and this is shown schematically in Figure 4 (left).

In practice the various images are not obtained from exactly the same viewpoint,
but from slightly offset viewpoints caused by the physical separation of the indi-
vidual cameras and this leads to parallax error as shown in Figure 4 (right). This
is problematic in areas of camera overlap and exacerbated when the inter-camera
distances are significant compared to the distance to the point. It can be resolved,
that is, the point projected to O if the range to P can be estimated which is a stereo
vision problem between the cameras centered at C1 and C2.

z2z3

z1

O

z2

z1

P

p2

p1

C1

C2

Fig. 4 (left) multiple camera views mapped to the sphere, (right) parallax on the sphere when
camera centers, C1 and C2 are not coincident with the center of the sphere O.

4 Sensor Fusion on the Sphere

4.1 Attitude Estimation

There is a considerable body of work on attitude reconstruction for robotics and
control applications (for example the review [13]). A standard approach is to use
extended stochastic linear estimation techniques [26]. An alternative is to use de-
terministic complementary filter and non-linear observer design techniques [1, 39].
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[15]. The recent interest in small low-cost aerial robotic vehicles has lead to a re-
newed interest in lightweight embedded IMU systems [1, 23, 36]. For the low-cost
light-weight systems considered, linear filtering techniques have proved extremely
difficult to apply robustly [33] and linear single-input single-output complementary
filters are often used in practice [9]. The integration of inertial and visual informa-
tion is discussed in [11].

Gyroscopes provide an estimate of angular velocity, Ω , corrupted by an offset
which leads to drift in attitude after integration. We can constrain the estimate by
minimizing the error angle between a reference direction and its estimate on the
sphere in the body-fixed-frame. To fully constrain the solution at least two non-
collinear reference directions are required. Each of these directions and estimates
can be projected to the surface of the sphere as shown in Figure 5 as small circles.
One such reference direction can be obtained from the gravity field vector — the
the magnitude is irrelevant only its direction on the sphere is required. If the body
is accelerating in the inertial frame this vector will be corrupted by inertial forces,
however, for steady or hovering flight of a UAV the accelerometers approximately
measure the gravitation field in the body-fixed-frame. Another reference direction
can be provided by the Earth’s magnetic field B at the location. Visual tracking of
very distant feature points (at infinity) provide additional reference directions.

The natural framework to interpret these measurement is on the sphere in the
body-fixed-frame of the mobile vehicle. Recent work in the development of non-
linear observers for attitude estimation provides an ideal framework for the

Ω
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pi
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ĝ

Fig. 5 Sensor integration on the sphere. The attitude of the body is indicated by the x-, y-
and z-axes. The predicted and measured sensor vector projections are shown by small circles.
Visual landmarks are also included.
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construction of robust and efficient attitude filters based on vector measurements
on the sphere [30, 2, 4, 38, 31].

More formally the attitude estimation problem can be expressed in terms of
sphere based measurements [30] using the matrix Lie-group representation of SO(3)
— the group of rotations associated with the attitude of a rigid-body. The attitude
kinematics is described by

Ṙ = R BΩ×. (12)

where BΩ is the body-fixed-frameangular velocity of the rigid-body and [ ]× denotes
the skew-symmetric matrix. Consider measurements from n ≥ 1 sensors in the body-
fixed frame ai ∈ S2

B i = 1,2, . . .n each of which has an associated reference directions
in the world frame a0i ∈ S2

W . These are expressed as vectors on the unit sphere in the
inertial frame. Let âi be the estimates of the sensor measurements in the body frame

âi = R̂�a0i (13)

based on the estimated attitude R̂.
The complementary observer proposed in [30] is

˙̂R = R̂(Ωy − b̂+ωmes)× (14)
˙̂b = −2kIωmes (15)

ωmes =
n

∑
i=1

ki(ai × âi) (16)

where Ωy is the measured body-fixed-frame angular velocity obtained from the gy-
roscopes, b̂ is the gyroscope bias, and ki ≥ 0. It is shown that the attitude estimate R̂
will approach the true attitude R asymptotically. For implementation we use quater-
nions and the following algorithm:

1. Determine ωmes from available sensor measurements according to (13) and (16)
2. Compute the quaternion velocity

˙̂q =
1
2

q̂⊗ p
(
Ωy − b̂+ kPωmes

)
where p converts a vector to a pure quaternion and ⊗ represents quaternion
(Hamiltonian) multiplication.

3. Integrate and renormalize the quaternion

q̂k+1 = q̂k + δt ˙̂q

q̂k+1 = q̂k+1/||q̂k+1||

4. Update the gyroscope bias estimate

b̂k+1 = b̂k + δt
˙̂b

The gains ki(t) can be set adaptively depending on confidence in particular sensors.
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4.2 Pose Estimation

Pose estimation, including both position and attitude estimation, is a key require-
ment for autonomous operation of robotic vehicles, especially aerial robots. Mod-
ern Global Positioning Systems (GPS) are have decreasing cost, weight, and energy
consumption while increasing quality and functionality. Carrier phase doppler shift
can be extracted from GPS signals to provide inertial frame velocity estimates of
a vehicle’s motion [19] and rotated into the body-fixed-frame based on an attitude
estimate.

In the absence of GPS, due to denial or a multi-pathing environment, we can
extract information about translational motion from the optical flow field. If op-
tical flow due to rotational motion is estimated and subtracted, a process known
as derotation, the remaining optical flow is due only to translation, corrupted with
noise from the optical flow process itself and errors in the rotational estimate. A
characteristic of the translational flow field is a focus of expansion on the sphere at
the point defined by the vector d where d = t/|t|. As discussed above the optical
flow encodes translational motion with a scale uncertainty, that is t/R not t can be
identified. Expressed another way, the direction of motion is a unit vector through
the focus of expansion on the sphere. A corresponding focus of contraction will be
found at the antipodal point. Recent approaches to determining the focus of expan-
sion from optical flow are [27].

5 Control on the Sphere

Visual servoing is the use of information from one or more cameras to guide a robot
so as to achieve a task [7, 21]. Image-Based visual servoing (IBVS) is a robust and
efficient technique where the task is defined in terms of the desired view of the tar-
get and a control law is synthesized to move the camera toward that view. The goal
is defined implicitly in the desired view. The pose of the target does not need to
be known apriori, the robot moves toward the observed target wherever it might be
in the workspace. Image-based control can be considered as an inverse problem to
optical flow — given a current and desired view the required optical flow can be
computed, the problem is to determine the motion in SE(3) to achieve it. Most of
the visual servoing literature is concerned with perspective cameras and a Carte-
sian image plane. More recently polar coordinates have been used with perspective
cameras, and spherical cameras [17, 22].

For control purposes we follow the normal procedure of computing one 2 × 6
Jacobian, (9), for each of N feature points and stacking them to form a 2N × 6
matrix ⎡

⎢⎢⎢⎢⎢⎣

θ̇1

φ̇1
...
θ̇N

φ̇N

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎣

Jp1
...

JpN

⎤
⎥⎦v (17)
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Fig. 6 IBVS on the sphere. (a) initial pose, (b) final pose, (c) feature motion on the θ -φ plane,
(d) pose evolution.

The control law is
v = J+ ḟ ∗ (18)

where ḟ ∗ is the desired velocity of the features. Typically we choose this to be
proportional to feature error

ḟ ∗ = −γ( f � f ∗) (19)

where γ is a positive gain, f is the current value of the feature vector, and f ∗ is
the desired value, which leads to linear motion of features within the feature space.
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� denotes modulo subtraction giving the smallest angular distance given that θ =
[0, π) and φ = [−π , π).

Figure 6 presents simulation results for spherical IBVS for the case of general
motion with translation and rotation in all axes. The target consists of four points
arranged in the plane, and the servo task is to move to a pose where the camera’s
z-axis is normal to the plane and 3m away. We can see that the velocity demand is
well behaved and that the features have followed direct paths in the feature space.
One feature has wrapped around in the azimuth direction.

If the attitude was servoed by a non-visual sensor such as gyroscope, accelerom-
eter or magnetometer then we could use a partitioned IBVS scheme [10] where we
would write (11) as

1
R

Jt(θ , φ)

⎡
⎣ tx

ty
tz

⎤
⎦=

[
θ̇
φ̇

]
− Jω(θ , φ)

⎡
⎣ωx

ωy

ωz

⎤
⎦ (20)

and solve for translational velocity.
Classical visual servo control, as just described was principally developed for

serial-link robotic manipulators [21] where all camera degrees of freedom are actu-
ated. The dynamics of the system are easily compensated using a computed torque
(or high gain) control design and the visual servo control may be derived from a
first order model of the image dynamics [14]. Recent applications in high perfor-
mance systems and under-actuated dynamic systems have lead researchers to con-
sider full dynamic control design. Coupling of the camera ego-motion dynamics in
the image plane proves to be a significant obstacle in achieving this goal and [24]
proposed an asymptotically stable method for position regulation for fixed-camera
visual servoing for a dynamic system. A further complication is encountered when
an under-actuated dynamic system is used as the platform for the camera and [41]
used a Lagrangian representation of the system dynamics to obtain an IBVS control
for a blimp, an under-actuated, non-holonomic system.

An IBVS controller for a class of under-actuated dynamic systems has been pro-
posed [17]that does not require accurate depth information for image features. Ex-
ploiting passivity they observe that

the only image geometry that preserves the passivity-like properties of the body fixed
frame dynamics of a rigid object in the image space are those of a spherical camera.

6 Structure and Motion Estimation on the Sphere

In the IBVS example of the previous section the values of R required to compute
the image Jacobian were taken from the simulation engine, but in a real system they
would not be known. Experience with IBVS shows that it is quite robust to errors in
point depth, R, and typically the final depth value is assumed throughout the motion.
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The point depth can also be estimated, by rewriting (11) in identification form as⎛
⎝Jt(θ , φ)

⎡
⎣ tx

ty
tz

⎤
⎦
⎞
⎠(1/R) =

[
θ̇
φ̇

]
− Jω(θ , φ)

⎡
⎣ωx

ωy

ωz

⎤
⎦ (21)

or
Aθ = b (22)

where the camera motion (Tx, Ty, Tz, ωx, ωy, ωz) is known, since IBVS commands
it, and (θ̇ , φ̇ ) is the optical flow which is observed during the motion. This a spher-
ical structure from motion (SfM) system [20]. For the example of the previous sec-
tion, the results of this estimator are shown in Figure 7 for one of the four target
points. This is a very cheap estimator but we could also use a Kalman filter as is of-
ten used in structure from motion systems. Depth could be estimated for all tracked
points in the scene, not just those used for servoing.
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Fig. 7 Comparison of estimated and true point depth.

This leads to our final use for the sphere, the scene structure can be conve-
niently considered in camera-centric form as a spherical depth map D : S2 → R.
This form makes it trivially easy to handle camera rotational motion, the depth map
rolls around the sphere. For translational motion of the camera points move over the
sphere according to the direction of translation and point depth. We believe that this
structure is amenable to a particle filter, operating on the sphere, which is able to
better model the non-Gaussian distribution of depth uncertainty.

7 Conclusions

In this paper we have presented the sphere as a unifying concept, not just for cam-
eras, but for sensor fusion, estimation and control. For robots that move in SE(3)
such as UAVs or AUVs the advantages of the sphere are particularly strong.
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The unified imaging model is of Geyer and Daniilidas [16] is well known and
uses spherical projection to model catadioptric cameras with mirrors which are con-
ics. However the model is also an excellent approximation for other shaped mirrors
such as equiangular and can also model many fisheye lenses. This is convenient
for robotics where the advantages of wide-angle cameras include wide perceptual
field for path planning and collision avoidance and resolving the ambiguity between
rotation and translation which is problematic in a perspective cameras. The uni-
fied model also provides a framework for mosaic creation through projection from
camera image planes, and image processing operations such as scale-space feature
detectors can be formulated on the sphere. Camera ego-motion results in the appar-
ent motion of points, optical flow, in the spherical image. Points on the surface of a
sphere are commonly described by a unit 3-vector but this description is redundant
and we presented a formulation of the optical flow equation in terms of two angles:
colatitude and azimuth. spherical imaging model are increasingly well known.

The problem of attitude estimation is very naturally treated on the sphere
using the matrix Lie-group representation of SO(3). An asymptotically stable es-
timator that can incorporate multiple sensors such as gyroscopes, magnetometers,
accelerometers and visual landmarks is presented. Inverting the optical flow equa-
tion leads to a spherical image-based visual servoing scheme which exhibits the
desirable properties of the more well-known planar IBVS scheme such as robust-
ness to depth uncertainty, and like the polar-planar IBVS performs well for large
rotational motions. Adding a simple state estimator based on the inverted optical
flow equation leads to a structure from motion solution, and the consideration of a
camera-centric spherical depth map as a convenient world representation.
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Estimating Ego-Motion in Panoramic Image
Sequences with Inertial Measurements

Felix Schill, Robert Mahony, and Peter Corke

Abstract. This paper considers the problem of estimating the focus of expansion
of optical flow fields from panoramic image sequences due to ego-motion of the
camera. The focus of expansion provides a measurement of the direction of motion
of the vehicle that is a key requirement for implementing obstacle avoidance algo-
rithms. We propose a two stage approach to this problem. Firstly, external angular
rotation measurements provided by an on-board inertial measurement unit are used
to de-rotate the observed optic flow field. Then a robust statistical method is ap-
plied to provide an estimate of the focus of expansion as well as a selection of inlier
data points associated with the hypothesis. This is followed by a least squares min-
imisation, utilising only the inlier data, that provides accurate estimates of residual
angular rotation and focus of expansion of the flow. The least squares optimisation
is solved using a geometric Newton algorithm. For the robust estimator we consider
and compare RANSAC and a k-means algorithm. The approach in this paper does
not require explicit features, and can be applied to patchy, noisy sparse optic flow
fields. The approach is demonstrated in simulations and on video data obtained from
an aerial robot equipped with panoramic cameras.

1 Introduction

The estimation of the ego-motion of a camera from observation of a sequence of
images is a classical problem in the computer vision literature. Algorithms based on
eight or more point correspondences [18, 10] are well known, while for calibrated
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Fig. 1 Video image and optic flow (left) extracted from on-board video camera of the Hum-
mingbird quad-rotor aerial robot (right)

cameras algorithms exist for as few as five point correspondences [15, 22]. In the
case where high accuracy is required the bundle adjustment method can be used
[26]. In addition to the classical methods, there have been a wide range of other
methods considered in the literature [14, 23, 12, 11, 3, 21].

It is well known that for an image sequence with a small field-of-view it is dif-
ficult to distinguish between translation and rotation around orthogonal axes [2, 7].
In addition, there is is often a natural bias in solving the instantaneous epipolar con-
straint, the most common approach to recovering instantaneous motion, associated
with grouping of image points in one small area [7]. Using panoramic or catadiop-
tric cameras with a large field-of-view can substantially overcome this issue [7].
Due to the inherent ambiguity in velocity there have been a number of studies based
on qualitative analysis of ego-motion methods [5, 6, 25] that utilise panoramic cam-
eras, however, these methods often use explicit search routines to determine the best
motion fit and are computationally expensive. In recent work Lim and Barnes have
developed methods to compute ego-motion from antipodal pairs of optic flow vec-
tors [16, 17]. Almost all the literature in this area has been developed based on the
assumption that the camera is the only sensor. In robotic applications, especially
those involving aerial robots, there is almost always an inertial measurement unit
(IMU) on the vehicle that can provide a substantially correct estimate of rotation
over short periods. However, the vision system for such applications often has poor
quality optics, and if the video signal is being transmitted to ground there are arti-
facts due to signal interference. The authors know of no prior work that addresses
the specific issues associated with ego-motion extraction for such a situation.

In this paper, we propose an algorithm for extracting ego-motion from a panoramic
image sequence where the angular velocity can be measured using a separate sensor.
We are primarily motivated by applications in aerial robotics where the vehicle is
equipped with a wide angle fish-eye (or catadioptric) lens and inertial sensors. The
vision sequences obtained from such vehicles often contain large regions where there
is insufficient texture to generate optic flow, for example, regions of sky, or regions
distant from the camera where the optics are of insufficient quality to generate good
texture. This can make it difficult or impossible to find antipodal points. In addition,
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there are often extreme outliers in the optic flow field caused by errors in the optic flow
algorithm induced by artifacts in the video due to signal interference and multi-path
effects in video transmission. We propose a two stage approach. Firstly, optic flow
is computed from the image sequence and then this flow is approximately de-rotated
using the data from the gyroscopes (which are components of the vehicle’s inertial
measurement unit). This is achieved by subtracting the expected rotational optic flow
(due to the measured angular velocity) from the measured optical flow. The resulting
flow is almost entirely due to the translational ego-motion of the camera, except for
errors and noise in IMU measurements and flow extraction, and has a simple structure
that allows us to develop simple models to determine the unique focus of expansion
(FoE), corresponding to the direction of motion of the camera. The focus of expansion
estimate provides valuable information for object avoidance and vehicle guidance
[20, 24].

We investigate two robust statistical methods, RANSAC and k-means, aimed at
generating a reasonable hypothesis of the FoE of the flow and identify inlier and out-
lier optic flow measurements in the data. We then describe how an initial estimate
of the focus of expansion can be refined in both translation and residual rotation by
minimising a least squares cost based on the instantaneous epipolar condition posed
on the sphere. We compute the geometric gradient and geometric Hessian and pro-
pose a Newton update step. The Newton minimisation is embedded in the RANSAC
framework as the second model refinement step for each iteration. Given that the
initial estimate provided by the first stage of the algorithm is moderately correct,
this stage usually converges in at most three iterations. Moreover, the eigenvalues
of the Hessian provide a measure of confidence in the estimate. A poor condition
number for the Hessian indicates the likelihood of an unreliable estimate and the
overall magnitude of eigenvalues is proportional to the distance scaled velocity of
the vehicle. A common problem with Newton algorithms is poor convergence for
badly chosen starting values. The presented problem is especially sensitive to rota-
tion, however by using the rotation measurements from the onboard inertial sensors
a reasonably close starting value can be computed.

The proposed algorithms are tested on synthetic data with outliers and noise, and
demonstrated on video and inertial data obtained on a small aerial robotic vehicle.

2 Problem Formulation

In this section, we introduce some notation and develop the cost function that will
be used to refine ego-motion estimates on the sphere.

We are interested in applications where there is a wide field of view fish eye or
catadioptric video camera moving through a static world environment. We assume
that the camera frame rate is fast compared to the relative optical velocity of the ob-
served scene, i.e. pixel displacements are sufficiently small that perspective changes
and lens distortions will not change significantly. Consequently the optic flow can be
computed directly on the raw image sequence and the resulting flow vectors mapped
back onto a spherical image plane based on a known calibration of the camera. The
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spherical optical flow field is denoted Φ and associates a flow vector Φ(η) ∈ TηS2

in the tangent space of the sphere to a point η ∈ S2 on the sphere. In practice, we are
normally constrained to a sparse computation of optic flow, that is measurements at
a finite number of points on the sphere indexed by {ηi} for i = 1, . . . ,n, with n the
number of optic flow vectors measured in a given reference image.

The optic flow can be split into translational and rotational components

Φ(η) =Ψ(η)+Θ(η). (1)

Here Θ(η) := −Ω × η , with Ω ∈ {B} the body-fixed frame angular velocity of
the camera, is the contribution to the optic flow from the rotational motion of the
camera, while the translation component of flow is given by Ψ(η) := 1

λ (η)Pηv,

where Pη = (I3 −ηη�) is the projector onto TηS2 and v ∈ {B} is the body fixed
frame translational velocity of the vehicle.

In order to derive an optimisation-based method for identification of ego motion
it is necessary to define a cost function. We propose to use a modified version of the
instantaneous epipolar constraint. Let ŵ denote the estimate of w ∈ S2 of the true
direction of motion of the vehicle. That is, set

w =
v
|v| , for v �= 0,

and ŵ ∈ S2 an estimate of w ∈ S2. The direction of motion w is also the focus of
expansion (FoE) of the translational flow fieldΨ on the sphere.

For each individual optic flow vector Φ(η) measured at a point η ∈ S2 the in-
stantaneous epipolar constraint computed for estimates ŵ and Ω̂ is

eΦ(η)(ŵ,Ω̂) := 〈ŵ,
(
Φ(η)+ Ω̂ ×η

)
×η〉. (2)

Note that if Ω̂ is correct then Φ(η)+ Ω̂ ×η =Ψ(η) is the true translational optic
flow. Taking the vector product of this with its base point η leads to a vector that is
orthogonal to the direction of motion of the vehicle. Taking the inner product of the
resulting vector with ŵ is zero precisely when ŵ = w is the true direction of motion.
The instantaneous epipolar constraint is often written 〈ŵ × η ,

(
Φ(η)+ Ω̂ ×η

)
〉,

however, this can be transformed into (the negative of) Equation (2) using the prop-
erties of vector triple products and the form given above is more convenient for the
gradient and Hessian computations undertaken later.

Since the optic flow is measured at a finite number of scattered points the cost
considered is a sum

f (ŵ,Ω̂) :=
n

∑
i=1

e2
Φ(η)(ŵ,Ω̂ ) =

n

∑
i=1

〈ŵ,
(
Φ(η)+ Ω̂ ×η

)
×η〉2 (3)

It is clear that for ideal data the cost f is zero for the correct for ŵ = w and Ω̂ =Ω .
The cost f is a smooth function f : S2 × R3 → R and can be optimised on this set
using geometric concepts. A weakness of the cost proposed is that it is highly
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susceptible to perturbation by large magnitude outliers in the data. Optic flow al-
gorithms often yield exactly this sort of error due to occasional mismatched point
correspondences. Thus, direct minimisation of the cost f is likely to lead to poor
ego-motion estimation. The next section applies robust statistical algorithms to over-
come this issue.

3 Robust Estimation of Focus of Expansion

In this section we present two robust statistical methods for providing an estimate
of focus of expansion of the image sequence. The approach is directly based on
the application domain and we assume that a measurement of angular velocity of
the vehicle is available, for example through the inertial measurement unit that is
mounted on the aerial vehicles that we consider. As both the camera and the inertial
measurement unit are mounted on the vehicle we will use the vehicle coordinate
frame for all calculations. Direction estimates can easily be transferred into a world
frame by applying a rotation that can be obtained from a complementary attitude
filter [19][4].

Using the measured angular velocity, Ωy ∈ {B}, the measured optic flow can be
de-rotated.

ΨΩy(ηi) :=Φ(ηi)−ΘΩy(ηi) =Φ(ηi)+Ωy ×ηi.

The resulting estimate, ΨΩy(ηi), of translational flow is only defined at measured
flow points ηi.

Any two measurements of translational flow ΨΩy(ηi) and ΨΩy(η j) can be used
to generate a hypothesis for the focus of expansion of the flow field. Since the flow
vectors must lie in a plane containing the flow vector and the base point η then the
intersection of these two planes provides an estimate of the focus of expansion for
the flow field. Thus,

ŵ(Ωy,ηi,η j) :=
(ΨΩy(ηi)×ηi)× (ΨΩy(η j)×η j)
|(ΨΩy(ηi)×ηi)× (ΨΩy(η j)×η j)|

. (4)

This hypothesis is sign indeterminate so we introduce a corrected hypothesis ŵc is

ŵc(Ωy,ηi,η j) := ŵ(Ωy,ηi,η j) · sign(〈ŵ,Φ(η1)〉) (5)

There are potentially n(n − 1)/2 (where n is the number of flow vectors measured)
hypotheses that can be generated based on (4).

The k-means algorithm is applied by collecting a large number of of hypotheses
and then clustering these hypotheses into classes. k-means clustering is a standard
algorithm [9, 13] that is extensively used in the field of computer vision and we
will not cover the details of the algorithm implementation. It is also possible to use
different clustering algorithms. The distance between hypotheses for clustering pur-
poses is the angle between two hypotheses. The estimate of the focus of expansion is
provided by the centroid (the normalised mean) of the largest cluster of hypotheses,
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Fig. 2 Estimation results for k-means (top plot) and RANSAC (bottom plot), for synthetic
flow, 30% outliers and 0.001 Gaussian noise (reference signal is the normalised true transla-
tion from the simulation) Note the significantly better performance of the RANSAC algorithm
due to the Newton iteration step.

which also forms the inlier set. A Newton algorithm (described in Section 4) can be
applied to the support set of the best cluster from the k-means algorithm to refine the
best estimate, however it was found that this would often not converge if there are
outliers present (see section 5). The described k-means algorithm can only generate
an estimate for the focus of expansion, but not the residual rotation, and therefore
relies on adequate removal of rotational flow.

To overcome these limitations, we merged the hypothesis generation of the
k-means approach and a 6 DOF Newton model refinement into a more robust
RANSAC framework. The RANSAC algorithm is based on consensus scoring of
hypotheses and once again is a well known algorithm extensively used in com-
puter vision applications [8, 10]. The algorithm is applied by randomly selecting
pairs of flow vectors and generating hypotheses according to Equation 5 and using
a normalised mean of the hypotheses generated. All flow vectors are then scored
with regard to that hypothesis using the cost function (2) to determine the inlier or
consensus set, consisting of all flow vectors where eΦ(η) < t (t is the acceptance
threshold). The hypothesis along with its consensus set is then used to initialise the
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Newton iteration discussed in the next section and a refined estimate of both FoE
and angular velocity is computed. Over several iterations, the refined estimate with
the smallest residual is chosen as the best estimate from the algorithm.

4 Refining the Motion Estimate

In this section we present a geometric Newton algorithm that can be used to effi-
ciently refine the estimates of ego-motion based on minimising the cost (3). The
Newton algorithm requires a reasonable estimate of the local minima and identifi-
cation of inlier flow vectors to provide a reliable estimate of ego-motion. The im-
plementation of the Newton method also needs to respect the unit norm constraint
on the focus of expansion estimate ŵ in the optimisation problem. We achieve this
by deriving the Newton algorithm with respect to the geometry of the constraint set.
Details on geometric optimisation algorithms can be found in Absil et al. [1].

For the sake of simplifying notation we define

Z(Ω̂ ) :=
(
Φ(η)+ Ω̂ ×η

)
×η . (6)

The geometric gradient of f is an element of T(ŵ,Ω̂)S
2 × R3. It is obtained by dif-

ferentiating f (ŵ,Ω̂) in an arbitrary direction and then using the natural Riemannian
metric to obtain a tangent vector;

grad f (ŵ,Ω̂) =
(

Pŵ
(
∑n

i=1 Z(Ω)Z�(Ω)
)

ŵ
−∑n

i=1

(
(ŵ�Z(Ω))Pηi ŵ

)) , (7)

recalling that Pv = I3 − vv� is the projection onto TvS2.
It is possible to consider a gradient descent method to optimise the cost function

f defined in (3). However, due to the inherent nature of the data, the cost function is
several orders of magnitude more sensitive to change in the angular velocity estimate
than the FoE estimate, leading to very poor convergence of naive gradient descent
algorithms. In practice, effective implementation of a gradient descent algorithm
would require preconditioning of the gradient. Since an initial guess of the local
minimum is available from the k-means or RANSAC algorithm (Section 3) it is
possible to overcome this difficulty by using a Newton algorithm directly.

The geometric Hessian for f can be written

Hess f (ŵ,Ω̂) = (8)⎛
⎜⎜⎝

Pŵ

(
n
∑

i=1
Z(Ω)Z(Ω)�

)
Pŵ −Pŵ

n
∑

i=1

(
(ŵ�Z(Ω))Pηi +Z(Ω)ŵ�Pηi

)
−

n
∑

i=1

(
(ŵ�Z(Ω))Pηi +Pηi ŵZ(Ω)�

)
Pŵ

n
∑

i=1

(
Pηi ŵŵ�Pηi

)
⎞
⎟⎟⎠

The Hessian is written as an element of R6×6 due to the identification of tangent
vectors in TŵS2 with elements of R3. However, the vector ŵ is normal to the tangent
space TŵS2 and it follows that v0 := (ŵ,0) ∈ R6 is a zero eigenvector of the Hes-
sian Hess f in (8). The remaining five eigenvalues are associated with the quadratic
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structure of the cost f at the point (ŵ,Ω̂ ). Due to the zero eigenvalue the inverse
Hessian in the Newton algorithm has to be implemented with a pseudo inverse rou-
tine. In addition, the new estimate must be re-normalised onto the sphere at each
iteration of the Newton algorithm [1]. For initial conditions close to the minimum
of f each iteration of the Newton algorithm provides an additional two orders of
magnitude of accuracy. In practice, at most two or three iterations are sufficient for
the purposes of our calculations given that a suitable initial condition is available.

As an additional advantage of applying the Newton algorithm, it is a straightfor-
ward exercise to compute the condition number of the Hessian as the ratio of the
magnitudes of largest to smallest eigenvalues of the five meaningful eigenvalues of
Hess f at the cost minimum. The condition number provides a reliability measure
for the estimate of ego-motion of the system, a large condition number indicating
that the minimisation is ill-conditioned. The eigenstructure of the Hessian can be
used to identify directions of poor resolution of the ego-motion parameters.

5 Results

The combined algorithms were thoroughly tested with synthetically generated opti-
cal flow data, and on real video sequences obtained from a small-scale quad-rotor
aerial vehicle. For the synthetic data, the true ego-motion of the vehicle is known
and can serve as ground truth for comparisons. For the video sequences from the fly-
ing vehicle the inertial measurements from the on-board IMU were recorded. The
measured rotations are used to de-rotate the spherical flow field. The trajectories of
the vehicle can be compared qualitatively to the data obtained, however ground truth
data was not available.

For the simulation tests the flow field was generated by creating a Gaussian-
distributed point field (offset from origin: 18 along y-axis, sigma=10) for one-sided
flow coverage. The offset of the point field simulates incomplete flow from a single
camera, covering slightly less than half of the sphere. Tests for surrounding flow
coverage where conducted on a Gaussian point field centered at the origin with the
same variance.

Flow is created by translating and rotating the point field, and projecting start- and
end position onto the sphere. A certain percentage of vectors (30%) is randomised
to simulate large outliers, and Gaussian noise (σ = 0.001 or σ = 0.002) is added
where appropriate in the simulations. Note that the Gaussian noise is applied directly
to flow vectors on the unit sphere, which is independent of the pixel resolution of the
camera. The value σ = 0.002 corresponds to 0.115 degrees on the sphere, which is
approximately half a pixel for a PAL resolution camera with a 170 degrees field of
view. The amount of outliers and noise approximately reflect the distortions found
in real optical flow. For simplicity, and independence of specific camera parameters,
the simulation is unitless. The spherical camera is simulated by projecting scene
points onto a unit sphere. In reality a fish-eye lens can be used, or other means of
generating a spherical panoramic image.
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One-sided flow
outliers, noise→ 0% 0.0 0% 0.001 30% 0.0 30% 0.001 30% 0.002
k-means (translation) 0.061 0.03 2.1 1.8 1.2 1.1 3.1 2.50 5.6 4.9
RANSAC (translation) 0.001 0.001 1.0 0.9 0.5 0.003 2.2 1.6 7.7 3.4
k-means (with rot.) 15.9 15.4 15.2 14.0 17.9 16.0 20.0 16.0 17.6 13.7
RANSAC (with rot.) 0.74 0.002 6.0 0.9 19.6 13.7 12.8 10.2 13.2 12.7

Surrounding flow
outliers, noise→ 0% 0.0 0% 0.001 30% 0.0 30% 0.001 30% 0.002
k-means (translation) 0.03 0.015 1.50 1.0 1.4 1.1 2.5 2.0 4.0 3.0
RANSAC (translation) 0.002 0.001 0.5 0.4 0.2 0.002 0.9 0.7 1.8 1.3
k-means (with rot.) 13.9 11.7 14.8 10.6 17.0 11.7 13.7 10.7 12.8 11.9
RANSAC (with rot.) 3.3 0.001 1.2 0.5 12.9 6.1 11.6 4.8 14.1 7.1

Fig. 3 Mean error (left value) and median error (right value) of FoE in degrees for synthet-
ically generated flow with one-sided flow (upper table) and surrounding flow (lower table)
coverage

The results can be seen in figure 3. Parameters for the k-means algorithm were
k=20, and 70 randomly picked pairs. The RANSAC algorithm uses 8 iterations, a
threshold t = 0.05, 20 vector pairs for the initial hypothesis. The Newton algorithm
was run for four iterations.

A key observation found was that the performance of the k-means algorithm was
not sufficiently reliable to use as the initialisation for the Newton algorithm. In par-
ticular, the segmentation of the image flow vectors was not sufficiently robust and
the Newton iteration was often undertaken with some outliers that significantly dis-
rupted the performance of the algorithm. As a consequence, the k-means results
are presented without any refinement step while the RANSAC algorithm contains
the Newton refinement as an integral part. The relative performance of the k-means
(without Newton) versus the RANSAC (with Newton) is clearly seen in figure 2.
This can also be seen in the results shown in Table 3. Nevertheless, in the absence
of noise all algorithms perform well, even when flow can only be obtained from one
side of the sphere. As noise increases, one-sided flow extraction becomes increas-
ingly unstable (notably it is more affected by noise than by outliers). If residual
rotation of up to 15 degrees/sec is present in the flow field (i.e. due to imperfect
inertial measurements - see lines 3 and 4 in table 3), the estimation results worsen
— again more pronounced in the one-sided case.

To test the real-world performance of the algorithm a panoramic PAL camera
with a 170 degree field of view fisheye lens was mounted on a linear horizontal rail.
The experiment was carried out indoors; most objects were within 2-4 m of the cam-
era. The camera and lens are identical to those used on the quadrotor flying robot
presented later. Optic flow is computed using the sparse implementation of pyrami-
dal Lucas-Kanade (from OpenCV) on a 10 by 10 grid which is equally distributed
across the image. Due to weight constraints on flying platforms the lens is of rela-
tively low quality which results in significant blur towards the edges of the image.
Despite the loss of texture it is still possible to extract usable optic flow from the pe-
riphery, albeit with slightly reduced confidence. The mapping of flow to the sphere
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Fig. 4 FoE extraction for a camera mounted on a linear rail. The plots on the left show the
results for the camera moving forwards and backwards along the optical axis (top: k-means,
bottom: RANSAC), the plots on the right for the camera moving sideways perpendicular to
the optical axis (again top: k-means, bottom: RANSAC).

assumes a constant angle per pixel rate. The mapping function is approximate, a
formal calibration was not applied. This means that the algorithms have to be able
to cope with measurement and calibration errors that can be expected in many appli-
cations. The k-means and the RANSAC algorithm were applied to this data and the
results are shown in figure 4. The camera did not rotate in this experiment, therefore
it no IMU was used, and no derotation was applied. Both algorithms perform very
well. Due to the absence of any rotation the k-means algorithm performs well, and
the RANSAC algorithm does not improve the results.

The algorithms were also applied to video sequences that were collected from
a small quad rotor flying vehicle (see figure 1). This electronically stabilised vehi-
cle is equipped with a forward looking PAL camera, an IMU, and radio systems
that transmit the real-time video images (25 fps) and inertial measurements to the
base station. The IMU is a ThinIMU micro by Scinamics with 500 deg/sec full scale
range, 3 g accelerometer and 12 bit resolution. Gyro drift after bias calibration is typ-
ically 1-2 degrees per minute. The IMU data is transmitted to the ground via a 2.4
GHz XBee transmitter. Video is transmitted via a 5.8 GHz analog video link which
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Fig. 5 FoE extraction for real world flyer scenarios, flying forwards and backwards along
a straight line. The plot on the top shows the estimates from k-means, the lower plot shows
the RANSAC results. The dashed lines are the approximate velocity data integrated from the
inertial unit. Note that the FoE estimates are normalised, the velocity is not.

offers good video quality at full resolution without compression artifacts and negli-
gible latency. Video images are captured at 720 × 576 pixels by a PCI framegrabber
card, but the captured images are downsampled to half resolution before computing
optical flow which provided sufficient flow information for motion reconstruction.
Efforts have been made to reduce all signal latencies to a minimum. Both signals
(video and inertial measurements) were synchronised and recorded on the base sta-
tion. Approximately 100 flow vectors were computed from each image. The first
test sequence consists of the vehicle flying repeatedly forwards and backwards in a
straight line for approximately 7-10 m. In the second test sequence the flight pattern
is roughly circular (manually controlled). The flight tests were conducted outdoors.
A few trees were within 2-3 m of the flight path (sequence 1 only) which produced
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Fig. 6 The same as in figure 5, for the flyer following an approximate circle.

strong translational flow due to the short range. Altitude above ground was approx-
imately 1-2 m, and airspeed reached over one meter per second. The results can be
seen in figures 5 and 6. The z-axis denotes the forward direction of the flyer, the
x-axis points to the right, and the y-axis points up.

Ground truth data was not available for the flight tests. However, for compari-
son the velocity estimate from the IMU is plotted as well. The velocity estimate
was calculated by applying a complementary attitude filter with drift compensation,
subtracting the estimated gravity vector from the accelerometer values, and integrat-
ing the residual acceleration. To avoid increasing drift errors a leaky integrator was
used which pulls the velocity estimate back to zero over time. To reduce errors the
IMU was carefully calibrated, and flights were kept short (20-30 seconds). Despite
the imperfections the estimates allow a qualitative comparison between two very
different sensor modalities.
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Figure 5 shows the FoE estimates sequence 1 (linear flight). The estimates for the
sequence 2 (circular flight pattern) are shown in figure 6. The estimates are in vehicle
(or camera) coordinates, thus, banking or pitching motions may result in deviations
of the estimate from a straight line in world coordinates – however, such motions are
small. A sliding window filter of 10 frames was applied to the plots. The plots show
that for real data, both the k-means and RANSAC algorithm deliver reasonably good
estimates of the direction of travel. The reduced performance compared to the initial
experiment with a rail mounted camera can be attributed to the imperfect estimation
of rotation, synchronisation errors between IMU and video, artifacts from the wire-
less video transmission (noise, occasional drop-outs), and larger accelerations and
velocities. Significant differences between the performance of the two algorithms
cannot be concluded as they are obscured by the higher level of noise. It is likely
that the performance will improve significantly with more complete coverage of the
sphere (i.e. two back-to-back cameras) — especially the RANSAC algorithm should
benefit as rotation and translation become easier to separate. Future work will anal-
yse the eigenvalues of the Hessian to measure the sensitivity and confidence for
various flow vector distributions.

6 Conclusions

Two methods were presented for estimating the focus of expansion from sparse
panoramic optical flow fields, namely a k-means clustering method, and a RANSAC
framework using a Newton iteration for model fitting. We introduced a cost func-
tion, gradient and Hessian for estimation of direction of travel and ego-rotation,
which enables gradient descent methods and Newton methods for estimating ego-
motion from spherical optic flow. The presented methods work with sparse, patchy
flow fields, even if less than half the sphere is covered. Measurements from inertial
sensors are used to provide a good initial value of rotation for the algorithms. The
algorithms were evaluated and compared on synthetic data; it was found that the
RANSAC algorithm performs better, but also that the k-means algorithm provides
good results at much less computational cost. Tests on video and inertial measure-
ments from a quad-rotor flying vehicle show that both algorithms can be applied
to real data obtained from a single fish-eye camera, and provide a good estimate of
the direction of travel. On real data the advantages of the RANSAC algorithm are
negligible, as any possible improvements on estimation are masked by the higher
sensitivity to noise. It is possible that the RANSAC algorithm as presented here will
offer better performance is high quality cameras and well-calibrated quality optics
are used; however this was not investigated. The presented algorithms can be used
in robotics for obstacle avoidance — knowing the direction of travel relative to the
world will indicate the point of potential impact. Divergence of optical flow can be
computed in that direction to detect obstacles in the current path of the vehicles.
The presented cost function and estimation framework can also be used for visual
servoing or visual odometry, or as a bias correction input to inertial measurement
filters.
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Control and Motion Planning

Cédric Pradalier

In this part of the ISRR'09 proceedings, we have grouped together a collection
of papers related to the planning and execution of motion for very different robots,
from the complex hexapod of Haynes et al. to the simple model plane of Lussier
Desbiens et al. In all cases, the challenges faced in these papers are related to the
management of environment and sensing of uncertainties as well as the incom-
pleteness of the system models.

In  “Gait  Transitions  for  Quasi-Static  Hexapedal  Locomotion  on Level
Ground”, Haynes et al. address the complex problem of synchronizing ac-
tuation of multiple limbs for legged robots. The introduction of the notion
of “Young Tableaux” describes the periodicity and proximity of various
kinds of gaits and their transitions in an innovative way.
In “Stable Dynamic Walking over Rough Terrain”, Manchester et al. also
deal with a walking system but in this case focus on exploiting the natural
dynamic of an under-actuated system. The key contribution of the ap-
proach is to provide a systematic way to stabilize such a system to a target
orbit, with local exponential stability.
In “Design and analysis of hybrid systems with applications to robotic
aerial vehicles”,  Gillula et al. consider the transition between basic mo-
tion primitives and use the Hamilton-Jacobi differential game formulation
to find transitions which are provably safe.
In  “Motion  Planning  under  Uncertainty  for  Robotic  Tasks  with  Long
Time Horizons”, Kurniawati et al. focus on another source of complexity
in robotic planning, namely the management of uncertainties. By propos-
ing a new point-based POMDP solver, they succeed in planning for long-
time-horizon tasks which were not solvable with existing planners.
In “Scansorial Landing and Perching”,  Lussier Desbiens et al. present a
very different approach to control for a small airplane trying to land on a
vertical wall. By integrating intelligence into the mechanical design, they
can simplify the sensing requirements and maneuver planning complexity
to a minimum, while still being able to successfully field test the resulting
system.
In “Anthropomorphic Soft Robotics - from Torque Control to Variable In-
trinsic Compliance”, Albu-Schaeffer et al. describe the effort of the Ger-
man Aerospace Centre (DLR) to develop anthropomorphic robots, com-
bining movement precision and intrinsic safety. The central element  of



this work is the use of Variable Impedence Actuator, which creates new 
challenges in terms of control and motion planning.

The core idea when collocating these papers into a control and motion planning 
section was to show how researchers around the world are proposing solutions to 
handle the multiple sources of uncertainties inherent to any real-world robotics. 
Uncertainties stem out from the system complexity: the uncertainties in the per-
ception systems, the limited system actuation, or the introduction of elastic ele-
ments into the mechanical design. Among these papers, we believe that the em-
bodied intelligence described by Lussier Desbiens et al. is a good reminder that 
many control and planning problems can be solved by an intelligent mechanical 
design in the first place.
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Gait Transitions for Quasi-static Hexapedal
Locomotion on Level Ground

Galen C. Haynes, Fred R. Cohen, and Daniel E. Koditschek

Abstract. As robot bodies become more capable, the motivation grows to better
coordinate them—whether multiple limbs attached to a body or multiple bodies as-
signed to a task. This paper introduces a new formalism for coordination of periodic
tasks, with specific application to gait transitions for legged platforms. Specifically,
we make modest use of classical group theory to replace combinatorial search and
optimization with a computationally simpler and conceptually more straightforward
appeal to elementary algebra.

We decompose the space of all periodic legged gaits into a cellular complex in-
dexed using “Young Tableaux”, making transparent the proximity to steady state
orbits and the neighborhood structure. We encounter the simple task of transition-
ing between these gaits while locomoting over level ground. Toward that end, we
arrange a family of dynamical reference generators over the “Gait Complex” and
construct automated coordination controllers to force the legged system to converge
to a specified cell’s gait, while assessing the relative static stability of gaits by ap-
proximating their stability margin via transit through a “Stance Complex”. To in-
tegrate these two different constructs—the Gait Complex describing possible gaits,
the Stance Complex defining safe locomotion—we utilize our compositional lexicon
to plan switching policies for a hybrid control approach. Results include automated
gait transitions for a variety of useful gaits, shown via tests on a hexapedal robot.

1 Introduction

Gait transitions are ubiquitous among legged animals and essential for robots.
Whereas there is a long and still lively debate about the reason for their value to
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animal runners (optimized joint loads? [4]; optimized energetics? [5]; muscle func-
tion or bone strain? [21]), the more limited capabilities of legged robots ensure for
years to come that different maneuvers in different environments at different speeds
under varied loading conditions will require the adoption of distinct locomotion pat-
terns, along with necessitating the ability to transition between them safely and ef-
ficiently. The great variety of gaits found in nature—quadrupedal walking, trotting,
pacing, and galloping; hexapedal wave gaits and alternating tripods [15, 11, 22]; and
so on—persuades us of the importance in building a general framework to identify
and produce reliable transitions amongst all gaits a robot can use.

A variety of methods have been proposed for switching gaits in legged robots,
however most have not considered underactuated systems, in which legs do not
have full control over the timing of stance and recirculation throughout a full
stride. Examples of underactuated legged robots include the RHex robotic hexa-
pod [17] and the RiSE climbing robot [19], legged machines respectively capable
of running and climbing on many unstructured terrains. In the case of RHex, each
leg contains a single actuator, thus modification of gait timing must occur during
recirculation, so as to not produce inconsistent toe velocities during stance. For
RiSE this is even more imperative when climbing a wall because inconsistencies
of toe velocities while attached to a climbing surface can cause a robot to lose grip
and fall. For this reason, we have developed a variety of prior methods using only
gait timing modification during leg recirculation [10, 9] in order to change gaits
during locomotion.

This paper focuses upon methods of merging low-level regulation control of
gaits, as described above, with high-level task planning, in which hybrid control of
various different gait strategies is necessary. We address the problem of producing
safe, efficient gait control for underactuated robots via switching policies amongst
families of gait limit cycle attractors. We do so by exploiting the algebraic structure
of two distinct symbolic decompositions of the limb phase space: the Gait Com-
plex, introduced in Section 2; and the Stance Complex, introduced in Section 3. Our
techniques in this paper build upon basic ideas presented in [12], but we introduce
methods that are more general and more comprehensive in scope, particular to the
application of gait switching. Our specific contributions lie in the introduction of
these two cellular decompositions of the phase space that we use to

i. enumerate the allowable gaits of a legged system;
ii. design a mixed planning/control method to navigate amongst them;

iii. execute these transitions in real-time during continuous legged locomotion.

Initial results are presented for a walking hexapod, while future applications in-
clude feedback-driven general terrain locomotion for walking, running, and climb-
ing robots, while requiring minimal sensory information and computational power.
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2 Hybrid Control over the Gait Complex

2.1 The Gait Complex, Gaitsn[T]

In [2], we endow T
n+1/T ≈ T

n with the structure of a cell complex, denoted
Gaitsn[T], the disjoint union of its j-skeleta

Gaitsn[T] =
n∐

j=0

Gaitsn[T]j ,

collections of j-dimensional submanifolds assembled in Gaitsn[T]j , with appropri-
ate “gluing” identifications at their boundaries [6]. Although the cardinality of this
cell complex must grow combinatorially in the degrees of freedom, n, it is suffi-
ciently regular to enjoy the additional structure of a Delta Complex wherein each
cell of each of the skeleta is the image of a standard unit simplex whose boundaries
are formally associated via a family of “characteristic maps” [6].

We find it useful to index the various cells of the complex, Gaitsn[T], by means
of equivalence classes of Young Tabloids [16], T ∈ Tn+1

k+1 , arrays of (typically)
unevenly long strings of integers taken from the set {1, . . . , n + 1} with no replace-
ment, each of whose k + 1 rows denotes a “virtual leg” (a subset of legs that is
locked in steady state at the same relative phase for the gait being described), and
whose row order corresponds to the cyclic order of virtual legs in the gait. We show
formally in [2] that a certain quotient (that is, a complete transversal of left cosets
[16] arising from a particular subgroup) of the permutation group Σn+1 × Σk+1 is
in one-to-one correspondence with the gait complex Gaitsn[T]k, but for purposes of
this paper it suffices to provide the following intuitive characterization of the equiv-
alence classes as follows. Two tabloids, T , T ′ ∈ Tn+1

k+1 , index the same cell in the
k-skeleton, Gaitsn[T]k if and only if: (i) there is a bijection between their rows (each
considered as an unordered collection of integers); and (ii) the bijection is some
power of the “full shift”, ζ ∈ Σk+1 : (1, 2, . . . , k, k + 1) �→ (k + 1, 1, 2, . . . , k).

In this paper, we make twofold use of the Young Tabloids. First, each Tabloid
provides an algorithmic specification of a gait generator over the cell it indexes.
We will sketch the nature of this algorithm in Section 2.2 and provide some illus-
trative examples in Table 2. Second, a computationally simple Tabloid operator,
∂ : Tn+1

k+1 → 2Tn+1
k computes the set of tabloids indexing the boundary cells in

Gaitsn+1[T]k of the cell in Gaitsn+1[T]k+1 indexed by its argument. We will use
this operator as the key computational component in the transition planner presented
in Section 4. Given length constraints, it does not seem possible in this paper to
present any more formal an account of these ideas (which are formally developed in
[2]) and we seek rather to provide an intuitive feeling for what the machinery offers
through the use of examples and the informal pictures and tables in the Appendix.

2.2 The Gait Fields

While not required for qualification as a Delta Complex, we find in this application
the need for a family of “normal” maps nT : T

n+1 → T
n−k associated with each
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cell indexed by its tabloid T ∈ Tn+1
k+1 whose Jacobian yields the normal bundle,

TpT
⊥ defined by the corresponding inclusion map. Specifically, we use them here

to build gradient vector fields that “force” the resulting flows toward the designated
cell wherein the flow of the desired reference field is known to produce a desired
gait. To do so, first observe (as shown formally in [2]) that

νm : T
m → [0, 1] : (r1, ..., rm) �→ 1 − 1

m

m∑
i=1

cos∠ri (1)

is a perfect Morse function with critical points in {0, π}m each of which have Morse
index specified by number of π entries. It follows that the flow associated with
the gradient vector field, grad ν m, takes almost all initial conditions in T

m to the
identity, (e2πi0, . . . , e2πi0). Thus, given a tabloid, T ∈ Tn+1

k+1 , the Morse function
ν T := νn−k ◦ nT defines a gradient vector field whose flow brings almost every
initial condition in T

n+1 to the cell in T
n+1/T that T indexes. Examples of the

normal maps associated with each cell of the three-legged complex, Gaits2[T] are
listed in Table 1.

Denote by R1
BC : T

1 → TT
1 the “Buehler Clock” reference generator first

introduced in [18] that encodes a one dimensional circulation flow undergoing a
phase interval of slow “stance” motion corresponding to the behavior we presume
appropriate when a leg is in contact with the ground, followed by a complementary
phase interval of fast “recirculation” corresponding to the time interval over which
a leg will be lifted off from the ground and returned ready for its next stance phase.
This simple rhythm generator can be “pushed forward” to T

2 via the inclusion (5)
as R2

BC := P 1 2 · R1
BC ◦ p† 1 2 . The sum, F 2

PR = R2
BC − grad ν 1 2 , which can

be written in angular coordinates (see footnote 3) as

F 2
PR(x1, x2) = R1

BC(x1)
[

1
1

]
− sin(x1 − x2)

[
1
−1

]
. (2)

induces a flow under which almost every pair of phases is brought to a bipedal
“pronk”—a limit cycle characterized by both legs recirculating in phase—a cycle
over the cell in Gaits1[T] indexed by 1 2 ∈ T2

1 .
In contrast, let us construct the alternating phase bipedal gait generator displaying

the archetype of a gait in the “antiphase” cell of Gaits1[T] indexed by 1
2 ∈ T2

1 . By

conjugation, R2
AP := Dh2

TR ·F 2
PR◦

(
h2

TR

)−1
, through the translation, h2

TR : T
2 →

T
2 : (x1, x2) �→ (x1, π + x2), we define a new vector field

R2
AP (x1, x2) = R1

BC(x1)
[

1
1

]
− sin(x1 − x2 + π)

[
1
−1

]
. (3)

that shifts the roles of the two invariant submanifolds of the pronking field, F 2
PR.

Table 2 provides a detailed listing of the various intermediate fields required to
construct two of the most familiar hexapedal gaits: the alternating tripod, R6

AP [18],
and the stair climbing gait, R6

Stair [14]. All of the gaits used in the experiments
reported here are generated in a similar manner.
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3 The Task of Locomotion and the Stance Complex

The Gait Complex, Gaitsn−1[T], describes all possible gaits for an n-legged robot.
Locomotive differences exist, however, amongst the various gaits. We introduce a
second cellular decomposition of Tn, the Stance Complex, Stancen[T], to describe
the inherent discreteness of legged locomotion and note all possible leg support con-
figurations. We utilize this complex to identify a priori which cells of Gaitsn−1[T]
produce viable statically stable locomotion.

Computation of static stability margin of locomotion can be determined by pro-
jecting the mass center onto a support polygon defined by a robot’s surface con-
tacts, a computation that can be quite expensive in the presence of complex sur-
face interactions [1]. For a particular contact configuration of limbs, a single cell
of Stancen[T], we argue, this stability margin is locally a continuous function of
posture, but varies more dramatically (and discretely) when toe contacts are added
or removed, other cells of Stancen[T]. In the case of underactuated robots, where
available postures are limited by low numbers of degrees of freedom, this is partic-
ularly true. Even for high degree of freedom system, the workspace of individual
limb motions can be quite small when compared to body size, thus expounding the
small variation in stability margin within a cell of Stancen[T] compared to dramatic
changes when making or breaking contact.

3.1 The Stance Complex

The Gait Complex of Section 2 describes all possible gait timings, noting specific
leg phase relationships. Of the immense number of possible gaits, 1082 for a 6-
legged robot, not all are locomotively viable, as many may recirculate legs together
which produce unstable configurations of the robot’s body. Stancen[T] provides us
with accurate constraints regarding this aspect of the locomotion task.

Each axis of the n-torus corresponds to the possible gait timings for an individual
leg during locomotion, containing both stance and recirculation as discrete regions
on the axis. The duty factor of a gait, δ ∈ (0, 2π), reflects the percentage of stride
spent in stance versus recirculation, thus for an individual leg i, if xi < δ the leg
is considered to be in stance. This demarcation is defined for each axis of the torus,
thus producing a complex Stancen[T] of 2n total cubical cells, as well as intersect-
ing faces and edges. As an example of a cubical member of Stancen[T], consider
the cell where ∀ixi < δ. This cell corresponds to all legs in stance, while ∀ixi ≥ δ
is all legs in recirculation.

3.2 Examples: Stance2[T] and Stance3[T]

If we consider the 2-torus, the space of gait timings for a bipedal robot, there exist
four cells shown. One cell on this torus has both legs in stance, two cells have a
single leg recirculating, and one cell has both legs recirculating. Assuming a quasi-
static locomotory system, it would be dangerous for the robot to use a gait that tries
to recirculate both legs at once, thus this last cell should be avoided.
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Fig. 1 Stance2[T]: Demarcations between stance and recirculation produce 4 unique cells
in the Stance Complex. With a stance duty factor of 50% (δ = π), there exists only a single
gait (dashed line) that does not pass through the cell corresponding to both legs recirculating
together (upper right).

Considering a similar system on the 3-torus, depicted as a cube with faces identi-
fied in Fig. 2, we demarcate each axis with regions dedicated to stance and recircu-
lation to produce a total of 8 cubical cells in the Stance Complex. Depending upon
the exact mechanics of the robot, it may be undesirable to recirculate certain sets of
legs together. In the figure we highlight potentially dangerous cells that recirculate
2 or 3 of the legs together at the same time. The cell where all legs are in stance, or
only a single leg recirculates, would be considered safe cells.

Fig. 2 Stance3[T]: A total of 8 unique cubical cells exist in the Stance Complex for the 3-
torus. In this figure are highlighted the 4 cells which recirculate 2 or more legs of a 3-legged
robot simultaneously. A safe gait, in this scenario, would try to only recirculate a single leg
at a time, two such gaits possible when δ = 2

3
2π.
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3.3 Static Stability Metric

We utilize Stancen[T] to define in general the global properties of static stability
for an n-legged robot. This approach allows us to evaluate gait stability simply by
studying the cells through which a given gait passes.

(a) Basic model of rotary
joint quadruped

(b) Picture of a RHex-
style hexapedal robot

Fig. 3 For basic analysis of static stability, we consider a robot with single actuators per hip,
similar to the RHex-style robot shown. With such a model, the stability margin of gaits is
computed.

Fig. 4 Stance4[T]: There exist 16 cubical cells within Stance4[T], with varying stability
values between all. Cells with more legs in stance (represented as shaded circles on simple
representations of robot at bottom) have greater stability margins.

Figure 4 shows analysis of the Stance Complex on T4. Using our simple model
of a quadrupedal robot (Fig. 3), each cell is tested for static stability, consisting
of a total of 160, 000 tested configurations for the 16 cubical cells, taking into full
consideration the entire gait space of T4. Cells with more legs in stance offer greater
static stability. Similarly, certain cells with two legs in stance perform better than
others, for instance showing that the cells corresponding to a trot gait, cells 6 and 9,
have greater stability than those for pace and bound gaits.
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4 Planning and Control Approach

Utilizing both the Gait Complex and Stance Complex, we develop a mixed planning
and control approach to automate safe switching between gaits. We intersect cells
of s−1 (Gaitsn−1[T]) with unsafe cells of Stancen[T] in order to prune gait cells
that do not produce safe locomotion. A search algorithm is then used to plan routes
amongst the remaining cells to generate a sequence of Young Tabloids that are used
in a hybrid switching controller that transitions between gaits, while avoiding dan-
gerous, unstable cells of the Stance Complex.

4.1 Transitions on Hasse Diagram of Gaits

The planning component of our hybrid controller relies heavily upon the partial or-
der relation of adjacency by boundary (that we denote by 	) in the Gait Complex.
Topologically, it is impossible to pass from one cell to an adjacent neighbor of equal
dimension without passing through a “neighbor” on the shared boundary. The very
notion of cell adjacency is characterized by this partial order—conveniently cap-
tured by the formalism of the Hasse Diagram [16]. As different leg combinations
incur very different locomotion behaviors (different passages through Stancen[T]
in the present problem dealing with static stability) the choice of intermediate cells
along the way from one to another gait—i.e., the particular path through the Hasse
Diagram—requires a level of methodical scrutiny that we entrust in the present pa-
per to a planner. The strong correspondence between the cellular structure of the
Gait Complex, Gaitsn[T], and the tabloids, Tn we use to index it affords our plan-
ner a very simple operation over the latter that faithfully represents the boundary
operation over the former which we now outline.

Given a tabloid, T ∈ Tn+1
k+1 , indexing a cell in Gaitsn[T]k there is a very simple

operation,
∂ : Tn+1

k+1 → 2Tn+1
k ; 0 ≤ k ≤ n

yielding the tabloids that index all its boundary cells in a manner we merely sketch
here (but present rigorously along with a proof of correctness in [2]) as follows. For
each pair of contiguous rows of T , collapse the entries into one row comprising the
union of the entries of the pair. Compute such a collapsed tabloid for each successive
continguous pair of rows, including, finally, the first and the last row, so as to achieve
a set of k + 1 tabloids in Tn+1

k . Each of these indexes one and only one adjacent
(boundary) cell in the (k − 1)-skeleton, Gaitsn[T]k−1. Hopefully, it is intuitively
clear that the “tabular inverse” of this operation,

∂−1 : Tn+1
k → 2Tn+1

k+1 , 0 ≤ k ≤ n

yields the one-row-longer tabloids that index the cells that share a boundary com-
ponent indexed by the argument. For example the partial order adjacency relation at
the quadrupedal “half-bound” gait (for example reported in [8]) is computed as
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{
1
2
3
4

,
1
2
4
3

}
= ∂−1

{
1
2
3 4

}
	
{

1
2
3 4

}
	 ∂

{
1
2
3 4

}
=
{

1 3 4
2 , 1

2 3 4 ,
1 2
3 4

}
Considering legs in recirculation, this definition of adjacency makes intuitive sense:
when multiple legs enter recirculation together, as legs within the same row of a
tabloid would, it is possible for one leg to speed up while another slows, thus split-
ting the row apart as the current gait cell changes. Conversely, legs entering recircu-
lation may wait indefinitely for other legs—so long as the robot remains statically
stable—such that they synchronize, merging rows of a tabloid.

Using this definition of adjacency between tabloids, and starting from the initial
“pronk” tabloid on T6, 1 2 3 4 5 6 , we build an adjacency matrix amongst all 1082
cells of Gaits5[T], shown in Fig. 5a. This matrix is block adjacent, since a given
tabloid may only be adjacent to cells with either one less or one more length in
rows. If we extend our definition of adjacency to allow multiple sequential rows to
be compressed together (or a single row split into more than rows)—a reflection
that more than two groups of legs can split or join in a given operation (or, more
topologically, that we will allow immediate passage to boundaries of boundaries
of cells in the gait complex)—this expands the definition of the Hasse Diagram to
include other adjacencies, shown in Fig. 5b.

(a) Hasse Diagram of Young Tabloids (b) Hasse Diagram including multi-
dimensional adjacency

Fig. 5 Hasse Diagrams over the set of Young Tabloids. A 1082 × 1082 matrix represents
the graph of gait cells, white dots representing adjacency. Cells are in order of increasing
dimensionality, block-wise groupings shown here, prior to filtering based upon the Stance
Complex.

Lastly, before applying a discrete planner over this set of gait cells, we prune
based upon static stability. In our basic implementation of the Stance Complex, we
limit ourselves to cells that do not recirculate either ipsilateral nor contralateral legs
(excluding the middle pair) together, thus only allowing 18 out of the 64 cells of
Stancen[T]. This conservative restriction on the Stance Complex, when intersected
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with the Gait Complex, reduces allowable gait cells to only 477 of the original 1082,
however all 477 are statically stable gaits. Another result of the conservative esti-
mate of gait stability is the existence of disconnected clusters of gaits in the Gait
Complex. Of the 477 gaits, 301 exist in one large cluster (including the most com-
monly accessed legged gaits for N = 6) with another two symmetric clusters of 87
gaits, while each of the two circular crawls is likewise disconnected from all other
gaits. By our estimation of static stability, it is impossible to reach one cluster from
another, due to our constraints on ipsilateral and contralateral legs.

4.2 Planning Gait Complex Switching

We consider the problem of an underactuated robot, where freedom to control leg
phasing only occurs during recirculation. To discretely plan over this set of opera-
tions, we utilize an A* planner that computes cost, in terms of total transition time,
between arbitrary cells of the Gait Complex.

The cost of an individual transition between two cells depends upon the initial
phase of the first gait. Given that legs must recirculate together to switch, we sum the
wait time until legs begin recirculation with total time of recirculation to get actual
cost. An admissible heuristic in this case is cost of 1.0, as adjacent cell transitions
cannot take more than one stride.

4.3 Controller Activation

Our controllers take a given sequence of tabloids, as output by the A* planner, and
construct individual reference field controllers, following from the examples in Sec-
tion 2.2. Several additional controller modifications are as follows.

Foremost, active control of leg phase occurs only during recirculation. We as-
sume legs in stance to be “rigidly” attached to the surface, particularly relevant
when considering climbing robots where inappropriate torquing of individual feet
may cause them to lose grasp. In this way, the gradient field simply zeros any action
along axes for legs currently in stance.

The duty factor of the system is also modified when the robot approaches new
gaits. A virtual biped gait, such as the alternating tripod, will use a gait with 50%
duty factor when close in phase space. A simple controller that provides an algebraic
relationship between duty factor and phase is detailed in [7].

Lastly, in our definition of the reference field controllers, we leave freedom in the
choice of the exact structure of an individual tableaux. 1

t( 1 2
3 4 ) = { 1 2

3 4 ,
2 1
3 4 ,

1 2
4 3 ,

2 1
4 3}

1 Following the terminology of [16], a tabloid is the equivalence class of all numerically
filled-in diagrams whose rows are identical, disregarding the order of the integer entries of
each row.
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Each tableaux describes the same system, consisting of the same limit cycle gait,
with different enumerations of legs within the rows of the tableux. The distinction
between individual tableaux, however, affects the construction of the related refer-
ence field controllers, as the first element of each row is chosen as leader (formally
specified by the choice of left inverse as exemplified by p 1 2 in equation (5)). To
effect a rational choice of “leader” in any new instantiation of a gait, we consider all
identified tableaux of a specific tabloid T , and make use of the one whose potential
function has the lowest value.

argmin
T ′∈t(T )

νT ′(r)

By selecting the minimum cost potential function from which to generate our refer-
ence field, we achieve an online adjustment of the transient behaviors of the system
such that it follows near-minimum distance paths between gaits, without introducing
local minima (as each possible x has the same stable critical point and our system
always decreases in potential). For an alternating tripod gait, this operation includes
a total of 36 function evaluations in order to choose an ordering.

5 Experimental Results

Using a hexapedal robot platform, we have implemented our gait transition method
and shown its efficacy in producing near arbitrary transitions between safe gaits
while preventing loss of static stability. We discuss examples of such transitions,
compare with a naı̈ve coupled oscillator approach, and project directions in which
this research will enable new behaviors for both walking and climbing legged robots.

5.1 Gait Switching

Our new gait switching methods attempt to rectify deficiencies in our prior ap-
proaches. For the domain of climbing robots, we have constructed hand-designed
transitions between gaits [10], but these transitions were not easily generated nor
guaranteed. Further work produced control laws that converged to desired gaits [7],
but was limited to a small number of gaits with no choice of which exact gait to con-
verge. The methods described here attempt to automate the generation of transitions,
allow transitions between arbitrary pairs of gaits, while preventing static instability.

Fig. 6 shows the transition from a crawl gait to the alternating tripod gait.The
top of the figure shows the sequence of tabloids that the planner has determined to
converge the fastest. The bottom plot shows roll, pitch, and yaw angles, relatively
stable while undergoing a transition of gait.

Fig. 7 shows two different attempts to produce a non-trivial gait transition. The
first uses the tabloid-derived control law to simply converge to the desired gait,
however it has the undesireable results of poorly designed paths of convergence,
following from a basic coupled oscillator approach [12]. The second uses a sequence
of planned intermediary gaits to produce a transition that retains static stability.
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Fig. 6 A sequenced transition of Young Tabloids between gaits. At each switch time, the
controller changes, converging to the next gait. End result is a transition behavior that avoids
static instabilities. Each line is a “phase offset” of a given leg [?], with green regions indicat-
ing stance. Phase control occurs during recirculation while adjustment of duty factor (ratio of
green to white) takes place as the system reaches desired gaits.

(a) Direct Controller Transition (b) Planned Sequence of Controllers

Fig. 7 Two transitions between gaits. The planned sequence (right) prevents loss of static
stability, while the direct approach (left) loses static instability, as measured by pitch-roll-
yaw angles from a Vicon system.

As can be seen in the plots, the unplanned version recirculates too many legs
together, loses static stability, and pitches, rolls, and yaws during the transition.
The planned version remains relatively level throughout the entire transition. In-
convenient and disruptive during a level ground walk, such perturbations would be
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catastrophic in a climbing setting, or even, most likely, in a high performance dy-
namical level ground setting.

6 Conclusions and Future Work

We have introduced a combined planning and control method that uses both discrete
and continuous representations to plan and execute transitions amongst gaits imple-
mented on an underactuated legged robot. Introduction of both the Gait Complex, a
structure that characterizes all the possible one-cycles achievable with an n-legged
machine, as well as the Stance Complex, classifying the ground contact status of all
legs, brings about a greater understanding of the space of gaits, and points the way
to global approaches for gait control.

In these preliminary experimental results, it seems possible that naı̈ve transitions
using gaits that simply avoid bad cells of the Stance Complex may perform just as
well as the planner’s sophisticated use of cell adjacency. Furthermore, the situation
is of course a good deal more complex than we allow in this first paper on these
cellular decompositions. For example, the present gait reference fields (Sec. 2) yield
steady state limit cycles whose paths maintain rigid phase relationship amongst legs.
There is no reason not to consider more general gaits whose orbits may wind about
the torus in different ways in order to avoid bad cells of the Stance Complex. 2

We are currently studying methods of extending our level-ground transitions to
domains in which the terrain varies, such as climbing over rubble-like obstacles
or transitions between level-ground locomotion and vertical climbing, in which we
expect different sets of viable gaits to be available to us. In both of these cases,
studying how body geometry and contact mechanics affect the allowable cells of
the Gait and Stance Complexes is part of our future work.
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Appendix A: The Gait Complex and Its Defining Inclusions

The gait complex Gaitsn[T] is a cellular decomposition of T
n built upon the image

of T
n+1 under the “shearing map” [3],

sn+1 : T
n+1 → T

n : (r1, . . . , rn, rn+1) �→ (r1r
−1
n+1, . . . , rnr−1

n+1). (4)

The cells of Gaitsn[T] arise by “shearing” down all of the “diagonal” subspaces
of T

n+1—that is, all of those orbits wherein some subset of entries maintain the
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identical phase—and thus represent via a single n-tuple, an “orbit” of (n+1)-tuples
that circulate while maintaining the same relative phase. 3

For example, the bipedal steady state gaits may be coarsely distinguished by
whether or not the legs are held in the same phase (“pronking”) during circulation
through periodic stride. Following the account at the beginning of Section 2.2, we
use the Young Tabloid T = 1 2 ∈ T2

1 to index the bipedal “Pronk” by defining a
parametrization of the appropriate diagonal,

p 1 2 : T
1 → T

2 : r �→ (r, r); P 1 2 := Dp 1 2 =
[

1
1

]
; p† 1 2 (r1, r2) := r1,

(5)
(that we display along with its Jacobian matrix, P 1 2 , and a choice of left inverse,
p† 1 2 , made apparent in the discussion of Section 2.2) which is then “sheared down”
to get the representative cell, Gaits1[T]0 =

{
s2 ◦ p 1 2 (T1)

}
—in this case, the sin-

gle“vertex” s2 ◦ p 1 2 (r) = e2πi0. In contrast, if the legs are out of phase in steady
state, then we locate the gait in the sheared image of the identity map of the two-
torus to get Gaits1[T]1 =

{
s2 ◦ pT (T2)

}
for T = 1

2 ∈ T2
2 , which evaluates to the

entire “circle” s2 ◦ pT (r1, r2) = e(2πi(x1 − x2)). The Delta Complex formalism
[6] requires these inclusions be made from the domain of a simplex,

Δ[m] := {(x1, x1 + x2, . . . , x1 + . . . + xm) ∈ [0, 1]m :
0 ≤ x1 + . . . + xj ≤ 1, j = 1, . . .m}

and given a Young Tabloid, T ∈ Tn+1
k+1 with toral inclusion, pT : T

k+1 → T
n+1, the

associated “characteristic function” is p̃T := pT ◦ expk+1 where expm : Δ[m] →
T

m : (x1, . . . , xm) �→ (e2πix1 , . . . , e2πixm). Continuing along this specific exam-
ple, for m = n + 1 = 2, the Delta Complex formalism now re-assembles these two
sets—the zero-skeleton, Gaits1[T]0, and the one-skeleton Gaits1[T]1—into the cell
complex, Gaits1[T] = Gaits1[T]0

∐
Gaits1[T]1 by identifying their shared point

e2π0 via the characteristic maps as detailed in [2]. The corresponding generalization
of this construction to the 3-legged gait complex is listed in Table 1 and depicted in
Figure 8 which also provides a view of the 4-legged gait complex.

3 We will shift back and forth as a matter of convenience between representing phase as an
“angle” x, or as a point on the unit circle in the complex plane, r = e2πix, where e is the
standard exponential map.
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(a) Gaits2[T] from s3 ◦ pT : T
3 → T

2 (b) Gaits3[T] from s4 ◦ pT : T
4 → T

3

Fig. 8 An exhaustive view of the cells of the “three-legged” gait complex (left) and a typical
view of the “four-legged” gait complex (right) annotated by their associated Young Tabloids,
T , and examples of some of the gaits they represent.

Table 1 The Gait Complex Gaits2[T]

Tabloid InclusionMaps NormalMap Gait

T ∈ T3
k+1 Δ[k + 1]

p̃
T

−→ T
3 s3
−→ T

2 nT (r1, r2, r3) Name

1 2 3 (x) �→ (e2πix, e2πix) �→ (e2πi0) (r1r
−1
3 , r2r

−1
3 ) Pronk

1 2
3

(x1, x1 + x2) �→ (e2πix1 , e2πix1 , e2πi(x1+x2)) �→ (e−2πix2 , e−2πix2 ) r1r
−1
2 Reverse Flip

1 3
2

(x1, x1 + x2) �→ (e2πix1 , e2πi(x1+x2), e2πix1 ) �→ (e2πi0, e2πix2 ) r1r
−1
3 Incline

2 3
1

(x1, x1 + x2) �→ (e2πi(x1+x2), e2πix1 , e2πix1 ) �→ (e2πix2 , e2πi0) r2r
−1
3 Flip

1
2
3

(x1, x1 + x2, x1 + x2 + x3) �→ ∅ Ripple

(e2πix1 , e2πi(x1+x2), e2πi(x1+x2+x3)) �→ (e−2πi(x2+x3), e−2πix3 )

1
3
2

(x1, x1 + x2, x1 + x2 + x3) �→ ∅ StairClimbing

(e2πix1 , e2πi(x1+x2+x3), e2πi(x1+x2)) �→ (e−2πix2 , e2πix3 )
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Table 2 Gait Fields over Limb Phase Coordinates.

Gait Field Formula Change of Coordinates

Bipedal Pronk [18] R2
P R P 1 2 · R1

BC ◦ p† 1 2 − grad ν 1 2 ∅

Alternating Phase Biped [18] R2
AP Dh2

T R · R2
P R ◦

`
h2

T R

´−1
(x1, x2) �→ (x1, x2 + π)

Three-Legged Pronk [13] R3
P R P 1 2 3 · R1

BC ◦ p† 1 2 3 − grad ν 1 2 3 ∅

Three-Legged Crawl [14] R3
CR Dh3

T R+ · R3
P R ◦

“
h3

T R+

”−1
(x1, x2, x3) �→ (x1, x2 − 4π

3 , x3 − 2π
3 )

Hexapedal Alternating Tripod [18] R6
AP P 1 4 5

2 3 6

· R2
AP ◦ p† 1 4 5

2 3 6

− grad ν 1 4 5
2 3 6

∅

Hexapedal Stair Gait [13] R6
Stair P 1 2

3 4
5 6

· R3
CR ◦ p† 1 2

3 4
5 6

− grad ν 1 2
3 4
5 6

∅



Stable Dynamic Walking over Rough Terrain
Theory and Experiment

Ian R. Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake

Abstract. We propose a constructive control design for stabilization of non-periodic
trajectories of underactuated mechanical systems. An important example of such
a system is an underactuated “dynamic walking” biped robot walking over rough
terrain. The proposed technique is to compute a transverse linearization about the
desired motion: a linear impulsive system which locally represents dynamics about
a target trajectory. This system is then exponentially stabilized using a modified
receding-horizon control design. The proposed method is experimentally verified
using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but
pointed stilt-like feet. The technique is, however, very general and can be applied to
higher degree-of-freedom robots over arbitrary terrain and other impulsive mechan-
ical systems.

1 Introduction

It has long been a goal of roboticists to build a realistic humanoid robot. Clearly,
one of the most fundamental abilities such a robot must have is to walk around its
environment in a stable, efficient, and naturalistic manner.

When one examines the current state of the art, it seems that one can have either
stability and versatility or efficiency and naturalism, but not all four. This paper
reports some recent efforts to bridge this gap.
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We propose a general method of exponentially stabilizing arbitrary motions of
underactuated mechanical systems. In particular, we develop a provably-stable feed-
back control strategy for efficient “dynamic walking” bipeds over uneven terrain,
and demonstrate experimentally that the method is feasible and effective.

1.1 Bipedal Walking Robots

The world of bipedal walking robots can be divided into two broad classes. The
first, including well-known robots such as the Honda ASIMO and the HRP-2, are
based on the “zero moment point” (ZMP) principle (see, e.g., [1] and references
therein). The main principle of stability and control is that the center of pressure
always remains within the polygon of the stance foot, and so the foot always remains
firmly planted on the ground. Satisfaction of this principle ensures that all dynamical
degrees of freedom remain fully actuated at all times, and thus control design can
be performed systematically using standard tools in robotics. However, the motions
which are achievable are highly conservative, inefficient, and unnatural looking.

The second broad class consists of passive-dynamic walkers and limit-cycle
walkers. Inspired by the completely passive walkers of McGeer [2], these robots
forgo full actuation and allow gravity and the natural dynamics to play a large part
in the generation of motion. They may be completely passive, or partially actuated.
Even with partial actuation, the motions generated can be life-like and highly ef-
ficient energetically [3]. However, there is presently a lack of tools for systematic
control design and systems analysis.

Comparatively little work has been done as yet on walking over rough terrain, es-
pecially for underactuated dynamic walkers. The problem of footstep planning has
been approached using computational optimal control [4] and experimental stud-
ies have shown that a minimalistic open-loop control can achieve stability for the
compass-gait walker [5]. Recently, more complete planning and control systems
have been developed for quadruped walkers: see, e.g., [6].

To give the present paper context, in Fig. 1 we depict a possible organizational
structure for the perception and control of a dynamic walker on rough terrain. The
main components are:

1. Terrain Perception: fusion of sensors such as vision, radar, and laser, perhaps
combined with pre-defined maps, generating a model of the terrain ahead.

2. Motion Planning: uses the terrain map, current robot state, and a model of the
robot’s dynamics to plan a finite-horizon feasible sequence of footstep locations
and joint trajectories. Slow time-scale: motion plan might be updated once per
footstep.

3. Motion Control: feedback control to stabilize the planned motion in the face of
inaccurate modelling, disturbances, time delays, etc. Fast time-scale: typically of
the order of milliseconds.

4. Robot State Sensing: optical encoders, accelerometers, gyros, foot pressure sen-
sors, and so on. Provides local information about the physical state of the robot
to all other modules.
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Motion
Planning

Terrain
Perception

Motion
Control

Robot State Sensing

Fig. 1 Possible organization of perception and control of a walking robot.

A complete humanoid robot would have all these components, and many oth-
ers. In this paper, we focus our attention on component 3: motion control. That is,
we assume that the terrain has been sensed and a motion plan generated, and the
task remaining is to compute a stabilizing feedback controller which achieves this
motion.

1.2 Motion Control for Walking Robots

The problem of motion control of a compass-gait walker has been approached via
energy-shaping and passivity-based control techniques (see, e.g., [7, 8, 9]). How-
ever, it is not clear how such methods can be extended to robots with more degrees
of freedom, or to walking on uneven terrain.

Most tools for underactuated walking make use of Poincaré-map analysis (see,
e.g., [10, 11, 12, 13, 14, 15] and many others). For a mechanical system of state
dimension 2n, one constructs a Poincaré section: a (2n− 1)-dimensional surface
transverse to the orbit under study (e.g. S(0) in Fig. 2). By studying the behaviour
of the system only at times at which it passes through this surface, one obtains a
(2n−1)-dimensional discrete time system, the Poincaré map:

x⊥(k + 1) = P[x⊥(k)], x⊥(·) ∈ R
2n−1

which has a fixed point at the periodic orbit: P[x	
⊥] = x	

⊥. Stability or instability
of this reduced system corresponds to orbital stability and orbital instability, re-
spectively, of the periodic orbit. Exponential orbital stability corresponds to all the
eigenvalues of the linearization of P being inside the unit circle.

One disadvantage of the Poincaré map is that it does not give a continuous rep-
resentation of the dynamics of the system transverse to the target orbit, but focuses
only at one point on the orbit. This means it has limited use for constructive control
design.

However, the biggest problem for the present study is that the method of Poincaré
sections is only defined for periodic orbits. It can be used to study biped walking on
flat ground or constant slopes, but on uneven ground where we have no reasonable
expectation of periodic orbits it is not applicable.
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S(0) TS(0)

S(t)
TS(t)

Fig. 2 A visualization of Poincaré surfaces and transverse linearization of a periodic orbit
(grey) and a trajectory converging to it (black).

With this as motivation, in this work we use instead the transverse linearization of
the target trajectory, which has previously been used for analysis and stabilization of
periodic motions of nonlinear systems including walking robots [16, 17, 18, 19, 20].

This can be visualized via the related concept of a moving Poincaré section, in-
troduced in [21]. This is a continuous family of (2n−1)-dimensional surfaces trans-
verse to the desired trajectory, with one member of the family present at every point
along the cycle (S(t) for all t in Fig. 2).

In contrast to the classical Poincaré map, a transverse linearization (or mov-
ing Poincaré section) provides a continuous representation of the relationship be-
tween controls and transverse coordinates, and can be extended to the study of non-
periodic motions.

Stabilizing only the transverse dynamics — as opposed to, e.g., a full-order linear
time-varying (LTV) approximation [22] — is particularly useful for underactuated
systems, which are often weakly controllable in the direction along the trajectory.

In this paper, we make use of this, and propose a computationally feasible feed-
back control strategy for the time-varying impulsive linear system that results.
Successful experiments demonstrate the feasibility of our approach.

2 Impulsive Mechanical Systems

The mathematical model we consider is that of a nonlinear mechanical system sub-
ject to instantaneous impacts. Let q be a vector of generalized coordinates, and u
be a vector of forces and torques which can be assigned, then the dynamics of the
system can be written like so [23, 24, 14]:

M(q) q̈ +C(q, q̇) q̇ + G(q) = B(q)u for q �∈ Q

q+ = Δq q−

q̇+ = Δq̇(q−) q̇−

}
whenever q− ∈ Q ,

(1)
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where M(q) is the inertia matrix, C(q, q̇) is the matrix of Coriolis and centrifugal
terms, G(q) is the gradient of the potential energy field, and B(q) describes the
effects of actuators on the generalized coordinates. The set Q represents switching
surfaces, e.g. for a walking robot, states at which the foot of the swing-leg hits the
ground, and a new step begins.

2.1 Representation of a Planned Motion

Consider an n-degree-of-freedom impulsive mechanical system for which some de-
sired and feasible trajectory has been specified:

q(t) = q	(t) ∈ R
n, t ∈ [0,∞).

Let t j, j = 1,2, ... be the time moments at which an impact occurs, and let I j :=
[t j,t j+1), j = 1,2, ... be the time intervals of smooth behaviour in between impulses,
and let I0 := [0,t1).

Assumption 1. There exists τ1 > τ2 > 0 such that τ1 ≥ t j+1 − t j ≥ τ2 for all j.

That is, the footsteps do not get infinitely long or infinitely short.

Assumption 2. For all t j, the vector [q̇	(t)T q̈	(t)T ]T is linearly independent of the
2n−1 vectors spanning the tangent plane of the switching surface at q	(t).

That is, all impacts are “real” impacts, not grazing touches of the switching surface.
For each interval I j, j = 0,1,2, ..., choose one generalized coordinate or some

scalar function of the generalized coordinates θ :=Θ j(q) which evolves monotoni-
cally along a desired trajectory.

Remark 1. In the case of the compass-gait walker, which we will consider in Sec-
tions 5 and 6 we will take θ to be the “ankle angle”. It is a reasonable assumption
that for any useful walking motion, this angle evolves monotonically over any given
step. This representation is common in walking robot control [14]. �

Since it evolves monotonically θ can then be considered as a reparametrization of
time, and hence the nominal trajectories of all other coordinates over each interval
I j can be given as well-defined functions of θ :

q	
1(t) = φ j

1 (θ (t)),
...

q	
n(t) = φ j

n (θ (t)) ∀ t ∈ I j.

Having thus defined the functions φ j
1 , ...,φ j

n , one can define variables representing
deviations from the nominal trajectory:
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y1(t) := q1(t)−φ j
1(θ (t)),

...

yn(t) := qn(t)−φ j
n(θ (t)) ∀ t ∈ I j,

where ym(t) = 0 for all m implies the system is on the nominal trajectory.
Consider now the quantities θ ,y1, ...,yn. These n + 1 quantities are excessive co-

ordinates for the system, and hence one can be dropped. Without loss of generality,
let us assume we drop yn, and our new coordinates are y = [y1, ....,yn−1]T and θ .

Remark 2. When the conditions ym = 0 for all m are enforced via feedback action,
the functions φ j

1 , ..,φ j
n are often referred to as virtual holonomic constraints [14, 11,

12]. Our control strategy does not require that these constraint be strictly enforced to
guarantee stability, they are simply used as a set of coordinates. However, we retain
the terminology “virtual constraints”. �

3 Construction of the Transverse Linearization

A mechanical system’s dynamics along a target motion can be decomposed into two
components: a scalar variable θ representing the position along the target motion,
and a vector x⊥ of dimension 2n− 1 representing the dynamics transverse to the
target motion.

A transverse linearization is a time-varying linear system representing of the dy-
namics of x⊥ close to the target motion. The stabilization of the transverse lineariza-
tion implies local exponential orbital stabilization of the original nonlinear system
to the target motion [16]. The construction of a transverse linearization for an im-
pulsive mechanical system such as a walking robot can be broken down into two
parts: the continuous phases and the impacts maps.

3.1 Construction of the Continuous Part of the Transverse
Linearization

A method for analytical construction of a transverse linearization for continuous
mechanical systems was proposed in [25, 18]. We will use this construction for the
continuous phases of the desired walking motion.

The representation of trajectories introduced in the previous section allows us to
analytically construct, at any θ , a set of transversal coordinates without solving the
nonlinear differential equations of the system. The first 2n−2 coordinates are given
by the coordinates y given in (2), and their derivatives:

ẏi = q̇i −
dφ j

i (θ )
dθ

θ̇ , i = 1, ...,n−1

defined in each continuous interval I j. For a full set of transverse coordinates, one
more independent coordinate is required.
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For the continuous phase of an underactuated mechanical system, if the relations
y = 0 are maintained then the dynamics of the coordinate θ take the following form:

α(θ )θ̈ +β (θ )θ̇ 2 + γ(θ ) = 0 (2)

where α(·),β (·),γ(·) are straightforward to compute. An important fact is that a
partial closed-form solution of the system (2) can be computed:

θ̇ 2 = ψp(θ ,θ0)θ̇ 2
0 +Γ (θ ,θ0)

where (θ0, θ̇0) is any point on the desired trajectory of the reduced system (2). That
is, θ̇ 2 can be computed as a function of θ , analytically.

The variable
I = θ̇ 2 −ψp(θ ,θ0)θ̇ 2

0 −Γ (θ ,θ0)

is then a clear candidate for the final transverse coordinate: it is independent of y
and ẏ and is zero when the system is on the target motion.

Our complete set of transverse coordinates are then: x⊥ :=
[
I, yT , ẏT

]T

.

Now, for systems of underactuation degree one, there exists a partial feedback-
linearizing transformation of the form [26]:

u = N(y,θ )−1[v−W(y,θ , ẏ, θ̇ )]

creating the dynamics ÿ = v, İ = f (θ , θ̇ ,y, ẏ,v) where f can be calculated
analytically.

From this we construct the continuous part of the transverse linearization, with z
representing the state of the linearization of the dynamics of x⊥:

ż(t) = A(t)z(t)+ B(t)v(t) (3)

where A(t) and B(t) are

A(t) =

⎡
⎣a11(t) a12(t) a13(t)

0(n−1) 0(n−1)2 I(n−1)
0(n−1) 0(n−1)2 0(n−1)2

⎤
⎦B =

⎡
⎣ b1(t)

0(n−1)2

I(n−1)

⎤
⎦ (4)

where I(n−1) is the (n − 1)-dimensional identity matrix, 0(n−1) is an (n − 1)-
dimensional column of zeros, and 0(n−1)2 is an (n− 1)× (n− 1) matrix of zeros.

The functions N(y,θ ),R(y,θ , ẏ, θ̇ ),a11(t),a12(t),a13(t), and b1(t) can be computed
analytically, see [25, 18].

3.2 Transverse Linearization of Impacts

Certain care is required in linearizing the impact map. The transversal surfaces are
orthogonal in phase space to the target motion, but the switching surfaces will not
be in general. Therefore, we must also introduce two projection operators.
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Suppose dΔ j is the linearization of the impact map at time t j about the nominal
trajectory, then

z(t+) = Fjz(t) for t = t j, j = 1,2, ... (5)

where Fj = P+
j dΔ jP

−
j

The construction of P+
j and P−

j is given in [20].
The complete hybrid transverse linearization system is given by (3), (4), and (5).

Assumption 3. The hybrid transverse linearization system is uniformly completely
controllable.

This assumption essentially states that there is sufficient dynamical coupling be-
tween the unactuated and actuated links of the system. It is always satisfied with
reasonable walking robot designs.

4 Receding-Horizon Control Design

Exponential stabilization of time-varying systems, even linear systems, is a non-
trivial problem. For time-invariant or periodic linear systems one can compute
constant or periodic gain matrices, respectively, which exponentially stabilize the
system. This is not true in general for time-varying systems. A common technique
which is computationally feasible is receding-horizon control, also known as model
predictive control (see, e.g., [27, 22] and many others). In this section we describe
a slightly modified version of receding-horizon control suitable for impulsive linear
systems.

The basic strategy is to repeatedly solve a constrained-final-time linear quadratic
optimal control problem for the system (3), (4), (5). That is, minimize the following
cost function:

J(x,u) =
∫ t f

ti
[z(t)T Q(t)z(t)+ v(t)T R(t)v(t)]dt +

Nj

∑
j=1

z(t j)T Q jz(t j)

subject to the constraint z(t f ) = 0.

Assumption 4. There exists αi > 0, i = 0, ..,4, such that α0I ≤ Q(t) ≤ α1I,α2I ≤
R(t) ≤ α3I, and 0 ≤ Q j ≤ α4I for all t and j.

The traditional approach is to set a constant time horizon, but in this work we choose
to look a fixed number of footsteps ahead1. Thus, every time the robot takes a foot-
step, a new optimization is computed.

We propose the following receding-horizon strategy, looking h footsteps ahead,
beginning with i = 0:

1 Or, more generally, a fixed number of impulses ahead.
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1. Consider the union of intervals Ii,h := Ii∪Ii+1∪ ...∪Ii+h. Let ti and t f denote
the beginning and end times of Ii,h.

2. Compute this footstep’s optimal control by solving following jump-Riccati equa-
tion backwards in time from t f to ti with a final condition Z(t f ) = 0(n−1)2

− Ż = −ZAT −AZ + BR−1BT −ZQZ

Z(t j) =
{

FT
j Z(t+j )−1Fj + Q j

}−1
for t ∈ T j (6)

3. Over the interval Ii, apply the following state-feedback controller:

u(y,θ , ẏ, θ̇ ) = N(y,θ )−1[K(θ )x⊥(y,θ , ẏ, θ̇ )−W(y,θ , ẏ, θ̇ )],
K(θ ) = −R−1(s)B(s)T Z(s)−1,s =Θ−1(θ ) (7)

whereΘ−1 : [θ+,θ−]→ [ti,ti+1) is a projection operator, which is straightforward
to construct since θ is monotonic over each step.

4. for the next footstep, set i = i+ 1 and return to stage 1.

Theorem 1. If Assumptions 1, 2, 3, and 4 are satisfied, then the controller (6), (7) lo-
cally exponentially orbitally stabilizes the planned motion of the original nonlinear
system.

The proof is given in Appendix A.

5 Experimental Setup

We have constructed a two-degree-of-freedom planar biped robot with point feet, a
photograph and schematic of which are shown in Fig. 3. The robot is mounted on a
boom arm with a counterweight, and thus walks in a circular path. The dynamical
effect of the boom is approximated by having different values of hip mass for inertial
(mH) and gravitational (mHg) terms in the model. The robot is fitted with retractable

m,Ic

q2

mH

q1

c

Fig. 3 Schematic and photograph of the experimental setup
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feet to avoid toe-scuffing, however we do not consider the feet as additional degrees
of freedom since their masses are negligible.

The robot is modelled in the form of an impulsive mechanical system (1), the
parameters of which were estimated via nonlinear system identification. The full
equations for the model are given in Appendix B. Good fitting required the addition
of a friction model for the hip joint consisting of Coulomb and viscous parts:

τF = FC sign(q̇1)+ FV q̇1.

The parameters of the model are given in Table 1.
The robot is fitted with optical encoders measuring the angle between the legs

and the absolute angle of the inner leg. From these measurements q1 and q2 can be
calculated. The control law relies on velocities as well, and these are estimated with
an observer. The observer structure we choose is one which has previously been
used successfully in walking robot control, consisting of a copy of the nonlinear
dynamics and a linear correction term [28]. Let q̂ and ˆ̇q be the estimates of the
configuration states and velocities, then the observer is given by:

d
dt

[
q̂
ˆ̇q

]
=
[

ˆ̇q
M(q̂)−1(−C(q̂, ˆ̇q) ˆ̇q−G(q̂)+ B(q̂)u)

]
+ L(y− q̂),

q̂+ = Δqq̂, ˆ̇q+ = Δq̇(q̂) ˆ̇q,

where y is the measurement of q. The gain L can be chosen as L = [1/ε 2/ε2] plac-
ing the eigenvalues of the linearized error system at −1/ε . In our experiments we
found that ε = 0.02 gave a reasonable compromise between speed of convergence
and noise rejection.

Table 1 Parameters of the compass-gait biped.

Parameters Values
Masses [kg] m = 1.3, mH = 2.2, mHg = −1.2
Inertia [kg m2] Ic = 0.0168
Lengths [m] l = 0.32, lc = l −0.0596
Gravitational constant [m/s2] g = 9.81
Ratio current/input [A] kI = 1.1
Motor torque constant [Nm/A] kτ = 0.0671
Coulomb friction [Nm] FC = 0.02
Viscous friction [Nm s] FV = 0.01

5.1 Polynomial Representation of Desired Motion

For the compass biped we take θ = q2, the “ankle” angle of the stance leg relative
to horizontal. Then to specify the path through configuration space for each step j,
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we need to specify only the inter-leg angle q1 as a function of the ankle angle: q	
1 =

φ j(θ ). We chose to construct the φ j functions as fourth-order Bézier polynomials,
which can represent a wide range of useful motions with quite a low number of
parameters, and furthermore admit simple representations of the constraints in the
previous section. For details, see [14, Ch. 6], in which Bézier polynomials were
used to design periodic trajectories. It is straightforward to extended this method to
non-periodic trajectories and because of space restrictions we omit the details.

6 Experimental Results

To test the controller experimentally, a relatively simple task was chosen: the robot
should walk flat for two steps, then down two “stairs”, and then continue along the
flat. A video of a successful experiment has been placed online [29].

The control design was implemented as in Section 4 with constant weighting
matrices Q(t) = Q j = I3 and R(t) = 1 for all t and j. The look-ahead horizon was
chosen as three footsteps ahead.

For each step, the solution of the jump-Riccati equation took approximately half
a second to compute using the ode45 solver in MATLAB running on a Pentium
III desktop computer. This is roughly the time it takes for the robot to complete a
step, and it is reasonable to expect that highly optimised C code could perform this
task much more quickly. Hence, one can say that the control law could be feasibly
computed in real-time, as a part of a dynamic motion-planning and control system.

Figure 4 depicts the results of one experiment. Figure 4(A) is a cartoon of the
biped’s motion generated from real data, showing the state every 0.3 seconds, with
the current stance leg always indicated in red.

In Fig. 4(B) the evolution of the “ankle angle” q2 is plotted vs time for one ex-
periment. During the continuous phases, q2 serves as our reparametrization of time
θ . We note here that, particularly on the second and fourth steps, there is some jitter
in the curve.

In Fig. 4(C) the inter-leg angle q1 is plotted vs time in blue, along with the “nom-
inal” value of q1 plotted in red. Note that, since the nominal value of q1 is not a
function of time but a function of q2, defined by the virtual constraint, the jitters in
the q2 measurement lead to jitters in the nominal value of q1. Nevertheless, tracking
is quite good, and sufficient for the robot to maintain a stable walking trajectory.

Figures 4(D) and (E) depict the joint velocities q̇1 and q̇2, obtained from the same
observer used in the control system, along with their nominal values as functions of
the current value of q2. Again, the jitter in q2 leads to large noise in the velocity
estimates. Despite this, good tracking is maintained through all the planned steps.
Repeated experiments were performed with similar results each time, indicating
good robustness of the control strategy.
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Fig. 4 Results from a successful experiment walking on uneven terrain. See Section 6 for
discussion.

7 Conclusions

In this paper we have described a novel method for stabilization of trajectories of
impulsive mechanical systems. The method guarantees local exponential stability to
a target orbit under reasonable assumptions. The method is quite general, but a clear
target application is motions of underactuated walking robots on rough and uneven
terrain. To the authors’ knowledge, this is the first systematic control method which
can provably stabilize such motions.

The proposed technique was experimentally verified using a compass-gait biped
walker. It was seen that, despite measurement errors and inevitable uncertainties
in modelling, the controller reliably stabilized the target motions. The method of
transverse linearization can be applied to any “dynamic walking” robot to design
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stabilizing controllers, or to give certificates of stability and assist choice of gains
for existing control laws.

Future work will include application to robots with more degrees of freedom on
more challenging terrain, and computation of basins of attraction. Furthermore, the
theoretical tools developed in this work also have application to problems of motion
planning, which will be explored.
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Appendix A: Proof of Local Stability

Some details are omitted to save space. We consider the Lyapunov function candi-
date

V (x(t),t,K ) = x(t)T P(t)x(t)

where P(t) = X(t)−1, the solution of the finite-time jump-Riccati equation. i.e. the
total “cost-to-go” from a state x(t) with a feedback strategy K defining u(t) =
−K(t)x(t)

We state the following three facts about this Lyapunov function candidate:

1. It follows from Assumptions 1, 3, and 4 and standard arguments from optimal
control [30] that there exists β1 > β0 > 0 such that

β0I ≤ P(t) ≤ β1I. (8)

2. Throughout the continuous phase from ti to ti+1,

d
dt

V (x(t),t,Ki) = −x(t)T [Q(t)+ K(t)T B(t)T R(t)B(t)K(t)]x(t) < 0.

Therefore, it follows from the bounds on Q(t) in Assumption 4 that

d
dt

V (x(t), t,Ki) ≤ α0‖x(t)‖ (9)

for all t.
3. Let Ki refer to the strategy of using finite-time controller calculated at the begin-

ning of step i. Under this strategy, x(ti+h) = 0 and remains zero for all t > ti+h.
After step i, the state is x(ti+1). A feasible strategy from here would be to con-
tinue with control strategy Ki. However, a new optimization is performed at step
i+1 over a new horizon i+1+h. Since continuing with Ki is a feasible strategy,
the new optimal strategy Ki+1 must have a cost to go

V (x(ti+1),ti+1,Ki+1) ≤ V (x(ti+1),ti+1,Ki). (10)

i.e. the Lyapunov function is non-increasing when an impulse occurs.

From the facts (8), (9), and (10) it follows that the time-varying impulsive linear
comparison system (3), (4), (5) is exponentially stable, using a generalization of
Lyapunov’s second method [31, Ch. 13].

Using Assumptions 1, 2, and 3 arguments similar to those of [25, 18, 20] prove
that exponential stability of the transverse linearization implies local orbital expo-
nential stability of the original nonlinear system to the target trajectory.
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Appendix B: Compass Biped Model

The model of the experimental setup is given by (1) where

M(q)=
[

p1 −p1 + cos(q1)p2

−p1 + cos(q1)p2 p3 + 2p1−2cos(q1)p2

]
,

C(q, q̇)=
[

0 −q̇2 sin(q1)p2

−sin(q1)(q̇1 − q̇2)p2 sin(q1)q̇1 p2

]
, B=

[
kIkτ

0

]
,

G(q)=
[

sin(−q2 + q1)p4, −sin(−q2 + q1)p4 − sin(q2)p5 − sin(q2)p4
]T

.

The coefficients are defined by the physical parameters of the robot like so:

p1 = (l − lc)2m+ Ic , p2 = ml(l − lc) , p3 = mHl2 + 2mllc
p4 = mg(l − lc) , p5 = g(mHgl + 2mlc) .

The impact model in (1) is derived under the assumption of having an instantaneous
and inelastic collision of the swing leg with the ground and no occurrence of slip or
rebound [24]:

Δq =
[
−1 0
−1 1

]
, Δq̇(q−) = Δq

[
H+(q−)

]−1
H−(q−),

where

H+
1,1(q

−) = p1 −2p6l + l2 p7,

H+
1,2(q

−) = H+
2,1(q

−) = (l2 p7 +(−p8 −2p6)l + p2)cos(q1)− l2 p7 + 2p6l− p1,

H+
2,2(q

−) = (−2l2 p7 +(2p8 + 4p6)l −2p2)cos(q1)+ 2l2 p7 +(−4p6−2p8)l + p3

+2p1,

H−
1,1(q

−) = p1 − p6l, H−
1,2(q

−) = ((−p6 − p8)l + p2)cos(q1)− p1 + p6l,

H−
2,1(q

−) = (p2 − p6l)cos(q1)− p1 + p6l,

H−
2,2(q

−) = ((2p6 + p8)l −2p2)cos(q1)+ (−p8 −2p6)l + p3 + 2p1

p6 = m(l − lc) p7 = mH + 2m, p8 = lc p7 + mH(l − lc).
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Applications to Robotic Aerial Vehicles
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Abstract. Decomposing complex, highly nonlinear systems into aggregates of sim-
pler hybrid modes has proven to be a very successful way of designing and con-
trolling autonomous vehicles. Examples include the use of motion primitives for
robotic motion planning and equivalently the use of discrete maneuvers for aggres-
sive aircraft trajectory planning. In all of these approaches, it is extremely important
to verify that transitions between modes are safe. In this paper, we present the use
of a Hamilton-Jacobi differential game formulation for finding continuous reach-
able sets as a method of generating provably safe transitions through a sequence of
modes for a quadrotor performing a backflip maneuver.

1 Introduction

As robotic and automated systems become more complex, it has become increas-
ingly difficult to design and analyze these systems, and it is especially hard to pro-
vide provable guarantees on safety and performance. One successful approach is to
break down complex nonlinear systems into a hybrid collection of discrete modes,
with different continuous dynamics for each mode. This decomposition can greatly
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Full Nonlinear Dynamics

Discrete Sequences
1 2 3 4 5

Hybrid Automata/Modes

Fig. 1 Hybrid hierarchical representation of maneuvers for a quadrotor helicopter

simplify the analysis of the behavior of the overall system, and planning and con-
trol is also simplified by the ability to generate plans at the level of the discrete
modes (see Figure 1). This hybrid, hierarchical approach to the design and control
of autonomous systems has proven to be very powerful. Successful examples of this
approach include aerobatic maneuver design (Frazzoli et al, 2005), linear-temporal
logic specifications for generating robot behaviors (Kress-Gazit et al, 2008), and the
use of motion primitives for robotic manipulator motion planning in complex dy-
namical tasks (Burridge et al, 1999).

A key consideration in the use of hybrid modes is the question of verifying that
in transitioning between modes safety or performance criteria are met. For example,
if constructing a sequence of maneuvers for an aircraft, it is necessary to know
if one maneuver can be safely followed by another maneuver. In other words, an
allowable grammar over the discrete modes must be constructed. Previous work
has addressed this problem in a variety of ways. In the maneuver sequencing for
helicopters, steady state ”trim states” were designated, with all maneuvers starting
and ending in a trim state (e.g. level flight). Thus a maneuver that had a given end
state could be followed by another maneuver with the same trim state as its initial
condition (Frazzoli et al, 2005). The work on motion primitives proceeded similarly,
with Lyapunov functions designated for each mode that guaranteed that the output
of one action would be within the stable capture region of the subsequent action
(Burridge et al, 1999).

In much of the existing literature, the particular methods to ensure continuity
between modes have been specific to the application at hand. Moreover, in many
cases, while ensuring feasibility of transitions with respect to the dynamics, the
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methodologies may require separate external mechanisms to meet safety criteria,
such as avoiding obstacles. Ding, et. al. demonstrated the use of reachable sets in
UAV refueling as a method for ensuring both safety relative to another aircraft and
guaranteed arrival at a target state (Ding et al, 2008). In this work, we propose the
use of reachable sets as a mechanism for combining both dynamic feasibility of
switching and simultaneously the imposition of verifiable safety constraints on sys-
tem trajectories for a quadrotor helicopter performing an aerobatic maneuver. We
demonstrate the use of the Hamilton-Jacobi differential game formulation of reach-
able sets (Mitchell et al, 2005) to construct maneuvers that safely transition through
a sequence of modes for a backflip maneuver, arriving at a target state while avoid-
ing unsafe states en route.

The organization of this paper is as follows. Section 2 provides background on
the theory of the Hamilton-Jacobi game formulation for generating reachable sets.
Section 3 describes the dynamics of the quadrotor helicopter considered, and the
details of the analysis of the backflip maneuver are described in Section 4. Finally,
simulation results for the flip maneuver are presented in Section 5, with conclusions
and future work in Section 6.

2 Backwards Reachable Sets

The backwards reachable sets in this work are generated according to the Hamilton-
Jacobi game formulation as described in Mitchell et al (Mitchell et al, 2005). Two
types of reachable sets are used: avoid sets, which are reachable sets generated to
avoid undesired states, and capture sets, which are defined in order to reach certain
desired states. The formulation will be summarized in the discussion of avoid sets,
with the description of capture sets highlighting the differences.

2.1 Avoid Sets

The backwards reachable set G(t) is defined to be the set of all states x such that,
for any inputs u, the disturbance d can drive the system into a set G0 in time t. The
system dynamics are defined by

ẋ = f (x,u,d) (1)

where x is the system state, u is the control input, and d is a disturbance input,
where u and d are assumed to be constrained in some sets U and D, respectively. As
detailed in (Mitchell et al, 2005), the boundary of the reachable set is defined by the
solution to the modified Hamilton-Jacobi-Isaacs equation



142 J.H. Gillula et al.

−∂J(x,t)
∂ t

= min{0,max
u

min
d

∂J(x, t)
∂x

f (x,u,d)} (2)

where the level set J(x,0) = 0 defines the initial undesired set G0.

2.2 Capture Sets

The same principle behind the avoid set can also be used to reverse the role of the
control and disturbance to generate capture sets. Given a desired target state region,
the backwards reachable set can be calculated with the control input attempting to
drive the state into the desired state region and the disturbance attempting to keep
the state out. The capture set so generated is the set of all states such that for any
possible action that the disturbance might take, the input will drive the state to the
desired region in some time t. The formulation for the capture set is identical to that
for the avoid set, except for reversing the roles of the input and disturbance. The
conditions so derived are then

−∂J(x,t)
∂ t

= min{0,min
u

max
d

∂J(x, t)
∂x

f (x,u,d)} (3)

It should be noted that this problem can be simplified even further if one has a
desired control law u(x); in this case the capture set is given by

−∂J(x,t)
∂ t

= min{0,max
d

∂J(x, t)
∂x

f (x,u(x),d)} (4)

and is simply the set of all states such that for any possible disturbance, the given
control law will drive the state to the desired region in some time t.

2.3 Maneuver Sequencing with Reachable Sets

Capture and avoid sets can be used to construct safe sequences of maneuvers. Start-
ing with the final (target) set, the dynamics for the final (nth) maneuver can be run
backwards to generate a capture set for that maneuver. Then a target region can be
selected within the capture set of the final maneuver as the target set for the previous
(n−1st) maneuver. Thus an initial condition within the capture set of the n−1st ma-
neuver is guaranteed to arrive within the capture set of the nth maneuver, allowing
a safe switch into the nth maneuver and eventual safe arrival at the final target set
(see Figure 2). This process can be repeated for any number of desired maneuvers to
identify a start region for the entire sequence. Safety considerations such as avoiding
a particular unsafe set can be encoded either by choosing capture sets that avoid the
unsafe regions of particular reach sets, or by generating reach-avoid sets that reach
target sets while avoiding the unsafe sets.
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Target
Set

Unsafe
Set

Fig. 2 Capture and avoid sets for sequencing two modes/maneuvers

3 Planar Quadrotor Dynamics

To simplify the problem the quadrotor’s dynamics were modeled in a plane (as op-
posed to R3). It is assumed that the vehicle’s out of plane dynamics can be stabi-
lized, which we believe is a valid assumption. The resulting dynamics (based on the
original dynamics in (Hoffmann et al, 2007)) are:

∂
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]

where m is the vehicle’s mass, g is gravity, Cv
D is the linear drag constant, Cθ

D is
the rotational drag constant, Dx, Dy and Dθ are disturbances, Iyy is the moment of
inertia, and all other variables are as depicted in figure 3. Several assumptions went
into this formulation of the dynamics, including that the vehicle undergoes linear
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Fig. 3 The quadrotor’s two-dimensional dynamics.

drag (as opposed to drag proportional to velocity), and that the thrust from each
motor saturates at some value Tmax.

4 Backflip

A diagram of the backflip maneuver is pictured in figure 4. The maneuver was bro-
ken down into three modes: impulse, drift, and recovery. (This break down was due
to the fact that for at least part of the flip, the vehicle’s motors must be turned off
in order to prevent the vehicle from propelling itself into the ground.) In the im-
pulse mode, a moment is applied to the vehicle that initiates the backflip. In the drift
mode, the vehicle’s motors are turned off and the vehicle completes the flip. Finally,
in the recovery mode, the motors are turned back on and the vehicle is returned to a
stable state (from which other maneuvers could potentially be initiated).

Of course, sequencing the maneuver in a manner that is guaranteed to be safe
is a difficult problem: doing so requires hitting some target sets (e.g. a target set
that ensures the vehicle is upside down) while avoiding some unsafe sets (e.g. the
unsafe set consisting of states below y = 0). This problem is compounded by the
fact that the quadrotor system dynamics are six-dimensional, and existing compu-
tational methods for computing reachable sets are only tractable for systems with

Fig. 4 The backflip maneuver, broken down into three modes.
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Fig. 5 The recovery mode target set and capture basin.

dimensions of four or less. To get past this problem, the system’s states were broken
apart apart into three sets and analyzed separately. The rotational dynamics (θ and
θ̇ ) were analyzed to ensure that the vehicle achieved a flip; the vertical dynamics (y
and ẏ) were analyzed to ensure the vehicle remained above some minimum altitude;
and the horizontal dynamics (x and ẋ) were ignored to keep the problem as simple
as possible.

4.1 Attainability

The general method for calculating the maneuver was as described in section 2.
In particular, the target for the final state of the recovery mode was chosen to be
θ = 0±5◦, θ̇ = 0±20◦, so as to have the vehicle end in a fairly level configuration
with very little rotational velocity. Additionally, as mentioned in section 2, a fixed
control law was chosen to drive the vehicle to this target set; in this case, a standard
PD controller of the form u = kpθ + kd θ̇ was used.1 This target set was then prop-
agated backwards using the reachable set toolbox in MATLAB, taking into account
the worst-case disturbances (due to motor noise and wind). The resulting level sets
represented the capture set for this maneuver, as pictured in figure 5.

For the drift mode, a similar procedure was followed. The target set was chosen
as θ = 90±5◦, θ̇ =−138±20◦, and was propagated back (this time with no control
input, and thus reduced worst-case disturbances due to the lack of motor noise) to
produce the capture set for the drift mode (figure 6).

1 It should be noted that the actual commanded thrust was of the form T1 = Tnom −u, T2 =
Tnom + u, where Tnom was the nominal total thrust necessary to counteract gravity, and u
was as given above.
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Fig. 6 The drift mode target set and capture basin.

Finally, for the impulse mode, the target set was θ = 300±5◦, θ̇ = −210±10◦.
Once again, a fixed controller (of the form u = kpθ + kd θ̇ + kc) was used, and the
worst-case disturbances were chosen so as to account for motor noise and wind. The
resulting capture set is pictured in figure 7.

4.2 Safety

To ensure safety, an initial unsafe set of y < 0 was chosen. Because the vehicle’s
vertical dynamics are coupled to its rotational dynamics when thrust is applied (see

Fig. 7 The impulse mode target set and capture basin.
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Fig. 8 The unsafe reachable sets in the vertical dynamics.

equation 5), the interaction between the two systems could not be ignored when
trying to calculate the unsafe reachable set for this mode. However, because the
recovery mode was designed with a fixed control law, a nominal trajectory in the
θ , θ̇ space could be created as a function of y and ẏ. The unsafe set could then
be calculated by plugging this nominal trajectory into the system dynamics, and
proceeding as usual. The set was propagated backward for a fixed time T , based on
the maximum time that the rotational part of the recovery mode could take.

In the drift mode, things are less complicated; the vehicle’s dynamics decompose
into three separate two-dimensional systems, given below.
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(6)

Thus, it was easy to simply propagate the unsafe set from the recovery mode back-
wards using the y, ẏ dynamics. Again, this was done for a fixed time based on the
maximum length of the maneuver as calculated from the rotational dynamics. Fi-
nally, it was assumed that there would be no loss in altitude during the impulse
mode because of the way the modes and their switching criteria were designed (i.e.
the vehicle would never have a negative vertical velocity during the impulse mode).
The resulting unsafe sets are pictured in figure 8; as long as the vehicle began each
mode outside the unsafe set for that mode, the overall safety of the system was
guaranteed.
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Fig. 9 A trajectory of the vehicle in the rotational state space. The yellow region is the capture
basin and target for the recovery mode, blue is for the drift mode, and red is for the impulse
mode.

5 Results

The combined results of the reachable set computations for the rotational state space
are pictured in figure 9. Additionally, a sample trajectory in the rotational state space
is overlaid, indicating that the vehicle does indeed remain inside each of the given
capture basins as it completes the maneuver.

Figure 10 shows a time-lapse image of a resulting simulated trajectory. In this
simulation, the transition between the different modes was triggered whenever both
of the rotational states satisfied the conditions of the target set for the given mode.

Fig. 10 A time-lapse image of a simulated trajectory.



Design and Analysis of Hybrid Systems 149

6 Conclusions and Future Work

While the method we have proposed for using reachable sets to generate provably
safe transitions between different modes shows great promise, several open ques-
tions remain. First, in future work we hope to explore how to parametrically describe
reachable sets. In particular, it is apparent that in the current framework the resulting
reachable set (whether it be for safety or attainability) depends a great deal on the
parameters used when generating it. For example, the reachable set for a flip that
ends with a slow rotational velocity would look very different from one that ends
with a high rotational velocity. As a result, the reachable sets for each version of
the same maneuver must be calculated offline using predefined parameters. Instead,
it would be preferable if a reach set could be calculated and represented in such a
way that the effect of a simple change in parameters could be quickly computed,
resulting in the ability to choose between different versions of the same maneuver
in an online manner.

Of course, the most immediate goal which we intend to accomplish is the imple-
mentation of the work described in this paper on an actual quadrotor vehicle. While
this goal will likely entail a sizable amount of engineering work, we believe that due
to the robustness of the theory we have developed, doing so is well within the realm
of possibility.
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Motion Planning under Uncertainty for Robotic
Tasks with Long Time Horizons

Hanna Kurniawati�, Yanzhu Du, David Hsu, and Wee Sun Lee

Abstract. Partially observable Markov decision processes (POMDPs) are a princi-
pled mathematical framework for planning under uncertainty, a crucial capability
for reliable operation of autonomous robots. By using probabilistic sampling, point-
based POMDP solvers have drastically improved the speed of POMDP planning,
enabling POMDPs to handle moderately complex robotic tasks. However, robot mo-
tion planning tasks with long time horizons remain a severe obstacle for even the
fastest point-based POMDP solvers today. This paper proposes Milestone Guided
Sampling (MiGS), a new point-based POMDP solver, which exploits state space
information to reduce the effective planning horizon. MiGS samples a set of points,
called milestones, from a robot’s state space, uses them to construct a simplified
representation of the state space, and then uses this representation of the state space
to guide sampling in the belief space. This strategy reduces the effective planning
horizon, while still capturing the essential features of the belief space with a small
number of sampled points. Preliminary results are very promising. We tested MiGS
in simulation on several difficult POMDPs modeling distinct robotic tasks with long
time horizons; they are impossible with the fastest point-based POMDP solvers to-
day. MiGS solved them in a few minutes.

1 Introduction

Efficient motion planning with imperfect state information is an essential capability
for autonomous robots to operate reliably in uncertain and dynamic environments.
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With imperfect state information, a robot cannot decide the best actions on the basis
of a single known state; instead, the best actions depend on the set of all possible
states consistent with the available information, resulting in much higher compu-
tational complexity for planning the best actions. Partially observable Markov de-
cision processes (POMDPs) [8, 18] provide a general and principled mathematical
framework for such planning tasks. In a POMDP, we represent a set of possible
states as a belief, which is a probability distribution over a robot’s state space. We
systematically reason over the belief space B, the space of all beliefs, by taking
into account uncertainty in robot control, sensor measurements, and environment
changes, in order to choose the best robot actions and achieve robust performance.
By incorporating uncertainty into planning, the POMDP approach has led to im-
proved performance in a number of robotic tasks, including localization, coastal
navigation, grasping, and target tracking [4, 7, 13, 16].

Despite its solid mathematical foundation, POMDP planning faces two major
computational challenges. The first one is the “curse of dimensionality”: a complex
robotic task typically generates a high-dimensional belief space. If a robotic task is
modeled with a discrete state space, its belief space has dimensionality equal to the
number of states. Thus a task with 1,000 states has a 1,000-dimensional belief space!
In recent years, point-based POMDP solvers [13] have made dramatic progress in
overcoming this challenge by sampling the belief space and computing approximate
solutions. Today, the fastest point-based POMDP solvers, such as HSVI2 [20] and
SARSOP [10], can handle moderately complex robotic tasks modeled as POMDPs
with up to 100,000 states in reasonable time. The success of point-based solvers
can be largely attributed to probabilistic sampling, which allows us to use a small
number of sampled points as an approximate representation of a high-dimensional
belief space. The approximate representation substantially reduces computational
complexity. The same reason underlies the success of probabilistic sampling in other
related problems and approaches, e.g., probabilistic roadmap (PRM) algorithms [2]
for geometric motion planning (without uncertainty).

The second major challenge is the “curse of history”. In a motion planning task,
a robot often needs to take many actions to reach the goal, resulting in a long time
horizon for planning. Unfortunately the complexity of planning grows exponen-
tially with the time horizon. Together, a long time horizon and a high-dimensional
belief space compound the difficulty of planning under uncertainty. For this reason,
even the best point-based POMDP algorithms today have significant difficulty with
robotic tasks requiring long planning horizons (see Section 6 for examples).

To overcome this second challenge and scale up POMDP solvers for realistic
robot motion planning tasks, we have developed a new point-based POMDP solver
called Milestone Guided Sampling (MiGS). It is known from earlier work on re-
lated problems that the most important component of a planning algorithm based on
probabilistic sampling is the sampling strategy [5]. MiGS reduces the planning hori-
zon by constructing a more effective sampling strategy. It samples a set of points,
called milestones, from a robot’s state space S, uses the milestones to construct a
simplified representation of S, and then uses this representation of S to guide sam-
pling in the belief space B. The intuition is that many paths in B are similar. Using
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the simplified representation of the state space, MiGS avoids exploring many of the
similar belief space paths, which enables us to capture the essential features of B
with a small number of sampled points from B.

We tested MiGS in simulation on several difficult POMDPs modeling distinct
robotic tasks with long time horizons, including navigation in 2D and 3D environ-
ments, and target finding. These tasks are impossible with the fastest point-based
POMDP solvers today. MiGS solved them in a few minutes.

2 Background

2.1 Motion Planning under Uncertainty

Despite its importance and more than almost three decades of active research [11,
22], motion planning under uncertainty remains a challenge in robotics. Several
recent successful algorithms are based on the probabilistic sampling approach.
Stochastic Motion Roadmap [1] combines PRM with the Markov decision pro-
cess (MDP) framework to handle uncertainty in robot control, but it does not take
into account uncertainty in sensing. Another method, Belief Roadmap [15], handles
uncertainty in both robot control and sensing, but one major limitation is the as-
sumption that the uncertainty can be modeled as Gaussian distributions. Unimodal
distributions such as the Gaussian distribution are inadequate when robots operate
in complex geometric environments.

POMDPs are a general framework that can overcome the above limitations. By
tackling the difficulty of long planning horizons, MiGS brings POMDPs a step
closer to being practical for complex robotics tasks.

2.2 POMDPs

A POMDP models an agent taking a sequence of actions under uncertainty to maxi-
mize its reward. Formally, it is specified as a tuple (S, A, O, T , Z, R, γ), where S is
a set of states describing the agent and the environment, A is the set of actions that
the agent may take, and O is the set of observations that the agent may receive.

At each time step, the agent lies in some state s ∈ S, takes some action a ∈ A,
and moves from a start state s to an end state s′. Due to the uncertainty in action, the
end state s′ is modeled as a conditional probability function T (s, a, s′) = p(s′|s, a),
which gives the probability that the agent lies in s′, after taking action a in state s.
The agent then receives an observation that provides information on its current state.
Due to the uncertainty in observation, the observation result o ∈ O is again modeled
as a conditional probability function Z(s, a, o) = p(o|s, a).

In each step, the agent receives a real-valued reward R(s, a), if it takes action a in
state s. The goal of the agent is to maximize its expected total reward by choosing
a suitable sequence of actions. When the sequence of actions has infinite length,
we typically specify a discount factor γ ∈ (0, 1) so that the total reward is finite
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and the problem is well defined. In this case, the expected total reward is given by
E [
∑∞

t=0 γtR(st, at)], where st and at denote the agent’s state and action at time t.
The solution to a POMDP is an optimal policy that maximizes the expected total

reward. In a POMDP, the state is partially observable and not known exactly. So we
rely on the concept of beliefs. A POMDP policy π : B → A maps a belief b ∈ B to
the prescribed action a ∈ A.

A policy π induces a value function Vπ(b) = E [
∑∞

t=0 γtR(st, at)|b, π] that spec-
ifies the expected total reward of executing policy π starting from b. It is known that
V ∗, the value function associated with the optimal policy π∗, can be approximated
arbitrarily closely by a convex, piecewise-linear function,

V (b) = max
α∈Γ

(α · b) (1)

where Γ is a finite set of vectors called α-vectors and b is the discrete vector rep-
resentation of a belief. Each α-vector is associated with an action. The policy can
be executed by selecting the action corresponding to the best α-vector at the current
belief. So a policy can be represented as a set of α-vectors.

Given a policy, represented as a set Γ of α-vectors, the control of the agent’s
actions, also called policy execution, is performed online in real time. It consists of
two steps executed repeatedly. The first step is action selection. If the agent’s current
belief is b, it finds the action a that maximizes V (b) by evaluating (1). The second
step is belief update. After the agent takes an action a and receives an observation
o, its new belief b′ is given by

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑
s

T (s, a, s′)b(s) (2)

where η is a normalization constant. The process then repeats.

2.3 Point-Based POMDP Solvers

The adoption of POMDPs as a planning framework in robotics has been hindered by
the high dimensional belief space and the long time horizon typical of many robotics
tasks. Many approaches have been proposed to alleviate these difficulties [22].
Point-based solvers [10, 13, 20, 21] are currently the most successful approach.
Using the idea of probabilistic sampling, they have made impressive progress in
computing approximate solutions for POMDPs with large number of states and
have been successfully applied to a variety of non-trivial robotic tasks, including
coastal navigation, grasping, target tracking, and exploration [4, 12, 13, 14, 19].
Despite this impressive progress, even the best point-based POMDP solvers today
have significant difficulty with robotic tasks that require long planning horizons.

MiGS follows the approach of point-based POMDP solvers, but aims at over-
coming the difficulty of long horizons. Learning from the successful PRM approach
for geometric motion planning [2], MiGS tries to construct a more effective strategy
for sampling the belief space.
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3 Milestone Guided Sampling

A key idea of point-based POMDP solvers is to sample a set of points from B
and use it as an approximate representation of B. Let R ⊆ B be the set of points
reachable from a given initial belief point b0 ∈ B under arbitrary sequences of
actions and observations. Most of the recent point-based POMDP algorithms sample

a1 a2

o1 o2

b0

Fig. 1 The belief tree rooted at b0.

from R instead of B for computational effi-
ciency. The sampled points form a belief tree
T (Fig 1). Each node of T represents a sampled
point b ∈ B. The root of T is the initial be-
lief point b0. To sample a new point b′, we pick
a node b from T as well as an action a ∈ A
and an observation o ∈ O according to suitable
probability distributions or heuristics. We then
compute b′ = τ(b, a, o) using (2) and insert
b′ into T as a child of b. If a POMDP requires
an effective planning horizon of h actions and

observations, T may contain Θ((|A||O|)h) nodes in the worst case, where |A| is
the number of actions and |O| is the number of observations for the POMDP. Thus
any point-based solvers trying to construct T exhaustively must have running time
exponential in h and suffer from the “curse of history”.

To overcome this difficulty, let us consider the space from which we must sample.
If the effective planning horizon is h, we must sample from a subset of R that
contains Rh, the set of belief points reachable from b0 with at most h actions and
observations. Our difficulty is that the size of Rh grows exponentially with h. The
basic idea of MiGS is to sample Rh hierarchically at multiple resolutions and avoid
exhaustively sampling Rh unless necessary.

To do so, MiGS builds a roadmap graph G in a robot’s state space S. The nodes
of G are states sampled from S and are called milestones. An edge e between two
milestones s and s′ of G is annotated with a sequence of actions (a1, a2, . . . , a�)
that can bring the robot from s to s′. The edge e is also annotated with a sequence
of states (s0, s1, . . . , s�) that the robot traverses under the actions (a1, a2, . . . , a�),
with s0 = s and s� = s′. If we think of G as a collection of edges, each representing
a sequence of actions, we can then use such sequences of actions to construct the
belief tree T . At a node b, we apply a sequence of actions associated with a selected
edge of G, instead of a single action, to derive a child node b′. Suppose, for exam-
ple, that G has maximum degree d and the minimum length of an action sequence
contained in each edge of G is �. Then, for a POMDP with time horizon h, T con-
tains at most O((d |O|�)h/�) = O(dh/�|O|h) nodes. This indicates that the action
sequences encoded in G help in reducing the effect of long planning horizons due
to actions, but not necessarily observations. Since the size of T grows exponentially
with h, the reduction is nevertheless significant.

To sample at multiple resolutions, we sample S coarsely and connect the mile-
stones with long sequences of actions, generating a large �. We then refine the sam-
pling of S, which gradually reduces the � value.
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Now it should be clear that MiGS is indeed faster, as the belief tree T is smaller.
However, a more fundamental question remains: since the roadmap G contains only
a subset of sampled states and not all states in the state space S, do the belief points
sampled with the help of G cover the entire reachable belief space well and likely
lead to a good approximation to the optimal value function and the optimal policy?
The answer is yes, if we sample S adequately in a sense which we now explain.

Denote by Γ ∗ a set of α-vectors representing an optimal value function. Given a
constant ε > 0, we partition the state space S into a collection of disjoint subsets
so that for any α ∈ Γ ∗ and any two states s and s′ in the same subset, |α(s) −
α(s′)| ≤ ε. Intuitively, the partitioning condition means that any two states in the
same subset are similar in terms of their significance in the optimal value function.
The constant ε controls the resolution of partitioning. We call such a partitioning of
S an ε-partitioning and denote it by K. The partitioning K induces a distance metric
on the belief space B:

Definition 1. Let K be an ε-partitioning of the state space S. The distance between
any two beliefs b and b′ in B with respect to K is

dK(b, b′) =
∑
K∈K

∣∣∣∣∣
∑
s∈K

b(s) −
∑
s∈K

b′(s)

∣∣∣∣∣ . (3)

This new metric is more lenient than the usual L1 metric and is upper-bounded by
the L1 metric. It measures the difference in probability mass for subsets of states
rather than individual states. This is desirable, because the states within a subset
K ∈ K are similar under our assumption and there is no need to distinguish them.
Using dK, we can derive a Lipschitz condition on the optimal value function V ∗(b):

Theorem 1. Let K be an ε-partitioning of the state space S. For any b and b′ in the
corresponding belief space B, if dK(b, b′) ≤ δ, then |V ∗(b)−V ∗(b′)| ≤ Rmax

1−γ δ+2ε,
where Rmax = maxs∈S,a∈A |R(s, a)|.

The proof is given in the appendix. Theorem 1 provides a sampling criterion for
approximating V ∗ well. Suppose that B is a set of sampled beliefs that covers the
belief space B: for any b ∈ B, there is a point b′ in B with dK(b, b′) ≤ δ, where δ
is some positive constant. Theorem 1 implies that the values of V ∗ at the points in
B serve as a good (sampled) approximation to V ∗. Furthermore, to estimate these
values, we do not need to consider all the states in S, because dK does not distinguish
states within the same subset K ∈ K; it is sufficient to have one representative
state from each subset. This justifies MiGS’ sampling of the state space during the
roadmap construction.

Of course, MiGS does not know the partitioning K in advance. To sample S
adequately, one way is to use uniform random sampling. If each subset K ∈ K is
sufficiently large, then we can guarantee that uniform sampling generates at least
one sampled state from each K ∈ K with high probability. To improve efficiency,
our implementation of MiGS uses a heuristic to sample S. See Section 4 for details.

We now give a sketch of the overall algorithm. MiGS iterates over two stages.
In the first state, we sample a set of new milestones from S, and then use it to
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Algorithm 1. Perform α-vector backup at a belief b.

BACKUP(b, Γ )

1: For all a ∈ A, o ∈ O, αa,o ← argmaxα∈Γ (α · τ (b, a, o)).
2: For all a ∈ A, s ∈ S, αa(s) ← R(s, a) + γ

∑
o,s′ T (s, a, s′)Z(s′, a, o)αa,o(s

′).
3: α′ ← argmaxa∈A(αa · b)
4: Insert α′ into Γ .

construct or refine a roadmap G. In the second stage, we follow the approach of
point-based POMDP solvers and perform value iteration [17] on a set Γ of α-
vectors, which represents a piecewise-linear lower-bound approximation to the op-
timal value function V ∗. Exploiting the fact that V ∗ must satisfy the Bellman equa-
tion, value iteration starts with an initial approximation to V ∗ and performs backup
operations on the approximation by iterating on the Bellman equation until the iter-
ation converges. What is different in value iteration for point-based POMDP solvers
is that backup operations are performed only at a set of sampled points from B
rather than the entire B. In MiGS, we sample incrementally a set of points from
B by constructing a belief tree T rooted at an initial belief point b0. To add a new
node to T , we first choose an existing node b in T in the least densely sampled
region of B, as this likely leads to sampled beliefs that cover B well. We then
choose a suitable edge e from the roadmap G and use the associated action se-
quence (a1, a2, . . . , a�) and state sequence (s0, s1, s2, . . . , s�), where � is the length
of the action associated with e, to generate a new node. Specifically, we first gen-
erate an observation sequence (o1, o2, . . . , o�) so that each oi is consistent with si

and ai, to be precise, Z(si, ai, oi) = p(oi|si, ai) > 0, for 1 ≤ i ≤ �. We then
start at b and apply the action-observation sequence (a1, o1, a2, o2, . . . , a�, o�) to
generate a sequence of new beliefs (b1, b2, . . . , b�), where b1 = τ(b, a1, o1) and
bi = τ(bi−1, ai−1, oi−1) for 2 ≤ i ≤ �. Finally, b� is inserted to T as a child node
of b, while (b1, b2, . . . , b�−1) is associated with the edge from b to b� for backup
operations. After creating the new node b�, we perform backup operations for every
belief associated with the nodes and edges of T along the path from b� to the root
b0. A backup operation at b improves the approximation of V ∗(b) by looking ahead
one step. We perform the standard α-vector backup (Algorithm 1). Each backup op-
eration creates a new α-vector, which is added to Γ to improve the approximation of
V ∗. We repeat the sampling and backup processes until a sufficiently large number
of new sampled beliefs are obtained. If necessary, we repeat the two stages to refine
the roadmap G and sample additional new beliefs. The details for these two stages
are reported in Sections 4 and 5, respectively.

4 Roadmap Construction

To construct the roadmap, MiGS assumes that positive reward is given only when
the robot reaches the goal state. This assumption is suitable for general motion plan-
ning problem where the robot’s goal is to reach one of the possible goal state(s).
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4.1 Sampling the Milestones

Ideally, given ε, we would like to sample a set of milestones such that each mile-
stone is a representative state of a partition of an ε-partitioning of the state space
S. However since we do not know the optimal value function nor any ε-partitioning
of S, MiGS uses a heuristic that biases sampling towards states where either high
reward can be gained or informative observation can be perceived.

A particular distribution P (s) MiGS uses to sample S is,

P (s) ∝ KI(s) (4)

where K is a constant and I(s) indicates the importance of visiting s in re-
ducing uncertainty and gaining reward. The importance function we use, I :
S → R, is a weighted sum of an expected reward function and a localiza-
tion function, avgReward(s) + λ × locAbility(s), where the weight λ deter-
mines the importance of localization relative to the reward. Since localization de-
pends on both the action performed and the observation perceived, we compute
locAbility(s) as an expected value over all possible actions and observations, as-
suming an action is selected uniformly at random and the observation is perceived
according to the observation distribution function. More precisely, locAbility(s) =
1
|A|

∑
a∈A

∑
o∈O P (o|s, a) · usefulness(s, o, a). To compute how useful an obser-

vation is towards localizing a state, we compute the posterior probability of being
in the state after the observation is received, assuming a uniform prior on the states,
usefulness(s, a, o) = P (s|o, a) = P (o|s, a)/

∑
s∈S P (o|s, a). The reward compo-

nent is avgReward(s) = 1
|A|

∑
a∈A R(s, a).

4.2 Partitioning the State Space

Once a set of milestones has been sampled, MiGS partitions the state space based
on a notion of “distance” to the milestones. To help establish the notion of distance,
MiGS constructs the state graph S , a weighted multi-digraph where the vertices
are states in S. We will refer to the vertices of S and their corresponding states
interchangeably, as there is no confusion. An edge from s ∈ S to s′ ∈ S, labeled
with action a ∈ A, exists in S whenever T (s, a, s′) > 0. The weight of the edges
act as the distance for partitioning.

We define the weight w((ss′, a)) of an edge (ss′, a) in S as the sum between
the cost for performing a from s and the expected total regret of continuing from s′

even when the robot may be at a state other than s′ after performing a from s. More
precisely,

w((ss′, a)) = c(s, a) +
∑

s′′∈S

T (s, a, s′′) · r(s′, s′′) (5)

where c(s, a) is the cost of performing action a from s. For computational efficiency,
we would like the weight to always be positive. Therefore, we set c(s, a) = −R(s, a)
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if R(s, a) < 0 and c(s, a) = 0 otherwise. The second component indicates how dif-
ferent the future expected total reward can be if we assume the robot is in s′ while it
is actually in s′′. The function r(s′, s′′) can be defined in many ways. For simplicity,
MiGS sets r(s′, s′′) as a constant positive value whenever s′ �= s′′ and 0 otherwise.

Once the distance between states is defined, Voronoi decomposition can be used
to partition S. MiGS uses inward Voronoi partition [3] on the state graph S with
M as the Voronoi sites. It partitions the vertices of S based on the distance to the
Voronoi sites.

4.3 Roadmap Edges

To generate sequences of actions and states for guiding belief space sampling, MiGS
uses the adjacency relation between the Voronoi sets in S . An edge mm′ from mile-
stone m to milestone m′ is inserted to the roadmap whenever there is a path from m
to m′ in the graph induced by Vor(m) ∪ Vor(m′), where Vor(m) is the Voronoi
set of m. The edge mm′ is annotated based on the shortest path Π(m, m′) from m
to m′ in the graph induced by Vor(m) ∪ Vor(m′). The sequence of actions that
annotates mm′ is the action labels in the sequence of edges in Π(m, m′), while the
sequence of states is the sequence of vertices in Π(m, m′). The weight of mm′ is
then the total weight of Π(m, m′).

4.4 Roadmap Refinement

The roadmap G can be refined by adding milestones or by adding edges to G. To de-
cide when to refine G by adding milestones and when to refine by adding edges, we
first describe the effect of the two refinement strategies in terms of reducing approx-
imation error (Section 3). Adding milestones may reduce the two components, i.e.,
“resolution” of the simplified state space and density of belief space sampling, that
contribute to the approximation error. Adding milestones refines the current state
space partitioning, which may reduce the approximation error due to state space
simplification. Furthermore, adding milestones increases the size of the beliefs that
can be sampled, which may eventually increase the density of belief space sampling.
On the other hand, adding edges only increases the size of the beliefs that can be
sampled without refining the state space partitioning. Therefore, as a heuristic to
quickly reduce the approximation error, MiGS refines the roadmap by adding mile-
stones whenever possible, and only switch to adding edges when no more milestones
can be added to the roadmap.

MiGS refines the roadmap whenever V (b0) does not improve after a consecutive
pre-specified number of beliefs have been expanded and the corresponding back-
ups have been performed, as it indicates that the roadmap may not be sufficient to
generate a better approximation to the optimal policy.
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5 Belief Space Sampling

So far we have discussed the construction of roadmap G, a simplified representation
of the state space. Now, the question is how to use G to guide belief space sampling.

The goal of belief space sampling is to quickly sample a set of beliefs that is
sufficient to approximates V ∗ well. Although such set of beliefs are not known a
priori, it is known that point-based methods work well when the size of such set
of beliefs is small [6]. Furthermore, in POMDP with long planning horizon, the
sufficient set of beliefs would form a deep belief tree. Therefore, we assume that
many sets of beliefs sufficient for approximating V ∗ well, forms belief trees with
small branching factor. Furthermore, we assume that there is an abundance of such
sets of beliefs where different sets correspond to different policies. Utilizing these
assumptions, MiGS tries to quickly explore different sets of beliefs that correspond
to different policies, by expanding b0 using instantiations of different policies. An
instantiation of a policy is an entire sequence of actions taken and states visited by
the robot, during a single run using the policy.

Paths in G, from a support of b0 to a goal state, are instantiations of different
policies. Ideally, we would like to use paths that are instantiations of the best policy
embedded in G, to expand b0. However, we do not know which paths are instanti-
ation of the best policy. Furthermore, the cost of expanding b0 using a long path is
expensive. If a path generates a sequence of beliefs near to the beliefs that have been
sampled before, we would have wasted a lot of computational resources without
improving the value function by much. To alleviate wasting a lot of computational
resources, MiGS iteratively expand T using shorter partial paths. It expands a node
of T using edges of G, but maintains a memory of which path is being used for
expanding a particular branch of T . For instance, if b′ is a node of T generated by
expanding b0 using edge mm′ of G, then b′ is annotated with m′. The next time b′

is selected for expansion, MiGS chooses an out-edge from m′ in G to expand b′.
To decide which node b of T to expand, MiGS uses a simple heuristic based on

the density of sampled beliefs around b. Since nearby beliefs have similar optimal
value [6], when two or more nearby nodes of T lie close together, expanding one of
the nodes would have similar effect as if all of the nodes are expanded. Therefore,
MiGS sets the weight w(b) of a node b in T , to be the number of nodes in T that
lie within a small pre-specified distance from b. And selects a node b for expansion
based on the probability P (b) ∼ 1

w(b)
.

6 Experimental Setup and Results

The purpose of our experiment is two folds. One (Section 6.1) is to compare the per-
formance of MiGS with the best point-based POMDP solvers and other alternatives
to motion planning with uncertainty. The other (Section 6.2) is to test the robustness
of the generated policy.
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6.1 Comparison with Other Planners

We tested MiGS in several complex realistic robotics scenarios that require long
planning horizon. The scenarios are presented in Section 6.1.1. The experimental
setup and results are presented in Section 6.1.2 and Section 6.1.3, respectively.

6.1.1 Scenarios

In our experiment, we use the three scenarios below.

(a) 2D-Navigation. In this problem, a 2-DOFs mobile robot navigates in a research
lab (Fig 2(a)). The robot’s position is represented as a uniform grid of size 60× 70.
The robot needs to navigate from the entrance of the lab (marked with ”I”) to one of
the goal states (marked with ”G”), while avoiding obstacles. The robot never knows
its exact position, but it can localize well at some parts of the environment, marked
with circles. At each step, the robot performs an action to move to one of its eight
adjacent cells. Due to control error, the robot reaches its intended destination 90%
of the time. For the rest of the time, the robot either remains in its cell or drift to
the left or the right of its intended destination. Moreover, there are danger zones
(marked with crosses) that the robot must avoid. Despite the imperfect information
about its position and its control uncertainty, the robot needs to move to reach the
goal as fast as possible while avoiding both obstacles and danger zones.

(b) 3D-Navigation. In this problem, a 5-DOFs unmanned aerial vehicle (UAV) nav-
igates in a tunnel where GPS signal is not available. The robot’s configuration is
represented as (x, y, z, θp, θy), where the first three DOFs are the robot’s position
in a 3D environment, θp is the pitch angle, and θy is the yaw angle. The configura-
tion space is discretized into grids. The position dimensions are represented as a 3D
uniform grid of 5 levels and 18 × 14 positions at each level (Fig 2(b)). The robot

(a) (b) (c)

Fig. 2 Experimental scenarios. (a) 2D-Navigation. (b) 3D-Navigation. (c) Target Finding.
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needs to navigate from the entrance of the tunnel (colored red) to a goal position
(colored blue). The robot never knows its exact configuration. It can localize by ob-
serving the landmarks (colored green) in the environment. However, due to limited
sensing ability, it can only observe the landmarks when the robot is at a cell adjacent
to the landmark and is heading towards the landmark. At each time step, the robot
can either rotate in place or move forward to one of its adjacent cells according to
its heading. However, when the robot moves forward, 10% of the time, the robot
fails to reach its destination state, instead it drifts to its left or right or remains at
the same cell. Moreover, the environment contains danger zones (colored yellow)
that the robot must avoid. The main problem in this task is similar to that of the
2D-Navigation scenario, but the state space is much larger. Despite the imperfect
information about its position and its control uncertainty, the robot needs to decide
which way to go such that it can reach the goal as fast as possible while avoiding
both obstacles and danger zones.

(c) Target Finding. In this problem, a 2-DOFs mobile robot needs to find a moving
target in an environment (Fig 2(c), courtesy of the Radish data set). The state space
is represented as (r, t), where r is the robot’s position and t is the target’s position.
These positions are represented as a uniform grid of size 49 × 29. The target may
be in one of the places marked with rectangles. It can move within the rectangle,
but it can not move to different rectangles. The target motion behavior is entirely
unknown. The robot starts from an initial position marked with ”I” and needs to find
the target by exploring the possible places of the target. The robot never knows its
exact position, but it can localize itself at places marked with circles. Furthermore,
due to sensing limitation, the robot will only know the position of its target, and
hence accomplish the task, when both the robot and target are in the same grid
cell. At each step, the robot performs an action to move to one of its eight adjacent
cells. However, due to control error, 15% of the time the robot fails to reach its
intended destination, instead it may remain in its cell or drift to the left or to the right
of its intended destination. Furthermore, some parts (marked with crosses) of the
environment are too dangerous for the robot to pass. Therefore, despite the imperfect
information about its position, the target position, and its control uncertainty, the
robot needs to decide an exploration strategy that finds the target as fast as possible
while avoiding both obstacles and dangerous places in the environment.

6.1.2 Experimental Setup

We implemented MiGS in C++ on top of the software package APPL v0.2 [10]. We
tested MiGS on the three tasks above and compared the results with PRM [9], a suc-
cessful motion planner that does not take uncertainty into account, with QMDP [22]
which is an approximate POMDP solver well-known in robotics, and with the
fastest point-based POMDP solver today, HSVI2 [20]. PRM is implemented in C++.
QMDP is implemented on top of the software package APPL v0.2. For HSVI2, we
used the newest software released by their original authors, ZMDP v1.1.5. All the
experiments were performed on a 2.66GHz Intel processor PC and 2GB memory.



Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons 163

For each task and each method, we performed preliminary runs to determine
the suitable parameters, and used the best parameters for generating the results. For
MiGS and HSVI2, we used the best parameters to run each method on each scenario
for at most 2 hours.

For each task, we compared the success rate, i.e., the percentage that the robot
accomplishes the given task successfully within a pre-specified time limit. For MiGS
and PRM, we generate 30 different POMDP policies and roadmaps for each task
and average the results, as these methods use randomization. For each task, each
method, and each policy/roadmap, we ran 100 simulation trial runs to test how well
the robot that uses a particular policy/roadmap performs in solving the given task.

6.1.3 Results

The results show that MiGS significantly out-performs other methods for planning
with uncertainty, as well as the fastest POMDP solvers today. It is interesting to
notice that in 3D-Navigation, PRM that does not take uncertainty into consideration
performs better than QMDP. The reason is that the successful runs of PRM are due
to luck. On lucky runs, the shortest path from a possible initial state reaches the
goal state. However, due to uncertainty, most of the time, the shortest path heuristic
moves the robot to a danger zone and prevents it from reaching the goal. QMDP
is able to realize that the shortest path strategy has a very high risk, and therefore
tries to avoid it. However, QMDP’s one lookahead is not sufficient to generate an
alternative policy that reaches the goal. By performing farther lookahead, HSVI2
performs better than QMDP. In fact in general, HSVI2 performs much better than
QMDP or other POMDP solvers today. However, due to the long planning horizon

MiGS’ results.

2D-Navigation % success
PRM 0.0

QMDP 0.0
HSVI2 0.0
MiGS 83.3

3D-Navigation % success
PRM 14.4

QMDP 0.1
HSVI2 24.0
MiGS 88.2

Target finding % success
PRM –

QMDP 14.5
HSVI2 17
MiGS 96.7

Fig. 3 Experimental results. The time for MiGS includes all initialization and pre-processing
needed to construct the roadmap. The results in the table for MiGS is after 300 seconds
of runs for 2D-Navigation, and after 1,000 seconds of runs for 3D-Navigation and Target
Finding. The results for HSVI2 are the results after 2 hours of runs. We do not apply PRM to
the target finding task, as it is unreasonable. The goal (i.e., target) in this problem is moving
dynamically, while PRM executes a pre-computed path blindly.
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required to generate a good policy in the above problems, HSVI2 is still unable
to perform well. The main reason for the poor performance of HSVI2 is that they
over-commit to a single heuristic, i.e., the MDP heuristic, to guide its belief-space
sampling. This strategy significantly alleviates the difficulty of planning in a high
dimensional belief space, but at the cost of significant reduction in belief space
exploration ability, which is important for performing well when the heuristic is
misleading. MiGS alleviates this problem by using a simplified representation of the
state space to guide belief-space sampling. This strategy enables MiGS to explore
significantly different parts of the belief space fast.

A video demo of the policy generated for the above scenarios can be seen in
http://bigbird.comp.nus.edu.sg/∼hannakur/migs.html.We have also tested MiGS on
2D navigation with uncertain map. The results are similar to the above results and
we do not reported it here due to space limitation.

6.2 Robustness of the Generated Plan

In many robotics scenarios, the uncertainty model that one has for planning may not
be accurate. Therefore, a desired property of motion planning with uncertainty is
to generate motion strategies that are robust enough against slight distortion in the
uncertainty model used for planning.

In this set of experiments, we use a simple scenario to test the robustness of the
policy generated by MiGS. The scenario involves a 2-DOFs mobile robot navigating
in a simple environment (Fig 4), represented as a uniform grid of size 42 × 20.

Fig. 4 Simple navigation scenario.

In this scenario, the robot needs to nav-
igate from the initial position (marked
with ”I”) to the goal position (marked
with ”G”), while avoiding obstacles
and dangerous regions (marked with
crosses). Due to limited sensing, the
robot can only localize at places

marked with circles. There are two landmarks in this environment, and we use
the sensing model to encode how well the robot is able to differentiate these two
landmarks. At each step, the robot performs an action to move to one of its eight
adjacent cells. However, due to control error, the robot will not always reach its in-
tended destination. To model the uncertainty of the system, we need to decide the
motion accuracy of the robot and how well its sensing is in differentiating the two
landmarks.

To test the robustness of the policy generated by MiGS, we first generate the poli-
cies for the above scenario with a particular motion and sensing model of the robot,
and then use the generated policies for robots with different motion and sensing un-
certainty to accomplish the same task. Since MiGS uses randomization, we generate
30 policies for a particular robot motion and sensing uncertainty. These policies are
generated for robots with 0.9 motion accuracy and perfect sensing ability to differ-
entiate which landmark it sees. We then use each of the 30 policies on robots with
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(a) (b)

Fig. 5 The results of generating the policy in 3s. Similar trend holds for the policies generated
at different time. The success rate of the “Correct model” is the benchmark. The policy used
by the robot is generated based on the correct motion and observation models. (a) “Model:
0.9” means that the policy used by the robot is generated based on motion accuracy 0.9. (b)
“Model: 1.0” means that the policy used by the robot is generated based on perfect observa-
tion accuracy.

motion accuracy ranging from 0.8 to 0.5, and sensing accuracy ranging from 0.9 to
0.5. The average success rates are shown in Fig 5.

The results show that the policy generated by MiGS based on inaccurate motion
or observation model can still be used by the robot to accomplish the given task well.
The reason is that knowing a rough idea of a good motion strategy is often sufficient
to accomplish the task. For instance, in this environment, as long as the robot knows
to stay away from the passages containing dangerous regions, regardless of the exact
motion it performs, the robot would reach the goal with high probability. This result
corroborates the intuition that many paths in the belief space generate policies with
similar quality.

7 Conclusion and Future Work

We have proposed Milestone Guided Sampling (MiGS), a new point-based POMDP
solver that uses a set of sampled states, called milestones, to guide belief-space
sampling. MiGS uses the milestones to construct a simplified representation of the
state space, and then uses this simplified representation of the state space to guide
belief-space sampling. Reasoning using a simplfieid representation of the state space
significantly reduces the planning horizons while still capturing most of the useful
beliefs. Preliminary experimental results are very promising. They indicate that long
planning horizons problems that are impossible to solve using the fastest POMDP
solvers today, can be solved by MiGS in just a few minutes.

Two main challenges for enabling POMDP to be practical for realistic robotics
problem are the large number of states and the long planning horizon typical of
robotics problems. The recently introduced point-based algorithms have shown im-
pressive progress in solving POMDP problems with very large number of states.
However, the performance of point-based POMDP degrades significantly when the
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required planning horizon is long. By alleviating the difficulty of solving problems
that require long planning horizon, we hope our work would bring POMDP a step
closer to becoming a practical tool for robot motion planning in uncertain and dy-
namic environment.
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Appendix 1. Proof of Theorem 1

Proof. The optimal value function V ∗ can be approximated arbitrarily closely by
a piecewise-linear convex function and represented as V ∗(b) = maxα∈Γ (α · b)
for a suitable set Γ of α-vectors. Let α and α′ be the maximizing α-vectors at
b and b′, respectively. Without loss of generality, assume V ∗(b) ≥ V ∗(b′). Thus
V ∗(b) − V ∗(b′) ≥ 0. Since α′ is a maximizer at b′, we have α′ · b′ ≥ α · b′ and
V ∗(b)− V ∗(b′) = α · b− α′ · b′ ≤ α · b− α · b′ ≤ α · (b− b′). It then follows that

|V ∗(b) − V ∗(b′)| ≤ |α · (b − b′)|.

Next, we calculate the inner product over the partitioned state space:

|V ∗(b) − V ∗(b′)| ≤
∣∣∣∑
s∈S

α(s)(b(s) − b′(s))
∣∣∣ ≤ ∣∣∣∑

K∈K

∑
s∈K

α(s)(b(s) − b′(s))
∣∣∣

Let sK denote any state in the subset K ∈ K. We have

|V ∗(b) − V ∗(b′)|

≤
∣∣∣∑
K∈K

∑
s∈K

(α(s) − α(sK) + α(sK))(b(s) − b′(s))
∣∣∣

≤
∣∣∣∑
K∈K

∑
s∈K

(α(s)−α(sK))(b(s)−b′(s))
∣∣∣+∣∣∣∑

K∈K

∑
s∈K

α(sK)(b(s)−b′(s))
∣∣∣. (6)

Let e1 and e2 denote the two terms in (6), respectively. We now bound e1 and e2

separately. By the definition of ε-partitioning, |α(s) − α(sK)| ≤ ε for all s and sK

in K ∈ K. Thus,

e1 ≤
∑
K∈K

∑
s∈K

ε|b(s) − b′(s)| = ε
∑
s∈S

|b(s) − b′(s)| ≤ 2ε, (7)
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where the last inequality holds because the L1 distance between any two beliefs is
no greater than 2. Let us now consider e2. Since the absolute values of α-vector
coefficients are no more than Rmax/(1 − γ), it follows that

e2 ≤
∑
K∈K

∣∣∣α(sK)
∣∣∣∣∣∣∑

s∈K

(b(s) − b′(s))
∣∣∣ ≤ ∑

K∈K

Rmax

1 − γ

∣∣∣∑
s∈K

b(s) − b′(s)
∣∣∣.

Using the condition dK(b, b′) ≤ δ, we get e2 ≤ Rmax
1−γ δ. Combining this with (6)

and (7) gives the desired result.



Scansorial Landing and Perching

Alexis Lussier Desbiens, Alan T. Asbeck, and Mark R. Cutkosky

Abstract. We describe an approach whereby small unmanned aircraft can land and
perch on outdoor walls. Our prototype uses an ultrasonic sensor to initiate a pitch-up
maneuver as it flies toward a wall. As it begins to stall, it contacts the wall with com-
pliant “feet” equipped with rows of miniature spines that engage asperities on the
surface. A nonlinear hierarchical suspension absorbs the kinetic energy and controls
contact forces in the normal and tangential directions to keep spines engaged during
the landing process. Future work will include powered take-offs and maneuvering
in contact with the wall.

1 Introduction

The work described in this paper is a first step toward small flying robots that can
land, maneuver and take off from arbitrary surfaces. Such robots combine the best
attributes of climbing robots and unmanned air vehicles (UAVs). They can reach
remote sites rapidly, flying directly to them. After landing, they can remain fixed or
crawl slowly, while consuming little power. The applications include surveillance,
environmental monitoring, and inspection of hard-to reach surfaces on buildings,
dams, bridges and other large structures. If the robots cling tenaciously, they can
also ride out weather that is too rough for flight. When conditions improve, or when
their mission is completed, they can jump off and become airborne again.

We are particularly interested in hybrid scansorial robots that are adapted for
landing and ultimately maneuvering on arbitrary surfaces such as the walls of build-
ings. As fig. 1 (right) reveals, in the aftermath of an earthquake or other disaster, hor-
izontal surfaces may be too littered with debris and too dangerous for landing, while
vertical surfaces are comparatively unobstructed. Moreover, if the flying robots can
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Fig. 1 Left: Our scansorial UAV is based on a modified Flatana (Great Planes, 2009) aero-
batic plane. To enable landing on vertical surfaces, several components were added: a con-
troller based on the Paparazzi (Paparazzi, 2008) open-source autopilot, an ultrasonic range
sensor, a nonlinear leg suspension and compliant ankles and toes equipped with miniature
spines. The fully loaded airplane has a mass of 400g, the landing system accounting for only
28g. Right: Sometimes the best place to land is a wall.

take shelter under the eaves of a building (like swallows or bats) they may perch
safely and unobtrusively for long periods of time.

The development of scansorial flying robots draws directly upon two areas of
work: unmanned air vehicles capable of acrobatic maneuvers, and vertical climbing
robots. In the following section we briefly review the relevant prior work in each of
these areas. We then present our approach, which utilizes a small fixed-wing airplane
based on the popular Flatana (Great Planes, 2009) platform, as shown in fig. 1 (left).
The plane uses feet equipped with miniature spines to grip asperities on the surface.
In Section 3 we show that the characteristics of the spines impose constraints on
the normal and tangential forces between the plane and the wall. We describe a
nonlinear leg suspension in Section 4 that absorbs the kinetic energy of the plane
and redirects it toward the feet to satisfy the spine/wall interaction constraints.

The problem of increasing the reliability of scansorial perching has two parts:
the first is to design a suspension that will achieve spine engagement and loading
for as wide a range of initial contact orientations and velocities as possible; the
second is to control the plane so that it reliably approaches the wall within a given
envelope of velocities and orientations, despite gusts of wind, etc. In this paper we
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focus on the former problem using a combination of modeling and experiments with
an unpowered glider and a wall with a force plate. We conclude with a discussion
of ongoing work to increase the reliability of the approach in outdoor conditions
and future work to permit maneuvering on the wall and powered take-off to resume
flight.

1.1 Previous Work

Prior related work includes unmanned air vehicles that can perform aerobatic ma-
neuvers such as hovering and alighting on structures. In one approach, researchers
(Frank et al, 2007) have used motion capture cameras to control an RC plane for
maneuvers such as flying in a room and hovering to land on a docking station. A
similar system was used in (Cory and Tedrake, 2008) to create an accurate high-
dimensional model of a glider during high angle-of-attack (AOA) maneuvers re-
quired during perching. Using this model, they show (Roberts et al, 2009) that the
glider becomes less controllable as its airspeed drops just before perching, even if
controllability is improved with a fixed propeller or thrust vectoring. Newer work
has focused on simplifying the high-dimensional model in a form suitable for the
design of feedback controllers (Hoburg and Tedrake, 2009) and on sensors for the
detection of electrical wires (Moore and Tedrake, 2009). In other work, autonomous
hovering has been demonstrated with fixed-wing aircraft (Green and Oh, 2008). Still
other work has focused on performing perching maneuvers using a morphing air-
plane (Wickenheiser and Garcia, 2008) to maintain controllability.

Recent work at the Air Force Research Laboratory has investigated the aerody-
namics and power requirements for a mechanized wing concept (Reich et al, 2009;
Lukens et al, 2008) with application to low-speed maneuvers. Another group has
recently investigated several creative solutions for perching UAVs (Anderson et al,
2009). Their most successful approach was to fly directly into a wall with a sticky
pad located on the nose. After impact, the aircraft is released and hangs from a
tether, which can be cut to take off again.

In much of the previous work, an off-board camera system provides accurate tra-
jectory information along with off-board computation for the controller. For our ap-
proach, we are interested in landing repeatedly on outdoor surfaces, without access
to external vision data or off-board computing. Fortunately, the accuracy require-
ments for landing on a wall are less severe than those for perching on a wire or pole.
In (Lussier Desbiens and Cutkosky, 2009) we describe a simple on-board controller
and ultrasonic sensor used with our plane. In this paper we focus on the design of
the spines and suspension system to accommodate a relatively wide range of initial
conditions at first contact.

The second general area of related work is climbing robots. In particular, the work
presented here draws directly upon previous results for robots that climb vertical sur-
faces such as brick, stucco and concrete using arrays of small spines (Asbeck et al,
2006; Spenko et al, 2008). In the future, it may also be possible to adapt directional
dry adhesion (e.g. as used by Kim et al (2008)) for perching aircraft.
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Extensive biological research has also been devoted to flying and to ground lo-
comotion. However, much less has focused on the physics of transitions that occur
during perching. It has been suggested that flying evolved from the advantages of
having even a small amount of lift to control and reduce landing forces (Caple et al,
1983). An example of this phenomenon can be found in the flying squirrel, with its
low aspect ratio wing providing aerodynamic stability and lift at angles of attack
up to 40 degrees. Furthermore, squirrels deliberately stall themselves prior to land-
ing, allowing them to reduce by 60% their horizontal velocity, while spreading the
impact over all four limbs (Byrnes et al, 2008; Paskins et al, 2007). Animals such
as geckos also exploit aerodynamics for gliding and landing on vertical surfaces
(Jusufi et al, 2008).

2 Dynamic Perching Approach

The basic sequence of landing on a wall is shown in fig. 2. The plane (here an
unpowered glider) approaches the wall head-on. When the filtered signal from an
onboard ultrasonic sensor indicates that the wall is approximately 5 m away, the
plane initiates a pitch-up maneuver to shed speed and align with the wall. Once the
plane is nose-up, it starts to fall. The motion of the fixed wing plane after tilt-up is
essentially ballistic, with little opportunity for aerodynamic control. As it contacts

Touchdown
possible

Pitch up
maneuver

Elevator
up

Wall
detection

9 m/s

2 m/s

x
y

Fig. 2 Landing sequence for dynamic scansorial perching: ultrasonic sensor initiates tilt up
at ≈5 m from wall; subsequent motion is largely ballistic. Plane contacts wall at 1-3 m/s. Leg
and foot suspensions keep spines engaged while dissipating energy.
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the wall, the plane is moving with a total velocity of 1-3 m/s. The plane’s “feet” con-
tact the wall and drag briefly until the spines engage. Meanwhile, the leg suspension
absorbs the kinetic energy of the plane, preventing it from bouncing off the wall or
pitching uncontrollably. As described in the next section, for the spines to engage as-
perities and remain attached, it is important to maintain the normal/tangential force
ratio within a certain range throughout the landing. The complete maneuver, from
detection to steady perch on the wall, lasts less than one second.

3 Spines

Spines and spine/surface interactions are described in (Asbeck et al, 2006) with ap-
plication to climbing robots. The spines used here are similar to those used on the
RiSE robot (Spenko et al, 2008), but many fewer are needed because the plane is
lighter (400g vs. 3.8kg) and keeps both feet in contact throughout the landing.
Each foot is equipped with 5 spines consisting of a small hardened steel hooks
(≈ 10−25μm tip radius) embedded in a molded structure of hard and soft urethane
created using Shape Deposition Manufacturing (Cham et al, 2002). The system can
be modeled as a damped, elastic linkage as shown in fig. 3.

1

2

3
4 5

Approach 
volume

Loading Forces
Volume

6

y

x

3cm

Fig. 3 Left: Model of spine linkage. The spring elements 3 & 4 contribute to the tangential
compliance (k=184 N/m for 3 & 4 in parallel, ζ=0.03), while element 5 provides compliance
normal to the wall (k=16 N/m). Element 6, a pin going through the entire foot, acts as an
overload protection mechanism in conjunction with the hole in element 1. The approach
volume is mostly a function of the shape and orientation of asperities; the loading forces
volume also depends on the coefficient of friction. Right: Picture of the spines on the aircraft
ankle.

To determine the forces required to engage the spines and keep them attached
to the surface, an array of 10 spines was tested on a mechanized stage and force
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plate previously used for directional adhesion tests (Santos et al, 2007). The stage
has a positioning accuracy of ±20μm and force measurement accuracy of 25mN.
The spines were tested using a sample of roofing tarpaper, chosen because it has a
similar roughness to stucco and is easy to cut to size.

The spines require only small forces to engage, up to a maximum of 0.2 N at
the maximum preload deflection of 6.5 mm. The maximum preload deflection is
determined by an overload mechanism included in the spine design. As shown in
fig. 3, a pin passes through the trapezoidal hole in element 1, limiting its travel and
preventing over-stretching of the urethane flexures.

Fig. 4 Limit surface as spines are dragged over unreinforced (red +) and reinforced (blue
dots) roofing paper covered with small rock particles. Dark region shows combinations of
normal and tangential force that sustain contact without failure; light shaded region shows
combinations with occasional failures. When normal force is positive and shear force is neg-
ative, Coulomb friction applies.

As the spines drag across the test surface, they can disengage for any of the
following reasons:

• they slide off asperities because the loading angle exceeds the Fnormal/Fshear limit
for a given spine/asperity contact (Asbeck et al, 2006);

• the asperities dislodge from the surface;
• the spines hit their overload protection pins and detach.
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The resulting maximum forces are plotted in fig. 4 as red plus symbols. The normal
forces, Fn, are negative, indicating that we are pulling away from the surface (−x
direction) and the shear forces, Fs, are positive, indicating that we are pulling in the
positive y direction. If we push the spines in the opposite direction, Coulomb friction
applies. We also conducted a second set of tests in which the tarpaper surface was
strengthened with a thin layer of cyanoacrylate glue to bond the rock particles more
firmly in place. The results of these tests, shown as blue dots, reveal the same trend
but with higher average forces.

The general picture that emerges from fig. 4 is that there is a region of normal
and shear forces for which the spines attach to the surface without failures. The
dark green region, bounded by a 20◦ line, shows regions where very few failures
occurred, whereas occasional failures occurred in the lighter green region bounded
by a 45◦ line corresponding to −Fn = Fs. The uncertainty in when a failure will
occur is due to the probabilistic nature of the spine-surface interaction: asperities
are distributed randomly over the surface, and the maximum loading angle that each
asperity can sustain is also a random variable, depending on its shape and local fric-
tion conditions. With a population of ten spines, the overall forces are typically due
to several spine/asperity contacts in slightly different locations. In theory one could
observe trials in which all ten spines did not sustain attachment. However, because
the spines are dragged a relatively long distance over the surface (16 mm), this is
unlikely. Other constraints on the spine forces arise from the overload mechanism,
which limits the overall combination of −Fn and Fs (plotted as Fmax in fig. 4).

Different surfaces will have different safe regions depending on which failure
mechanisms dominate. However, the behavior seen in fig. 4 remains. For surfaces
such as rough concrete, the limit corresponding to the spine overload-protection
mechanism, which permits a maximum force of ≈ 2 N per spine with a corre-
sponding elastic deflection of ≈ 11 mm, may be the limiting factor. In all cases,
the maximum adhesion that can be sustained is a function of the shear force. This
relationship has consequences for resisting disturbances such a large gusts of wind
and is revisited in section 5. Note also that exceeding the force constraints in fig. 4
is not necessarily catastrophic. If the friction limit for an individual spine/asperity
contact is exceeded, or if a particular asperity comes loose, that spine will slip and
may reattach, provided that the foot remains in intimate proximity to the wall.

In addition to providing adhesion to the wall, the spines also act as part of the
airplane’s suspension in series with the leg structure described in section 4. The
parallel combination of elements 3 and 4 in fig. 3 has a spring constant of 184 N/m
per spine and a damping ratio of ζ=0.03. This low damping ratio causes the plane
to rebound upward slightly after the spines are initially loaded. Higher damping in
the spine mechanism would be desirable to suppress this effect.

4 Suspension

In contrast to climbing robots, which have control over the force/motion trajectories
of their legs, a fixed-wing airplane is essentially ballistic after it has stalled. It is
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the job of the leg suspension to absorb the kinetic energy of the plane and direct
forces to the feet so as to satisfy the constraints depicted in fig. 4. In addition, there
are geometric constraints. For example, if the plane and its legs are modeled as a
mechanism, only the distal element (i.e., the feet) should contact the wall to avoid
unpredictable forces during landing. Ideally, we wish for these force and kinematic
constraints to be satisfied for a wide range of touchdown velocities and pitch angles,
so that the requirements on the plane’s wall sensor and controller can be reduced
and the overall system made simpler and more robust.

Fig. 5 Compliant leg suspension with stiffness and damping at the hip, knee and ankle.

4.1 Suspension Construction

Before going into the details of the modeling, it is useful to describe the suspension.
As seen in fig. 5, the suspension has three articulations: the hip, the knee and the
ankle. The hip and the ankle are surrounded by urethane foam, providing stiffness
and a high level of damping to these joints. Although the tibia (between the knee
and ankle) is a carbon fiber strut, it bends enough that we must consider its stiffness
when modeling the system.

The hip joint is designed to have a limited range of motion, achieved by placing
the foam in compression, in order to protect the propeller of a powered version
of the airplane. This construction results in a nonlinear joint stiffness, as shown in
fig. 6, which can be approximated by:

kh = 0.0041 +
0.05

qh deg−100
Nm/deg (1)

Damping at the hip is 0.022 Nms/deg for θ ≥ 130 deg. and is assumed to scale as√
kh for smaller angles to keep the damping ratio constant.
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Fig. 6 Hip joint stiffness as a function of the hip angle. The non-linearity prevents excessive
compression for high landing forces.

4.2 Planar Landing Model

In order to predict and tune the forces during landing, a simple planar model of the
airplane and suspension was created as shown in fig. 7. In this model we ignore roll
and yaw motions and lump the two legs together as a single mechanism. The plane
is modeled as a rigid body subject to gravity. We ignore aerodynamic forces as we
have determined that they do not contribute significantly to the motion of our plane
after contact.

We introduce four right-handed reference frames: The wall frame W is defined
with the unit vector wx oriented toward the wall and wy upward along the surface;
the airplane frame A is rotated by θ from W around wz, with its origin at the airplane
center of mass; the femur frame F is rotated by -qH from A with its origin at the hip
joint; and the tibia frame T , is rotated by qK from F with its origin at the knee joint.

Intermittent contact forces, N, with the wall are modeled at the knee and the tail
by the use of a spring and damper:

N =

⎧⎨
⎩

0 if xc < 0
kgxcwx if xc > 0 and ẋc < 0

(kgxc + bgẋc)wx if xc > 0 and ẋc > 0
(2)

where kg and bg are the properties of the ground and xc = xtail − xwall for the tail
point.

Friction at the contact points is modeled using the continuous model from
(Mitiguy and Banerjee, 1999):

F f = −μk |N| v
|v|+ εv

(3)

where μk is the coefficient of kinetic friction, |N| is the magnitude of the normal
force, v is the velocity of the point in contact and εv is a small positive number.
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Fig. 7 Planar model: The airplane is a rigid body with possible contacts at the foot, knee and
tail. The suspension is a massless linkage with a spring and damper at the hip, knee and spine
joints. The knee uses a pseudo-rigid-body approximation (Howell, 2001) to account for large
elastic deflection in the tibia.

Because of its light weight compared to the airplane, the suspension is modeled
as three massless links, ignoring the ankle joint because of its small motion in com-
parison to the femur, tibia and spines. The hip joint is modeled with a non-linear
spring and damper as defined in section 4.1, while the spine suspensions are mod-
eled as a prismatic joint with a linear spring as described in section 3.

The large deflection of the tibia can be approximated with a pseudo-rigid-body
model of a cantilever beam with a force at the free end (Howell, 2001). This ap-
proximation places a pseudo joint at a distance γL from the free end, where L is
the length of the tibia and γ ≈ 0.85. The stiffness of the virtual joint can then be
expressed as kk ≈ πγ2EI/L = 0.062 Nm/deg.

Upon contact of the foot with the wall, the linkage of the suspension defines a
constraint on the motion of the center of mass of the airplane given by:

xwx + ywy = Lhip ax −Lf fx − (1− γ)Lt fy − (γ Lt + xs) tx + x f oot wx + y f oot wy (4)

where wx, wy, ax, fx, fy and ty are unit vectors as defined in fig. 7.
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Taking the dot product of this equation with wx and wy, we obtain two scalar
constraint equations that can be differentiated to establish two velocity constraint
relations among the joint angle velocities, q̇h, q̇k and ẋx and the airplane center of
mass velocity and pitch rate:

[
ẋ f oot

ẏ f oot

]
= J

⎡
⎣ q̇h

q̇k

ẋs

⎤
⎦+ f (ẋ, ẏ, θ̇ ) (5)

where the ẋ f oot and ẏ f oot are zero because we assumed a non-sliding contact with the
wall. As the linkage is redundant, the preceding equation is not sufficient to solve for
the joint velocities given the airplane velocities. However, static equilibrium must
be maintained, as the linkage is massless, and this condition can be formulated as:

(I − JT JT #
)τ = 0 (6)

where JT #
is the pseudo-inverse of JT , and τ is a matrix of joint torques expressed

as −K(q− q0)−Cq̇. In the case of the linkage presented here, equation 6 gives us
three redundant equations, from which one of them can be used in conjunction with
equation 5 to solve for the joint velocities.

From the joints positions and velocities, it is possible to compute the torques at
each joint. Then, as the joint motions have been computed while being subject to
the constraints of the Jacobian matrix, it is possible to discard one column of the
Jacobian matrix to obtain a reduced version (JT

r ) that can be inverted to find the tip
forces at the end of the foot: [

Ff ootx

Ff ooty

]
= JT−1

r

[
τhip

τknee

]
(7)

With gravity, tail contact and foot forces established, the equations of motion are
generated with AutolevTM, an analytical motion analysis software program, which
also generates the MatlabTM code necessary to solve them.

4.3 Selection of Joint Parameters

With the model established in the previous section, and for a given suspension ge-
ometry and landing state, it is possible to determine the joint parameters that will let
the plane land successfully. The success criteria are taken from section 3 for tarpa-
per, requiring that −Fn/Fs < 1, with a maximum total force of 25 N and a landing
in which the suspension does not bottom out, so that only the foot contacts the wall.

The construction of the knee provides only a few discrete options for adjusting
the overall stiffness and damping. Therefore, most of the tuning is done at the hip.
Fixing the knee stiffness at 0.062 Nm/deg and ignoring the knee damping, which
has only a small effect in comparison to the hip, a series of landings were simulated
for a typical set of initial conditions: vx = 1.2 m/s, vy = -0.5 m/s and θ = 97 deg. As
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Fig. 8 Successful landings for variations in hip stiffness and damping with respect to the
nominal values given by eq. 1. Only a narrow band of combinations satisfies simultaneous
constraints on the −Fn/Fs ratio, the maximum force, Fmax, and acceptable ranges of joint
motion for typical landing velocities, vx = 1.2 m/s and vy = -0.5 m/s.

seen in fig. 8 there is a relatively narrow band of possible hip stiffness and damping
values around the nominal values given by equation 1 and scaling the damping as
described in section 4.1.

4.4 Experimental Validation

To validate our model, the plane was landed on an instrumented wall. The instru-
mented wall consists of an ATI-Gamma SI-32-2.5 force sensor installed behind a
30x30cm piece of wall material. The force plate has a natural frequency of 100 Hz
in the shear direction and 130 Hz in the normal direction. Forces were filtered us-
ing a 75Hz Butterworth filter for both the data and the simulation. The touchdown
velocity and pitch angle were obtained by analyzing a 30 fps video of the landing.

Figures 9 and 10 compare typical results between the data collected on the force
plate and the one generated with our simulator. To match the measured data, the
joint stiffness and damping in the simulation were tuned using a genetic algorithm
and resulted in a best-fit joint stiffness approximately 60% higher than what was
measured during static tests. The values for the ground parameters in the simulation
were roughly guessed, as they have a limited influence on the system response which
is dominated by the soft suspension.
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Fig. 9 Comparison between measured and simulated forces. Point A represents the touch-
down (one impact for each foot in the real data). The shear force then peaks at point B when
the tail touches the wall, and reaches equilibrium at point D. The dip in shear forces at point
C represents the springback force due to the spine suspension.

Fig. 10 Comparison of typical measured and simulated force trajectories plotted with respect
to the safe regions given by fig. 4. The forces initially pass through point A as the tail of the
plane touches the wall. The shear force then increases to B. The spines are then unloaded by
their suspensions at C and reach a steady-state value at D. The critical point is at E, the point
of maximum rebound.
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Figure 10 shows more specifically that the forces remain, during the landing, in
the safe 45o region for reinforced tarpaper as defined in fig. 4. The critical state
is at point E, as the plane rebounds immediately after the initial impact. Increasing
damping would reduce the rebound and increase the safety margin, progressing from
C to point D. The main difference between the simulator and the measured forces,
as shown in fig. 9 at point A, is that we can observe on the real data the impact of
each foot while our model lumps both feet together.

The resulting spine and suspension system allows the plane to perch on a rough
vertical wall for a relatively large envelope of touchdown velocity and pitch angle.
This envelope, computed with the simulator (−Fn/Fs < 1, Fmax < 25N and the knee
joint not touching the wall), is illustrated in figure 11. As one can see on this figure,
landing is possible not only for a zero-velocity touchdown, but for forward velocities
of up to vx = 2.7 m/s, pitch angles between 65 and 110 degrees and downward
velocities of up to 1 m/s.

Fig. 11 Successful landings simulated for various touchdown states.

About 30 successful landings have been performed so far, out of 40 attempts, and
touchdown states all over and around the limits of the computed envelope have been
observed. This large envelope has numerous benefits for a small UAV system: it
reduces the requirements on the control (less need for accurate control during a short
maneuver), it reduces the need for sensing (fewer, cheaper and smaller sensors), it
increases the robustness of the system and it allows smooth landing at a moderate
forward speed.
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5 Conclusion

We have demonstrated a system in which a combination of miniature spines and
a nonlinear suspension allow a small unmanned airplane to approach and land on
a vertical wall. The focus of the work reported here is on the suspension design,
needed to dissipate the kinetic energy of the plane while maintaining a desirable
ratio of normal and tangential contact forces for spine engagement. Simulations and
experiments reveal that the system accommodates a range of typical initial condi-
tions. In practice, we have observed 30/40 successful trials in calm outdoor con-
ditions. The models also reveal room for improvement. In particular, the damping
at the proximal and especially the distal elements can be increased for a smoother
progression from initial contact to steady state.

A number of immediate extensions are also warranted. The model should be en-
hanced to account for the dynamic effects resulting from the (stochastic) spine/wall
interactions. A fully three dimensional model, with two separate legs, would also
help us to explore the sensitivity to roll and yaw variations. From a practical stand-
point, the short term goal is to achieve powered takeoff and resumption of flight.
The ideal way to accomplish this takeoff would be to exploit stored elastic energy
in the legs so as to reach controllable airspeed rapidly. In parallel, the control of the
plane should be improved, with more reliable wall sensing and better control of the
velocity and orientation prior to landing, particularly in the presence of wind.

Looking a bit further ahead, we recognize that we will need to deploy opposed
sets of spines to resist gusts of wind after attachment. We have built opposed-spine
prototypes that sustain normal forces of up to 20 N in benchtop tests and will be
adapting these to the airplane. Still further ahead are developments to perform crawl-
ing maneuvers while in contact with wall, using a combination of thrust vectoring
and leg motions. This will result in a true scansorial hybrid with flying and crawling
behavior.
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Anthropomorphic Soft Robotics – From Torque
Control to Variable Intrinsic Compliance

Alin Albu-Schäffer, Oliver Eiberger, Matthias Fuchs, Markus Grebenstein,
Sami Haddadin, Christian Ott, Andreas Stemmer, Thomas Wimböck,
Sebastian Wolf, Christoph Borst, and Gerd Hirzinger

Abstract. The paper gives an overview on the developments at the German
Aerospace Center DLR towards anthropomorphic robots which not only try to ap-
proach the force and velocity performance of humans, but also have similar safety
and robustness features based on a compliant behaviour. We achieve this compliance
either by joint torque sensing and impedance control, or, in our newest systems, by
compliant mechanisms (so called VIA - variable impedance actuators), whose in-
trinsic compliance can be adjusted by an additional actuator. Both approaches re-
quired highly integrated mechatronic design and advanced, nonlinear control and
planning strategies, which are presented in this paper.

1 Introduction

Soft Robotics is an approach for designing and controlling robots which can in-
teract with unknown environments and cooperate in a safe manner with humans,
while approaching their performance in terms of weight, force, and velocity. These
robots are expected to push forward not only such new application fields as medical
robotics, robotized outer space and planetary exploration, or personal service and
companion robotics, but also to drastically move the horizons of industrial automa-
tion. Today’s industrial robots still operate in their huge majority in blind, position
controlled mode, being dangerous to humans and thus having to be enclosed by
protective fences. In contrast, this new generation of robots can share the space and
the workload with the humans adapting better to product diversity and to short pro-
duction life cycles. However, it is clear that these human friendly robots will look
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1© 2© 3©

4© 5© 6©

Fig. 1 Overview of the DLR Robots: 1©: The DLR-LWRIII equipped with the DLR-HandII.
2©: The DLR-KUKA-LWRIII which is based on the DLR-LWRIII. 3©: The DLR Humanoid

“Rollin’ Justin”. 4©: The DLR-HandII-b, a redesign of the DLR-HandII. 5©: The Schunk
Hand, a commercialized version of the DLR-HandII. 6©: The DLR-Crawler, a walking robot
based on the fingers of the DLR-HandII.

very different from today’s industrial robots. Rich sensory information, light-weight
design and soft robotics features are required in order to reach the expected perfor-
mance and safety. In this paper we will address the two approaches followed at
DLR for reaching the aforementioned new design goals. The first one is the mean-
while mature technology of torque controlled light-weight robots (see Fig.1) . Sev-
eral products resulted from this research and are currently being commercialized
through cooperations with various industrial partners (DLR-KUKA Light-Weight
Robot LWRIII, DLR-HIT-Schunk Hand, DLR-Brainlab-KUKA medical robot). The
second technology, currently a topic of very active research in the robotics commu-
nity, is variable compliance actuation. It aims at enhancing the soft robotics features
by a paradigm change from impedance controlled systems to variable mechanical
stiffness and energy storage, in close interplay with innovative control strategies, as
suggested by the human motor system.

Regarding the actively compliant controlled systems, we will concentrate on the
newest developments in the design and control leading to the humanoid system
Rollin’ Justin as well as on the steps required to make the technology widely us-
able in industrial environments. We are considering these robots as a performance
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reference, which we are currently trying to outperform with new variable stiffness
actuators. We will present the main design ideas and some experimental examples
providing first validation of the performance and robustness gain of this design
approach.

2 Light-Weight, Modular, Torque Controlled Robots

For almost one decade we focused at DLR on the development of torque controlled,
light-weight arms and hands. We refined the technology in successive steps in order
to obtain high power actuators, a light-weight though robust design, highly inte-
grated, reliable electronics, and torque sensors with low hysteresis, noise, and drift.
Moreover, we developed control algorithms which allow both high performance
trajectory tracking and safe and efficient compliant interaction with humans and un-
known environments. With the LWRIII and the DLR-Hand IIb a state of maturity
and performance of the systems was finally reached, which allowed the commer-
cialization of the two systems in cooperation with industrial partners. The arm is
manufactured and distributed by the industrial robot manufacturer KUKA Roboter
GmbH, while a simplified version of the hands, designed in cooperation with the
Harbin Institute of Technology (China) is distributed by the robot gripper manu-
facturer Schunk GmbH. Moreover, several spin-off companies emerged from these
projects, producing components such as torque sensors and high torque motors.

In the last years we started additionally a wide new area of research activities
based on this technology by taking advantage of the modular and integrated struc-
ture of the components. A fully new line of medical robots was developed, based on
both the hand and arm components. The humanoid manipulation system Justin was
build up from these components as well, while the modularity of the hands allowed
the design of a new crawler robot in only a few months.

In our previous work [1, 2, 3, 4], we presented in detail the design and the control
concepts of the LWR-III arm and HandIIb system. In this paper we focus on the evo-
lution of the design and control approaches required for the development of Justin,
as well as on the components required for a successful application of the arms in a
production assisting environment.

2.1 Interaction Control of DLR Robotic Systems

The control of both the arms and hands makes extensive use of the torque sens-
ing available in each joints. The sensors are placed after the gear-box and allow
therefore a very precise measurement of the real joint torque, in contrast to simple
current based torque estimations. They are, in the given accuracy and sampling rate,
a unique feature of the DLR robots, finally turning into reality the old dream of
the robotics control community of having robots with torque interface [5, 6]. The
sensors are used to implement both active vibration damping for high performance
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motion control as well as soft robotics features such as impedance control, collision
and failure detection, potential field based collision avoidance and posture control.
Due to the the relatively high intrinsic compliance of the harmonic drive gears and
of the torque sensors, the classical rigid robot assumption is not acceptable for the
DLR arms, if high control performance is sought for. Therefore, a major research
contribution was to extend many of the known approaches from classical robot con-
trol to the flexible joint case by taking advantage of the joint torque measurement. In
the flexible joint model, not only the motor position θ , but also the joint torque τ , as
well as their derivatives θ̇ and τ̇ are namely states of the system. The measurement
of the former and the numerical computation of the latter provides the state esti-
mation required for full state feedback. For the light-weight arm and hands, these
methods were presented, e.g., in [1, 2, 3, 4].

The control framework (for both position and impedance control) is constructed
from the perspective of passivity theory (Fig. 2) by giving a simple and intuitive
physical interpretation in terms of energy shaping to the feedback of the different
state vector components.

• A physical interpretation of the joint torque feedback loop is given as the shaping
of the motor inertia B.

• The feedback of the motor position can be regarded as shaping of the potential
energy.

mu

B

torque
control

rigid robot
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Fig. 2 Representation of passive control structures.

The robustness and performance of the control methods has been extended to prod-
uct maturity for the commercialization of the light-weight arm in cooperation with
KUKA Roboter GmbH and of the Kinemedic/MIRO arms with BrainLab AG. More-
over, during performance tests at the industrial robot manufacturer it turned out that
despite of the light-weight, elastic structure, the robot has competitive motion accu-
racy to an industrial robot of similar payload, according to ISO9283-1998 standard
measurements.
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2.1.1 Disturbance Observers

Since the control of the DLR robots is fundamentally relying on accurate mod-
els of the robot dynamics, friction torques in the gear-box and external interaction
torques (from humans or the environment) are a critical source of errors which have
to be estimated correctly. Therefore, a new disturbance observer concept was devel-
oped [7, 8]. It allows the independent estimation of friction and external collision
torques using the same observer structure by exploiting the joint torques signals
τ (see Fig. 3). The friction observer allows high performance motion control as
mentioned in the previous section, while the external torque observer is used for
safe human-robot interaction, described in Section 2.5. Moreover, although it has
an active integrator action, the friction observer can be analyzed within the pas-
sivity framework, thus allowing convergence statements for the entire nonlinear
system [9].

motor
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robot

friction
observer

FFˆ

m

Fig. 3 Disturbance observers for identification of the friction and external interaction torques
τF and τext .τm and τ are the motor and the measured torques, respectively.

2.2 Design and Control of the Humanoid Manipulation System
Justin

Justin was designed as a versatile platform for research on two-handed manipulation
and service robotics in everyday human environments. Due to the modular design
of the LWRIII as well as of Hand-IIb, it was possible to quickly set up both a left-
handed and right-handed configuration. The robots’ common base holds the arms
mounted 60 degrees from the vertical in a sideways direction. This allows the el-
bow to travel fore and aft below the shoulder and up to horizontal height without
passing through singularities. To extend the manipulation range, the robot base is
held by a four degrees of freedom (DOF) torso. A vertical roll axis, followed by two
pitch joints and a third, passive pitch axis which keeps the arm base upright, allows
translations in a vertical plane which can rotate about a vertical axis. Through this
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configuration Justin is capable of lifting objects from the floor, reaching over tables
and even reaching objects on a shelf of about two meters height (Fig. 4).

Fig. 4 Workspace design for the humanoid Justin.

To maintain the DLR robot concept, the torso joints consist of the same functional
components as the arm joints, allowing full torque control for the setup. In this way,
Justin can detect and react to contact forces applied anywhere on its structure.

2.2.1 Justin’s Mobile Plattform

Justin’s new mobile platform enables the system to interact with humans in a larger
workspace and thus brings the development towards a universal service robotics
platform [10]. The robot base requires a large supporting polygon in order to take
advantage of the large workspace, the high forces, and the dynamics of the upper
body, while providing the stability of the overall system. On the other hand, com-
pact dimensions are necessary for a reliable and easy navigation through doors or
narrow passages. To meet both requirements, our mobile platform has four legs
which can be individually extended via parallelogram mechanisms (Fig. 5), even
during platform movement. Each leg carries a steerable wheel for omnidirectional
(but nonholonomic) movement. This novel kinematics needs new control and plan-
ning algorithms [11], since the wheel system has no longer an instantaneous center
of rotation while extending or retracting the legs. Furthermore, each leg incorporates
a lockable spring damper system. This enables the whole system to drive over tiny
obstacles or to cope with the unevenness of the floor, as well as to sustain reaction
forces under heavy load. The mobile platform has a weight of 150kg. Mounted on
the mobile platform, Rollin Justin has a shoulder height of up to 1.6m. The whole
system is powered by a Lithium-Polymer battery pack and has an operating time
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of about 3h. For enabling the implementation and evaluation of advanced control
algorithms, the whole upper body is controlled in 1ms cycle, while the platform is
connected at rate of 16 ms.

Fig. 5 Variable footprint of Rollin Justins mobile base.

2.2.2 Interaction Control of Justin

All the interaction control methods developed for the arms and the hands were ex-
tended and transferred to Justin in the last three years. The Cartesian impedance
controller concept was extended [12, 13] to the upper body including hands, arms
and the torso (Fig. 6).

Ho(q)

Ho,d

Kc

Ko

Fig. 6 Two-hand impedance behavior by combining object level impedances of the hands
and the arms.
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Since the mobile platform has only a velocity interface, but no torque interface, a
full body compliance control requires to follow an admittance control approach for
the base, as sketched in Fig. 7(Right). Therefore, the virtual wrench resulting on the
base of the torso from the impedance controller of the upper body is transformed
using a virtual spring and damper into a velocity command.
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Fig. 7 Left: Torque based Control Structure for Justin. Right: The upper body is impedance
controlled in a 1ms cycle. The base is admittance controlled and its desired velocity is related
to the virtual force produced by the controller in the base of the torso by a virtual mass-damper
dynamics.

In Fig. 7, left, an overview of the entire impedance based control system is shown.
A task and trajectory planning stage provides the desired task space motion to the
Cartesian impedance controller and a desired posture for the nullspace control. In or-
der to minimize the dynamic reaction forces on the mobile base, a reaction nullspace
control approach is integrated into the system [14]. For achieving safety for humans
in the workspace of the robot, the system contains two complementary approaches.
Firstly, a potential function based collision avoidance is used [15]. Secondly, a dis-
turbance observer based collision detection routine allows to implement different
collision reaction strategies (Sec. 2.5, [8]).

2.3 Technology Transfer: Compliant Industrial Assistant

As a result of the technology transfer to KUKA Roboter GmbH, the KUKA light-
weight robots are currently used in numerous academic and industrial research labs.
The new automation concepts based on this robot allow higher flexibility due to
fast work-cell setup and modification, intuitive hands-on programming, and shared
workspace for direct interaction and cooperation of humans and robots. The first
industrial application was realized by the Daimler factory automation department in
Untertürkheim. The system is now used for automatic gear-box assembly in daily
production (Fig.8).
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Impedence Based Assembly 

With the Light-Weight Robot

Fig. 8 Left: Demonstration of bimanual flexible object handling by KUKA Roboter GmbH.
Right: Impedance based two arm assembly in Mercedes car manufacturing. Courtesy Daimler
AG.

In order to establish the new technology in industrial environments, two further
key aspects need to be addressed:

• The programmer has to be supported with appropriate toolboxes which help to
use and parameterize the various control features of the robot, such as compli-
ance, center of compliance, damping, assembly path, collision detection and re-
action strategy, or controller switch for a given application.

• The safety of humans during the permanent interaction with the robots always
has to be ensured. The new field of robotic safety in human-robot interaction
requires research in biomechanics for understanding injury mechanisms as well
as methods for preventing or reducing them.

These two topics are addressed in the next sections.

2.4 Planning Toolbox for Impedance Based Automatic Assembly

Assembly is one of today’s the most demanding tasks for industrial robots. Parts
have to be brought into contact and aligned properly by the robot despite inevitable
uncertainties due to part tolerances, imprecise part feeding and limited robot posi-
tioning accuracy. Lack of robustness, extensive setup costs for high-precision part
feeding, specialized grippers with so-called Remote Center Compliance, and the
need for experienced robot programmers are the main reasons, why most assembly
tasks are still carried out by humans.

In contrast to current industrial robots, the compliant control features of the DLR
light-weight robot allow flexible and robust assembly without additional equipment.
The programmer can select high-performance position control for free motion and
compliant Cartesian impedance control for highly dynamical interaction with the
environment. If desired, the switching between controllers can be triggered by con-
tact detection within 1ms.
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Fig. 9 Left: Experimental setup consisting of a DLR light-weight robot with an industrial
gripper, an attached Firewire camera and the pieces and plate on the table. Right: A typical
region of attraction (ROA) for a sample part. The inserted corner will be guided automatically
to position xa if the alignment process starts anywhere within the ROA (e.g. from xi,1 or xi,2).
If it starts outside (e.g. from xi,3), a successful alignment cannot be guaranteed.

Along with stable contact control, proper alignment of the parts despite inevitable
uncertainties is the most challenging part of an assembly task. Usually, this requires
tedious and expensive manual optimization of the trajectories for every type of ob-
ject. In order to simplify this procedure, an algorithm has been developed, which
allows automatic planning of robust assembly applications. The algorithm takes the
part geometries and information about the expected uncertainties as an input and
generates a parameterized robot program for the robust assembly of the parts [16].

The main idea of the insertion planning is visualized in Fig. 9 (Right). Consider
the compliance controlled robot having inserted a corner1 of the part into the hole
at the initial configuration xi. The desired position of the controller is now set to xd ,
and the stiffness value to K. For a certain set of starting configurations (called the
region of attraction - ROA), the inserted part will converge to the desired alignment
position xa. In the given example, xi,1 and xi,2 belong to the ROA, xi,3 does not. The
alignment can be seen as the settling of a nonlinear dynamic system with several
equilibria, whereof one is the desired configuration. It is possible to determine the
ROA for any desired equilibrium xd and for any stiffness matrix K. Its size can be
used as a direct measure for the robustness of the assembly trajectory. The optimal
robustness is achieved for those insertion parameters that maximize the ROA.

Obviously, the ROA depends heavily on the inserted corner, the selected desired
and initial positions xd and xi, the parameters of the impedance control (in particular
K), and the shape of the hole. Whereas the latter is given, the remaining parameters
can be freely selected and are used for offline optimization. Combined with a user
interface for providing the geometries from a CAD system or from sensor data,

1 Corner in this context means the relevant part of the contour which is involved in a one-
point contact.
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this toolbox for industrial robot programmers generates robust assembly programs
automatically. The output of the toolbox, desired trajectories and control parameters,
can then be used in the execution phase without any model knowledge of the parts.

The robustness and performance of the generated assembly strategies were evalu-
ated in extensive experiments with parts having a clearance of less than 0.1mm [17].
The parts are freely placed on a table, located with appropriate image processing,
and approached via visual servoing. In order to assess the performance, a compari-
son with humans in terms of execution time was done. Altogether, 41 persons were
tested, whereof 35 were children of age 5–7 and the remaining were adults.
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Fig. 10 Average times needed for the different parts. Whereas the robot shows similar per-
formance for all the parts, humans have difficulties especially with the differentiation and
insertion of the star shapes as those are difficult to distinguish for humans. p̃4 represents the
star that is inserted first (can be p4 or p5), p̃5 the other one.

Adults needed roughly 30% of the robot’s total time for the eight given parts,
while children needed about 70%. The variation of the robot performance was low,
since the only nondeterministic part of the strategy was the pieces searching (see
Fig. 10). Humans, instead, varied their strategy, trying first to solve the problem
as fast as possible (accepting failure), and then refined the strategy in subsequent
attempts if necessary. Some children needed considerably longer than the robot and
were able to fulfil the task only with additional hints.

While free motion and part picking of the humans was considerably faster, in
average the robot performed better and more constant in the insertion phase. The
experiment shows that the combination of global vision and local force information
can be considered as a key to robust and flexible industrial assembly tasks.

2.5 Safety in Human-Robot Interaction

An essential requirement for a robot designed for direct interaction with human
users, as e.g. for production assistants, is that it must in no case pose a threat to
the human. Until recently, quite few attempts were made to investigate real world
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threats via collision tests and use the outcome for considerably improving safety
during physical human-robot interaction. In this section, we give a brief overview
of our systematic evaluation of safety in human-robot interaction with emphasis on
aspects related to the LWRIII.

2.5.1 Standardized Crash Tests Experiments for Blunt Impacts

In [18, 19, 20, 21, 22] we analyzed and quantified impact characteristics of blunt
robot-human collisions and significantly augmented existing knowledge in this field.
The results were obtained and verified with standardized equipment from automo-
bile crash testing, leading to an extensive crash-test report for robots of different size
and weight. They range from the LWRIII to heavy duty industrial robots [23, 24].

For the LWRIII all impact tests generated very low injury values by means of
standardized severity indices evaluated for the head, neck, and chest. The Head In-
jury Criterion2 reached a maximum numerical value of 25 at 2 m/s, which is equiva-
lent to ≈ 0% probability of injury by means of HIC. For both neck and chest similar
conclusions could be drawn, since all injury measures were far below any safety
critical value [18]. These results were confirmed by impact tests with a human [22].
Even for the case of clamping close to a singularity, which turned out to be the
worst-case for the LWRIII, the robot was not able to produce large enough forces to
break the frontal bone or endanger the chest of a human, though producing a high
quasi-static force of ≈ 1.6 kN.

Apart from such worst-case analysis, we developed effective collision detection
and reaction schemes for the LWRIII using the joint torque sensors [25, 26], (see
Sec. 2.1.1), which proved to be very effective to reduce the injury potential. Even for
the afore-mentioned difficult case3 we could experimentally verify a reduction of the
contact force down to ≈ 500 N for the almost outstretched case. This significantly
relaxes the theoretical results of [22].

An important outcome of the extensive experimental campaign is that generally
blunt dynamic impacts in free space are, regardless the mass, not dangerous up to
an impact velocity of 2 m/s with respect to the investigated severity indices. On the
other hand, impacts with (partial) clamping can be lethal, significantly depending
on the robot mass. This led us to recommendations for standardized crash-testing
procedures in robotics, c.f. Fig. 11. The proposed impact procedures can hopefully
provide substantial contributions for future safety standards in physical human-robot
interaction.

Apart from blunt impacts, it is of immanent importance to treat soft-tissue injury
due to sharp contact.

2 The Head Injury Criterion (HIC) is the injury severity criterion best known in robotics.
Intuitively speaking, a value of 650 corresponds to a 5% probability of staying one day in
hospital, while a value of over 1000 can be lethal.

3 Due to the almost singular configuration, the joint torque sensors are quite insensitive to
the clamping force.
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Fig. 11 From impact testing with standardized equipment and evaluation of biomechanical
injury criteria to a proposal of standardized impact testing in robotics.

2.5.2 Soft-Tissue Injury Caused by Sharp Tools

A major potential injury source in pHRI are the various tools a robot can be equipped
with, see Fig. 12 (left). Their evaluation is still a field with numerous open issues
and definitely worth and fruitful to work on. As a first step, we were able to identify
the most important injuries and their causes, based on investigations made in the
field of forensic medicine and biomechanics. In [27] we presented various experi-
mental results with biological tissue, which validate the analysis. Furthermore, an
evaluation of possible countermeasures by means of collision detection and reaction
is carried out, c.f. Fig. 12 (right).
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F/T-Sensor

Tool

Pig

z

y

x

Fig. 12 The co-worker scenario is an example of a robot, which is potentially equipped with
dangerous tools, interacting with humans (left). Testing setup for the pig experimental series
(right).

It was possible to detect and react to stabbing impacts at 0.64 m/s fast enough
to limit the penetration (e.g., of a knife) to subcritical values of several mm’s or
even prevent penetration entirely, depending on the tool. In case of cutting a full
prevention of penetration at a velocity of 0.8 m/s was achieved. Furthermore, we
found empirically relevant safety limits for injury prevention for the case of sharp
contact, as e.g. the skin deformation before penetration.

3 Increased Performance and Robustness Trough Variable
Impedance Actuation

Based on the experience gained with the very successful approach of torque con-
trolled robots, we identified also its limitations and addessed new directions of re-
search for further increasing the robustness, performance and safety of robots. A
comparison between current service robots and their human archetype still shows
large discrepancy in several aspects. Firstly, relatively tiny impacts can cause severe
damages to a robot. The DLR arms and hands are close to their gear-box torque
limits when catching a ball of 80g having a speed of 28km/h while for instance a
handball goal keeper easily withstands a hit at 120km/h of a 425g ball. In the sec-
ond case, the impact energy is 100 times larger than in the first case. The ”as stiff
as possible” mechanical design paradigm and the torque control reach their limits
here, because the impact lasts typically only few milliseconds for such a robot. This
is too short for the actuator to react and accelerate the motor and gear-box for reduc-
ing the impact. This shows that the robustness of robots against impacts can not be
addressed by further improvements of torque controlled robots but needs a change
of paradigm. The motor has to be partially decoupled from the link side and the
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induced energy must be stored within the robot joint instead of being dissipated.
This directly leads to the necessity of passive elastic elements.

Another important observation is that the velocity and dynamic force capabilities
of current robots are by far not good enough to perform dynamic tasks, such as
throwing and running, as good as human beings. This can also be improved by the
use of mechanical energy storage within the system as exemplified in Sec. 3.3.

Since the specifications for several tasks vary widely regarding position accuracy,
speed, and required stiffness, the joint stiffness needs to be variable. This requires
an additional motor per joint. To keep the drawbacks of having a second actuator
at each joint as low as possible, the joint unit has to be optimized regarding its
energy efficiency e.g. at high stiffness presets. The concept of variable impedance
actuation4 (VIA) seems to be a promising solution in this context and its design and
control was addressed in numerous publications [28, 29, 30, 31, 32].

Our goal is, based on our experience with torque controlled light-weight robots,
to built up a fully integrated VIA hand-arm system for close, safe, high performance
interaction with humans while fulfilling the above requirements as close as possible
(Fig. 13).

Fig. 13 Current stage of the DLR VIA hand-arm system. Left: Elbow joint. Right: Explosion
drawing of the hand-arm system.

3.1 Design of Variable Stiffness Systems

Currently, a hand-arm system with variable compliance is designed at DLR incorpo-
rating in a first, concept validation version, several variable compliance joint designs
for fingers and arms, see Fig. 13. For the hand, an antagonistic approach is taken,
which allows to place the actuators and the variable stiffness mechanics in the fore-
arm and to transmit the motion via tendons through the wrist to the fingers. The
fingers and the hand structure are designed to match as close as possible the human

4 If the joint has only variable stiffness, but no variable damping, the term variable stiffness
actuation (VSA) is often used.
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hand kinematics and functionality, while finding innovative technological solutions
for their implementation [33] (Fig. 13). The wrist is also actuated antagonistically,
however in a supporting setup. In such a setup both motors can add their torques to
gain the maximum possible torque output or can co-contract to change stiffness for
medium load. For the elbow and the shoulder, the focus is on energy efficient and
weight minimizing design, such that the mass of the VIA joints do not considerably
exceed the weight of an LBWRIII joint. The actuators of these joints are based on an
approach in which a tiny motor is primarily used to adapt the stiffness of the joint
and a large motor is mainly used to position the link (Fig.14). The currently fol-
lowed design is a combination of quasi-antagonistic and the variable stiffness joint
designs (Fig.15) presented previously in [34, 13].

Harmonic Drive Gear

Circular Spline

Variable Stiffness
Mechanism

Fig. 14 Actuator and compliance arrangement for the shoulder and elbow joints.

Cam Disk

Roller

Connection to
Linear Bearing

Roller Slider

Spring Base Slider

Axis of Rotation

Cam Bar

Rocker Arm

Spring

Stiffness Actuator

Connection to
Circular Spline

Fig. 15 Design versions of the shoulder and elbow joints. Left: Variable Stiffness Actuator.
Right: Quasi-Antagonistic Joint.

3.2 Control Challenges with VIA Actuators

The classical control problem formulation for VSA robots is that of adjusting stiff-
ness and position of one actuator and of the entire robotic system (arm, hand) in a
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decoupled manner, by controlling the position or the torque of the two motors of
the actuator [31, 32, 29]. Moreover, in case of VSA structures with many DOF and
cable actuation, the decoupling tendon control is treated [35, 36].

In [37] we proposed a new solution for the design of impedance control for cou-
pled tendon systems with exponential stiffness (Fig. 16). The proposed controller
provides static decoupling of position and stiffness as well as the exact desired link
side stiffness in combination with the intrinsic mechanical compliance, while re-
maining within the passivity framework of the DLR robots. A second challenging
control task is related to the fact that almost all VIA joints designed so far have very
low intrinsic damping. While this feature is very useful for movements involving
energy storage (e.g. for running or throwing), the damping of the arm for fast, fine
positioning tasks has to be realized by control. This can be a difficult task, regard-
ing the strong variation of both inertia and stiffness. Fortunately, the passivity based
approaches developed for the torque controlled robots can be adapted for the VIA
case. However, it soon became clear from the simulation for the whole arm that a
separate control of each joint, by just considering diagonal components of stiffness
and inertia matrices as inputs, is not feasible, due to very low stiffness and strong
coupling between the compliant joints. New methods for treating the joint coupling
were developed starting from [38, 1]. The basic idea for the controller design is the
following:

• Consider full coupled inertia and stiffness matrices for the relevant joints.
• Transform the system consisting of link inertia and stiffness to modal coordinates

such that the two matrices become diagonal.
• Use torque feedback in order to bring the motor inertia matrix to a structure in

correspondence to the double diagonalized matrices, i.e. make it diagonal in the
same coordinates.

• Design a decoupled controller in the modal coordinates, independently for each
mode. Gains are calculated based on current modal parameters.

f

f

hθ hq(q)

τext,1 τext,2

q1

q2

r1
r2

f t

f m

Fig. 16 Example of a tendon network with two joints and four tendons connected by nonlin-
ear springs. hθ and hq are the motor and link side tendon displacements, respectively, f m and
f t are the motor and link side tendon forces.
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With this methods, the control proved to work well, as exemplified in the plots from
Fig. 17, for one of the three joints. An experimental validation of the controller for
high an low stiffness preset on a 1 DOF testbed is shown in Fig. 18.
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Fig. 17 Motor and link position with state feedback controller.
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Fig. 18 Motion on a trajectory with rectangular velocity profile for tiny and maximal stiff-
ness. A critically damped velocity step response can be achieved independent from the stiff-
ness and inertia value (upper). The effect of vibration damping is clearly observed in the
torque signal (lower).

3.3 Validation of Performance and Robustness

Along with the activities regarding the control of the joint, first analysis and experi-
ments for validating the increase in performance were done.
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3.3.1 Throwing

The application of throwing a ball is a good example to show the performance en-
hancement gained by the VS-Joint in terms of maximal velocity. For throwing a ball
as far as possible, it has to be accelerated to the maximum achievable velocity and
released at an angle of 45◦. The link velocity of a stiff link corresponds to the veloc-
ity of the driving motor. In a flexible joint the potential energy stored in the system
can be used to accelerate the link relatively to the driving motor. Additional energy
can be inserted by the stiffness adjuster of the variable stiffness joint to gain an even
faster motion.

Fig. 19 shows simulation results and experimental validation regarding the veloc-
ity gain between motor and link for the quasi-antagonistic link. The motor trajecto-
ries for optimal performance were generated by an optimal control approach [39].
The link velocity is maximized under constraints on motor velocity and torque, elas-
tic joint deflection range, and controller dynamics.
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Fig. 19 Left: blue - simulated gain in velocity between motor and link, depending on the
maximal desired motor velocity and the stiffness preset. Red - experimentally validated
points. Right: Desired motor velocity (grey) and reached link velocity for one experiment
(red-simulated, blue-measured).

With the measured maximum link velocity of 572◦ s−1, the throwing distance
for the same experiment with the Variable Stiffness Joint was approximately 6 m,
corresponding well to the calculated distance of 6.18 m. The theoretical throwing
distance with an inelastic link of the same setup with the same maximum motor
velocity of 216◦ s−1 is 0.88 m, also was confirmed experimentally. A speed gain of
265% for the link velocity between rigid and compliant joint was achieved in the
test. Similar results in performance increase have been obtained for kicking a soccer
ball, which additionally causes an external impact on the link side, as discussed
next.
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3.3.2 Experimental Validation of Joint Overload Protection at Impacts

In [40], two series of experiments were conducted to investigate the benefits of
passive variable stiffness during impacts. The testing setup for both series was a
single DOF joint (with link inertia ≈ 0.57 kgm2) being hit at a lever length of ≈
0.76 m by a soccer ball (0.45 kg).

In the first series the unloaded joint is kept still and is passively hit by the ball
with different impact speeds. The joint torques were recorded for three different
setups. Two stiffness setups are realized via the passively compliant VS-Joint. The
most compliant as well as the stiffest configuration were chosen. In a third setup a
mechanical shortcut is inserted into the test-bed instead of the VS-Joint mechanism,
such that a much stiffer joint in the range of the LWRIII elasticity is obtained. Both,
increasing impact speed and increasing joint stiffness result in higher peak joint
torques as visualized in Fig. 20. The peak torque limit of the joint gear is almost
reached with the stiff joint at an impact velocity of ≈ 3.7 m/s, whereas the compliant
VS-Joint is still far in the safe torque region.

In the second test series the resting soccer ball was hit by the joint lever at maxi-
mum joint velocity. In case of the stiff joint the velocity is limited by the motor. With
the VS-Joint, the joint velocity was increased by the energy storage in the joint with
a similar trajectory to the one used in Sec. 3.3.1. The results given in Table 1 show
a significant increase in joint velocity and kicking range with the VS-Joint which
results in a faster impact on the ball. The tests show, however, that the peak joint
torque is much tinyer in the flexible joint even though the impact was faster. So the
passive flexibility in the VS-Joint does not only help to increase the joint perfor-
mance, but also reduces the potentially harmful peak joint torques during fast rigid
impacts.
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Fig. 20 Peak joint torque during impacts with with a soccer ball. Three different stiffness
setups are examined: VS-Joint at low stiffness preset, VS-Joint at high stiffness preset, and
an extremely stiff joint without deliberate elasticity (upper). Higher impact velocities result
in larger peak torque and passive joint deflection.
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Table 1 Results for the different kicking impacts for the VS-Joint and for the rigid joint.

Joint Type Joint Velocity Peak Joint Torque Kicking Range

Stiff Joint 229 deg/s 85 Nm 1.6m

VS-Joint 475 deg/s 10 Nm 4.05m

4 Summary

This paper presented a bird’s-eye-view of the paradigm evolution from high per-
formance torque controlled robots to systems with intrinsic variable stiffness. We
overviewed the major design and control principles of the torque controlled robot
systems developed at the German Aerospace Center (DLR) as an antetype. Torque
controlled robots currently represent a technology that is mature for the market.
They are used not only as a tools for academic research but also in industrial envi-
ronments, within new, more flexible automation concepts based on direct coopera-
tion of robots and humans. We believe, however, that impressive research progress
can be expected in the area of VSA actuated robots within the next decade. The mo-
tivation for variable impedance devices, derived from different performance, robust-
ness, and safety requirements, are highlighted. Possible hardware solutions, which
are currently investigated for a newly developed hand-arm system at DLR are de-
scribed. Finally, first experimental results validating these concepts were presented.
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Human Robot Interaction

Cédric Pradalier

In this part of the ISRR'09 proceedings, we have assembled a group of papers
focusing on the way these complex machines we call robots can interact with their
users, how they can show us what they perceive, listen to us, work with us, or even
help us record the sense of touch.

In  “Real-Time Photorealistic  Virtualized  Reality  Interface  For  Remote
Mobile Robot Control”, Kelly et al. describe the challenges related to the
remote  control  of  a  mobile  platform based  on the  transmission  of  its
sensors. The main contributions are on one hand the insight on the im-
portance of latency compensation for high-speed remote driving, valid-
ated by user studies, and on the other hand the report on the technologies
required to achieve this impressive integration effort.  
In “Robot Audition: Missing Feature Theory Approach and Active Audi-
tion”,  Okuno et  al.  report  on  the  development  and  application  of  the
HARK robot audition software. The importance of this work for the ro-
botics community is its capability to separate multiple sources and to loc-
alize moving talkers.
In “Haptography: Capturing and Recreating the Rich Feel of Real Sur-
faces”, Kuchenbecker defines haptography for the sense of touch as what
photography is to the sense of sight. The challenge here is to be able first
to record with high fidelity the high frequency vibration and forces we
describe as the sense of touch, and then to reproduce these forces and vi-
bration with high enough accuracy to preserve and transmit the sense of
touch.
In “Towards the Robotic Co-Worker”, Haddadin et al. present a solution
for the implementation of a safe working collaboration in pick-and-place
industrial scenario. This application is made possible by the integration
of soft-robotics, robust sensing, and flexible hybrid automata to react to
exceptional situations.

We decided to group these papers together because we believe that they provide
an important insight on what technologies will have to be integrated to the future
robotic systems, should they one day leave the confines of laboratories to tackle
more complex tasks than vacuum cleaning or lawn mowing.



Real-Time Photorealistic Virtualized Reality
Interface for Remote Mobile Robot Control

Alonzo Kelly, Erin Capstick, Daniel Huber, Herman Herman, Pete Rander,
and Randy Warner

Abstract. The task of teleoperating a robot over a wireless video link is known
to be very difficult. Teleoperation becomes even more difficult when the robot is
surrounded by dense obstacles, or speed requirements are high, or video quality is
poor, or wireless links are subject to latency. Due to high quality lidar data, and
improvements in computing and video compression, virtualized reality has the ca-
pacity to dramatically improve teleoperation performance — even in high speed
situations that were formerly impossible. In this paper, we demonstrate the conver-
sion of dense geometry and appearance data, generated on-the-move by a mobile
robot, into a photorealistic rendering database that gives the user a synthetic exte-
rior line-of-sight view of the robot including the context of its surrounding terrain.
This technique converts remote teleoperation into line-of-sight remote control. The
underlying metrically consistent environment model also introduces the capacity to
remove latency and enhance video compression. Display quality is sufficiently high
that the user experience is similar to driving a video game where the surfaces used
are textured with live video.

1 Introduction

Effective operation of any mobile platform without direct line-of-sight is intrinsi-
cally difficult to achieve. In video-based teleoperation, the loss of peripheral vision
caused by viewing the world through the soda straw of a video camera reduces driv-
ing performance, and it increases the operator’s frustration and workload. Wireless
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communication links are also subject to dropouts and high levels of latency. Their
bandwidth limitations typically cause a large reduction in image quality relative to
the fidelity of the underlying video cameras. When the robot undergoes significant
or abrupt attitude changes, the operator response may range from disorientation,
to induced nausea, to dangerous mistakes. The need for high attention levels also
deprives operators of the capacity to pay attention to their surroundings. Wireless
communications issues and difficulty controlling the robot also increase time on
task, and they increase the time required to become a skilled operator.

1.1 Motivation and Technical Approach

The term virtualized reality [7] refers to the production of views of a rendering
database where the geometry and appearance content is derived from measurements
of a real scene. For visualization, such a database makes it possible to render syn-
thetic views of the scene from arbitrary perspectives that may never have been the
site of any real sensor. Such techniques represent an extreme on a spectrum of real
data content with augmented or mixed reality somewhere in between and virtual
reality at the other extreme. Virtualized reality enables a new capacity to address
many of the problems described above by providing a photorealistic, synthetic, line
of sight view to the robot based on the content of geometry-augmented real-time
video feeds.

Fig. 1 3D Video View of a Mobile Robot. Left: A video frame produced from a camera on
a moving vehicle. Right: The 3D Video view produced from all of the video that has been
received in the last few seconds by the vehicle. The operator can look at this database from
any angle, at any zoom, while it continues to be updated in real time. The vehicle is synthetic
since no sensor has imaged it, but the rest of the content is generated from live video produced
by the forward looking sensor mounted on the vehicle roof.
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If the processing is performed in real-time, a kind of hybrid 3D Video (Figure
1) is produced that can be viewed from arbitrary perspectives while exhibiting the
photorealism and dynamics of live video. The operator experience is equivalent to
following the robot in a virtual helicopter that provides arbitrary viewpoints includ-
ing an overhead viewpoint and the over-the-shoulder view that is popular in video
games.

A large number of benefits can be realized with this approach to user interfaces.

• The operator can see any part of the hemisphere around the vehicle at any time.
• The display provides a natural mechanism to introduce augmented reality opera-

tor aids.
• The viewpoint is stabilized regardless of the attitude (pitch and roll) changes of

the real vehicle.
• Viewpoints can be customized and switched for each task. For example, parallel

parking is much easier when the vehicle is viewed from above, and objects can
be examined closely by zooming in on them.

• Multiple viewpoints can be shown at once, and multiple operators or observers
can view the scene independently.

• The frame rate of the display can be adjusted independently from that of the
underlying video feed.

• Dropped frames can be easily tolerated by rendering the most recent model.
• Deliberate dropping of frames or many other schemes can be used to compress

the data transmission.
• Even with a vehicle moving in the display, latency can be essentially eliminated

by rendering the predicted vehicle state.
• A photorealistic map of the area traversed is produced as a byproduct of system

operation.

The engineering difficulty of producing and processing such data is considerable,
and it is even more difficult if it must be photorealistic and produced in part from
data feeds of scanning lidar sensors derived from a continuously moving vehicle in
natural terrain. Nonetheless, the rewards of such efforts are also considerable as we
hope to show in the sequel.

1.2 Related Work

The technique of view interpolation was introduced in computer graphics [2] as a
mechanism to exploit depth information in order to efficiently produce synthetic im-
agery while bypassing many of the computationally expensive geometric aspects of
rendering. View interpolation is one of several approaches to image-based render-
ing. Such techniques achieve remarkable realism through the use of natural imagery
to texture surfaces. Given depth, a purely synthetic view of a real scene can be
produced by projecting the pixels of an image to their proper 3D locations and re-
projecting them onto a new image plane. Kanade coined the term virtualized reality
[7] to emphasize that the image data was natural rather than the synthetic imagery
used in virtual reality. Initial virtualized reality work was based on off-line stereo
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ranging and stationary sensors that surrounded a localized dynamic scene. More
recently real-time image-based rendering has been accomplished for a single dis-
crete object and fixed cameras based on a visual hull method for computing depth
[11]. While computer vision and computer graphics evolved toward virtualized real-
ity, telerobotics was simultaneously developing augmented reality displays for more
effective remote control. Numerous techniques for supervisory control and teleop-
eration of manipulators, and even telepresence, were clearly outlined as early as the
mid 1980s [16]. The same concepts were considered early for legged vehicles [12]
and wheeled Mars rovers [1]. Given the sensor data needed, the earliest approaches
to teleoperation simply displayed the raw sensor data or showed the robot in a 2D
overhead view in the context of its surrounding perceived objects. Applications like
space exploration generated a strong impetus to develop more realistic virtual dis-
plays as early as 1991 [5]. The potential of augmented reality environments has
been explored in both nuclear servicing [13] and space [10] contexts. In these cases,
a small amount of virtual information was rendered over natural video. Innovations
included registration of the virtual model to reality using vision, and latency com-
pensation using motion preview and predictive displays.

These techniques can be applied with more effort to robot vehicles. One sustained
research effort in the use of virtual environments for the control of robot vehicles
was the Virtual Environment Vehicle Interface (VEVI) described in [6]. This sys-
tem was tested terrestrially [4], and derivatives were ultimately used on the Mars
Pathfinder mission. Contemporary developments include more emphasis on sensor
fusion [3] as well as efforts that display both forms of data (appearance and geom-
etry) in a less integrated but more useable way [18]. The VEVI system is a clear
landmark in related work and it is closest to the work we present here. Our work is
distinct from VEVI in that VEVI did not perform image-based rendering and hence
did not use virtualized reality. VEVI did render false color terrain maps produced
by on-board lidar sensing for a slow moving legged vehicle and this achievement
was unprecedented using the technology of that period. VEVI used a classical form
of latency compensation based on vehicle autonomy and supervisory control inter-
faces but it did not perform the kind of high fidelity continuous motion prediction
in virtualized reality that we will present here. We also achieve results in data com-
pression and unprecedented vehicle speeds that derive respectively from the com-
mitment to virtualize the entire scene and the use of custom photogeometric sensing
as described below.

2 Hardware and Architecture

Virtualized reality constructs a computer graphics model of a real scene. The set of
geometrically consistent graphics primitives to be displayed will be referred to as the
model. For teleoperation, a key design decision is the location of the model build-
ing process. If modeling is performed on the vehicle processor, then model updates
can be communicated to the remote operator control station and communications
bandwidth requirements can presumably be reduced. Reduction is possible because
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Fig. 2 System Architecture. The system includes an operator control station (OCS) and a
remote-control retrofit of a standard all terrain vehicle.

it takes less bandwidth to transmit a fused model that lacks the redundant content of
video. If modeling is performed on the remote operator control station, raw sensor
data must be communicated, and bandwidth requirements are higher. Despite this
bandwidth cost, we chose the second option (Figure 2) in our implementation, in
part, because the latency compensation process, discussed later, is more straightfor-
ward. In this case, operator commands to the robot can be observed (at the operator
control station) without significant latency.

The basic hardware setup at the system level involves an operator control station
(OCS) that communicates over wireless to a remotely located mobile robot equipped
with photogeometric sensing.

2.1 Sensing

The term appearance will be used to refer to sensing modalities that are sensitive
to the intensity of incident radiation including visible color, visible intensity, and
visible or invisible infrared modalities. Conversely, geometry will be used to refer
to modalities that register any of depth, range, shape, disparity, parallax, etc. The
term photogeometric (PG) sensor will refer to a sensing device that produces both
kinds of data in a deeply integrated manner. For our purpose in this paper, the data
is deeply integrated if the spatial correspondences of the data are known. Ideally, as
shown in Figure 3, the resolutions are matched as well so that a one-to-one mapping
exists between geometry and appearance pixels.

Computational stereo vision is a natural and classical approach to photogeomet-
ric sensing because range is produced for every pixel in the reference appearance
image. However, its utility in our application is limited due to the relatively poor
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Fig. 3 Photogeometric Data Set. Every color pixel in the left image has an associated range
pixel in the right image. Sensors that produce such data do not exist on the market today but
they can be constructed by integrating more basic components.

quality of the range data. Our implementation approach therefore produces an inte-
grated data set of appearance and geometry data from two distinct sensors: lidar and
video.

Due to many considerations including the numerous robotic platforms that we
construct annually and the desire to standardize solutions across programs, we have
been continuously refining our photogeometric sensor concept for many years. A
recent sensor design is shown in Figure 4. For scanning lidars, we typically purchase
an off the shelf scanning lidar that scans in one degree of freedom (called the fast
axis), and then we actuate the housing in a second degree of freedom (called the
slow axis) in order to produce a scanning pattern that spans a large angle in both
azimuth and elevation.

Fig. 4 Custom Photogeometric Sensor. The device fuses data from a commercial scanning
lidar by SICK, stereo cameras, and a forward looking infrared (FLIR) camera. The interface
to the composite device is a combination of fast Ethernet (used for high bandwidth data) and
CAN Bus (used for low latency control).
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The lidar pointing control system provides precisely timed feedback on the angle
of rotation. This data stream is merged with the range and angle data coming from
the lidar to form a 2D scanning lidar data stream. This stream is then optionally
merged with any camera data and transmitted to the host computer system. In our
autonomy systems, it is useful to merge the data at the level of individual imagery.
However, for visualization, we instead merge the data later in the model building
process at the level of an integrated geometric model of the scene.

2.2 Vehicle

Our latest vehicle test bed (Figure 5) is a custom retrofitted LandTamer® amphibi-
ous remote access vehicle. We chose this vehicle for its terrainability, ease of trans-
port, and (deliberately) for the difficulty of modeling its skid steering.

Fig. 5 Robot Vehicle. A LandTamer® vehicle was retrofitted for remote control. Three cus-
tom colorized range (CR) sensors with a total field of view of 160◦ are mounted high on the
vehicle looking forward. The lidars are manufactured by SICK providing range points at 2
KHz separated by ½ degree of angle over 180◦ of field of view. The cameras are the Firefly®
by Pt. Grey Research Inc., and they provide color imagery at 720 X 500 resolution over a 60◦

field of view.

A custom field programmable gate array (FPGA) board is used to implement the
servos that control the nodding motion of the lidars. It is also used to integrate the
data into time tagged colorized range data sets and to provide the results over an
ethernet link to the main vehicle computer.

A Novatel SPAN INS-GPS system is used for pose estimation, including the
vendor’s Kalman filter. The system is augmented by a portable real-time kinematic
(RTK) differential base station. Under favorable satellite viewing conditions 2cm
accuracies are achievable. A small computing cage houses the sensor control and
data acquisition FPGA board and two Intel® Core™ Duo processors. These pro-
cessors concentrate the data from all sensors and send it to the OCS over 802.11g
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wireless. They also receive the OCS commands over the same wireless link and pass
them to the vehicle controller.

2.3 Operator Control Station (OCS)

The OCS (Figure 6) incorporates a steering wheel and throttle and brake pedals as
well as a large LCD monitor. The OCS also contains a processor capable of both
communicating with the robot and rendering the data on the display.

Fig. 6 OCS. The Operator Control Station includes a steering wheel equipped with selection
buttons, foot pedals, and a large LCD display. The display provides selectable views includ-
ing the raw video, over-the-shoulder, and birds-eye (direct overhead). The selected view is
enlarged and the others are reduced in size and shown to the right.

3 Modeling and Visualization Algorithms

In order to achieve photorealism, we aspire to produce geometry for every cam-
era pixel (rangefied color). Rather than do this in the image, however, results are
improved if geometry is interpolated in the scene by fitting surfaces to the lidar
(geometry) data and projecting the camera (appearance) data onto those surfaces.

Numerous effects give rise to situations where the color of a scene point is known,
though its range is not. For many reasons, lidar data produced on a ground vehicle
ceases to be reliable beyond a range on the order of 30 meters. Let the region beyond
this range be known as the far field, and let that inside this range be known as the
near field. Even in the near field, the reduced angular resolution of lidar relative to
cameras implies that the vast majority of near field color pixels in a camera image
will not have a lidar pixel that corresponds directly.

A second important issue is range shadows. It is necessary in general to depth
buffer the range data from the camera perspective in order to ascertain which ranged
points are occluded by others and therefore have unknown color. When the view-
point differs significantly from that of the lidar sensor, substantial missing parts
in the model become possible. For our purposes, the required precision of geometry
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depends on the offset of the viewpoint from the original sensor viewpoint. When the
offset is small, substantially incorrect geometry will still look highly realistic. When
the offset is large, differences in parallax of scene points from their correct parallax
will result in distortion that is noticeable to the operator.

In general, four classes of points can be distinguished. The system uses several
strategies described below to process them.

• Surface and texture known. This is the easiest case where the texture is pro-
jected onto the surface.

• Texture only known. In this case, the geometry has to be assumed or the data
rejected. Two cases of practical interest are under-sampled smooth surfaces, and
regions beyond the lidar maximum range.

• Geometry only known. Enough cameras can be used to ensure that this case
does not occur with two exceptions. First, the vehicle does not normally produce
a lidar image of itself, but its geometry can be measured or coded offline. Second,
regions occluded by other surfaces can be drawn in an unusual color to identify
them to the operator, and both sensor separations in space and image separations
in time can be minimized to the degree possible to mitigate this effect.

• Nothing known. Once the possibility exists to place a viewpoint anywhere,
scenes with complex geometry will often show holes in the model that corre-
spond to regions that no sensor was able to see for occlusion reasons. This is the
cost of arbitrary viewpoints applied to data imagery from a specific viewpoint.
There is no way in general to generate the missing data, but the advantages of
arbitrary viewpoints can outweigh this imperfection.

Of course, regions of the scene may become unknown over the passage of time
when the scene is dynamically changing. In such cases, omnidirectional lidars and
cameras may be used to continuously update the view in all directions.

3.1 Near Field Surface Modeling

The application to ground vehicles justifies the assumption that the environment
around the vehicle includes a ground surface and optional objects that may lie on
it. In many environments, lidar data is sufficiently dense, out to 20 to 30 meters,
to sample the terrain surface adequately for its reproduction. For this reason, the
implementation segments all lidar points into those that lie on the ground and those
that lie above it.

In forested environments, situations like overhanging branches invalidate the as-
sumption that height is a single-valued function of position. Therefore, all lidar data
is initially accumulated in a 3D voxelized, gravity-aligned data structure, called the
point cube, before it is segmented. Each voxel counts the number of lidar beams that
have terminated in the voxel (called hits), and the number that have passed through
(called pass-throughs) to terminate in voxels further from the sensor. After each full
sweep of the lidar beam, the point cube is analyzed to determine the lowest cell in
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each vertical column with enough hits to determine a ground surface. The average
height of these hits is used to define the ground height at the position of the voxel in
a new data structure called the terrain map. This structure is a horizontal 2D array
arranged into cells (20 cm on a side) that store the ground height at the center of
each cell. The terrain map accumulates all data from multiple lidar scans. Its spatial
extent, like the point cube, is limited to some adjustable region around the present
vehicle position defined in terms of 3D space, distance, or time.

3.2 Projective Texture Mapping

Each cell in the terrain map is converted to two untextured triangles that must then be
textured from the camera imagery. Densely populated voxels are those containing
a large number of lidar hits. Those that are above the ground surface, but are not
dense enough to define a surface, have their geometry hallucinated as the sides of
the voxel. The points in sparsely populated voxels are enclosed in very small cubes
to create geometry onto which to render their textures.

The baseline separation between camera and lidar can unfortunately be enlarged
significantly due to asynchrony of the camera and lidar during periods of vehicle
motion. Also, camera imagery may overlap due to multiple overlapping fields of
view or multiple frames captured over time. Unless depth buffering is performed, the
same textures will be painted onto foreground objects as well as those background
objects that are occluded by them. This would not be a problem if the terrain map
was the only surface in the scene, but there are others above it. Therefore, we instead
use projective texture mapping [15] implemented in the OCS graphics processing
unit (GPU) to paint the video onto the geometry. The system maintains a list of the
most recent images from all cameras. Each image is used to apply texture to the
geometry in the scene in temporal order so that cells that fall outside the field of
view of more recent images will retain the last texture painted onto them.

3.3 Far Field Modeling and Visualization

Often, the far field region of space corresponds to the higher parts of the images, and
it extends to the horizon. For such data, we erect a temporary surface (a billboard)
that is normal to each camera’s optical axis. The camera data is then projectively
textured onto the surface.

The billboards move with the vehicle (Figure 7). Provided the viewpoint is not
significantly different from the camera, the parallax error is tolerable, and operators
overwhelmingly prefer their use. In the case of an overhead view, the billboards
become normal to the viewing axis, and they mostly disappear.
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Fig. 7 Billboards Used to Display Far Field Video. This view shows the geometry of the
three billboards and how video frames are pasted onto them. The technique of using bill-
boards for complex scenes has been used for many years [14].

4 Teleoperation Algorithms

So far, we have described the basic mechanisms for producing and rendering a pho-
torealistic model that surrounds a moving vehicle. This section describes how this
basic mechanism is augmented to produce a teleoperation system.

4.1 Latency Compensation and Simulated Leader-Follower

Any real wireless communications system will introduce bidirectional latency into
the telemetry passing between the vehicle and the OCS. It is well known that such
latency is one factor that makes teleoperation difficult. The capacity to render the
vehicle from an external viewpoint not only provides hemispherical exterior con-
text to the operator but it also provides the opportunity to remove latency using
prediction (Figure 8). Our vehicle display is virtual anyway so it is straightforward
to draw the vehicle in any position. We render the vehicle at its predicted position
at the time in the future when commands issued by the operator will arrive at, and
be acted upon, by the vehicle. This technique produces a continuously predictive
display that appears to respond with no latency. Given the capacity to predict the
future, a potentially more useful technique is to predict slightly beyond the com-
mand arrival time to produce a display of a vehicle slightly more into the future.
In this case, some of the prediction error has not happened yet, and the real robot
can be given the responsibility to reduce the error before it occurs. This is accom-
plished by considering the simulated vehicle to be a lead vehicle, which the real one
is obliged to follow. The simulated lead vehicle is rendered in the context of the 3D
Video feed that is updated to include new information as the real (but usually not
displayed) vehicle moves. Hence, the operator has the sensation that a real vehicle
is being controlled. In this case, the path followed by the leader is passed to the real
vehicle as the command input.
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Fig. 8 Prediction for Latency Compensation. Prediction of station 5 can be used for
latency-free rendering. Errors in the initial state and prediction process may place the ve-
hicle at station 5 when it will really arrive at station 4. Such errors can be treated as following
errors if a simulated leader is rendered at station 6.

4.2 Telemetry Compression

Virtualized reality creates an opportunity to implement effective data compression
in remote control applications. The fact that the rendering of the model is decoupled
from the frame rate of the cameras means that the update of the display, showing
a moving vehicle, can proceed at high rates regardless of the camera rates and the
pose update rates. This capacity also implies a high degree of robustness to dropped
frames of video or pose data since each appears to be a momentary increase in input
latency for which the system is already configured to compensate. The input pose
data and output control signals are small enough to be irrelevant to the compression
issue. Lidar data is converted from floating point to 16 bit integers. For the video, we
use an Xvid (MPEG-4) encoder on the vehicle and a decoder on the OCS to perform
compression. Visible parts of the vehicle are cropped. The three streams from the
sensor pods are reduced to 10Hz frame rate before they are compressed. Based on
just these measures, we are able to produce very high quality 3D Video displays that
compete with full frame video using only 1 Mbit /sec of communication data rates.

4.3 Augmented Reality and Mixed Initiative Interactions

The capacity to produce metrically accurate photorealistic maps follows from a
decade of work in using colorized range data for robot autonomy systems. Many
of the data structures involved are identical or similar to those used to represent
the scene for autonomy purposes. In particular, both the point cube and the terrain
map are standard components of our autonomy systems, which are produced for the
purpose of obstacle and hazard detection [8]. Given such algorithms, it is natural to
wonder how they can be used to help the operator drive. Figure 9 shows a simple
augmented reality display where the classifications of simple slope based obstacle
detection algorithms are used to partially color the terrain. The colors are blended
with the video such that reddish areas are to be avoided, and greenish ones are safe
for driving. In benign terrain, in broad daylight, this augmented reality facility may
not add much value. However, when terrain is difficult or lighting or visibility is
poor, such an autonomy system could add value if the human interface were con-
figured correctly. Lidar works better at night due to reduced solar interference, and
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infrared appearance data can be processed like daytime video to produce a system
that permits an operator to drive in total darkness. The 3D Video system also uses
many of the same data structures for rendering and autonomy, so the operator and the
autonomy system can interact more readily through the display; augmented reality
is but one such mechanism. It is possible to have autonomy veto operator commands
or bring the vehicle to stop, and the display can likely provide the operator with the
reason for the robot initiative.

Fig. 9 Augmented Reality Display for Autonomy Assisted Hazard Avoidance. The photo-
realistic display is augmented with false color obstacle annotations. Billboards are turned off.

5 User Study Results

The 3D Video system has been under continuous testing for the last two years in-
cluding three week-long tests in the northeast and southwest of the US in both winter
and summer conditions. In one test, a formal user study was conducted over a week
in Pittsburgh in December of 2006. The details are described more fully in [9]. Five
operators of different skill levels were tested on an obstacle course designed to elicit
errors known to occur commonly in teleoperation. The participants averaged 20
years of automobile driving experience. Three subjects had prior experience tele-
operating a live vehicle, including one with a 3D video system. One subject had
never played a driving based video game. Course features included slaloms, deci-
sion gates, discrete obstacles, and loose and tight turns. The course was difficult
enough to induce errors even when driving a vehicle manually from the driver’s
seat. Each operator drove the course in 4 different ways including sitting in the ve-
hicle using standard controls, basic teleoperation with live video, and 3D video with
and without latency. Each driving mode was assigned in random sequence to re-
move bias associated with learning the course. Driving performance was measured
in terms of completion time, speed, and error rates.
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Table 1 User Study Results

Metric Live Video 3D Video 3D Video Manual Drive
with Latency without

Latency

Completion Time (min) 9.3 7.2 6.4 2.2
Average Speed (m/s) 1.0 1.3 1.6 4.2
Errors 9.6 5.0 7.9 2.4

Fig. 10 High Speed Obstacle Avoidance. Latency compensation is most valuable during
high speed driving. Here, the operator avoids an obstacle to the right, fitting the vehicle into a
narrow space. A custom fly-behind view was used. The speedometer reads 24.55 km/hr. The
operator control station is about 1 km further down the road.

In all cases, 3D video produced driving performance that was significantly (30%
to 60%) better than standard teleoperation but not as good as manual driving. Fur-
thermore, operators uniformly preferred 3D video to standard video teleoperation.
A bug in the latency compensation process resulted in poor performance of this as-
pect in the test. However, the latency compensation techniques have subsequenctly
proven to be very valuable in practice after this bug was removed. In a second test
conducted over a one week period in south Texas in November of 2008, 50 novice
operators drove the system (based on no training) in natural terrain using augmented
reality waypoint guidance. There were no mishaps or incidents but we did notice that
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many operators with no teleoperation experience tended to forget that a real vehicle
was being controlled. During this test, one of our skilled staff also tried to drive the
system at high speed for a kilometer on dirt roads while avoiding discrete obsta-
cles. Figure 10 indicates how we achieved unprecedented speeds in this test using
our latency compensation while driving from up to a kilometer away from the real
vehicle.

6 Conclusion

This paper has proposed a method to expend significant engineering effort in or-
der to convert the task of robot teleoperation into a synthetic form of line-of-sight
remote control. User studies have verified substantial gains in the effectiveness of
the man-machine system. Along the way, we have produced improved solutions
to problems like latency compensation and data compression for which there has
been little hope of significant progress for some time. While many component tech-
nologies have made this possible, the most novel is photogeometric sensing applied
to virtualized reality. Photogeometric sensing has the capacity to produce displays
with both the photorealism of video and the interactivity of a video game. We expect
that as sensors, rendering, guidance, and communications technologies continue to
evolve, such displays and their derivatives will become a standard part of our tool-
box. Technologies like flash lidar with bore-sighted video for ground vehicles will
hopefully come on-line and reduce the engineering effort significantly. Even in the
meantime, we find the effort is worthwhile in those very difficult applications for
which robots and remote control are justified in the first place. Although we have
not developed the idea here in detail, our 3D Video system is basically a projective
texturing engine added to visualize colorized range data sets that were already being
produced for the purposes of autonomy. The mental model used by both operator
and robot is virtually identical in our system and this suggests many more derived
advantages will be possible in contexts where autonomy shares more of the load and
human and robot cooperate more fully.
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Robot Audition: Missing Feature Theory
Approach and Active Audition

Hiroshi G. Okuno, Kazuhiro Nakadai, and Hyun-Don Kim

Hark, hark, I hear! The Tempest, Willian Shakespeare

Abstract. Robot capability of listening to several things at once by its own ears,
that is, robot audition, is important in improving interaction and symbiosis between
humans and robots. The critical issue in robot audition is real-time processing and
robustness against noisy environments with high flexibility to support various kinds
of robots and hardware configurations. This paper presents two important aspects
of robot audition; Missing-Feature-Theory (MFT) approach and active audition.
HARK open-source robot audition incorporates MFT approach to recognize speech
signals that are localized and separated from a mixture of sound captured by 8-
channel microphone array. HARK is ported to four robots, Honda ASIMO, SIG2,
Robovie-R2 and HRP-2, with different microphone configurations and recognizes
three simultaneous utterances with 1.9 sec latency. In binaural hearing, the most fa-
mous problem is a front-back confusion of sound sources. Active binaural robot
audition implemented on SIG2 disambiguates the problem well by rotating its head
with pitting. This active audition improves the localization for the periphery.

1 Robot Audition – Why, What and How?

Speech recognition plays an important role in communication and interaction, and
people with normal hearing capabilities can listen to many kinds of sounds under
various acoustic conditions. Robots should have hearing capability equivalent to
humans to realize human-robot communication, when they are expected to help us
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in a daily environment. In daily environments, there exist a lot of noise sources
including robot’s own motor noises besides a target speech source. Many robot sys-
tems avoided this problem by forcing interaction parcitipants to wear a headset mi-
crophone [7]. For smoother and more natural interactions, a robot should listen to
sounds by its own ears instead of using parcitipants’ headset microphones.

“Robot Audition” research we have proposed [18] aims to realize recognition of
noisy speech such as simultaneous speech by using robot-embedded microphones.
As the robot audition research community is gradually growing, we have organized
sessions on robot audition at IEEE/RSJ IROS 2004-2009 to promote robot audition
research worldwide and special session on robot audition at IEEE-Signal Processing
Society ICASSP-2009 to trigger cooperation between IEEE-RAS and -SPS.

Robot audition is expected to facilitate capabilities similar to those of human. For
example, people can attend one conversation and switch to another even in a noisy
environment. This capability is known as the cocktail party effect. For this purpose,
a robot should separate a speech stream from a mixture of sounds. It may realize
the hearing capability of “Prince Shotoku” that, according to the Japanese legend,
could listen to 10 people’s petitions at once.

Since a robot produces various sounds and should be able to “understand” many
kinds of sounds, auditory scene analysis is the process of simulating useful intel-
ligent behavior, and even required when objects are invisible. While traditionally,
auditory research has been focusing on human speech understanding, understanding
auditory scenes in general is receiving increasing attention. Computational Auditory
Scene Analysis (CASA) studies a general framework of sound processing and under-
standing [30]. Its goal is to understand an arbitrary sound mixture including speech,
non-speech signals, and music in various acoustic environments.

Two key ideas for CASA are 1) the Missing Feature Theory (MFT) approach
[29] and 2) active audition. MFT approach treats each feature as either reliable
or unreliable. Since noise or distortion still carries information, unreliable features
may have some information. In Figure 1a), People can not see a letter “A.” On the
contrary, other information such as occlusion and noise helps the organization of
fragments as is shown in Figure 1b). It is known that in the human auditory system
noises that pad temporal gaps between sound fragments help auditory perception
organization [8]. This is called “perceptual closure”in Gestalt psychology.

a) b)

Fig. 1 Perceptual closure in Gestalt psychology. Noises provide information on preception.
For the left part a), without noises, people cannot recognize the letter easily. Three frag-
ments do not organize. For the right part b), with noises, people can do it easily. Noises help
organization.
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Active audition [18] is the auditory equivalent of acive vision. Similar to active
vision, a robot may move its microphone or body to improve auditory perception.
For binaural hearing, like human with two microphones, it is usually difficult to
determine whether the sound source is ahead of or at the rear. This ambiguity is
referred to as “front-rear” confusion. Suppose that the head moves to right. If the
sound source moves to the same direction, it is behind. Otherwise, it is ahead of. The
problem with active audition is motor noises caused by robot’s own movements.

Three primitive functions for CASA are sound source localization (SSL), sound
stream separation (SSS), and its recognition including automatic speech recognition
(ASR). Although robot audition share CASA’s primitive functions as listed above,
the critical requirements in robot audition are real-time processing and robustness
against diversity of acoustic environments. These requirements are pursued in im-
plementation on robots and their deployment to various acoustical environments.

Several groups have studied robot audition, in particular, SSL and SSS [11, 13,
16, 20, 34, 36, 38, 40]. Since they focused on their own robot platform, their systems
are neither available nor portable for other research groups. Thus, researchers who
want to incorporate robot audition in their robot had to make their own robot au-
dition system from scratch. Valin released SSL and SSS software for robots called
”ManyEars”1 as GPL open-sourced software. This is the first software which can
provide generally-applicable and customizable robot audition systems. ManyEars
convers only SSL and SSS, but ASR is not included. Robot audition software should
support ASR by integrating SSL and SSS, because ASR has a lot of parameters that
affect the performance of a total robot audition system severely.

This paper describes how various modules are integrated into the whole robot
audition system and presents a portable robot audition open-source software called
“HARK”2 (HRI-JP Audition for Robots with Kyoto University).

The rest of the paper is organized as follows. Section 2 describes the HARK open-
source Robot Audition Software. Section 3 evaluates the performance of HARK.
Section 4 describes the active binaural robot audition system. Section 5 presents the
evaluation of active audition to disambiguate the front-rear confusion . Section 6
concludes the paper.

2 Open-Source Robot Audition Software HARK

HARK provides a complete module set for robot audition (see Fig 2). The mod-
ules are categorized into six categories as is shown in Table 1: multi-channel au-
dio input, sound source localization and tracking, sound source separation, acoustic
feature extraction for automatic speech recognition (ASR), automatic missing fea-
ture mask (MFM) generateion, and ASR interface. MFT based ASR (MFT-ASR) is
also provided as a patched source code for a Japanese/English open source ASR,

1 http://ManyEars.sourceforge.net/
2 The word “hark” is an old English that stands for “listen.” HARK of the current verison

0.1.17 is available at the following URL. HARK 1.0.0 will be released this mid-autumn .
http://winnie.kuis.kyoto-u.ac.jp/HARK/
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Fig. 2 An Instance of robot audition system using HARK 1.0.0 with FlowDesigner Interface.
It comprises six main modules from multi-channel sound input to interface to Automatic
Speech Recognition (ASR), which runs as a separate module.

Julius/Julian3. All modules except MFT-ASR run on FlowDesigner4, because these
modules and MFT-ASR do not share audio data. MFT-ASR runs separately through
ASR interface over the network between PCs. HARK also provides a set of support
modules under the category of data conversion and operation.

FlowDesigner is open-sourced and integrates modules by using shared objects,
that is, function-call-based integration. It allows us to create reusable modules and
to connect them together using a standardized mechanism to create a network of
modules, as is shown in Figure 2. The modules are connected dynamically at run
time. A network composed of multiple modules can be used in other networks. This
mechanism makes the whole system easier to maintain since everything is grouped
into smaller functional modules. If a program is created by connecting the modules,
the user can execute the program from the GUI interface or from a shell terminal.

When two modules have matching interfaces, they are able to be connected re-
gardless of their internal processes. One-to-many and many-to-many connections
are also possible. A module is coded in programming language C++ and imple-
mented as an inherited class of the fundamental module. Dynamic linking at run
time is realized as a shared object in the case of Linux. Since data communication
is done by using a pointer, it is much faster than socket communication. Therefore,
FlowDesigner maintains a well-balanced trade-off between independence and pro-
cessing speed. We have extended FlowDesigner to be more informable and robust
against erros to use it as a programming environment for HARK.

In the remaining of this section, we explain main categories. Since a lot of au-
dio signal processing methods and technologies have been developed for particu-
lar conditions under particular assumptions, HARK is designed to provide some of

3 http://julius.sourceforge.jp
4 http://flowdesigner.sourceforge.net/
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Table 1 Modules provided by HARK 1.0.0
HARK 1.0.0 has six categories of FlowDesigner modules, one
non-FlowDesigner module and one miscellaneous modules.

Category Name Module Name

Multi-channel AudioStreamFromMic
Audio I/O AudioStreamFromWave

SaveRawPCM
Sound Source LocalizeMUSIC
Localization ConstantLocalization
and Tracking SourceTracker

DisplayLocalization
SaveSourceLocation
LoadSourceLocation
SourceIntervalExtender

Sound Source DSBeamformer
Separation GSS

Postfilter
BGNEstimator

Acoustic Feature MelFilterBank
Extraction MFCCExtraction

MSLSExtraction
SpectralMeanNormalization
Delta
FeatureRemover
PreEmphasis
SaveFeatures

Automatic Missing MFMGeneration
Feature Mask DeltaMask
Generation DeltaPowerMask
ASR Interface SpeechRecognitionClient

SpeechRecognitionSMNClient

MFT-ASR Multiband Julius/Julian
(non-FlowDesigner module)

Data Conversion MultiFFT
and Operation Synthesize

WhiteNoiseAdder
ChannelSelector
SourceSelectorByDirection
SourceSelectorByID
MatrixToMap
PowerCalcForMap
PowerCalcForMatrix

Fig. 3 SIG2 has 8 micro-
phones on its body.

Fig. 4 Robovie R2 has 8
mics around its head.

Microphones

Fig. 5 ASIMO has two
pair of 4 mics on each
side.

Fig. 6 HRP-2 has 8
microphones around the
face.
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promising methods for robot audition. Please note that there is no panacea for robot
audition and the tradeoff between generality and performance is critical.

2.1 Microphone Configurations and Multi-channel Audio Input

The configurations of eight microphones for SIG2, Robovie R2, ASIMO and HRP-2
are shown in Figure 3–6, respectively.

HARK has two kinds of input methods, a microphone array and a file. The Au-
dioStreamFromWave module reads audio signals from a file of WAVE format
(RIFF waveform Audio Format). The AudioStreamFromMic module captures au-
dio signals using a sound input device. It supports three types of devices: ALSA
(Advanced Linux Sound Architecture) based sound cards5, RASP series6 and TD-
BD-8CSUSB7. ALSA is an open source sound I/O driver for multi-channel sound
cards such as RME Hammerfall. RASP series are multi-channel audio signal pro-
cessing devices with CPUs produced by JEOL System Technology Co., Ltd. TD-
BD-8CSUSB is an 8ch audio input systems with USB interface produced by Tokyo
Electron Device Limited. SaveRawPCM saves audio data as a raw PCM file.

2.2 Sound Source Localization (SSL) and Tracking

HARK provides two kinds of SSL; MUSIC (MUltiple Signal Classification) [2] and
fixed direction. MUSIC, an adaptive beamformer, localizes multiple sound sources
robustly in real environments. The LocalizeMUSIC module calculates directions
of arrival of sound sources from a multi-channel audio signal input, and outputs the
number of sound sources and their directions by each time frame. ConstantLocal-
ization outputs fixed sound directions without localization. It is mainly used either
for performance evaluation and debugging or for interfacing visual localization.

SourceTracker tracks sound sources from the localization results, and it outputs
sound source directions with source IDs. When the current direction and the previ-
ous direction derive from the same sound source, they are given the same source ID.
DisplayLocalization is a viewer module for LocalizeMUSIC, ConstantLocaliza-
tion, and SourceTracker. SaveSourceLocation stores localization results to a text
file in every time frame. LoadSourceLocation loads source location information
from the text file. SourceIntervalExtender extends tracking results forward to deal
with start-point-misdetection of a sound source.

2.3 Sound Source Separation (SSS)

HARK provides two kinds of SSS, delay-and-sum beamformer and Geometric
Source Separation (GSS). The DSBeamformer module separates sound sources by

5 http://www.alsa-project.org/
6 http://jeol-st.com/mt/2007/04/rasp2.html (in Japanese)
7 http://www.inrevium.jp/eng/news.html
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using sound source tracking results and a mixture of sound sources in the frequency
domain. This uses a simple delay-and-sum beamformer. Thus, it is easy to con-
trol beamformer parameters, and it shows high robustness for environmental noises.
GSS is a more sophisticated sound source separation module using a Geometric
Source Separation (GSS) algorithm. GSS is a kind of hybrid algorithm of Blind
Source Separation (BSS) [28] and beamforming. It relaxes BSS’s limitations such
as permutation and scaling problems by introducing geometric constraints obtained
from the locations of microphones and sound sources.

Our implementation has two unique characteristics for robot audition; suppress-
ing robot’s own noises and separation of moving talkers. To deal with robot’s noises
such as fans, we specify a fixed noise direction in GSS. Then, GSS always re-
moves the corresponding sound source as a robot’s noise in spite of sound source
localization results. In separating of moving talkers, a separation matrix in GSS
should be initialized whenever the location of talker is changed, because the sepa-
ration matrix is generated based on a geometrical relationship between a talker and
each microphone. This kind of initialization sometimes causes slow convergence of
the separation matrix. Thus, criteria and timing of separation matrix initialization
can be specified at any time in our implementation. Currently, we are trying to add
two more new features to GSS, that is, adaptive stepsize control that provides faster
convergence of the separation matrix [22] and Optima Controlled Recursive Aver-
age [23] that controls window size adaptively to improve separation performance.
We are testing them to confirm some promising results [24].

Postfilter enhances the output of GSS by using a spectral filter based on an op-
timal noise estimator described in [10]. We extend the original noise estimator so
as to estimate both stationary and non-stationary noise by using multi-channel in-
formation [39]. Most post-filters address the reduction of a certain type of noise,
that is, stationary background noise. Another advantage of Postfilter is parameter
tuning. Since Postfilter consists of several signal processing techniques, there are a
large number of parameters. Such parameters are mutually-dependent, and the best
parameter setting depends on the surrounding acoustic environment and a situation.
In HARK, most parameters are able to be controlled from FlowDesinger GUI/CUI.
The best parameter setting is, then, obtained by using a parameter search system
based on genetic algorithm.

The reason why we have separated GSS and post-filter is based on our experience
with ManyEars’ SeparGSS that unifies GSS and a multi-channel post-filter as a
whole. We extend orignal SeparGSS by changing I/O IF to be able to use as a
HARK module. However, the problem with SeparGSS is that the number of its
controllable parameters is too small, when we encounter different acoustic situations
caused by robot own noises, simultaneous speech recognition and moving talkers.
In fact, a combination of GSS and Postfilter provides more flexible solution and
better performance for a wide variety of acoustic situations.

BGNEstimator estimates the averaged background noise spectrum which is
used for a noise reduction technique called Minima Controlled Recursive Average
(MCRA) included in Postfilter.
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2.4 Acoustic Feature Extraction for ASR

Acoustic feature extraction is an advantage of HARK because it is quite flexible
to find the best acoustic feature. Everything can be done in a GUI environment al-
though famous packages having feature extraction functions such as HTK8 require
text file editing. Most conventional ASR systems use Mel-Frequency Cepstral Co-
efficient (MFCC) as an acoustic feature. MelFilterBank consumes an input of a
spectrum, analyzes it using Mel-frequency filter banks, and produces an output of
a Mel-scale spectrum. MFCCExtraction extracts the MFCC acoustic feature from
the Mel-scal spectrum.

HARK provides Mel-Scale Log Spectrum (MSLS) [26] as a primary acoustic fea-
ture instead of MFCC. Usually noises and distortions are concentrated in some ar-
eas in spectro-temporal space. MSLS can keep such locality, while MFCC spreads
such contamination to all coefficients. MSLSExtraction consumes an input of the
Mel-filter spectrum, performs liftering, and produces an output of MSLS features.
SpectralMeanNormalization subtracts the averaged spectrum of the previous 5-
sec utterance from the current utterance. It works well in real-time ASR systems to
improve noise robustness of MSLS features. Finally, Delta consumes an output of
the MSLS features, calculates the linear regression of each spectral coefficient, and
produces an output of the MSLS features with delta features. FeatureRemover re-
moves any coefficient (e.g. power) in an acoustic feature. PreEmphasis provides a
low-pass filter to emphasize speech characteristics in the time or frequency domain
according to user’s preference. SaveFeatures stores a sequence of MSLS features
into a file per utterance.

2.5 Automatic Missing Feature Mask Generation

HARK exploits the MFT approach for noise-robust ASR [5, 9]. MFT uses only re-
liable acoustic features in speech recognition and masks out unreliable parts caused
by interfering sounds and preprocessing. MFT thus provides smooth integration be-
tween preprocessing and ASR. The mask used in MFT is called missing feature
mask (MFM) represented as a spectro-temporal map. Three modules are prepared to
generate MFM without using prior information.

The inputs of MFMGeneration are Mel-filtered spectra of the separated sound,
the post-filtered sound, and the background noise estimated by the BGNEstimator.
It estimates a leak noise by using the fact that the post-filtered sound is similar to
clean speech while the separated sound includes a background and a leak noise.
When the estimated leak noise is lower than a specified threshold, such a frequency
bin is regarded as reliable, otherwise it is unreliable. MFMGeneration thus pro-
duces MFM as a binary mask. DeltaMask consumes an input of MFMs, and pro-
duces an output of delta MFMs. DeltaPowerMask generates a MFM for a delta
power coefficient if an acoustic feature includes the coefficient. A set of examples
of MFM are shown in Figure 7.

8 http://htk.eng.cam.ac.uk/
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Fig. 7 Spectrograms and Missing Feature masks for Separated Sounds. HARK separates a
mixture of three simultaneous utterances in Japanese. A pair of left and right columns depict
the pectrogram and missing feature mask of each separated sound, respectively. The yellow
and black parts of a mask indicates that the feature is reliable and unreliable, respectively.
Since the leftmost talker speaks the longest, some crosstalks can be observed in the spectro-
grams of the center and rightmost talkers, but most of them are masked out by missing feature
masks.

2.6 ASR Interface for MFT-ASR with White Noise Addition

SpeechRecognitionClient consumes inputs of acoustic features, MFMs and sound
source directions. It sends them to Multiband Julius/Julian via TCP/IP com-
munication. SpeechRecognitionSMNClient has almost the same function as
SpeechRecognitionClient. The difference is that it supports an offline version of
spectral mean normalization. SpeechRecognitionSMNClient uses a whole input
signal to estimate the averaged spectrum, while SpectralMeanNormalization uses
the previous 5-sec utterance. Thus, a robot audition system with SpectralMean-
Normalization is used in offline systems.

Missing Feature Theory (MFT) approaches use MFM of reliability to improve
ASR. The estimation process of output probability in the decoder is modified in
MFT-ASR. We adopted a classifier-modification method with marginalization, be-
cause other approaches such as cluster-based reconstruction of feature-vector impu-
tation is not robust against mel-frequency based features [29]. Unreliable acoustic
features caused by errors in preprocessing are masked using MFMs, and only reli-
able ones are used for a likelihood calculation in the ASR decoder. As such an MFT-
ASR, we use “Multi-band Julis/Julian” [26], an extension of original Julius/Julian
that supports various types of HMMs such as shared-state triphones and tied-mixture
models. Both statistical language model and network grammar are supported. In de-
coding, an ordered word bi-gram is used in the first pass, and a reverse ordered word
tri-gram in the second pass. It works as a standalone or client-server application. To
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run as a server, we modified the system to be able to communicate acoustic features
and MFM via a network.

HARK exploits two ways of perceptual closure; MFT-ASR and white noise addi-
tion. By the latter, HARK tries to recover distortion in any frequency band by adding
a white noise, a kind of broad-band noise, to separated speech signals. This idea is
motivated by the psychological evidence that noise may help human perception,
which is known as auditory induction. The WhiteNoiseAdder of Data Conversion
and Operation Category adds white noise basically in order to relax distortion prob-
lems caused by the Postfilter.

3 Evaluation of HARK

We evaluated the robot audition system in terms of the following three points; (1)
recognition performance of simultaneous speech, (2) improvement of ASR by local-
ization, and (3) processing speed. We also presents two applications of the HARK.

3.1 Recognition of Simultaneous Speech Signals

To evaluate how MFT and white noise addition improve the performance of ASR,
we conducted isolated word recognition of three simultaneous speech. In this ex-
periment, Humanoid SIG2 with an 8-ch microphone array was used in a 4 m × 5 m
room. Its reverberation time (RT20) was 0.3–0.4 seconds.

Three simultaneous speech for test data were recorded with the 8-ch microphone
array of SIG2 by using three loudspeakers (Genelec 1029A). The distance between
each loudspeaker and the center of the robot was 2 m. One loudspeaker was fixed to
the front (center) direction of the robot. The locations of left and right loudspeakers
from the center loudspeaker varied from ±10◦ to ±90◦ at the intervals of 10◦. ATR
phonemically-balanced word-sets were used as a speech dataset. A female (f101),
a male (m101) and another male (m102) speech sources were used for the left,
center and right loudspeakers, respectively. Three words for simultaneous speech
were selected at random. In this recording, the power of robot was turned off.

The recognition performance of three simultaneous talkers is evaluated with the
following six conditions:

(1) The raw input captured by the left-front microphone was recognized with the
clean acoustic model trained with 10 male and 12 female ATR phonemically-
balanced word-sets excluding the three word-sets (f101, m101, and m102).

(2) The sounds separated by SSS were recognized with the clean acoustic model.
(3) The sounds separated by SSS were recognized with MFM generated automati-

cally and the clean acoustic model.
(4) The sounds separated by SSS were recognized with automatically generated

MFM and the WNA acoustic model trained with the same ATR wordsets, and
the clean speech to which white noise was added by 40 dB of peak power.
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(1) 1 mic selection, clean, MFT off

(2) GSS + Post-filter, clean, MFT off

(3) GSS + Post-filter, clean, MFT on (automatic MFM)

(4) GSS + Post-filter, white noise, MFT on (automatic MFM)

(5) GSS + Post-filter, multi-condition, MFT on (automatic MFM)

(6) GSS + Post-filter, clean, MFT on (a priori mask)
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(a) The left talker
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(b) The center talker
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(c) The right talker

Fig. 8 Word correct rates of three simultaneous talkers with our system

(5) The sounds separated by SSS were recognized with automatically generated
MFM and the MCT acoustic model trained with the same ATR word-sets and
separated speech datasets.

(6) The sounds separated by SSS were recognized with a priori MFM generated
manually and the clean acoustic model . Since this mask is ideal, its result may
indicate the potential upper limit of HARK.

Each acoustic models was trained as 3-state and 4-mixture triphone HMM, because
4-mixture HMM had the best performance among 1, 2, 4, 8, and 16-mixture HMMs.

The results were summarized in Figure 8. MFT-ASR with Automatic MFM Gen-
eration outperformed the normal ASR. The MCT acoustic model was the best for
MFT-ASR, but the WNA acoustic model performed almost the same. Since the
WNA acoustic model does not require prior training, it is the most appropriate one
for robot audition. The performance at the interval of 10◦ was poor in particular
for the center talker, because any current sound source separation methods fails in
separating such close three talkers. The fact that A priori mask showed quite a high
performance may suggest possibilities to improve automatic MFM generation.

3.2 Sound Source Localization Effects and Processing Speed

This section evaluates how the quality of sound source localization methods includ-
ing manually given localization, steered Beamformer and MUSIC affects the per-
formance of ASR. SIG2 used steered BF. Since the performance MUSIC depends
on the number of microphones on the same plane, we used Honda ASIMO shown
in Figure 5, which was installed in a 7 m × 4 m room. Its three walls were covered
with sound absorbing materials, while the other wall was made of glass which makes
strong echoes. The reverberation time (RT20) of the room is about 0.2 seconds. We
used the condition (4), and used three methods of sound source localization with
clean and WNA acoustic models.

The results of word correct rates were summarized in Table 2. With the clean
acoustic model, MUSIC outperformed steered BF, while with the WNA acous-
tic mode, both the performances were comparable. In case of given localization,
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Table 2 Word correct rate of the center talker (in %) according to each localization method

Acoustic model White noise addition Clean model
direction \ Interval 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

manually given 90.0 88.5 91.0 85.0 84.5 87.0
steered BF 82.3 90.5 89.0 65.5 70.6 72.4
MUSIC 86.0 83.3 86.7 57.0 74.0 64.5

improvement by white noise addition training was small. On the other hand, train-
ing with white noise addition improved word correct rates greatly for both steered
beamformer and MUSIC. We think that the ambiguity in sound source localization
caused voice activity detection to be more ambiguous, which degraded recognition
performance with the clean acoustic model. On the other hand, white noise addition
to separated sounds with the WNA acoustic model reduced such degradation.

The processing time when HARK separated and recognized speech signals of
800 seconds on a Pentium 4 2.4 GHz CPU is 499 second consisting of 369 sec for
FlowDesigner and 130 sec for MFT-ASR. The output delay is 0.446 second. As a
whole, our robot audition system ran in real time.

3.3 Listen to Three Simultaneous Talkers

One application is a referee for a rock-paper-scissors sound game that includes a
recognition task of two or three simultaneous utterances. ASIMO was located at the
center of the room, and three talkers stood 1.5 m away from ASIMO at 30◦ intervals
(Figure 9). A speech dialog system specialized for this task was connected with
the HARK. ASIMO judged who won the game by using only speech information,
i.e., without using visual information. Because they said rock, paper, or scissors
simultaneously in an environment where robot noises exist, the SNR input sound
was less than -3 dB. All of the three utterances had to be recognized successfully to

a) U2:Let’s play an RPS game. b) U1, U2: paper, U3: scissors c) A: U3 won.

Fig. 9 Snapshots of rock-paper-scissors (RPS) game (A: ASIMO, U1:left user, U2:center
user, U3: right user). ASIMO plays a referee. Three men play a RPS game by uttering one of
rock, paper, or scissors. Then ASIMO separates and recognizes each utterance to determine
who wins or draw.
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complete the task. The completing rate of referee task is around 60% and 80% in
the cases of three and two talkers, respectively.

Another application is that Robovie accepts simultaneous meal orders that three
actual human talkers place (Figure 10). The HARK recognizes each meal order
and confirms their orders one by one and tells the total amount of the orders. The
FlowDesigner implementation reduces the response time from 8.0 sec to 1.9 sec. If
the same input is given by an audio file, the response time is about 0.4 sec.

a) Robovie: May I take your orders?b) Each one places an order. c) Robovie rephrases each order.

Fig. 10 Snapshots of Meal Orders (Roboview and three talkers). Robovie asks each meal
order. Three men placed each meal order at once. Robovie separates and recognizes each
utterance for 1.9 msec. Then it rephrases each meal order and tell their total price.

4 Active Binaural Robot Audition

Human and most animals have only a pair of ears, that is, binaual hearing, but they
can do functions of CASA. We attribute their competence of binaural listening and
hearing to their body, in particular, active audition. For example, if the head with
ears moves, the number of microphones virtually increases. If the head approaches
to a sound source, the resolution of SSL may improve. Nakadai et al. proposed active
audition in 2000 [18] and a small number of research groups are engaged in active
audition research [4, 14, 19, 27].

Another merit of binaural audition is the availability of stereo input devices.
Stereo AD devices are inexpensive, while multi-channel AD devices are very ex-
pensive. In addition, every PC has a stereo input device as a stardard equipment.
Thus, portable open-source binaural robot audition is expected to open a new mar-
ket of either robot audition or auditory capability of electronic appliances.

Motional theories have been investigated for human’s active audition [6]. Ac-
cording to the thorough investigation undertaken by Thurlow, Mangels, and Runge
(1967), rotating is the largest movements among three main ones, rotating (yawing),
tipping (pitching) and pivoting (rolling) movements when the subjects are blind-
folded in an anechoic chamber. The most frequent combination of movements in-
volves rotating and tipping movements.

People usually rotate their heads at 42◦ ±20.4◦ and the most frequent combina-
tion of classes of movements involves rotating and tipping movements (0.5∼1 kHz)
so that they determine the accurate direction of sound sources. Consequently, we
designed our system that can distinguish between sounds from the front and from
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Fig. 11 System overview of localizing sounds in a horizontal space. The robot detects speech
signals classified by Gaussian mixture model (GMM). Then Voice activity detection (VAD)
descriminates speech signals from noises to calculates the average of sound localization
events. Now the robot rotates its head by 10◦ in the direction of the detected signals. Af-
ter rotation, it obtains the average of sound localization events. Finally, it repeats the above
procedures to get the right direction. Another head movement strategy is to do tipping by 10◦

before rotating.

the rear by simply rotating its head at least 10◦. The reason that it can distinguish
front from rear sources by rotating 10◦ is that the error margin for a single moving
sound slower than 1 rad/sec is about 10◦. Figure 11 depicts the process of localizing
sounds over the entire azimuth range, or in a horizontal plane, for a humanoid robot.

First, we adopt cross-power spectrum phase (CSP) analysis [12, 25] for SSL, be-
cause it can calculate the Time Delay of Arrival (TDOA) between two microphones
without impulse response data. In addition, to cope with the ambiguity and sparse-
ness of acquired information picked up by the two microphones, we applied an
expectation-maximization (EM) algorithm [17] to localizing several sound sources
and reduce localization errors. The assumption for this SSL is that there exists at
most one predominant frequency element at each time frame.
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After classifying speech signals according to their TD0A, motion planning is per-
formed. Since motion is executed during the periods of speech signals, we develop
voice activity detection (VAD) [15] based on Gaussian mixture model (GMM).
Gaussian mixture model (GMM) is a powerful statistical method widely used for
speech classification [3, 32]. We applied the 0 to 12th coefficients (total 13 values)
and the δ1 to δ12th coefficients (total 12 values) of Mel frequency cepstral coeffi-
cients (MFCCs) [32].

Finally, robots need to improve their cognition abilities (active audition) con-
cerning changing location of sounds while they are in motion. For example, robots
should be able to distinguish whether sound signals are coming from the front or
the rear if they rotate or move only two microphones placed in the robot’s head or
body. To solve front-rear confusion in binaural sound source localization, we detect
the change in sound localization by slightly rotating and/or tipping the two micro-
phones. Since such motions have the effect of increasing the number of microphones
virtually, a binaural audition system can estimate sound localization over the entire
azimuth range.

We also develop another motion strategy by rotating and tipping instead of rotat-
ing only according to the observation of human perception mentioned above.

5 Evaluation of Binaural Active Robot Audition

Figure 12a) shows the results of success rate of localization by active audition spec-
ified by Figure 11. The sound source repeats a 0.75 sec-utterance of “sig” for 20
times. The loudspeaker is at the distance of 1.5 m from the SIG2 humanoid. Utter-
ances are replayed at 85 dB, while the background noise is about 55 dB. The speed
of head movement is 2.5 rd/sec.

In the upper left part of Figure 12a), the success rate for sound localization in
the front area is 96.5%, while the one in the rear area is 65.6% due to the sound

a) Rotating only b)Rotating with Tipping

Fig. 12 Results of localizing sounds in a horizontal space. The success rate of sound source
localization by combined head movement of rotating and tipping outperforms thaat of rotating
only.
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diffraction causedd by the artificial auricle used in SIG2 (see the left bottom of
Figure 12a)). To avoid this degrading performance in the rear area, active source
localization by combining rotating with tipping is developed. This movement is
motivated by how blind people localize the sound. Their most frequent combination
of classes of movements involves rotating and tipping movements. The success rate
for sound localization by combining rotating with tipping movement improves about
10 points at only 70◦ and 80◦ in the rear area as shown in Figure 12b).

6 Conclusion

This paper described the design and application of HARK open-source robot audi-
tion software. We are currently at the final testing phase of HARK 1.0.0. Some of
new features under development include semi-blind source separation for barge-in
interactions, that is, the user can speak at any time by interrupting system’s utter-
ances, and extension of SSL and SSS for moving talkers. The HARK is also applied
to musical robots that can listen to music by their own ears. The real-time beat
tracking will be incorporated into the HARK as a FlowDesigner module.

Binaural active robot audition is now studied under the Strategic Japanese-French
Cooperative Program on “Information and Communcations Technology Including
Computer Sciences” from this August to March, 2012. The project will investigate
binaural active robot audition from deives, software to cognitve science, physiology
and brain sciences.
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Haptography: Capturing and Recreating the
Rich Feel of Real Surfaces

Katherine J. Kuchenbecker, Joseph Romano, and William McMahan

Abstract. Haptic interfaces, which allow a user to touch virtual and remote envi-
ronments through a hand-held tool, have opened up exciting new possibilities for
applications such as computer-aided design and robot-assisted surgery. Unfortu-
nately, the haptic renderings produced by these systems seldom feel like authen-
tic re-creations of the richly varied surfaces one encounters in the real world. We
have thus envisioned the new approach of haptography, or haptic photography, in
which an individual quickly records a physical interaction with a real surface and
then recreates that experience for a user at a different time and/or place. This pa-
per presents an overview of the goals and methods of haptography, emphasizing the
importance of accurately capturing and recreating the high frequency accelerations
that occur during tool-mediated interactions. In the capturing domain, we introduce
a new texture modeling and synthesis method based on linear prediction applied to
acceleration signals recorded from real tool interactions. For recreating, we show a
new haptography handle prototype that enables the user of a Phantom Omni to feel
fine surface features and textures.

1 Introduction

When you touch objects in your surroundings, you feel a rich array of haptic cues
that reveal each object’s geometry, material, and surface properties. For example,
the vibrations and forces experienced by your hand as you stroke a piece of fabric
or write on a sheet of corrugated cardboard are easily identifiable and distinct from
those generated by gripping a foam ball or tapping on a hollow bronze sculpture.
Humans excel at eliciting and interpreting haptic feedback during such interactions,
naturally leveraging this wealth of information to guide their actions in the physical
world (Klatzky and Lederman, 2003).

Motivated by the richness and usefulness of natural haptic feedback, we have
envisioned the new approach of haptography. Like photography in the visual
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domain, haptography enables an individual to quickly record the feel of an inter-
esting object and reproduce it at another time and/or place for someone to inter-
act with as though it was real. The idea for haptography was first articulated by
Kuchenbecker in 2008, and this paper provides an overview of its goals and meth-
ods. Haptographic technology involves highly sensorized handheld tools, haptic
signal processing for model synthesis, and uniquely actuated haptic interfaces, all
focused on capturing and recreating the rich feel of real surfaces.

Once these capabilities are available, a wide variety of practical applications will
benefit from haptography. For example, it will provide a fast, simple way to store
the current feel of a physical object (such as a unique marble statue or a dental pa-
tient’s tooth), compare it with a database of other recordings, and analyze surface
changes over time. Haptographs will also allow a wide range of people to touch
realistic virtual copies of objects that are not directly accessible, such as archaeo-
logical artifacts and merchandise being sold online. Furthermore, haptography has
the potential to significantly increase the realism of medical simulators and video
games by incorporating object models built from quantitative contact data captured
during real interactions. Beyond virtual environments, haptography can have a ben-
eficial impact on teleoperation, where the operator uses a haptic interface to control
the movement of a remote robot and wants to feel the objects being manipulated as
though they were locally present. Finally, the haptographic focus on recording, an-
alyzing, and recreating everything felt by the human hand will probably yield new
insights on the sense of touch, which may help robotic hands achieve human-like
dexterity and sensitivity in interactions with real physical objects.

Enabling the art and science of haptography requires us to answer two main
questions: How can we characterize and mathematically model the feel of real
surfaces? and How can we best duplicate the feel of a real surface with a haptic
interface? Building on knowledge of the human haptic sensory system, haptogra-
phy research uses measurement-based mathematical modeling to derive perceptu-
ally relevant haptic surface models and dynamically robust haptic display methods.
The following sections of this paper explain the envisioned system paradigm, our
initial work on capturing the feel of surfaces, and our continuing work on recreating
such surfaces realistically.

2 Overview of Haptography

Despite its ubiquitous importance in human life, we currently lack a formal method
for analyzing and understanding the feel of touch-based interaction with physical
objects. Furthermore, fundamental surface modeling and device design choices pre-
vent the vast majority of existing haptic interfaces from compellingly duplicating
the feel of real objects.

Target Interactions. Direct-touch haptography would enable an individual to cap-
ture natural interactions between their fingertip and an interesting surface and then
recreate that exact feel with a programmable tactile interface that can be freely
explored. While fascinating and useful, there are currently many technological
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Table 1 The user experience of haptography can be understood via an analogy to
photography.

Photography Haptography

digital SLR camera highly sensorized handheld tool
interchangeable lenses interchangeable tool tips

framing a shot and focusing the camera exploring an object’s surface
planar distribution of light intensities stream of positions, forces, and accelerations

optics and the human eye haptics and the human hand
LCD monitor uniquely actuated handheld tool

viewing the digital image freely exploring the digital model
spatial resolution and focus high frequency accelerations

challenges that preclude the realization of such an ambitious objective; it will
take many years for today’s most promising noninvasive tactile sensors, e.g.,
(Sun et al, 2007), and high resolution tactile displays, e.g., (Koo et al, 2008), to
mature to the level needed for such an approach. Thus, we focus our research on
tool-mediated contact, where the user touches the target surface through an inter-
mediate tool such as a metal probe, a ball-point pen, or a surgical scalpel.

Restricting haptography to tool-mediated interactions is not as limiting as it might
initially seem. First, many everyday activities are conducted with a tool in hand,
rather than with bare fingertips; tools extend the hand’s capabilities for a specific
task and protect it from damage. Second, humans are surprisingly good at discerning
haptic surface properties such as stiffness and texture through an intermediate tool
(Klatzky and Lederman, 2008; Yoshioka and Zhou, 2009). This acuity stems partly
from the human capability for distal attribution, in which a simple hand-held tool
comes to feel like an extension of one’s own body (Loomis, 1992).

Haptographic Process. Haptography intentionally parallels modern photography,
but the interactive nature of touch sets the two apart in several ways. To help clarify
the differences, Table 1 lists analogous elements for the two domains, and Fig.1
depicts an overview of the haptic capturing and recreating processes.

A haptographer begins by identifying an object with a unique or important feel; a
museum curator might select an interesting historical relic, and a doctor might target

hoak block.jhg

Capturing the Feel
of a Real Surface with

a Sensorized Tool

Recreating the Feel
of the Real Surface with

an Active Stylus
Haptograph

Fig. 1 The envisioned approach of haptography will enable individuals to quickly capture,
analyze, and recreate the exquisite feel of any surface they encounter in the real world.
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an in vivo sample of tissue or bone. Working in his or her standard surroundings, the
haptographer attaches a chosen tool tip to a highly sensorized hand-held instrument.
For real-time haptography in teleoperation, the slave robot’s tool is instrumented in
the same way as a hand-held haptography tool. The operator then uses the tool to
explore the object’s surface via natural motions. The system collects multiple data
streams throughout this interaction—all of the touch-based sensations that can be
felt by a human hand holding a tool—including quantities such as the translation and
rotation of the stylus and the object, the forces and torques applied to the object’s
surface, and the three-dimensional high frequency accelerations of the tool tip.

In teleoperation, the haptic interface held by the user seeks to recreate the mea-
sured sensations as they occur, and the challenge lies in perfecting this connec-
tion. In non-real-time applications, the haptographic processor needs to distill the
recorded data into a general surface model so that future users can explore the vir-
tual object in a natural way. Because the global shape of an object can be captured
efficiently with optical sensors or reconstructed via computer-aided design (CAD)
tools, haptography focuses on capturing surface attributes that are not readily appar-
ent by sight, such as friction, texture, stiffness, and stickiness. Section 3 describes
this identification problem in more detail, along with our preliminary work on tex-
ture modeling. We plan to store haptographs of different surface-tool interactions
in a public online database so that virtual environment designers can apply hapto-
graphic surface swatches to chosen areas of synthetic objects.

An acquired haptographic model can be explored via any kinesthetic haptic inter-
face, but the flexibility of the interaction and the quality of the haptic response will
greatly depend on the mechanical, electrical, and computational design of the cho-
sen system. Commercially available haptic devices generally struggle to duplicate
the full feel of real surfaces. Thus, the second major aim of haptography research
is to discover and refine high fidelity methods for rendering haptographs. As de-
scribed in Section 4, tool-mediated haptography centers on the use of a dedicated
high frequency vibration actuator, and we have tested this approach through creation
of a prototype system. We want any individual to be able to use this “haptography
handle” to explore 3D virtual surfaces and feel rich, natural sensations that are in-
distinguishable from those one would experience when touching the original item.

The Key to Haptographic Realism. Researchers studying virtual and remote en-
vironments have long sought to replicate the feel of real objects with a haptic in-
terface. Arguably, the most important advance toward this goal came in 1994 when
Massie and Salisbury presented the Phantom haptic interface. The design of this de-
vice evolved from three essential criteria, namely that “free space must feel free,”
“solid virtual objects must feel stiff,” and “virtual constraints must not be easily
saturated” (Massie and Salisbury, 1994, p. 296). Prioritization of these goals and
clever mechanical design yielded a lightweight, easily backdrivable, three-degree-
of-freedom robot arm actuated via base-mounted brushed DC motors equipped with
high resolution optical encoders and smooth capstan cable drives. This invention in-
spired a wave of similar impedance-type haptic interfaces, many of which are now
widely available as commercial products. Such systems are typically programmed to
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Fig. 2 Sample data from interactions with two real materials through a stylus instrumented
with an accelerometer. One can quickly observe that the plastic is stiffer and smoother than
the foam.

generate interaction forces via one-sided linear springs: when the measured device
tip position intersects a region occupied by a virtual or remote object, the device
outputs a restoring force that is proportional to the penetration vector.

While haptic interfaces designed and programmed in this way do succeed at con-
veying the global shape of virtual and remote items, the surfaces of these objects
typically have only a weak haptic resemblance to real objects. Instead, haptically
rendered shapes tend to feel soft and undefined, strangely slippery or peculiarly
active and vibratory, and largely devoid of the coherent dynamic cues that one asso-
ciates with natural surface properties. In one study targeted at this problem, human
subjects used a Phantom to blindly tap on the stiffest possible spring-based vir-
tual surface, among other real and virtual samples (Kuchenbecker et al, 2006). The
spring-based surface received a realism rating of two on a scale from one to seven,
where a seven denotes the feel of a real wooden block. Clearly something important
is missing from these traditionally rendered haptic surfaces: we believe this defi-
ciency stems from a reliance on haptic object models and interface hardware that
prioritize low-frequency behavior over the naturalistic high frequency accelera-
tions that give real objects their distinctive feel.

Human haptic capabilities are inherently asymmetric, allowing motion at
just 8 to 10 Hz (Loomis and Lederman, 1986) and vibration perception up to
1000 Hz (Bell et al, 1994). As illustrated in Fig. 2, tool-mediated interactions with
hard and textured objects create vibrations that strongly excite the Pacinian corpus-
cle mechanoreceptors in the glabrous skin of the human hand (Bell et al, 1994). It is
clear that high frequency accelerations are a rich source of feedback during tool use,
encoding information about surface material, surface texture, tool design, downward
force, and tool velocity; a user naturally expects a haptic virtual environment to pro-
vide these same cues, but they are generally absent. When appropriate acceleration
transients were added to the spring-based virtual surfaces in (Kuchenbecker et al,
2006), subjects responded with realism ratings of five out of seven, a significant im-
provement. Haptography is thus founded on the belief that only a haptic interface
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that authentically recreates these salient accelerations will be able to fool a human
into believing that a virtual object is real, or a remote object is present.

3 Capturing the Feel of Real Surfaces

The first aim of haptography is to enable an individual to quickly and easily capture
the feel of a real surface through a hand-held or teleoperated tool. This process
yields a stream of interaction data that is distilled into a mathematical model of the
surface’s salient haptic properties for further analysis and subsequent re-creation.

Prior Work. Haptography takes a nontraditional approach to modeling object sur-
faces. The most carefully controlled attribute of a typical haptic virtual object is its
global shape (Salisbury et al, 1995, 2004). As in computer graphics, these geometric
models are usually composed of a polygonal mesh that defines the surface of the ob-
ject. Contact with this mesh is then rendered as a spring force that seeks to push the
user’s virtual tool perpendicularly out of the surface. The high computational load
incurred by fine meshes is avoided by blending the orientation of larger adjacent
facets so that the normal force varies smoothly across the surface. The behavior of
the coupling impedance can be modulated somewhat to change the feel of the sur-
face, although nonidealities (e.g., position sensor quantization) cause instability at
high stiffness and damping values. The additional surface properties of texture and
friction are included in such models as a parametric relationship between the vir-
tual tool’s motion (position and velocity) and an additional force that is added to
the spring response. For example, (Salisbury et al, 1995) use a sum of cosines for
synthetic texture, (Minsky and Lederman, 1996) simulate roughness with a variety
of lateral-force look-up tables based on surface location, and (Basdogan et al, 1997)
create height-field textures inspired by the “bump map” approach from computer
graphics. Numerous other hand-tuned surface representations have been developed,
but most struggle to capture the rich variety of sensations caused by contact with
real objects because they are not based on physical principles.

Rather than relying on hand-tuned parametric relationships, haptography derives
virtual object models from real-world data. The idea of using a stream of physical
measurements to create a haptic virtual environment is not new, but the central in-
volvement of the human haptographer and the focus on high frequency accelerations
are significant departures from previous work. The first discussion of a measurement-
based modeling approach occurs in MacLean’s 1996 paper on the “Haptic Camera,”
a fully automated one-degree-of-freedom probe that interacts with a mechanical sys-
tem while recording position and force data to enable automatic fitting of a piecewise
linear dynamic model. Autonomous interaction and identification techniques have
since been applied to several other simple mechanical systems, such as switches
and buttons (Colton and Hollerbach, 2005), and also to whole object contact through
ACME, the robot-based Active Measurement Facility (Pai et al, 2000). In contrast to
a robot, a human haptographer holding an instrumented tool can quickly and safely
explore the surfaces of almost any physical object with natural motions that are fine-
tuned in real time. However, there have been only a few previous efforts to generate
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haptic surface models from data recorded with a hand-held tool, typically involv-
ing either simple parametric relationships or direct playback (Okamura et al, 2008).
For example, (Okamura et al, 2001) fit a decaying sinusoid model to acceleration
transients recorded from a series of taps, while (Kuchenbecker et al, 2006) explic-
itly stored such recordings. Others have created hand-held tools fitted with sensors,
e.g., (Pai and Rizun, 2003), but little has been done to distill the resulting data into
surface models.

Our Approach. Given the limitations of traditional models and the success of sev-
eral previous data-driven studies, we believe a sensorized hand-held tool and a so-
phisticated signal processing algorithm can be used to create very accurate models
of the tool-mediated feel of any real surface. Haptographic probes are designed to
record high bandwidth haptic data (tool position, velocity, acceleration, force, etc.)
during natural human exploration of a surface. The recorded signals must then be
segmented by interaction state (e.g., no contact, stationary contact, and sliding con-
tact) and analyzed to yield mathematical models for the characteristic feel of each
state, as well as for the transitions between states. The high sensory bandwidth of
the human hand makes us believe that the realism of a haptographic surface model
will strongly depend on its ability to encapsulate the high frequency accelerations
of tool–surface contact. A full suite of haptographic capturing tools and algorithms
will require a significant body of research, such as the physics-based modeling of
tapping in (Fiene and Kuchenbecker, 2007); here, we present a new, general method
for modeling the response of real textured surfaces felt through a tool.

Texture Modeling. We have developed a new method for using recorded data to
obtain a predictive model of the tool accelerations produced during real texture ex-
ploration. As one can determine through quick experimentation, dragging a certain
hand-held tool across a given surface creates vibrations that vary with both normal
force and scanning velocity, as well as contact angle, hand configuration, and grip
force. We are beginning our characterization of this complex dynamic system by an-
alyzing the vertical acceleration experienced by a hand-held stylus as it is dragged
across a variety of surfaces under different conditions. Our data set was recorded
using a custom designed data collection apparatus from (Yoshioka, 2009) in well-
controlled human subject trials where mean contact force, scanning velocity, and the
other relevant variables were all held constant. The data collection system allows
for precision recording of probe–texture interaction data including all contact forces
and torques, three-dimensional tool acceleration, tool velocity, and the subject’s grip
force at a rate of 5000 Hz. For each recorded trial, we start by seeking a model that can
generate an optimal prediction of the next real value in the acceleration time series
given the previous n data points. We have found that this problem is best addressed
with forward linear prediction, a common technique from system identification.

Forward Linear Prediction. The speech synthesis community has known for over
thirty years that the complex dynamic vibrations created by the human vocal
tract can be modeled by a form of the Wiener filter, the forward linear predictor
(Atal and Hanauer, 1971). The standard procedure in speech synthesis is to treat the
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vocal tract response as an unknown filter that shapes a white noise excitation sig-
nal, which comes from air passed through the system by the glottis. The output is
the spoken sound wave, which can be recorded with a microphone. Similarly, we
record contact vibrations with an accelerometer and treat the dynamic response of
the tool–texture interaction as a filter we wish to identify.

Fig. 3(a) shows the block diagram used for this system identification process,
and the following mathematical analysis follows the conventions of (Benesty et al,
2008) as closely as possible. Our input signal a(k) is the original recorded time
series of accelerations. The filter’s output vector is defined as â(k), which represents
the forward linear prediction. H(z) is assumed to be an IIR filter of length n of the
form H(z) = [−h1z−1 − h2z−2... −hnz−n]. The residual of these two signals is the
error vector e(k), and the transfer function P(z) is:

E(z)
A(z)

= 1−H(z) = P(z) (1)

We define the vector of filter coefficients as h = [h1 h2 h3 ... hn]T , and the n-length
time history of our input signal as a(k− 1) = [a(k− 1) a(k− 2) ... a(k− n)]. We
then write the residual at each step in time with the following difference equation:

e(k) = a(k)− â(k) = a(k)−hT a(k−1) (2)

Optimal filter values of h can be found by defining a suitable cost function. We
use the standard choice of mean-square error, J(h) = E{e2(k)}, where E{·} denotes
mathematical expectation, as defined by (Benesty et al, 2008). When the gradient of
J(h) is flat, h is at an optimal value, ho. By algebraic manipulation we can derive
the following result for the gradient:

∂J(h)
∂h

= −2E{(e(k)a(k−1))} (3)

When the gradient is flat at ho, the error is at a minimum eo(k), and we can simplify
the problem to:

E{eo(k)a(k−1)} = 0nx1 (4)

By substituting values for the cross-correlation matrix (R = a(k−1)aT (k−1)) and
the cross-correlation vector (p = a(k − 1)a(k)) into (4), we arrive at the Wiener-
Hopf equation:

R ho = p (5)

Assuming non-singular R, the optimal forward predictor coefficients can be found
by simply inverting the cross-correlation matrix, such that ho = R−1p. Alternatively,
we can use a more efficient recursive method, such as the Levinson-Durbin algo-
rithm (Durbin, 1960), to solve for ho from (5). For demonstration, Fig. 4 shows a
sample plot of a(k), â(k), and e(k) for the optimal filter H(z) of order n = 120.

Signal Generation. The previous section details a process for finding the linear
transfer function H(z) that is best able to predict the acceleration response of a
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(b) Acceleration synthesis model.

Fig. 3 Block diagrams for prediction of the next contact acceleration â(k) given the recorded
series a(k) and synthesis of an acceleration signal ag(l) from the white noise input eg(l).
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Fig. 4 Forward prediction signal generation and residual error. The data shown are from a
real sample of organza fabric mounted on a stiff substrate and touched with a plastic probe
at a velocity of 4.0 cm/s and a downward force of 1.5 N. The linear prediction filter H(z)
includes 120 coefficients (n = 120).

texture based on its previous n acceleration values. Subtracting the predicted re-
sponse from the recorded signal removes almost all its spectral components, leaving
only the noise signal e(k), which is ideally white and Gaussian. This section describes
how to reverse this process and obtain a completely new (but spectrally similar) ac-
celeration signal based on a white noise input, given an identified filter H(z).

As seen in Fig. 3(b), the input signal eg(l) is a white noise vector that we generate
in real time. The output vector is ag(l), a synthesized acceleration signal with spec-
tral properties that are very close to those of the real data signal a(k) for which the
filter H(z) is tuned; higher order filters generally result in a better spectral match.
By rewriting (1), we can formulate this new transfer function as follows:

Ag(z)
Eg(z)

=
1

1−H(z)
=

1
P(z)

(6)

We now observe that the difference equation for the synthesized acceleration is:

ag(l) = eg(l)+ hT ag(l −1) (7)

During texture synthesis, we generate white noise with a Gaussian distribution of
amplitudes and apply it to (7). One should note that the signal power of the white
noise input is important for creating an acceleration signal ag(l) with the proper
magnitude. The power of the generated noise signal P{eg(l)} must be equivalent to
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Fig. 5 Time- and frequency-domain views of a recorded acceleration and a signal synthesized
to emulate that interaction using our novel texture-modeling techniques. The real setup and
the synthesis filter are the same as those used in Fig. 4.

that of the power remaining in the residual signal, P{e(k)}, after filter optimization.
We have achieved good results when applying this acceleration modeling technique
to data from many surfaces and at many levels of downward force and translational
velocity. Fig. 5 shows one such sample in both the time and frequency domains.

Future Work. We are encouraged by the expressiveness and versatility of linear
prediction for synthesizing realistic texture acceleration waveforms, and we are in
the process of investigating many additional aspects of this approach. For example,
how many filter coefficients are required to capture the haptically salient proper-
ties of an individual texture trial? And how should one synthesize accelerations for
values of downward force and scanning velocity that were not explicitly tested?
Currently, we fit data sparsely sampled from this parameter space and then use two-
dimensional linear interpolation to choose coefficients of H(z) for unique combina-
tions of these parameters. In the future we intend to look into interpolating between
filter poles or cepstral coefficients, both of which are directly related to the filter co-
efficients h. More generally, we need to develop methods for processing data from
interactions that are less controlled and for making models that go beyond texture
to include other salient surface properties. In addition to increasing our knowledge
of tool–surface contact, we hope that these haptographic modeling methods can be
used to provide sensations that closely mirror those of real interactions, and also to
evaluate the fidelity of virtually rendered haptic surfaces.

4 Recreating the Feel of Real Surfaces

The second aim of haptography is to enable an individual to freely explore a virtual
or remote surface via a haptic interface without being able to distinguish its feel from
that of the real object being portrayed. Realistically recreating haptographic models
requires haptic device hardware and control algorithms that excel at delivering high
frequency tool accelerations without impeding free-space hand motion.

Prior Work. During contact with a virtual or remote object, traditional haptic sys-
tems employ the device’s actuators (usually base-mounted DC motors) to apply a
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force to the user’s hand based on tool tip penetration, which is inherently a slowly
changing signal. The mechanical elements that connect the motor to the hand would
ideally be massless, frictionless, and infinitely stiff, but no real device can meet
these requirements; instead, the dynamics of the intervening linkages, joints, and ca-
bles distort the output of the motors, which especially interferes with the display of
any high frequency vibrations (Campion and Hayward, 2005; Kuchenbecker et al,
2006). Still, some previous work has shown that vibrations displayed with such ac-
tuators can improve the perceived realism of spring-based virtual surfaces, but these
approaches require either extensive human-subject tuning (Okamura et al, 2001) or
exhaustive device characterization (Kuchenbecker et al, 2006). Furthermore, high
frequency base motor actuation is susceptible to configuration-based and user-based
changes in the system’s high-frequency dynamics, so it cannot achieve the consis-
tent, high fidelity feel needed for haptography.

A viable alternative can be found in (Kontarinis and Howe, 1995)’s approach to
teleoperation, where high frequency slave tool accelerations were overlaid on stan-
dard low frequency force feedback via an inverted speaker mounted near the user’s
fingertips. The slave acceleration was amplified by an empirically determined gain
to drive the actuator, and the system’s acceleration output was reported to vary by a
factor of 2.24 across the frequency range of interest. Human subject tests indicated
that this simple dual-actuator feedback strategy increased user performance in sev-
eral tasks and also improved the “feel” of the interface, one of the main goals of
haptography. Since this encouraging early work, several groups have created inter-
esting active styli meant to be used without a force-feedback device, e.g., (Yao et al,
2005). The only project closer to our interests is that of (Wall and Harwin, 2001),
who made a vibrotactile display stylus to study the effect of device output bandwidth
on virtual grating perception. Their system uses a voice-coil actuator between the
stylus and the end-effector of a desktop haptic device, with a controller that seeks to
regulate actuator displacement using high-resolution measurements from a parallel
LVDT sensor. The associated human-subject study found that the additional actua-
tor between the hand and the haptic device significantly improved the rendering of
virtual gratings but also reduced the system’s ability to render stiff springs.

Our Approach. Considering the limitations of base-mounted motors and the re-
sults others have achieved with auxiliary actuators, we believe that haptographic
models can be excellently recreated by attaching a high bandwidth bidirectional lin-
ear actuator to the handle of a typical haptic interface. This “haptography handle”
should be designed and controlled to enable the system to significantly accelerate
the user’s hand at high vibrotactile frequencies (20–1000 Hz) in real time, while
it is being held and moved around by the user. Imposing a grounded force at the
handle is very challenging, so instead we attach an additional mass to the handle
through a spring and a sliding joint. The auxiliary actuator applies equal and oppo-
site forces on the handle and this mass, thereby pushing and pulling them relative
to one another. Such a system can be carefully controlled only by understanding its
mechanical dynamics and their impact on the user’s experience. One final benefit
to this approach is that we believe it will require only one linear actuator (rather
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Fig. 6 A prototype haptography handle for use with the SensAble Phantom Omni. The voice
coil actuator applies a high frequency force fa between the coil and the magnet to accelerate
the handle.

than three) because the human hand is not particularly sensitive to the direction of
high-frequency vibrations (Bell et al, 1994).

Sample Implementation: Haptography Handle for the Phantom Omni. To eval-
uate the merits of our approach, we developed the prototype shown in Fig. 6 to act
as an interchangeable handle for the Phantom Omni, a widely available impedance-
type haptic device from SensAble Technologies, Inc.

Prototype. At the heart of our design is an NCM02-05-005-4JB linear voice coil
actuator from H2W Technologies. We have installed this actuator in a moving coil
configuration, where the permanent magnet core is rigidly attached to a handle and
the coil is free to slide relative to this core along internal jeweled bearings. Addi-
tionally, we place compression springs at both ends of the coil to center it within the
actuator’s travel limits. The actuator is driven with a high bandwidth linear current
amplifier, and it can output a peak force of 6.6 N. For more details on this actua-
tor and our experimental procedures, please consult (McMahan and Kuchenbecker,
2009b), which describes an earlier prototype. Mounting this haptography handle to
an Omni allows for measurement of the position and velocity of the handle, as well
as the exertion of low-frequency forces, via the Omni’s base-mounted encoders and
DC motors. The addition of a dedicated voice coil actuator gives this low cost haptic
device the capability of providing the high frequency contact accelerations that are
essential to haptography.

System Dynamics. In order to accurately control the handle accelerations felt by
the user, we must characterize the dynamics of our system. We use the lumped-
parameter model shown in Fig 6 to represent our system: mc is the mass of the
actuator coil, ks is the combined stiffness of the centering springs, bs represents vis-
cous friction in the linear bearings, fa is the electromagnetic force exerted by the
actuator, mh is the effective mass of the handle and magnet, and fo represents the
forces provided by the Omni. The user is modeled as a parallel spring and damper
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Fig. 7 Frequency-domain system identification validates the structure of our dynamic model
and enables the selection of appropriate values for parameters that cannot be directly measured.

(ku and bu) that connect the handle mass to the hand’s set-point position, yu. We can
then derive the transfer function from actuator force to handle acceleration:

Ah(s)
Fa(s)

=
mcs4

(mcs2 + bss+ ks)(mhs2 +(bs + bu)s+(ks + ku))− (bss+ ks)2 (8)

Note that the Omni force fo and the hand set-point yu are both low frequency and
thus will not affect the high frequency accelerations felt by the user.

We empirically validate and tune this transfer function by sending a repeating 10–
200 Hz swept sinusoid force command to the linear voice coil actuator and recording
the resulting accelerations at the handle with an accelerometer. We performed three
trials of this test with five different users, each lightly holding the stylus with their
right hand in a three-fingered pinch grip. Frequency-domain analysis of these tests
guides the selection of model parameters. Fig. 7 shows the empirical transfer func-
tion estimates from the grip experiments, as well as the parameters chosen for the
full dynamic model and its frequency-domain response.

This model enables us to design a dynamically compensated controller targeted at
good acceleration tracking; our present controller consists of a feedforward term that
inverts our estimate of the transfer function Ah(s)/Fa(s) in order to determine the
proper actuator force needed to achieve a desired handle acceleration. A careful look
at (8) shows that naively inverting this transfer function will result the placement
of four poles at the origin, which corresponds with a quadruple integrator in the
controller. A controller with a quadruple integrator has infinite gain at steady-state
and very high gain at low frequencies. These large gains pose a problem because
they will immediately saturate the maximum force and deflection capabilities of
our linear actuator. As a result, we approximate this transfer function with one that
has finite DC gain, but still manages to capture the magnitude response of the full
dynamic model in the important frequency range of 20-1000 Hz. The frequency-
domain response of this approximate model is also shown in Fig. 7.

Teleoperation Testing. We tested our handle’s performance at recreating realistic
contact accelerations by conducting master-slave teleoperation experiments; the
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Fig. 8 Time- and frequency-domain results for the teleoperation experiments.

operator (grasping the haptography handle) uses a master Omni to command a slave
Omni to perform exploratory tapping and dragging motions on a remote piece of un-
finished plywood through a position-position controller. This configuration allows
us to obtain real contact accelerations from an accelerometer mounted to the slave
Omni’s end effector and to render these accelerations to the user in real-time via the
haptography handle. This experiment also serves as a proof-of-concept demonstra-
tion for haptography’s potential use in teleoperation applications.

Attempting to recreate only the high frequency accelerations measured along the
longitudinal axis of the slave’s tool tip, we ran the experiment twice: once without
using the voice coil actuator and once driving it with our dynamically compensated
controller. In both cases, the operator tapped twice on the surface and then laterally
dragged the tool tip five times. Fig. 8 shows time domain plots of the slave (de-
sired) and master (actual) accelerations recorded during these experiments, as well
as spectrograms of these signals. Visual inspection of these plots shows that the
Omni’s native motors and the implemented position-position controller do a poor
job of transmitting high frequency accelerations to the user. However, augmenting
the system with our dedicated vibration actuator and dynamically compensated con-
troller provides a substantial improvement. Without this actuation, the normalized
RMS error between actual and desired acceleration spectrograms is 100%, while
auxiliary actuation brings this strict error metric down to 48%. Still, there is room
for further refinement of the controller, as one can observe a general trend of under-
actuation and also some phase lag at lower frequencies.

Hands-On Demonstration. To obtain qualitative feedback about the feel of this sys-
tem, we demonstrated the haptography handle in bilateral teleoperation at the 2009
IEEE World Haptics Conference (McMahan and Kuchenbecker, 2009a). Confer-
ence attendees were invited to use the master–slave Omni system to remotely explore
textured samples both with and without acceleration feedback from the dedicated ac-
tuator. The demonstration was well received and participants provided a great deal
of positive feedback, especially that the accelerations allowed them to feel small
details and surface textures that were not detectable with only the position-position
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controller. Several participants thus commented that their hand felt “numb” when
they explored the samples without haptographic feedback. The contact accelera-
tions were also noted to make the surfaces feel “harder” even though the normal
force provided by the Omni remained constant. This demonstration was honored to
be selected by a panel of experts for the conference’s Best Demonstration award.

Future Work. As we continue this research, we hope to improve the fidelity of
our haptographic rendering by investigating more sophisticated acceleration con-
trollers. We are also working to determine the perceptually correct mapping of three-
dimensional accelerations to a one-dimensional actuator. Lastly, we are preparing to
run human subject experiments to study the perceptual requirements for discrimina-
tion of realistic contact accelerations, as well as the potential benefits the approach
of haptography may have on common applications for haptic interfaces.
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Towards the Robotic Co-Worker

Sami Haddadin, Michael Suppa, Stefan Fuchs, Tim Bodenmüller,
Alin Albu-Schäffer, and Gerd Hirzinger

Abstract. Recently, robots have gained capabilities in both sensing and actu-
ation, which enable operation in the proximity of humans. Even direct phys-
ical interaction has become possible without suffering the decrease in speed
and payload. The DLR Lightweight Robot III (LWR-III), whose technol-
ogy is currently being transferred to the robot manufacturer KUKA Roboter
GmbH, is such a device capable of realizing various features crucial for di-
rect interaction with humans. Impedance control and collision detection with
adequate reaction are key components for enabling “soft and safe” robotics.
The implementation of a sensor based robotic co-worker that brings robots
closer to humans in industrial settings and achieve close cooperation is an
important goal in robotics. Despite being a common vision in robotics it
has not become reality yet, as there are various open questions still to be
answered. In this paper a sound concept and a prototype implementation
of a co-worker scenario are developed in order to demonstrate that state-
of-the-art technology is now mature enough to reach this aspiring aim. We
support our ideas by addressing the industrially relevant bin-picking problem
with the LWR-III, which is equipped with a Time-of-Flight camera for object
recognition and the DLR 3D-Modeller for generating accurate environment
models. The paper describes the sophisticated control schemes of the robot in
combination with robust computer vision algorithms, which lead to a reliable
solution for the addressed problem. Strategies are devised for safe interaction
with the human during task execution, state depending robot behavior, and
the appropriate mechanisms, to realize robustness in partially unstructured
environments.
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1 Motivation and Introduction

The idea of human and robot working together is of major interest for both
the academic community and industrial robot manufacturers. Pioneering ex-
amples of intimate collaboration between human and robot, which origin can
be found in [1], are Intelligent Assist Devices (IADs), as the skill assist de-
scribed in [2]. In 1983 a method was proposed at DLR for allowing immediate
“programming by touch” of a robot through a force-torque-sensor-ball [3], see
Fig. 1 (left).

In this paper, we propose an approach to effectively combine human and
robot capabilities for performing tasks in a partially unknown workcell, i.e.
a semi-structured environment. We elaborate the theoretical basis, prerequi-
sites regarding task execution and safe interaction mainly relying on sensor
based reaction strategies. The concept requires flexibility from the robot in
terms of sensor integration and programming. This flexibility is currently not
available in the state-of-the-art first generation industrial robots, designed
mainly to position objects or tools in six degrees of freedom (DoF).

However, for the second generation industrial robot, a fundamental
paradigm shift is required to enable the implementation of the robotic co-
worker. This concept is derived from a meaningful fusion of robots with in-
novative and robust control concepts, so called “soft robotics” features, and
exteroceptive sensing as e.g. 3D vision sensing modalities for safely perceiving
the environment of the robot. Together with additional sensing capabilities
for surveillance such technology will open entirely new application fields and
manufacturing approaches. In order to develop and evaluate the proposed
concept, the DLR Co-Worker was constructed as a demonstration platform,
see Fig. 1 (right).

Fig. 1 The concept of sensor programming was developed at DLR in 1983 for
teaching robot paths and forces/torques simultaneously (left). The DLR Co-Worker
consisting of the DLR Lightweight Robot III, the DLR 3D-Modeller (DLR-3DMo),
and a Time-of-Flight Camera (ToF-camera) (right).
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Complementary sensor fusion1 plays a key role in achieving our desired
performance by the combination of complementary input information. As
demonstrated in [4] a prioritized and sequential use of vision and force sensor
based control leads to robust, fast, and efficient task completion using the
appropriate sensor information depending on the particular situation. Cur-
rently, we believe that parallel use of both is needed mainly for very specific
problems, which are usually irrelevant for industrial settings.

Presently, industrial robot applications require complete knowledge of the
process and environment. This approach is prone to errors due to model
inaccuracies. Our central approach is to use intelligent sensor-based reac-
tion strategies to overcome the weaknesses of purely model-based techniques.
Thus, we can deal with sensor noise and limited robot positioning accuracy.
The robot task is described in high-level functions encapsulated in the states
of hybrid automata, where transitions base on decisions made using sensor in-
puts. This enables the robot to react to ”unexpected” events not foreseen by
the programmer. These events are induced by the human behavior, which can-
not be completely modeled analytically. Apart from robust behavior, safety
is of fundamental concern [5, 6, 7] if human-robot cooperation shall ever be
realized beyond the prototype phase. In terms of mechanical design it is not
effective to attempt to use large robots and try to make them sufficiently safe
[8, 9]. We showed in recent work that in physical human-robot interaction
(pHRI) slight collisions with the robot are not fatal, if robots with suitable
mechanical design are used and the proper sensor-based reaction strategies
are implemented [10]. Furthermore, the human is encouraged in our setup to
physically interact with the robot as a modality to ”communicate” with it
and provide task-relevant information. This also improves the fault tolerance
level of the task since only absolutely worst-case contacts are solved by a
complete emergency stop in contrast to approaches for current robots.

Apart from the described approach, the presented concept for the robotic
co-worker is fundamentally different from classical industrial ones. None of the
components are supposed to be intrinsically fail safe, but the appropriate com-
bination of all components makes the system more safe, robust, and reliable. We
use multiple sensor information of the robot and external sensing for increasing
the error tolerance and fault recovery rate. The work we present is an attempt
to merge our results for safe Human-Robot Interaction with robust exterocep-
tive and external sensing to achieve the robotic co-worker. We will discuss how
to extend our schemes and the available solutions for particular problems and
finally reach the stage of a highly flexible state-based programming concept for
various applications. This task description allows for novel switching strategies
between control modes, sensory reaction strategies, and error handling.

In this overview paper we discuss mostly the general concept. For further
readings and details on the methodologies the interested reader is referred to
the cited literature.
1 Please note the difference of complementary from competitive sensor fusion.
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The remainder of this paper is organized as follows. First, the general
functional modes required for a robotic co-worker are described. Then, the
interaction concept is outlined in detail. Furthermore, the task description
performed autonomously by the robot is elaborated. Finally, the developed
concepts are applied to a robotic bin picking scenario with user interaction as
a case study in order to present their practical relevance and implementation.

2 Functional Modes

Currently, industrial settings incorporate, in most cases, simple sequences
of tasks whose execution orders are static, allowing sometimes some binary
branching. Fault tolerance during task execution is, apart from certain coun-
terexamples2, usually not an issue due to the well designed environment.
Furthermore, human-robot interaction is not yet safely and effectively imple-
mented and the legal foundation for it is, to a large extent, non existent at the
current stage. In industrial settings a fault immediately leads to a complete
stop of the manufacturing process, i.e. robust behavior in an unstructured en-
vironment has not been addressed until now. We propose an integrative and
flexible approach to carry out the desired task in a very robust yet efficient
way. At the same time, this approach is able to distinguish between different
fault stages, which stop the entire process and lower the efficiency only in
the worst case. Flexible jumps within execution steps are part of the concept
and do not require special treatment. In order to optimally combine human
and robot capabilities, the robot must be able to quickly adapt to the human
intention during task execution for both safe interaction and high produc-
tivity. Thus, the measured human state is the dominant transition between
the proposed functional modes. Estimating the human state is a broad topic
of research and has been addressed in recent work [11]. The focus is often
on estimating the affective state of humans, which is of secondary interest
during an industrial process. The more relevant information is the physical
state that the human currently occupies, and the estimation of the human
attention, so that a clear set of sufficient behaviors can be selected and ac-
tivated, which leads to robust and reliable overall performance. This paper
does not consider attention estimation, instead focusing on the human state.

We compiled the following selection of physical states to provide sufficient
coverage for cases relevant to our study, also shown in Fig. 2 (left).

• oP: out of perception
• iP: in perception
• iCM: in collaborative mode
• iHF: in human-friendly zone

oP denotes that the human is out of the perceptional ranges of the robot and
therefore not part of the running application. iP indicates that the human
2 Checking for a successful grasp is e.g. commonly used.
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iP=true oP=true

(iP=true ∧ iCM=true)∨ (iP=true ∧ iHF=true)

Fig. 2 Proximity and task partition (left) and modalities for multi sensor human
robot interaction in the DLR Co-Worker (right).

is in the measurement range of the robot, and thus its presence has to be
part of the robot control. iCM and iHF indicate whether a collaborative or
human-friendly behavior must be ensured. Each physical state is subdivided,
depending on the task. However, only when iCM = true, the collaborative
intention should be taken into account: This leads to a complex physical
interaction task. In this paper we will use the “hand-over and receive” process
as an example, see Fig. 2 (right).

Focus: Robust task execution

Focus: Safe & fault tolerant behavior

Interaction concept

Collaborative mode

Autonomous mode

Human−friendly mode

Fig. 15

Fig. 15

Focus: Safe behavior
Fault reaction mode

Fig. 4
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lP ∨ FC
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lP ∨ FC

iP ∧ CF ∧ wasHF

iP ∧ CF ∧ wasCM

iP = in perception

iCM = in collaborative mode

iHF = in human-friendly mode

oP = out of perception

CF = confirm

FC = fault condition

Fig. 3 Functional modes for the DLR Co-Worker.

The human state is primarily used to switch between different functional
modes of the robot which in turn are associated with fault behavior. As shown
in Fig. 3 we distinguish between four major functional modes of the robot in
a co-worker scenario:

1. Autonomous task execution: autonomous mode in human absence
2. Human-friendly behavior: autonomous mode in human presence
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3. Co-Worker behavior: cooperation with human in the loop
4. Fault reaction behavior: safe fault behavior with and without human

in the loop

Their interrelation and transition conditions provide high flexibility in the
application design. In the first functional mode the robot is autonomously
fulfilling its given task without considering the human presence. The task
is carried out under certain optimality criteria, such as cycle time, in order
to maximize the productivity. In the second and third modes, we need a
meaningful partition of the task space which subdivides the given workspace
of the robot into regions of interaction. These incorporate the “hand over”
schemes as described in Sec. 3.2 and human-friendly behavior, whose core el-
ements are reactive collision avoidance and self-collision avoidance schemes.
In the third mode interaction tasks are carried out that have to be spec-
ified or generated for fulfilling a common desired goal, involving a synergy
of human and robot capabilities in an efficient manner. These two modes
form an integrative interaction concept, allowing seamless switching between
each other. The fourth mode defines the fault reaction behavior, address-
ing the appropriate and safe state dependent fault reaction of the robot. It
incorporates both the robustness concepts during autonomous reaction, as
well as human-safe behavior. Since each mode possesses an underlying safety
concept, it will be described later in more detail.

3 Interaction Concept

In this section we describe the developed interaction schemes. First, the pro-
posed task space partition is outlined, followed by the interaction layer, dif-
ferent collision avoidance techniques, as well as physical collision detection
and reaction for safe pHRI. Finally, the resulting safety architecture, which
unifies the different schemes, is presented.

3.1 Proximity and Task Partition

In case humans are in close proximity to robots in current industrial instal-
lations, the robots reside inside safety cages in order to prevent any physical
contact and thus minimize the risk for humans. However, when humans and
robots shall collaborate, such a plant design is no longer an option. The hu-
man location has to be taken into account in the control scheme and in higher
level control of the robot as an integral part of the system design. The previ-
ously introduced physical human states have to be mapped into a meaningful
topology shown in Fig. 2 (left), where the four distinct classes are indicated.
They should be established with respect to the task and the robot workspace
for assessing, whether the human does not have to be taken into account and
therefore, the robot still behaves autonomously regardless of the iP state. In
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case the human does not enter the robot workspace, it is not necessary to
degrade the productivity of the robot. In this sense the functional mode of
the robot changes only, if the human clearly enters the workspace of the robot
(indicated by the inner circle). If the human has entered the robot workspace
a distinction between human friendly behavior (on the right side of the table
in Fig. 2 (left)) and the cooperative mode (and their respective submodes)
is required (on the left side of the table in Fig. 2 (left)). If perception is lost
while iP = true, the robot assumes a severe error condition, stops and waits
for further instructions. If the presence of the human was not detected at
all, i.e. a worst case from a safety point of view, various safe control schemes
ensure the safety of the human during possible unforeseen collisions.

Defining these regions is part of the application design and definition phase.
Furthermore, we introduce switching zones, which are boundary volumina of
pre-defined thickness between task partitions (see Sec. 3.3 for details).

3.2 Interaction Layer

Interaction between robot and human is a delicate task, which needs multi-
sensor information. Furthermore, robust as well as safe control schemes
are called for to enable intuitive behavior. The main physical collaboration
schemes are “joint manipulation” and “hand over and receive”. “Parallel exe-
cution” may be part of a task, but usually without physical interaction. Some
work has been carried out on exchanging objects between human and robot
based on reaching gestures [12]. In [13] the concept of interaction history was
used to achieve cooperative assembly.

Figure 2 (right) shows the “hand-over” and “receive” for the DLR Co-
Worker Central entity is the LWR-III with its soft robotics features. As a
default we utilize its high-performance impedance control, and only switch
to other schemes, such as position control, if necessary. The robot is equipped
with joint torque sensors in every joint. It is well suited for realizing various
important features such as load loss detection and online load identification
without additional force sensing in the wrist. Collision detection and reaction,
depending on the potential physical severity of the impact and current state,
is a central feature used for detection and isolating contacts of different in-
tensity along the entire robot structure. By being able to distinguish different
contact types, fault tolerant and situation suited behavior is possible.

We utilize virtual walls for avoiding collisions with the environment
through control schemes. In order to realize an effective reactive behavior, it
is important to change stiffness, velocity, disturbance residuals (see Sec. 3.3),
trajectory generators, collision severity reaction strategies, and robot control
parameters on the fly within the lower level control rates (here 1 ms), holding
also during motion or state execution. With the combination of exteroceptive
sensing, capabilities of object recognition, tool surveillance, and human prox-
imity detection (shown in Fig. 2 (right)), we can achieve such aforementioned
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Fig. 4 Example for “hand-over” and “receive”. Underlined states incorporate ex-
plicit physical interaction.

complex processes as “hand-over” and “receive”, shown in Fig. 4. “Receiving”
or “handing over” the object is simply triggered by touching the robot at any
location along its entire structure or by using the proximity information from
the mounted exteroceptive sensors.

3.3 Absolute Task Preserving Reaction: Time Scaling

While the robot is in human-friendly mode, its intention is to fulfill the desired
task time efficiently, despite human presence. In order to accomplish this, it
is necessary to equip the robot the robot with reactive motion generators
that take into account the human proximity and thus prevent inefficient task
abortion.

Trajectory scaling preserves the original motion path and at the same
time provides compliant behavior by influencing the time generator of the
desired trajectory, see [10]. This scheme can even be used to enable a position
controlled robot to react compliantly in such a way that it remains on the
nominal path, albeit with limited maximum forces in case of physical external
disturbances.

A desired trajectory is usually parameterized with respect to time. If the
discrete sampling time Δt is modified in such a way that it is used to respond
to such external forces, it can be used to step back and forth along the
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desired path, by “scaling the trajectory in time”. In our approach we use
physical contact residuals such as the estimated external joint torque, or the
external contact wrench, together with proximity based residual signals such
as the human-robot proximity, the human-switching zones proximity, and
the human-workspace proximity, see Fig. 5. The usefulness of the approach
becomes also apparent when considering cases where humans are moving close
to switching zones. If the robot would simply use binary switching information
about the current state of the human, undesired oscillating behavior would
occur due to the imprecise motions and decisions of the human. By using the
human proximity to this border as a residual the robot always slows down
and stops until the human clearly decides his next action. This way, the user
receives intuitive visual feedback, indicating that the robot is aware of his
presence and waits for further action.

The fusion of the different residuals is shown in Fig. 5 for several afore-
mentioned signals. This concept allows us to bring quantities of different
physical interpretation together and use them in a unified way for trajec-
tory scaling. Each residual is normalized3 and then nonlinearly shaped to be
an intuitive time scale. Depending on the current state, the user can choose
suitable residuals accordingly during application design.

3.4 Task Relaxing Reaction: Reactive Path
Deformation

Apart form task preserving reaction as described in the previous subsection,
reactive real-time reaction with task relaxation is an important element for
dealing with dynamic environments as well. A well known technique in this
respect is the elastic strips framework [15].

3 Please note that we refer to an appropriate handling as e.g. projecting external
forces to the velocity direction of the robot or similar transformations.
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The subsequent method uses a decoupled second order impedance system
(mass-spring-damper) as a starting point and describes the (dynamic) envi-
ronment by means of virtual forces, which are generated with a motion model
of the according object, see Fig. 6 (upper). The virtual mass associated with
the robot is placed at the starting configuration xd(tn), ẋd(tn) of the robot,
whereas the equilibrium of the system is the desired goal configuration x∗

d. The
resulting trajectory of the excited system leads to (assuming no local minima)
a valid trajectory towards the goal. However, such a simple solution by means
of velocity and acceleration of the trajectory leads for most cases to very un-
desired properties of the generated path. In order to overcome this deficit we
calculate the traverse path of the system mε,n(t ≤ tε) every time step (incorpo-
rating the dynamic behavior of the environment) within a certain reasonable
time interval tε, but dismiss the time information associated with it. In order
to match a desired velocity ẋ′

d(tn+1), we search for the configuration x′
d(tn+1)

along the path that ensures this velocity. Thus, we keep the smooth properties
of the generated local path but the velocity of the robot can be commanded
independently. During (virtual) contact the velocity can be additionally scaled
similarly to the previously described trajectory scaling method. Thus, due to
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the collision avoidance, the robot would continously reduce speed, or even re-
tract, and at the same time actively avoid the upcoming collision. Figure 6
(lower) shows the result for different starting points and the common goal con-
figuration of the robot. The nominal trajectory is a straight line from differ-
ent starting points to a common end point. The avoidance takes place for a
dynamic motion of the human towards the robot.

3.5 Dealing with Physical Collisions

In our recent work we concentrated on evaluating the injury severity for the
human during worst-case robot-human impacts [8]. Furthermore, we devel-
oped various control schemes to provide a high level of safety to the human
during desired physical interaction and unexpected collisions. Numerous so-
lutions against human injury are available. Crucial features for them are an
effective physical collision detection and reaction. Furthermore, after a col-
lision is detected and isolated, an appropriate reaction has to be triggered
[10]. One possible solution is to stop the robot as soon as a collision is de-
tected. Another one is to switch from position control to zero-gravity torque
control [16] and let the robot react in a convenient compliant manner. These
approaches provide the possibility to divide the impact severity into several
stages, using a disturbance observer. This method for detecting contacts is
also able to give an accurate estimation of the external joint torques τext,
which in turn can be used to classify collisions with the environment ac-
cording to their “severity level”. This allows us to react variably to different
collision severity stages [14], leading to a collision severity based behavior.
Apart from this nominal contact detection, our algorithms are also able to
detect malfunction of the joint torque sensors, based on model inconsistencies
interpreted as a collision.

3.6 Safety Architecture

Apart from gaining insight into mechanisms behind safe pHRI and isolated
tools, it is critical to determine how to apply the knowledge and methodolo-
gies in a consistent and appropriate manner. We have developed schemes to
utilize these features appropriately in order to maximize task performance un-
der the constraint of achieving sufficient human-friendly behavior, see Fig. 7.
Each feature is shown at the according hierarchical level where it is intro-
duced and made available in the appropriate layer of the process.

Figure 8 outlines how the fault management and emergency components
are embedded as underlying components for each task. Every task has the
appropriate low-severity-fault tolerant components to make it robust against
external disturbances in general and prevent unnecessary task abortion. Each
of them activates their distinct safety set Sj which is compatible with the
particular goal (see Fig. 10 for details).
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Fig. 7 Safety architecture of the DLR Co-Worker. Only the first two stages are
user specific.
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Fig. 8 Safety background of the DLR Co-Worker.
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1 2 3

4 5 6

Fig. 9 Safe physical human-robot interaction. Detecting and recovering from a
collision in FT L1. It was assumed that the human was not perceived to have
entered the workspace.

Figure 9 shows an example of an unexpected collision between a worker
and a human 1©, leading to a collision in layer FT L1. The robot switches to a
compliant behavior 2© after the collision is detected (CD). Due to the collision
reaction (CR), the robot is able to be freely moved in space. This could lead
to secondary collisions with the environment. Therefore, we have designed
nonlinear virtual walls (Fig. 2) with rigid properties to prevent physical col-
lisions of the robot and secure the sensitive parts as the ToF-camera and the
3DMo. As a result, the human can simply grab the robot anywhere along the
structure and hang it like a tool into a predefined arbitrarily shaped virtual
potential trap4 (HI) 3©, which smoothly drags it in and keeps it trapped.
The human can then complete his task, which he intends to fulfill 4©, while
the robot waits (WT) for further action. After completion is confirmed (CF)
in 5© the robot continues 6© with the interrupted task (GO). If this was not
the case, the robot stays in his constrained passive behavior until either a
confirmation for continuation occurs, or a human would drag him out of the
hang-in field, depending on a predefined direction of disturbance. Figure 10
shows how such behavior is triggered in a hybrid automaton and the safety
sets involved in this process.
4 This feature “feels” like a magnet.
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Local FT

FT L1

Ti: GoTo X

Nominal task

}

human-monitor = on
control-mode = Trq. ctrl. & grav. comp.
support behavior = ”hang-in”
virtual-wall = on
collision-detection = on
allow-confirm = on

SL1 = {

touch2confirm

Si = { human-monitor = on
control-mode = Cart. imp. ctrl.

back-pushing = on
trajectory-scaling = on
collision-detection = on
contact-detection = on

}residual-select = [on on on on on]

collision detected
∧

severity == L1

Fig. 10 Safe reaction to a collision in FT L1 under the assumption that the human
was not perceived to have entered the workspace. A simple and convenient behavior
is triggered, which can be realized by intuitive use of well designed state dependent
control scheme selection.

4 A Sensor Based Approach for Interactive Bin Picking

In this section we focus on describing our solutions to solve an industrially
relevant autonomous task by combining computer vision techniques with soft-
robotics features and embed it into an interaction scenario with the human.
To demonstrate the performance of our system during autonomous task exe-
cution, we address the classical bin picking problem, which is well known since
the mid-1980s. However, such problems have remained difficult to be solved
effectively. This sentiment can be found in different literature, as exemplified
below:

“Even though an abundance of approaches has been presented a cost-effective
standard solution has not been established yet.”

Handbook of Robotics 2008 [17]

We have combined environmental modeling, robust and fast object recogni-
tion, as well as quick and robust grasping strategies in order to solve the
given task. The setup depicted in Fig. 1 (right) serves as our demonstra-
tion platform. It is further used for realizing a scenario where the human
assembles parts, which are supplied by the robot and, after a “hand over”
and “receive” cycle, sorted into a depot by the robot, see Fig. 16. This fully
sensor-based concept is entirely embedded in the proposed safe interaction
concepts. The intention of this application is to augment human capabilities
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with the assistance of the robot and achieve seamless cooperation between
each other.

4.1 Vision Concept

The LWR-III is equipped with two exteroceptive sensors: the DLR 3D-
Modeller and a time-of-flight camera so that different proximity sensors with
complementary features can be used within this scenario.

DLR 3D-Modeller

Fig. 11 Generated 3D model from a series of sweep scans over the filled bin.

System: The DLR-3DMo is a multi-purpose vision platform [18], which is
equipped with two digital cameras, a miniaturized rotating laser scanner and
two line laser modules, see Fig. 1 (right). The DLR-3DMo implements three
range sensing techniques:

1. laser-range scanning [19]
2. laser-stripe profiling [20]
3. stereo vision

These techniques are applicable to a number of vision tasks, such as the
generation of photo realistic 3D models, object tracking, collision detection,
and autonomous exploration [21].

Implementation: The laser-range scanner, used for securely determining
obstacles and free regions, provides range data enriched with a confidence
value. The proposed application employs the rotating laser range scanner for
two tasks. First, the wide scan angle of 270 degrees enables nearly complete
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surveillance of the working range around the gripper. Secondly, the measured
distance data provides information about occupation of the space between
the jaws of the gripper and indicates whether a target object is located there.

The laser-stripe profiler is used for modeling the environment and can be
used for the localization of the bin or accurate modeling of the entire workcell,
see Fig. 11. The shown model was generated with a series of sweep motions
of the LWR-III across the scenario. The main purpose of the laser-stripe
profiler is to acquire accurate data for model generation, in contrast to the
safety functionality of the laser-range scanner.

Time-of-Flight camera

Fig. 12 Amplitude and depth data from view into the bin (left) showing large
signal noise (right).

System: The ToF camera Swissranger SR 3000, mounted on the robot, has
a resolution of 176 × 144 pixels. An important feature of this device, ben-
eficial for this application, is the ability to capture 2 1

2D depth images at
≈ 25 Hz. Unlike stereo sensors, ToF-cameras can measure untextured sur-
faces because the measurement principle does not depend on corresponding
features. Furthermore, due to the active illumination, ToF-cameras are robust
against ambient illuminations changes. These properties enable the recently
established use in the robotics domain for tracking, object detection, pose
estimation, and collision avoidance. Nonetheless, the performance of distance
measurements with ToF-cameras is still limited by a number of systematic
and non-systematic error sources, which turn out to be a challenge for further
processing.

Figure 12 highlights the non-systematic errors such as noise, artifacts from
moving objects, and distorted shapes due to multiple reflections. While noise
can be handled by appropriate filtering, the other errors mentioned here are
system inherent. The systematic distance-related error can be corrected by a
calibration step down to 3 mm, see [22].

Implementation: Generally, the high sampling rate of the ToF-camera guar-
antees fast object localization and robust object tracking performance based
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Fig. 13 Multi-stage tracking architecture based on [23].

on a three staged tracking architecture, see Figure 13. In each stage a dif-
ferent algorithm processes an incoming depth image to provide a list of pose
hypotheses for the potential object, which is additionally tagged with a con-
fidence value. The stages are continously monitored and executed according
to suitable termination criteria or reentered for refinement.

The first stage is a global search, consisting of edge filtering and a Hough
transformation for identifying lines as initial hypotheses for the tube location.
In the second stage these hypotheses are locally consolidated and clustered by
a particle filter. Third, an Iterative Closest Point algorithm (ICP) provides an
accurate pose estimation of the target object at a frame rate of ≈ 25 Hz. Both
ICP, and particle filter directly process 3D data, and a 3D model of the target.
The 3D model is represented by a point set with corresponding normals. This
can be either generated from CAD models or surface reconstruction. The
object target can be localized and tracked with an accuracy of ≈ 7 mm.

4.2 Soft Robotics Control for Grasping

The soft-robotics features of the LWR-III greatly provide powerful tools to
realize such a complex task as bin picking. Cartesian impedance control [16] is
used as a key element for robust grasping despite the aforementioned recogni-
tion uncertainties. The impedance behavior of the robot is adjusted according
to the current situation in order to achieve maximal robustness. Furthermore,
the previously introduced strategies for fault detection are used to recognize
impossible grasps or unexpected collisions with the environment based on
force estimation. Furthermore, there are virtual walls preventing collisions
with the static environment. The robustness of grasping against errors in ob-
ject localization and errors in positioning due to the used impedance control
is of great importance for this application. The grasping strategy shown in
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Fig. 14 Compliant grasping strategy.

Fig. 14 successfully copes with possible translational deviations in the range
of 55 mm before the grasp fails. Due to the compliant behavior of the robot
and gripper-object and object-ground friction, the object is rotated into the
firm grasp. The last image shows a case expected to be a failure. However,
due to the rotational stiffness we implemented along the axis perpendicular
to the image plane grasping can still be achieved.

4.3 Autonomous Task Execution

Figure 15 depicts the autonomous bin picking task automaton, which merges
the presented concepts into a high-level view of task description. The ap-
plication is comprised of object recognition, grasping, and sort-in phases5.
If the bin is depleted, the robot waits for further supply. Fault tolerant be-
havior is realized by introducing various branching possibilities for each state

Go To Grasp

Approach GoalObject Rec.

OL = Object lost

SI = Sorted in

RT = Reached target

Bin Picking

Wait 4 Bin

BD = Bin Detected
BE = Bin empty
NF = Nothing found
FO = Found object
OL = Object recognition lost

Grasp

GD = Object grasped

Sort In

IG = Impossible grasp

GoTo NewView

Sort In

Identify Object

Retract

RT

BD

BE

FO

NF

GD

RT

RT

OL
SI

OL

IG

¬FO

FO ∧ RT

Fig. 15 Automaton for autonomous bin picking.

5 The initial view and sort-in frames are taught in torque control with gravity
compensation. This enables the user to freely move the robot to a desired con-
figuration and save it in the application session.
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execution. In case of failure, the robot recovers by monitoring conditions like
object recognition dropouts, load losses, or impossibility of grasps.

4.4 Evaluation of Grasping Success

The efficiency and robustness of our approach was tested in a series of au-
tonomous grasps. For this evaluation we replenished the bin (Fig. 11) after
each successful grasp in order to have a filled bin and independent trials. On
average, the robot needed 6.4 s for one grasping process, which comprises ob-
ject detection from an arbitrary viewing position, approaching and grasping,
unbagging, and moving back to the initial viewing position. The robot was
able to grasp an object in every cycle for 80 trials, i.e. the overall cycle suc-
cess rate was 100%. This result was only achievable due to the fault tolerance
capabilities of the system along the entire process, such as the detection of a
physical impossibility of a planned grasp, the non-successful grasp (overall 3
times), loosing an object in tracking, or localization without any result. The
last fault was mainly caused by the fact that searched objects are often only
partially in the field of view, so that the robot had to move to a new view
position. All of these failure modes where detected or realized by the system
and induced a restart of the grasping process. Consequently, the number of
average views to recognize an object was Nview = 2.2.

4.5 Extension to Interactive Bin-Picking

Figure 16 describes our implementation of an interactive bin-picking demon-
strator, merging the concepts for interaction and the autonomous capabilities
of the robot. The initial entrance into the scene by the human is not shown,
but is part of the demonstrator, i.e. it is assumed that the human has entered
the scene, the “way into interaction” is completed, and the human is part
of the process. 1© shows the view into the bin and the corresponding object
recognition (OR). Then, the robot grasps an object out of the bin 2© and
identifies it according to its weight, followed by a motion towards the human
(GH) in 3©. The “hand over” 4© then takes place, after which the robot waits
(WT) for the human to complete his process 5©. As soon as the human has
finished, the robot receives the object in a visual servoing loop (VS) in 6©.
Now, the classified object is sorted into (SI) one of the trays 7© and the robot
goes back to 1©. 8© and 9© show how human-friendly (HF) behavior is an
integrative part even in the presence of multiple humans. In 8© and 9© the
tool surveillance and the physical contact during task execution are shown,
respectively.

In summary, the system described here presents a versatile and robust solu-
tion with standard components for achieving safe and effective human-robot
collaboration and a solution for the bin picking problem. Various explicitely
non-trained test subjects were able to intuitively use the system.
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7 8 9

Fig. 16 Interactive bin picking.

5 Conclusion and Outlook

In this paper we proposed a general concept for the robotic co-worker and
developed a prototype demonstration for validation based on commercially
available technology. We outlined an integrative concept for combining soft-
robotics concepts with multi-sensor vision schemes. Flexible hybrid automata
can robustly and safely control the modalities of the co-worker in a partially
known environment and especially handle the complexity as well as the neces-
sary branching factor during the execution of the tasks. Based on our results
in safe physical Human Robot Interaction we were able to effectively com-
bine various control and motion schemes with vision sensing capabilities for
the robot to effectively accomplish the task with sufficient safety. Further-
more, exteroceptive sensing is used in combination with compliance control
for implementing industrially relevant autonomous tasks. The fusion of these
concepts leads to high fault tolerance, supported by the results of the pre-
sented bin picking application. The thorough use of multi-sensor information
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enabled us to combine the proposed interaction and robust autonomy con-
cepts needed for the robotic co-worker.

Future work will focus on broadening the interaction scenarios and incor-
porate cooperative tasks with joint assembly. For this purpose human surveil-
lance and modeling will become a major focus in order to solve complex and
dynamic joint processes. Furthermore, the extensive use of sufficiently fast
motion planning is contemplated to reduce the “teaching by demonstration”
amount.

Videos are provided at www.robotic.dlr.de/Sami.Haddadin/isrr2009.
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Robotic Manipulation and Humanoids

Cédric Pradalier

The main challenge that researchers interested in humanoid robotics  used to
have to solve was related to stability and walking. With progress in this field and
the development of more complex humanoids, gripping and manipulation need to
be addressed as well. On the other hand, research in the field of manipulation used
to be a problem for industrial robotics and industrial arms. The convergence of
these fields is hopefully illustrated by the collection of papers gathered in this part
of the ISRR'09 proceedings.

In “Cybernetic Human HRP-4C: A humanoid robot with human-like pro-
portions”, Kajita et al. provide an insight on the development of the new
humanoid – or even human-like – robot HRP-4C. This work represents a
tremendous effort not only in terms of engineering but also in terms of
design. 
In “Enhanced Mother Environment with Humanoid Specialization in IRT
Robot Systems”, Inaba et al.  present a design framework for the develop-
ment of humanoid behaviours, from control tasks to perception and inter-
action. An important aspect of this system is its versatility and adaptabil-
ity to various kinds of robots.
In “A Factorization Approach to Manipulation in Unstructured Environ-
ments”,  Katz and Brock propose an approach to first identify the kin-
ematic structure of objects by interacting with them, and then learn how
to improve the efficiency of this identification using machine learning
techniques. One of the important aspects of this paper is the demonstra-
tion of the benefit and need for robotic research to take advantage of all
fields of computer science, computer vision, graph theory, control, ma-
chine learning, etc...
In “Reconstruction and Verification of 3D-Object Models for Grasping”,
Marton et al. address the problem of fitting models to the perception of
objects using a 3D laser scanner, with the intention of grasping them with
a manipulator. The particularity of the approach is to represent 3D ob-
jects by a collection of primitive objects which are easier to detect and
parametrize than the complete objects.
In “Floating Visual Grasp of Unknown Objects Using an Elastic Recon-
struction Surface”, Vincenzo et al. propose an approach for visually guid-
ing the finger of a robotic hand to the surface of an object to be picked



up.  The originality of the approach lies in its iterative combination of a 
motion planning step and a step of visual estimation of the object’s shape.
In “Generality and Simple Hands”, Mason et al. challenge the traditional 
concept that more complex robotic hands are required for efficient ma-
nipulation, in particular in industrial environment. They show that simple 
three-fingered hands are still very relevant for a wide variety of industrial 
tasks.
In  “From  Sensory-motor  Primitives  to  Manipulation  and  Imitation 
Strategies in Humanoid Robots”, Asfour et al. summarise the state of the 
art in development of complex behaviours for humanoid robots in envir-
onment designed for humans. Some of the components of these applica-
tions are object recognition, grasping, manipulation, but they also include 
learning sensory-motor skills by imitation.

An underlying challenge reported by all these chapters is the management of 
complexity. Robotic systems and humanoids in particular are becoming more and 
more complex, both on the functionality level (hardware, sensors, software primit-
ives) and the behaviour level. Handling uncertainties is already a difficult ques-
tion, but the robotics community still needs to come up with a generic way to deal 
with the combinatorial explosion of complexity coming from the combination of 
more and more components and behaviours. 
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A Factorization Approach to
Manipulation in Unstructured Environments

Dov Katz and Oliver Brock

Abstract. We propose factorization as a concept to analyze and solve manipula-
tion problems in unstructured environments. A factorization is a decomposition
of the original problem into factors (sub-problems), each of which can be solved
much more easily than the original problem. The appropriate composition of these
factors results in a robust and efficient solution to the original problem. Our assump-
tion is that manipulation problems live in lower-dimensional subspaces of the high-
dimensional state space associated with unstructured environments. A factorization
identifies these subspaces and therefore permits finding simple and robust solutions
to the factors. In this paper, we examine the effects of factorization in the context of
our recent work on manipulating articulated objects in unstructured environments.

1 Introduction

Mobile manipulation in unstructured environments1 remains an important challenge
in robotics. Even after several decades of research, our ability to endow robotic
systems with general manipulation skills remains limited. What is the key to making
tangible progress in this domain?

In this paper, we hypothesize that fundamental progress in autonomous manipu-
lation can only be achieved through an understanding of how to adequately compose
simple perception, control, planning, and learning skills so that they incrementally
realize increasingly complex manipulation behavior.

Dov Katz · Oliver Brock
Robotics and Biology Laboratory, School of Electrical Engineering and Computer Science,
Technische Universität Berlin, Germany

1 When using the term “unstructured” we refer to environments that have not been modified
to accommodate limitations of the robot. We consider providing a priori models to the
robot as a way to accommodate these limitations.

C. Pradalier, R. Siegwart, and G. Hirzinger (Eds.): Robotics Research, STAR 70, pp. 285–300.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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This hypothesis may seem obvious. We believe, however, that it contrasts with
some common believes and practices applied in much of the current research in
robotics. Should the hypothesis prove to be correct, there would be important impli-
cations for how research in autonomous mobile manipulation should be conducted.

Within the manipulation community, some researchers argue that a break-through
in manipulation will be triggered by better sensing technologies. Such advances,
so the assumption, will lead to the availability of highly accurate models, even in
unstructured environments. The problem of acquiring those models is therefore de-
ferred to the sensor community and research proceeds under the assumption that
accurate models are available. This view is commonly taken, for example, in mo-
tion planning and grasp planning. In contrast, we believe that the perceptual prob-
lems associated with obtaining adequate models for task execution will remain very
challenging, irrespective of advances in sensor technology.

Another popular view is that the challenges of manipulation in unstructured en-
vironments may be addressed using ever-increasing computational power. Consid-
ering the recent successes of sampling-based motion planning and POMDP-based
approaches to planning, it seems credible that soon we will be able to plan in com-
plex environments while taking sensing and actuation uncertainties into account. In
contrast, we believe that the combinatorial explosion associated with problems in
unstructured environments will leave general planning for real-world environments
out of our computational reach for some time to come.

Why then do we claim that advances in manipulation can be achieved through a
suitable composition of perception, control, planning, mechanisms, etc.?

At a high level, our argument is about appropriate decompositions of high-
dimensional state spaces. The goal of decomposition is to find sub-problems that
can be solved easily and whose composition solves the original, more difficult
problem. We refer to such a decomposition as a factorization, emphasizing that
the decomposition leads to simpler components (factors) that, when combined
(multiplied), solve the original problem (equal the product). As an example con-
sider the expression a2 − 2ab + b2, which can be decomposed as a2(1− 2b

a + b2

a2 )
or as (a− b)(a− b). Clearly, both expressions are equivalent—they compute the
same number (or achieve the same functionality)—but the latter one is much sim-
pler and requires less computation. We only refer to the latter decomposition as a
factorization.

Solving complex problems by decomposition is hardly a new idea. In fact, the
fragmentation of robotics into sub-fields such as vision, control, planning, grasping,
and manipulation represents a particular decomposition of the “robotics” problem.
However, we believe that factorizations, i.e. “good” decompositions, do not natu-
rally coincide with the boundaries imposed by the traditional academic sub-fields.
Instead, we hypothesize that a factorization typically exploits synergies that arise
when these very boundaries are crossed.

Factorization will enable progress in manipulation for two reasons. First, they
lead to simple, efficient, and robust solution to manipulation problems, because
factorizations identify the low-dimensional subspace of the high-dimensional state
space within which the solution to the problem lies. Second, factorizations enable
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Fig. 1 UMan (UMass Mobile Manipulator) performs a manipulation task without prior
knowledge about the manipulated object. The right image shows the scene as seen by the
robot through an overhead camera; dots mark tracked visual features.

the incremental development of increasingly complex skills. Once the “right” factor
has been split off, the remaining product itself becomes easier to factorize. Choos-
ing a poor decomposition, however, may leave us with parts that are as hard to solve
as the original problem.

Let us consider for instance the problem of grasping. Grasping is often de-
composed into perception, planning, execution, and mechanism design. Planning
methods assume accurate models and determine force closure based on this infor-
mation. They have rarely, if at all, scaled to real-world environments. In contrast,
consider the impressive real-world performance of the shape-deposition manufac-
turing (SDM) hand design by Dollar and Howe [9]. The hand has a single actuated
degree of freedom and is able to robustly and repeatably pick up objects of greatly
differing geometries, assuming the hand is positioned appropriately relative to the
object.

A closer look at the decompositions used by these two approaches reveals why,
in our view, one is much more successful than the other. The classical approach
decomposes the problem along the boundaries of existing sub-fields into sensing
to build an accurate model and planning a grasp. Both of these sub-problems have
proved to be very difficult. Dollar and Howe pursue a different approach: they de-
compose grasp planning into determining a hand placement and closing the hand
around the object. We believe that these two factors are much easier to solve than
those of the classical decomposition, while achieving the same objective. Dollar and
Howe show that the second factor (closing the hand to form a stable grasp) can be
achieved easily for a variety of objects. They do so by leveraging compliance in the
hand design. Compliance provides resilience to uncertainty and eliminates the ne-
cessity for complex perception and accurate models. The solution chosen by Dollar
and Howe for the second factor thus has the potential of greatly facilitating the solu-
tion to the first factor—a sign of a good factorization. (A similar example of a good
factorization is RHex [2], the biologically inspired hexapod robot. Both of these ex-
amples can be viewed as instances of the more general concept of morphological
computation [27].)

In this paper, we evaluate our hypothesis in light of our recent work on manip-
ulation in unstructured environments [16, 17, 18] (see Figure 1). We show that by
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translating our metaphor of factorization into a practical method for manipulation,
a robot can autonomously obtain general domain knowledge for manipulation. Our
work is preliminary and not intended as a conclusive validation of our hypothesis.
However, we hope to be able to initiate a discussion about the most suitable way
for making progress towards autonomous manipulation capabilities in unstructured
environments.

2 Related Work

In our discussion of related work, we do not intend to survey research in manipula-
tion (please refer to [6, 19, 26]). Instead, we examine the relationship of factorization
to other areas of research and to prior work in robotics.

In the eighties, the psychologist Gibson [13, 14] questioned the separation of ac-
tion and perception. He argued that perception is an active process and highly cou-
pled with motor activities. Motor activities are necessary to perform perception—
and perception is geared towards detecting opportunities for motor activities. He
called these opportunities “affordances.” This view of perception stands in contrast
with the classical take on computer vision as “inverse optics”, proposed by David
Marr in 1982.

Gibson’s theories continue to be relevant in psychology, cognitive science, and
philosophy [24]. In a recent book, the philosopher-turned-cognitive-scientist Alva
Noë describes an “enactive” approach to perception. He argues that perception is an
embodied activity that cannot be separated from motor activities and that can only
succeed if the perceiver possesses an understanding of motor activities and their
consequences [23].

Similar “enactive” theories have been proposed for the development of cogni-
tive capabilities [31, 12]. These “enactive” theories, be it in psychology, cognitive
science, or philosophy, reject a functional separation of perception, thinking, and
acting (as in sense, plan, act). Such a separation is at odds with experimental evi-
dence in psychology and neuroscience and cannot hold up to the theoretical scrutiny
of philosophers. This evidence might suggest that the development of advanced ma-
nipulation capabilities in the context of robotics will greatly benefit from the reor-
ganization, and possibly the convergence, of existing sub-disciplines.

The trend towards eliminating the separation between perception, action, and
cognition has long been present in the robotics community. Brooks’ behavior-based
robotics [8] exhibits conceptual parallels with the theory of behavioral psychol-
ogy [25] (behaviorism). Both are, viewed simplistically, reactive paradigms. Based
on this paradigm, behavior-based robotics already departs from the sense-plan-act
paradigm and replaces it with hierarchies of reactive behavior [7], thereby overcom-
ing the separation between action and perception.

Psychologists have criticized behaviorism as it does not account appropriately
for the deliberate actions of an individual. The “enactive” perspective [31, 23] re-
sponds to this limitation by emphasizing the role these actions play in perception
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and cognition. It arrives at the conclusion that action, perception, and the associated
cognitive processes cannot be separated from embodiment.

We believe Noë’s theories lend support to our view that the simplest solution to
manipulation in unstructured environments does not necessarily have to—or maybe
even: must not—follow a strict separation between sensing, thinking and acting.

There is, of course, much work in robotics that is consistent with our hypoth-
esis. Active vision [1] and visual servoing [15], for example, tightly couple per-
ception and action (for a special set of skills). And we already discussed the use
of compliance in embodiment [2, 9] to replace aspects of traditional computation
with morphological computation [27], effectively crossing the boundary between
embodiment and action.

The work of Edsinger and Kemp in mobile manipulation [11] also follows sim-
ilar ideas. They “let the body do the thinking,” an idea similar to morphological
computation. They also emphasize the importance of task-relevant perception, a
consequence of close coupling between action and perception.

There are also a number of ongoing mobile manipulation projects that in our
view proceed along a different direction. These projects demonstrate impressively
what robotic systems can accomplish today, based on the integration of technologies
that has been developed within the boundaries of existing sub-fields. Among them
are the STAIR project at Stanford University [3], El-E at Georgia Tech [21, 22], and
HERB at Intel/CMU [4, 5]. All of these projects share one goal: they want to develop
robots that can perform manipulation tasks in everyday environments. Whether the
right path towards that goal will prove to be the integration of existing technologies
or the factorization of specific manipulation problems remains an open question.

3 Factorizing a Manipulation Skill

We now present a case study of factorization for manipulation skills in unstructured
environments. The specific skill we are interested in concerns the manipulation of
articulated objects. To reflect the fact that the robot operates in an unstructured en-
vironment, it initially has no specific knowledge about the objects it interacts with.
The robot plays with an articulated object until it has understood the object’s kine-
matic structure. Based on the acquired information, the robot then manipulates the
object into a given configuration. In the current scenario, illustrated in Figure 1, we
restrict the class of objects to planar kinematic chains, as the ones shown in Figure 2.

The ability to manipulate kinematic objects is elementary for a wide range of ma-
nipulation tasks (all prehensile manipulation tasks with rigid objects). We therefore
believe that the skill discussed here can serve as a sensorimotor foundation for more
complex manipulation tasks. We believe this manipulation skill represents a “good”
factor and will therefore facilitate the factorization of the other, more complicated
factors, i.e. it will be useful for the development of more complex capabilities. This,
of course, remains to be demonstrated in future research.
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Fig. 2 Two examples of kinematic structures: scissors with a single revolute joint and a
wooden toy with a prismatic joint and two revolute joints.

3.1 Action and Perception

Determining the kinematic structure of a planar articulated object is difficult based
on visual clues alone. It is equally difficult based on haptic interactions alone. When
using visual clues and interactive abilities together, however, the task becomes very
simple.

The key idea is simple: we use the embodiment of the robot to create a visual sig-
nal that facilitates the identification of the kinematic structure of articulated objects.
This means that the robot pushes the object and observes the resulting changes in
the scene (Figure 1). The observation consists of tracking the motion of visual fea-
tures in the scene. The motion of these features can be analyzed to determine the
kinematic structure of the articulated object and the approximate extent of the links.

The first step of our algorithm analyzes the motion of features to identify all
rigid bodies observed in the scene. The algorithm builds a graph G(V,E) from the
feature trajectories obtained throughout the interaction. Every vertex v ∈ V in the
graph represents a tracked image feature. An edge e ∈ E connects vertices (vi,v j)
if and only if the distance between the corresponding features remains smaller than
some threshold throughout the observed interaction. Features on the same rigid body
are expected to maintain approximately constant distance between them throughout
the entire observation. In the resulting graph, all features that lie on a single rigid
body form a highly connected component (see Figure 3). To separate the graph into
these components we use the min-cut algorithm. Identifying the highly connected
sub-graphs is analogous to identifying the object’s different rigid bodies.

The min-cut algorithm we use has worst case complexity of O(nm), where n
represents the number of nodes in the graph and m represents the number of clus-
ters [20]. Most objects possess only few joints, making m � n. Thus, for practical
purposes, we consider clustering to be linear in the number of tracked features.

This procedure of identifying rigid bodies is robust to the noise present in the
feature trajectories. Unreliable features randomly change their relative distance to
other features. This behavior places such features in small clusters, most often of
size one. In our algorithm, we discard connected components with three of fewer
features. This is a very simple and effective way to filter out sensor and tracking
noise. The remaining connected components consist of features that were tracked
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reliably throughout the entire interaction. Each of these components corresponds to
a rigid body in the scene.

The second step of our algorithm identifies the kinematic relationship among
rigid bodies. We will discuss this for revolute joints, prismatic joints and other algo-
rithmic aspects of the method are presented in detail in [16]. To find revolute joints,
our algorithm examines all pairs of rigid bodies identified in the previous step. Based
on their relative motion, it classifies their kinematic relationship as either revolute,
prismatic, or disconnected.

To find revolute joints, we exploit the information captured in the graph G. Ver-
tices that belong to one connected component must have maintained constant dis-
tance from all vertices in their cluster. This property holds for features on or near
revolute joints, connecting two or more rigid bodies. To find all revolute joints, we
simply search the entire graph for vertices that belong to two clusters (see Figure 3).

Fig. 3 Graph for an object with two revolute degrees of freedom. Highly-connected compo-
nents (shades of gray) represent the links. Vertices of the graph that are part of two compo-
nents represent revolute joints (white vertices).

After all pairs of rigid bodies represented in the graph have been considered, our
algorithm has determined appropriate explanations for their relative motions. Using
this information, we build a kinematic model of the object using Denavit-Hartenberg
parameters. This is illustrated for a real-world object in Figure 4. Note that both the
tool and the table have wood texture and color, making the vision problem difficult
for any color- or texture-based algorithm.

Fig. 4 Experimental results from [16] showing the extraction of the kinematic properties of
a wooden toy (length: 90cm) using interactive perception: The left image shows the object
in its initial pose. The middle image shows the object after the interaction. The color-coded
clusters of visually tracked features correspond to the rigid bodies of the toy. The right image
shows the detected kinematic structure (line marks the prismatic joint, dots mark the revolute
joints).
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The robustness of this skill was demonstrated in dozens of real-world experi-
ments. The algorithm makes no assumptions about the kinematic structure of objects
in the scene (except for the kinematic structure being planar); it can handle serial
chains as well as planar branching mechanisms and kinematic loops. The algorithm
does not require prior knowledge of the objects, is insensitive to lighting condi-
tions and specularities, succeeds irrespective of the texture and color of the object’s
parts, works reliably even with low-quality video, and is computationally efficient.
At the same time, the algorithmic components of this interactive perception skill are
very basic (feature tracking, pushing, graph min cut). Nevertheless, the “right” com-
position of these simple ingredients results in an interactive manipulation skill for
unstructured environments that is extremely robust and computationally efficient.

3.2 Learning Effective Interactive Perception

So far we assumed that the robot’s interactions with objects in the environment were
scripted. Now we show how a robot can learn how to interact with its environments
in the most effective manner. In the process of performing a number of such self-
observed interactions, the robot gathers domain knowledge and is able to use this
knowledge to extract complete kinematic models with fewer and fewer interactions.

Fig. 5 Two objects with differ-
ent physical properties but identical
kinematic structure: because their
relational representation is identi-
cal, experience acquired with one
can be used directly to interact with
the other

To enable learning in the domain of planar ar-
ticulated objects, we capture the robot’s experi-
ence in a relational representation. This represen-
tation is critical to the success of our learning-
based approach to manipulation. Using a finite
set of relations, we describe an infinite num-
ber of states and actions. It thus becomes fea-
sible to represent and reason about situations
that a propositional representation cannot han-
dle. For example, a robot may encounter many
types of scissors, varying in color, shape, and
size. All scissors, however, have the same kine-
matic structure. A single relational formula can
capture this structure for all scissors, irrespec-
tive of other physical characteristics. Therefore,
a single relational action can be applied to all
such objects (see Figure 5). Furthermore, expe-
rience gathered with one object can be applied to
all objects that contain the same kinematic sub-
structure. Propositional representations, in con-
trast, require a proposition for every link in the kinematic structure, and one for
every action. The relational representation avoids this combinatorial explosion and
makes learning possible.

Our relational representation for kinematic models of articulated objects captures
links, link properties, and kinematic relationships between links. Figure 2 shows
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two examples of planar kinematic structures. The scissors have a single revolute
degree of freedom and the wooden toy is a serial kinematic chain with a prismatic
joint (on the left of the figure) and two revolute joints. Our relational representation
uses predicates R(·), P(·), and D(·) to describe that rigid bodies are connected by a
revolute joint, a prismatic joint, or are disconnected, respectively.

The predicates are n-ary, with n ≥ 2, to capture branching kinematic structures.
The rigid body passed as the first argument to the relation is the one in relationship
with all other arguments. For example, R(x,y,z) is equivalent to R(x,y)∧R(x,z).
Using these relations, we can represent the kinematic structure of the scissors as
D(lb,R(l1, l2)), where l1 and l2 represent the two links of the scissors and lb is a
disconnected background link. The kinematic structure of the wooden toy if Figure 2
can be represented as D(lb,R(l4,R(l3,P(l1, l2)))). Note that this representation is not
unique. The wooden toy could also be represented as

D(P(l4,R(R(l1, l2), l3)), lb).

Which of these representations is used by the robot depends on the order of discov-
ery of the links. The most deeply nested relation is discovered first.

By extending our atomic representation of links to m-ary relations L(·), m ≥ 1,
we can include link properties in our description of kinematic chains. We will limit
ourselves to a single property, the size of the link. The wooden toy can now be
represented as

D(lb,R(L(s, f4),R(L(s, f3),P(L(s, f1),L(s, f2))))),

where s stands for the property small and the sets of visual features fi spatially
identify links in the physical world. The extension to an arbitrary number of link
properties is straightforward.

We also use a relational representation for the actions performed by the robot.
Actions apply pushing or pulling forces to one of the links. The forces can be applied
along the major axes of the link or along a forty-five degree angle to the major axes.
An action is represented as A(L(·),α), where L(·) represents a link and alpha is
an atom describing one of the possible six pushing/pulling directions relative to the
link.

Based on this relational representation, we cast the incremental acquisition of
kinematic representations of objects as a relational reinforcement learning [10, 28,
30] problem. We define a Relational Markov Decision Process (RMDP) [30] and
then apply Q-learning [32] to find an optimal policy.

A Markov Decision Process (MDP) is a tuple M = (S,A,T,R), where S des-
ignates the set of possible states, A is the set of actions available to the robot,
T : S× A → Π(S) specifies a state transition function to determine a probability
distribution Π(S) over S, indicating the probability of attaining a successor state
when an action is performed in an initial state, and R : S×A → R is a function to
determine the reward obtained by taking a particular action in a particular state. In
our case, the description of states and actions is relational and therefore we have
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a relational MDP. The details of this MDP and the learning algorithm are given in
reference [17].

The robot remembers each of its experiences from interactions with the world
by storing a tuple E(s,a,r) of state s, action a, and the Q-value, or reward, r ob-
tained when performing the action in that state. Because states and actions are
relational and stored un-instantiated, every stored experience describes a possibly
infinite number of experiences. These experiences serve as an instance-based repre-
sentation of the Q-value function.

Our relational representation of experiences permits the robot to leverage past ex-
perience, even if it has not previously visited the exact same state. Given the current
state, the robot retrieves the best action based on its experience of the most similar
previously encountered state. Similarity between states is determined by consider-
ing the state’s kinematic structure and the properties of the links in that structure.
Neither of these aspects have to match perfectly for the robot to retrieve relevant
experience.

We define a similarity measure using unification for approximately matching link
properties and structure, specifically sub-graph mono-morphism [29], for identify-
ing partial matches in kinematic structure between the current state and the robot’s
prior experience. The details of the similarity measure are given in reference [17].

By combining the interactive perception skill described in the previous section
with this learning framework, the robot can learn to extract kinematic models with
increasing effectiveness. It continuously interacts with articulated objects in the en-
vironment, stores its experiences, and remembers which actions lead to the discov-
ery of new rigid bodies and their kinematic relationships. This experience, in turn,
is used to guide further interactions.

To demonstrate the effectiveness of our learning-based approach to manipula-
tion in unstructured environments, we perform two types of experiments. First, we
show that our approach permits the learning of manipulation knowledge from expe-
rience. Second, we show that the acquired experiences transfer to previously unseen
objects.

Our experimental evaluation requires a large number of experiments. For practi-
cal reasons, we performed these experiments in a simulated environment. Due to the
robustness of the perceptual skill described in Section 3.1 and due to the simplic-
ity of force guided pushing required for our experiments, we argue that our results
remain valid in real-world experiments. Our simulation environment is based on
the Open Dynamics Engine (ODE), a dynamics simulator. The simulation includes
gravity, friction, and non-determinacy.

In each experiment, the robot interacts with an articulated object to extract its
kinematic structure. Example objects are given in Figures 5, 6, and 7. Revolute
joints are shown as red cylinders, prismatic joints are represented by green boxes,
and links are shown in blue. We only report on experiments with serial chains, even
though we have successfully experimented with branching mechanisms and kine-
matic loops. Perceptual information about the manipulated objects is obtained from
a simulation of the perceptual skill described in Section 3.1 [16]. We do not use the
simulator’s internal object representation to obtain information about the object.
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Each experiment consists of a sequence of trials. For each trial we report the
average over 10 independent experiments. A trial consists of a number of steps;
in each step, the robot applies a pushing action to the articulated object. The trial
ends when an external observer signals that the obtained model accurately reflects
the kinematic structure of the articulated object. The number of steps required to
uncover the correct kinematic structure measures the effectiveness with which the
robot accomplishes the task.

Each step of a trial can be divided into three phases. In the first phase, the robot
selects an action and a link with which it wants to interact. The action is instantiated
using the current state and the experience stored in the representation of the Q-
value function. In the second phase, the selected action is applied to the link, and
the ODE simulator generates the resulting object motion. The trajectories of the
visual features tracked by the perception skill are reported to the robot. In the last
phase, the robot analyzes the motion of visual features and determines the kinematic
properties of the rigid bodies observed so far. These properties are then incorporated
into the robot’s current state representation. With each step, the robot accumulates
manipulation experiences that improves its performance over time.

A trial ends when the kinematic model obtained by the robot corresponds to the
structure of the articulated object. In our simulation experiments, an external su-
pervisor issues a special reward signal to end the particular trial. Note that such a
supervisor is not required for real-world experiments. The robot can decide to per-
form manipulation based on incomplete information. If new kinematic information
is discovered during manipulation, the robot simply updates its kinematic model and
revises its manipulation strategy.

To demonstrate the ability of the proposed learning framework to acquire relevant
manipulation knowledge, we observe the number of actions required to discover a
kinematic structure. We compare the performance of the proposed grounded rela-
tional reinforcement learning approach to a random action selection strategy, using
an object with seven degrees of freedom and eight links (Fig. 6(a)). The resulting
learning curve is shown in Figure 6(b). Random action selection, as to be expected,
does not improve its performance with additional trials. In contrast, action selec-
tion based on the proposed relational reinforcement learning approach results in a
substantial reduction in the number of actions required to correctly identify the kine-
matic structure. This improvement already becomes apparent after about 20 trials.
Using the learning-based strategy, an average of 8 pushing actions is required to
extract the complete kinematic model, compared to the approximately 20 pushing
actions required with random action selection. This corresponds to an improvement
of about 60%.

This first experiment demonstrates that our approach to manipulation enables
robots to acquire manipulation knowledge and to apply this knowledge to improve
manipulation performance. To demonstrate that the manipulation experience ac-
quired with one object transfers to other objects, we perform two additional experi-
ments in which we observe the number of actions required to discover a kinematic
structure with and without prior experience.
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Fig. 6 Experiments with a planar kinematic structure with seven degrees of freedom
(RPRPRPR, R = revolute, P = prismatic). The learning curve for our learning-based approach
to manipulation (green solid line) converges to eight required actions with a decreasing vari-
ance, representing an improvement of 60% over the random strategy (blue dashed line).

In the first experiment, the robot learns to manipulate a complex articulated object
with 5 revolute joints. After 50 trials, the robot is given a slightly simpler structure
that only possesses four revolute joints. The simpler structure is a sub-structure of
the more complex one. We compare the robot’s performance after these initial 50
trials to another robot’s performance without prior experience (see Fig. 7(a)). Given
prior experience, the robot achieves convergence almost immediately. This corre-
sponds to a performance improvement of about 50% in the first trial, compared to
the robot without experience. After about ten trials, both robots achieve similar per-
formance, which is to be expected for simple structures that exclusively consist of
revolute joints.

In the second experiment, the robot learns to manipulate an articulated object
with 6 degrees of freedom (see Fig. 7(b)). After 50 trials, the robot is given a dif-
ferent structure that is not a substructure of the other. We compare the robot’s per-
formance after these initial 50 trials to another robot’s performance without prior
experience (see Fig. 7(b)). Again, experience results in a much faster convergence
(after only five trials) towards about five required interactions. In addition, the vari-
ance of successive trials is reduced. After about 15 trials, both robots converge
towards the same number of interactions.

4 Effects of Factorization

How does our approach for extracting planar kinematic models from articulated
objects in unstructured environments relate to the concept of factorization?

The interactive perception skill described in Section 3.1 fuses action and per-
ception into a single framework. In this framework, the perception of kinematic
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(a) Learning curves for a robot with experience manipulating the RRRRR object on the
left (solid green line) compared to an inexperienced robot (dashed blue line). Both robots
learn to acquire the kinematic structure of a simpler object (RRRR, middle). Experience
leads to nearly immediate convergence.
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(b) Learning curves for a robot with experience manipulating the PRRRRP object on the
left (solid green line) compared to an inexperienced robot (dashed blue line). Both robots
learn to acquire the kinematic structure of a simpler object (PRRP, middle). The sim-
pler object is not a sub-structure of the complex object. With experience, convergence is
achieved in about five trials.

Fig. 7 Experimental validation of transfer of manipulation experience between different ar-
ticulated objects.

structures (model acquisition) is enabled through manipulation of the world. At the
same time, the successful manipulation of kinematic chains depends on these very
perceptual capabilities. As the robot manipulates kinematic structures, it continu-
ously observes the joint angles of the object. It can use this information to complete
the manipulation task, i.e. to move the object from its current configuration into a
goal configuration, even in the presence of uncertainty. The synergistic combination
of action and perception reflects a factorization that leads to a simple and robust
skill for unstructured environments.

This stands in contrast with the traditional view of robotics, in which the prob-
lem of manipulating articulated bodies in unstructured environments would be
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decomposed into model acquisition and manipulation. We believe that this is an in-
appropriate decomposition, resulting in an overly difficult perceptual problem that
to our knowledge has not been solved yet.

In our approach, the effects of factorization go beyond action and perception.
They extend to the robot’s world model, dividing it into an internal and an external
part (the world).2 Traditionally, the task of acquiring information about the world
and acting on that information are separated. Here, model acquisition and manip-
ulation are fused into a single framework. The robot can act on its incomplete and
possibly inaccurate internal model. Through deliberate interactions, additional in-
formation can be obtained from the world. The robot continuously incorporates this
new information into its internal model. This integration of action, perception, and
model acquisition in our factorization thus contributes to the robustness of our ma-
nipulation skill in unstructured environments.

Furthermore, the chosen factorization enables the robot to learn and subsequently
apply domain-specific manipulation knowledge. The effectiveness of learning in a
symbolic, relational domain directly depends on the relationship between the sym-
bols and the sensorimotor capabilities of the robot. For example, one could pick very
low-level symbols and perform learning using basic visual features. This would re-
sult in a simple perceptual task, putting most of the complexity into the learning
task. We believe that this is an inappropriate decomposition. In contrast, we choose
symbols that are directly grounded in task-specific sensorimotor capabilities of the
robot. The perceptual problem now consists of identifying kinematic degrees of
freedom. The learning problem derives its simplicity from the resulting relational
description of the physical world. This factorization appropriately distributes the
complexity of the overall problem. The result is a robust and efficient approach to
the manipulation of articulated objects in unstructured environments.

5 Conclusion

We examined the hypothesis that manipulation problems in unstructured environ-
ments must be addressed by a suitable composition of capabilities in the areas of
perception, action, learning, and model acquisition. We argued that such a com-
position can only be found if the boundaries between the traditionally established
sub-fields in robotics are ignored. Ignoring these boundaries makes it possible to
decompose manipulation problems into sub-problems that can be solved effectively
and re-composed to robustly solve the original problem. We refer to decompositions
that satisfy this requirements as factorizations.

To support our hypothesis, we presented and analyzed a manipulation skill for
planar articulated objects. We argued that the decomposition of the manipulation
problem reflected in this skill tightly integrates perception, action, learning, and
model acquisition. We view the robustness and effectiveness of this skill in un-
structured environments as initial evidence that factorization is a good conceptual
framework to guide research in this area. We hope that our arguments will initiate

2 Experimental evidence shows that the humans perceptual system greatly relies on the phys-
ical world as part of its world model [23].
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a discussion about the most appropriate approach to manipulation in unstructured
environments. We are convinced that the reasoning presented in this paper in the
context of a single task will extend to other tasks and aspects of robotics in unstruc-
tured environments.

Should the concept of factorization prove to be indeed an important enabler of
progress for manipulation in unstructured environments, we believe there might be
interesting implications. For one, it would seem appropriate to shift emphasis in
robotics research from developing narrow, high-performance systems to building
robust, versatile, and integrated systems with lower-level capabilities that can be
brought to bear in a variety of problem domains. Furthermore, it would indicate that
progress towards truly autonomous robots can most effectively be made by focusing
on building up the competency of these integrated systems incrementally, starting
with very basic skills, such as the one presented here, rather than by integrating
best-of-breed approaches to individual facets of a real-world problem.
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Cybernetic Human HRP-4C: A Humanoid
Robot with Human-Like Proportions

Shuuji Kajita, Kenji Kaneko, Fumio Kaneiro, Kensuke Harada,
Mitsuharu Morisawa, Shin’ichiro Nakaoka, Kanako Miura, Kiyoshi Fujiwara,
Ee Sian Neo, Isao Hara, Kazuhito Yokoi, and Hirohisa Hirukawa

Abstract. Cybernetic human HRP-4C is a humanoid robot whose body dimensions
were designed to match the average Japanese young female. In this paper, we ex-
plain the aim of the development, realization of human-like shape and dimensions,
research to realize human-like motion and interactions using speech recognition.

1 Introduction

Cybernetics studies the dynamics of information as a common principle of com-
plex systems which have goals or purposes. The systems can be machines, animals
or a social systems, therefore, cybernetics is multidiciplinary from its nature. Since
Norbert Wiener advocated the concept in his book in 1948[1], the term has widely
spreaded into academic and pop culture. At present, cybernetics has diverged into
robotics, control theory, artificial intelligence and many other research fields, how-
ever, the original unified concept has not yet lost its glory.

Robotics is one of the biggest streams that branched out from cybernetics, and its
goal is to create a useful system by combining mechanical devices with information
technology. From a practical point of view, a robot does not have to be humanoid;
nevertheless we believe the concept of cybernetics can justify the research of hu-
manoid robots for it can be an effective hub of multidiciplinary research.

WABOT-1, the world first humanoid robot developed by Kato and his colleagues
in 1973[2], was built as an integrated system having two arms, two legs, a voice
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recognition system etc. Later, their group developed a piano playing humanoid,
WABOT-2 in 1985[3].

In the early 1990s, Brooks and his colleague started to build humanoid robots
as physical embodiment of artificial intelligence[4]. Research activities in ATR[5]
and the RobotCub project[6] can be considered to have the same intention, namely
humanoid robotics for cognitive science.

Since the breakthrough on biped walking done by Hirai et al.[7], many research
projects on biped humanoid robots were conducted. Research was carried on gen-
eration of walking motion[8], jogging and running [9, 10], efficient walking[11],
human-like walking[12], dynamic whole body balance control[13] and so forth.

There also exists research working on facial expression of humanoid robots
[14, 15, 16, 17]. These works target social communication and interaction, which is
another aspect of cybernetics.

In AIST, we have been developing a series of humanoid robots[19, 20]. Cyber-
netic human HRP-4C is our latest development, which is a humanoid robot de-
signed to have body dimensions close to average Japanese young female(Fig.1,
Table 1). This paper explains the goal of our project and introduce the developed
robot system.

Fig. 1 Cybernetic human HRP-4C
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Table 1 Principal specifications of HRP-4C

Height 1,580 [mm]
Weight(with batteries) 43 [kg]

Total DOF 42 DOF
Face 8 DOF
Neck 3 DOF
Arm 6 DOF × 2
Hand 2 DOF × 2
Waist 3 DOF
Leg 6 DOF × 2

CPUs Motion controller Intel Pentium M 1.6GHz
Speech recognition VIA C7 1.0GHz

Sensors Body Posture sensor
Sole 6-axies force sensor × 2

Batteries NiMH

2 Aim of the Development

2.1 User Centered Robot Open Architecture

HRP-4C was developed in the User Centered Robot Open Architecture (UCROA)
Project which is one of the projects under the AIST Industrial Transformation Re-
search Initiative, a 3-year industry-academia joint project implemented by AIST

Fig. 2 User Centered Robot Open Architecture (UCROA)
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from the fiscal year of 2006. The goal of the UCROA is to show society that it is
possible to develop robot products that meet the specifications required by users
combining reusable core technologies and developing prototype next-generation
robots which can be used in practice by 2010 and for which the market is expected
to be large. Three prototype robots were developed in the project (Fig.2).

1. Logistics support robot
2. Personal service robot
3. Cybernetic human

For the logistics support robot, we developed a robotic system for warehouses. For
the personal service robot, a small manipulator system to assist daily life of hand-
icapped people was developed. The third subject of the UCROA is the cybernetic
human, whose concept is explained in the next subsection.

2.2 Concept of Cybernetic Human

A humanoid robots attract many people, because of its human-like appearance and
behavior. Although a robot with very human-like appearance is called an “android”
in general, we coined a new term Cybernetic human to define a humanoid robot with
the following features.

1. Have the appearance and shape of a human being
2. Can walk and move like a human being
3. Can interact with humans using speech recognition and so forth

Such robots can be used in the entertainment industry, for example, exhibitions and
fashion shows. It can be also used as a human simulator to evaluate devices for
humans.

As the successor of our previous humanoid robots HRP-2 and HRP-3[19, 20], we
call our new humanoid robot HRP-4C, “C” stands for cybernetic human.

3 Realization of Human-Like Shape and Dimensions

3.1 Target Specifications

To determine the target shape and dimensions of HRP-4C, we used the anthropomet-
ric database for Japanese population, which was measured and compiled by Kouchi
et al.[18]. The database provides the dimensions of the following four different
Japanese groups.

1. Young male: aged 19-27, average 20.5 years old, 110 samples
2. Young female: aged 19-27, average 20.2 years old, 107 samples
3. Aged male: aged 60-82, average 68.6 years old, 51 samples
4. Aged female: aged 60-80, average 66.9 years old, 50 samples
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Considering the entertainment applications like fashion show, we picked the average
young female data. Figure 3 shows part of the dimensions provided by the database.

Fig. 3 Anthropometric data of average young Japanese female [18]

In the early stage of design, we explored the possible choice and arrangement
of mechanical and electric devices by scaling up and down Fig.3 to have the stature
between 145cm and 160cm. In our final design, HRP-4C is 158cm tall which is very
close to the average of the young female, 158.6cm.

3.2 Joint Configuration

To obtain graceful motion of females, we asked a professional walking model to
perform walking, turning, sitting on chair, and other motions. The positions of 86
markers attached to her body were captured by Vicon Motion Systems, a 3D opti-
cal motion capture device (Fig.4). This data was used to evaluate the different joint
configurations proposed for HRP-4C structure. By calculating joint angles to real-
ize the captured motion, the necessary movable range was estimated. In addition, we
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Fig. 4 Motion capturing of professional walking model (Walking Studio Rei)

estimated the motor power during biped walking to determine the appropriate leg
joint configuration.

x

y

z

(a)

(b)

Fig. 5 Joint configuration of HRP-4C body (The head and hands are omitted)

Figure 5 shows the joint configuration we finally decided on for HRP-4C. In this
drawing, the joints for head and hands are omitted. It has the following characteristic
compared with our former humanoid robots, HRP-2 and HRP-3.
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• Roll axes of waist and neck were added to realize human-like behavior (Fig.5
arrow (a))

• Slanted links of forearm and thigh to mimic human (Fig.5 arrow (b))
• Use of standard hip joint structure to realize natural waist line (For HRP-2 and

HRP-3, we used cantilever type hip joint[19, 20]).

3.3 Design of the Body Mechanism

Figure 6 shows the designed body mechanism of HRP-4C (right) and HRP-2 (left).
By comparison, we see that HRP-4C realized much smaller chest and hip as well
as slender extremities. To realize this body mechanism, we adopted the following
technologies.

• PCI-104 single board computer and peripheral boards for the whole body motion
control

• Distributed network motor drivers
• Development of slim ankle mechanism

For further details of the body mechanism and electronics, see our next report[21].

Fig. 6 HRP-2 and mechanism of HRP-4C
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3.4 Design of Appearance

After the mechanical design of the leg part of HRP-4C was completed, we started
to consider the design of appearance. Figure 7 shows the proposed appearances of
HRP-4C. Fig.7(a) is a metallic robot with womanly form, (b) is a human-like design
with artificial skin and a dress to cover the mechanical parts, (c) is a conventional
humanoid robot design and (d) is a design as a mannequin.

(a) (b) (c) (d)

Fig. 7 Proposed designs for HRP-4C

One of the problems of the design like Fig.7(b) is when the degree of similarity
passes a certain level, it can make people feel strange or even fearful. This effect was
named the uncanny valley by Mori[22]. He also pointed out that it can be amplified
by the difference of motion pattern between the robot and human. This is serious for
an entertainment robot.

Considering the uncanny valley and the impact as the entertainment robot, the
final design was decided to be between (a) and (b), that is metallic robot body with
a human-like face (Fig.8). We also decided to make the robot face not so real.
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Fig. 8 Final design for HRP-4C

3.5 Head and Hands

To realize a head size close to the average young female (Fig.3) and achieve weight
reduction, we limited the numbers of degrees of freedom (DOF) of the head. As
the minimum DOF to create facial expression we chose the movements shown in
Table 2. Since each pair of the eyebrows, eyelids, eyeballs pan and eyeballs tilt are
actuated by one servomotor, HRP-4C cannot perform some facial expressions like
winking. Figure 9 shows the face of HRP-4C. Despite the above noted limitations,
HRP-4C can perform effective facial expressions like smile, surprise, anger etc.

Table 2 Head joints of HRP-4C

Joint name DOF Joint name DOF
Eyebrows 1 Mouth 1
Eyelids 1 Upper lip 1

Eyeballs pan 1 Lower lip 1
Eyeballs tilt 1 Cheek 1

Total 8
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Fig. 9 Face of HRP-4C

We designed the hand of HRP-4C to create motion which is used in dance perfor-
mance. Its DOF was again limited to the minimum (Table 3). The four fingers from
the index to the little fingers are driven by one servomotor and the thumb is driven
by another. The size of the hand became bigger than the average young female, due
to the selected servomotors.

Table 3 Hand joints of HRP-4C

Joint name DOF
Index, middle, third and little fingers 1

Thumb 1
Total 2

4 Towards Human-Like Motion and Walking

We developed a couple of algorithms to generate human-like motion and walking
from the mocap data obtained in 3.2[23, 24]. Figure 10 shows HRP-4C performing
a 90 degree turn which was created from the captured human motion. We developed
a new control software to stabilize a humanoid robot motion with stretched knee.
Currently, the reliability of the controller is not enough, and we are improving it.

We also have developed a software tool to manually program HRP-4C. It can be
used to quickly create the motion of HRP-4C through an interactive user interface
[25].
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t=3.1[s] t=4.1[s]

t=5.05[s] t=6.16[s]

Fig. 10 90 degree turn based on captured motion

5 Interaction Using Speech Recognition

We used the open source speech recognition engine Julian[26]. It runs on the CPU
embedded in the head of HRP-4C. To realize robust recognition against ambient
noise, an operator uses a wireless Bluetooth microphone to send voice commands.

The recognition result is transmitted to the motion control software running on
the other CPU in the body of HRP-4C via RT middleware[27]. Figure 11 shows an
operator speaking the voice command “Look surprised!” and HRP-4C demonstrat-
ing the surprise motion.
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Fig. 11 HRP-4C responding to the voice command ”Look surprised!”

6 Conclusions and Future Work

In this paper, we gave an overview of the development of our new humanoid robot,
cybernetic human HRP-4C. The robot has the appearance and shape of a human
being, specifically, an average young Japanese female. It can perform biped walk
using its own battery and it can interact with humans using speech recognition.

The software of HRP-4C is still under development for the project was carried
out with a tight schedule. One of the urgent goal is to realize a reliable human-like
biped walking with stretched knees.
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Reconstruction and Verification of 3D Object
Models for Grasping

Zoltan-Csaba Marton, Lucian Goron, Radu Bogdan Rusu, and Michel Beetz

Abstract. In this paper we present a method for approximating complete models of
objects with 3D shape primitives, by exploiting common symmetries in objects of
daily use. Our proposed approach reconstructs boxes and cylindrical parts of objects
from sampled point cloud data, and produces CAD-like surface models needed for
generating grasping strategies. To verify the results, we present a set of experimental
results using real-world data-sets containing a large number of objects from different
views.

1 Introduction

In this paper we discuss a method on how to obtain suitable complete 3D represen-
tations for typical objects in a kitchen table cleaning scenario. Our approach differ-
entiates from similar research initiatives in the sense that we do not use databases
containing predefined object models in combination with machine learning classi-
fiers to address the object reconstruction problem. Instead we generate CAD-like
quality surface models that are extremely smooth and can directly be used to infer
grasping points by exploiting shape symmetries. To show the applicability of our
approach, we make use of a mobile manipulation platform (see Figure 1) to acquire
3D point cloud datasets, and show segmentation results for table planes together
with sets of unseen objects located on them. The result of our mapping pipeline in-
cludes a complete set of 3D representations that can be used to compute grasping
points.

Most grasping paradigms, like [11] and [5], require a CAD-like representation of
the objects, which is difficult to obtain from sensed data. The two main approaches
to produce these representations rely on image or depth information. In the first case,
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usually a model from a database is matched to the image as in [3, 6], while in the
latter, a more flexible combination of shape primitives [17], superquadrics [1, 21]
are fit, or a triangulation of the surface [13, 9] is performed.

The most accurate 3D sensing devices usable by robots are laser scanners, which
can have an accuracy in the millimeter range for some surface types, but they can
provide only partial information about the object (one side, from a single viewpoint),
and they have problems when dealing with shiny (eg. metal or ceramic) objects.
Unfortunately, these are quite common in every day manipulation tasks, like those
a personal assistant robot would encounter in a kitchen, for example. These objects
need to be segmented into distinct clusters for grasping, but in some cases an object
appears in two separate clusters because of the previously mentioned problems, or
occlusions. Thus a mug is typically represented by point clouds in two semi-circular
parts and with only a few points on the handle (see Figure 2).

Some simplifications have to be made in order to be able to approximate the oc-
cluded parts of objects. Our assumption is that most objects have a vertical plane
or axis of symmetry (eg. mugs, boxes, bottles, jars, plates, pans, bowl, silverware,
etc.), are composed of planar and cylindrical parts, or can be roughly approximated
by such, and are representable as groupings of planar patches and cylindrical parts.
Because of their vertical symmetries, these models can be obtained by analyzing the
footprint of the objects on their supporting plane, and detecting linear and circular
segments in it (see Figure 3). We call these objects with sides that are perpendicular

Fig. 1 The mobile manipulation platform used for the experiments presented herein.
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Fig. 2 Typical one-side scan of a mug, where the rim and handle didn’t return enough mea-
surement points, thus the mug will be over-segmented into two separate connected compo-
nents, and the handle is hard to detect.

Fig. 3 The most important processing steps of our method are illustrated in the pictures, from
left to right, top to bottom: a) measurement points returned from objects on the table are seg-
mented from the complete scan, and sparse outliers are removed; b) connected components
are identified and shape primitives are fit to its footprint silhouettes (points belonging to a
vertical plane are marked with red and orange, while those belonging to cylinders are green);
c) the 3D shapes (boxes and thick cylinders) are obtained from the corrected shape primitives;
d) points are generated on the shapes and verified for correspondence to measurements and
visibility (green points are invisible from the current viewpoint, orange points are verified
by measurements while black points are in visible free space, meaning that the model of the
object should not include those parts of the shapes.
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to their bottom standing objects. Spherical, toroidal and conical parts will be ap-
proximated with cylinders, but this would explain the data only partially, so we can
recognize the cases when these problems are encountered. This approach provides
straightforward ways of correction (like merging two components if they belong to-
gether) and verification of the correctness of the fitted model at each surface area
unit.

The main contributions of our approach are:

• exploiting common symmetries to produce suitable completed models for grasp-
ing applications from single view scans;

• creating a complete model from a single view for standing objects, together with
a measure for verifying the approximated reconstruction;

• a way to deal with 3D over-segmentation of objects produced by occlusions and
measurement errors.

The remaining of the paper is organized as follows. In the next section an overview
is given on the current approaches, followed by the presentation of our method
in Section 3. The experimental results are analyzed in Section 4, followed by our
conclusions and a discussion on future work in Section 5.

2 Related Work

A computer vision and machine learning based method is used in [16] to train classi-
fiers that can predict the grasping points in an image. This is then applied to images
of unseen objects. To obtain 3D positions of grasping points, the authors use stereo
cameras, but their approach works reliably only to the extent provided by the train-
ing data. Another issue is the segmentation of objects, since only grasp points are
provided with no information about what objects are in the scene and to which of
them do the identified points correspond. In [2] an accurate line laser and a camera
builds models and identifies grasping points for novel objects with very encouraging
results. However the system was tested only on two objects, thus its scalability is not
clear. Available models of complex objects are decomposed into superquadric parts
in [1, 21], and these models are fit to a point cloud. This however needs a database
of models, and moreover, their decomposition into superquadric components, which
is often difficult to obtain.

In purely computer vision based approaches either features like [8] or [7] are
used to find matches between parts of a scene and a database of object images.
The problem with these kinds of approaches is that they only work for objects that
are in the database, and since no knowledge about the 3D information is known,
the system can easily make mistakes and return false positives (e.g., a cereal box
containing a picture of a beer bottle printed on it might get recognized as a bottle of
beer). Another approach to obtain 3D information directly form camera images, is
to project CAD models from a database to the image and search for good fits in the
edges domain, for example like in [19]. While this is a more direct method, it’s still
dependent on a database of different CAD models. Acquiring these automatically
from the Internet has been explored in [6], but obtaining the models of all the objects
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in a scene requires selecting all the possible good fits of the models to the image,
which takes considerable amounts of time. In our approach, we do not have these
problems, since we have access to the 3D information directly, so we can use a
bottom up approach for reconstructing the object model from the geometry data,
with lower computational constraints than the initiatives mentioned previously.

Hough transforms are sometimes used to detected geometric shapes like cylinders
in [12], or planar patches in [20] in point clouds. However they are not as popular
as sample consensus based methods like RANSAC [4], since a parameter space has
to be constructed for each shape type separately, which complicates things for more
complex models. In the sample consensus paradigm, the data is used directly to
compute best-fit models. We are using RANSAC because it allows the definition of
different models for more complex geometric shapes.

A similar sample consensus based approach for model decomposition is pre-
sented in [17], where a set of 3D geometric primitives (planes, spheres, cylinders,
cones and tori) are fit to noisy point clouds. Since the point clouds presented there
are complete, the authors don’t need to reconstruct the missing parts. To solve this
problems in our case, we are fitting planar and cylindrical shapes, and exploit the
vertical symmetries present in most objects to reconstruct their occluded parts. In
[18] the authors describe a method for detecting and verifying symmetries in point
clouds obtained from a single viewpoint which works very well for nicely seg-
mented objects, however the problem of under- or over-segmented objects remains.

3 Object Model Reconstruction

Our system takes a single view of a table scene as input, and extracts the table
together with the points returned from the objects that are on it. The data is cleaned
using a statistical analysis of point densities, and clustering is performed to segment
the different objects into separate regions.

These regions are then reconstructed, and the fitted models are corrected, evalu-
ated, and used for detecting cases of over-segmentation (i.e., when objects are split
into multiple regions).

In the next subsections we present the aforementioned steps in more detail.

3.1 Table Detection

The initial step of our method is to locate the table and the objects on it. This prob-
lem falls outside the scope of this paper, and our previous work on Object Maps
[15] have already presented the robust localization of important furniture parts in
a kitchen in more detail. After the location of the table is obtained, a scan can be
made of the area, and a restricted planar search can be performed in order to obtain
the model of the table as presented in Figure 4 (see [15] for more details).
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3.2 Object Footprints

After the points that are above the table are obtained, the sparse outliers are removed
using a statistical analysis of the point densities in each points neighborhood as
detailed in [14]. The remaining points are projected along the normal of table plane
to obtain 2D clusters, which are then grouped based on a connectivity criterion.

In each cluster a set of boundary points are identified as those which have a
maximum angle between the vectors pointing towards their neighbors (from the
same region) that matches or exceeds the opening of a what would be a straight line
(that is 180◦). The neighbors of these points are also marked as boundary points
in order to provide a contingent set of boundary points around each cluster. These
“footprint” points are then used to match shape primitives to them as it can be seen
in Figure 5.

Fig. 4 Detected table and objects on top of it in a partial scan.

Fig. 5 Left: the identified objects on the table based on the clustering of their projections
shown in random colors. Right: points that lie on the boundaries of the clusters are high-
lighted.
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The search radius used for identifying the neighbors was chosen so that it com-
pensates the variations caused by noise, but still includes points on thick handles
such that a robust fit can be performed.

3.3 Hierarchical Model Fitting

Having the 2D boundary points for each cluster, we fit shape primitives to them,
lines and circles more specifically, in order to locate the vertical planes and cylinders
in the object.

Initially a line and a circle is fit to the footprint, and whichever has the most
inliers gets accepted. Before accepting a circle however, two conditions have to be
met.

Since a single circle can approximate a rectangle much easier than a single line,
special care has to be taken to correctly recognize rectangles. For this, an oriented
bounding rectangle is computed around each region using principle component anal-
ysis, and the average of normalized distances to the closest boundary points is com-
puted as:

μ =
1
N

N

∑
i=1

dist(pi,obr)
width(pi,obr)

, (1)

where N is the number of boundary points pi in a region, obr is the oriented bound-
ing rectangle of the region, and the functions dist() and width() return the minimum
distance of the point pi to the sides of obr and the width of the bounding rectangle
along the measurement direction respectively. Thus a fraction is computed between
the distance of the point to a side of the obr along a principle component, and the
width of the obr along that principle component.

Naturally, μ will have smaller values for rectangles than for circles or half-circles.
The average normalized distance was found to be around 3% for rectangular foot-
prints, and above 5% for non-rectangular ones, thus allowing us to decide when to
neglect a first circular fit to the region (please see Figure 6).

In some cases checking the oriented bounding box is not enough, so circles have
to be checked also against a set of parallel and perpendicular lines fit to the data. To
do this, lines are fit to the cluster until there are not enough points left, and a subset

Fig. 6 Left to right: PCA analysis performed on clusters of a book, pan and the two parts of
a mug.
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of these lines is selected that are pairwise parallel or perpendicular, and have the
most number of inliers. This exhaustive search has a low computational complexity,
since it only has to be performed for points in a single cluster.

Please note that the orange points in Figure 3b are inliers to a line that was
grouped to the previous parallel line found in the cluster.

In the subsequent iterations, the steps are repeated (except the check with the
oriented bounding rectangle, of course) for the remaining points, until their number
drops below a minimum threshold for which a robust fit can not be ensured anymore.
Please see the results in Figure 7.

Fig. 7 Left: the 2D shapes that were fit to the cluster. Right: the inliers of those shapes in 3D.

3.4 Model Correction and Merging

After a set of shape primitives were fit to the region, these have to be corrected and
possibly merged to improve the quality of the reconstruction.

Inliers of 2D circles which have a high overlap, are likely to belong to the same
3D cylinders, so merging them simplifies and also corrects the reconstruction. The
criterion for merging circles, is that one of them includes the center of the other,
since small measurement errors, or the presence of a handle for example can already
modify the position and size of the best fit considerably.

When two circles from the same region are merged, a weighted average is com-
puted for them, where the weights are the number of inliers of each circle. A re-
fit using RANSAC would be redundant, because a search for circles was already
performed in the region, and yielded the two circles separately. For circles from
different regions, a complete re-fit is possible since their inliers were not consid-
ered already by the sample consensus method, so this gives accurate results even for
small overlaps. An example for a merge between circles from different regions is
illustrated in Figure 8. In these cases, the two regions are merged into one, since the
two parts of a circle indicate a strong evidence that over-segmentation occurred.

Lines that form parallel and/or perpendicular groups in a region are also merged,
since they are most probably part of a box for which the boundaries were identified
(see Figure 9 for results).
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Fig. 8 From left to right (top row is viewed from above, while the bottom from the side): a)
original measurement points returned from a mug, clustered in two disconnected regions; b)
the inliers to the primitives identified in the regions (the shapes themselves can be seen in the
background of the top row pictures) c) the two circles are merged and the model is re-fitted.

3.5 Model Reconstruction and Verification

The corrected lines and circles are transformed into boxes and thick cylinders re-
spectively, using the minimum and maximum heights of their inliers, together with
the distances of the inliers to the model as thickness (as shown in the right part of
Figure 9).

In order to verify these models, we generate points on a grid on the sides of the
boxes and on the surface of the cylinders defined by the initial circles. These points
can fall into 3 categories:

1. points that are invisible from the current viewpoint;
2. points that are verified by measurements;
3. points that are void, meaning that they are in visible free space, thus the model

of the object should not include those parts of the shapes.

To check which points are verified, we verify if there are measurement points in
their neighborhoods, within a maximum distance dth. Those points that are not ver-
ified are checked for visibility by verifying the points that lie along the vector that
connects the point to the viewpoint, or at most at distance dth from it. If the point is
occluded by measurement points, it is marked as invisible and as void otherwise.

An example can be seen in Figure 10. This way we can form an image about the
measure of these misalignments. Generally we can say that the error of the assump-
tion that the sides of the objects are perpendicular to the estimated normal of the
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table, lies well below 5 degrees, as does the error in approximating the rotation of
the object around the normal.

The resulting point categories give valuable feedback about the probability of a
successful fit for that particular shape, but also on how well the object respected our
assumptions. For their interpretation please see Section 5.

Fig. 9 Left: the corrected circles are marked with blue. Right: the reconstructed 3D models
from the merged 2D shapes.

Fig. 10 Verification of object models, viewed from the front (left) and from the back (right).
Orange points are marked as verified, green ones as invisible and black points as void.

4 Experimental Results

We applied our method to several views of tables containing objects of every day
use on them (e.g., boxes, tetra packs, mugs, jars, small containers, plates and pans)
at different distances and orientations, and obtained fairly robust results, as it can be
seen in Figures 3, 9 and 11.

The small variations in the results for the same dataset, are due to the random
element in the sample consensus approach, but the method gives consistent ap-
proximations. There is a small ambiguity for very thin, small containers, which are
sometimes reconstructed as boxes instead of cylinders, but the small inaccuracies
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of the laser scanner make it very hard to distinguish circles with small radii from a
box. Please see Figure 12 for an example.

In some cases an incorrect fit of a cylinder is accepted by the method over a part
of a box,but they get rejected whenever they are verifiable, as presented in Figure 13.

Fig. 11 From top to bottom, left to right: a) connected components, b) shape primitives and
their corrections, c) the obtained boxes and thick cylinders, and d) the labels of the areas on
the models. For the interpretation of the colors we kindly refer the reader to the explanations
of the previous pictures.

Fig. 12 A slightly different reconstruction of the scene presented previously in Figure 9. Left:
the 2D shapes that were fit to the cluster. Right: the inliers of those shapes in 3D.
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Fig. 13 Incorrect fit of the cylinder on top of the box, detected on the basis of the high amount
of void parts.

5 Conclusions

In this paper, we presented a method for producing approximations of complete
object models from a single partial view, by fitting planar patches (and combining
them into boxes) together with cylindrical areas to 3D point cloud data. The pro-
cessing steps include an analysis of the silhouettes of the object’s 2D projections,
and their decomposition into shape primitives. These are then used to recompute
the parameters of 3D shapes that model the real objects well enough for estimiating
grasping points. The approach can easily be extended to model different layers of
objects separately for increased accuracy.

A method for merging parts of over-segmented objects is inherently embedded in
our approach, as is the verification and correction of the models. The labels set by
the model verification step provide means of checking the correctness of the model
at each surface unit, refit the model if the current one is implausible (see Figure 13),
and remove parts of the model if necessary. This way concavities can be recognized
and since the model extends to the limits of the inliers, unexpected collisions can be
avoided.

While the exact grasping strategy is not the scope of this paper (please see the
approaches mentioned earlier for example), this information can also be used to
optimize grasping (since poses for grabbing boxes and cylinders are relatively easy
to generate) and improve its accuracy. In the case of pre-generated grasps for boxes
and cylinders, apart from the collision checks with the other parts of the object
and the surroundings, this can be achieved by excluding the generated end-effector
poses that would require it to have contact in the void points for a successful grip. If
grasps are to be generated after the completed model is obtained, good grasps can
be obtained by adjusting the friction coefficients on the model based on these labels.

The points remaining after fitting the shape models might hold some information,
so grouping them and fitting them into boxes might be useful, but this will have to be
limited in order to avoid the unnecessary complication of the object models because
of measurement noise. The points which can not be explained by the models might
be introduced as triangular meshes to form hybrid object models, but the primary
problem here is the resolution and accuracy of the measurements, which still has
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room for improvement, for example by accepting multiple return pulses instead of
averaging them in the case when the laser beam hits an edge and the object behind
it as well.

Our next steps will be to work on the problem of separating objects which are
located close to each other, and to extract features from the fitted model for using
them in training a a classifier that differentiates between plausible and less plausible
configurations, i.e. to find out how probable is that a combinations of fitted mod-
els to a cluster is approximating the true 3D structure correctly (employing similar
techniques as in [10]). For this, a large number of hand-labeled training sets of cor-
rect and incorrect fits is needed, for which the slight variations for the same data
introduced by the random sample consensus method works to our advantage.
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Floating Visual Grasp of Unknown Objects
Using an Elastic Reconstruction Surface

Vincenzo Lippiello, Fabio Ruggiero, and Bruno Siciliano

Abstract. In this paper a new method for fast visual grasp of unknown objects is
presented. The method is composed of an object surface reconstruction algorithm
and of a local grasp planner, evolving in a parallel way. The reconstruction algorithm
makes use of images taken by a camera carried by the robot, mounted in an eye-in-
hand configuration. An elastic reconstruction sphere, composed by masses intercon-
nected each other by springs, is virtually placed around the object. The sphere is let
to evolve dynamically under the action of external forces, which push the masses
towards the object centroid. To smoothen the surface evolution, spatial dampers are
attached to each mass. The reconstruction surface shrinks toward its center of mass
until some pieces of its surface intercept the object visual hull, and thus local rejec-
tion forces are generated to push out the reconstruction points until they stay into
the visual hull. This process shapes the sphere around the unknown object. Running
in parallel to the reconstruction algorithm, the grasp planner moves the fingertips,
floating on the current available reconstructed surface, according to suitable quality
measures. The fingers keep moving towards local minima depending on the evolu-
tion of the reconstruction surface deformation. The process stops when the object
has been completely reconstructed and the planner reaches a local minimum. Qual-
ity measures considering both hand and grasp proprieties are adopted. Simulations
are presented, showing the effectiveness of the proposed algorithm.

1 Introduction

Operating in unstructured environments is a challenging research field which has
not been widely investigated as far as the problem of grasping unknown objects is
concerned.
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Grasping and manipulation tasks, in general, require a priori knowledge about the
object geometry. One of the first approaches to grasping in unknown environments
can be found in [26], where visual control of grasping is performed employing vi-
sual information to track both object and fingers positions. A method to grasp an
unknown object using information provided by a deformable contour model algo-
rithm is proposed in [16]. In [25] an omnidirectional camera is used to recognize the
shape of the unknown object while grasping is achieved on the basis of a grasping
quality measure, using a soft-fingered hand.

From another point of view, it is straightforward to recognize that two main
tasks have to be performed to achieve unknown objects grasping: object recogni-
tion/reconstruction and grasp planning.

In literature, different methods have been proposed to cope with 3D model re-
construction of unknown objects. The main differences lies in how the available
object images are processed and on the algorithms used for object reconstruction. A
number of algorithms can be classified under the so called volumetric scene recon-
struction approach [6]. This category can be further divided into two main groups:
the shape from silhouettes and the shape from photo-consistency algorithms. An-
other method, proposed in [24], considers a surface that moves towards the object
under the influence of internal forces, produced by the surface itself, and external
forces, given by the image data.

The finite-elements method is used in [5] to reconstruct both 2D and 3D object
boundaries. Using an active contour model, data extracted from taken images are
employed to generate a pressure force on the active contour that inflate or deflate
the curve, making its behavior like a balloon.

A technique for computing a polyhedral representation of the visual hull [12] –the
set of points in the space that are projected inside each image silhouette– is studied
in [9]. Other approaches rely on the use of apparent contours [4, 19], where the
reconstruction is based on the spatio-temporal analysis of deformable silhouettes.

On the other hand, grasp planning techniques rely upon the choice of grasp qual-
ity measures used to select suitable grasp points. Several quality measures proposed
in the literature depend on the properties of the grasp matrix, that means on the grasp
geometry; others are based on the area of the polygon created by the contact points,
or on the external resistent wrench.

In [7] two generally optimal criteria are introduced, where the total finger force
and the maximum finger force are considered, while in [15] simple geometric condi-
tions to reach an optimal force closure grasp both in 2-D and in 3-D are found. The
geometric properties of the grasp are also used in [13] to define quality measures,
as well as suitable task ellipsoids in the wrench space of the object are proposed to
evaluate grasp quality also with respect to the particular manipulation task.

Measures depending on the hand configurations [20] define a set of quality mea-
sures based on the evaluation of the capability of the hand to realize the optimal
grasp. A rich survey of these grasp quality measures can be found in [22].

To plan a grasp for a particular robotic hand, quality measures depending both on
grasp geometry and on hand configuration should be taken into account. Few papers
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address the problem of grasping an unknown object using a given robotic hand, able
to reach the desired contact points in a dexterous configuration [1, 3, 8, 10, 11].

A grasp control task is considered in [17], where several controllers are combined
to reach different wrench closure configurations, while in [18] grasp prototypes –
generalization of example grasps– are used as starting points in a search for good
grasps.

In this paper, a new method for fast visual grasping of unknown objects using
a camera mounted on a robot in an eye-in-hand configuration is presented. This
method is composed of an object surface reconstruction algorithm and of a local
grasp planner, which evolve in a synchronized parallel way. The reconstruction al-
gorithm makes use of images taken with a camera carried by the robot. First, a
rough estimation of the object position and dimensions is performed, and an elastic
reconstruction surface with a spherical shape is virtually placed around the object.
Then, the fingertips of the robotic hand are suitably attached on it, at a suitable
floating safety distance. The reconstruction surface is sampled by points, which are
endowed with a virtual mass, and are interconnected with each other by means of
virtual springs resulting in a cross reticulum. A virtual spatial damper is also consid-
ered to smoothen the motion of the surface sample points. During the reconstruction
process, the elastic surface evolves in a dynamic way leaning to shrink on itself un-
der the action of reticular elastic forces and external forces, pointing to the contours
of the visual hull defined by the object silhouettes. For each mass, the external com-
pression forces becomes repulsive forces along the outgoing direction with respect
to the visual hull if the reconstruction point comes into the visual hull, while they re-
turn to be attractive when the point comes out of the visual hull. The amplitude of the
external forces is progressively reduced during the chattering around the contour of
the visual hull to guarantee that a dynamic equilibrium between external and elastic
forces is quickly reached. The current reconstruction surface is buffered and made
available, with a fixed sample time, to the planner. This moves the fingers, float-
ing on this current available reconstructed surface at an imposed security distance,
according to suitable quality measures. Due to the consequent motion floating ef-
fect around the object, the proposed method has been called Floating Visual Grasp.
The fingertips keep moving toward a local minimum on the current reconstructed
surface as long as it continues to change due to the updates provided by the recon-
struction process. Quality measures considering both hand and grasp proprieties are
adopted for the local planner: the directions of the finger motion leading toward
grasp configurations that are not physically reachable or causing collisions or loss
of hand manipulability are discarded. Moreover, a discretized version of the quality
measure proposed in [15] is applied to the survived possible motion directions to
select those leading toward an optimal (in a local sense) grasp configuration. Notice
that many other quality measures may be chosen in substitution of those proposed
in [15], without affecting the the proposed framework.

Due to the intrinsic smoothness and safety with respect to collisions of the
planned trajectories, the execution of the grasp can also be executed in real-time
during the trajectory generation. This allows the proposed algorithm to be used for
kinematic control purposes.
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Fig. 1 Block diagram of the visual grasp algorithm.

Simulations results are presented to show the performance of the proposed
algorithm.

2 Floating Visual Grasp Algorithm

The block diagram in Fig. 1 shows the data flow and the main elaboration steps
of the proposed visual grasp algorithm. The elaboration processes may be arranged
into three main groups: some preparation steps, the object surface reconstruction
algorithm, and the local grasp planner.

The preparation steps of the algorithm start with a detection algorithm, that is
based on a classical blob analysis, to evaluate the presence of an object in the field
of view of the camera. Successively, by holding the optical axis perpendicular to the
plane where the object has been detected, the camera is moved until the optical axis
intercepts the centroid of the object. At the end of this step, the camera is exactly
over the unknown object and ready to start the image acquisition process. Moreover,
during this step, a rough estimation of the object center of mass is evaluated using
the centroid of the object shape extracted from some images.

The image acquisition stations are chosen as illustrated in Fig. 2, while the con-
cerning image acquisition step is carried out as follows: 1) an image is acquired
from the top of the object; 2) a subset of n1 images is taken from camera stations
equally distributed over a circular path of radius r1, with the optical axis of the
camera pointing to the estimated center of the object and forming an angle α1 with
respect to the revolution axis z; 3) a subset of n2 images is acquired as in 2), but
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Fig. 2 Camera stations (bullets) and trajectories of the camera during image acquisition.

using a radius r2 and an angle α2. In the following, the total number of acquired
images will be denoted as n = n1 + n2 + 1.

At this point, a blob analysis technique is employed to determine the silhouette of
the object for each image. Each silhouette is also improved using suitable filtering
techniques (e.g. dilatation and erosion iterative process) to reduce the effects of
the image noise, and the centroid of the corresponding blob is evaluated. Then, the
center of mass of the object, assuming homogeneous mass distribution, is estimated
using a least-squares triangulation method.

On the basis of the dimension of each silhouette, the radius rs of a 3D spherical
surface that may contain the object is estimated, adding a suitable safety margin to
the object estimated dimension. Finally, the reconstruction sphere with radius rs,
centered at the estimated center of mass of the object, and sampled with a number
of ns points is built. The position of each sample on the sphere is chosen in a way
to achieve an initial uniform distribution of the reconstruction points, avoiding a
thickening of points around the two poles (north and south) of the sphere.

A virtual mass is associated to each sample point of the reconstruction spherical
surface, and four links are imposed with the closest cross points interposing springs.
The resulting elastic reconstruction surface is shown in Fig. 3, where it is noticeable
that the links between the masses dived the sphere into a certain number of parallels
and meridians.

The initial grasp configuration of the hand can be set on the basis of the initial re-
construction sphere. In this paper, a three-fingered hand and point contact type at the
fingertips are considered. Hence, a direct correspondence between the position of a
point on the sphere and the position of each finger of the hand can be assumed. Due
to the symmetry of the sphere, an infinite number of grasp configurations, ensuring
force-closure grasp, could be initially selected. To this purpose, it is well known that
a three contact grasp of a sphere is force-closure if the contact points are 120◦ apart
on the same plane (neglecting moments and transversal forces). Therefore, the plane
parallel to the floor halving the sphere, corresponding to the parallel with the max-
imal area that is graspable with respect to the hand kinematics, is chosen. Finally,
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Fig. 3 Elastic reconstruction sphere surrounding the object.

three points 120◦ apart are selected on this parallel according to the orientation of
the major and minor axis of the silhouette observed from the station just over the
object –the observation station characterized by an optical axis perpendicular to the
parallels of the sphere–.

At this point, both the object model reconstruction process and the local planner
start in parallel and cooperate to the final goal. In particular, as shown in Fig. 1, the
reconstruction algorithm updates in real-time the estimation of the current recon-
structed object surface, while the local planner, on the basis of the current estima-
tion, computes the fingers trajectories toward the current local optimal configuration
for the grasp. Notice that a force optimization algorithm, e.g. [2], could be used for
a proper distribution of grip forces.

These two parallel processes are independent and can be allocated under two
different threads and, in a multi-processor system, also on different CPUs. In other
words, the proposed method exhibits an intrinsic capability to be run in parallel.
More details of these two crucial steps are provided in the next two sections.

3 Object Surface Reconstruction

The object surface reconstruction algorithm employed in this paper is an evolution
of the method proposed in [14].

As described in the previous sections, from the set of n silhouettes of the object
a reconstruction spherical surface is created and sampled by points. A virtual mass
is associated to each sample point, and four links are imposed with the closest cross
points with springs, resulting in a cross reticular topology for the reconstruction
surface (see Fig. 4). The two poles of the sphere are connected with all the masses
of the nearest parallel of the resulting spherical reticulum.

Each parallel of the sphere should have the same nm number of points, corre-
sponding to the number of meridian, allowing the construction of a cross reticulum
fully linked. In other words, for each point, the existence of a couple of correspond-
ing points on the closest parallels of the spherical grid is guaranteed. Without loss
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Fig. 4 Cross network topology of the reconstruction surface with the virtual mass, springs
and spatial damper of the i-th sample points.

in generality, the number of parallels np is chosen equal to the number of meridians
np = nm =

√
ns −2. To avoid that the parallel nearest to the poles determines an

unnecessary initial thickening of sample points around the poles, a suitable angular
distribution of the parallels has been carried out, reducing (augmenting) the density
of the parallels near the poles (equator).

The model of the system, defining the motion of each sample point of the recon-
struction surface, is defined by the following dynamic equations:

mẍi, j + bẋi, j + k(4xi, j −xi−1, j −xi, j+1−xi+1, j −xi, j−1) = fi, j, (1)

for i = 1, . . . ,nm and j = 1, . . . ,np, denoting with xi, j the position in the workspace
of the sampling point at the intersection of the i-th meridian with the j-th parallel
–reticular position (i, j)–, with m, k, and b the mass associated to the point, the
constant spring linking the point with its nearest four points of the cross of the
reticulum, and the constant spatial damper, respectively. Notice that subscript i =
j = 0 (i = nm +1 and j = np +1) for the representation of the four nearest points in
the reticulum corresponds to i = nm and j = np (i = j = 1), respectively.

The term fi, j is the external force acting on the mass associated to the sample
point (i, j), attractive with respect to the border of the visual hull, which is progres-
sively reduced once the corresponding point comes in or out from the visual hull:

fi, j = αi, j(ti, j)Fani, j, (2)

where ni, j is the unit vector pointing from the current point (i, j) to the estimated
centroid of the object, that defines the direction of the force, and αi, j(ti, j)Fa is the
amplitude of the force. Also, Fa the maximum force module and αi, j(ti, j) ∈ (−1,1]
a discrete numerical sequence of scale factors defined as follow:

αi, j(ti, j) = −εαi, j(ti, j −1) (3)

where ε ∈ (0,1) (e.g. ε = 0.9), αi, j(0) = 1, and ti, j = 0, ...,∞ is a discrete step time
incremented every time the point (i, j) comes in or out of the visual hull.
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Fig. 5 Steps of the object surface reconstruction process.

The two poles have to be treated separately due to their topological peculiarity.
The previous model becomes

mẍn + bẋn + k(nmxn −
nm

∑
j=1

x1, j) = fn (4)

for the north pole, and

mẍs + bẋs + k(nmxs −
nm

∑
j=1

xnp, j) = fs (5)

for the south pole, where the subscripts n and s indicate quantities refereed to the
north and south pole, respectively.

The stability of the system, for any non-trivial initial condition of the sphere,
leads the reconstruction elastic surface to contract toward its center of mass until
the visual hull is intersected. The dynamic evolution of the system reaches the equi-
librium when the shape of the surface produces a dynamic equilibrium between the
elastic forces generated by the grid and the repulsive forces depending on the con-
tours of the visual hull. The result is that the initial elastic reconstruction sphere
shapes itself on the unknown object.

The accuracy of the reconstruction process depends on the number of views,
on the distribution of the observation stations, and on the density of points of the
reconstruction sphere. On the other hand, the computational time of the algorithm
increases if n and/or ns are increased. However, considering that the final goal of
the process is the object grasping and not the model reconstruction, which can be
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Fig. 6 Floating visual grasp.

considered as a secondary outcome of the proposed method, the accuracy of the
reconstruction process needs only to be adequate for the requirements of the grasp
planner algorithm.

In Fig. 5 some images showing intermediate steps of the reconstruction algorithm
of a synthesized object are shown, with parameters: α1 = 45◦, α2 = 80◦, n1 = 4,
n2 = 8, and ns = 1602.

4 Local Grasp Planner

The current estimation of the object surface, which is stored in a buffer and is em-
ployed by the local grasp planner for updating the fingertips trajectories, is contin-
uously updated during the dynamic evolution of the elastic surface. The local grasp
planner, in accordance with the current reconstructed object surface, generates the
fingertips trajectories in a floating manner, keeping a fixed floating safety distance
δ f between the fingers and the corresponding sample point along the outgoing nor-
mals, on the basis of suitable quality indices (see Fig. 6).

Namely, starting from the initial grasp configuration, chosen as described in the
previous sections, the planner generates the motion of the fingers from the current
position to a new point of the updated surface. In particular, the contact points of the
grasp are first “virtually” moved to the updated surface, achieving an initial “target”
grasp configuration. Then, for each contact point of the current target grasp config-
uration, the contour made by the eight neighboring points of the surface is selected.
Considering the contours of all the contact points, the set of all the combinations of
possible reachable grasp configurations is evaluated on the basis of suitable quality
measures. If the current grasp configuration of the set has a value better than the
value of the target configuration, this is chosen as the new target grasp configura-
tion, establishing “de facto” the motion direction of each finger, as shown in Fig. 7.
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df

Fig. 7 Contour of neighbor points of the current target grasp point.

The process is repeated in a recursive manner until there are no more improvements
of the quality measures, and it restarts at the next step time. The whole process
ends when the object reconstruction algorithm reaches an equilibrium and the plan-
ner computes the final grasp configuration. Hence, the safety floating distance δ f is
progressively reduced to achieve the desired grasp action.

The floating distance is used to avoid collisions of the fingers with the object dur-
ing the object reconstruction and approach, and before the final grasp configuration
is reached. Moreover, the final progressive reduction of the floating distance implies
that each fingertip moves perpendicularly to the surface.

Notice that only few points are considered as candidates for the next grasp con-
figuration, so that the number of combinations to be inspected is limited, resulting
in a computationally fast algorithm; moreover, a certain number of grasp configura-
tions are discarded during the evaluation process. Namely, a local kinematic index is
used to discard all the candidate grasp configurations that cannot be reached. Then,
a global kinematic index is adopted to discard all the configurations causing finger
collisions or lack of manipulability for the hand. Finally, a grasp quality measure
is applied to the remaining configurations to evaluate possible improvements of the
grasp quality.

The computational efficiency of the local planner jointed with the possibility to
be executed in parallel with the reconstruction algorithm, eventually on two different
elaboration units, resulting in a faster solution with respect to traditional methods,
which first reconstruct the object and then plan the grasp on the whole knowledge
of the environment.

In the next subsections, the quality indices and the finger trajectory planner are
presented.

4.1 Local and Global Kinematic Indices

On the basis of the finger kinematics, the local kinematic index allows discarding
all the candidate contact points that cannot be reached. With reference to a single
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contact point and finger, the kinematic test is carried out for all the contour points
(see Fig.7). Namely, for each point, finger joints are computed using an inverse
kinematics algorithm. Hence, those points for which joint limits are exceeded, or
that are too close to a kinematic singularity, are discarded. This latter condition is
evaluated on the basis of the condition number of the finger Jacobian. Avoiding
singularities in the finger Jacobian allows being far from hand singularities.

A standard CLIK algorithm [21] is adopted to compute the inverse kinematics;
in particular, the scheme based on the transpose of the Jacobian has been used to
achieve a faster computation, together with a Singular Value Decomposition tech-
nique for the evaluation of the Jacobian condition number.

For the remaining points of the contour, the global kinematic index computes
the distance between the fingers corresponding to all the possible grasp configura-
tions. Hence, all the configurations for which the distances are under a given safety
threshold, are discarded.

4.2 Grasp Quality Measure

The grasp quality is evaluated only for the configurations that are left after the kine-
matic tests. The method proposed in [15] is adopted, suitably modified to cope with
the discretization of the grasp configurations, assuming neglectable moments and
transversal forces.

Let us denote with w =
[

fT μT
]T

the wrench vector collecting the force f and
moment μ. Assuming that the finger forces are applied along the direction normal
to the object surface, the force direction is specified only by the contact point.

Let W denote the space of wrenches, W f ⊂ W the space of unit forces acting
in the grip plane, that is the plane containing the three contact points, through the
center of grip, W⊥μ ⊂ W the space of pure moments acting along the direction
perpendicular to the grip plane. Moreover, let g−1(−w) denote the set of finger
forces which can resist the external wrench w.

Finally, consider the quantity

Q1 = min
w∈W f

(
max

f∈g−1(−w)

1
‖ f ‖ f

)
, (6)

which is a measure of the grasp ability to resist unit forces in the grip plane, and the
quantity

Q2 = min
w∈W⊥μ

(
max

f∈g−1(−w)

1
‖ f ‖ f

)
, (7)

which is a measure of the grasp ability to resist unit moments normal to the grip
plane.

The optimal grasp proposed in [15] is defined as the grasp that maximizes Q2

among all grasps which maximize Q1.
It can be proven (see [15]) that the optimum grasp with three fingers in a 2-D case

under the above optimal criterion is reached when the normal forces are symmetric,
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with directions spaced 120◦ apart. Moreover, this grasp maximizes also the size of
the outer triangle, defined as the triangle formed by the three lines perpendicular to
the normal finger forces passing through the respective contact points. Under the
same criterion, the optimum grasp with three fingers in a 3-D case is achieved when
the maximum circumscribing prism-shaped grasp, that has the largest outer triangle,
is selected among the grasps where the normal finger forces lie within the same grip
plane and are in equilateral configuration.

Therefore, to reach the optimum in the 3-D case with three fingers, the planner
has to seek three points in equilateral configuration on the object surface, so that the
normal forces lie in the same grip plane, and for which the circumscribing prism
grasp is maximum.

In the case presented in this paper, since the reconstructed object surface is sam-
pled by points/masses, the above method cannot be directly applied. Differently
from the continuous case, due to the presence of a finite set of sampled points, the
existence of a “grip plane” containing all the normal forces is not guaranteed. This
is mainly due to the fact that, because of the discretization, the surface normals are
an approximation of the real ones. Considering that the optimal criterion requires
that the desired normals have to be spaced 120◦ apart, a discretized implementation
of the method of [15] is proposed here.

For each candidate configuration of three grasp points, the normal directions are
estimated on the basis of the available point-wise approximation of the surface.
Then, the unit vector normal to the grip plane containing the three points is evalu-
ated. Denoting with ϑ j the angle between the direction of the normal force applied
to point j and the direction normal to the grip plane, a Coplanarity Error Index (CEI)
can be defined as follow:

CEI =
∑3

j=1 | ϑ j −90◦ |
3

. (8)

Obviously, the closer CEI to zero, the more the normal forces lie in the same plane.
The definition of a thresholdΦCEI allows discarding all those configurations having
a value of CEI higher than ΦCEI ; hence, all the remaining grasp configurations are
assumed to have forces lying in the same grip plane and can be further processed.

The next step consists in looking for an equilateral grasp configuration. To this
aim, for each grasp configuration, the unit vector normal to the object surface at each
contact point is projected on the grip plane. Denoting with ϕ j the angle between
these projections for each of the 3 couple of points of the considered configuration,
an Equilateral Error Grasp Index (EEGI) can be defined as:

EEGI =
∑3

j=1 | ϕ j −120◦ |
3

. (9)

Clearly, the closer EEGI to zero, the nearer the configuration to an equilateral grasp.
The definition of a threshold ΦEEGI allows discarding all those configurations with
a value of EEGI higher than ΦEEGI ; hence, all the remaining grasp configurations
are assumed to be equilateral.
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Among all the equilateral configurations, the maximum circumscribing prism has
to be found; if the grasp configuration associated with the largest prism is different
from the current target configuration, this is taken as the new grasp configuration.

Notice that, in the case that the grasp configuration changes, the whole process
starts again with the new contact points, by considering the new contours and ap-
plying the complete sequence of index-based tests starting from the kinematic ones.
The algorithm stops if the best grasp configuration remains unchanged at the end of
the optimization process, or in the case that all the candidate grasp configurations
are discarded during the process.

4.3 Finger Trajectory Planner

The local grasp planner produces a sequence of intermediate target grasp configu-
rations at each iteration of the object reconstruction algorithm. These end with the
optimal grasp configuration (in local sense), as illustrated in Fig. 6. The intermediate
configurations are used to generate the finger paths.

Namely, the sequence of intermediate configurations is suitably filtered by a spa-
tial low-pass filter in order to achieve a smooth path for the fingers on the object
surface. To this purpose, notice that only the final configuration needs to be reached
exactly, while the intermediate configurations can be considered as via points.

With respect to the smooth paths through the points of the filtered configurations,
the actual finger paths generated by the finger trajectory planner keep a floating
distance δ f along the normal to the surface (as explained in Section 4). This feature
produces a floating effect of the fingers over the reconstructing object surface during
the reconstruction process while they move according to the deformation of the
reconstruction sphere. When the final configuration is reached, this safety distance
is progressively reduced to zero, producing the desired grasp action.

5 Simulations

The proposed method has been tested with simulations using synthesized objects.
The first used object is shown in Fig. 5, while for the trajectory planning only the
first three fingers of the virtual hand shown in Fig. 6 have been considered.

The dynamic parameters of the reconstruction sphere have been chosen as fol-
lows: the total mass of the sphere M = 10−3 kg, k = 0.3 · 10−3 N/m, b = 0.09 ·
10−3 Ns/m, and Fa = 5 N.

By setting ΦCEI = 15◦ and ΦEEGI = 10◦, the grasp configuration and the finger
trajectories are those of Fig. 8. The final grasp configuration (which can be proven to
be the global optimal grasp configuration) is characterized by the values CEI = 13◦

and EEGI = 2.2◦.
A prism with smooth lateral corners has also been considered. The grasp configu-

ration and the corresponding trajectories are shown in Fig. 9. The values CEI = 9.9◦

and EEGI = 1.04◦ are obtained in the final configuration. Remarkably, an equilat-
eral symmetry is achieved in the final grasp configuration: two fingers are placed
on the smooth corners, and the other finger is placed in the middle of the opposite
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Fig. 8 Finger trajectories evaluated by the local grasp planner (continuous lines) and the
corresponding sequence of grasp points on the reconstructed object surface (dotted lines).

Fig. 9 Finger trajectories evaluated by the local grasp planner (continuous lines) and the
corresponding sequence of grasp points on the reconstructed surface for the smooth prism
(dotted lines).

surface. This configuration corresponds to an opposite grasp ensuring force closure;
as before, it can be proven that this grasp configuration is optimal also in a global
sense, although the proposed approach can only guarantee that a local minimum is
achieved.

6 Conclusion and Future Work

6.1 Conclusion

A new method for fast visual grasp of unknown objects has been presented. The pro-
posed method is composed of a fast iterative object surface reconstruction algorithm



Floating Visual Grasp of Unknown Objects 343

and of a local optimal grasp planner, which evolve in a synchronized parallel way.
An eye-in-hand camera is adopted to acquire the images used by the reconstruction
algorithm. A reconstruction elastic sphere sampled with points furnished of mass
and linked with each other by springs, which is virtually placed around the object,
dynamic evolves collapsing towards the visual hull of the object. An attractive force
pushes each mass to the visual hull and is progressively reduced when the visual
hull has been reached. During the reconstruction process, the planner moves the fin-
gertips, floating on the current reconstructed surface at a safety distance, according
to local and global kinematic indices and grasp quality measures. The effectiveness
of the proposed method has been shown in simulation.

6.2 Future Work

The adoption of suitable pre-shaping techniques, that could be helpful also for the
determination of the grasp as explained in [23], for the choice of the initial grasp
configuration, which is based on visual information, may be a further improvement
of the proposed algorithm. Moreover, quality indices connected to the tasks to be
performed by the hand with the object and the adoption of other kinematic con-
straints, e.g. collision avoidance of the object with the hand’s palm, could be con-
sidered. Finally, the extension of the proposed approach to the case of more than
three fingers or to bi-manual manipulation, with the adoption of suitable quality
measures, will be investigated.
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Generality and Simple Hands

Matthew T. Mason, Siddhartha S. Srinivasa, and Andres S. Vazquez

Abstract. While complex hands seem to offer generality, simple hands are more
practical for most robotic and telerobotic manipulation tasks, and will remain so for
the foreseeable future. This raises the question: how do generality and simplicity
trade off in the design of robot hands? This paper explores the tension between
simplicity in hand design and generality in hand function. It raises arguments both
for and against simple hands; it considers several familiar examples; and it proposes
a concept for a simple hand design with associated strategies for grasping and object
localization. The central idea is to use knowledge of stable grasp poses as a cue for
object localization. This leads to some novel design criteria, such as a desire to have
only a few stable grasp poses. We explore some of the design implications for a bin-
picking task, and then examine some experimental results to see how this approach
might be applied in an assistive object retrieval task.

1 Introduction

This is the first paper from a project that aims to develop robot grippers that are
simple, yet also general and practical. By “simple”, we mean hands with a few
actuators, a few simple sensors, and without complicated mechanisms, so that the
whole hand would be small, light, and inexpensive.
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Fig. 1 The common “pickup tool” is very simple, but also very effective in achieving stable
grasps over a broad class of shapes. Four fingers of spring steel are compliantly driven by a
single actuator.

Can a hand be both simple and general? Perhaps generality requires complexity.
Some arguments in favor of complexity are:

• Grippers for manufacturing automation are often simple and specialized, per-
haps designed to grasp a single part. Human hands, in contrast, are complex and
general;

• Hands grasp by conforming to the object shape. Motion freedoms are a direct
measure of a hand’s possible shape variations.

• Beyond grasping, many tasks benefit from more complexity. Manipulation in the
hand, and haptic sensing of shape, to mention two important capabilities, benefit
from more fingers, more controlled freedoms, and more sensors.

• The most general argument is: Design constraints have consequences. Restricting
actuators, sensors, and fingers to low numbers eliminates most of the hand design
space.

However, there are simple but general grippers: humans using prosthetic hooks,
teleoperated systems with simple pincer grippers, or the simple pickup tool shown in
Fig. 1. We conclude that while there is a tradeoff between simplicity and generality,
the details of that tradeoff are important and poorly understood. Simple grippers
offer a level of generality that is yet untapped in autonomous robotic systems.

To explore the tradeoff between simplicity and generality, we list capabilities
required of a general purpose gripper (Section 1.2), and discuss clutter (Section 1.3).
However, it simplifies the discussion if we begin with a specific example, the Pickup
Tool of Fig. 1, and a simple hand concept inspired by the pickup tool (Section 1.1).
The rest of the paper describes simulation and analysis of the simple hand grasping a
variety of shapes, and an experimental study motivated by the simple hand concept.

1.1 Let the Fingers Fall Where They May

This section outlines our approach, illustrated by a classic robotic manipulation
problem: picking a single part from a bin full of randomly posed parts. Our approach
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is inspired by the pickup tool shown in Fig. 1, which is very effective at capturing
one or several parts from a bin, even when operated blindly. Rather than attempting
to choose a part, estimate its pose, and calculate a stable grasp, we propose to exe-
cute a blind grasp, let the gripper and object(s) settle into a stable configuration, and
only then address the problem of estimating the object pose (as well as whether a
single object was captured).

The main problem addressed by this paper is how to determine whether a single
object was captured, and how to estimate the object pose. We propose to use a table
of the stable poses with corresponding finger encoder values, produced offline either
by experiment or in simulation.

Our initial gripper concept departs from the pickup tool that inspired it. For in-
dustrial bin picking the pickup tool has some deficiencies, including a tendency to
capture several parts at a time, in unpredictable poses. And while the fingers of
spring steel, with the bent tips, and the motion emerging along their lengths are all
very effective and interesting, we want to begin with a design that is easier to an-
alyze and simulate, and which supports estimation of pose. Our initial design has
rigid cylindrical fingers attached to a disk-shaped palm by revolute joints with en-
coders (Fig. 2). As with the pickup tool, all three fingers are compliantly coupled to
a single actuator.

For the bin-picking task the goal is to retrieve a single familiar object from a bin
of objects, and to accurately estimate its pose in the hand. For the sphere shown in
the figure, estimation of position would suffice. For a non-spherical object we would
require orientation as well as position. The key elements of the approach are:

• Low-friction palm and fingers so that for irregular objects there are only a few
stable grasp configurations;

• Blind or nearly blind grasping motions;
• A table of stable grasp configurations and corresponding encoder values to de-

termine whether a single object is present, and to estimate its pose;
• Offline training of pose and singulation classifiers, either in simulation or in the

real world;
• Iteration of a reach, grasp, withdraw, and classify strategy until a successful grasp

of a single object in a recognized pose is achieved.

Figures 2 and 3 show a dynamic simulation of the concept, applied to a bin pick-
ing problem. The system performed blind grasps, identified successful single object
grasps, and estimated pose up to symmetries. We also tried some variations: shaking
the bin, and sweeping the bin with the fingers, preparatory to the grasping operation.
Both behaviors improved performance, and the two behaviors together brought the
success rate close to 50%. More advanced versions of this scenario would include
the use of visual guidance, of strategically planned pregrasp poses, and a variety of
motion and perceptual strategies that could be employed.

The central idea is to use knowledge of stable poses to determine whether a single
part has been captured, and to localize that part in the grasp. The general idea is well
known in parts orienting research (see [15, 11] for two examples) and has even been
used in the context of simple hands ([18, 10]). Yet we believe the idea can be taken
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(a) (b) (c)

Fig. 2 Grasping of a Sphere

(a) (b) (c)

Fig. 3 A blind grasp capturing two cylinders. The failure is detected and the operation will
be repeated. The cylinders were heaped up by a blind sweeping operation prior to the grasp.

further, perhaps even leading to practical designs working across a broad range of
manipulation tasks.

For the approach to work in its simplest form, the stable poses must map to
isolated points in the space of encoder values. Hence the primary focus of the paper
is the set of stable poses. We consider how hand design parameters affect the stable
pose space, and we also examine the stable pose space for a typical assistive home
robot in an object retrieval task, in Sections 2 and 3. First, we return to our discussion
of generality in hand function.

1.2 Dimensions of Grasping

The bin-picking application described above is the framework that motivates several
problems, some of which are addressed in the rest of the paper. In this section we
place those problems in a broader context. While a precise definition of generality
in hand function is elusive, we can at least identify the dimensions. What are the
requirements of a grasp? What are the problems that a grasp might solve?

Capture and Stability. The main theme of grasping research seems to be stability,
but capture seems equally important.
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In-hand manipulation and Grasp adjustment. Controlled motion of the object in
the grasp. Typical prior work has employed fingertip grasps with several actuators
to achieve controllability, but there are other strategies including, for example,
tapping two chopsticks against a tabletop to align the ends.

Clutter and Singulation. Clutter refers to everything that might limit access to the
object. See Section 1.3 for further discussion. Singulation means extracting one
part at a time.

Shape diversity and Shape uncertainty. Shape diversity: Does the grasp work over
a broad range of shapes? Shape uncertainty: does the grasp work when the shape
isn’t entirely known? There is a difference. A net can capture an object without
even knowing what the shape is. A modular fixturing kit can be configured to
grasp a wide range of shapes, but not without knowledge of the shape.

Localization, Object recognition, Shape estimation. Localization means estima-
tion of object pose in the hand. Object recognition assumes there is some class
of parts, perhaps even finite, which includes the present object.

Placing. By “placing” we refer broadly to a variety of downstream requirements:
dropping onto a conveyor, placing into a dishwasher, throwing, assembly, hand-
ing off to another (human or robotic) hand, and so forth.

Other task specific requirements. There are many different applications of grasp-
ing, with wildly varying requirements. Some applications have product inspec-
tion processes integrated with a hand, such as checking electrical continuity of
an automotive part. Others have unusual force or compliance requirements, such
as grasping an object for a machining operation. Some applications may involve
complex processes involving multiple objects, such as dealing cards.

We can use the above list to characterize different tasks. The bin picking applica-
tion, by its nature, poses challenges in clutter and singulation. Our approach to it,
employing a simple hand iteratively employing a blind strategy, entails additional
challenges of capture and localization. Since we propose to use a single hand design
over a range of parts, we introduce the shape diversity issue.

In contrast, assistive robotic object retrieval, the application addressed in Sec-
tion 3, poses challenges in capture, clutter, and shape diversity. Typical households
could not afford to have one robot to retrieve spoons, another to retrieve forks, and
so on.

In this paper we focus on capture, clutter, stability, and pose estimation, but
ultimately a general-purpose gripper must address the entire list of requirements.
Then there are many additional pragmatic issues: cost, weight, ruggedness, and
ease of programming. Those are perhaps the main motivation for the use of simple
grippers.
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1.3 Grasping versus Clutter

Clutter is an important element of both bin-picking and object retrieval, but in the
course of this work we have realized that clutter is almost ubiquitous. Previous work
has seldom addressed clutter explicitly, but clutter often affects the design of the
robot, the choice of grasp, the robot path, in fact just about every aspect of a system.

First consider the effect of clutter on hand design. Suppose you are designing
a hand from simple geometrical elements: points, lines, or planes. If you want to
capture an isolated object, stabilize it, and estimate its location, infinite planes would
be ideal. A plane sweeps out lots of space, and captures and stabilizes objects very
economically. Four planes in a tetrahedral configuration could squeeze an object of
arbitrary shape and reduce the feasible poses to a small set. This idea is not entirely
impractical. The tilted tray of Grossman and Blasgen [11] used three planes, with
gravity instead of a fourth plane, to provide a universal parts orienting system. You
might also view a common table as a variant of the idea: a single plane moving
through space with a constant acceleration of 1g to sweep up all objects placed above
it, in cases where only three degrees of constraint and localization are required.

However, if you are dealing with clutter, planes are terrible. They sweep up ev-
erything and avoid nothing. For clutter, points would be ideal. These observations
are captured in the table below. Higher dimensional elements are better for grasping;
lower dimensional elements are better for avoiding clutter.

grasping clutter

points bad good
lines okay okay

planes good bad

This table suggests an impractical approach: a set of levitated independently con-
trolled points that drift through the interstices of the clutter, approach the object, and
then switch to a coordinated rigid mode to lift the object. Consider the paths that the
points follow to reach the object. If the clutter is unmoving, then those paths remain
clear, and we could use hyper-redundant fingers, i.e. snakes or tentacles, to reach
the object. Lifting the object clear of the clutter is still an issue, but the idea does
suggest a practical compromise to address the problem of grasping in clutter: use
very thin fingers, approaching the object along their lengths. The idea is reflected in
many common manipulation tools, such as tweezers and laporoscopic forceps. You
might even view the pickup tool (Fig. 1) as a variant of the idea, a single long thin
element from which several fingers deploy. These tools are all designed for high-
clutter environments: the pickup tool for retrieving small parts dropped into difficult
to access places, and forceps for the extreme clutter encountered in surgery.

Clutter and grasping are in opposition. Grasping is easy, if there is no clutter.
Clutter is easily avoided, if no grasp is required. The problem arises from the need
to grasp one object while avoiding others. The problem is not just to grasp, but to
grasp selectively.

Almost every grasping problem involves clutter. Even for an object isolated on a
table, the table is clutter. Perhaps the most clutter-free grasping problem is a door
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knob: an affordance specifically designed for grasping, mounted on a stalk to mini-
mize clutter. The only cases involving less clutter are catching butterflies or cleaning
a pool, where it is practical to sweep the entire nearby volume with a net.

1.4 Previous Work

There is a long history of research in robotic hands, and related issues in perception,
planning, and control. See [13] for an early but still highly relevant overview, and [3]
for a more recent overview. Generality and simple hands are particularly relevant
issues for domestic and assistive robotics. See [7, 24, 19] for some examples.

Some of the earliest work in robotic manipulation exhibited surprisingly general
manipulation with simple effectors. Freddy II, the Edinburgh manipulator used a
parallel-jaw gripper, grasping a variety of shapes [1]. Freddy II is also one of the
rare robotics research projects to address grasping in clutter. The Handey system
also used a simple parallel-jaw gripper exhibiting impressive generality [17].

Our gripper concept is similar to Hanafusa and Asada’s [12], who analyzed the
stability of planar grasps using three compliant fingers. Our concept is further in-
formed by the analysis of Baker, Fortune and Grosse [2] who developed some in-
teresting observations on grasp stability by compliant fingers. Since that time, most
previous work on stable grasping has assumed a rigid grasp, or has assumed com-
pliance primarily at the finger tips [20, 16], or has addressed the choice of control
strategies for complex grippers.

Our approach contrasts with that often referred to as “dexterous” hands: the use
of several fingers, with several actuators per finger, with resulting freedom in the
placement of fingers, programmable compliance, and fully controllable in-hand ma-
nipulation [23, 14, 4]. This contrast is also reflected in our choice of hard frictionless
contacts, despite several advantages of soft high-friction fingertips. As noted in [6]
and elsewhere, soft high-friction contact reduces surface forces, increases stability,
and increases the effective coupling between finger and object. However, our ap-
proach does not necessarily benefit from increased stability and coupling between
finger and object.

Our approach has its roots in the parts orienting research community [11, 15, 10,
5, 8], where the ideas of using knowledge of stable poses and iterative randomized
blind manipulation strategies are well known. As far as we know the present paper
is the first to apply these ideas to problems including capture and singulation in
cluttered environments.

One central question is the existence and characterization of stable poses with-
out friction, and without force closure, sometimes referred to as higher-order form
closure, or second-order stability. See [9] for examples involving planar polygons,
and [21, 22] for closely related research.



352 M.T. Mason, S.S. Srinivasa, and A.S. Vazquez

Fig. 4 Potential function for a Hanafusa and Asada-style hand with two fingers grasping a
disk. With offsets that would bring the fingers to rest at the center, the potential function is a
saddle. Adding two more fingers yields a constant potential function.

2 The Set of Stable Poses

This section addresses the set of stable poses of an object grasped by the simple
gripper described earlier. The issue is not just whether a certain pose is stable, but
whether the subspace of stable poses has a structure that supports pose estimation.
The ideal would be a single stable pose with a large basin of attraction, requiring
zero sensory information to determine the pose. The worst case is symmetric objects
where the stable pose space includes submanifolds of poses, all of them mapping to
the same finger encoder values. Friction also poses a challenge, yielding connected
regions of stable poses, rather than isolated points, but without the stationary sensor
mapping produced by symmetric objects.

Nonetheless, existence of stable grasps is an issue, and has some implications
for the design of our hand. For a blind grasp to accomodate a range of shapes,
fingers require a large range of motion. We consider two alternatives. Option one,
large offsets, obtains the entire range of motion from the individual finger springs.
Bounds on contact force require that the spring be soft, and that the spring offsets
be sufficient to move the finger well past the maximum desired motion. Option two,
small offsets, would use stiff finger springs with very small deflections. The large
of range of motion could be obtained by driving the actuator until a threshold force
is exceeded, or by a soft spring in series with the actuator. The following sections
address both options for a disk in two dimensions, and for a sphere and a polyhedron
in three dimensions.

2.1 Unstable Grasp of a Disk in 2D

While it may seem obvious that four fingers spaced equally about a disk would
give a stable grasp, the reality is not so simple. Large offsets may yield an unstable
grasp [2]. First consider a two-finger grasp (Fig. 4). While the finger compliances
stabilize motions aligned with the fingers, the curvature of the disk yields a negative
stiffness for transverse motions. The potential function is a saddle and the grasp is
unstable. If we add two more fingers to obtain a four-finger grasp, the negative stiff-
ness for one finger pair can nullify the positive stiffness of the other pair, yielding a
metastable grasp.
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Fig. 5 Local stability of sphere grasped with large finger spring offsets. The stiffness matrix
eigenvalues are negative for small spheres and positive for large spheres.

2.2 Stable Grasp of a Sphere

This section explores the stability of a sphere being grasped by a palm and three
line fingers. The main focus is to examine variations of scale. We also reexamine
the effect of large offsets versus small.

The hand is the simple gripper of Fig. 2, except the fingers are lines rather than
cylinders. To find the total potential energy we start with the potential of a single
finger. For a sphere of radius r located at (x,y,z), and a finger nominally aligned
with the x-axis, the finger angle is:

θ = π/2− tan−1(z/x)− tan−1(
√

r2 − y2/
√

x2 + y2 + z2 − r2)

The total potential is U = 1/2kΣ(θi −θi0)2, assuming stiffnesses k and offsets θi0.
We assume the sphere is in palmar contact, i.e. z = r, and write the potential as a
function of x and y. The gradient of this potential is the force in the x-y plane, and
the Hessian of the potential is the stiffness matrix. With the sphere placed at the
origin the gradient is zero as expected. We can determine stability by examining the
eigenvalues of the Hessian. Fig. 5 shows the eigenvalues when the springs have large
offsets—large enough to close the fingers all the way to the palm. The two eigenval-
ues are equal, and are negative for small spheres, and positive for large spheres. The
grasp is unstable for small spheres, and stable for large. Note the contrast with the
planar analysis of the previous section. For the largest sphere considered, the fingers
are exactly vertical, mimicking the planar three finger grasp. However, the planar
grasp is unstable, where the three-dimensional grasp is stable. Evidently when the
sphere moves toward the gap between two fingers, the third finger’s force inclines
downward, so that the planar component drops off rapidly enough to eliminate the
instability.

The eigenvalues of the Hessian give us the local stability, but tell us nothing about
the basin of attraction. In Figs. 6 and 7 we plot the potential surface for three dif-
ferent sphere sizes and both large and small spring offsets. These plots tell a more
complicated story. The global structure more closely resembles a three-lobed sad-
dle, sometimes called a monkey saddle. Because a monkey saddle is fundamentally
a third-order surface, the second-order analysis of the Hessian determines local sta-
bility. But the size of the basin of attraction, and the robustness of the stability, are
determined by the size of the sphere and the spring offsets. As expected small offsets
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improve the basin of attraction for the large sphere, and can stabilize the grasp even
for the small sphere. The medium size sphere corresponds to the crossover point of
Fig. 5, and is now shown to be unstable, although it is stabilized with small offsets.

The obvious and unsurprising conclusion is that large offsets tend to yield unsta-
ble grasps. This is consistent with the general trend of grasp stability analysis over
the years, which has focused on stiff grasps and small offsets. However, our goals
are different. We do not aim to stabilize as many poses as possible. We would prefer
a few stable grasps with large basins of attraction.
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Fig. 6 Potential fields for large offsets. The offsets would close the fingers to the palm. The
lower half of the figure is zoomed in to show detail not revealed in the upper half.
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Fig. 7 Potential fields for small offsets. The lower half of the figure is zoomed. The spring
deflections are π/10 for the large and medium spheres, π/10,000 for the small sphere.

One way to address this is to have very stiff finger springs, and to place a force
threshold on the actuator, so that the actuator stalls with small offsets. We will ex-
plore a similar idea, which is to have four springs: three stiff finger springs and one
soft actuator spring. A very soft actuator spring with a very large offset provides a
reasonable approximation of a stalling actuator.

Introducing a fourth spring couples the fingers, and complicates the derivation
of a potential function. In short, we now have a linear complementarity problem.
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Fig. 8 Potential surface and contours for sphere of radius one grasped by gripper with four
springs: each finger springs with stiffness 10 and a motor spring of stiffness 1.

The naive algorithm is exponential in the number of contacts, but 23 is only 8, so
we embrace naiveté: For every subset of the three fingers, we assume that subset is
in contact, and the rest follows easily. Fig. 8 plots the potential surface and several
contours, for the medium sphere, where the finger springs are ten times stiffer than
the motor spring.

2.3 Stable Grasp of a 3-4-5 Prism

This section explores the stability of a polyhedron grasped by the three finger hand,
with three springs, with large offsets. We exhibit the level surfaces of the potential
field in a three-dimensional slice of the six-dimensional configuration space. As
expected with an irregular object, the stable poses are isolated points (Fig. 9).

(a) (b) (c)

Fig. 9 Potential function for the simple three finger hand grasping a prism formed by extrud-
ing a triangle with side lengths of 3, 4, and 5. Height of the prism is one. The plot shows
three closed contours enclosing isolated potential wells corresponding to three stable grasps
obtained with the prism flat against the palm. There will be at least three more isolated stable
grasps when the triangle is flipped over, and there may be other stable grasps we have not
identified. The first plot shows all three potential wells represented by a single contour. The
second plot is a closer view of one potential well, with some additional contours plotted.
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Not all objects will exhibit isolated equilibria. That is obviously the case with
symmetries such as the spheres examined in the previous section. Even for polyhe-
dra, it is possible to define a shape and a positive-length path for that shape, while
maintaining contact with a palm and three line fingers. The shape is a variation on
the example of [9], a planar polygon with three concurrent edges, extruded to a
polyhedral prism.

3 Simulation and Experiments with the Barrett Hand

This section explores the application of principles detailed in the previous sections
to the commercially-available Barrett hand. In contrast to the compliant 3DOF sim-
ple hand, the Barrett hand (Fig. 10) is stiff, it is not frictionless and it has 7DOFs,
4 of which are active. We are not using a system carefully engineered to match our
assumptions. Rather, we are asking whether our approach is applicable when the
assumptions are violated. In particular, we explore the construction of grasp tables,
and we examine a part of the space of stable poses. Our results are twofold: (1) de-
partures from our assumptions do present challenges; and (2) even so, the structure
of the set of stable poses will support partial estimation of pose.

3.1 Grasp Tables

A grasp table is a set of samples of the mapping from grasp inputs to grasp outcomes.
Depending on the problem, the inputs may include the relative pose of the object
and the hand, the shape of the hand, the material properties of the surfaces, and the
expected clutter. The output may include the pose of the object and the hand at the
end of the grasping operation, a score of the goodness of the grasp, the location of
contact points on the grasp, readings of sensors instrumented on the hand, the object
or the environment, or even just a Boolean value denoting grasp success or failure.

Constructing a realistic grasp table depends crucially on the engine that takes the
input, simulates contact physics, and produces the output. In this paper, we use real
world experiments to produce a small grasp table (Section 3.2) and then address
construction of grasp tables using kinematic simulations (Section 3.3).

In the past, grasp tables have served the purpose of precomputed and cached
templates or behaviors that the robot searches through online to find a good match
for a given scenario. The tables have usually been relatively small, with 20− 50
entries. However, localization introduces an additional mapping: from the space of
outputs to the sensor space. Successful localization requires the inversion of the
above mapping, i.e., to estimate the relative pose of the object in the hand at the end
of the grasping operation, from just the sensor readings. Section 3.3 describes the
complexities introduced by this additional mapping, and our experimental results.

3.2 Experimentally Developed Grasp Table

Fig. 10 shows an experimentally produced grasp table. The initial mug position was
fixed, while several stable orientations were sampled. As the hand closed, the object
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(a) (b) (c) (d)

(e) (f)

Fig. 10 An experimentally derived grasp table

was constrained only by the table, simulating the effect of the palm. Three clusters
appear in the sensor space (Fig. 10(e), Fig. 10(f)): red points for the upright mug,
green points for the inverted mug, and blue points for the mug on its side. The up-
right and inverted poses are separate because the mug has a slight taper. Besides the
clusters, we observe some outliers, for example point G1 where one finger landed on
the handle instead of the body. (Fig. 10(b)), and point B1 (Fig. 10(d)) where capture
failed.

3.3 Grasp Tables via Kinematic Simulation

To further our goal of producing a dense grasp table comprising many thousands of
samples, we augment real-world samples with those derived from simulation.

In our experiments, we observed significant movement of the mug before it set-
tled into a grasp. Simulating such contact dynamics is computationally expensive
and inaccurate. Instead, we chose a two-step approach of building a kinematic grasp
table (Fig. 11(a)) followed by a refinement step motivated by Section 2 in which the
kinematic samples (Fig. 11(b)) are perturbed into the nearest statically stable min-
imum energy configuration using simulated annealing(Fig. 11(c)). Our preliminary
results are encouraging: refinement eliminates unlikely grasps like Fig. 12(right-
mid) and Fig. 12(right-bottom) while preserving likely grasps like Fig. 12(left-top)
which are experimentally verifiable (Fig. 12(left-bottom)).
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(a) (b) (c)

Fig. 11 Grasp table refinement: (a) Input samples, (b) kinematic grasp table clustered in
sensor space, (c) clusters shrink and collapse after minimum energy refinement

Fig. 12 Right: Pose ambiguity in the kinematic grasp table, Left: Predicted pose from grasp
refinement and real-world experiment

Our ultimate goal is to infer object pose from sensor readings. For the Barrett
hand with moderate friction, we observed significant pose ambiguity with the kine-
matic grasp table (Fig. 12(right-all)). With refinement, some of the unstable grasps
were filtered out, resulting in fairly accurate pose estimation (Fig. 12(left)). How-
ever, the ambiguity could not be eliminated in many other configurations. This sug-
gests two potential strategies: (1) to avoid ambiguous configurations altogether, and
(2) to disambiguate by further sensing or sensorless action. Our future work will
explore both strategies.
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From Sensorimotor Primitives to Manipulation
and Imitation Strategies in Humanoid Robots

Tamim Asfour, Martin Do, Kai Welke, Alexander Bierbaum, Pedram Azad,
Nikolaus Vahrenkamp, Stefan Gärtner, Ales Ude, and Rüdiger Dillmann

Abstract. Regardless of the application area, one of the common problems tackled
in humanoid robotics is the investigation towards understanding of human-like in-
formation processing and the underlying mechanisms of the human brain in dealing
with the real world. Therefore, we are building humanoid robots with complex and
rich sensorimotor capabilities as the most suitable experimental platform for study-
ing cognitive information processing. The target system is supposed to interact and
function together with humans. It is meant to be able to cooperate and to enter a di-
alogue with them. Therefore it needs to understand both what it perceives and what
it does. To achieve this goal we are following a holistic approach and investigating
how different partial results, achieved in sub-disciplines related to the development
of humanoids, fit together to achieve complete processing models and integrative
system architectures, and how to evaluate results at system level rather than fo-
cusing on the performance of component algorithms. In this paper we present our
recent and current progress in this direction. For doing so, we present our work on
the development of humanoid platforms, the programming of grasping and manip-
ulation tasks, the multi-sensory object exploration as well as the learning of motor
knowledge from human observation.

1 Introduction

Human-centered robotics is an emerging and challenging research field which has
received significant attention during the past few years. The paradigmatic shift in
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the robotics at the end of the 1980s brought robots from factories to other working
and everyday human environments and raised the important problem of engineering
of cognitive robot systems, which have to safely coexist with humans, interactively
communicate with humans and usefully manipulate objects in built-for-human en-
vironments. The new generations of robots appeared with this paradigmatic shift
are meant to accomplish a wide range of new tasks and to play a wide range of
new roles: from coworkers to assistants in private households and assistants for the
disabled and the elderly.

Humanoid robots are associated with the idea of robots whose physical appear-
ance is similar to that of the human body. Beyond a physical resemblance, hu-
manoid robots are meant to resemble humans in their ways of acting in the world,
of reasoning and communicating about the world. Currently, an encouraging spec-
trum of isolated elements in this area is realizable with focus on performance in
well-defined, narrow domains. However, successful attempts in building humanoid
robots for human-centered environments are still limited to systems designed for
”sunshine” environments, able to perform simple tasks of limited scope. Further,
the transferability of the developed skills and abilities to varying contexts and tasks
without costly redesign of specific solutions is still impossible.

The paper is organized as follows. In Section 2, we give a brief overview about the
humanoid robots we are developing. Section 3 describes the already implemented
capabilities, which are necessary to perform manipulation task in a kitchen envi-
ronment. Section 4 presents our current work and progress on the development of
advanced sensorimotor capabilities such as object exploration and imitation of hu-
man movements.

2 The Humanoid Robots ARMAR-IIIa and ARMAR-IIIb

In designing our robots, we desire a humanoid that closely mimics the sensory and
sensory-motor capabilities of the human. The robots should be able to deal with
a household environment and the wide variety of objects and activities encoun-
tered in it. Therefore, the humanoid robots ARMAR-IIIa and ARMAR-IIIb (see
Fig. 1 and [3]) have been designed under a comprehensive view so that a wide
range of tasks can be performed. The upper body of the robots has been designed
to be modular while retaining similar size and proportion as an average person. For
the locomotion, a holonomic mobile platform is used. From the kinematics control
point of view, both robots consist of seven subsystems: head, left arm, right arm,
left hand, right hand, torso, and a mobile platform. For detailed description of the
robot, the head, the hand, the artificial skin, and the mechanics, the reader is re-
ferred to [3, 4, 28, 19] and [1] respectively. The specification of the robots is given
in table 1.



Manipulation and Imitation Strategies in Humanoid Robots 365

Fig. 1 The humanoid robots ARMAR-IIIa (blue) and ARMAR-IIIb (red) in the kitchen. Each
robot has a 7 DoF head, two 7 DoF arms and two 8 DoF five-fingered hands, a 3 DoF torso and
a holonomic mobile platform. The head is equipped with two eyes. Each eye is equipped with
two cameras, one with a wide-angle lens for peripheral vision and one with a narrow-angle
lens for foveal vision.

Table 1 Specification of the humanoid robot ARMAR-III

Weight 135 kg (incl. 60 kg Battery)
Height 175 cm
Speed 1 m/sec
DOF Eyes 3 Common tilt and independent pan

Neck 4 Lower Pitch, Roll, Yaw, upper Pitch
Arms 2 × 7 3 DOF in each shoulder, 2 DOF in each elbow, and 2 in each

wrist
Hands 2 × 8 Five-fingered hands with 2 DOF in each Thumb, 2 DOF in

each Index and Middle, and 1 DOF in each Ring and Pinkie.
Torso 3 Pitch, Roll, Yaw
Platform 3 3 wheels arranged in angles of 120 degrees

Actuator DC motors + Harmonic Drives in the arms, neck, eyes, torso
and platform. Fluidic actuators in the hand.

Sensors Eyes 2 Point Grey (www.ptgrey.com) Dragonfly cameras
in each eye, six microphones and a 6D inertial sensor
(www.xsens.com).

Arms Motor encoders, axis sensors in each joint, torque
sensors in the first five joints, and 6D force-torque sensor
(www.ati-ia.com) in the wrist.

Platform Motor encoders and 3 laser-range finders
(www.hokuyo-aut.jp).

Power Supply Switchable 24V Battery and 220 V external power supply.
Operating system Linux with the Real-Time Application Interface RTAI/LXRT-

Linux.
Computers and
Communication

Industrial PCs and PC/104 systems connected via Gigabit
Ethernet and 10 DSP/FPGA control units (UCoM) which
communicate with the control PC via CAN bus.

User Interface Graphical user interface (GUI) connected to the robot via
wireless LAN and natural speech communication.

www.ptgrey.com
www.xsens.com
www.ati-ia.com
www.hokuyo-aut.jp
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3 Implemented Sensorimotor Capabilities

3.1 Object Recognition and Pose Estimation

One crucial requirement for performing manipulation tasks is the visual perception
of the objects of interest. The humanoid robot ARMAR-III is capable of recognizing
a set of objects typical for a kitchen environment and of estimating their 6-DoF poses
by exploiting stereo vision. Two fully integrated systems have been developed for
two different classes of objects: objects offering enough textural information for the
application of local point features, and single-colored objects, which are defined by
their shape only.

For recognizing textured objects and estimating their pose, local point features
are exploited. For application of a visual servoing approach for grasping, as de-
scribed in Section 3.3, the object pose must be computed within the visual servoing
control loop. State-of-the-art features such as SIFT [25] or SURF [11] do not meet
the required performance requirements. Therefore, a combination of the Harris cor-
ner detector [20] and SIFT descriptor was developed, including an effective exten-
sion for achieving scale-invariance, as presented in [8, 5]. With these novel features,
feature computation requires approx. 20 ms for images of size 640×480 on con-
ventional hardware, compared to approx. 500–600 ms for conventional SIFT and
150–240 ms for SURF. Furthermore, a stereo-based 6-DoF pose estimation method
that builds on top of the 2D localization result was developed. This pose estimation
method was compared to conventional pose estimation based on 2D-3D correspon-
dences in [9, 5]. An extensive experimental evaluation on synthetic and real image
data proves the superior performance of the proposed approach in terms of robust-
ness and accuracy.

The method developed for single-colored objects, as presented in [7, 5], requires
global segmentation of the object, which is accomplished by color segmentation in
the case of single-colored objects. Subsequently, the segmented views from the left

Fig. 2 Exemplary results with the integrated proposed object recognition and pose estima-
tion systems. The computed object pose has been applied to the 3D object model and the
wireframe model has been overlaid.
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and right camera image are used to compute the identity of the objects and to es-
timate their 6-DoF pose by combining stereo triangulation with appearance-based
view matching. For this purpose, training views are generated in simulation in order
to produce a view space covering all relevant views of the object. An initial pose
estimate is computed by splitting up position and orientation information first: The
initial position estimate is computed by stereo triangulation, and the initial orien-
tation estimate is given by the orientation that was stored along with the matched
view. Since by splitting up position and orientation estimation, the pose estimate
becomes error-prone, a pose correction algorithm was developed, which utilizes a
3D model of the object and online 3D rendering.

Both systems run at frame rate (30 Hz) for recognizing a single object and es-
timating its pose, as applied throughout grasping using visual servoing. The de-
veloped methods and algorithms are presented in detail [5], including an extensive
evaluation and discussion. Fig. 2 shows exemplary results computed with the devel-
oped systems.

3.2 Single and Dual Arm Motion Planning

For collision-free motions, sampling-based algorithms are used to plan single and
dual arm grasping and manipulation motions. Such probabilistic algorithms, e.g. the
Rapidly-exploring Random Trees (RRT), can be used to search for collision-free
motions in large configuration spaces [23, 24, 34]. The realized planning algorithms
are able to deal with the different kinematic chains of the robot (e.g. platform, torso,
arm or hand) and allow for the generation of collision-free motions for varying
planning problems in the context of grasping and manipulation.

To grasp a known object, for which a set of grasping positions is defined (see
Fig. 3(a)), several problems have to be addressed: grasp selection, solving the in-
verse kinematics (IK) and redundancy resolution. The IK-RRT algorithm we pre-
sented in [31] for planning single and dual arm grasping motions, integrates the
problems of selecting a reachable grasp out of a set of grasping poses, calculating a

Fig. 3 (a) A wok with 15 associated grasping poses for the left hand of ARMAR-III. (b),(c)
Results of the IK-RRT planning algorithm for single-arm and re-grasping tasks.
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feasible solution to the IK-problem and generating a collision-free grasping motion
to one integrated planning scheme. The planner utilizes a probabilistic IK-solver,
which is queried during the RRT-based planning in order to generate potential tar-
get configurations (see Fig. 3(b)). A dual arm IK-RRT planner, an extension of the
IK-RRT concept, generates collision-free re-grasping motions for two-handed ma-
nipulations. For this purpose, the basic concept of the IK-RRT algorithm is extended
to account for feasible re-grasping position without the need to specify hand-over
position in advance (see Fig. 3(c)). In [30], a multi end-effector RRT-planner is pre-
sented, which in addition takes into account the selection of the end-effector that
should be used to grasp an object. For this purpose, a parallelization of the search
process is realized to account for multiple end-effectors, where each of them is as-
sociated with multiple possible grasping poses for the target object.

3.3 Visual Servoing for Grasping

For the realization of grasping and manipulation tasks, the underlying robot sys-
tem has either to be exactly calibrated or supervision techniques have to be used to
achieve reliable positioning of the end-effectors. Even in exact calibrated systems, a
supervision is desirable in order to perceive changes in the state of the environment
and to react to errors or disturbances. Therefore, visually controlled execution, also
referred to in the literature as visual servoing is implemented to allow the successful
execution of grasping. More specifically position-based visual Servoing approaches
([35, 39, 17]) are used. The implemented visual servoing controller on ARMAR-III
utilizes stereo-vision for continuous hand and object tracking. The position of the
hand is derived from the visually determined 3D position of an artificial marker at-
tached to the wrist, while the orientation is determined using the forward kinematics
of the arm. The Cartesian distance between the hand pose and the target object pose
is used to calculate velocity commands using the Pseudoinverse oh the Jacobian.
For safety reasons, force feedback from the 6D force/torque sensor is used to coun-
teract impact forces [33]. A bimanual Visual Servoing controller is implemented
for dual arm grasping tasks, where both hands together with one or two objects are
tracked in order to retrieve the current relations in the workspace [32]. Results of
grasping and manipulation tasks based on the proposed visual servoing techniques
on ARMAR-III are shown in Fig. 4.

Fig. 4 Visual Servoing enables ARMAR-III to grasp and manipulate known objects with one
or two hands.
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4 Towards Cognitive Capabilities

The robots capabilities described above are integrated in a holistic way to allow
the implementation of complex grasping and manipulations tasks in a kitchen en-
vironments, in which the robot was able to grasp daily objects placed on a ta-
ble, to open the fridge and grasp objects inside it as well as to open, load and
close the dishwasher. However, we equipped the robot with basic knowledge about
the objects, which has to be manipulated and with sensorimotor knowledge about
the actions that have to be performed. Humanoid robots for human daily lives
are supposed to interact and function together with humans. They are meant to
be able to cooperate and to enter a dialogue communicating with them. There-
fore, research should combine the study of perceptual representations that facilitate
motor control, motor representations that support perception, and learning based
on actively exploring the environment and interacting with people that provides
the constraints between perception and action. This will then allow, e.g., to learn
the actions that can be carried out on and with objects. This leads to what we
call Object-Action-Complexes (OAC), a paradigm introduced within the European
PACO-PLUS project (see [26, 22, 18, 40]), to emphasize the notion that objects
and actions are inseparably intertwined and that categories are therefore determined
(and also limited) by the action a cognitive agent can perform and by the attributes
of the world it can perceive.

In the following we describe our research results on acquiring multi-modal object
representations, which develops through exploration making use of the interplay
between different sensorial modalities, such as of visual and haptic information. In
addition, we describe how new actions can be learned from human demonstration,
represented adapted and applied for executing manipulation tasks, thus replacing
engineering approaches, that are currently used to generate actions.

5 Visuo-Haptic Object Exploration

For humanoid robots operating in human centered environments the ability of adap-
tation is a key issue. Autonomous adaptation to new tasks, domains, and situations
is a necessary prerequisite for performing purposeful assistance functions in such
environments. The combination of sophisticated sensor systems in humanoid plat-
forms together with the ability to interact with the environment allows autonomous
exploration in order to gain and consequently adapt knowledge about the surround-
ing world in a goal-oriented manner.

5.1 Visually-Guided Haptic Object Exploration

Haptic exploration of unknown objects is of great importance for acquiring multi-
modal object representations, which enable a humanoid robot to autonomously ex-
ecute grasping and manipulation tasks. To acquire such representations, an explo-
ration strategy is needed, which guides the robot hand along the surface of unknown
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objects and build a 3D object representation based on acquired tactile point clouds.
We propose an exploration strategy that makes use of the dynamic potential field ap-
proach. To demonstrate the capabilities of this strategy, experiments are performed
in a physics simulation using models of the five-finger robot hand.

Fig. 5 Haptic exploration scheme based on dynamic potential fields.

Fig. 5 shows the concept of the exploration process, which is initiated through a
rough estimate about the objects position, orientation and dimension. In real experi-
ments, this information can be provided by the robot’s stereo-vision system, and has
to be provided manually in the simulation framework. The trajectories of the fin-
ger tips which are equipped with tactile sensors are calculated as described in [12].
The resulting object representation is an oriented 3D point set constructed from the
contact data of the tactile sensors on the finger tips. Such a representation has the
advantage that it may be enhanced directly with data from a stereo camera system
and that it may be processed using well known algorithms, e.g. for the purpose of
object recognition. A snapshot of an exploration example and a resulting 3D point
set are shown in Fig. 6.

Fig. 6 Haptic exploration of a rigid bunny and the resulting 3D point set.
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Initially, a potential field consisting of only attractive forces is defined in a uni-
form grid, which covers the exploration space. During the exploration the finger tips
trajectories are continuously calculated by the gradient of the potential field, while
contact points and normals are acquired and stored as oriented 3D point set. The
potential field is updated by deleting attractive forces when contact is detected and
adding repelling forces at the contact location. Local minima which arise during the
exploration are resolved by a reconfiguration observer, which detects when the TCP
velocity and the mean velocity of the finger tips fall below predefined minimum ve-
locity values. In such a situation, the a new hand configuration is used to continue
the exploration. In a subsequent step, the oriented 3D point set acquired during the
exploration are processed to identify geometric object properties and potential grasp
candidates (see [13]).

5.2 Active Visual Object Exploration and Search

In the field of visual perception, an important aspect of world knowledge generation
consists of the acquisition of internal representations of objects. While many avail-
able recognition systems rely on representations, which have been acquired offline,
exploration provides the opportunity to autonomously acquire internal representa-
tions. The benefits of such capabilities are two-fold: First, autonomous acquisition
of internal representations of objects simplifies the generation of new object knowl-
edge. Second, together with the ability of recognizing known and identifying un-
known object instances in the environment, autonomous acquisition allows to adapt
to changing environments as required in a human-centered world. As a consequence,
we follow an integrated perspective on visual object modelling and recognition. The
goal is to equip the humanoid robot ARMAR-III with the ability to acquire visual
object representations autonomously which can then be used for object search and
recognition in future tasks.

Fig. 7 illustrates the acquisition of visual object representations on the humanoid
platform ARMAR-III. During the acquisition process, unknown objects are held in
the five-fingered hand and different view angles of the object are generated in order
to cover as much visual information as possible. The object views are captured with
the robot’s cameras and contain major parts of the hand and the scene. In order to
process the object views and to derive viable representations, object-background and
object-hand segmentation are performed based on a set of cues which are generated
using visual as well as proprioceptive information (see [37]).

The segmented views are combined to form a multi-view object representation.
The focus is put on the acquisition of the appearance based part of object repre-
sentations, which can be used for a visual search task. The acquisition of geomet-
ric representations as required for grasping only based on visual input is difficult.
Rather, the generation of the geometric part is mainly achieved using approaches
of haptic exploration (see Sec. 5.1). The generated views are combined in an as-
pect graph representation, where each node corresponds to one view of the object
and edges express the neighbor relations. The views are processed using different



372 T. Asfour et al.

Fig. 7 Left: Exploration of an unknown object held in the hand of ARMAR-IIIb. Hand-
object and background-object segmentation is performed in order to generate an appear-
ance based representation. Right: Result of a visual search task. The scene memory contains
two instances of the searched object. The active camera system focuses on both instances
alternately.

feature extraction methods. A compact representation is derived by clustering the
views according to their similarity (see [38]). The resulting aspect graph and its
associated prototypical features are stored in the knowledge base.

With the generated representations, visual object search is performed on the ac-
tive head of the humanoid robot ARMAR-III (see [36]). During the search process,
hypotheses of object locations are generated based on the views of the perspective
cameras of the head. Using the generated hypotheses, attention mechanisms guide
the gaze of the foveal cameras in order to perform a more detailed inspection of the
scene. The system successively fills an ego-centric scene memory with the results
of the hypotheses generation and verification processes. Thus, consistent and per-
sistent information is accumulated in the scene memory with respect to the searched
object as depicted in Fig. 7. The content of the scene memory is available for higher
level tasks.

6 Learning from Human Observation

6.1 Markerless Human Motion Capture

Markerless human motion capture is a prerequisite for learning from human obser-
vation in a natural way. The sensor system to be used for this perceptual capability
is the wide angle camera system built-in in the head of ARMAR-III. The two main
problems are to capture real 3D motion despite the small baseline of 90 mm as well
as to meet the real-time requirements for online imitation learning. As probabilistic
framework, a particle filter is used. In our earlier work [10], we have introduced the
integration of a 3D head/hand tracker as an extra cue into the particle filter. This ad-
ditional cue allows to reduce the effective search space by dragging the probability
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distribution into a relevant subspace of the whole search space. In our more recent
work [6, 5] we have focused on improving the accuracy and smoothness of the ac-
quired trajectories by analyzing and solving the typical problems with markerless
human motion capture using particle filters. In order to achieve this goal, a prior-
ioritzed fusion method, adaptive shoulder positions, and adaptive noise in particle
sampling have been introduced. Furthermore, the redundant inverse kinematics of
the arm, given a hand and a shoulder position, were integrated into particle sam-
pling, in order increase robustness to unexpected movements, to allow immediate
recovery from mistrackings, and to support application of the system at lower frame
rates. After sampling a subset of the particles according to the redundant inverse
kinematics, several runs of an Annealed Particle Filter [15] are performed to refine
the probability distribution.

6.2 Master Motor Map

To allow the reproduction of human motion acquired from different human motion
capture systems on different robot embodiments as well as to allow the development
and evaluation of action recognition systems independent from the data source. To
overcome the data compatibility problems arising form different data formats of mo-
tion, we have specified the so-called Master Motor Map (MMM) as an interface for
exchanging motor knowledge between different embodiment, and as a framework
for decoupling data from various sources accounting for perception, visualization,
reproduction, analysis, and recognition of human motion.

The MMM is defined as a three-dimensional reference kinematic model of the
human body enriched with body segment properties. The strategy with respect to
the kinematic model is to define the maximum number of degrees of freedom (DoF)
that might be used by any applied module. The numbers of DoF and the Euler angle
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Fig. 8 Illustration of the proposed framework
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Joint DoF Euler Angles

Root 6 RX ′Z′Y ′(α,β ,γ)
Pelvis 3 RX ′Z′Y ′(α,β ,γ)
Torso 3 RX ′Z′Y ′(α,β ,γ)
Neck 3 RX ′Z′Y ′(α,β ,γ)
Skullbase 3 RX ′Z′Y ′(α,β ,γ)
Hip R/L 3 + 3 RX ′Z′Y ′(α,β ,γ)
Knee R/L 1 + 1 RX ′Z′Y ′(α,0,0)
Ankle R/L 3 + 3 RX ′Z′Y ′(α,β ,γ)
Toe R/L 1 + 1 RX ′Z′Y ′(0,β ,0)
Sternoclavicular
R/L

3 + 3 RX ′Z′Y ′(α,β ,γ)

Shoulder R/L 3 + 3 RX ′Z′Y ′(α,β ,γ)
Elbow R/L 2 + 2 RX ′Z′Y ′(α,β ,0)
Wrist R/L 2 + 2 RX ′Z′Y ′(α,0,γ)
Total 54

Fig. 9 Number of degree of freedom and euler
angle conventions for the joints of MMM
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Fig. 10 Illustration of the MMM
kinematic model

conventions are listed in table 9. The kinematic model of the MMM is illustrated in
Fig. 10. In order to compute gross body dynamics, the kinematic model is enriched
with body segment properties, such as mass distribution, segment length, moment
of inertia, etc. For this purpose, the linear equations presented in [14] are applied
since they represent the most complete and practical series of predictive equations
for college-aged Caucasian adults, providing all frontal, sagittal, and horizontal mo-
ments of inertia. The body segment properties are adjusted with respect to the kine-
matics of the MMM and listed in table 2. Using the MMM, different motions have
been reproduced on the humanoid robot ARMAR III (see [16]). Furthermore, we are
building up a database of movements in the MMM format, consisting of both mark-
erless and marker-based human motion capture data, which will serve as a motion
library for the implementation of manipulation tasks on a humanoid robot.

6.3 Goal-Directed Imitation

Generation of complex motor control policies can be achieved through imitation.
A human movement is recorded and later reproduced by a robot. One of the chal-
lenges need to be mastered for this purpose is the generalization to different contexts
since we cannot demonstrate every single movement that the robot is supposed to
make. Therefore, motor knowledge extracted from human observation must be rep-
resented in a way, which allows the adaptation of learned actions to new situations.
We investigated different approaches for the representations of movement primitives
based on splines [29], Hidden Markov Models [2] and applied dynamic motor prim-
itives (DMP) as proposed in [21]. A DMP provides a representation of a movement
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Table 2 Adjusted body segment properties for the MMM model. Segment masses are relative
to body masses; segment lengths are relative to body heights. Both segment center of mass
and radii of gyration are relative to the respective segment lengths.

Segment Segment
Length/ Total
Body Height

Segment
Weight/ Total
Body Weight

Center of Mass/
Segment Length

[x y z]

Radius of
Gyration/ Segment
Length [rxx, ryy,

rzz]

Hip 0.26 0.11 [0 4 0] [38 36.5 34]
Spine 0.10 0.10 [4 46 0] [32 26 28.6]
Chest 0.18 0.17 [0 46 0] [35 28.5 31.3]
Neck 0.05 0.024 [0 20 0] [31.6 22 31.6]
Head 0.13 0.07 [12 13 0] [31 26 30]
Shoulder R/L 0.10 0.021 [0 0 -66] [26 26 12]
Upper Arm R/L 0.16 0.027 [0 -57.3 0] [26.8 15.7 28.4]
Lower Arm
R/L

0.13 0.016 [0 -53.3 0] [31 14 32]

Hand R/L 0.11 0.006 [0 -36 0] [23.5 18 29]
Thigh R/L 0.25 0.14 [0 -33 0] [25 11.4 25]
Shank R/L 0.23 0.04 [0 -44 0] [25.4 10.5 26.4]
Foot R/L 0.15 0.013 [39 -6 0] [12 19.5 21]

segment by shaping an attractor landscape described by a second order dynamical
system. Using this formulation, discrete and periodic movements can be described.
In [27], we applied a motion representation based on dynamic movement primitives
(DMPs), which has the advantage that perturbations can be directly handled by the
dynamics of the system.

Using the human motion capture system as described in Section 6.1 and the uni-
fied representation by the MMM (see Section 6.2), we implemented an on-line im-
itation learning framework on the robot. Starting from the observation of a human
performing a specific task, motion data is obtained, which is segmented regarding
the velocity and position changes of the hand or the object motion. After mapping
these motion segments onto the robot using the MMM Interface, DMPs are learned
and stored in a motion library. Semantic information is added manually to the move-
ment primitives such that they can code object-oriented actions. To reproduce these
actions on a robot, a sequence of DMPs is selected and chained, either manually or
through a symbolic planner, to achieve the task goal. The imitation of a pick-and-
place action consists e.g. of learned DMPS for the different movement segments:
approach, place and retreat. The adaption and execution of a DMP for a placing
movement is shown in Fig. 11.
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Fig. 11 Left: Execution of a place movement for different goal positions by the humanoid
ARMAR-IIIb. Right: The red solid line represents the trajectory of the observed movement,
while the other lines denote the adpation of the learned DMP to several goal positions.

7 Conclusion

In this paper, we have presented both past and current progress towards the real-
ization of humanoid robots able to perform complex tasks in human-centered en-
vironments. We gave an overview about the mechatronics of the humanoid robots
ARMAR-III as well as the methods and techniques applied to object recognition
and localization, vision-based grasping and collision-free motion planning. In addi-
tion, we presented first steps of our research towards the acquisition of sensorimotor
capabilities through multi-sensory exploration of the environment, observation of
humans and goal-directed imitation of the observed movements.

Acknowledgements. The work described in this paper was partially conducted within the
EU Cognitive Systems projects PACO-PLUS (FP6-027657) GRASP (FP7-215821) funded
by the European Commission and the German Humanoid Research project SFB588 funded
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Abstract. In the research to realize high standard task-oriented assistant robots, a
general and strategic way of development is essential. Otherwise high functional-
ity and potential for evolution of those robots cannot be achieved. Robotic systems
are socially expected to assist our daily life in many situations. As a result, projects
related to those robots are becoming large, involving many researchers and engi-
neers of universities and companies. This motivated us a new strategy to construct
robotic systems based on mother environment and humanoid specialization to keep
developing and refining functional elements of robots in an evolutionary way. The
mother environment is an entity that creates brains of humanoid robots, where vari-
ous robotics function elements, libraries, middle-wares and other research tools are
integrated. Then the brain of each robot is developed utilizing the functional ele-
ments in the mother. We call this process specialization of a humanoid. To enhance
this specialization process, we introduce a generator, which realizes conversion of
functions in the mother environment for the real-time layer. After the research of
these specific robots, enhanced robotics functions are incorporated into the mother
again. We call this process feedback. In this chapter, we present these ideas using
concrete implementation examples in IRT projects[1], where several robots to assist
our daily life are developed.

1 Introduction

A general and strategic way of development is essential in the research of task-
oriented daily assistant robots, because they are expected to have high function-
ality and potential for continuous evolution. Developing each robot in a specific,
restricted development environment is not a good idea. Instead, designing the devel-
opment environment itself to have a set of generalized functions and large potential
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for evolution is better. In this method, part of the generalized functions are modified
and enhanced depending on each task and then incorporated again into the devel-
opmental environment. This framework to incorporate the mother environment into
the cycle of enhancement and continuous development is important for evolution of
robot functions, which is required repeatedly.

Practical task-oriented assistant robots are prone to hardware and environment
dependent and expected assistive tasks and situations they work have a large variety.
Therefore the standard of required functions becomes higher and more sophisticated
incessantly and higher level of development environments are required as well. As
for the development environments, however, there are many functions and structures
used in common, even though tasks differ. Conversely, specific task-oriented robots
can stop their development before evolving to the standard of practical use unless
they have development environment with high potential.

Then what is the methodology of developing these robot systems with general-
ity? Our approach is to share mother environment and integrate it into the evolution
cycles of humanoid functions. The mother is a development platform for research
of humanoid functions where variety of functions are integrated. In order to extend
elemental functions in humanoids further, we let the mother have a mechanism for
specialization to generate specific task-oriented robots from humanoids. The func-
tions are specialized and intensified for each robot. Then we experiment and evaluate
them through experiments in the robot and next generation humanoids, accumulat-
ing the result in the mother environment.

The rest of this chapter is structured as follows. First, we introduce the idea of the
mother environment in the next section and overview software infrastructure that
plays important role in continuous development of robot software. Next, section
3 describes additional functions we have implemented recently for IRT projects.
Section 4 presents robots developed in the IRT project and explains how the software
was developed. After that, the idea of feedback is stated with concrete examples in
5. Finally, we conclude this chapter in 6.

2 Mother Environment

In the development over many years by many researchers, to keep research tools
easily accessible and usable is very important. Research tools include robotics
functions, libraries, middlewares and so on. Further to keep enhancing robotics
functions, we believe testing them in various robots and conditions is also effec-
tive. Our approach is to make them accessible in a Lisp-based development en-
vironment. Fig.1 shows our research history on the environment. COSMOS[2][3]
stands for cognitive sensor motor operation studies and is the first Lisp-based re-
search platform in our lab (JSK). On the COSMOS system, vision-based research
had progressed[4] in rope handling[5], vision-based programming[6], teaching by
showing[7] and so on.
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Fig. 1 Research history in JSK

In order to progress advanced vision based research, we adopted new object-
oriented Lisp system, EusLisp[8], which has 3D geometric modeler. With this new
powerful Lisp system and a new approach of remote brained robots, we could start
research on mother environment [9][10][11]. The mother environment is a develop-
ment environment with various software functions and grows brains of many robots.
Here, brains mean software of robots that generates intelligent behaviors of them.
Fig.2 shows the development flow of the research of the mother environment. In
the mother environment, robot researchers share and revise software modules with
different kind of robot bodies and tasks. Then the functions newly developed or
enhanced for the specific robots are feedbacked and enhance the mother itself.

This chapter describe the specialization flow from the integrated humanoid,
HRP2JSK to IRT robot systems and the integration into new generation of HRP2JSK
series.

2.1 Humanoids in JSK Robotics Lab

To give a concrete image of robots we are working on, we show some of them in
Fig.3. The development started with Remote-brained robot series[12][13][14] some
decades ago. These robots had main computers outside of the bodies because it
was difficult to embed high performance computers in the robots’ bodies. On the
other hand, by the appearance of embeddable, smaller and more powerful PCs, it
became possible to start a life-size humanoid autonomous project: HARP[15]. The
seventh prototype of HARP, H7[16] had an on-board PC with dual CPUs. Vision-
based humanoid behaviors were realized in HARP [17][18][19]. Control software
of H7 became a basis of HRP2 which is the final prototype of the human coop-
erative project[20]. In our lab (JSK Lab.), we have been developing a series of
HRP2JSK[21][22] through refining HRP2 as a Lisp-based integration platform for
daily assistive tasks that require complex recognition and motion generation. In the
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Fig. 2 Mother environment and development process

Fig.3(d), HRP2JSK is cleaning the floor with a cleaner based on vision. Cla[23]
is a first remote-brained robot with spine. Kenta is the first prototype of a life-
size musculo-skeletal humanoid[24][25]. Kotaro[26] is the first musculo-skeletal
humanoid with collar and blade bones. Their latest version, Kojiro[27] has as many
as 82 DOFs and 109 wire-driven muscles. In the figure, it is hitting a Japanese drum.
Research interest is mainly in how to construct and control this extremely complex
robotic hardware. In addition to the spined body structure, we have worked on tactile
sensor suit[28] to cover the whole body of a robot using electrical conducted fabric.
The robots named ’macra’ and ’macket’[29][30] are developed for ’sensor flesh’,
which has soft thick exterior embedded with distributed multi-axis tactile sensors.
For realizing various contact state recognition during very close interaction between
humans or environments and a robot, such kind of sensor exterior is necessary. Sens-
ing elements inside of the ’sensor flesh’ are improved in macket. Implementation of
the sensor flesh is improved in macket. It uses 3D soft deformable sensors newly
developed for ourselves, solving many problems which arise when we use commer-
cially available 3-axis force/torque rigid sensors for macra. The rightmost one is a
prototype of a high power humanoid leg[31]. A main feature of this leg is that it
employs current vector control and liquid-cooling to drive 200[W] motors. It can
lift up and down as heavy as 62.5[kg] of weight.

2.2 Lisp-Based Development Environment

The robots presented in section 2.1 share the most part of software in common and
developed using the same software infrastructure. What is important is that robotics
functions are integrated in Lisp based programming environment, EusLisp[8][32]
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(a) 1993

(b) 1995

(c) 2001 (d) 2005

(e) 2000 (f) 2001 (g) 2005 (h) 2008

(i) 2005 (j) 2008

(k) 2008

Fig. 3 Remote-brained robot(a),(b),(e), H7(c), HRP2(d), Cla(e), Kenta(f), Kotaro(g), Ko-
jiro(h), macra(i), macket(j) and High power leg(k) developed in JSK Robotics Lab, The Uni-
versity of Tokyo.

from the higher level to the real-time reactive layer(Fig.4). Here, the higher level
consists of functions such as planner, vision, auditory, inference, prediction, goal
management and execution control. It uses memory layer as an internal expression
of the robot and environment. The real-time reactive layer consists of functions such
as reactive control and sensor motor body monitoring. It usually consists of peri-
odic, concurrent processes and requires real-time response. Examples are Hrpsys
of OpenHRP[33][34] and Nervous System(NS), which is a plug-in system with the
similar design and interface with Hrpsys.

Body models (virtual bodies) and real bodies are designed to offer the same inter-
face to the programmer. Consequently by switching a real robot and a body model,
the same application run. This is done, typically by changing a line in the application
programs. Models, algorithms and behavior programs to realize tasks are written in
EusLisp itself. On the other hand, real-time reactive layer is implemented in lan-
guages like C or C++ and controlled from EusLisp. That is, it offers interface to
EusLisp. A lot of useful external libraries are integrated into EusLisp using foreign
language interface. Foreign language interface is a specification to link and exe-
cute program of different execution model. Most of recent programming languages
support. Examples are JNI in Java and Boost Python in Python. Common Lisp im-
plementations such as Allegro Common Lisp or SBCL also support this. Exam-
ples of external libraries are algorithms of image processing(OpenCV[35]), collision
detection(PQP[36]), physical calculation, sound recognition, numerical calculation,
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and libraries for various devices. Using these techniques, every layer is integrated
under consistent interface design of EusLisp.

We will add some more explanations of EusLisp since it is a core of the integra-
tion. EusLisp was developed by Matsui et al. to meet a demand for an extensible
solid modeler that can easily be made use of from higher level symbolic processing
system because an essence of the robotics research is sensory data processing where
3D shape models of robots and environment play crucial roles. In addition to it, it
supports several functions required for robot programing such as multi-threading,
object-orientation. foreign language interface and graphics. Object system of Eu-
sLisp is single inheritance model, where every data structure except number is rep-
resented by an object. Graphics means XWindow and OpenGL support. EusLisp
provides users with common interface to various software like robot models, sen-
sors and other functions, which enables new comers to the lab. to use robots in short
time. External dynamics engines such as ODE[37], PhysX[38] are also integrated
into EusLisp and the engine is controlled from EusLisp interactively.

Real Body Body Model

Realtime Reactive Layer
Reactive Control
Sensor Motor Body 
Monitoring

Memory Layer
Body Model
Objecty Model
Environment Model

Higher Level
Planner,Vision, Auditory
Inference, Prediction
Goal Management
Execution Control

Mother System
・task design
・translation
・generator

Fig. 4 Lisp-based integration environment for humanoids and IRT systems robot

3 Enhancement of the Mother Environment Modules

We have extended the Lisp-based environment in three ways these days to support
broader ways of structuring the system. The first one is a framework to develop
software using the C/C++ program generated from the Lisp-based environment. The
second one is an improvement of real-time response of the Lisp-based environment.
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And the last one is interface to integrate the Lisp-based environment with robotics
middleware, which enable us to structure the robot system in more flexible way. In
the rest of this section, we describe these extensions in further detail.

3.1 Generator for Humanoid Specialization (RATS)

Lisp has a novelty that we can write program and execute it interactively, without
rebooting the system. However, when we want to implement lower layer functions,
this has problems. Memory management of Lisp can cause a long pause time for
timing sensitive applications. Small footprint is required for embedded robotics ap-
plications. Furthermore, though this is not only true for lower layer, faster execution
speed is favorable, especially for computations using matrices and vectors.

This motivated us to develop system to export model-based program written in
EusLisp in a way that suits the requirements of the lower layer functions, where
timing and resource issues are more important. Fig.5 shows a conceptual diagram
of this system and the development process using it.

Firstly, the model description of robot is translated. In EusLisp, models of robots
are written procedurally in Lisp program. Analyzing the structure of robots from the
Lisp code statically is difficult, but once the structure of the robot is fixed, it does
not change usually while executing application programs. In addition, the descrip-
tion of robot is standardized in the lab by imposing several conventions to model
developers. Therefore, models used in EusLisp can be dumped by analyzing the
structure constructed in memory at runtime and interpreting several classes showing
the structure of robots such as links and joints. Models are allocated dynamically in
EusLisp, but this causes a lot of overhead since accesses to models require several
method calls and symbol look-ups. Therefore, in dumped program they are allo-
cated statically to realize fast access. This improves locality of the model structures
in memory and reduces footprint as well.

Secondly, a restricted set of EusLisp program that does some computation using
robot models are translated. What we would like to do here is to convert EusLisp
program to C/C++ program without high-functional runtime memory management
that runs fast and requires small footprint. However, converting general Lisp pro-
gram to the program stated above is not possible. So we used a similar approach to
the one adopted by Embedded MATLAB[39]. The point of translation is as follows.

• only restricted set of constructs, primitives are allowed
• annotation of static types by programmer is required
• give up following Lisp semantics correctly, and interpret many constructs in the

most common and conventional meanings statically at the time of translation

Thirdly, we prepared runtime libraries and tools such as a viewer for this framework
from scratch. Some functions can be converted from the code of EusLisp, but some
programs are difficult to convert and some functions do not have the same func-
tions in EusLisp. By using these three components: dumped robot models, translated
C/C++ program and runtime libraries written C/C++, users can easily and efficiently
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develop a stand-alone C/C++ program, or real-time controller for plug-in systems
such as OpenHRP.

- Rich in modeling functions
-Procedurally constructed 3D models

Plugin-system
-Hrpsys

-NS

3D Robot Models
- small footprint, fast accessRATS

EusLisp world (interactive)
C/C++ world 
(Realtime / high resource awareness)

Realtime reactive layer Applications using 3D Models

(:proc (v)
(let (y x)

(setq x v)
(setq y (v+ (scale b1 x1) 

(v+ (scale a1 y1) 
(scale a2 y2))))

(setq x1 x y2 y1 y1 y)
y)))

vector3 proc(vector3 v) {
vector3 x;
x = v;
vector3 y;
y = vplus(scale(b1, x1), 

vplus(scale(a1, y1), 
scale(a2, y2)));

x1 = x; y2 = y1; y1 = y;
return y;

}
};

Algorithms based on
vector/matrix 

operations
- No GC

RATS runtime libraries
and tools

Lisp code (subset)

Realtime plugins

kinematics
dynamics

interpolator
filter

…

Real robot

motor command

sequencer

hwalk

hstabilizer

stateprovider

…

Fig. 5 Framework to develop using C/C++ program generated from the Lisp-based
environment

3.2 Real-Time Garbage Collection Support to Improve Realtime
Response of Lisp-Based System

For an application to be real-time, underlying programming system needs to be real-
time as well as OS. On the other hand, applications generate a lot of garbage memory
blocks while executing. For example, most of the computation in Lisp generates
intermediate data such as vectors, matrices or strings. Part of large data structures
like search trees of planning, 3D geometrical models of robots, environments and
objects to manipulate can be garbage as well. Hence, the system needs to recycle
those unused blocks. As a result, applications stop its execution while this recycle
process (GC) is occurring. We have implemented a GC algorithm to reduce this
pause times of applications. The algorithm is based on the snapshot algorithm[40]
and executes GC concurrently[41] with applications using a separate thread. It uses
the write barrier technique to trap writes of applications and realize a consistent
heap image for GC process.
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3.3 Interoperability with Robotics Middleware

The use of robotics middleware has been becoming popular in recent years, es-
pecially for the development of a large, distributed system. Some of famous mid-
dlewares would be ROS[42] by Willow Garage, RT-Middleware by AIST and
MSRS[43] by Microsoft. Sometimes by utilizing these middleware, the effort to
develop system decreases a lot. Using package or component libraries of the middle-
ware is also useful. To make use of these benefits, we added functions to smoothly
connect EusLisp and these middlewares and compose the whole system.

Fig.6 shows different ways of structuring the system. The left column(A) is
an integration on EusLisp. The right column(B) is an integration using software
parts generated by RATS. (A-a) is a typical structure to develop the whole func-
tions of the application in EusLisp. Each asynchronous function is expressed as
a thread and these threads communicate with each other using shared memory.
The higher layer of many robots including HRP2-JSK is implemented like this.
(A-b) is the structure using extensions to use distributed middleware. Two ways
of connections are realized. One way is a function to manage components from
EusLisp. For example, components are activated/deactivated in EusLisp. The other
way is a function to use EusLisp itself as a component or components of middle-
ware. Program running on EusLisp behaves as a component and communicate with
other components using the interface defined in the middleware framework. ’macra’
and ’macket’ use JRTM, an integrated Lisp programming environment with RT-
middleware architecture[44][44]. Among IRT robots, Mamoru described in the next
section uses this. By using ROS-Eus, which is ROS interface of EusLisp, we realized
a demonstration in one week by combining functions of autonomous navigation in
ROS with functions of audio visual interaction, human detection and hand shaking
motion in EusLisp. Generally real-time response of the system in the left column is
improved by the use of real-time GC described in the previous subsection.

The right column is usually the way of structuring the real-time reactive layer.
Conventionally plug-ins are written in C++, but RATS helps develop plug-ins using
robot models. Programmers are able to use robot models and algorithms developed
in EusLisp in their plug-in code by using the generator. (B-a) is a single loop plug-
in architecture. In this plug-in architecture, functions like collision check or motion
interpolation are registered on demand as dynamic link libraries and the system
executes the functions periodically in a specified order. Nervous system(NS) of Ko-
taro/Kojiro and Hrpsys of HRP2 use this architecture. KAR uses the nervous system
in its reactive layer. We also developed Hrpsys compatible system for AR. The re-
active layer of AR is complex. It uses a distributed middleware of Toyota in the
embedded OS (B-b), too.

As you can see that one robot appears in some pictures, integration methods
described here are combined with each other to construct a larger system.
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(b) EusLisp integrated into distributed 
middleware: RT-middleware, ROS

(HRP2-JSK, Mamoru)
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behavior programs

EusLisp

EusLisp

global memory

application thread

application thread
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Real-time plug-in
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Fig. 6 (A)Structure using EusLisp, (B)Structure using RATS-generated program (Realtime
layer)

4 Development of IRT Specialized Robots

IRT is a project that started about three years ago. In the project, a group of the
University of Tokyo is working with several companies such as Toyota, Fujitsu,
Panasonic. The objectives are to support aging society using Information Technol-
ogy(IT) and Robot Technology(RT), meaning IRT. Therefore each robot has very
practical, specific tasks with high expectation in the society and its hardware is not
necessarily humanoid but designed to well suit the tasks. This section describes
three robots from the aspects of hardware, system architecture, and expected tasks.

We also focus on how the software infrastructure was used. Functions integrated
to the humanoid platform we have developed were used to develop these robots.
Sometimes they were used as they are or changed to develop program that are more
suitable to the specific robot. Sometimes they were exported to the specific robot
using program translation techniques. We call this idea humanoid specialization.

4.1 Tidy-Up Assistant Robot – AR

A tidy-up assistant robot is a prototype to help our life by covering several house-
works. Upper body consists of a head (3 DOFs), a waist (1 DOF) and 2 arms (7
DOFs), and its end-effector equips 3 fingers which are composed of 2 joints. Lower
body is 2 wheeled mobile platform. These configuration enables the robot to achieve
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(a) Carry a tray (b) Pick up a cloth (c) Put the cloth in a washer (d) Clean a floor

To do
-pick up a tray
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--force sensing
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To do
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-Failure recovery
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--pick up the cloth on a
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To do
-manipulate a washer 
machine

Failure Check & Recovery
-Did the door open/close?
-Is the cloth in the washer?
--visual motion detection
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--check grasping state
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-Are there removable
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--visual object recognition
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- 32 DOFs:
-- head 3, arms 7x2, fingers 6x2

waist 1, wheels 2
- Sensors:
-- 2 cameras, 3 LRFs
-- 4 force sensors 

(wrists, shoulders)
-5 CPUs

Living room model Assistant robot: AR

Fig. 7 Tidy-up assistant robot (AR)

both moving on wide range quickly and dextrous object handling. On the other hand,
this robot mounts a stereo camera on the head, and a LRF (Laser Range Finder) on
the wheelbase. Force sensors are equipped on wrists and shoulders of the both arms.
The robot hardware was developed by Toyota Motor Corporation.

We designed and developed software system and proved the system by imple-
menting a demonstration to perform several houseworks sequentially. One of the
important things to develop helpful robots which works in real environment is to
let it have abilities to handle various failures while working. Because our system
provides a wealth of recognition functions and pre-defined environment informa-
tion, this enables the robot to detect mistakes of chores and to plan to recover the
condition on the spot[45]. The bottom row of Fig.7 shows tasks and failure detec-
tion methods while conducting the tasks together with recovery methods tried after
detecting those failures.

The geometrical simulator and motion planning parts are implemented by using
EusLisp (keeping with past framework). Although all of recognition functions and
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motion commands are implemented by C/C++, they were also promoted to call from
EusLisp through interface functions. This means that all of task level programming
can be written by Lisp and it enables us to develop the demonstration interactively.
As for recognition, model based recognition of EusLisp was used to detect objects
such as chairs, a button of a washing machine. In addition, we developed a new
image based method for clothes by utilizing wrinkle feature[46].

4.2 Kitchen Assistant Robot – KAR

This is an arm type kitchen assistant robot(Fig.8) [47][48]. This has 8 DOFs: 1 for
a slider, 6 for the arm, 1 for the hand. The intended task of this robot is dexterous
handling of dishes, which is an essential skill to help us with daily housework. One
example task sequence is to carry several kinds of dishes put on a tray to a dish
washer after rinsing them in the water. The robot hardware is developed by Pana-
sonic Co.,Ltd and we designed and developed hands suitable for dish handling. For
this task, many sensors are embedded in its end effector. one 6-axis force sensor
is in the wrist. 6 MEMS tactile sensors[49], two 3-axis force sensors, 5 proximity
sensors and eight pressure sensors are on the palm and the thumb.

We developed a manipulation method based on groping, which means motion
planning is combined with sensing and recognition of manipulation targets using
these sensors. This technology enabled the robot to manipulate fragile, sometimes
stacked dishes in a skillful way, resulting in the realization of clearing dishes, which
is one of the most expected housework for service robots. The system is designed as
follows. To handle dishes dexterously in a cluttered environment, the robot needs to
adjust motion quickly responding to sensor inputs. On the other hand, however, to
achieve tasks of high-level objectives, sequential program flow is favorable. Then,
a key idea is to separate main program control flow from troublesome monitoring
tasks. Monitors are executed concurrently in separate threads and keep checking
the status of work, detect errors and unexpected events while performing tasks. A
framework to create and delete a proper set of monitors depending on task phases
was developed. The events from monitors are processed using a ring queue.

Since the robot is a kind of an arm of a humanoid, we could easily implement the
geometrical simulator and robot models using EusLisp. Functions like RRT-connect
motion planning, collision detection existed in EusLisp was also used. Its real-time
reactive layer is composed of Nervous plug-in system (NS).

4.3 Recall Assistant Robot – Mamoru

This is a small robot like a kid or an animal character. The intended task is daily
watching of people’s life and giving useful advises or presenting information at a
proper timing. The height is 451[mm]. Each arm has 2DOFs and flutters. The neck
has 2DOFs. 2 multi-view cameras are embedded in the eyes. It has 16ch micro-
phones and a speaker to interact with humans and detect events in the room.
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Fig. 8 Kitchen assistant robot (KAR)

To watch the behavior of people living in the room and detect events such as
opening and closing of doors or drawers, the robot has to have both wide view angle
and good eyesight. In addition, it is favorable to be able to have several region of
interests because the robot can keep watching background human activities while
communicating with a specific human which often requires high resolution for ex-
ample to recognize his or her face. This was realized by a small DSP embedded
programmable camera that sends images of specified region of interests and resolu-
tions interleavingly, realizing efficient USB traffic. This robot has a new embedded
tracking vision module developed by Fujitsu Co.,Ltd [50]. This tracking vision pro-
vides realtime 3D optical flow generation based on normalized correlation image
processing. The performance of the tracking capability was presented in the origi-
nal vision system[51]. Design issues are also important for this robot. Since it lives
with people for long time, it need to be liked by various people from children to
elderly people.

To develop the robot, software libraries for image processing and audio interac-
tion such as sound localization, voice recognition inherent in the humanoid platform
were used. NS was used to implement its real-time reactive layer. As for enhance-
ment, it used JRTM, which is an RT-middleware interface of EusLisp.

One of the tasks it realized was giving a notice to people who tried to take
medicine soon after they took it once. For this task, we developed several functions,
for example, recognition of human behavior based on location related semantic in-
formation, recognition of taking medicine behavior using multi-view angle cameras
and recognition of product class, name, freshness date from bar-code/characters.
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Fig. 9 Recall assistant robot

5 Feedback to the Mother Environment

For the continuous development, elemental functions enhanced in specialized robots
are feedbacked to the mother environment to work in the humanoid platform to-
gether with some new devices. Fig.10 shows the concept of this specialization and
feedback process.

Mamoru used functions for audio visual interaction that had existed on HRP2JSK
as a specialization. Then through IRT development the audio visual interaction was
enhanced with multi-resolution, multi region of interests support cameras and the
vision hardware module and feedbacked to the mother[52]. Now these functions
can easily be used to describe tasks on the humanoid platform as the feedback pro-
cess. In the case of KAR, tightly coupled sensor motor interaction on multi-modal
sensors developed for KAR hand is feedbacked into the mother modules for the
next humanoid integration. The architecture to execute parallel monitoring tasks
and get noticed by them were also incorporated. The parallel structure module pro-
vides dexterous, groping-based handling capability on the humanoid. In the same
way, AR used vision-based task execution functions integrated in EusLisp. Feed-
backs from AR to new humanoid development in mother environment include an
architecture to describe systematic failure-recovery control flow, new visual recog-
nition method of clothes, and the way of writing task sequences. The rightmost
column of Fig.10 shows HRP2s after these feedback enhancements. HRP2JSK-
NT shows hardware integration. It has 2 multi resolution cameras, 1 stereo camera
and 2 high-resolution cameras for visual processing. It also has omni-directional
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audio and is equipped with a sensor embedded hand. The system of HRP2JSK-VZ
consists of several middlewares and integrated using EusLisp. It uses a navigation
stack of ROS, components of RT-middleware for vision and head motion control
and OpenHRP to control the upper body.

Function Integration on 
HRP2 Humanoid Platform With Toyota

Vision-Based 
Task Execution

With Fujitsu

With Panasonic

Audio Visual
Interaction

Sensor-Based
Manipulation

HRP2JSK-VZ

HRP2JSK-NT

Remote 
Brained

HARP

COSMOS

Mother 
Environment

EusLisp

Fig. 10 Specialization and Feedback

6 Concluding Remarks

In this chapter, we presented a development method based on the mother envi-
ronment and humanoid specialization to realize high level of assistant robots. The
mother environment is a development platform for research of humanoid functions
where variety of functions are integrated. In our case, this is a Lisp-based envi-
ronment and various humanoid functions are used through the common interface.
Then we introduced a mechanism to generate specific task-oriented robots from
humanoids by specializing and intensifying functions in the mother. As concrete
examples of the specialization, we showed three different types of robots, AR for
task sequence planning and execution, KAR for tightly coupled sensor motor inter-
action in dexterous dish manipulation, and Mamoru for vision based recognition of
human behavior with real-time tracking vision in multiple narrow and wide views.
Finally, we explained the process of feedbacks to integrate enhanced functions into
the new generation of humanoids from the specialized tasks oriented IRT robot sys-
tems. HRP2JSK-NT and HRP2JSK-VZ are the new vehicles of research on mother
environment in our laboratory JSK.
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Learning

Cédric Pradalier

On the path to increased autonomy and performance, robotic systems must be-
come more and more able to adapt to a changing environment and to learn from
their experience. In some cases, learning could be the best way to acquire new be-
haviours, i.e. learning from the demonstration of a human teacher.

In “Learning Visual Representations for Interactive Systems”, Piater et al.
use a reinforcement learning approach to learn how to grasp objects of di-
verse shapes. An important aspect of this type of learning is the absence
of supervision: the robot tries by itself to grasp objects and move them
around, and, from this experience, learns what the best grasping configur-
ations are.
In “Learning Mobile Robot Motion Control from Demonstrated Primit-
ives and Human Feedback”, Argall et al. address the  difficult question of
teaching motion primitives to a robotic system based on a combination of
demonstration and corrective feedback while the robot is trying to instan-
tiate the motion primitives.  Interestingly, their  approach allows assem-
bling  complex  behaviours  based  on  previously  learnt  primitive  beha-
viours.
In  “Perceptual  Interpretation  for  Autonomous  Navigation  through Dy-
namic Imitation Learning”, David et al. take advantage of human demon-
strations to learn the characteristics of traversable terrains. An interesting
aspect of this work is the comparison with human-engineered solutions to
the  same  problem,  and  the  conclusion  that  learning-based  techniques
achieve equivalent performances with much less tweaking.
In “An inverse optimal control approach to human motion modelling”,
Mombaur et al. aim to learn the principle of human motion planning.  By
observing  human  motions,  they  are  using  a  learning  approach  to  re-
verse-engineer the rules of optimal control that humans are using, assum-
ing that human motion follows some kind of optimality criterion.
In “Towards Motor Skill Learning for Robotics”, Peters et al. focus on
learning sensory-motor skills, breaking down the problem into learning
primitive skills, and then learning to combine these skills into complex
behaviours. As for Argall et al., the approach here is based on imitation
learning with a human teacher providing a first model of the task to be
executed.



In “Learning Landmark Selection Policies for Mapping Unknown Envir-
onments”,  Strasdat et  al.  aim at  reducing the computational burden of 
mapping unknown environments by learning to identify useful landmarks 
only, discarding the others. Integrated in a SLAM framework, this ap-
proach uses a reinforcement learning technique and a policy compression 
based on neural network, to achieve performance superior to hand-crafted 
landmark selection heuristics.

In this group of papers, learning from demonstrations is a recurring topic. The 
need to rely on demonstrations is linked to one of the core challenges of learning 
systems applied to robotics: the dimension of the parameter space to be explored is 
huge in all but the most trivial problems. Introducing a human input helps redu-
cing the search to a channel of parameters around the demonstrated trajectory. 
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Learning Visual Representations for Interactive
Systems

Justus Piater, Sébastien Jodogne, Renaud Detry, Dirk Kraft, Norbert Krüger,
Oliver Krömer, and Jan Peters

Abstract. We describe two quite different methods for associating action param-
eters to visual percepts. Our RLVC algorithm performs reinforcement learning di-
rectly on the visual input space. To make this very large space manageable, RLVC
interleaves the reinforcement learner with a supervised classification algorithm that
seeks to split perceptual states so as to reduce perceptual aliasing. This results in an
adaptive discretization of the perceptual space based on the presence or absence of
visual features. Its extension RLJC also handles continuous action spaces. In con-
trast to the minimalistic visual representations produced by RLVC and RLJC, our
second method learns structural object models for robust object detection and pose
estimation by probabilistic inference. To these models, the method associates grasp
experiences autonomously learned by trial and error. These experiences form a non-
parametric representation of grasp success likelihoods over gripper poses, which we
call a grasp density. Thus, object detection in a novel scene simultaneously produces
suitable grasping options.

1 Introduction

Vision is a popular sensory modality for autonomous robots. Optical sensors are
comparatively cheap and deliver more information at higher rates than other sen-
sors. Moreover, vision appears intuitive as humans heavily rely on it. We appear to
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think and act on the basis of an internal model of our environment that is constantly
updated via sensory – and mostly visual – perception. It is therefore a natural idea
to attempt to build autonomous robots that derive actions by reasoning about an
internal representation of the world, created by computer vision.

However, experience shows that it is very difficult to build generic world models
by sensory perception. For example, detailed shape recovery from passive optical
sensors is hard, and the appearance of a scene – that is, its raw image representation
– varies about as greatly with imaging conditions as it does with semantic content.

Paraphrasing Vapnik’s Main Principle of inference from a small sample size [22],
it may thus not be a good idea to try to solve the hard intermediate problem of build-
ing a reliable world model in order to solve the easier problem of extracting just the
information the robot needs to act appropriately. This leads to the idea of linking
perception more-or-less directly to action, without the intermediate step of reason-
ing on a world model, whose roots go back at least to the learned value functions of
Samuel’s famous checker player [19].

In this chapter, we give an overview of two examples of our own research on
learning visual representations for robotic action within specific task scenarios,
without building generic world models. The first problem we consider is the direct
linking of visual perception to action within a reinforcement-learning (RL) frame-
work (Sect. 2). The principal difficulty is the extreme size of the visual perceptual
space, which we address by learning a percept classifier interleaved with the rein-
forcement learner to adaptively discretize the perceptual space into a manageable
number of discrete states. However, not all visuomotor tasks can be reduced to sim-
ple, reactive decisions based on discrete perceptual states. For example, to grasp
objects, the object pose is of fundamental importance, and the grasp parameters de-
pend on it in a continuous fashion. We address such tasks by learning intermediate
object representations that form a direct link between perceptual and action parame-
ters (Sect. 3). Again, these representations can be learned autonomously, permitting
the robot to improve its grasping skills with experience. The resulting probabilistic
models allow the inference of possible grasps and their relative success likelihoods
from visual scenes.

2 Reinforcement Learning of Visual Classes

Reinforcement learning [2, 21] is a popular method for learning perception-action
mappings, so-called policies, within the framework of Markov Decision Processes
(MDP). Learning takes place by evaluating actions taken in specific states in terms
of the reward received. This is conceptually easy for problems with discrete state
and action spaces. Continuous and very large, discrete state spaces are typically
addressed by using function approximators that permit local generalization across
similar states. However, for reasons already noted above, function approximators
alone are not adequate for the very high-dimensional state spaces spanned by im-
ages: Visually similar images may represent states that require distinct actions, and
very dissimilar images may actually represent the exact same scene (and thus state)
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under different imaging conditions. Needless to say, performing RL directly on the
combinatorial state space defined by the image pixel values is infeasible.

The challenge therefore lies in mapping the visual space to a state representa-
tion that is suitable for reinforcement learning. To enable learning with manageably
low numbers of exploratory actions, this means that the state space should either
consist of a relatively small number of discrete states, or should be relatively low-
dimensional and structured in such a way that nearby points in state space mostly
admit identical actions that yield similar rewards.

The latter approach would be very interesting to explore, but it appears that
it would require strong, high-level knowledge about the content of the scene
such as object localization and recognition, which defeats our purpose of learning
perception-action mappings without solving this harder problem first. We therefore
followed the first approach and introduced a method called Reinforcement Learning
of Visual Classes (RLVC) that adaptively and incrementally discretizes a continuous
or very large discrete perceptual space into discrete states [8, 11].

2.1 RLVC: A Birdseye View

RLVC decomposes the end-to-end problem of learning perception-to-action map-
pings into two simpler learning processes (Fig. 1). One of these, the RL agent, learns
discrete state-action mappings in a classical RL manner. The state representation and
the determination of the current state are provided by an image classifier that carves
up the perceptual (image) space into discrete states called visual classes. These two
processes are interleaved: Initially, the entire perceptual space is mapped to a sin-
gle visual class. From the point of view of the RL agent, this means that a variety
of distinct world states requiring different actions are lumped together – aliased –
into a single perceptual state (visual class). Based on experience accumulated by
the RL agent, the image classifier then identifies a visual feature whose presence or
absence defines two distinct visual subclasses, splitting the original visual class into
two. This procedure is iterated: At each iteration, one or more perceptually-aliased
visual classes are identified, and for each, a feature is determined that splits it in
a way that maximally reduces the perceptual aliasing in both of the resulting new
visual classes (Fig. 2). Thus, in a sequence of attempts to reduce perceptual aliasing,
RLVC builds a sequence C0,C1,C2, . . . of increasingly refined, binary decision trees
Ck with visual feature detectors at decision nodes. At any stage k, Ck partitions the
visual space S into a finite number mk of visual classes {Vk,1, . . . ,Vk,mk}.

2.2 Reinforcement Learning and TD Errors

An MDP is a quadruple 〈S,A,T ,R〉, where S is a finite set of states, A is a finite set
of actions, T is a probabilistic transition function from S×A to S, and R is a scalar
reward function defined on S×A. From state st at time t, the agent takes an action
at , receives a scalar reinforcement rt+1 = R(st ,at), and transitions to state st+1 with
probability T (st ,at ,st+1). The corresponding quadruple 〈st ,at ,rt+1,st+1〉 is called
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percepts

Image Classifier Reinforcement Learning
detected visual class

reinforcements

informative visual features

actions

Fig. 1 RLVC: Learning a perception-action mapping decomposed into two interacting sub-
problems.

Fig. 2 Outline of the RLVC algorithm.

an interaction. For infinite-horizon MDPs, the objective is to find an optimal policy
π∗ : S → A that chooses actions that maximize the expected discounted return

Rt =
∞

∑
i=0

γ irt+i+1 (1)

for any starting state s0, where 0 ≤ γ < 1 is a discount factor that specifies the
immediate value of future reinforcements.

If T and R are known, the MDP can be solved by dynamic programming [1].
Reinforcement learning can be seen as a class of methods for solving unknown
MDPs. One popular such method is Q-learning [23], named after its state-action
value function

Qπ(s,a) = Eπ [Rt | st = s,at = a] (2)

that returns the expected discounted return by starting from state s, taking action a,
and following the policy π thereafter. An optimal solution to the MDP is then given
by

π∗(s) = argmax
a∈A

Q∗(s,a). (3)
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In principle, a Q function can be learned by a sequence of α-weighted updates

Q(st ,at) ← Q(st ,at)+α (E[Rt | s = st ,a = at ]−Q(st ,at)) (4)

that visits all state-action pairs infinitely often. Of course, this is not a viable al-
gorithm because the first term of the update step is unknown; it is precisely the
return function (2) we want to learn. Now, rewards are accumulated (1) by execut-
ing actions, hopping from state to state. Thus, for an interaction 〈st ,at ,rt+1,st+1〉,
an estimate of the current return Q(st ,at) is available as the discounted sum of the
immediate reward rt+1 and the estimate of the remaining return Q(st+1,at+1), where
st+1 = T (st ,at) and at+1 = π(st). If the goal is to learn a value function Q∗ for an
optimal policy (3), then this leads to the algorithm

Q(st ,at) ← Q(st ,at)+αΔt (5)

Δt = rt+1 + γmax
a′∈A

Q(st+1,a
′)−Q(st ,at) (6)

that, under suitable conditions, converges to Q∗. Δt is called the temporal-difference
error or TD error for short.

2.3 Removing Perceptual Aliasing

RLVC is based on the insight that if the world behaves predictably, rt+1 +
γmaxa′∈A Q(st+1,a′) approaches Q(st ,at), leading to vanishing TD errors (6). If
however the magnitudes of the TD errors of a given state-action pair (s,a) remain
large, this state-action pair yields unpredictable returns. RLVC assumes that this is
due to perceptual aliasing, that is, the visual class s represents distinct world states
that require different actions. Thus, it seeks to split this state in a way that minimizes
the sum of the variances of the TD errors in each of the two new states. This is an
adaptation of the splitting rule used by CART for building regression trees [3].

To this end, RLVC selects from all interactions collected from experience those
whose visual class and action match s and a, respectively, along with the resulting
TD error Δ , as well as the set F⊕ ∈ F of features present in the raw image from
which the visual class was computed. It then selects the feature

f ∗ = argmin
f∈F

{
p fσ2{Δ f}+ p¬ fσ2{Δ¬ f}

}
(7)

that results in the purest split in terms of the TD errors. Here, p f is the proportion
of the selected interactions whose images exhibit feature f , and {Δ f} is the asso-
ciated set of TD errors; ¬ f indicates the corresponding entities that do not exhibit
feature f .

Splitting a visual class s according to the presence of a feature f ∗ results in two
new visual classes, at least one of which will generally exhibit lower TD errors
than the original s. However, there is the possibility that such a split turns out to be
useless because the observed lack of convergence was due to the stochastic nature
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Fig. 3 A continuous, noisy navigation task. The exits of the maze are marked by crossed
boxes. Transparent obstacles are identified by solid rectangles. The agent is depicted near the
center of the left-hand figure. Each of the four possible moves is represented by an arrow,
the length of which corresponds to the resulting move. The sensor returns a picture that cor-
responds to the dashed portion of the image. The right-hand figure shows an optimal policy
learned by RLVC, sampled at regularly-spaced points.

of the environment rather than perceptual aliasing. RLVC partially addresses this
by splitting a state only if the resulting distributions of TD errors are significantly
different according to a Student’s t test.

2.4 Experiments

We evaluated our system on an abstract task that closely parallels a real-world, re-
active navigation scenario (Fig. 3). The goal of the agent is to reach one of the two
exits of the maze as fast as possible. The set of possible locations is continuous. At
each location, the agent has four possible actions: Go up, right, down, or left. Every
move is altered by Gaussian noise, the standard deviation of which is 2% of the size
of the maze. Invisible obstacles are present in the maze. Whenever a move would
take the agent into an obstacle or outside the maze, its location is not changed.

The agent earns a reward of 100 when an exit is reached. Any other move gen-
erates zero reinforcement. When the agent succeeds at escaping the maze, it arrives
in a terminal state in which every move gives rise to a zero reinforcement. The dis-
count factor γ was set to 0.9. Note that the agent is faced with the delayed-reward
problem, and that it must take the distance to the two exits into consideration when
choosing the most attractive exit.

The raw perceptual input of the agent is a square window centered at its current
location, showing a subset of a tiled montage of the COIL-100 images [15]. There
is no way for the agent to directly locate the obstacles; it is obliged to identify them
implicitly as regions of the maze where certain actions do not change its location.
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Fig. 4 Left: The optimal value function, when the agent has direct access to its (x,y) position
in the maze and when the set of possible locations is discretized into a 50× 50 grid. The
brighter the location, the greater its value. Right: The final value function obtained by RLVC.

Fig. 5 Top: a navigation task with a real-world image, using the same conventions as Fig-
ure 3. Bottom: the deterministic image-to-action mapping computed by RLVC.

In this experiment, we used color differential invariants as visual features [7].
The entire tapestry includes 2298 different visual features, of which RLVC selected
200 (9%). The computation stopped after the generation of k = 84 image classi-
fiers, which took 35 minutes on a 2.4 GHz Pentium IV using databases of 10,000
interactions. 205 visual classes were identified. This is a small number compared
to the number of perceptual classes that would be generated by a discretization of
the maze when the agent knows its (x,y) position. For example, a reasonably-sized
20×20 grid leads to 400 perceptual classes. A direct, tabular representation of the
Q function in terms of all Boolean feature combinations would have 22298 ×4 cells.
Figure 4 compares the optimal value function of a regularly-discretized problem
with the one obtained through RLVC.

In a second experiment we investigated RLVC on real-word images under iden-
tical navigation rules (Fig. 5). RLVC took 101 iterations in 159 minutes to converge
using databases of 10,000 interactions. 144 distinct visual features were selected
among a set of 3739 possibilities, generating a set of 149 visual classes. Here again,
the resulting classifier is fine enough to obtain a nearly optimal image-to-action
mapping for the task.
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2.5 Further Developments

The basic method described in the preceding sections admits various powerful ex-
tensions. First, as described above, the power of RLVC to resolve action-relevant
perceptual ambiguities is limited by the availability of precomputed visual features
and their discriminative power. This can be overcome by creating new features on
the fly as needed [12]. When the state-refinement procedure fails to identify a fea-
ture that results in a significant reduction of the TD errors, new features are created
by forming spatial compounds of existing features. In this way, a compositional hi-
erarchy of features is created in a task-driven way. Compounds are always at least
as selective as their individual constituents.

A second major improvement results from the observation that RLVC, as de-
scribed above, is susceptible to overfitting because states are only ever split and
never merged. It is therefore desirable to identify and merge equivalent states. Here,
we say that two states are equivalent if (a) their optimal values maxa Q(s,a) are
similar, and (b) their optimal policies are equivalent, that is, the value of one state’s
optimal action π∗(s) is similar if taken in the other state. A second drawback of
basic RLVC is that decision trees do not make optimal use of the available features,
since they can only represent conjunctions of features. To address both issues, we
modified RLVC to use a Binary Decision Diagram (BDD) [4] instead of a decision
tree to represent the state space [9]. To split a state, a new feature is conjunctively
added to the BDD as before to the decision tree. Periodically, after running for some
number of stages, compaction takes place: equivalent states are merged and a new
BDD is formed that can represent both conjunctions and disjunctions of features. In
the process, feature tests are reordered as appropriate, which may lead to the elimi-
nation of some features. We demonstrated that this can result in a drastic reduction
in the number of visual features and classes learned, while improving generalization
at the same time.

Thirdly, we generalized the concept of visual classes to joint perception-action
classes. Our algorithm Reinforcement Learning of Joint Classes (RLJC) applies the
principles of RLVC to an adaptive discretization of the joint space of perceptions and
actions [10]. The Q function now operates on the joint-class domain encompassing
both perceptual and action dimensions. Joint classes are split based on joint features
that test the presence of either a visual feature or an action feature. An action feature
(t, i) tests whether the ith component of an action a ∈ IRm falls below a threshold
t. This relatively straightforward generalization of RLVC results in an innovative
addition to the rather sparse toolbox of RL methods for continuous action spaces.

3 Grasp Densities

RLVC, described in the preceding section, follows a minimalist approach to per-
ception-action learning in that it seeks to identify small sets of low-level visual
cues and to associate reactive actions to them directly. There is no elaborate image
analysis beyond feature extraction, no intermediate representation, no reasoning or
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planning, and the complexity of the action space that can be handled by RL is lim-
ited. In this section we describe a different approach to perception-action learning
that is in many ways complementary to RLVC. Its visual front-end builds elaborate
representations from which powerful, structured object representations are learned,
and multidimensional action vectors are derived via probabilistic inference.

We describe this method in the context of grasping objects [5], a fundamental
skill of autonomous agents. The conventional robotic approach to grasping involves
computing grasp parameters based on detailed geometric and physical models of
the object and the manipulator. However, humans skillfully manipulate everyday
objects even though they do not have access to such detailed information. It is
thus clear that there must exist alternative methods. We postulate that manipula-
tion skills emerge with experience by associating action parameters to perceptual
cues. Then, perceptual cues can directly trigger appropriate actions, without explicit
object shape analysis or grasp planning. For example, to drink, we do not have to
reason about the shape and size of the handle of a hot teacup to determine where to
place the fingers to pick it up. Rather, having successfully picked up and drunk from
teacups before, seeing the characteristic handle immediately triggers the associated,
canonical grasp.

Our method achieves such behavior by first learning visual object models that
allow the agent to detect object instances in scenes and to determine their pose.
Then, the agent explores various grasps, and associates the successful parameters
that emerge from this grasping experience with the model. When the object is later
detected in a scene, the detection and pose estimation procedure immediately pro-
duces the associated grasp parameters as well. This system can be bootstrapped in
the sense that very little grasping experience is already useful, and the representation
can be refined by further experience at any time. It thus constitutes a mechanism for
learning grasping skills from experience with familiar objects.

3.1 Learning to Grasp: A Birdseye View

Figure 6 presents an overview of our grasp learning system. Visual input is provided
by a computer vision front-end that produces 3D oriented patches with appearance
information. On such sparse 3D reconstructions, the object-learning component ana-
lyzes spatial feature relations. Pairs of features are combined by new parent features,
producing a hierarchically-structured Markov network that represents the object via
sparse appearance and structure. In this network, a link from a parent node to a
child node represents the distribution of spatial relations (relative pose) between
the parent node and instances of the child node. Leaf nodes encode appearance
information.

Given a reconstruction of a new scene provided by computer vision, instances of
such an object model can be detected via probabilistic inference, estimating their
pose in the process.

Having detected a known object for which it has no grasping experience yet, the
robot attempts to grasp the object in various ways. For each grasp attempt, it stores
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Fig. 6 Overview of learning to grasp. Learning produces graph-structured object represen-
tations that combine experienced grasps with visual features provided by computer vision.
Subsequently, instances can be detected in new scenes provided by vision. Detection directly
produces pose estimates and suitable grasp parameters.

the object-relative pose of the gripper and a measure of success. Object-relative
gripper poses are represented in exactly the same way as parent-relative child poses
of visual features. In this manner, grasping experience is added to the object repre-
sentation as a new child node of a high-level object node. From then on, inference
of object pose at the same time produces a distribution of gripper poses suitable for
grasping the object.

3.2 Visual Front-End

Visual primitives and their location and orientation in space are provided by the
Early-Cognitive-Vision (ECV) system by Krüger et al. [14, 17]. It extracts patches –
so-called ECV descriptors – along image contours and determines their 3D position
and a 2D orientation by stereo techniques (the orientation around the 3D contour
axis is difficult to define and is left undetermined). From a calibrated stereo pair,
it generates a set of ECV descriptors that represent the scene, as sketched at the
bottom of Fig. 6.

Objects can be isolated from such scene representations by motion segmentation.
To this end, the robot uses bottom-up heuristics to attempt to grasp various surfaces
suggested by combinations of ECV descriptors. Once a grasp succeeds and the robot
gains physical control over the grasped structure, the robot can pick it up and turn
it in front of the stereo camera. This allows it to segment object descriptors from
the rest of the scene via coherent motion, and to complete and refine the object
descriptors by structure-from-motion techniques, as illustrated in Fig. 7 [18, 13].
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Fig. 7 ECV descriptors. Left: ECV descriptors are oriented appearance patches extracted
along contours. Right: object-segmented and refined ECV descriptors via structure from
motion.

3.3 Markov Networks for Object Representation

Our object model consists of a set of generic features organized in a hierarchy. Fea-
tures that form the bottom level of the hierarchy, referred to as primitive features, are
bound to visual observations. The rest of the features are meta-features that embody
relative spatial configurations of more elementary features, either meta or primitive.
At the bottom of the hierarchy, primitive features correspond to local parts that each
may have many instances in the object. Climbing up the hierarchy, meta-features
correspond to increasingly complex parts defined in terms of constellations of lower-
level parts. Eventually, parts become complex enough to satisfactorily represent the
whole object. Here, a primitive feature represents a class of ECV observations of
similar appearance, e.g. an ECV observation with colors close to red and white.
Any primitive feature will usually have hundreds of instances in a scene.

Figure 8 shows an example of a hierarchy for a traffic sign. Ignoring the nodes
labeled Yi for now, the figure shows the traffic sign as the combination of two fea-
tures, a bridge pattern (feature 4) and a triangular frame (feature 5). The fact that
the bridge pattern has to be in the center of the triangle to form the traffic sign is en-
coded in the links between features 4-6-5. The triangular frame is encoded in terms
of a single (generic) feature, a short red-white edge segment (feature 3). The link
between feature 3 and feature 5 encodes the fact that many short red-white edge
segments are necessary to form the triangular frame, and the fact that these edges
have to be arranged along a triangle-shaped structure.

Here, a “feature” is an abstract concept that may have any number of instances.
The lower-level the feature, the larger generally the number of instances. Con-
versely, the higher-level the feature, the richer its relational and appearance
description.

The feature hierarchy is implemented as a Markov tree (Fig. 8). Features corre-
spond to hidden nodes of the network. When a model is associated to a scene (during
learning or instantiation), the pose of feature i in that scene will be represented by
the probability density function of a random variable Xi, effectively linking feature
i to its instances. Random variables are thus defined over the pose space, which
corresponds to the Special Euclidean group SE(3) = IR3 ×SO(3).

The relationship between a meta-feature i and one of its children j is parametrized
by a compatibility potential ψi j(Xi,Xj) that reflects, for any given relative config-
uration of feature i and feature j, the likelihood of finding these two features in
that relative configuration. The (symmetric) potential between i and j is denoted
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PDF for red/white edges that belong to the traffic sign

Fig. 8 An example of a hierarchy for a traffic sign. X1 through X3 are primitive features; each
of these is linked to an observed variable Yi. X4 through X6 are meta-features.

by ψi j(Xi,Xj). A compatibility potential is equivalent to the spatial distribution of
the child feature in a reference frame that matches the pose of the parent feature; a
potential can be represented by a probability density over SE(3).

Each primitive feature is linked to an observed variable Yi. Observed variables are
tagged with an appearance descriptor that defines a class of observation appearance.
The statistical dependency between a hidden variable Xi and its observed variable Yi

is parametrized by an observation potential ψi(Xi,Yi). We generally cannot observe
meta-features; their observation potentials are thus uniform.

Instantiation of such a model in a scene amounts to the computation of the
marginal posterior pose densities p(Xi|Y1, . . . ,Yn) for all features Xi, given all avail-
able evidence Y . This can be done using any applicable inference mechanism. We
use nonparametric belief propagation [20] optimized to exploit the specific struc-
ture of this inference problem [6]. The particles used to represent the densities are
directly derived from individual feature observations. Thus, object detection (in-
cluding pose inference) amounts to image observations probabilistically voting for
object poses compatible with their own pose. The system never commits to specific
feature correspondences, and is thus robust to substantial clutter and occlusions.
During inference, a consensus emerges among the available evidence, leading to
one or more consistent scene interpretations. After inference, the pose likelihood of
the whole object can be read out of the top-level feature. If the scene contains mul-
tiple instances of the object, this feature density will present multiple major modes.
Figure 9 shows examples of pose estimation results.
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Fig. 9 Cluttered scenes with pose estimates. Local features of object models are back-
projected into the image at the estimated pose; false colors identify different objects.

Xo

X2

Y2Y1

X1 Xg

ψog
ψo2ψo1

Red ECV
descriptor

Green ECV
descriptor

Pinch
grasp

Fig. 10 Visual/affordance model of a table-tennis bat as a 2-level hierarchy. The bat is rep-
resented by feature o (top). Feature 1 represents a generic green ECV descriptor. The rectan-
gular configuration of green edges around the handle of the paddle is encoded in ψo1. Y1 and
Y2 are observed variables that link features 1 and 2 to the visual evidence produced by ECV.
Xg represents a grasp feature, linked to the object feature through the pinch grasp affordance
ψog.

3.4 Grasp Densities

Having described the visual object representation and pose inference mechanism,
we now turn to our objective of learning grasp parameters and associating them to
the visual object models. We consider parallel-gripper grasps parametrized by a 6D
gripper pose composed of a 3D position and a 3D orientation. The set of object-
relative gripper poses that yield stable grasps is the grasp affordance of the object.

A grasp affordance is represented as a probability density function defined on
SE(3) in an object-relative reference frame. We store an expression of the joint
distribution p(Xo,Xg), where Xo is the pose distribution of the object, and Xg is
the grasp affordance. This is done by adding a new “grasp” feature to the Markov
network, and linking it to the top feature (see Fig. 10). The statistical dependency of
Xo and Xg is held in a compatibility potential ψog(Xo,Xg).

When an object model has been aligned to an object instance (i.e. when the
marginal posterior of the top feature has been computed from visually-grounded
bottom-up inference), the grasp affordance p(Xg | Y ) of the object instance, given
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(a) (b) (c)

Fig. 11 Grasp density representation. The top image of Fig. (a) illustrates a particle from a
nonparametric grasp density and its associated kernel widths: the translucent sphere shows
one position standard deviation, the cone shows the variance in orientation. The bottom image
illustrates how the schematic rendering used in the top image relates to a physical gripper.
Figure (b) shows a 3D rendering of the kernels supporting a grasp density for a table-tennis
paddle (for clarity, only 30 kernels are rendered). Figure (c) indicates with a green mask of
varying opacity the values of the location component of the same grasp density along the
plane of the paddle.

all observed evidence Y , is computed through top-down belief propagation, by send-
ing a message from Xo to Xg through ψog(Xo,Xg):

p(Xg | Y ) =
∫
ψog(Xo,Xg)p(Xo | Y ) dXo (8)

This continuous, probabilistic representation of a grasp affordance in the world
frame we call a grasp density. In the absence of any other information such as priors
over poses or kinematic limitations, it represents the relative likelihood that a given
gripper pose will result in a successful grasp.

3.5 Learning Grasp Densities

Like the pose densities discussed in Sect. 3.3, grasp densities are represented non-
parametrically in terms of individual observations (Fig. 11). In this case, each suc-
cessful grasp experience contributes one particle to the nonparametric representa-
tion. An unbiased characterization of an object’s grasp affordance conceptually in-
volves drawing grasp parameters from a uniform density, executing the associated
grasps, and recording the successful grasp parameters.

In reality, executing grasps drawn from a 6D uniform density is not practical,
as the chances of stumbling upon successful grasps would be unacceptably low.
Instead, we draw grasps from a highly biased grasp hypothesis density and use im-
portance sampling techniques to properly weight the grasp outcomes. The result we
call a grasp empirical density, a term that also communicates the fact that the den-
sity is generally only an approximation to the true grasp affordance: The number of



Learning Visual Representations for Interactive Systems 413

Fig. 12 Particles supporting grasp hypothesis (top) and empirical (bottom) densities. Hy-
pothesis densities were derived from constellations of ECV observations (left) or from human
demonstrations (right).

Fig. 13 Barrett hand grasping the toy jug.

particles derived from actual grasp experiences is severely limited – to a few hun-
dred at best – by the fact that each particle is derived from a grasp executed by a
real robot. This is not generally sufficient for importance sampling to undo the sub-
stantial bias exerted by the available hypothesis densities, which may even be zero
in regions that afford actual grasps.

Grasp hypothesis densities can be derived from various sources. We have experi-
mented with feature-induced grasp hypotheses derived from ECV observations. For
example, a pair of similarly-colored, coplanar patches suggests the presence of a
planar surface between them. In turn, this plane suggests various possible grasps
[13]. Depending on the level of sophistication of such heuristics, feature-induced
grasp hypotheses can yield success rates of up to 30% [16]. This is more than suffi-
cient for effective learning of grasp hypothesis densities.
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Another source of grasp hypothesis densities is human demonstration. In a pilot
study, we tracked human grasps with a ViconTM motion capture system [5]. This
can be understood as a way of teaching by demonstration: The robot is shown how
to grasp an object, and this information is used as a starting point for autonomous
exploration.

Illustrations of some experimental results are shown in Figs. 12 and 13. A large-
scale series of experiments for quantitative evaluation is currently underway.

4 Discussion

We described two complementary methods for associating actions to perceptions
via autonomous, exploratory learning. RLVC is a reinforcement-learning method
that operates on a perceptual space defined by low-level visual features. Remark-
ably, its adaptive, task-driven discretization of the perceptual space allows it to learn
policies with a number of interactions similar to problems with much smaller per-
ceptual spaces. This number is nevertheless still greater than what a physical robot
can realistically perform. In many practical applications, interactions will have to
be generated in simulation. Among the extensions to RLVC, one particularly inter-
esting avenue for further research is RLJC with its uniform treatment of continuous
perceptual and action spaces.

RLVC does not learn anything about the world besides task-relevant state distinc-
tions and the values of actions taken in these states. In contrast, the grasp-densities
framework involves learning object models that allow the explicit computation of
object pose. Object pose is precisely the determining factor for grasping; it is there-
fore natural to associate grasp parameters to these models. Beyond this association,
however, no attempt is made to learn any specifics about the objects or about the
world. For example, to grasp an object using grasp densities, the visibility of the
contact surfaces in the scene is irrelevant, as the grasp parameters are associated to
the object as a whole.

Notably, both learning systems operate without supervision. RL methods require
no external feedback besides a scalar reward function. Learning proceeds by trial
and error, which can be guided by suitably biasing the exploration strategy. Learn-
ing grasp-densities involves learning object models and trying out grasps. Again,
the autonomous exploration can be – and normally will need to be – biased via
the specification of a suitable grasp hypothesis density, by human demonstration
or other means. The Cognitive Vision Group at the University of Southern Den-
mark, headed by N. Krüger, has put in place a robotic environment that is capable
of learning grasp densities with a very high degree of autonomy, requiring human
intervention only in exceptional situations. Like a human infant, the robot reaches
for scene features and “plays” with objects by attempting to grasp them in various
ways and moving them around.

Learning object-relative gripper poses is only the opening chapter of the grasp-
density story. The principle can be extended to learning multiple grasp types such
as palmar grasps and various multi-fingered pinches, associating hand pre-shapes
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and approach directions by learning parameters for motor programs, etc. These and
other avenues will be pursued in future work.
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N.: An Adaptive Strategy for Grasping Unknown Objects Based on Co-planarity and
Colour Information (submitted)

17. Pugeault, N.: Early Cognitive Vision: Feedback Mechanisms for the Disambiguation of
Early Visual Representation. Vdm Verlag Dr. Müller (2008)

18. Pugeault, N., Wörgötter, F., Krüger, N.: Accumulated Visual Representation for Cogni-
tive Vision. In: British Machine Vision Conference (2008)

19. Samuel, A.: Some Studies in Machine Learning Using the Game of Checkers. IBM Jour-
nal of Research and Development 3(3), 210–229 (1959)

20. Sudderth, E., Ihler, A., Freeman, W., Willsky, A.: Nonparametric Belief Propagation. In:
Computer Vision and Pattern Recognition, vol. I, pp. 605–612 (2003)

21. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

22. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
23. Watkins, C.: Learning From Delayed Rewards. Ph.D. thesis, King’s College, Cambridge,

UK (1989)



Learning Mobile Robot Motion Control from
Demonstrated Primitives and Human Feedback

Brenna Argall, Brett Browning, and Manuela Veloso

Abstract. Task demonstration is one effective technique for developing robot mo-
tion control policies. As tasks become more complex, however, demonstration can
become more difficult. In this work we introduce a technique that uses corrective
human feedback to build a policy able to perform an undemonstrated task from
simpler policies learned from demonstration. Our algorithm first evaluates and cor-
rects the execution of motion primitive policies learned from demonstration. The
algorithm next corrects and enables the execution of a larger task built from these
primitives. Within a simulated robot motion control domain, we validate that a pol-
icy for an undemonstrated task is successfully built from motion primitives learned
from demonstration under our approach. We show feedback to both aid and enable
policy development, improving policy performance in success, speed and efficiency.

1 Introduction

The appropriate selection of actions is a fundamental challenge within mobile
robotics. The development of a robust policy, or mapping from world states to robot
actions, is complicated by noisy observations and action execution uncertainty. Pol-
icy development furthermore is often specific to a particular robot platform and
application, and policy reuse for other platforms or application tasks is rare.

One field of effective development approaches has the robot learn a policy,
from training data or execution experience. Unlike traditional techniques that model
world dynamics by hand, an implemented policy learning algorithm may be reused
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to learn another policy, though the policy itself typically is still platform or applica-
tion specific. Learning from Demonstration (LfD) is a technique that derives a policy
from example executions of a target behavior by a teacher. This approach has seen
success on a variety of robotics applications, and has the attractive characteristics of
being an intuitive means for human teacher to robot learner knowledge transfer, as
well as being an accessible policy development technique for non-robotics-experts.

As tasks become more complex, however, demonstration can become more diffi-
cult. One practical extension of the LfD approach is to incorporate simpler behaviors
learned from demonstration into larger tasks, especially if such tasks are too com-
plex to demonstrate in full. Though scale-up techniques of this nature have been
explored within other policy development approaches, the topic remains largely un-
addressed within the LfD paradigm. Moreover, the ability to reuse and incorporate
existing policies is a practical feature for any approach given the challenge of devel-
oping robust control policies. In this work, we contribute an algorithm that builds a
more complex policy from existing behaviors learned from demonstration.

How to effectively incorporate existing behaviors into a new policy is a key de-
sign decision for this work. We take the approach of aiding this process with human
feedback offered in multiple forms, the most notable of which is continuous-valued
corrections on student executions. Our framework for providing feedback does not
require revisiting states in need of improvement, and thus offers an alternative to
the more typical LfD policy improvement approaches that provide further teacher
demonstrations. This feature is particularly attractive given our consideration of
complex tasks for which full demonstration may be inconvenient or infeasible.

We introduce Feedback for Policy Scaffolding (FPS) as an algorithm that builds
and refines a complex policy from component behaviors learned from demonstration
and teacher feedback. The FPS algorithm operates by first refining multiple policies
learned from demonstrated motion primitives. A single complex policy is derived
from these primitives, and execution with the complex policy on a novel, undemon-
strated behavior is then evaluated. By providing corrections on this execution, the
FPS algorithm develops a policy able to execute the more complex behavior, without
ever requiring a full demonstration of the novel behavior.

We validate our algorithm within a simulated motion control domain, where a
robot learns to drive on a racetrack. A policy built from demonstrated motion prim-
itives and human feedback is developed and able to successfully execute a more
complex, undemonstrated task. Feedback is shown to improve policy performance
when offered in response both to motion primitive executions as well as novel be-
havior executions, and moreover the policy developed under this technique is found
to perform well within the novel domain. Finally, comparisons to an exclusively
demonstration-based approach show the FPS algorithm to be more concise and ef-
fective in developing a policy able to execute the more complex behavior.

The following section overviews the related work that supports this approach. In
Section 3 the scaffolding algorithm is presented. Section 4 details the experimental
implementation, including results and discussion. In the final section we conclude.
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2 Background and Related Work

In this section we first present related work on policy development and improvement
within demonstration learning, followed by the details of building policies from
behavior primitives and teacher feedback.

We formally define the world to consist of states S and actions A, with a prob-
abilistic transition function T (s′|s,a) : S ×A× S → [0,1] describing the mapping
between states by way of actions. As we do not assume that state is fully observ-
able, the learner has access to observed state Z through the mapping M : S → Z. A
policy π : Z → A selects actions based on observations of the world state.

2.1 Learning from Demonstration

Learning from Demonstration (LfD) is a policy development technique in which
teacher executions of a desired behavior are recorded and a policy is subsequently
derived from the resulting dataset. Formally, we represent a teacher demonstration
d j ∈ D as t j pairs of observations and actions such that d j = {(zi

j,a
i
j)} ∈ D,zi

j ∈
Z,ai

j ∈ A, i = 0 · · ·t j. The set D of these demonstrations are provided to the learner.
When recording and executing demonstrations the issue of correspondence,

where teacher demonstrations do not directly map to the robot learner due to differ-
ences in sensing or motion [9], is key. Teleoperation is a demonstration technique
whereby the passive learner platform records from its own sensors while being con-
trolled by the teacher during execution. Since the recorded data maps directly to
the learner platform, this demonstration technique best minimizes the introduction
of correspondence issues into an LfD system. Examples of successful teleoperated
LfD systems include both real [10] and simulated [7] robot applications.

Policy derivation amounts to building a predictor that will reproduce the actions
at ∈ D from the observations zt ∈ D. Many approaches exist within LfD to derive
a policy from the demonstration data [3], the most popular of which either directly
approximate the underlying function mapping observations to actions or approxi-
mate a state transition model and then derives a policy using techniques such as
Reinforcement Learning. Our work derives a policy under the first approach, with
function approximation being performed via regression since our target application
of low-level motion control has a continuous action space.

A wealth of regression approaches exist, and any are compatible with the FPS
algorithm. The specific technique used in our implementation is a form of Locally
Weighted Learning [4]. In particular, given observation zt , action at is predicted
through an averaging of datapoints in D, weighted by their kernelized distance to zt .
While a more sophisticated regression technique would likely improve the perfor-
mance of our implementation, the focus of this work is not how to better use existing
demonstration data, but rather how to use teacher feedback to produce new data and
thus refine policy performance and build new behavior.

To have a robot learn from its execution performance, or experience, is a valuable
policy improvement tool, and there are LfD approaches that incorporate learning
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from experience into their algorithms. For example, execution experience is used to
update state transition models [1] and reward-determined state values [13]. Other
approaches provide more demonstration data, driven by learner requests for more
data [7, 8] as well as more teacher-initiated demonstrations [6].

Our approach similarly provides new example state-action mappings, but the
source for these mappings is not more teacher demonstration. There are some LfD
limitations that more teacher demonstrations cannot address, for instance correspon-
dence discrepancies between the teacher and learner. Moreover, the need to visit
states in order to provide execution information is a drawback if certain world states
are difficult to reach or dangerous to visit, for example that lead to a rover falling
over a cliff. Our technique for policy improvement synthesizes new example state-
action mappings from teacher feedback and learner executions [2], without requiring
state re-visitation by the teacher to provide appropriate behavior information.

2.2 Behavior Primitives and Teacher Feedback

Our approach builds a policy from the demonstration of simpler behavior primitives
and teacher feedback, rather than demonstrate a complex task in full. One motivation
is that as behaviors become more complex, demonstrating the behavior in full can
become more difficult. In this case, the teacher may be able to demonstrate behavior
primitives for a task but not the task in full, or provide higher quality demonstrations
for subsets of the behavior. A second motivation is that reaching all states encoun-
tered during task execution can become increasingly difficult as tasks become more
complex. States may be infeasible, inconvenient or undesirable to reach for a vari-
ety of reasons that only compound as task complexity increases. A final motivation
is that the demonstrated motion primitives may provide a base for multiple com-
plex behaviors. Through the reuse of these primitives, the effort required to develop
policies for the complex behaviors reduces.

Within LfD, hand-coded behavior primitives are used to build larger tasks learned
from demonstration [11], demonstrated tasks are decomposed into a library of prim-
itives [5, 13] and behavior primitives are demonstrated and then explicitly combined
into a new policy by a human [12]. Closest to our work is that of Bentivegna [5],
where a robotic marble maze and humanoid playing air hockey reuse learned primi-
tives, and furthermore refine the policy with execution experience. The work demon-
strates the full task and then extractes behavior primitives using hand-written rules.
Policy improvement is accomplished through an automatic binary reward signal for
task failure, used to adjust regression weights on the policy prediction. By con-
trast, our approach does not demonstrate the full task, and instead demonstrates the
primitives individually. Policy improvement is accomplished by generating new ex-
amples, from human feedback on practice executions of the primitives and full task.
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3 Algorithm

This section presents our Feedback for Policy Scaffolding (FPS) algorithm. Under
FPS, teacher feedback is used to enable and improve policy behavior at transition
points that link demonstrated primitives. In doing so, it enables expression of the
full task behavior, without requiring its full demonstration.

Feedback is provided through the framework Focused Feedback for Mobile Robot
Policies (F3MRP) [3]. The F3MRP framework operates at the stage of low-level mo-
tion control, where actions are continuous-valued and sampled at high frequency. A
visual presentation of the 2-D ground path of the mobile robot execution serves as
an interface through which the teacher selects segments of an execution to receive
feedback, which simplifies the challenge of providing feedback to policies sampled
at a high frequency. Visual indications of data support during an execution futher-
more assist the teacher in the selection of execution segments and feedback type.

Execution corrections are offered through a language termed advice-operators,
first introduced with the Advice-Operator Policy Improvement (A-OPI) algorithm [2].
Advice-operators are commonly defined between the student and teacher, and func-
tion by performing mathematical computations on the observations or actions of ex-
ecuted data points. In this manner, they provide continuous-valued corrections on a
learner execution, without requiring the teacher to provide the exact value for the
corrections. Instead, the teacher need only select from a finite list of operators, and
indicate the portion of the execution requiring improvement.

3.1 Algorithm Execution

Execution of the FPS algorithm occurs in two phases, presented respectively in Al-
gorithms 1 and 2. The first phase develops a policy πξ j

for each primitive behavior
ξ j ∈Ξ , j = 1 . . .n, producing a set of policiesΠ . The second phase develops a policy
for a more complex behavior, building on the primitive policies in Π .

3.1.1 Phase 1: Primitive Policy Development

The development of each primitive policy begins with teacher demonstration. Ex-
ample observation-action pairs recorded during demonstration of primitive behavior
ξ j produce the initial dataset Dξ j

∈ D and policy πξ j
∈Π . This initial policy is then

refined during practice runs consisting of learner executions and teacher feedback.
During the learner execution portion of a practice run (Alg. 1, lines 7-11), the

learner first executes the task. At each timestep the learner observes the world, pre-
dicting action at according to policy πξ j

(line 8). Action at is executed and recorded
in the prediction trace d, with observation zt (line 10). The information recorded
in the trace d will be incorporated into the policy update. The global position xt ,yt

and heading θ t of the mobile robot, and data support τt (discussed in Section 3.2.2)
of the regression prediction, are recorded into the execution trace tr, for use by the
F3MRP framework when visually presenting the ground path taken by the robot.
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Algorithm 1. Feedback for Policy Scaffolding: Phase 1
1: Given D
2: initialize Π ← { }
3: for all behavior primitives ξ j ∈ Ξ do

4: initialize πξ j
← policyDerivation

(
Dξ j

)
)

, Dξ j
∈ D

5: while practicing do
6: initialize d ←{}, tr ←{}
7: repeat
8: predict { at ,τ t }← πξ j

(zt)
9: execute at

10: record d ← d ∪ (zt ,at) , tr ← tr ∪ (xt ,yt ,θ t ,τ t)
11: until done
12: advise { �,Φ }← teacherFeedback( tr )
13: apply d̂Φ ← applyFeedback( �,Φ ,d )
14: update Dξ j

← Dξ j
∪ d̂Φ

15: rederive πξ j
← policyDerivation(Dξ j

)
16: end while
17: add Π ← Π ∪ πξ j

18: end for
19: return Π

During the teacher feedback portion of the practice run, the teacher first indicates
a segment Φ of the learner execution trace requiring improvement (line 12). The
teacher further indicates feedback �, which takes the form either of a binary credit
to indicate areas of good performance, or an advice-operator to correct the execu-
tion within this segment. The application of � across all points recorded in d and
within the indicated subset Φ generates new data, d̂Φ , which is added to dataset Dξ j

(lines 13,14). Policy πξ j
for primitive ξ j is then rederived from this set (line 15).

3.1.2 Phase 2: Policy Scaffolding

The development of the complex policy builds on the primitive policies developed
during Phase 1 of the algorithm. Complex policy development therefore does not
begin with teacher demonstration of the complex task. Two distinguishing features
of the second phase of the FPS algorithm are the (i) selection between the action
predictions of multiple policies and (ii) selection of a dataset to receive any new
synthesized data. Figure 1 presents a schematic of our scaffolding approach, where
dashed lines indicate execution cycles that are performed multiple times.

Phase 2 begins with the initialization of more demonstration datasets. Specif-
ically, n empty datasets are generated, each associated with one primitive policy.
Notationally, let new data set Dξi+n

be associated with existing primitive dataset
Dξi

, resulting in a total of 2n datasets Dξ j
∈ D, j = 1 · · ·2n. Colloquially, call dataset

Dξi+n the feedback dataset associated with primitive dataset Dξi
. Some of the new

data generated during learner practice will be added to these feedback datasets (fur-
ther details are provided in Sec. 3.2.2). The policies derived from the feedback
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Fig. 1 Policy derivation and execution under the Feedback for Policy Scaffolding algorithm.

datasets are considered, along with the primitive policies, for selection during exe-
cution of the more complex policy.

Refinement of the complex policy proceeds with learner execution (Alg. 2,
lines 5-10) and teacher feedback (lines 11-17) as in Phase 1, but with the follow-
ing distinguishing characteristics. The learner now executes with the more complex
policy, whose operation proceeds in two steps. The first step is to select between all
contributing policies πξ j

based on observation zt (line 6); the details of this selection
are provided in Section 3.2.1. The second step is to predict action at according to
πξ j

(zt), with prediction support τt (line 7). After the application of teacher feedback,
datasets are individually selected to receive each feedback-modified datapoint. For
each point, indexed as ϕ ∈ Φ , dataset selection (line 14) is determined by the data
support τϕ of zϕ when predicted by policy ξϕ (recorded in trs, line 9); the details
of this selection are provided in Section 3.2.2.

3.2 Scaffolding Multiple Policies

Two key factors when building a policy under FPS are how to select between the
primitive behaviors, and how to incorporate teacher feedback into the built-up pol-
icy. The design of each of these factors within the algorithm is discussed here.
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Algorithm 2. Feedback for Policy Scaffolding: Phase 2
1: Given Π ,D
2: initialize Dξi=(n+1)...2n ←{ }
3: while practicing do
4: initialize d ←{}, trs ←{}, trp ←{}
5: repeat
6: select πξ j

← policySelection( zt ) , πξ j
∈Π

7: predict { at ,τ t }← πξ j
(zt)

8: execute at

9: record d ← d ∪ (zt ,at) , trs ← trs ∪
(
τ t ,ξ t = ξ j

)
, trp ← trp ∪ (xt ,yt ,θ t ,τ t)

10: until done
11: advise { �,Φ }← teacherFeedback

(
trp

)
12: for all ϕ ∈Φ , (zϕ ,aϕ ) ∈ d,(τϕ ,ξϕ ) ∈ trs do
13: apply d̂ϕ ← applyFeedback( �,zϕ ,aϕ )
14: select Dξι ← datasetSelection( τϕ ,ξϕ ) , Dξι ∈ D

15: update Dξι ← Dξι ∪ d̂ϕ
16: rederive πξι ← policyDerivation(Dξι), πξι ∈Π
17: end for
18: end while
19: return Π

3.2.1 Selecting Primitive Policies

Primitive selection under FPS assumes that primitives occupy nominally distinct
areas of the observation-space. This assumption relies on a state observation for-
mulation that captures aspects of the world that are unique to the demonstrations
of each primitive policy. For example, two primitives developed for our validation
domain are turn left and turn right. Observations are formulated to incorporate a
notion of track curvature, and so demonstrations in left- versus right-curving areas
of the track occupy distinct areas of the observation space.

Primitive selection then is treated as a classification problem. For each primitive
ξ j, a kernelized distance φ (zt ,zi) between query point zt and each point zi ∈ Dξ j

is computed.1 A weight for policy ξ j is produced by summing the k largest kernel
values φ (zt , :); equivalent to selecting the k nearest points in Dξ j

to query zt (k = 5).
The policy with the highest weight is then selected for execution.

3.2.2 Incorporating Teacher Feedback

A variety of options exist for how to incorporate synthesized data into the multiple
underlying datasets of the primitive policies that contribute to the complex behavior

1 In our implementation the distance computation is Euclidean and the kernel Gaussian,
and so φ (zt ,zi) = e|zi−zt |Σ−1 |zi−zt |. The parameter Σ−1 is a constant diagonal matrix that
scales each observation dimension and embeds the bandwidth of the Gaussian kernel, and
is tuned through 10-folds Cross Validation to optimize the least-squared-error on primitive
label classification.
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execution. To begin, let us establish two ideas. First, this work assumes that in state-
space areas covered by the dataset of a particular primitive, the behavior of this
primitive matches the intended behavior of the more complex policy. If this is not the
case, and the two behaviors conflict, then that primitive should not be incorporated
into the complex policy in the first place. Second, both feedback forms produce new
data. The new data derives from learner executions, such that every new datapoint
d̂ϕ = (ẑϕ , âϕ) derives from an execution point (zϕ ,aϕ). Each learner execution point
is predicted by a single primitive policy, as discussed in the previous section.

Two factors determine into which dataset a new datapoint d̂ϕ is added: the policy
ξϕ that predicted the execution point (zϕ ,aϕ), and the measure of data support τϕ
for that prediction. In particular, if the policy that made the prediction is a primitive
policy, the point is added to its dataset if the prediction had strong data support.
Otherwise, the point is added to the feedback dataset associated with primitive ξϕ
(Sec. 3.1.2). By contrast, data generated from execution points predicted by a feed-
back policy are automatically added to its dataset, regardless of dataset support.

Prediction support is determined in the following manner. For a given dataset, the
1-Nearest Neighbor Euclidean distance between all points in the set are modelled
as a Poisson distribution, parameterized by λ , with mean μ = λ and standard de-
viation σ =

√
λ . The threshold on strong prediction support is set by hand, based

on empirical evidence (τξ j
= μξ j

+ 5σξ j
). Thus a prediction made by policy πξ j

for
query point zt with distance �zt to the nearest point in Dξ j

is classified as strongly
supported if �zt < τξ j

and weakly supported otherwise.
The motivation behind this approach is to avoid adding data to a primitive dataset

that conflicts with the behavior of that primitive. Given our assumption that the
associated actions of nearby observations express similar behaviors, points that were
close enough to the dataset to be strongly supported during prediction therefore are
assumed to express behavior similar to that of the primitive.

4 Empirical Implementation

This section presents the experimental details, results and discussion of the applica-
tion of algorithm FPS to a simulated motion control domain.

4.1 Experimental Setup

The validation domain consists of a simulated differential drive robot performing
a racetrack driving task. Robot motion is propagated by simple differential drive
simulation of the robot position (1% Gaussian noise), limited in speed and accel-
eration. The robot observes the world through a monocular camera and wheel en-
coders; the camera is forward facing and observes track borders (1% Gaussian noise)
within its field of view (130◦,5m) as a set of points, each of which corresponds to
a single image pixel projected into the ground plane. The robot computes a local
track representation at each time step (30Hz) by fitting a 3-degree polynomial to re-
cently observed track border points. Policy observations are 6-dimensional: current
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rotational and translational speeds, and the 4 coefficients of the local track polyno-
mial. The actions are 2-dimensional: target rotational and translational speeds.

Fig. 2 Primitive subset regions (left) of the full racetrack (right).

The demonstrated motion primitives are: turn right (ξR), go straight (ξS) and
turn left (ξL). Demonstrations are performed via human teleoperation, by decreasing
or increasing the translational and rotational speeds as the robot moves along the
racetrack. The robot has no a priori map of the track, nor does it attempt to build up
a map during execution; the aim of the developed policy is to reactively drive on a
racetrack. The following steps are taken during policy development:

Demonstrate the motion primitives and derive initial policies. Teacher demon-
stration of each primitive is performed 3 times on an appropriate track subset
(Fig. 2, left). From each dataset a policy is derived, referred to collectively as the
set PDI .

Provide feedback on the motion primitive policies’ performance. Learner execu-
tion with each policy in PDI on its respective track subset is observed by the
teacher, and feedback-generated data is added to the executing policy’s dataset.
This observation-feedback-update cycle constitutes a single practice run, contin-
ues to the satisfaction of the teacher and results in final feedback versions of the
primitive policies, referred to collectively as the set PFF .

Derive an initial scaffolded policy from the resultant primitive policies. An ini-
tial scaffolded policy SFI , that selects between the primitive policies in PFF , is
built.

Provide feedback on the scaffolded policy performance. Learner executions with
SFI on the full track are observed by the teacher, and feedback-generated data is
added to either the executing policy’s dataset or its associated feedback dataset
(as per Sec. 3.2.2). The observation-feedback-update cycle continues to the sat-
isfaction of the teacher, and results in the final feedback scaffolded policy SFF .

For comparative purposes, we also evaluate providing more demonstrations. The
approach closely follows the policy development steps just outlined, but the teacher
provides more teleoperation demonstrations instead of feedback. The result is
demonstration+ versions of a final set of primitives policies (PDF ), initial baseline
scaffolded policy (SDI) and final scaffolded policy (SDF ).
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Each of the primitive policies (in sets PDI ,PFF ,PDF ) is evaluated on the track
subset appropriate to their respective primitive behavior (Fig. 2, left). Each of the
scaffolded policies (SFI,SFF ,SDI,SDF ) is evaluated on the full track (Fig. 2, right).
Executions end when the robot either runs off the track or reaches the finish line.

Policy performance is measured according to the following metrics. Success indi-
cates the ability of the robot to stay on the track, and is measured by the percentage
of the track subset (for primitive policy executions) or full track (for scaffolded pol-
icy executions) completed. Speed is measured by the average translational execution
speed. Efficiency is measured as the execution time, and is governed jointly by speed
and the execution ground path.2

4.2 Results

The FPS algorithm successfully learned motion control primitives through a com-
bination of demonstration and teacher feedback, as well as a policy built from these
primitives to execute a more complex, undemonstrated, behavior. Teacher feedback
was found to be critical to the development and performance improvement of all
policies, which far outperformed those that received more teacher demonstrations.

4.2.1 Motion Primitives Learned from Demonstration

The three motion primitives were successfully learned in the first phase of the FPS
algorithm (Tbl. 1, average of 50 executions, 1-standard deviation).3

The initial policies in PDI were unable to complete either of the turn right or
turn left behaviors. The initial go straight primitive behavior was able to complete
the task, however execution proceeded extremely slowly.

All policies resulting after Phase 1 development of the FPS algorithm (in PFF )
were able to complete their respective primitive behaviors. Furthermore, executions
with these policies were much faster on average than those in PDI , as summarized
in Figure 3 (green bars; also in Tbl. 1). Of particular note is the go straight primitive
policy, whose average speed over the executions approaches the maximum speed of
the robot (3.0 m

s ), all without compromising the success of the executions. Aggres-
sive speeds at times negatively impacted the turn left policy however, whose more
efficient executions came at the cost of occasional incomplete executions.

In contrast to the FPS policy, the turn right policy resulting from more teleopera-
tion demonstrations (in PDF ) was not able to complete the task, or even to improve
upon the performance or speed of the initial policy. Furthermore, the policy was de-
veloped with significantly more practice runs and training data (36 vs. 23 practice
runs, 2,846 vs. 561 new datapoints). The go straight demonstration policy (Fig. 3,
blue bar) was able to improve execution speed over the baseline policy, but not as

2 Efficiency is computed only for successful executions, that by definition do not abort early.
3 The figures and tables of this section label the primitive policy sets intuitively: Baseline

refers to PDI , Feedback refers to PFF and More Demonstration (More Demo) refers to
PDF .
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Table 1 Execution performance of the primitive policies.

Policy Success (%) Speed, Transl [mean] ( m
s ) Efficiency (s)

Baseline, Right 47.97±1.45 0.61±0.01 -
Feedback, Right 97.61±12.0 1.67±0.02 1.93±0.07

MoreDemo, Right 51.79±8.54 0.65±0.01 -

Baseline, Straight 100.0±0.0 0.60±0.00 5.67±0.13
Feedback, Straight 100.0±0.0 2.74±0.05 1.26±0.03

MoreBaseline, Straight 100.0±0.0 1.73±0.34 3.11±0.62

Demo, Le f t 99.21±1.31 0.97±0.01 2.76±0.05
Feedback, Le f t 91.28±19.30 1.47±0.39 1.80±0.41

MoreDemo, Le f t 43.76±8.21 0.60±0.02 -

dramatically as the FPS policy, and again with more training data and practice runs
(36 vs. 27 practice runs, 1,630 vs. 426 new datapoints). The turn left policy actu-
ally decreased the performance of the initial policy, both in success and speed (and
with 12 vs. 8 practice runs, 965 vs. 252 new datapoints). More demonstrations in
this case likely created ambiguous areas for the policy, a complication that would
perhaps clear up with the presentation of more disambiguating demonstrations.

Primitive Policy Speed

Fig. 3 Average translational execution speed with each of the primitive behavior policies.

4.2.2 Undemonstrated Task Learned from Primitives and Feedback

A policy able to execute a more complex, undemonstrated, behavior was success-
fully developed through the scaffolding of the learned primitive policies, plus the
incorporation of teacher feedback. Before any practice runs with teacher feedback,
the complex policy, derived solely from selection between the developed feedback
primitive policies PFF , was unable to execute this task in full. Performance im-
provement over 160 practice runs is presented in Figure 4 (left). Each practice run
produces a new iterative policy. Each plot point represents an average of 10 track ex-
ecutions with a given iterative policy, and a regularly sampled subset of the iterative
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policies were evaluated in this manner (sampled every 10 policies, 17 iterative poli-
cies evaluated in total). This constitutes Phase 2 of the FPS algorithm, after which
the learner was able to consistently execute the complex task in full.

Complex Policy Success

Iterative FPS Policies Initial and Final Policies

Fig. 4 Percent task completion during (left) and after (right) complex policy practice.

4.2.3 Improvement in Complex Task Performance

Beyond the development of a policy able to perform the more complex task, FPS
furthermore enabled performance improvement such that executions became faster
and more efficient (Tbl. 2, average of 50 executions, 1-standard deviation error bars).

Figure 4 (right) summarizes the percent completed execution of multiple policies
on the full track task (also in Tbl. 2). The final policy SFF that resulted after Phase
2 of the FPS algorithm was able to consistently execute the task successfully (Feed-
back Final); as noted above, the initial scaffolded FPS policy SFI was not able to
complete this task (Feedback Initial). By contrast, the policy SDF that resulted from
more teleoperation demonstrations (Demo Final) was not able to complete the task,
though it did improve upon the performance its initial policy (Demo Initial).

Table 2 Execution performance of the scaffolded policies.

Policy Success (%) Speed, Transl [mean, max] ( m
s ) Speed, Rot [max] ( rad

s )

Feedback Initial 6.32±1.72 0.42±0.21 , 1.51±0.36 0.88±0.3
Feedback∗ 63.32±28.49 2.24±0.18 , 3.04±0.17 2.14±0.2

Feedback Final 97.51±7.94 2.34±0.03 , 3.07±0.01 2.57±0.06

Demo Initial 5.95±0.17 0.58±0.00 , 0.66±0.13 0.15±0.10
Demo Final 13.69±2.36 1.01±0.13 , 1.51±0.56 0.98±0.14
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The final FPS policy SFF however was more extensively developed than the
demonstration policy SDF , whose extremely slow rate of policy improvement
prompted the teacher to abort policy development (159 vs. 74 practice runs). The
above comparison between the final FPS and demonstration policies therefore is not
a fair one, and so the results from an iterative FPS policy are also provided (Feed-
back*). This policy is not the final FPS policy, but rather the result of development
after only 74 practice runs, the same number of practice runs as the final demonstra-
tion policy. These runs produced 2,448 new datapoints; far fewer than the 74 runs of
the demonstration policy, which produced 8,520 new points. Even so, against this
iterative policy the final demonstration policy also did not measure well. The iter-
ative policy (Feedback*) significantly outperformed the final demonstration policy
(Demo Final) on the success measure, though it does not yet perform as successfully
or as consistently as the final FPS policy (Feedback Final).

The speed performance results closely resemble those of success performance
(Tbl. 2). Namely, the final FPS policy far outperformed both the initial FPS policy
(Feedback Initial) as well as the final demonstration policy (Demo Final). The fi-
nal demonstration policy did offer some improvement over its initial policy (Demo
Initial), but not nearly as much as the iterative FPS policy provided for compar-
ison (Feedback∗). Interesting to note is that the iterative FPS policy (Feedback∗)
produced similar speeds to the final FPS policy, but with larger standard deviations
(Tbl. 2), suggesting that performance consistency, in addition to execution success,
also motivated the teacher to continue development beyond this iterative policy.

4.3 Discussion

This section highlights some noteworthy gains provided by the FPS algorithm, in-
cluding policy reuse and more focused datasets.

4.3.1 Reuse of Primitives Learned from Demonstration

These empirical results confirm that FPS was able to successfully build a policy for
an undemonstrated task, from existing primitive policies learned from demonstra-
tion. We identify two crucial gains to such an approach.

The first gain is that the multiple motion primitive policies were developed from
demonstration. Demonstration has many attractive features as a medium for knowl-
edge transfer from human teacher to robot learner [3]. Moreover, this demonstration
technique was aided with teacher feedback, provided under the F3MRP framework.
Without this feedback, the learned primitive policies are less successful, less effi-
cient, slower, and in some cases even unable to complete the target behavior. This
is true not just of the initial primitive policies derived from demonstration, but also
of the policies provided with more demonstrations in response to learner execution
performance. The FPS algorithm therefore provides a more efficient and effective
LfD technique for the development of these motion primitive policies.

Even with the advantages secured through demonstration and teacher feedback
however, policy development typically is still a non-trivial task. The second gain of
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the FPS approach therefore is the ability to reuse the primitives within another pol-
icy. The full track task was shown to be sufficiently complex that the improvements
afforded by demonstrations of the full task behavior were significantly smaller than
those gained through teacher feedback. Moreover, this performance difference be-
tween the feedback and more-demonstration techniques was much larger for the
complex task than for the simpler primitive policies. These results suggest that the
complex task cannot be learned through demonstration exclusively, unless perhaps
provided with a very large quantity of demonstration data, again underlining the
advantage of simple policy reuse within this complex domain.

4.3.2 More Focused Datasets

One result from the experimental validation of A-OPI in [2] was the development of
much smaller datasets with corrective feedback in comparison to more demonstra-
tion. The smaller datasets furthermore produced similar or superior performance,
prompting the conclusion that the datasets were less redundant and more focused.

The same trend is seen in the FPS datasets, and appears to only magnify with
the more complex domain of this work. In particular, the combined size of the three
primitive policy datasets developed with more demonstration (6,137) is more than
three times the size of the comparable FPS primitive datasets (1,935). The size of the
final scaffolded more-demonstration policy dataset (14,657) is more than double the
final FPS dataset size (6,438), and this is with far fewer practice runs (74 vs. 168).

Moreover, these teleoperation policies never perform similarly to their FPS coun-
terparts and, in contrast to the A-OPI results, instead usually display significantly
inferior performance. This observation suggests that not only is the added data less
redundant, but furthermore includes relevant data that is not being produced by the
demonstration. One issue is that to provide a correction through demonstration can
be difficult with motion control tasks, and this difficulty scales with task complexity.
Further detrimental is the reality that the teacher often must reproduce suboptimal
behavior in order to reach the state intended to receive a corrective demonstration.
We propose that the value in policy refinement alternatives to state revisitation only
grows as tasks and domains become more complex.

5 Conclusions

We have introduced Feedback for Policy Scaffolding (FPS) as an algorithm that
builds, or scaffolds, a policy from demonstrated component behaviors and correc-
tive human feedback. The complete behavior of the scaffolded policy itself need not
be demonstrated. We have validated the FPS algorithm within a simulated robot mo-
tion control domain. A policy built from demonstrated motion primitives and human
feedback was able to execute a more complex, undemonstrated task, thus confirm-
ing successful policy reuse. Moreover, we found that successful execution of the
complex behavior was in fact enabled by teacher feedback. When compared to pro-
viding more teacher demonstrations, FPS was shown to produce better performing
policies, from more focused datasets. Policy performance was found to improve with
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feedback, in the measures of success, speed and efficiency, and for the complex as
well as primitive behaviors.
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Perceptual Interpretation for Autonomous
Navigation through Dynamic Imitation Learning

David Silver, J. Andrew Bagnell, and Anthony Stentz

Abstract. Achieving high performance autonomous navigation is a central goal of
field robotics. Efficient navigation by a mobile robot depends not only on the in-
dividual performance of perception and planning systems, but on how well these
systems are coupled. When the perception problem is clearly defined, as in well
structured environments, this coupling (in the form of a cost function) is also well
defined. However, as environments become less structured and more difficult to in-
terpret, more complex cost functions are required, increasing the difficulty of their
design. Recently, a class of machine learning techniques has been developed that
rely upon expert demonstration to develop a function mapping perceptual data to
costs. These algorithms choose the cost function such that the robot’s planned be-
havior mimics an expert’s demonstration as closely as possible. In this work, we
extend these methods to address the challenge of dynamic and incomplete online
perceptual data, as well as noisy and imperfect expert demonstration. We validate
our approach on a large scale outdoor robot with hundreds of kilometers of au-
tonomous navigation through complex natural terrains.

1 Introduction

The capability of mobile robots to autonomously navigate through unknown envi-
ronments continues to advance. Especially in structured environments, the effec-
tiveness of both perception and planning systems have been greatly improved. In
such environments, the actions that a robot can and cannot take are generally well
defined. It is then the task of a perception system to report these definitions, and of
a planning system to indicate a series of actions to achieve a desired goal.

However, as environments become less structured, the difficulty of coupling per-
ception and planning systems increases. Under these conditions, the final output of
a perception system cannot be binary: a more analog measure of traversability or
desirability is required. For example, in outdoor terrain it may be desirable to avoid
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Fig. 1 Left: The Crusher platform is capable of long range autonomous navigation through
complex terrain. Center: Raw perception data from Crusher, in the form of camera images
and colorized LiDAR. Right: 2D costs derived from perception data. Brighter pixels indicate
higher cost.

tall grass in favor of short grass, but it may also be desirable to avoid a bush in favor
of either, and to avoid a tree in favor of anything. The computation of such an analog
ordering has a drastic effect on the final performance of a mobile robot, and is often
a barrier to truly robust navigation.

This paper proposes the use of imitation learning to derive the proper coupling
between a mobile robot’s perception and planning systems in order to improve
autonomous performance. The presented approach is based on extension of the
Maximum Margin Planning (MMP) [12, 13] framework, and makes use of expert
demonstration of desired navigation behavior. Existing techniques are adapted to
account for the unknown and dynamic nature of online perceptual data, as well as
to account for noisy and imperfect demonstration. The application of this approach
to the Crusher autonomous platform [18] (Figure 1) is then presented. Experimental
results are gathered over hundreds of kilometers of autonomous traverse through
complex, natural terrains.

2 Perceptual Interpretation for Autonomous Navigation

The canonical task of an autonomous navigation system is to safely guide a robot
from a start to a goal location. Knowledge of the environment comes from a combi-
nation of any prior data available, and data collected by the robot’s onboard sensors.
Due to map resolution limitations and post mapping changes, the environment is
typically not fully known before the robot navigates. Since the robot’s knowledge
of its environment evolves over time, an onboard planning system must continually
make decisions geared towards achieving its goal. Depending on the complexity of
the navigation task, the overall planning system may consist of multiple individual
planners. It is also common for such systems to operate in a discretized state space
that allows perceptual data to be associated with each state.

A planning system attempts to produce the optimal sequence of actions that will
lead the robot to its goal. This naturally raises the question of how to determine
what is “optimal”. In well structured environments, this may be well defined: for
example, in an indoor environment, the optimal path may be the shortest collision
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free path to the goal. The perceptual challenge in this scenario is to properly classify
sources of collisions; after that, defining optimality is trivial.

However, in complex unstructured environments, defining optimality is more dif-
ficult (along with the rest of the perception task). In such environments it is no longer
easily definable what is and is not traversable; for example it may or may not be pos-
sible to drive over a small bush, or to drive through a large patch of mud without
becoming stuck. Traversability must be considered as a probability or some other
analog measure. Further, maximizing traversability may not be the only considera-
tion; there might be a desire to minimize energy usage or time taken, maximize the
field of view of onboard sensors, or minimize exposure to external sensors. In these
scenarios, an analog ordering of preferences and tradeoffs is required, as opposed
to a binary classification of passable regions. This in turn creates the requirement
for planners that can make use of such orderings. One of the most field proven ap-
proaches is to use A* style grid planners, either separately or in conjunction with
more continuous local motion planners [7, 15, 17, 18].

The process of converting a perception system’s description of an environment
to an ordering of preferences is often called costing, with a cost function mapping
perceptual data associated with discrete states to costs. In turn, it is then the function
of the planning system to attempt to minimize the accrued cost during navigation.
By concretely defining relative preferences and tradeoffs, the cost function has a
large impact on a mobile robot’s behavior. Often, it is chosen in an attempt to force
a robot to approximate some intuitive metric (distance traveled, time taken, energy
expended, mission risk, etc.) or combination of such. Whether the robot’s behavior
actually reflects its designed intent is heavily dependent on the mapping from per-
ceptual features to costs. If the perceptual features are sufficiently descriptive of the
environment, the cost function can be seen as an encoding of the desired behavior
of the robot.

Unfortunately, the more complex the environment and the desired behavior, the
more difficult the task of defining the cost function becomes. Human engineering
is often the first approach to tackling this problem; it is also potentially quite time
consuming. Complex environments necessitate full featured and high dimensional
descriptions, often on the order of dozens of features per discrete state. Worse still,
there is often not a clear relationship between features and cost. Therefore, engineer-
ing a cost function by hand is akin to manually solving a high dimensional optimiza-
tion problem using local gradient methods. Evaluating each candidate function then
requires validation through either actual or simulated robot performance. This te-
dious process must be repeated whenever the input perceptual features are modified,
or incorrect behavior is observed in a novel environment. Despite these drawbacks,
manual engineering has been popular for lack of alternatives [4, 5, 7, 17]. Engineer-
ing or learning more intuitive features (with respect to costing) simplifies but does
not solve this problem (while creating additional work elsewhere in the perception
pipeline). Self-supervised approaches that learn to interpret an environment online
through proprioception [3, 8, 19] can also provide a more intuitive feature space;
however the requirement of defining relative tradeoffs remains.
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(a) (b)
Fig. 2 (a) An example behavior (in red) overlayed on a single perceptual feature (obstacle
density), and the cost function learned to reproduce the example behavior (b) Example be-
havior from time t (left) and t +1 (right), overlayed on a single perceptual feature (obstacle
height). Future behavior is inconsistent at time t, but makes sense at time t + 1 given addi-
tional perceptual data.

As opposed to simply reducing the complexity of defining desired behavior, the
imitation learning approach seeks to learn a direct mapping to behaviors. Much pre-
vious work in this field [9, 11] has been focused on action prediction: given the
current robot state and its associated perceptual features, learn to predict what ac-
tion an expert would perform, based on examples of expert behavior. However, this
approach is inherently myopic, as it assumes that all necessary information is con-
tained in the current state. While such an approach may work for reactive planning
systems, it is generally ineffective for more deliberative, goal oriented systems.

Recently, a new set of approaches have been developed for learning from demon-
stration based on the concept of Inverse Optimal Control [6]. Rather than learn a
mapping from perceptual features to actions, these approaches seek to learn a map-
ping from perceptual features to costs, such that a planner minimizing said costs
will achieve the expert demonstrated behavior (Figure 2(a)). These methods take
advantage of the fact that while it is difficult for an expert to define an ordering of
preferences, it is easy for an expert to demonstrate the desired behavior.

Our work makes use of the Maximum Margin Planning (MMP) [12] framework,
as opposed to the Inverse Reinforcement Learning approach of [2, 1]. The primary
benefits of the MMP approach are that it does not require a mixture of policies, and
explicitly seeks to reproduce expert behaviors. Further, MMP has been extended to
allow for nonlinear cost functions. Previous work [15] has demonstrated the appli-
cability of the MMP framework to autonomous navigation using static perceptual
data. The next section summarizes this approach, and extends it to the dynamic set-
ting where perceptual representations evolve over time.

3 Maximum Margin Planning for Dynamic Perceptual
Interpretation

This section first describes previous work in the MMP framework, and specifically
the LEARCH (LEArning to seaRCH) algorithm [14], for learning a cost function to
reproduce expert demonstrated behavior. Extension of LEARCH to handle dynamic,
unknown environments is then presented. The MMP framework was developed in
the context of Markov Decision Processes, and therefore can handle a cost function
defined over state-action pairs. For the sake of simplicity and clarity, the following
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introduction and subsequent derivations only consider A* style planners, and costs
defined over states (this is consistent with how Crusher’s autonomy system oper-
ates). However, this is not a limitation of the MMP framework itself, which can be
applied to any planning-based decision loop. For a full derivation, see [14].

3.1 LEARCH Algorithm

Consider a state space S , and a feature space F defined over S . That is, for every
x ∈ S , there exists a corresponding feature vector Fx ∈ F . C is defined as a cost
function over the feature space, C : F → R+. The cost of a state x is C(Fx). A path
P is defined as a sequence of states in S that lead from a start state s to a goal state
g. The cost of P is simply the sum of the costs of all states along it.

If an example path Pe is provided, then MMP defines the following constraint on
cost functions: the cost of Pe must be lower than the cost of any other path from se to
ge. The structured maximum margin approach [12] encourages good generalization
and prevents trivial solutions (e.g. the everywhere 0 function) by augmenting the
constraint to includes a margin: the demonstrated path must be BETTER than another
path by some amount. The size of the margin is dependent on the similarity between
the two paths, encoded in a loss function Le. In this context, we define loss by how
many states the two paths share. Learning a cost function then involves constrained
optimization of an objective functional over C

minO[C] = REG(C)

subject to the constraints

∑
x∈P̂

(C(Fx)−Le(x)) − ∑
x∈Pe

(C(Fx)) ≥ 0

∀P̂ s.t. P̂ �= Pe, ŝ = se, ĝ = ge

Le(x) =
{

1 if x ∈ Pe

0 otherwise
(1)

where REG is a regularization operator that encourages generalization in the cost
function C. There are typically an exponentially large (or even infinite) number of
constraints, each corresponding to an alternate path. However, it is not necessary to
enumerate these constraints. For every candidate cost function, there is a minimum
cost path between two waypoints; at each step it is only necessary to enforce the
constraint on this path. Further, it may not always be possible to achieve all con-
straints, and thus a “slack” penalty is added. Since the slack variable is tight, we
may write an “unconstrained” problem that captures the constraints as penalties:

minO[C] = REG(C)+ ∑
x∈Pe

C(Fx)− min
P̂
∑
x∈P̂

(C(Fx)−Le(x)) (2)
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For linear cost functions (and convex regularization) O[C] is convex, and can be
minimized using (sub-)gradient descent. However, linear cost functions may be in-
sufficient. Therefore, we consider the (sub-)gradient of the objective in the space of
cost functions [13, 14], given by

�OF [C] = ∑
x∈Pe

δF(Fx) − ∑
x∈P∗

δF(Fx) (3)

where P∗ is the current minimum cost plan, and δ is the dirac delta at the point of
evaluation. Simply speaking, the functional gradient is positive at values of F that
the example path pass through, and negative at values of F that the planned path pass
through. The magnitude of the gradient is determined by the frequency of visits. If
the paths agree in their visitation counts at F , the functional gradient is zero.

Applying gradient descent in this space of cost functions directly would involve
an extreme form of overfitting: defining a cost at every value of F encountered and
involving no generalization. Instead we take a small step in a limited set of “direc-
tions” using a hypothesis space of functions mapping features to a real number. The
resulting function R belongs to a chosen family of functions (linear, decision trees,
neural networks, etc.). The choice of hypothesis space in turn controls the complex-
ity of the resulting cost function. We must then find at each step the element R∗ that
maximizes the inner product 〈−�OF [C],R∗〉 between the functional gradient and
elements of the space of functions under consideration. Maximizing the inner prod-
uct between the functional gradient and R∗ can be interpreted as a learning problem:

R∗ = argmax
R

∑
x∈Pe∪P∗

αxyxR(Fx) (4)

αx = |�OFx[C]| yx = −sgn(�OFx [C])

In this form, it can be seen that finding the projection of the functional gradient es-
sentially involves solving a weighted classification problem. Performing regression
instead of classification adds an additional regularization to each projection. Intu-
itively, the regression targets are positive in places the planned path visits more than
the example path, and negative in places the example path visits more. The weights
on each regression target are the difference in visitation counts.

Gradient descent can be understood as encouraging functions that are “small” in
the l2 norm. If instead, we consider applying an exponentiated functional gradient
descent update as described in [14] we encourage functions that are “sparse”. Thus
the final cost function is of the form

C(F) = e∑ηiRi(F) (5)

naturally resulting in cost functions that map to R+. Regularization is achieved im-
plicitly through the learning rate ηi.

With the LEARCH algorithm, multiple expert examples can be provided. Each
example behavior between a single start and end waypoint defines its own objective
function, and in turn its own regression targets. These targets can be tallied and a
new cost function computed for each example one at a time, or all at once with a
single update to the cost function.
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3.2 LEARCH for Unknown, Dynamic Environments

Previous implementations of LEARCH for mobile robot navigation [15] have only
considered the scenario where the mapping from states to features is static and fully
known a priori. In this section, we build on [13] and extend the LEARCH algorithm
to the scenario where neither of these assumptions holds, such as when features are
generated from a mobile robot’s perception system. The limited range inherent in
onboard sensing means a great deal of the environment may be unknown; for truly
complex navigation tasks, the distance between waypoints is generally at least one
or two orders of magnitude larger than the sensor range. Further, changing range
and point of view from environmental structures means that even once an object
is within range, its perceptual features are continually changing. Finally, there are
the actual dynamics of the environment: objects may move, lighting and weather
conditions can change, sensors may be noisy, etc.

Since the perceptual inputs are no longer static, the robot’s current plan must
also be continually recomputed. The original MMP constraint must be altered in the
same way: rather than enforcing the optimality of the entire example behavior once,
the optimality of all example behavior must be continually enforced as the current
plan is recomputed. Formally, we add a time index t to account for dynamics. Ft

x
represents the perceptual features of state x at time t. Pt

e represents the example
behavior starting from the current state at time t to the goal. The objective becomes

minO[C] = REG(C) +∑
t

(
∑

x∈Pt
e

C(Ft
x ) − min

P̂t
∑

x∈P̂t

(C(Ft
x )−Lt

e(x))

)
(6)

with the extra summation over time carried into the functional gradient and its pro-
jection in Equation 4. The cost function C does not have a time index: the optimiza-
tion is searching for the single cost function that best reproduces example behavior
over an entire time sequence.

It is important to clarify what Pt
e represents. Until now, the terms plan and behav-

ior have been interchangeable. This is true in the static case since the environment
never evolves; as long as a plan is sufficiently followed, it does not need to be re-
computed. However, in the dynamic case, an expert’s plan and behavior are different
notions: the plan is the currently intended future behavior, and the behavior is the
result of previous plans. Therefore, Pt

e would ideally be the expert’s plan at time t,
not example behavior from time t onwards.

However, this information is generally not available: it would require the record-
ing of an expert’s current plan at each instant in time. Even if a framework for such
a data collection were to be implemented, it would turn the collection of training
examples into an extremely tedious and expensive process. Therefore, in practice
we approximate the current plan of an expert Pt

e with the expert’s behavior from t
onwards. Unfortunately, this approximation can potentially create situations where
the example at certain timesteps is suboptimal or inconsistent. The consequences of
this inconsistency are further discussed in Section 4 (see Figure 2(b)).
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Once dynamics have been accounted for, the limited range of onboard sensing
can be addressed. At time t, there may be no perceptual features available corre-
sponding to the (potentially large) section of the example path that is outside of cur-
rent perceptual range. In order to perform long range navigation, a mobile robotic
system must already have some approach to planning through terrain it has not di-
rectly sensed. Solutions include the use of prior knowledge [15], extrapolation from
recent experience [10], or simply to assume uniform properties of unknown terrain.

Therefore, we define the set of visible states at time t as V t . The exact definition
of visible depends on the specifics of the underlying robotic system’s data fusion:
V t should include all states for which the cost of state x at time t is computed with
the cost function currently being learned, C. For all other states V̄ t , we can assume
the existence of some alternate function for computing cost, CV̄ (x). The objective
functional and gradient become

minO[C] = REG(C) + CE −CP

CP =∑
t

min
P̂t

(
∑

x∈P̂t∩V t

(C(Ft
x )−Lt

e(x)) + ∑
x∈P̂t∩V̄ t

CV̄ (x)

)

CE =∑
t

⎛
⎝ ∑

x∈Pt
e∩V t

C(Ft
x ) + ∑

x∈Pt
e∩V̄ t

CV̄ (x)

⎞
⎠ (7)

�OF [C] =∑
t

(
∑

x∈Pe∩V t

δF(Ft
x ) − ∑

x∈P∗∩V t

δF(Ft
x )

)
(8)

Since the gradient is computed with respect to C, it is only nonzero for visible states.
The projection of the functional gradient onto the hypothesis space becomes

R∗ = argmax
R
∑

t
∑

x∈(Pe∪P∗)∩V t

αt
xyt

xR(Ft
x ) (9)

Although the functional gradient is zero over V̄ t , CV̄ still factors into the planned
behavior. Just as LEARCH learns C to recreate desired behavior when using a spe-
cific planner, it learns C to recreate behavior when using a specific CV̄ . However,
if the example behavior is inconsistent with CV̄ , it will be more difficult for the
planned behavior to match the example. Such an inconsistency could occur if the
expert has different prior knowledge than the robot, or interprets the same knowl-
edge differently (a problem addressed in [15]). Inconsistency can also occur due to
the previously discussed mismatch between expert plans and expert behavior. Solu-
tions to inconsistent examples are discussed in Section 4.

Contrasting the final form for R∗ with that of (4) helps to summarize the changes
that result in the LEARCH algorithm for dynamic environments. Specifically, a sin-
gle expert demonstration from start to goal is discretized by time, with each timestep
serving as an example of what behavior to plan given all data to that point in time.
For each of these discretized examples, only visitation counts in visible states are
used. The resulting algorithm is presented in Figure 3.
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for i = 1...N do
foreach Pt

e do
M t = buildCostmap(Ci−1,st

e,g
t
e,F

t);
Pt
∗ = planPath(st

e,g
t
e,M

t);
Ue,t
− = {Pt

e
⋂

P̄t
∗,−1}, Ue,t

+ = {Pt
∗
⋂

P̄t
e ,+1};

Ri = trainRegressor(F ,U+
⋃

U−);
Ci = Ci−1 ∗ eηiRi ;

Fig. 3 The dynamic LEARCH algorithm

4 Imperfect and Inconsistent Demonstration

The MMP framework makes the assumption that the provided training data are ex-
amples of optimal behavior. Generally, this is not the case, as humans rarely be-
have in a truly optimal manner. Fundamentally, there will always be noise in human
demonstration. Further, multiple examples from different environments and experts
may be inconsistent with each other, due either to inconsistency in human behavior,
or an incomplete perceptual description of the environment by the robot. Finally,
sometimes experts are flat out wrong, and produce poor demonstration.

While MMP is not broken by poor training data, it does suffer degraded over-
all performance and generalization (in the same way that supervised classification
performance is degraded but not broken by mislabeled training data). Attempting
to have an expert sanitize the training input is disadvantageous for two reasons: it
creates an additional need for human involvement, and assumes that an expert can
detect all errors. Instead, this section describes modifications to the LEARCH algo-
rithm that can increase robustness and improve generalization in the face of noisy
or poor expert demonstration.

4.1 Unachievable Example Behaviors

Experts do not necessarily plan their example behavior in a manner consistent with a
robot’s planner: this assumption is not part of the MMP framework. However, what
is assumed is that there exists some cost function that will cause the robot’s planner
to reproduce the behavior. This is not always the case: it is possible for an example
to be unachievable. For example, an expert may give an inconsistently wide berth to
obstacles, or make wider turns than are necessary. The result is that example paths
often take slightly longer routes through similar terrain than are optimal [15].

The effect of such an unachievable example is to drive costs towards zero on the
terrain in question, since this would result in any path being optimal. However, since
costs are constrained to R+, this will never be achieved. Instead an unachievable
example will have the effect of unnecessarily lowering costs over a large section of
the feature space, and artificially reducing dynamic range.

This effect can be counteracted by performing a slightly different regression
or classification when projecting the gradient. Instead of minimizing the weighted
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error, the balanced weighted error is minimized; that is, both positive and negative
regression targets (corresponding to states on the planned and example path) make
an equal sum contribution. Formally, R∗ is replaced with RB

∗ defined as

RB
∗ = argmax

R
∑

t

(
∑

yt
x>0

αt
xR(Ft

x )
N+

− ∑
yt

x<0

αt
xR(Ft

x )
N−

)

N+ =∑
t
∑

yt
x>0

αt
x N− =∑

t
∑

yt
x<0

αt
x (10)

This new projection will zero out the contributions of the unachievable cases de-
scribed above. In the general case, the effect of balancing can be observed by rewrit-
ing the final classification in terms of the planned and example visitation counts, U+
and U−, and carrying the balancing through to the inputs.

R∗ = argmax〈R,U+ −U−〉 RB
∗ = argmax〈R,

U+

N+
− U−

N−
〉

〈U+ −U−,
U+

N+
− U−

N−
〉 =

〈U+,U+ −U−〉
N+

+
〈U−,U−−U+〉

N−

=
|U+|2
N+

+
|U−|2
N−

− (
1

N+
+

1
N−

)〈U+,U−〉

The similarity between inputs to the projections is negatively correlated to the over-
lap of the positive and negative visitation counts, 〈U+,U−〉. By the Cauchy-Schwarz
inequality, 〈U+,U−〉 is bounded by |U+||U−|, and is only tight against this bound
when the visitation counts are perfectly correlated, which implies

〈U+,U−〉 = |U+||U−| ⇐⇒U− = ±κU+ =⇒ |U−| = κ |U+| , N− = κN+

for some scalar κ . By substitution

|U+|2
N+

+
|U−|2

N−
− (

1
N+

+
1

N−
)〈U+,U−〉 ≥

|U+|2
N+

+
|U−|2

N−
− (

1
N+

+
1

N−
)|U+||U−|

=
|U+|2

N+
+
κ2|U+|2
κN+

− (
1

N+
+

1
κN+

)κ|U+||U+|

=
|U+|2

N+
+
κ|U+|2

N+
− |U+|2

N+
− κ|U+|2

N+
= 0

therefore

〈U+ −U−,
U+

N+
− U−

N−
〉 ≥ 0

When there exists clear differentiation between what features should have their costs
increased and decreased, the projection inputs will be similar. As the example and
current planned behaviors travel over increasingly similar terrain, the inputs diverge;
the contribution of the balanced projection to the current cost function will level out,
while that of the unbalanced projection will increase in the direction of the longer
path. This effect is observed empirically in Section 5.
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4.2 Replanning with Corridor Constraints

A balanced projection can account for large scale suboptimality in demonstration.
However, suboptimality can also occur at a smaller scale. It is unreasonable to ever
expect a human to drive the exact perfect path; it is often the case that a plan that
travels through neighboring or nearby states would be a slightly better example.
What is needed is an approach that smoothes out small scale noise in expert demon-
stration, producing a better training example. Such a smoothed example can be de-
rived from expert demonstration by redefining what the example represents: instead
of example behavior being interpreted as the exact optimal behavior, it can be inter-
preted as a behavior that is close to optimal. The exact definition of close depends
on the state space; the loss function will always provide at least one possible metric.

For example, if the state space is Rn, then Euclidean distance is a natural metric.
Rather than an example defining the exact optimal path, it would define a corridor
in which the optimal path exists. A new desired behavior can be derived from the
example at each learning iteration by choosing the current optimal behavior that is
sufficiently close. Formally, CE in (7) is redefined as

CE =∑
t

min
P̂t

e∈N t
e

⎛
⎝ ∑

x∈P̂t
e∩V t

C(Ft
x ) + ∑

x∈P̂t
e∩V̄ t

CV̄ (x)

⎞
⎠

N t
e ={P | ||(P

⋂
V t)− (Pt

e

⋂
V t)|| < β} (11)

where β is a threshold on the metric over paths. The result of this modification is that
the example path is replanned at each iteration of the LEARCH algorithm; however,
only paths within N t

e are considered during replanning.
It should be noted that N t

e only defines closeness over V t . Behavior outside
of V t does not directly affect the gradient, but does affect the difference in cost
between the current (replanned) example and planned behavior. Therefore, by per-
forming a replanning step (even with β = 0), example behavior can be made con-
sistent with CV̄ without compromising its effectiveness as an example within V t .

4.3 Filtering for Inconsistent Examples

By always performing a replanning step, it can be ensured that any remaining incon-
sistency is due to either a mismatch between an expert’s planned and actual behavior
at time t, a disagreement between the expert’s and the robot’s underlying perception
of the world, or expert error. Figure 2(b) provides a simple example: at time t, the
expert likely planned to drive straight, but was forced to replan at time t + 1 as new
obstacles were observed. The assumption that the expert behavior from time t on-
ward matches the plan is false, and results in behavior at time t being inconsistent
with the behavior exhibited at other timesteps. While tiny changes in an expert’s
plan can be corrected by replanning the example, there is no way to correct for a
drastic case such as a cul de sac.
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However, the inconsistency of such timesteps provides a basis for their filtering
and removal. Specifically, it can be assumed that a human expert will plan in a fairly
consistent manner during a single example traverse. If the behavior from a single
timestep or small set of timesteps is inconsistent with the demonstrated behavior at
other timesteps, then these inconsistent timesteps can be filtered. Inconsistency can
be quantitatively defined by observing each timestep’s contribution to the objective
functional (its slack penalty). If the penalty at a single timestep is a statistical out-
lier from other timesteps, then that timestep can be seen as inconsistent with the
constraints implied by the rest of the example behavior.

Therefore, the following filtering heuristic is proposed. First, attempt to learn a
cost function over all timesteps of a single example behavior, using a more complex
hypothesis space than intended for the final cost function, and identify timesteps
whose penalties are statistical outliers. As these timesteps are inconsistent within
an overly complex hypothesis space, there is evidence that the inconsistency is in
the example and not for lack of expressiveness in the cost function. Therefore, these
timesteps can be removed. This process can be repeated for each example behavior,
and only remaining timesteps used in the final training. Experimental results of this
filtering approach are presented in the next section.

5 Experimental Results

Our imitation learning approach was implemented for the Crusher autonomous
platform (Figure 1) [18]. Crusher’s base perception system consists of 6 LiDAR
scanners and 4 sets of cameras which are processed to provide a discretized set of
geometric and semantic features at a range of up to 20 m (Figure 4). Training data in
the form of expert example behaviors was gathered by having Crusher’s safety op-
erator teleoperate the vehicle through sets of waypoints. Different training examples
were collected over a period of months in varying locations and weather conditions,
and with 3 different operators at one time or another. During data collection, all raw
sensor data was logged along with the example path. Perceptual features were then
produced offline by feeding the raw sensor data through Crusher’s perception soft-
ware. In this way, the base perception system and its features can be modified and
improved without having to recollect new training data; the raw data is just repro-
cessed, and a cost function learned for the new features. Figure 4 provides a simple
example of both perceptual features and the resulting (learned) cost.

This set of examples was used to perform a series of offline experiments to val-
idate additions to the MMP framework. The average loss over a path (as defined
in Equation 1) was used to evaluate the performance of different variations of the
LEARCH algorithm on a large validation set of example behaviors. These results
are presented in Figure 5. Fig. 5(a) demonstrates the effectiveness of performing
balanced as opposed to unbalanced regression, as the balanced version has superior
validation performance. Fig 5(b) demonstrates the benefit of replanning with corri-
dor constraints. With a small corridor size, the algorithm is able to smooth out some
of the noise in demonstrated behavior, and improve generalization. As the corridor
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(a) Left Camera Image (b) Right Camera Image

(c) Object Height (d) Object Density (e) Solidness (f) Learned Cost

Fig. 4 An example of learned perception cost. A simple scene depicted in (a),(b) results in
perceptual features (a small subset shown in (c) - (e)) that are mapped into cost (h).

size increases, the algorithm begins to oversmooth, resulting in decreasing valida-
tion performance. In this way, validation data can be used to automatically determine
the optimal corridor size. An experiment was also performed to assess the effective-
ness of filtering. A single expert behavior was used to learn a cost function, first
with no filtering, and then with approximately 10% of its timesteps automatically
filtered. Without filtering, the training loss (computed only over unfiltered timesteps)
and validation loss were 0.532 and 0.596 respectively. With filtering, these numbers
improved to 0.493 and 0.582, indicating further enhanced generalization.

As cost evaluations must be performed online in real time, the computational
cost of an evaluation is an important consideration. As a sum of linear functions is
another linear function, a linear hypothesis space is computationally advantageous.
However, this negates one of the primary benefits of LEARCH (nonlinear cost func-
tions). Therefore, additional experiments were performed with the approach used in
[15]: linear regression was used to increase efficiency and generalization, but a fea-
ture learning phase was added. Occasional projections of the functional gradient are
performed with simple regression trees; these regression trees are then used as a
new feature instead of being added directly to the cost function. In this way, future
learning iterations can control the contribution of each regression tree feature, and
the computational cost of an evaluation is minimized. This approach is similar to the
way cost functions are often engineered, with specific rules added to handle special
cases. Figure 5(c) shows validation loss as a function of the number of added regres-
sion tree features. At first, additional features improve the validation performance;
eventually too many features results in overfitting.
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Fig. 5 Results of offline experiments. (a) Validation Loss during learning for the balanced
and unbalanced functional gradient projection (b) Validation Loss as a function of the replan-
ning corridor size (c) Validation Loss as a function of the number of regression trees.

The training set was also used to learn a cost function to run onboard Crusher,
which uses a hybrid global and local planning system similar to [7]. Details of the
implementation of LEARCH with this planning system can be found in [16]. Orig-
inally, the function mapping perceptual features to costs onboard Crusher was hand
engineered. This cost function was developed and continually retuned by multiple
students, staff, and faculty; this process required hundreds of man-hours over a pe-
riod of more than 3 years to achieve and maintain a high level of autonomous perfor-
mance [18]. Much of this maintenance involved retuning the cost function in newly
encountered regions of the perceptual feature space observed when first testing in
novel terrain (while still trying to maintain good performance in previously encoun-
tered terrain). In contrast, the entirety of the training set used for imitation learning
involved less than 1 hour of expert driving examples, over a total distance of less
than 3 km. This seemingly small amount of human demonstration is sufficient due
to the numerous constraints implied by each example behavior: a few kilometers
of demonstration provides hundreds of thousands of examples of states to traverse,
and millions more examples of states that were avoided. Additionally, if testing in a
novel environment demonstrates the existing training set to be insufficient, adapting
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Table 1 Per-waypoint averages of various metrics of autonomous performance, demonstrat-
ing the difference between operating with an engineered and a learned cost function. The
difference in metrics related to efficiency of autonomous traverse are statistically significant,
while those related to autonomous vehicle safety are not. Statistics for additional metrics are
provided in [16].

Statistic for Comparison Engineered Learned P-value

Avg. Distance Per Waypoint(m) 130.7 124.3 0.07
Avg. Cmd. Vel.( m

s ),Ang. Vel.( ◦s ) 3.24,6.55 3.39,5.08 0.15,0.0
Avg. Lateral Vel./Accel.( m

s2 ) 0.181/1.34 0.17/1.31 0.0/0.0
Avg. Roll/Pitch(◦) 4.05/2.21 3.90/2.18 0.99/0.57
Avg. Slip Ratio 1.131 1.129 0.81
Interventions (Per Waypoint) 8 (0.027) 10 (0.034) 0.48

to the new terrain requires only the collection of a few additional minutes of expert
demonstration, and then no further human involvement.

The effectiveness of learned cost functions was validated during hundreds of kilo-
meters of autonomous traverse through highly varying terrains across the continental
U.S. During these trials, Crusher used learned cost functions to interpret both on-
board and prior overhead perceptual data [15], and reliably navigate between widely
spaced waypoints. Additionally, a large set of direct comparison trials were per-
formed to evaluate the online performance of a learned cost function in contrast to
the engineered one. During nearly 40 km of autonomous navigation with each cost
function, a variety of statistics describing each run were produced (unlike many
other comparisons of mobile robot performance, cost itself cannot be used). Table 1
lists some of these statistics and the significance of the difference between systems
(treating each waypoint to waypoint traverse as an independent trial). More detailed
statistics from these experiments can be found in [16].

The biggest difference in performance when using the two cost functions was
with respect to turning: the engineered system was more apt to turn harder to avoid
perceived hazards, resulting in a slower traverse and more lateral motion. The effect
of this difference on the number of safety interventions and other proprioceptive
measures of incurred hazards was not statistically significant (implying that the en-
gineered function may produced more false positives). Therefore, we claim a simi-
lar high level of autonomous performance between the two costing approaches, but
with orders of magnitude less human involvement in the learned system.

6 Conclusion

This paper addresses the task of interpreting perceptual data for use in autonomous
navigation. We have presented a dynamic imitation learning approach that achieves
equivalent performance to human engineering with far less manual interaction. The
approach easily adapts to new perceptual features, without the need for additional
human involvement. Future work will explore the application of this approach to
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learning cost functions over full state-action pairs. The behavior of an autonomous
navigation system is defined not only by which terrain it prefers, but by which mo-
tions it prefers (e.g. minimum curvature); by learning all preferences at once from
human demonstration, we hope to further improve the robustness of autonomous
navigation. Additionally, the use of active learning to solicit expert demonstration
will be investigated. Finally, the combination of our approach with self-supervised
learning will be explored, to create mobile systems which are trained once and im-
prove with experience.

This work was sponsored by DARPA under contract ”Unmanned Ground Com-
bat Vehicle - PerceptOR Integration” (contract number MDA972-01-9-0005). The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.
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An Inverse Optimal Control Approach to
Human Motion Modeling

Katja Mombaur, Jean-Paul Laumond, and Anh Truong

Abstract. In this paper, we present inverse optimal control as a promising approach
to transfer biological motions to humanoid robots. Inverse optimal control serves to
identify the underlying optimality criteria of human motions from measurements.
Based on these results optimal control models are established that can be used to
control robot motion. Inverse optimal control problems are hard to solve since they
require the simultaneous treatment of a parameter identification problem and an
optimal control problem. We propose a bilevel approach to solve inverse optimal
control problems which efficiently combines a direct multiple shooting technique
for the optimal control problem solution with a derivative free trust region opti-
mization technique to guarantee the match between optimal control problem solu-
tion and measurements. We apply inverse optimal control to determine optimality
principles of human locomotion path generation to given target positions and orien-
tations, using new motion capture data of human subjects. We show how the estab-
lished optimal control model can be used to enable the humanoid robot HRP-2 to
autonomously generate natural locomotion paths.

1 Introduction

1.1 Inverse Optimal Control: What Is the Optimization Criterion
of Human Motion?

It is a very common assumption in bionics and biomechanics that natural struc-
tures and processes are optimal. This is also true for many forms of human and
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animal motion such as locomotion [Alexander (1984), Alexander (1996)]. However,
the specific optimization criterion applied to a particular motion is very often not
known. But is is possible to observe the results of this natural optimization process
by measurements, such as motion capture, EMG etc.

From a mathematical perspective, the generation of motions of animals and hu-
mans can be formulated as optimal control problem. Optimal control problems are
a special type of optimization problems where the unknown variables are not repre-
sented by a simple n-dimensional vector, but by n unknown functions in time, more
specifically, unknown input or control functions, and unknown state functions. A dy-
namical model establishing the relationship between control and state functions rep-
resents a constraint of the optimal control problem. The objective function (which
is also calles the cost function) may depend on both, control and state functions, as
well as on time. For a classical (forward) optimal control problem the full problem
formulation including objective function, model etc. is known and the solution has
to be determined.

But as stated above, we are often facing the opposite problem, namely that the
exact objective function is not known, but instead we know the solution to this
problem, or at least its observable part, from measurements. This type of problem
is called an inverse optimal control problem (compare fig. 1). These problems are
much harder to solve than (forward) optimal control problems. Inverse optimal con-
trol problems are also much more difficult than standard identification problems
since optimization and data fitting have to be handled simultaneously.

Fig. 1 (Forward) Optimal control problems vs. Inverse optimal control problems
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Fig. 2 The inverse optimal control approach helps (a) to understand optimality of human
locomotion and (b) to generate natural humanoid locomotion

1.2 Natural Humanoid Locomotion by Inverse Optimal Control

We consider the understanding of the optimality principles of human locomotion as
one of the keys to generate biologically inspired locomotion on autonomous robots.
In fig. 2, we give an overview of the inverse optimal control approach that we pro-
pose in this paper. It basically consists of three steps: (a) identification of human
optimality criteria for locomotion by inverse optimal control from motion capture
measurements, (b) formulation of the full (forward) optimal control model, and (c)
implementation and solution of optimal control problem on humanoid robot. This
approach enables a humanoid robot to autonomously generate its natural locomotion
trajectory to any requested target.

Human and humanoid locomotion can be investigated on different levels. Most
research on humanoid robot locomotion aims at generating trajectories on the joint
level. The straight or bent path on the floor along which the humanoid robot is
supposed to move, is prescribed for this purpose. The study of the selection and
optimal generation of this overall path has however been widely neglected in hu-
manoid robotics so far. If humans are asked to walk towards a given end position
and orientation in an empty space with no obstacles, they will select a very specific
path, out of an infinite number of possibilities. In the attempt to control humanoids
in a biologically inspired manner, it would be desirable to understand and imitate
that behavior of humans.

In this paper, we show how the inverse optimal control approach is used to gen-
erate natural overall locomotion trajectories from an initial rest position and orien-
tation to a given target rest position and orientation. For this purpose, we are not
interested in studying the individual trajectories of all joints. Instead, the locomo-
tor system can be described by its overall position and orientation in the plane.
However, inverse optimal control problems are prevalent and can basically be found
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everywhere in natural sciences, and the proposed approach is very general. Conse-
quently, the approach can also be used to analyze motions on joint level.

1.3 Related Work

Classical imitation problems have been widely studied for humanoid robots,
leading to impressive results (e.g. [Nakazawa et al (2002)], [Ikeuchi (2009)],
[Suleiman et al (2008)] and [Billard and Mataric (2001)]). The task here consists
in reproducing a human movement within the kinematic and dynamic ranges of
a robot, using different approaches for model identification, such as learning tech-
niques or optimization, but the underlying optimality principles of the motions are
not at all investigated. However, the simultaneous treatment of an imitation prob-
lem and an identification of optimality principles - i.e. the ”inverse optimal control
problem” discussed above - is much more difficult and has not yet been extensively
investigated.

[Liu et al (2005)] present a realistic generation of character motion by physics-
based models. In their case, the objective function is assumed to be known (mini-
mization of joint torques), but they identify other unknown model parameters from
measurement sequences by a nonlinear inverse optimization technique. Heuberger
provides a detailed overview of inverse optimization for the different class of com-
binatorial problems [Heuberger (2004)]. Inverse optimal control problems formu-
lated as bilevel problems can also be treated as MPEC (Mathematical programs
with equilibrium constraints). Here the optimal control problem is replaced by the
corresponding first order optimality conditions which become constraints of the
parameter estimation problem (see the book [Luo et al (1996)]). There is theoret-
ical research on MPECs and corresponding optimality conditions and constraints
qualifications (e.g. [Ye (2005)]) but the approach is very difficult to implement in
practice. In a recent thesis, it has been applied to very simple dynamical models
[Hatz (2008)].

For mobile wheeled robots, the problem of generating the overall path (i.e.
the trace on the floor) has been extensively studied (see e.g. [Latombe (1991)],
[Laumond (1998)], [LaValle (2006)]). The focus here was on finding a feasible -
not an optimal - path in the presence of many obstacles, and no biological inspira-
tion was required in this case. A mobile robot is generally performing nonholonomic
movements, i.e. the direction of motion depends on the orientation of the robot or
of its wheels.

In humanoid robot research, several authors have studied real time path plan-
ning and adaption based on sensor information, looking at the same time at the
shape of the path and an appropriate choice of footholds (e.g. [Stasse et al (2006),
Chestnutt et al (2005), Gutmann et al (2005), Yoshida et al (2008)]). The problem
of natural off-line locomotion path planning has not yet received much attention.
In [Mombaur et al (2008)], we have proposed a heuristic optimal control model
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Fig. 3 Natural locomotion paths for humanoid robots: Examples of realistic and unrealistic
paths (red dashed lines vs. blue dashed lines) for two different targets

to autonomously generate naturally shaped locomotion paths for humanoid robots.
[Choi et al (2003), Pettré et al (2003), Brogan and Johnson (2003)] have studied
offline planning for biped locomotion in computer graphics.

From a biological perspective, the shape of human locomotion paths has been
investigated, e.g. [Hicheur et al (2007)]. In particular it has been shown that human
locomotion in many cases is nonholonomic just as wheeled motion, i.e. people tend
to move in forward direction rather than sidewards ([Arechavaleta et al (2008b),
Arechavaleta et al (2008a), Laumond et al (2007)]. This general preference may
easily be understood from the human anatomy. On the other hand, there are cer-
tain situations in which humans naturally tend to abandon the nonholonomic be-
havior and to include sideward or oblique steps in the locomotion, i.e. move in a
holonomic way. This obviously occurs when obstacles must be avoided, but also
in the case of very close goals without obstacles (compare fig. 3, right part). In
[Mombaur et al (2008)], we have made a first attempt to establish a model that con-
tinuously selects between holonomic and nonholonomic locomotion in a realistic
way.

1.4 Contribution of This Article

The first contribution of this paper is to propose inverse optimal control as a gen-
eral approach to transfer biological motions to robots. Inverse optimal control not
only helps to understand the underlying optimization objectives of recorded biolog-
ical motion. It also leads to the generation of mathematical forward optimal control
models that can be applied to control humanoid robot motions in a natural way. In
this paper, we describe the general form of inverse optimal control problems as well
as a very flexible numerical technique for their solution.

The second contribution of this article is to present an example of a success-
ful application of inverse optimal control: a unique optimal control model of the
overall locomotion path generation to close targets - i.e. to given final position and
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orientation, while zero speed is requested at start and end time. In our previously
mentioned research [Mombaur et al (2008)], a qualitative model was created and
parameters were selected by manual tuning. In contrast to this, the goal in the
present paper was to truly identify the weights of the proposed optimal control
model from human motion capture data. In addition, based on the inverse optimal
control results, we could even simplify the previous formulation by establishing
a unique model with constant weight factors that is valid for a whole domain of
targets.

This paper is organized as follows: In section 2, we present the general inverse
optimal control problem formulation as well as a general numerical solution tech-
nique. In section 3, we show how inverse optimal control has been applied to gen-
erate natural human-like locomotion paths by outlining the whole sequence from
motion capture experiments over model identification to implementation on the hu-
manoid robot HRP-2. In the final section, we summarize results and discuss future
research.

2 Inverse Optimal Control: A General Approach to Understand
Natural Processes

The goal of inverse dynamic problems is to determine the formulation of an optimal
control problem - and in particular its cost function - that is able to best reproduce
the available experimental data. In this section, we present the problem statement of
inverse optimal control problems, as well as a newly developed numerical solution
technique.

Fig. 4 Goal of inverse optimal control: identify cost function that best approximates mea-
sured data
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2.1 Formulation of Inverse Optimal Control Problem

An inverse optimal control problem consists in determining the functionΦ(x(t),u(t))
in the objective function (1) of the following optimal control problem

min
x(·),u(·),T

∫ T

0
Φ(x(t),u(t))dt (1)

s. t. ẋ = f (t,x(t),u(t)) (2)

x(0) = x0, x(T ) = xe (3)

when its solution is known. x(t) are the state variables and u(t) the control variables.
The dynamic model (2), and initial and final conditions (3) are assumed to be known.
We assume that the solution x∗(t) ∈ Rnx , u∗(t) ∈ Rnu is not known continuously,
but only at m evenly space points. In many practical cases, not the full solution is
observable, and only some components of the optimal states and controls x∗red(t) ∈
Rnxr and u∗red ∈ Rnur (where 0 < nxr < nx and 0 < nur < nu) are known at m discrete
points.

The inverse optimal control problem consists in determining the exact objective
function Φ(·) that produces the best fit to the measurements in the least squares
sense (compare fig. 4). We make the basic assumption that the objective function
can be expressed as a weighted sum of a series of base functions φi(t) with corre-
sponding weight parameters αi:

Φ(x(t),u(t),α) =
n

∑
i=1

[
αi

∫ T

0
φi(x(t),u(t))dt

]
(4)

The problem of determining the objective function Φ(·) resulting in the best ap-
proximation thus is transformed into the problem of determining the best weight
factors αi.

The base functions φi(x(t),u(t)) describe reasonable potential components of the
objective function in the given situation. It is important to choose a non-redundant
set of objective functions since different base functions leading to exactly the same
behavior would be impossible to identify.

In a combined objective function only the relative and not the absolute size of
the weight factors counts. If a weight αi is large, the corresponding term has a big
effect on the overall sum and therefore is more likely to be reduced in the overall
context. If αi is small (in the extreme case zero) the term has little (or no) influence
on the objective function and the quantities can become large without doing much
harm.

With this parameterization of the objective function (4), we can formulate the
inverse optimal control problem as bilevel problem:
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min
α

m

∑
j=1

||z∗(t j;α)− zM(t j)||2 (5)

where z∗(t;α) is the solution of

min
x,u,T

∫ T

0

[
n

∑
i=1

αiφi(x(t),u(t))

]
dt (6)

s. t. ẋ = f (t,x(t),u(t)) (7)

x(0) = x0, x(T ) = xe (8)

The vector z stands for the full or reduced vector of states and controls, z(t)T =
(x(t)T ,u(t)T ) or z(t)T = (xred(t)T ,ured(t)T ), depending on the case treated, i.e. the
available measurements. zM denotes the measured values.

2.2 Numerical Solution of Inverse Optimal Control Problems

In this section we present a pragmatic numerical approach to the solution of inverse
optimal control problems treated as bilevel problems (compare fig. 5). The upper
level handles the iteration over the objective function parameters α such that the
fit between measurements and optimal control problem solution is improved. Each
upper level iteration includes one call to the lower level where a forward optimal
control problem is solved for the current set of αi. The optimal solution of this
problem is then communicated back to the upper level such that the least squares fit
between measurements and computations can be evaluated.

Fig. 5 Solution of inverse optimal control problem as bilevel optimization problem
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As described in [Mombaur (2009)], we have implemented and tested a method
to solve inverse optimal control problems on the basis of two powerful numerical
techniques. We propose a combination of efficient direct techniques for the solution
of the lower level optimal control problem, and of an efficient derivative-free method
for the solution of the upper-level least-squares problem. Both techniques that we
have combined in our modular software environment will be briefly described in
this section.

For the solution of the lower level optimal control problem we have ap-
plied the highly efficient direct boundary value problem approach using multiple
shooting developed by Bock and co-workers (MUSCOD [Bock and Plitt (1984)]
[Leineweber et al (2003)]). The MUSCOD method uses a direct approach (also
called a first-discretize-then-optimize approach) to handle control functions. State
functions are treated by a multiple shooting technique which transforms the original
boundary value problem into a set of initial value problems with corresponding con-
tinuity and boundary conditions. The resulting structured nonlinear programming
problem (NLP) is solved by a tailored sequential quadratic programming (SQP) al-
gorithm. It is important to note that this approach still includes a simulation of the
full problem dynamics on each of the multiple shooting intervals. This is performed
simultaneously to the NLP solution using fast and reliable integrators also capa-
ble of an efficient and accurate computation of trajectory sensitivity information
[Bock (1987)].

For the solution of the upper-level least squares problem, we apply a derivative-
free optimization technique, i.e. it only requires function evaluations and does not
need derivatives. Derivative-free optimization is always favorable if function eval-
uations are expensive and noisy and derivative information can therefore not be
generated in a reliable manner. In the case of our bilevel problem, each function
evaluation of the upper-level problem corresponds to a solution of the lower-level
optimal control problem, so it would definitely be difficult to generate numerical
derivatives of this function. We only have to handle simple box constraints on the
weight parameters in the upper level, all other constraints are handled by the optimal
control code in the lower level. We use the newly released derivative-free optimiza-
tion code BOBYQA [Powell (2008)], which is a very efficient derivative-free opti-
mization technique. It is an extension of Powell’s well known code NEWUOA, and
can additionally handle simple bounds on the variables. Interpolation-based trust
region techniques of derivative-free optimization are used to establish a quadratic
polynomial model of the objective function, based on function evaluations only.

As state above, in a combined objective function of an optimization problem
only the relative size of parameters matters, not the absolute size. Consequently,
the identification of parameters by inverse optimal control is therefore only possible
up to a common constant. Our practical way to tackle this issue is to fix one of
the parameters a priori to 1.0 and to determine the remaining parameters. If by
mistake a parameter that actually should be zero in the solution has been fixed to a
nonzero value, a strange behavior of the numerical iterations will be observed, and
computations should be repeated with a different parameter fixed.
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3 Application of Inverse Optimal Control to Study Human
Locomotion

The purpose of this section is to demonstrate how inverse optimal control has been
successfully applied to determine optimality criteria of human locomotion. It also
describes how this optimal behavior is implemented on a humanoid robot. We are
interested in the shape and temporal development of the overall locomotion trajec-
tories, i.e. the traces of the human locomotion on the floor, for given start and end
positions and orientations.

3.1 Experiments: Human Locomotion Trajectories

We have performed a series of experiments to capture human locomotion trajectories
for given start and end positions and orientations and with zero initial and final
speed, in particular to close-by targets in a radius of ∼ 3.5 m.

Ten healthy male subjects participated in the experiments, with an average height
of 1.77 + /− 0.06 m and an average age of 27 + /− 4 years. All subjects gave
their informed consent to perform the experiments. We have used a Motion Anal-
ysis motion capture system with 10 cameras, all with a sampling frequency of
100 Hz.

100 different target scenarios, i.e. different combinations of target positions and
orientations, were selected, and randomly ordered, using each scenario twice, re-
sulting in 200 motions preformed by each subject. An arrow on the floor indicated
target position and orientation of each trial. The experimental setup is shown in
fig. 6.

We were interested in recording the time histories of the overall positions x(t)
and y(t) and orientations θ (t) of the subjects. This could be achieved using two
markers on the subjects shoulders, as shown in fig. 6, bottom. The shoulder ori-
entation represents a good simple approximation to the overall orientation of the
subject. The subjects were equipped with additional markers, some of which were
used to distinguish the two shoulder markers and this correctly identify the for-
ward direction. Since we are interested in measuring the average development of
positions and orientations of the subjects, we had to eliminate the natural rela-
tive oscillations that occur during a step in forward, sideward and rotational di-
rections. For this, the collected data was filtered to eliminate the step frequency
oscillations.

In the experiments we could observe stereotypic behavior of the ten subjects for
most of the recorded trajectories. Another publication describing the experiments
in more detail and providing a detailed statistical analysis of the collected data is
currently in preparation.
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Fig. 6 Motion capture experiments on human locomotion trajectories. Global position and
orientation histories of the subjects are determined using markers on the shoulders.

3.2 An Optimal Control Model of the Human Locomotion Path

In this section, we present the general formulation of human locomotion as an op-
timal control model. We give a formulation of the overall locomotion path for rest-
to-rest locomotion by differential equations, as well as of a parameterized objective
function, using a reasonable set of base functions. The purpose of this optimal con-
trol model is not to describe locomotion up to the last detail, but to provide a good
description of the essential locomotion objectives.

In this model, we use variables x, y and θ to describe position and orientation
of the locomotor system in the global reference frame. For velocities and accelera-
tions, we shift to the human-centered reference frame, since humans do not perceive
their movement in a general fixed coordinate system but rather in a local body ref-
erence frame. In this system, we can distinguish translational velocities in forward
and sideward - called orthogonal - direction, v f orw and vorth, as well as rotational
velocity ω , and corresponding accelerations which are used as inputs variables u of
the optimal control model u = (u1,u2,u3)T = (a f orw,arot ,aorth)T .

As described in the introduction, as far as translational motions are concerned,
humans in most cases prefer to move in forward direction, and the orthogonal com-
ponent is zero. Such a motion is called nonholonomic. However in certain situations,
orthogonal velocity components appear and locomotion becomes holonomic. For
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the locomotion trajectories to close-by targets studied here, we expect to observe
holonomic motions or at least motion phases.

We therefore use the fully holonomic locomotion model:

ẋ = cosθ v f orw − sinθ vorth

ẏ = sinθ v f orw + cosθ vorth

θ̇ = ω
v̇ f orw = u1 (9)

ω̇ = u2

v̇orth = u3

which still contains nonholonomic motions as a special case for vorth ≡ 0, i.e. u3 ≡ 0
and vorth(0) = 0.

The choice of base functions for the objective function was guided by some in-
tuitive ideas: It is clear that the total time of the path has to be a free variable of
the problem and humans will generally prefer faster over slower paths, i.e. tend to
minimize total time. Without sudden events, humans tend to perform smooth paths,
i.e. large variations of all velocities are avoided, which corresponds to a minimiza-
tion of accelerations (by magnitude). Motions in forward, orthogonal and rotational
direction are clearly judged differently from the subject’s perspective and therefore
need individual weights. This results in the following basic formulation of the objec-
tive function as a combined weighted minimization of total time and the integrated
squares of the three acceleration components:

Φ(T,x(t),u(t), p) =
3

∑
i=0

[
αi

∫ T

0
φi(x(t),u(t))dt

]

= α0 ·T +α1

∫ T

0
u2

1 dt +α2

∫ T

0
u2

2 dt +α3

∫ T

0
u2

3 dt (10)

The objective function is therefore composed of four base functions and has four
corresponding weight parameters. In contrast to [Mombaur et al (2008)], where the
parameters were determined by manual tuning for a humanoid robot model, we will
here use inverse optimal control to properly identify the size of the parameters from
human locomotion data. Additionally, in contrast to the qualitative robot model pro-
posed previously, we will show in this paper, that it is not necessary to each time
adjust the parameter α3 according to the distance and orientation change of the tar-
get. We will show that is possible to approximate the human behavior in the whole
area of close-by targets investigated in the experiments by a unique set of parame-
ters α0 −α3. The model weights will change for far away targets and long motion
segments without any rest position where the motion in general is nonholonomic. So
instead of the the continuous model proposed in [Mombaur et al (2008)] we identify
here a model which only requires a split into few domains.
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3.3 Computational Results: Identification of the Objectives of
Human Locomotion

In this section we present computational results of applying inverse optimal control
to identify the objective function of problem (4) to match the human locomotion tra-
jectories described in section 3.1. We present numerical evidence to support the hy-
pothesis that locomotion objectives can be approximated by a simple unique model
in all of the domain we investigated experimentally.

Concerning the choice of trajectories or trajectory combinations there is of course
a wide range of possibilities, due to the large amount of data collected. In this paper
we show how five randomly selected locomotion scenarios (a “scenario” is char-
acterized by a target position and orientation) can very well be approximated si-
multaneously by the same optimal control model, i.e. the same objective function.
For each scenario, we use experimental trajectories of five subjects, so the fit was
performed over a total of 25 trajectories.

The variable vector z in the bilevel inverse optimal control problem formulation
has dimension three: time histories of x, y and θ (i.e. three of the six state variables)
are approximated at the same time. Neither velocities (the three remaining state
variables) nor accelerations (the three control variables) are directly measured.

As optimal values for the objective function parameters we identified αT =
(1,1.139,0.159,2.681), where α0 was the parameter fixed a priori. The objective
function (4) therefore becomes

Φ(T,x(t),u(t), p) = T + 1.139
∫ T

0
u2

1 dt + 0.159
∫ T

0
u2

2 dt + 2.681
∫ T

0
u2

3 dt. (11)

The weight factor corresponding to the orthogonal direction is about 2.5 the weight
factor of the forward direction which leads to a clear preference of forward walking,
but leaves the possibility for orthogonal motions whenever they are more efficient
in this measure. The weight factor of the rotational term is quite small, i.e. large
accelerations in rotational direction are less punished.

The top left part of fig. 7 shows the five arbitrarily chosen scenarios. The other
parts of the figure show the results of simultaneous inverse optimal control for all
five cases. The red solid line in all sub-figures represents the respective computed
optimal trajectory for the identified set of objective function parameters. The five
dashed lines denote the measured trajectories of the five subjects used as bases for
the computation. The fit in all cases is very good, taking into account that the model
equations and optimization functions are always a simplification, and that no perfect
fit can be achieved.

3.4 Using Inverse Optimal Control Results to Control Humanoid
Robots

In this section we briefly describe how the optimal control model that has been
established by inverse optimal control can be used to enable the humanoid robot
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Target scenarios: Target 1:

Target 2: Target 3:

Target 4: Target 5:

Fig. 7 Results of inverse optimal control performed simultaneously for five target scenarios.
The top left sub-figure presents the five arbitrarily selected scenarios. The other sub-figures
show the fit between the measurements (5 dashed lines in each case, representing 5 different
subjects) with the respective optimal trajectory (solid red line) produced by the objective
function identified by inverse optimal control.
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HRP-2 [Kaneko et al (2004)] at LAAS to autonomously generate locomotion tra-
jectories. As described previously, the focus of the presented research is on the gen-
eration of bio-inspired overall locomotion trajectories, i.e. the appropriate choice of
the trace of the robot on the floor. Our interest here is neither the selection of foot
patterns about the path nor the generation of trajectories of all internal joints. For
this purpose we rely on existing approaches for the robot HRP-2.

For any given locomotion target to be reached by the humanoid robot, it is now
possible to solve the optimal control problem (1) - (3) with the objective function
established above in section 3.3. In the optimal control problem formulation, ve-
locity and acceleration bounds are modified to correctly describe the limits of the
humanoid robot. The solution of this optimal control problem gives the natural over-
all path to be followed to the target.

Linear and angular velocities of this computed path are then passed to the pattern
generator. We use the walking pattern generator by Kajita et al. [Kajita et al (2003)],
which is based on preview control of zero moment point (ZMP) using the table-cart
inverted pendulum model, and which produces appropriate footprints and gener-
ates a desired ZMP trajectory. Leg joint angles are computed by inverse kinematics
from the CoM trajectory and the footprints. The resulting biped walking motion is
dynamically stable in the ZMP sense. Fig. 8 shows a visualization of the resulting
robot motion for one example, using the humanoid simulator and controller software
OpenHRP [Kanehiro et al (2004)] for the humanoid robot HRP-2. Due to identical
interfaces of OpenHRP towards simulation and the real robot, the same motions can
easily be transferred to the robot.

The computations described above have so far been performed offline. But since
computation times are very short - compared to typical delays of humanoid robots
- these routines could easily be implemented on the robot and and could be called
each time the robot has to autonomously decide about a locomotion trajectory.

Fig. 8 Implementation of natural locomotion trajectory for target 5 on the humanoid robot
HRP-2
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4 Conclusion and Future Research

The main purpose of this paper was to present inverse optimal control as a very
useful approach to identify underlying optimization objectives of natural processes
such as biological motions from experimental data. We have described a flexible
numerical approach which allows the solution of inverse optimal control problems
for very general problems.

The second purpose of this paper was to propose an optimal control model to
describe human locomotion in rest-to-rest motions to close targets. Establishing this
simple and unique model was only possible using inverse optimal control. Accord-
ing to our computations it seems to represent a good approximation of the collected
locomotion data, and it is very useful to produce natural motions of a humanoid
robot.

In any inverse optimal control problem formulation, the selection of appropriate
base functions for the objective function is obviously a very crucial element, since
any solution of the inverse optimal control problem can only become as good as
its base functions permit. For the locomotion study in this paper, we have used a
simple objective function based on four elementary functions minimizing total time
and accelerations. According to our results this objective function, with properly
identified weight factors, seems to be able to explain much of the observed behav-
ior. It can be expected that there are additional components of minor importance
which could however slightly improve the fit. Example base functions that we plan
to further investigate are terms related to the respective jerks, to the velocity com-
ponents, or to energy or variation of energy of the motion. We also will establish the
model for far away goals for which previous experience has already shown that the
resulting motion is mainly nonholonomic. In addition, we are currently extending
our research towards the study of locomotion in the presence of fixed and moving
obstacles.

The generality of the presented inverse optimal control approach allows its ap-
plication to a variety of other problems, such as the identification of optimization
criteria of locomotion on the joint level. Based on our previous work on forward
optimal control of human-like running motions [Schultz and Mombaur (2008)]
[Mombaur (2008)] and the multi-body system models developed in this research,
we are currently applying inverse optimal control to identify objective functions of
different human running motions based on motion capture data.
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Towards Motor Skill Learning for Robotics

Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong,
and Oliver Krömer

Abstract. Learning robots that can acquire new motor skills and refine existing one
has been a long standing vision of robotics, artificial intelligence, and the cognitive
sciences. Early steps towards this goal in the 1980s made clear that reasoning and
human insights will not suffice. Instead, new hope has been offered by the rise of
modern machine learning approaches. However, to date, it becomes increasingly
clear that off-the-shelf machine learning approaches will not suffice for motor skill
learning as these methods often do not scale into the high-dimensional domains
of manipulator and humanoid robotics nor do they fulfill the real-time requirement
of our domain. As an alternative, we propose to break the generic skill learning
problem into parts that we can understand well from a robotics point of view. After
designing appropriate learning approaches for these basic components, these will
serve as the ingredients of a general approach to motor skill learning. In this paper,
we discuss our recent and current progress in this direction. For doing so, we present
our work on learning to control, on learning elementary movements as well as our
steps towards learning of complex tasks. We show several evaluations both using
real robots as well as physically realistic simulations.

1 Introduction

Despite an increasing number of motor skills exhibited by manipulator and hu-
manoid robots, the general approach to the generation of such motor behaviors
has changed little over the last decades [1]. The roboticist models the task as ac-
curately as possible and uses human understanding of the required motor skills in
order to create the desired robot behavior, as well as to eliminate all uncertainties
of the environment. In most cases, such a process boils down to recording a desired
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trajectory in a pre-structured environment with precisely placed objects. If inaccura-
cies remain, the engineer creates exceptions using human understanding of the task.
Such highly engineered approaches are feasible in highly structured industrial or
research environments. However, it is obvious that if robots should ever leave fac-
tory floors and research environments, we will need to reduce the strong reliance on
hand-crafted models of the environment and the robots. Instead, we need a general
framework which allows us to use compliant robots that are designed for interaction
with less structured and uncertain environments in order to reach domains outside
industry. Such an approach cannot rely solely on human knowledge but instead has
to be acquired from and adapted to data generated both by human demonstrations
of the skill as well as trial and error of the robot.

The tremendous progress in machine learning over the last decades offers us the
promise of less human-driven approaches to motor skill acquisition. However, de-
spite offering the most general methods for data-driven acquisition of motor skills,
generic machine learning techniques (which do not rely on an understanding of
motor systems) often do not scale into the realt-time domain of manipulator or hu-
manoid robotics due to their high dimensionality. Therefore, instead of attempting
to apply a standard machine learning framework to motor skill aquisition, we need
to develop approaches suitable for this particular domain. To cope with the com-
plexities involved in motor skill learning, the inherent problems of task representa-
tion, learning and execution should be addressed separately in a coherent framework
employing a combination of imitation, reinforcement and model learning. The ad-
vantage of such a concerted approach is that it allows the separation of the main
problems of motor skill acquisition, refinement and control. Instead of either hav-
ing an unstructured, monolithic machine learning approach or creating hand-crafted
approaches with pre-specified trajectories, we are capable of acquiring skills from
demonstrations and represented as policies which become refined by trial and error
(as discussed in Section 4). Additionally, we can learn how to activate and adapt
the task-related parameters in order to achieve more complex tasks as discussed
in Section 5. Finally, using learning-based approaches, we can achieve accurate
control without accurate analytical models of the complete system as discussed in
Section 3.

2 Towards a General Skill Learning Framework

In order to create a motor skill learning framework that is sufficiently general, we
need to discuss three basic components for such an approach. For this, a general
representation is required that can encapsulate elementary and frequently used mo-
tions. We need to be able to learn these motions efficiently, and a supervisory mod-
ule must be able to use these basic elements. Finally, execution is required that can
adapt to changes in the environment. The resulting control architecture is shown in
Figure 1. Let us now briefly discuss each of these aspects in the remainder of this
section.
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Fig. 1 This figure illustrates the generic components of a motor skill learning system, i.e., the
supervisor system activates motor primitives and sets their task parameters. These elementary
movements are executed by a learned motor control law. The learning signals are provided
with the help of a teacher and may be (a) a demonstration for imitation, (b) a reward or
punishment for self-improvement or (c) a model error if it can be observed. In this paper,
we focus on learning primitives and execution but also discuss ongoing work on learning to
incorporate context in the supervisor layer.

Motor Primitives. For the representation of motor skills, we can rely on the in-
sight that humans, while being capable of performing a large variety of complicated
movements, restrict themselves to a smaller amount of primitive motions [3]. As
suggested by Ijspeert et al. [4], such primitive movements can be represented by
nonlinear dynamic systems. As a result, we may represent elementary tasks by ele-
mentary policies of the type1

ẋd = π i(xd ,x, t,ρ i) (1)

where xd is the internal state of the system, t denotes the time, i ∈ {1,2, . . . ,n} is
the index of the motor primitive in a library of movements, and task parameters
ρ i = [θ i,d,g,A, . . .] determine the shape of movement primitive i using θ i ∈ RL,
duration d, goal g and amplitude A, etc, of the motion. The resulting system is
linear in the shape parameters θ i and can therefore be learned efficiently. They are
robust towards perturbations and, as they are time-continuous, they are well-suited
for control.Both primitives in task-spaces as well as in joint-space can be learned.
We have extended Ijspeert et al.’s model [4] so that it may be coupled to additional
external variables included in the state x as discussed in [14]. A key element of the
Ijspeert formulation is that the shape is solely determined by θ i but that it is invariant
under changes of duration, goal or amplitude of the movement. Hence, the resulting
primitives can be reused efficiently by a higher-level supervisory module.

Supervisor. The supervisory level is an increasingly hot topic for research as it al-
lows the usage of the motor primitive policies π i in a multitude of novel ways. First,
it may reuse a movement primitive with the same shape in various situations by
simply modifying the duration, the goal, the amplitude or other task parameters.

1 Note that Equation (1) is in state-space formulation and, in fact, a second order system.
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As we will see in Section 5.1, it is straightforward to learn subgoal functions that set
the task context variables based on the external state. The supervisory level allows
the genereralization of learned movements by creating a mixture of motor primitives,
i.e., a new movement policy π results from a convex combination of existing move-
ments π i. In the same context, we can treat the selection of motor primitives. Here,
the primitive with the maximal weight is activated while in generalization several
primitives using this state-dependent weight. These topics are discussed in Section
5.2. Other tasks of the supervisor are sequencing motion primitives as well as blend-
ing the transitions between them and the superposition of different movements.

Execution. The execution of a motor primitive π i on compliant robot systems,
which are safe in the interaction with humans, adds another level of complexity.
It requires that we generate motor commands u = η(ẋd ,xd ,x) so that the motor
primitives get executed precisely while not introducing large feedback gains. If ac-
complished using hand-crafted control laws, the quality of the analytical models
is essential and, low gain control can only be achieved with very accurate models.
Hence, in the presence of unmodeled, time-variant nonlinearities resulting from stic-
tion, cable drives, or the hydraulic tubes, it will become essential to learn accurate
models and to adapt them online. We are developing efficient real-time regression
methods for online model learning based on the state-of-the-art in machine learn-
ing, see Section 3.1. If a motor primitive is only acting in a limited subspace, it
can often be better to directly learn a mapping from primitives and states to motor
command. While learning such an operational space control is no longer a standard
regression problem, it can still be solved using a reward-weighted regression when
using insights from mechanics.

Learning is required for acquiring and refining the motor primitives discussed be-
fore. However, it is also needed for adapting the execution to changes in the en-
vironement and to learn the supervisory module, as can be observed in Figure 1.
Learning motor primitives is achieved by adapting the parameters θ i of motor prim-
itive i. The high dimensionality of our domain prohibits the exploration of the com-
plete space of all admissible motor behaviors, rendering the application of many
standard machine learning techniques impossible as these require exhaustive explo-
ration. Instead, we have to rely on a combination of imitation and reinforcement
learning to acquire motor skills where supervised learning is used to obtain the
initialization of the motor skill, while reinforcement learning is used in order to im-
prove it. Therefore, the aquisition of a novel motor task consists out of two phases,
i.e., the ‘learning robot’ attempts to reproduce the skill acquired through supervised
learning and then improve the skill from experience by trial-and-error through re-
inforcement learning. See Section 4 for more details on this part. When learning to
execute, we are interested in two topics: learning better models of the robots dynam-
ics in order to improve the model-based control laws of the system (as discussed in
Section 3.1), and to directly learn policies that transform task-space motor primi-
tives policies into motor command (see Section 3.2). The supervisory layer poses
a variety of learning problems such learning mappings from states to motor prim-
itive task parameters (see Section 5.1), learning activation functions for selection
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and generalization of motor primitives (see Section 5.2), sequencing, blending and
superposition of primitives, as well as parsing longer trajectories into motor prim-
itive automata (see [9]) or determining how many movement primitives might be
included in a data set [10].

These components allow us to create a motor skill learning framework in a
bottom-up manner wherein we can understand each component well from an
analytical robotics point of view.

3 Learning for Control

Bringing anthropomorphic robots into human daily life requires backdrivable robots
with compliant control in order to ensure safe interactions with human beings. In
contrast, traditional industrial robots employ high control gains which results in
an inherent stiffness and, thus, are ill-suited for this aim. To achieve accurate but
compliant tracking, it is essential to predict the torques required for the current
movement accurately. It is well-known that for sufficiently complex robots (e.g.,
humanoids, service robots), the standard rigid body dynamics (RBD) models no
longer describe the dynamics properly [5], and data-driven approximation methods
become a promising alternative. Using modern machine learning techniques has a
multitude of advantages ranging from higher precision torque prediction to adapta-
tion with online learning if the dynamics are altered.

In this section, we will discuss two learning-to-control problems, i.e., learn-
ing models for control in Section 3.1 and learning operational space control in
Section 3.2.

3.1 Learning Models for Control

In theory, learning models of the robot dynamics is a straightforward and well-
defined regression problem, wherein we can observe joint angles q, joint velocities
q̇, joint accelerations q̈ and motor commands u. We intend to infer the unique map-
ping f from state variables x = [q, q̇] and ẋ to motor commands u of which we have
some prior knowledge2

u = M(q)q̈+ C(q̇,q)+ G(q)+ ε(q̈, q̇,q) = f(x, ẋ)

with mass matrix M(q), coriolis and centrifugal forces C(q̇,q), gravity G(q) and
the unmodeled nonlinearities ε(q̈, q̇,q).

However, despite being a well-posed problem, and contrary to all progress in ma-
chine learning, online learning of robot dynamics still poses a tremendous technical
challenge for any learning method. It has to deal with an endless stream of high-
dimensional data while learning needs to take place in real-time at sampling rates of

2 We can in fact straightforwardly use this knowledge as described in [8].
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(a) RBD Model (b) Offline Learned Model (c) Online Learned Model

Fig. 2 This figure exhibits the effects of offline and online learning in low-gain control. The
green line shows the trajectory of the letter B (previously exhibited by haptic input) as a
reference trajectory and the robot is supposed to reproduce this trajectory with reproduction
shown as a dashed red line. In (a), a standard control law using an analytical model provided
by the manufacturer Barrett is shown. In (b), a full GP has been learned offline from the letter
A and now generalizes to the letter B with tracking errors where it lacks data. In (c), local GP
(LGP) have been learned based on letter A and improve online while executing letter B. As a
result, there is an improved tracking performance.

approximately 100Hz. While modern machine learning approaches such as
Gaussian process regression (GPR) and support vector regression (SVR), yield sig-
nificantly higher accuracy than traditional RBD models, their computational re-
quirements can become prohibitively costly as they grow with number of data
points. Thus, it is infeasible to simply use off-the-shelf regression techniques and
the development of domain-appropriate versions of these methods is essential in
order to make progress in this direction [7].

One possibility for reducing the computational cost is the partitioning of the data
such that only the regionally interesting data is included in a local regression and,
subsequently, combining these local predictions into a joint prediction. This ap-
proach was inspired by LWPR [2], which employs linear models. Using the more
powerful Gaussian process models, we can achieve a higher prediction accuracy
with less tuning of the algorithm. As a result of the localization and the resulting
smaller local models, we can reach a significantly higher learning and prediction
speed than for standard kernel regression techniques while having a comparable ac-
curacy. While our approach is not as fast as LWPR, it has a significantly improved
prediction accuracy in comparison and requires less manual tuning of the hyperpa-
rameters of the algorithm. The resulting method is called Local GPR or LGP [6] as
it employs Gaussian process regression (GPR) for learning each local model i using

ûi
i = kiT (Ki +σ2

n I)−1Ui = ki Tα i,

where ui
j is the torque for joint j predicted by model i, Ki is the kernel matrix with

Ki
ml = k(xi

m,xi
l), the kernel vector ki with ki

m = k(x,xi
l) between the new input x

and the stored data points xl , as kernel k a Gaussian kernel is employed (however,
Matern kernels and rigid-body kernels have been used successfully in this context),
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past actions Ui and the so-called prediction vector ai. This prediction vector can
be updated incrementally which is computationally feasible as we only have small
local models. A weighted average allows the combination of the local models

û = ∑n
i=1 wiûi

∑n
i=1 wi

,

where the weights wi = exp(−0.5σ−2
i ‖x− ci‖2) are used to re-weight the model i

in accordance to the proximity of the input x to the centers of the model ci.
Due to the reduced computational cost, this approach was successfully imple-

mented on a real Barrett WAM arm where it was able to improve the tracking
performance while learning online. When using the learned model in a computed
torque setup where the learned model is employed to predict the required torque
while stabilized by a linear low-gain control law. It can be shown that the learned
model outperforms RBD models and, due to the online improvement, also most
global regression techniques. Figure 2 exhibits the difference between these meth-
ods. In Figure 2(a), the performance of a low-gain feedback control law with a
RBD model is shown for tracking the letter B, Figure 2(b) shows an offline-learned
model trained with the letter A tracking letter B and 2(c) shows the improvements
due to online-learning. For details on the approach please refer to [6]. Future work
will include improvements on the current method, the inclusion of a priori knowl-
edge about the rigid body dynamics into the regression (see [8]) and applications to
operational space control, see Section 3.2.

3.2 Learning Operational Space Control

Operational space control (OSC) is one of the most elegant approaches to task con-
trol for complex, redundant robots. Its potential for dynamically consistent control,
compliant control, force control, and hierarchical control has not been exhausted
to date. Applications of OSC range from basic end-effector control of manipula-
tors [18] to balancing and gait execution for humanoid robots [23]. If the robot
model is accurately known, operational space control is well-understood and a va-
riety of different solution alternatives are available. However, as many new robotic
systems are supposed to operate safely in human environments, compliant, low-gain
operational-space control is desired. As a result, the practical use of operational
space control becomes increasingly difficult in the presence of unmodeled nonlin-
earities, leading to reduced accuracy or even unpredictable and unstable null-space
behavior in the robot system.

Learning control methods are a promising potential solution to this problem.
However, learning methods do not easily provide the highly structured knowledge
required in traditional operational space control laws, e.g., Jacobians, inertia ma-
trices, and Coriolis/centripetal and gravity forces, since all these terms are not
always instantly observable. They are therefore not suitable for formulating super-
vised learning as traditionally used in learning control approaches.
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We have designed novel approaches to learning operational space control that
avoid extracting such structured knowledge as much as ill-posed problems and
rather aim at learning the operational space control law directly, i.e., we pose OSC
as a direct inverse model learning problem where we acquire an execution policy of
the type u = η(ẋd ,xd ,x,u0) in which xd = [ṗd ,pd ] and ẋd denote the desired behav-
ior prescribed by the motor primitives in task space while the state x = [ṗ,p, q̇,q] of
the robot is still described by both state-space and task-space components as well
as a null-space behavior u0. Similarly, if we wanted to directly learn the operational
space control law as done for model learning in Section 3.1, we would have an ill-
posed regression problem as averaging over a non-convex data set is not directly
possible. However, the first important insight for this paper is that a physically cor-
rect solution to the inverse problem with redundant degrees-of-freedom does exist
when learning of the inverse map is performed in a suitable piecewise linear way
[19, 20]. The second crucial component for our work is based on the insight that
many operational space controllers can be understood in terms of a constrained op-
timal control problem [18]. The cost function associated with this optimal control
problem allows us to formulate a learning algorithm that automatically synthesizes a
globally consistent desired resolution of redundancy while learning the operational
space controller. From the machine learning point of view, this learning problem
corresponds to a reinforcement learning problem that maximizes an immediate re-
ward. We employ an expectation-maximization policy search algorithm in order to
solve this problem. Evaluations on a simulated three degrees of freedom robot arm
show that the approach always converges to the globally optimal solution if provided
with sufficient data [20].

The application to a physically realistic simulator of the anthropomorphic SAR-
COS Master arm demonstrates feasibility for complex high degree-of-freedom
robots. We also show that the proposed method works in the setting of learning
resolved motion rate control on a Mitsubishi PA-10 medical robotics arm [22] and
a high-speed Barrett WAM robot arm.

The presented approach also allows us to learn hierachies of operational space
controllers where a higher level operational space control law i given by ui =
η(ẋd

i ,x
d
i ,x,ui−1) is simply fed the output of the next lower-level operational space

control law ui−1 as input. This kind of daisy-chaining of learned control laws
may in the future allow us to properly solve the problem of superimposing motor
primitives.

4 Imitation and Reinforcement Learning with Motor Primitives

Humans and many mammals appear to rely on motor primitives [3] in order to
generate their highly agile movements. In many cases, e.g., when learning to play
tennis, humans acquire elementary actions from a teacher. This instructor takes the
student by the hand and shows him how to perform forehand and backhand swings.



Towards Motor Skill Learning for Robotics 477

Fig. 3 This figure shows how a ball-on-a-string task can be learned by imitation. The hu-
man demonstration presents a rhythmic movement with an initial discrete transient where
the generic movement is represented by a rhythmic motor primitive modulated by a discrete
motor primitive handling the start-up phase.

Subsequently, the student tries to play by himself and improves as he observes the
results of his own successes and failures.

4.1 Imitation with Motor Primitives

When viewed from a probabilistic perspective, imitation learning can be seen as a
relatively straightforward problem. When we have observed trajectories τ = [ẋ,x]
as well as their distribution p(τ), we will try to reproduce these movements by
matching this distribution with a distribution pθ (τ) that is determined by the policy
parameters θ . While such a policy can be either deterministic or stochastic, it is
often easier to model it as a stochastic policy to take the variation in the data into
account.

This policy is represented by a motor primitive modeled by a dynamical system
as described by Equation (1). Here, imitation learning reduces to inferring the set of
parameters so that the distance D(p(τ)||pθ (τ)) between the observed distribution
p(τ) and the reproduced behavior distribution pθ (τ) is minimized. The Kullback-
Leibler divergence is known to be the natural distance measure between probability
distributions and is hence employed here.

From this point of view, one can straightforwardly derive regression algorithms
such as the ones in [4, 14] to imitate using both the standard formulation of motor
primitives [4] as well as the perceptually coupled formulation [14]. As a result, we
can learn complicated tasks such as paddling a ball [15] simply by imitation, see
Figure 3. This formulation can be made to work both with imitations captured using
a VICON setup, see [14], as well as for kinethetic teach-in as in [15].

However, in most real life situations, imitation learning does not suffice and self-
improvement is required. E.g., for the Ball-in-a-cup shown in Figure 4, an imitation
only suffices for bringing the ball somewhere in the proximity of the cup.
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Fig. 4 This figure exhibits the general approach, first, a robot is taught the basic movement
which is turned into a motor primitive using imitation learning. Subsequently, reinforcement
learning is applied to the problem until the robot obtains a motor primitive policy where it
slings the ball perfectly into the cup every single time. The imitation is shown in the upper
time series while the optimal learned policy is shown in the lower row.

4.2 Self-improvement by Reinforcement Learning

Reinforcememt learning is in general a much harder problem. Unlike in imitation
learning, its focus no longer lies on simply reproducing a presented behavior, but
rather on improving a behavior with respect to rewards r. Hence, the system has
to try out new actions and, from these actions, infer the policy parameters θ ∗ that
maximizes the expected return

J(θ ) = E

{
1
T

R1:T

}
= E

{
δ t
d ∑

d/δ t
i=1 rt

}
,

where 1/δ t is the sampling rate of the system, d the duration, T = d/δ t the number
of steps and R1:d/δ t is the return of an episode. In the general setting, reinforcement
learning might be an unsolvable problem. Finding a generically optimal policy re-
quires exhaustive try-outs of possible state-action pairs, wherein the number of pos-
sibilities grows exponentially with the number of degrees of freedom involved in the
task. As anthropomorphic robot exhibit a high dimensionality, they remain beyond
the reach of generic reinforcement learning methods.

However, the full reinforcement learning problem appears to be solved rarely in
human motor control. For example, olympic high jumper used to refine a variety
of different techniques (e.g., straddles, scissor jumps and eastern cut-offs) that all
involved running towards the bar and jumping forward. It took until 1968 when
the athlete Dick Fosbury accidentally found out that approaching the bar from the
side and jumping backwards might be a significantly superior policy. While no re-
inforcement learning method is in sight that will provide us automatically with such
insights, we can design local reinforcement methods that allow us to improve ex-
isting policies incrementally. To do so, we rely on obtaining initial parameters θ 0

from an imitation and, subsequently, optimize this policy by self-improvement with
respect to the expected return.
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Pursuing this type of approach for several years, we have been developing a se-
ries of different methods. We originally started out by following the policy gradient
approach [12] where the policy improvement is achieved by following the gradient
of expected return with respect to its parameters. The resulting update rule can be
denoted by

θ k = θ k−1 +αk ∇θ J(θ )|θ=θ k
,

where αk denotes a learning rate at update k and ∇θ J(θ ) is a policy gradient. How-
ever, the standard or ‘vanilla’ policy gradient proved to be suprisingly slow and,
thus, not applicable on real robots. It turned out that a covariant or ‘natural’ policy
gradient was able to provide us with the learning speed required for basic motor
primitive learning in robotics and we were able to optimize basic movements as
well as a T-Ball swing [12]. Nevertheless, the resulting algorithms had open pa-
rameter such as the learning rate and the learning process would be too slow for
some tasks. As a result, we studied the similarity between expectation-maximization
(EM) algorithms and policy gradients. It turned out [11, 19, 20, 13] that as a new
cost function we can maximize the distance D(R(τ)p(τ)||pθ (τ)) between return- or
reward-weighted observed path distribution R(τ)p(τ) and the new path distribution
pθ (τ). This cost function can become part of a lower bound on the expected return
J(θ ) and, hence, maximizing it iteratively as in

θ k = argmaxθ D(R(τ)pθ k(τ)||pθ (τ))

will at least converge to a locally optimal policy. Such algorithms allow us to show
that the problem of policy search can been framed in the parameter estimation set-
ting and, as the similarity to the equations in Section 4.1 makes clear, we have
obtained a reward-weighed imitation. At this point, one needs to think about explo-
ration and the type of exploration determines the type of parameter estimation that
can be used. For instance, Gaussian exploration with constant variance will result
in the reward-weighted regression algorithm [19, 20] and heteroscedastic Gaussian
exploration will result in the PoWER algorithm [13].

The PoWER algorithm has been used successfully in a variety of settings, most
prominently, it has been able to learn ball-in-a-cup. Here, it started to learn with a
policy obtained by imitation that could barely bring the ball into the proximity of
the cup. Subsequently, it has learned how to catch the ball in the cup and after less
than a hundred trials, it manages to succeed at every trial.

5 Towards Learning the Supervisor

In order to get a step closer to creating complex tasks that require a supervisor, var-
ious other topics need to be addressed as already outline in Section 2. We will first
discuss two topics where we have made recent progress, i.e., goal learning in Section
5.1, and the mixture of motor primitives in Section 5.2. Further topics for learning
the supervisory layer are sequencing, blending and superposition of primitives as
well as the parsing of longer trajectories into motor primitive automata (see [9]) or
determining how many distinct movement primitives are included in a data set ([10]).
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Fig. 5 This figure shows a dart thrown in a physically realistic simulation. Here, the robot
is told that the dart should hit a specific target square on the disk and learns to modulate the
goal in order to adapt a single motor primitive to many different situations.

5.1 Goal Learning

Previous work in learning for motor primitives has largely focussed on learning the
shape parameters θ i (see Section 4) while duration d, goal g, amplitude A, etc.,
were simply considered constant parameters optimized along with the shape [12] or
set based on an external stimuli [21]. Here, we attempt to learn mappings from the
state to these parameters which allow us to take movements of the same shape and
use them for various different contexts. Nevertheless, in goal learning, we assume
that we have to respond to constantly changing external stimuli, and always adapt
the external parameters appropriately. For example, assume that you are playing
a dart game where you are told to hit predetermined fields on the dart board in a
certain sequence (as in Figure 5). In this case, all movements will simply be slight
variations of that same throwing movement and can be represented by the same
movement primitive. Hence, the proper way to adapt motor primitive to the square
that you intend to hit is by altering its duration d and goal g.

However, in order to learn this dart game faster than can be achieved using the
shape parameters, we also need another method. We discovered that this can be
achieved using a cost regularized Gaussian process regression.

5.2 Mixture of Motor Primitives

Selection of motor primitives as well as generalization between motor primitives
can be achieved using a mixture of motor primitives approach. In such an approach,
we have a gating or localization network λ , similar to that in a mixture of experts
[16] as part of the supervisor system and activates the right motor primitives. As a
result, we obtain a task policy u = π(x,t) that is composed of the n primitives such
that

u = π(x, t) = ∑n
i=1λi(x0)πi(x,t)
∑n

j=1λ j(x0)
, (2)

where λi(x0) denotes the activation of the motor primitive i represented by πi and x0

denotes the initial state based upon which of the primitives are activated. A project
currently in progress is the learning of table tennis [17] using a mixture of motor
primitives (see Figure 6). Here, we currently have achieved already a success rate of
52% of the learned table tennis control law in a ball gun setup and we hope to have
a significantly improved setup in the near future.
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Fig. 6 The mixture of motor primitives is used for
the selction and generalization of motor primitives in
a table tennis setup.

Using the example of table
tennis, we can straightforwardly
explain how the mixture of mo-
tor primitives is able to gener-
alize between motor primitives.
Assume that the system has suc-
cessfully learned n primitives by
imitation observed with different
external states xi

0 (such as a ball
position and velocity) and a gat-
ing network λ has been obtained.
In this case, if a ball is observed
at a new initial state x0, the mo-
tor primitives, that resulted in a
successful responses to the most
similar input, will also be acti-
vated and the resulting movement
will be a convex combination of
the previously successful ones. Selection can be understood in a similar fashion, i.e.,
if there are both forehands and backhands in the data set, these will be responses to
drastically different ball trajectories if viewed in the robot coordinates. Hence, the
gating network will discriminate between both types of motor primitives.

6 Conclusion

In this paper, we have presented both past and current progress towards a complete
framework for motor skill learning. While an overview paper in its nature, we have
given a detailed outline of a general framework for motor skill the ingredients of
which we have been investigating. We have presented selected topics in several im-
portant areas. In learning to control, we have reviewed our work on learning models
using local GPs and on learning operational space control. When learning motor
primitives, we have discussed both imitation learning approaches as well as our
progress in reinforcement learning for robotics starting from policy gradients and
moving towards reward-weighted self-imitation. Current work towards learning the
supervisory layer for complex tasks is briefly discussed with a more in-depth focus
on learning goal function as well as generalizing and selecting movement primi-
tives. Successful implementations on real robots as well as in simulation underline
the applicability of the presented approaches.
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Learning Landmark Selection Policies for
Mapping Unknown Environments

Hauke Strasdat, Cyrill Stachniss, and Wolfram Burgard

Abstract. In general, a mobile robot that operates in unknown environments has to
maintain a map and has to determine its own location given the map. This introduces
significant computational and memory constraints for most autonomous systems,
especially for lightweight robots such as humanoids or flying vehicles. In this paper,
we present a universal approach for learning a landmark selection policy that allows
a robot to discard landmarks that are not valuable for its current navigation task. This
enables the robot to reduce the computational burden and to carry out its task more
efficiently by maintaining only the important landmarks. Our approach applies an
unscented Kalman filter for addressing the simultaneous localization and mapping
problem and uses Monte-Carlo reinforcement learning to obtain the selection policy.
In addition to that, we present a technique to compress learned policies without
introducing a performance loss. In this way, our approach becomes applicable on
systems with constrained memory resources. Based on real world and simulation
experiments, we show that the learned policies allow for efficient robot navigation
and outperform handcrafted strategies. We furthermore demonstrate that the learned
policies are not only usable in a specific scenario but can also be generalized towards
environments with varying properties.

1 Introduction

In recent years, there has been a trend towards embedded systems in robotics. A
series of such approaches deal with autonomous cars, helicopters, blimps, under-
water vehicles, and wheeled or humanoid robots. As embedded systems typically
have much higher limitations with respect to the computational power and mem-
ory capacity, it is important in the context of embedded systems to develop efficient
algorithms that scale with the computational constraints of the underlying hardware.

In robotics, one of the core capabilities needed for the majority of applications
is autonomous navigation. For truly autonomous navigation in initially unknown
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environments, the robot has to solve the so-called simultaneous localization and
mapping (SLAM) problem [2, 14, 24, 21]. Solving the SLAM problem, however, is
computationally demanding and the memory requirements increase with the num-
ber of landmarks that need to be maintained by the robot. In practice, there are many
scenarios in which the number of visible landmarks during a navigation task is sig-
nificantly larger than the number of landmarks which can be processed efficiently
using an embedded device. This leads to the question which landmark should be
stored and maintained by the robot to optimally solve the navigation task. A land-
mark is only useful if it contributes to keep an accurate pose estimate of the robot at
the right time and in such a way that it is valuable for the navigation task. In this pa-
per, we present an approach for learning a landmark selection policy that optimizes
the navigation task carried out by the robot given its computational or memory con-
straints. It is obvious that the utility of a landmark depends on the type of navigation
task. We analyze two types of navigation tasks: A single-goal navigation task and
a round-trip navigation task where subgoals are visited more then once. One major
advantage of our approach is that the policies are not limited to the environment they
were been learned in. Rather, they can also be applied successfully in environments
with different properties of the underlying landmark distribution. Furthermore, we
present a way to compress learned policies so that they become applicable on sys-
tems with reduced memory resources.

This paper is organized as follows. After a discussion of related work, Section 3
briefly introduces the unscented Kalman filter and its application to SLAM as well
as reinforcement learning. Section 4 then describes the different navigation tasks
considered in this paper. After that, we introduce our approach to learn the optimal
landmark selection policy. Finally, we present experimental results carried out in
simulation as well as on a real wheeled robot.

2 Related Work

The extended Kalman filter (EKF) [12] or its variants such as the unscented Kalman
filter (UKF) [8] belong to the most popular approaches to solving the SLAM prob-
lem. With these algorithms, the computational requirements and memory demands
increase at least quadratically with the number of landmarks since the full correla-
tion between the position of all landmarks is taken into account. There are several
alternative and approximative filtering techniques for SLAM [14, 24], which do not
incorporate the full correlation between the landmarks, so that the computational
constraints are less restrictive. However, their memory demand increases at least
linearly with the number of landmarks used.

Recently, Sala et al. [18] presented a graph-theoretic formulation for the selection
problem of visual features to perform navigation in known environments. The opti-
mal set of features is defined as the minimal set with which navigation is possible.
Zhang et al. [26] proposed an entropy-based landmark selection method for SLAM.
This method specifies a measure of which visible landmark is best in terms of en-
tropy reduction. However, it only provides a vague guideline for how many features



Learning Landmark Selection Policies for Mapping Unknown Environments 485

should be selected at a given point in time. Furthermore, Lerner et al. [11] presented
a quality measure for landmark selection in known environments which is based
on the comparison of pose uncertainties. Dissanayake et al. [6] suggested a map
management which ensures a uniform distribution of landmarks over the traversed
area. Apart from landmark selection, other active methods were presented such as
maximizing the SLAM estimate by intelligent path planning [5], or increasing the
performance of a soccer playing robot by active sensing [10]. Recently, Hornung et
al. [7] proposed a system for learning acceleration policies in the context of vision-
based navigation. Furthermore, they presented a technique to compress the learned
policy using a clustering approach. Several other policy/state space compression
techniques for reinforcement learning were presented in the past [25][13]. While
these techniques mainly focus on gaining a speed-up during learning, our policy
compression approach is similar to Hornung et al.’s [7] and motivated by the stor-
age problem: How can we represent the learned policy in a most compact way so
that it becomes applicable on memory-constrained systems and so that, at the same
time, the compression does not lead to a loss of performance?

In this paper, we present a universal approach for landmark selection in unknown
environments. The value of a landmark is measured in terms of how well it improves
the navigation/localization capabilities of the robot given the targeted navigation
task. This is especially important for robots with restricted resources. We learn a
landmark selection policy using Monte-Carlo reinforcement learning [3, 20, 23] and
k-nearest neighbor regression [19]. We show in real world and simulation experi-
ments that this technique allows for more efficient robot navigation. Furthermore,
we demonstrate how the learned policies, which consist of tens of thousands of pa-
rameters, can be compressed using neural networks without a loss of performance.
In this way, our approach becomes applicable on memory-constrained systems and
extends our previous work [22].

3 Preliminaries

3.1 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes’ filter that estimates the
state x of an dynamical system in discrete time steps given a sequence of actions u
and observations z. The n-dimensional state vector x is represented by a multivari-
ate Normal distribution with mean μ and covariance matrix Σ(n×n). The dynamics
of the system are described by a state transition function g plus Gaussian noise
εg,t: xt = g(ut, xt−1) + εg,t. Measurements are integrated using the observation
function h: ẑt = h(xt) + εh,t. Again, Gaussian noise εh,t is added. Since Kalman
filtering is an approach for systems governed by a linear difference equation, spe-
cial efforts must be made to take the non-linearities in g and h into account.

The key idea of the unscented Kalman filter, which has been introduced by Julier
and Uhlmann [8], is to apply a deterministic sampling technique that is known as
the unscented transform to select a small set of so-called sigma points around the
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mean. Then, the sigma points are propagated through the non-linear functions. Af-
terward, mean and covariance estimates are computed based on the transformed
points. The advantage of this technique is that the filter can much better deal with
non-linearities, which leads to higher robustness than obtained with the EKF.

3.2 Simultaneous Localization and Mapping

In the context of the SLAM problem, one seeks to simultaneously determine the
map of the environment and the pose of the robot. Probabilistic methods seek to
estimate the joint probability distribution

p(pt, l1, . . . , lM | u1, . . . , ut, z1, . . . , zt) (1)

about the pose pt of the robot at time t and the position of the landmarks l1, . . . , lM
given all previous motions u1, . . . , ut and observations z1, . . . , zt. Various ap-
proaches to estimate this posterior have been presented in the literature.

In this paper, we address the SLAM problem using the UKF by representing the
joint state (pT

t , lT1 , . . . , lTM )T with 〈μ, Σ〉. This is a standard approach which has
been shown to operate successfully in the past. For convenience, we abbreviate the
mean of the robot pose (μ1, μ2, μ3)T as (x, y, θ)T . The mean of the j-th landmark

location (μ2j+2, μ2j+3)T is denoted by
(
l
[j]
x , l

[j]
y

)T

. Furthermore, we interpret the

state transition function h as the robot’s motion model. In addition, we assume that
range and bearing observations (ρ, φ)T are given so that we can define a correspond-
ing observation model g. In our work, we initialize new landmarks in a single step
as described by Bailey [2].

Note that our landmark selection framework is not limited to the UKF or other
Kalman filter-based approaches. It can rather be applied to arbitrary other methods
for addressing the SLAM problem.

3.3 Monte-Carlo Reinforcement Learning

The basic idea of reinforcement learning [23] is to learn by interacting with the envi-
ronment. We consider a dynamic system consisting of an agent and its environment
at discrete time steps τ . At each point in time τ , the world is in state sτ ∈ S and the
agent chooses an action a ∈ A. Then, the world transforms into a new state sτ+1

and the agent receives a reward rτ+1 ∈ R. The goal is to maximize the return

Rτ =
T∑

k=τ+1

rk, (2)

where T is the total number of time steps of one learning episode. The agent is
following a policy

π(s, a) := p(a | s) ∀s ∈ S, (3)
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which represents the probability of choosing action a under the assumption of being
in state s. Each policy π has a corresponding Q-function

Qπ(s, a) := Eπ{Rτ | sτ = s, aτ = a}, (4)

which specifies the expected return R from choosing action a in state s. During
the learning process, we would like to approximate the optimal policy π∗(s, a) that
maximizes the expected return. Therefore, we have to approximate the correspond-
ing Q-function simultaneously.

One way of solving the reinforcement learning problem is based on Monte Carlo
methods [3, 20]. Here, we estimate the Q-function as the average return over sam-
ple episodes. Initially, the Q-function is initialized with a prior Rprior. During the
training, a soft policy should be used. Thus, it should hold that π(s, a) > 0 for all
possible state-action pairs in order to assure that each state is reachable during the
training process. One common soft policy is ε-greedy which selects with the high
probability of 1 − ε the action

a∗ = argmax Q(s, a) (5)

that maximizes the expected return and a random action otherwise.
Note that the time index t used in the SLAM setting is not necessarily identical

with the discrete time at which the reinforcement learning framework has to make
decisions. Therefore, we introduced a second time index τ .

4 Navigation Tasks

4.1 Single-Goal Task

Let us consider the following most basic navigation task (see Fig. 1 (a-c)). The
robot is located at position A and is supposed to drive to the goal position B. In
this example, the robot’s motion is affected by a drift. In addition, N landmarks
are distributed randomly over the environment. When the robot perceives a new
landmark, it has to decide whether it should integrate this landmark into the UKF or
not. The UKF has a landmark capacity of M landmarks with M << N . The goal
is to choose the landmarks in such a way that the distance of the final position of
the robot (xT , yT )T

true and the target position B is minimized. Hence, we define the
reward

rτ =

{
−

∣∣B − (xT , yT )T
true

∣∣ if τ = T
0 else,

(6)

as the negative Euclidean distance of the robot’s true position to the goal B if the
training episode reaches the terminal state sT ; intermediate rewards r1,. . . ,rτ−1 are
set to zero.
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Fig. 1 Illustration of the single-goal navigation task (a-c) and the round-trip task (d).

4.2 Round-Trip Task

In the round-trip task, the robot is supposed to reach several subgoals (see Fig. 1 (d)).
First, it starts at A and, is supposed to drive to B, and then back to A. This entire
process is repeated twice. A new subgoal is selected as soon as the position esti-
mate of the robot (xt, yt)T is close to it – independent of the robot’s true position
(xt, yt)T

true. In this task, the error in the pose estimate should be minimized over
the whole trajectory. For convenience, we specify the return directly as the negative
average error over the remaining trajectory,

Rτ = − 1
|T − t(τ)|

T∑
t′=t(τ)

∣∣∣∣
(

xt′

yt′

)
true

−
(

xt′

yt′

)∣∣∣∣ , (7)

whereas t(τ) specifies the time when the τ -th decision is made and T is the time
when the robot reaches its final destination. To simplify things for the second task,
landmark selection is only allowed while the robot moves from A to B the first time.
The round-trip task is more complex than the previous one. However, it is worth
considering since it focuses on the loop-closing problem of SLAM and therefore
has a higher practical relevance than the single-goal task.

5 Navigation and Landmark Selection

5.1 Motion Control

The robot is steered towards the subgoals using a straightforward controller. An
appropriate translational acceleration ω̇t and rotational acceleration υ̇t is selected
based on the current estimate of the robot pose pt, the translational velocity ωt and
rotational velocity υt.
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Fig. 2 Illustration of the state space.

5.2 Learning Landmark Selection Policies

In order to learn landmark selection policies with Monte Carlo reinforcement learn-
ing, we need to define the state space S and the action space A. In addition to that,
we need to find an appropriate representation for the continuous Q-function. First,
however, we would like to discuss what makes this problem challenging.

Challenges

Learning a landmark selection policy for navigation tasks is a hard problem. Due
to the stochasticity of robot motion, optimal landmark selection can still lead to a
significant localization error of the vehicle. At the same time, the robot may reach a
desired target location accurately by chance even if no landmarks are selected at all.
Thus, the training data used in our learning domain is comparably noisy. In the long
run, however, the average localization error reflects the quality of a specific selection
strategy. Furthermore, it is essential to note that we perform navigation in unknown
environments. Hence, it is not the goal to memorize a specific environment, but to
learn general principles. For this reason, each learning episode is performed in a
different environment. This makes the training data even more noisy: A selection
policy which is good for one environment might not be a good policy in general
(i.e., concerning the whole space of possible environments).

State Space

The available state information consists of the UKF state 〈μ, Σ〉 and the current
range and bearing observation (ρ, φ)T . This full information would lead to an high-
dimensional state space so that successful learning is impractical. It is therefore
desirable to reduce the space while preserving as much as possible of the relevant
information. This can be achieved by defining features that summarize the essential
information. One basic feature is the position of the potentially new landmark,



490 H. Strasdat, C. Stachniss, and W. Burgard

(
l
[new]
x

l
[new]
y

)
=

(
xt + ρ cos(φ + θt)
yt + ρ sin(φ + θt)

)
, (8)

according to the current range and bearing observation (ρ, φ)T and the robot’s pose
estimate (xt, yt, θt)T . Additionally, we define the following five features:

1. Estimated distance dest to subgoal B (see Fig. 2 (a)),

dest =
∣∣B − (xt, yt)T

∣∣ . (9)

2. Number of landmarks m integrated into the UKF (see Fig. 2 (b)),

m = |{j ∈ M : Σ2j+2 < ∞∧ Σ2j+3 < ∞}| , (10)

where Σ2j+2 and Σ2j+3 are the variances of the j-th landmark in the x and y
direction.

3. Yaw angle φ to potentially new landmarks (see Fig. 2 (c)),
4. Distance dl of the potentially new landmark to the closest landmark already in-

tegrated (see Fig. 2 (d)),

dl = min
j ∈ L

with Σ2j+2 < ∞∧ Σ2j+3 < ∞

∣∣∣∣∣
(

l
[j]
x

l
[j]
y

)
−

(
l
[new]
x

l
[new]
y

)∣∣∣∣∣ . (11)

5. Uncertainty of the robot pose Σ3×3 in terms of its entropy (see Fig. 2 (e)),

H = ln(
√

(2πe)3|Σ3×3|). (12)

The first of these features summarizes the robot position (xt, yt). The landmark
positions l1, . . . , lM are summarized by the fourth feature while the new observation
(ρ, φ)T is represented by the third feature as well as fourth one. The covariance Σt

is comprised by the second feature and the fifth one.
In the following, we will consider three different variants of the learning ap-

proaches. The first approach only relies on a two dimensional state space (first
and second feature), the second one uses an four dimensional feature space (first
to fourth feature), and the third one uses five dimensions (all five features).

Function Approximation

Since the state space of the features is continuous (with the exception of the second
dimension), we need to estimate the Q-function with some function approximator.
In our current implementation, we use k-nearest neighbor (k-NN) regression [19].
Training points – i.e. state/action values (s, a) which are each labeled with a re-
turn R – are efficiently stored in set of kd-trees [4, 1]. The jth kd-tree represents
the returns from choosing an action aj in a given state s. In the kd-tree represen-
tation, each dimension of the data points are normalized between zero and one, so
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that spherical search regions become practicable. If a query (s′, a′) is performed,
the k nearest data points to the query point s′ (w.r.t. Euclidean distance) are se-
lected from the appropriate kd-tree. The return is estimated as unweighted average
over the corresponding R-values. If less then kmin data points are found within a
fixed radius around the query point, a prior Rprior is returned instead. In our current
implementation, we set k = 50 to reflect the high amount of noise in our train-
ing data (see Sec. 5.2); kmin is set to 10. The k-NN regression approach has the
advantage over the common grid-based discretization methods that it has a high de-
gree of generalization in areas where the density is low and it is precise in regions
where the data points are dense. In contrast to non-linear models such as neural
networks [17], no over-fitting occurs. As opposed to other regression techniques, in
which the model is also expressed directly in terms of their training data such as
Gaussian Processes [15], k-NN regression is very fast. Even with hundreds of thou-
sands of data points, a query can be performed in a few milliseconds. An efficient
evaluation is essential for learning in practice, since the regression has to be carried
out frequently. In various tests, we could not reveal a significant benefit from using
Gaussian process regression over k-NN regression for reinforcement learning in our
domain. Due to space restrictions, these experiments are omitted in the experimental
section.

Action Selection

In our learning problem, the action is a binary decision:

A = {areject, aaccept} (13)

This means that either the potential new landmark is chosen or not. In order to boost
the training, a variant of ε-greedy is used:

π(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

argmax Q(s, a) if Q(s, areject) �= Q(s, aaccept)
and χ1 < 1 − ε

aaccept if [Q(s, areject) = Q(s, aaccept) or χ1 ≤ ε]
and χ2 < M

Nvisible

areject else

(14)

Here, χ1 and χ2 are uniform random samples between zero and one; Nvisible is
the expected number of visible landmarks in one training episode. Using this soft
policy in the beginning of the training – when Q(s, areject) = Q(s, aaccept) = Rprior

in most cases – landmarks are selected with the probability of M
Nvisible

. Thus, it is
ensured that landmarks are selected over the whole trajectory. Neither landmarks
in the beginning of the episode nor landmarks in the end are preferred. If standard
ε-greedy is used, aaccept and areject would be chosen with a probability of 0.5 each.
Hence, depending on the values for the landmark capacity M and expected number
of visible landmarks Nvisible it could happen that either all landmarks are selected
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in the beginning of the episode or that considerably fewer landmarks than M are
selected. Either would lead to a slow convergence rate.

To sum up, we use a learning approach for landmark selection based on Monte-
Carlo reinforcement learning and k-NN regression. The state space is compactly
represented by five features and the action is a binary decision.

5.3 Generalization

Until now, we considered an approach to learn a selection policy in unknown en-
vironments, but for a specific scenario. However, it is desirable to train a policy
in one scenario and then apply this policy in another setting. Important parameters
of a training scenario are the number N of landmarks in the environment and the
landmark capacity M of the filter. To generalize, it is important to have a scenario-
independent state space representation. For instance, instead of the number of land-
marks m already integrated into the filter, we need to consider the percentage of
landmarks m

M .

5.4 Policy Compression

Policies learned using k-NN-regression usually consists of tens of thousands of data
points. To apply these policies on memory-constrained systems, we need to pro-
duce a compressed representation. One possibility is to compress the Q-function
directly [25][13]. However, the Q-function also represents areas of the state/action
space which are rarely visited when applying a greedy policy. Additionally, the Q-
function maps each state/action value to a return value, whereas we are only inter-
ested in the action to apply given a state and not the specific return value. There-
fore, we follow the approach of Hornung et al. [7] and perform the greedy policy
n times (here, n = 1, 000) and store the occurring decisions. As a result, we get
a set of 10,000 state/action pairs. Since we only have two different actions, areject

and aaccept, these pairs can be seen as labeled training data of a binary classification
task. In order to compress the policy, any supervised classification technique can
be applied which has a small number of model parameters. Here, we use a neural
network [17] with one hidden layer, Rprop [16] for the weight optimization, and a
sigmoid activation function. As this leads to a continuous output between zero and
one, we treat values smaller than 0.5 as 0 (corresponding to areject) and all others as
1 (corresponding to aaccept).

6 Experiments

6.1 Single-Goal Task in Simulation

We evaluate the performance of our learning procedure for the single-goal task in
a simulated environment. We consider an environment in which N landmarks are
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Fig. 3 Average performance of the trained policies and heuristics w.r.t. 1,000 test episodes.
For each of the trained policies we show the mean over the ten training runs and the corre-
sponding 95%-confidence interval.

randomly distributed over a 30m by 60m area. The distance between the start po-
sition A and the goal B is set to 44m. We train our policy for 1,000 episodes. In
each episode, landmarks are randomly re-distributed. We compare the trained poli-
cies to two heuristics. The first one is the M -first heuristic which simply integrates
the M first landmarks that are observed. An apparently better policy is the equidis-
tant heuristic. With this heuristic, the robot only integrates a new landmark after
it has driven a certain distance so that the landmarks are approximately uniformly
distributed over the whole trajectory (similar to Dissanayake et al. [6]).

For the learning, we use k-NN regression with a two-, a four-, and a five-
dimensional state space (see Section 5.2). At first, we consider an UKF with a land-
mark capacity of M = 10 and an environment with N = 50 landmarks. For each
learning approach, ten training runs are performed. Each trained policy and heuris-
tic is evaluated in 1,000 different environments (see Fig. 3). The one-sample t-test
with a significance level of α = 0.05 shows that all three learning approaches are
significantly better than the equidistant heuristic. Furthermore, it a two-sample t-
test revealed that k-NN regression with a four dimensional state space leads to a
significantly smaller error than k-NN with two dimensions. Thus, the third feature,
which is the distance dl of a new landmark to the landmarks already integrated, and
the fourth one, which is the angle φ to the new landmark, seem to include relevant
information which are not encoded in the first two dimensions of the state space.
Further experiments revealed that indeed both features are essential. However, we
were not able to show that there is any benefit from including the fifth feature, the
entropy H of the robot’s pose. Even at a significance level of α = 0.25, the t-test
did not reveal a difference between the learning approach using the four-dimensional
state space and the one using five dimensions.

In order to evaluate how good the trained policies generalize, we trained and
tested a policy in environments with N = 50 as well as N = 100 landmarks. In
addition, we use UKFs with a capacity M of five, ten, and 15 landmarks. Fig. 4 (a)
illustrates the high degree of generalization of our learning approach. For instance,
if we perform the training in a setting with N = 50 and M = 5, we see that the
trained policy leads to significantly better results than the equidistant heuristic in all
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six test scenarios. This indicates that our approach generalized over different land-
mark densities which is similar to environments of different scale and sensor range.

6.2 Single-Goal Task Performed in a Real World Experiment

Furthermore, we evaluated our learning approach in a laboratory environment. We
randomly attached visual markers [9] to the ceiling of a corridor in a 2.5m by 5m
area. The robot we used, a Pioneer 2DX-8, is equipped with an upward-looking cam-
era and a SICK laser range scanner (see Fig. 5). Whereas the camera was used to
observe landmarks at the ceiling the laser was utilized to estimate the ground truth.
Since the odometry of the robot was too accurate in the limited space in which we
carried out the experiment, we added a rotational bias of 0.1 rad per meter. Unfor-
tunately, it is impractical to train the policy in the real-world because this would not
only require us to perform hundreds of training episodes but also to install different
landmark distributions for each training episode. Thus, we trained the policy in sim-
ulation and tested it in the real-world setting. We also compared the trained policy to
the equidistant heuristic. Both, the trained policy as well as the equidistant heuristic
were tested ten times. The trained policy results in an error of 0.50 ± 0.08 whereas
the equidistant heuristic leads to an error of 0.66 ± 0.07. Hence, the trained policy
is significantly better than the equidistant heuristic (w.r.t. a t-test with α = 0.05).
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Fig. 4 High degree of generalization in the single-goal task (a) and the round trip task (b).
The mean error over ten training runs and the corresponding standard derivation is shown.
All policies below the dashed line are significantly better than the equidistant heuristic (α =
0.05).
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Fig. 5 Pioneer 2-DX8 robot with upward-looking camera and SICK laser range scanner (left)
and detected visual landmarks on the ceiling (right).

6.3 Round-Trip Task

The performance of our learning procedure for the round-trip task is evaluated in a
simulated environment in a similar way to the single-goal task. It was trained using
k-NN regression with a four-dimensional state space over ten training runs. How-
ever, the error is defined as the average localization error over the whole trajectory.
Again, we compare our learning with the equidistant heuristic. Fig. 4 (b) shows that
the learned policy is significantly better than the heuristic. Furthermore, it shows
that we are able to generalize over the UKF capacity M as well as the number of
landmarks N .

6.4 Policy Compression Using Neural Network

The uncompressed policy for the single goal task is illustrated in Fig. 6. The pol-
icy is represented using approximately 20,000 four-dimensional state points which
are either labeled with aaccept or areject (see Sec. 5.4). The illustration indicates that
there is a large overlap between the two classes. This is most likely due to the nois-
iness of the training data, i.e., due to the fact that the very same policy can lead to
different returns. However, it is important to notice that only projections of the four-
dimensional state space are shown and that the overlap is not that severe locally.
Since the state space of the round-trip task looks similar, we do not show it here.

We compressed our learned policy for the single-goal task and the round-trip
task using neural network classification (for M=5 and N=50). Since we have a
four-dimensional state space and we want to learn a binary decision, we use a neu-
ral network with four input units and one output unit. It turned out that one hidden
layer with three units is sufficient for learning. This leads to a model with 19 param-
eters. Given this network, we were able to compress the learned policies which were
approximately represented by 80,000 parameters (20,000 four-dimensional points),
using only 19 parameters.
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Fig. 6 Uncompressed strategy of the single-goal task. A projection of the four-dimensional
state space onto the first and second dimensions (left) as well as onto the third and fourth
dimensions (right) is shown.
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Fig. 7 Comparison of the compressed and uncompressed strategy of the single-goal task
(top) and the round-trip task (bottom). For the trained policies, the mean over the ten training
runs as well as the corresponding 95%-confidence interval is shown.
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For both navigation tasks, we learned policies in ten training runs. Each of the
learned policies was compressed using the method describe above. Comparisons
between the compressed and the uncompressed policies are shown in Fig. 7. One
can see that there is no performance loss using the compressed policies in place of
the uncompressed ones. Surprisingly, the compressed policy for the single-goal task
is even significantly better than the uncompressed one. This could be explained by
the generalization property of neural networks. To analyze this more precisely, it is
worth looking at the compressed policy. Since the neural network parameters are
hard to interpret, we apply the same approach as before. We apply the compressed
policy in 1,000 different environments and store the occurring decisions. The result-
ing labeled data points are shown in Fig. 8. Although, the policy looks similar to the
uncompressed one (Fig. 6), there are differences. For instance the neural network
was able to better model the decisions boundaries. Because of its smoothness, it
performed better on the unknown test data.
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Fig. 8 Compressed strategy of the single-goal task. The figures show a projection of the four-
dimensional state space onto the first and second dimensions (left) as well as onto the third
and fourth dimensions (right).

7 Conclusion and Future Work

In this paper, we considered the problem of deciding whether to incorporate a land-
mark into the probabilistic belief of a SLAM approach or to discard it. Such tech-
niques are especially relevant for efficient robot navigation under computational
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constraints. We presented a novel approach based on reinforcement learning that
is able to effectively perform landmark selection in unknown environments. We
demonstrated by a series of real world and simulation experiments that the learned
policies outperform handcrafted heuristics. Furthermore, we showed that a learned
policies have a high degree of generalization since they can be applied in different
environments with changed underlying parameters. Finally, we were able to com-
press the learned policies by means of neural network classification without intro-
ducing a performance loss.

Despite these encouraging results, there is space for further improvement. One
interesting aspect is the possibility to delete an already incorporated landmark. It
should be noted that such a scenario is substantially more complex compared to
the scenarios considered in the experimental section of this paper. For instance, the
state space must be extended to also include information about the already inte-
grated landmarks. In initial experiments carried out with a variant of our current im-
plementation, we discovered that good strategies keep a set of landmarks fixed for
re-localization and perform an incremental pose correction with set of frequently
replaced landmarks.
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Mapping

Cédric Pradalier

Understanding its environment is accepted as a major requirements for most
mobile robots. In the following chapters, the authors focus on methods to repres-
ent and build a map using mostly images and 3D point clouds. The general con-
sensus in the mapping community is  that mapping static  2D environments has
been solved and open-source turn-key solution are readily available.  Instead, the
challenge lies in the processing of visual data or 3D point clouds, the development
of scalable representations, and the management of dynamic environments.

In “Error-Driven Refinement of Multi-scale Gaussian Maps ”, Yguel et
al. provides a new insight on the use of shape tensors as the representa-
tion of multi-resolution dense map made out of  2D or 3D point clouds.
The approach relies on a smart clustering phase to minimise the number
of tensors used to represent the map.
In “Robust 3-D Visual SLAM in a Large-scale Environment ”, Kim et al.
proposes an improvement to the solution to the 3D Visual SLAM prob-
lem. By separating features into those tracked from key-frame to key-
frame and those appearing in the current key-frame, the authors manage
to combine a motion estimator and a stochastic filter so as to implement
a visual SLAM system more resilient to sudden camera motion.
In “Towards Large-Scale Visual Mapping and Localization ”, Pollefeys
et  al.  discusses an image processing pipeline for real-time localization
and mapping using multiple camera sources on a mobile platform. An
important aspect of this paper is its broad overview of all the problems
faced when developing a vision-based localization and mapping system.
This chapter also highlights solutions to some of these problems.
In “Place-Dependent People Tracking ”, Luber et al. take another view-
point  on  the  mapping  problem.  The  main  problem addressed  by  this
chapter is mapping the motion pattern of people based on their position in
the environment. Such a map could then be used to predict people's mo-
tion and integrate this information in a motion planner.
In “Combining Laser-Scanning Data and Images for Target Tracking and
Scene Modeling ”, Zha et al. use a combination of multiple laser scanners
and cameras to detect and track objects in an urban environment. In par-
ticular,  this  chapter  presents  mapping  results  from static  cameras  ob-



serving a dynamic environment and a sensor-suite mounted on a car driv-
ing around Peking university.
In “Towards Lifelong Navigation and Mapping in  an Office Environ-
ment”, Wyeth and Milford present RatSLAM as an alternative to classic-
al cartesian-map-based localisation and mapping. An important aspect of 
this work is the focus on functional accuracy of the map and on the eval-
uation of the performance through long-term testing. 

A common thread of this part of the ISRR'09 proceedings is the focus on man-
aging high quantities of data, either due to experiments spanning long durations, 
or due to large volume of space observed during the experiment. As sensors, ro-
botic platforms, and algorithms improve, processing the volume of data becomes 
more and more a challenge, and employing more and more parallelism (e.g. using 
Graphic Processing Unit) on robotic platforms becomes a norm. Other research-
ers, such as Wyeth and Milford, are taking an alternative route to show that a fully 
metric representation of the environment may not be the only way to reach the 
autonomous navigation functionality. As often said in the field of robotic research, 
it all depends on the task.
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Error-Driven Refinement of Multi-scale
Gaussian Maps
Application to 3-D Multi-scale Map Building, Compression and

Merging

Manuel Yguel, Dizan Vasquez, Olivier Aycard, Roland Siegwart,
and Christian Laugier

Abstract. The accuracy of Grid-based maps can be enhanced by putting a Gaussian
in every cell of the map. However, this solution works poorly for coarse discretiza-
tions in multi-scale maps. This paper proposes a method to overcome the problem
by allowing several Gaussians per cell at coarse scales. We introduce a multi-scale
approach to compute an error measure for each scale with respect to the finer one.
This measure constitutes the basis of an incremental refinement algorithm where
the error is used to select the cells in which the number of Gaussians should be in-
creased. As a result, the accuracy of the map can be selectively enhanced by making
efficient use of computational resources. Moreover, the error measure can also be
applied to compress a map by deleting the finer scale clusters when the error in the
coarse ones is low.

The approach is based on a recent clustering algorithm that models input data as
Gaussians rather than points, as is the case for conventional algorithms. In addition
to mapping, this clustering paradigm makes it possible to perform map merging and
to represent feature hierarchies under a sound theoretical framework. Our approach
has been validated with both real and simulated 3-D data.

1 Introduction

The idea of producing multi-scale grids has been present since the very first works
on grid-based representations, [1]. Coarse maps are used in path planning [2, 3] or

Manuel Yguel · Christian Laugier
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Fig. 1 Top left: simulated scene. Top right: fine scale of the map. Bottom left: coarse scale
of the map, one Gaussian per cell. Bottom right: coarse scale of the refined map

localization [4] algorithms in order to obtain a rough trajectory or position estimate
at a low computational cost. Then, at a second stage, this estimate is used to initialize
the fine scale search algorithms, thus accelerating convergence. For localization,
this procedure also enlarges – in most cases – the convergence region. Examples
of algorithms that benefit from such an approach include sampling-based, gradient-
based and line-to-point or plane-to-point ICP-based algorithms.

However, as the resolution becomes coarser, the aliasing effect of the geometry of
the cells becomes more evident and it can no longer be neglected. When considering
a cell as a full block, all the information concerning the shape of the cell contents
is lost. A way to alleviate this problem is to attach some sort of statistical shape
description to every occupied cell. Two seminal works in this direction are tensor
maps [5] and the Normal Distribution Approach (NDT) [6], these approaches sig-
nificantly improve accuracy by approximating the shape of the cell contents with
ellipsoids that are encoded as symmetric semi-definite positive (SSDP) matrices.
The accuracy of these approaches, together with their relative simplicity has con-
tributed to making them very popular in the map building community [7, 4].

That being said, a single ellipsoid is still a poor representation when there are sev-
eral objects with different orientations in the cell, which is the case –for instance–
of a pole standing on the ground (see fig. 1). In this paper, we present a method
to overcome this problem by allowing a coarse resolution cell to contain multiple
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ellipsoids – more specifically, Gaussian clusters. The idea is to start with a sin-
gle cluster per cell, and then to refine it by inserting additional clusters in order to
achieve a balance between representational complexity and accuracy. In particular,
from now on, we will assume that there is a given budget of Gaussians per coarse
scale that needs to be allocated in an optimal way through a refinement process.

This paper is structured as follows: In the following section, we review related
works in robotics and computer graphics. Section 3 provides an overview of our
mapping framework. In section 4, we explain how to update a Gaussian map from a
range image and how occupancy may be used as a learning rate. Section 5 presents
our error-driven refinement algorithm for coarse scales. Section 6 discusses map-
ping results on simulated and real data sets. Finally, we present our conclusions and
outline possible directions for future work.

2 Related Works

2.1 Related Mapping Approaches in Robotics

An interesting approach to grid refinement are multi-level surface maps (MLS) [8],
which can be considered as a refinement of an elevation map. An MLS map is a
2-D grid where, for each cell, several planes are stored at different heights, together
with the associated thickness. Their structure makes them particularly well suited to
represent traversability information, as shown by their impressive results on real data
sets. However, they share the aliasing related problems of 2-D grids particularly in
the horizontal plane. Moreover, due to their lack of merging mechanisms they often
fail to represent tall vertical structures as a single element if those structures were
partially occluded during early observations.

A different approach to cope with cell aliasing is to use a multi-scale grid map
which is refined where features are denser. Tree-based representations, such as
quadtrees and octrees [9, 10] are the most popular data structures of this kind for
two and three dimensional input spaces, respectively. Nevertheless, these structures
also suffer from the aliasing problem because of their cubic cell shape, which makes
them inappropriate to represent curves or surfaces.

Tensor voting and NDT aim at improving geometric accuracy by representing all
the points that fall into a given cell by an ellipsoid, whose orientation and shape
are such that the representation error is minimized. In both cases, the ellipsoid is
encoded as an SSDP matrix (Fig. 2).

Fig. 2 Decomposition of an SSDP matrix ellipsoid into elementary shapes called tensors
in [5].
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In both tensor voting and NDT, having one cluster per cell produces large ellip-
soids (called junctions in the tensor voting framework) as soon as the resolution is
too coarse and the cell encompasses several distinct objects or the object geometry
is not linear. This problem has been addressed in the original NDT paper [6] by
storing four overlapping maps shifted by half a cell. However this approach is ex-
pensive in terms of the number of Gaussians added and the advantages are unclear
when compared to a map with twice the resolution.

2.2 Related Approaches in Computer Graphics

In the computer graphics community the problem of 3-D model simplification has
received a lot of attention. The objective in this case is to obtain simpler models to
streamline manipulation and speed up rendering when high accuracy is not required
– e.g. when objects are far from the virtual camera or moving rapidly. This is deeply
related to refinement as it is, essentially, the inverse problem.

The seminal work in this field is the paper of Garland et al. [11] where edge
contraction is performed on the mesh edges that introduce the smallest amount of
quadric error in the model. As indicated by its name, this metric is defined by cal-
culating a special type of quadric on the vertices, described by SSPD matrices. The
simplification algorithm uses a priority queue. At every iteration, the edge having
the lowest error is contracted, the error of all the affected edges is recomputed and
they are reinserted in the queue. The process continues until the target budget of
edges is reached.

A second class of effective simplification approaches is based on clustering. They
can operate either on meshes or on point clouds. Probably the most relevant example
of mesh clustering is [12] where clustering is performed on the triangles of the mesh
to be simplified. An essential component of this approach is a shape metric that
makes it possible to assign each triangle to its closest cluster and to compute the
parameters of the cluster. Cohen and Steiner [12] consider two metrics: Garland’s
quadric error metric [11] and the Euclidean distance between the normals of the
triangles and their cluster normals.

In [13], Pauly et al. have studied the simplification of point clouds of the same
kind than those obtained with a laser range finder. They describe several agglomer-
ative and partitional approaches, applying techniques proposed in [11].

Our approach is largely inspired by the work of Cohen and Steiner [12] and by the
partitional algorithm of Pauly [13]. The main difference lies in the fact that we do not
restrict our main representation to surfaces, because at coarse scales many impor-
tant features such as poles, trees trunks and towers may appear as one-dimensional
curves rather than surfaces.

3 Approach Overview

The data are range images, in which each pixel contains a distance value as for stereo
camera for instance (see fig. 4). We suppose that a localization is provided and we
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construct a multi-scale map as follows. We compute 3 scales of Gaussian maps.
Each scale is a sparse grid where only occupied cells are stored and in the fine scale
there is only one Gaussian per cell. In coarser scales, thanks to refinement, a cell
can contain several Gaussians. Our approach processes every scale independently,
adjusting the field of view of finer scales in order to have a similar number of cells to
update for each scale. As shown in Fig. 3, the approach is composed of three main
components:

.Fig. 3 Framework components. Light gray boxes are processed less than once per range
image.

1. Occupancy computation: it is the likelihood that a cluster represents a static part
of the map. In our framework it allows to adapt faster the regions that have not
been observed often and it is used as a criterion to delete clusters, making it
possible to remove dynamic objects from the map.

2. Map updating: it adapts existing clusters in order to minimize the representation
error. It is similar to the standard update of conventional Gaussian maps, except
that it takes into account the fact that a cell may contain several Gaussians.

3. Map refinement: this step is our main contribution, at every refinement step new
Gaussian clusters are added to the cells where the representation error is maxi-
mum. It is worth noting that no refinement is performed on the finest scale.

4 Map Updating

This section presents the procedure to update an existing map from sensor data. At this
point, we assume that the number k of Gaussian clusters per cell is known. The actual
estimation of k is handled by the refinement algorithm that we will discuss in § 5.

Our goal here is to update the Gaussians’ mean value μ and covarianceΣ in order
to minimize the representation error with respect to the input data. Every point in
the range image is used to incrementally update the different scales independently.
As we will explain in § 4.3, the basic idea is to find the cell where the input point
falls and then updating the cluster in that cell that is ”closest” to the input point.

As in most incremental approaches, an important question is how much to adapt
the clusters – i.e. finding the ’right’ learning rate. In the following subsection we
describe the use of the cluster’s occupancy to control the adaptation. It can be in-
tiuitively explained as follows: the more a cluster has been observed, the more is
known about it and the less reasonable it is to modify it. As we will see in § 5,
occupancy is also used as a criterion to filter out dynamic objects from the map.
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4.1 Computing Cluster Occupancy

Occupancy can be seen as a counter associated to every object. Its value gets in-
creased when the object is visible in the range image, and decreased when the object
is supposed to be visible but is in fact not. Fig. 4 illustrates the idea: if point C, is
visible – i.e. the dashed red line is free from obstacles between I and C – then the
value of the range image at cell I will correspond to the distance rC. If, on the other
hand, the value of cell I is greater than rC, this can be considered as evidence that C
is not there anymore and its occupancy should be decreased.

For visible cells, we compute occupancy in a per point basis. The occupancy of
a point, C, in the map is given by comparing the range measured in the pixel of
its projection, I, in the range image with its actual range, δ . For a Gaussian, the
occupancy is obtained by averaging the occupancy of n points sampled from the
Gaussian distribution (rejecting those that fall outside the cell).

We only need to guarantee that there are enough samples to provide a good esti-
mate. To define n, we compute an upper bound of the number of points in the range
image that can be contained in the cell. This is done using the projected bounding
sphere of the cell. Let δmin and δ be the distance to the image plane in the camera
coordinate system and the distance to the center of c (fig. 4), respectively. Then the

projection of the bounding sphere of c occupies an area of 3π
4

�
δmin
δ a

�2
(orange disc

in Fig. 4), where a is the length of the side of c. Knowing the area of one pixel of
the range image p, an upper bound for the number of pixels that may be projected
back into the original cluster is:

B � �3π
4p

�δmin

δ
a
�2

� (1)

which is the number of samples we are looking for. So, making n = B gives us a good
chance to cover every range image cell that effectively contains an observation from
the cluster.

Fig. 4 Computation of occupancy in the range image of the bounding sphere of a cell.
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4.2 Hierarchical Culling

In order to minimize computation, we perform hierarchical visibility culling. Con-
sider the cell c centered in C in (fig. 4). If the projection of the bounding sphere of c
is outside the range image (camera field of view, blue lines in fig. 4), the finer chil-
dren cells of c are not further explored. The search is also finished if all the ranges
observed in the disc of the projected bounding sphere (orange disc in the image
plane) are smaller than the smallest possible range for the cell, meaning that all the
cell content is occluded by closer objects.

4.3 Updating Gaussian Clusters from Data

For every input point, a single cluster per scale will be updated. The cluster is se-
lected by finding the cell that contains the input point and then finding the cluster
having the minimum distance to that point.

Once the cluster has been selected, its parameters are updated by means of a
stochastic gradient descent algorithm. The principle is to update the reference vector
by a fraction of the negative gradient with respect to each input datum. As more
and more samples are processed, the magnitude of the adaptation should decrease
(typically faster than 1/n) to ensure convergence. A good example is the on-line
computation of the sample mean:

μn = μn−1 + 1
n (zn − μn−1)

where n represents the number of samples processed so far, and zn − μn−1 can be
understood as the negative gradient, and 1

n the fraction of the gradient to be taken
into account. This decreasing weight is called the learning rate and is noted ε . In
our approach, the value of ε depends on the occupancy, as described in § 4.4.

In the case of points, a distance metric between a point and a Gaussian should be
used. We have chosen to use the probability measure given by (2):

d(p,w) � 1
2

�
(p− μw)T Σw

−1(p− μw)+ log(det(Σw))
�

, (2)

This distance is the addition of the Mahalanobis distance and a volume term. Com-
pared to the pure Mahalanobis distance, the volume term aims at compensating the
fact that the Mahalanobis distance of a big cluster tends to make every point very
close. This measure has the advantage of yielding simple map update rules, since
the derivatives are:

∂ d(p,w)
∂ μw

= −Σw
−1(p− μw) , (3)

∂ d(p,w)
∂ Σw

∝ −
�
(p− μw)(p− μw)T −Σw

�
, (4)

giving the following gradient descent algorithm for point-based update:
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Algorithm 1 Map update with points: pointUpdate

{w1, . . . ,wk}← the k Gaussian reference vectors of the cell
2: {ε j|i = 1, . . . ,k}← the associated learning rates

z = p ← the observed point

4: n ← argmini=1,...,k d(z,wi)
μwn

← μwn
+ εn(p−μwn

)
6: Σwn ← Σwn + εn

�
(p−μwn

)T (p−μwn
)−Σwn

�

4.4 Learning Rate

Our idea is to define the learning rate from the occupancy: the higher the occupancy
of a cluster, the better the accuracy of its position and shape is supposed to be;
thus, a small value of ε should be used. If, on the other hand, the occupancy is low,
the current estimated state of the reference vector can be assumed to be based on
insufficient statistics and the learning rate should be high to permit the reference
vector to adapt itself.

In log-ratio the occupancy typically is bounded in [−omax,omax] and the learning
rate varies within [εmin,εmax]. For our approach we have chosen a linear mapping
between both values:

ε(o) =
εmin − εmax

2omax
(o + omax)+ εmax . (5)

In our experiments, we have set omax = 10.0, εmax = 5 ·10−2 and εmin = 5 ·10−4.

5 Error-Driven Refinement of Coarse Scales

The refinement process is driven by a measure of the representation error. The map
is refined by inserting a new cluster in the cell that has the maximum error. After
every insertion, the shape of the other clusters in the same cell should be modified
accordingly; this is done by running a clustering algorithm using the cells of the
finer scale as input.

We periodically refine the map by adding a fixed number p of Gaussian clusters at
a time. In order to choose the p vectors that have the maximum error without sorting
the whole set of reference vectors, we use a priority queue of size p as was done in
[11]. The following subsections provide the details of the refinement algorithm: the
error metric used to build the queue is introduced in § 5.1 and § 5.2 presents the
clustering algorithm.

During the mapping process it is often necessary to delete clusters that corre-
spond to moving obstacles; this process is described in § 5.3. Finally, the application
of our approach to map merging and simplification is discussed in § 5.4.
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← 496363

← 1137630

← 1634160

← 5231

← 31736

← 79464
← 101959

Fig. 5 Up: fine scale is colored with the magnitude of the contribution to the error at the
coarser scale. Down: coarse scale, mean error. Error palettes are on the right.

5.1 Error Computation

We aim at adding clusters only in those regions where the Gaussian shapes have
already converged to their final shapes, which can be deduced from its occupancy.
Accordingly, we choose to refine a cell c only if the average occupancy probability
of the finer cells in φ(c) is above 0.5. Furthermore, we only refine those parts of the
map that are visible for the sensor.

To find the cell to refine, we compute an error value per cell. This value is basi-
cally the sum of the Mahalanobis distance between the center of the coarse cluster
and the Gaussian cluster of the finer scale.

For the cells cs of the coarse scale, s, having reference vectors (i.e. mean val-
ues) {w1, . . . ,wk} and finer data at s− 1: {z1, . . . ,zN} ∈ G(φ(cs)), we compute the
average distance of each datum to its closest reference vector:

E (cs) =
1
N

k	
i=1

N	
j=1

(1− εz j )δ (wi,z j) (μwi
− μz j

)T Σ−1
z j

(μwi
− μz j

) , (6)

where δ (wi,z j) is one if wi is the closest reference vector to z j using the Maha-
lanobis distance defined by z j and zero otherwise. The occupancy is used through
the learning rate to assign higher error weights to occupied clusters, disregarding
those whose occupancy is low and, in consequence, whose accuracy may still im-
prove without the need of adding extra clusters.
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5.2 Clustering for Map Refinement

Algorithm 2 describes our clustering approach for map refinement. This method
solves a hard clustering problem: we are looking for a partition C∗ = {C∗

1 , . . . ,C
∗
k}

of the G(φ(cs)) into k classes represented by k reference vectors that minimizes the
clustering distortion:

E(C∗,{w∗
1,...,w∗

k})
= argmin

{C1,...,Ck},{w1,...,wk}

k	
i=1

ECi(wi) (7)

Algorithm 2 Map refinement using hard clustering

Z = {z j| j = 1, . . . ,N}← the N Gaussians of the fine scale s
2: A = {α j| j = 1, . . . ,N}← the non negative weights of the fine Gaussians

W = {w0
1, . . . ,w

0
k}[k−1] ← the k−1 Gaussians of the coarse scale s+1

4: dZ ×F(·, ·) ← the distance function

W 0 ←{w0
1, . . . ,w

0
k}[k−1]



{z0

max} // Init. with the data of maximum distortion
6: {(C0

i ,w0
i )|i = 1, . . . ,k}, EW 0 ← kMeans(Z,A,W 0,dZ ×F) // clustering partition and dis-

tortion

// Simulate a swap
repeat

8: for all Ct
i do

zmax(i) ← argmaxz j∈Ct
i
dZ ×F(z j,wi)

10: di ← dZ ×F(zmax(i),wi)
end for

12: cmax ← argmaxi=1,...,k di
dmax ← dcmax

14: (umin,vmin) ← argmin(u,v), u�=v dZ ×F(wu,wv)
dmin ← dZ ×F(wumin ,wvmin)

16: if dmax < dmin then
cmin ← the cluster, Ct

umin
or Ct

vmin
, with the smallest number of elements.

18: W t+1 ← (Wt \{wcmin})


{zmax(cmax)}

else
20: c ←∼ U ([[1;k]]\{cmax})// Draw a random candidate

W t+1 ← (Wt \{wc})


{zmax(cmax)}

22: end if

{(Ct+1
i ,wt+1

i )|i = 1, . . . ,k}, EWt+1 ← kMeans(Z,A,Wt+1,dZ ×F)

24: t ← t +1
until EW t > EWt−1 // Accept the swap if the clustering distortion decreases

26: return {(Ct−1
i ,wt−1

i )|i = 1, . . . ,k}, EW t−1
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This is done by using the well known k-means clustering algorithm [14].The optimal
clusters are computed iteratively from the set of reference vectors : each datum is
associated to its closest reference vector; then, the minimizer of each cluster energy
is computed. In the basic Lloyd algorithm, both input data and reference vectors are
simply points in feature space (3-D space in our case) Z = F = R3 and the distance
function, dZ ×F(z,w) = ‖wi − z‖2 is the square Euclidean distance.

An important drawback of k-means is that is highly dependent on initialization.
Moreover, even if the algorithm is guaranteed to converge, it often gets stuck in
local minima of EW ∗ . To get out of the local minima a so called “swap” procedure
is used (line 7 to 25, alg. 2). One cluster is chosen, either randomly or because
of its short distance to a different cluster with more elements. Then, a simulation
is done by reallocating that reference vector to the region of space with maximum
error. If the resulting partition has a lower clustering distortion, the result is accepted
and a new simulation is done. Otherwise, the result is rejected and the procedure
stops. A reference vector metric is used to evaluate the similarity between clusters:
dF : (F×F) → R+. If Z = F it is possible to use dF = dZ ×F, to compute both the
distance between clusters and the distortion between a datum and its corresponding
cluster (line 16, alg. 2).

It is worth noting that this clustering framework naturally defines a hierarchy: a
cluster is the parent of all the clusters of the finer scale that are closer to it than to
any other cluster (see fig. 6).

5.2.1 K-Means Extension for Gaussian Inputs

In order for the covariance matrices of the clusters at the coarse scale to be as accu-
rate as possible, we need to use the information provided by the covariance matrices
at the finer scale. Therefore, we need a clustering algorithm that is able to properly
handle Gaussian input data Z = F = G 3 � {(μ,Σ)|μ ∈ R3 and Σ is SDP} 1. Davis
[15] has proposed such an algorithm, proving that it converges. The algorithm uses
the Kullback-Leibler divergence (Eq. 8) as a distance function dZ ×F for Gaussians:

DKL(z‖w) =
1
2

�
(μz− μw)T Σ−1

w (μz− μw)+ log
�

detΣw

detΣz

�
+ Tr

�
ΣzΣ

−1
w

�
−d

�

(8)

where d is the dimension. The metric is composed of three terms corresponding to
the Mahalanobis distance, the volume and the orientation, respectively.

The use of this metric in clustering means that the decision of grouping fine scale
clusters together does not only depend on their positions, but also on their sizes and
orientations. This property is particularly important for mapping, since it will tend to
preserve sharp features such as corners and edges because the distance between the

1 SDP matrices are a subset of SSDP matrices, meaning that analysis tools such as those
proposed for NDT [6], tensor voting [5] and quadric error [11] approaches, may be applied
to them.
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linear components of such features will increase with the angle difference between
them.

As explained in [15] the computation of the optimal reference vectors from a set
of Gaussians {z j = (μz j ,Σz j )| j = 1, . . .} weighted by positive reals (αz j ), is done in
two steps. First the optimal mean is computed using (9):

μ∗ =
1
jαz j

	
j

αz jμzj
, (9)

then the covariance matrix is given by (10):

Σ∗ =

�
� 1

j αz j

	
j

αz j(Σzj
+ μzj

Tμzj
)

�
�− (μ∗)T μ∗ . (10)

It is interesting to remark that, if the weights are defined as the number of samples
used to compute the Gaussians at the fine scales, then the optimal Gaussian is given
by the sample mean and covariance of the fine samples that compose the cluster.

5.3 Cluster Deletion

In order to account for dynamic objects that have been detected once and that are
not there anymore, we delete those clusters whose occupation has fallen below a
given threshold. As for cluster insertion, the remaining Gaussians are adjusted by
running the clustering algorithm.

5.4 Map Merging and Simplification

Now, we explain how to merge two maps whose cells contain multiple Gaussian
clusters. This is a form of map simplification since the goal is to delete redundant
cluster centers after the union of maps.

Merging is performed through straightforward application of the clustering algo-
rithm to every cell that appears as occupied in both maps. In order to fix the number
of clusters for a given cell, we select the maximum number in the two maps. This,
of course, can be later refined as described above. Thus, the main problem is the
initialization of the clustering algorithm.

The idea is to take all the clusters of both maps, then to compute the inter-cluster
divergences as in line 14 of Alg. 2. From there, the algorithm proceeds by replacing
by a single cluster, the pair of clusters that are separated by the smallest distance, and
then starting over until the target number of clusters is reached. This is done using
equations 9 and 10. The procedure is very efficient because no access to the finer
scales is required. After finishing the merging step, a run of the clustering algorithm
is executed to smooth out the result.

It is worth noting that the same process can be used to simplify the map when a
reduction in the number of clusters is required.
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Fig. 6 Cluster hierarchy. Up: coarse clusters are translated for better display.

6 Results

We use the Hausdorff distance to evaluate the results. This metric may be seen as
the worst-case distance. For two sets of points, it is obtained by computing, for ev-
ery point in one set, the distance to closest point in the other set, and then taking
the maximum of these distances. In our case, we compute this distance by sampling
Gaussians and rejecting points that fall outside the cells. The samples are directly
measured against point clouds in the case of real data. In the case of simulated data,
the ground truth is available in the form of the original mesh; the corresponding
points are obtained by representing each triangle with a number of samples. In all
cases, the number of samples is proportional to the size of the object being consid-
ered: the volume of the ellipsoids in the case of Gaussians and the area in the case
of triangles.

For each scale the cell side is ten times larger than the cell side at the finer scale.
For the 2-D data set (fig. 7) the finest side is 5 cm and for the 3-D data set the
finest side is 10 cm. Regarding the algorithm approach modules (Fig. 3) we set the
occupancy computation to take place at acquisition rate for two dimensional data
and every three acquisitions for the three dimensional case. As for refinement, the
algorithm has been configured to insert 4 clusters of the remaining Gaussian budget,
every 10 acquisitions.

The results we have obtained on real and simulated data sets exhibit similar ad-
vantages and drawbacks:

• Advantages:

– Accuracy vs map size: the method is able to significantly improve accuracy
with a relatively small increase in the size of the model. In our experiments
increasing the number of clusters by four leads to a factor of three reduction
of the Hausdorff distance.
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Fig. 7 Real 2-D dataset from [16]. The coarsest (blue ellipsoids) and finest (red ellipsoids)
maps are displayed. Black squares represent the coarse cells. All ellipsoids correspond to the
covariance matrices plotted with three times the square of the eigenvalues.

– Multi-scale error reduction: the huge size reduction ratio (104 to 1 in 2-D
and 108 to 1 in 3-D) between the finest and the coarsest scales is kept by
the refinement process, while considerably improving accuracy. For instance,
when refining the coarsest map in the 3-D data set, we increase the number of
clusters from 53 to 181 and reduce the error by 3. Note that large flat clusters
remain (in particular on the ground and on the walls ) while a lot of detail
clusters are added at poles and corners (fig. 1). This could not have been done
by simply adding an intermediate scale.

• Drawbacks: the main problem we have detected is that, sometimes, the Hausdorff
distance does not have a significant decrease when a cluster is added. We believe
that there are two reasons for this: first, an aliasing phenomenon that arises from
the fact that the underlying cells force the algorithm to artificially cut a big object
in pieces, some of which can be very small with respect to other Gaussians in the
same cell, leading to big error contributions because of the small size of the
covariance. The second reason is that, when the ’right’ number of clusters is not
yet reached, the resulting Gaussian may represent two separate clusters, yielding
a smaller but still important value for the Hausdorff distance.

7 Conclusions and Future Work

In this paper we have proposed a comprehensive framework to build two and three-
dimensional maps from range data. The proposed representation enhances the accu-
racy of previous approaches by enabling the presence of several Gaussians per cell.
These Gaussians are added by means of a refinement algorithm which inserts them
where the representation error is maximum. The algorithm makes use of a recent
Gaussian clustering approach that uses the Kullback-Leibler divergence as a dis-
tance function, thanks to this, our algorithm is able to preserve important features of
the environment (e.g. corners) that are usually smoothed out by other approaches.
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The framework provides a theoretically sound foundation for map merging. In order
to deal with moving objects and noise, our approach makes use of occupancy to de-
termine when to delete parts of the map that have become empty, as well as to adjust
the plasticity of the map. Experiments with real and simulated data show that, for
coarse scales, significant accuracy gains may be obtaining by a small augmentation
in the number of clusters. Moreover, when compared with existing approaches, the
additional computational cost that is required to insert these clusters is marginal.

Further work includes working towards real time mapping of huge streams of
3-D points by exploiting parallelization and hierarchical multi-scale update. Middle
term research will be directed to exploring the application of our approach to higher
dimensional spaces that include point properties such as color.
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Robust 3-D Visual SLAM in a Large-Scale
Environment

Jungho Kim, Kuk-Jin Yoon, and In So Kweon

Abstract. Motion estimation approaches enable the robust prediction of succes-
sive camera poses when a camera undergoes erratic motion. It is especially difficult
to make robust predictions under such conditions when using a constant-velocity
model. However, motion estimation itself inevitably involves pose errors that result
in the production of an inconsistent map. To solve this problem, we propose a novel
3D visual SLAM approach in which both motion estimation and stochastic filter-
ing are performed; in the proposed method, visual odometry and Rao-blackwellized
particle filtering are combined. First, to ensure that the process and the measurement
noise are independent (they are actually dependent in the case of a single sensor),
we simply divide observations (i.e., image features) into two categories, common
features observed in the consecutive key-frame images and new features detected
in the current key-frame image. In addition, we propose a key-frame SLAM to re-
duce error accumulation with a data-driven proposal distribution. We demonstrate
the accuracy of the proposed method in terms of the consistency of the global map.

1 Introduction

Simultaneous localization and mapping (SLAM) is the technique of building up a
map of the unknown environment while simultaneously keeping track of the current
position of the cameras or robots in the environment. This problem has attracted
immense attention in the robotics and computer vision communities. To solve the
SLAM problem, many methods based on the recursive estimation of the posterior
distribution have been introduced. Davison [1] successfully performed monocular
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SLAM by employing an extended Kalman filter (EKF) and adopting an initial-
ization process to determine the depth of the 3D landmarks by using the particle
filter-type approach. Eade et al. [2] utilized the FastSLAM-type particle filter in
single-camera SLAM to manage a greater number of landmarks because the com-
putational requirements of EKF-based SLAM approaches rapidly grow with the
number of landmarks. In [3], the authors described a visual SLAM algorithm that
is robust to erratic camera motion and visual occlusion by using efficient scale pre-
diction and examplar-based feature representations in conjunction with the use of
an unscented Kalman filter (UFK). Recently, Eade et al. [4] proposed a monoc-
ular SLAM system in which map inconsistencies can be prevented by coalescing
observations into independent local coordinate frames, building a graph of the lo-
cal frames, and optimizing the resulting graph. Paz et al. [5] presented a 6-degree-
of-freedom (DOF) visual SLAM system based on conditionally independent local
maps by using a stereo camera as the only sensor. Here, it is worth noting that
in most 3D visual SLAM approaches, a constant-velocity model is employed to
achieve the independence between the process and the measurement noise. How-
ever, in the constant velocity model, when cameras undergo sudden motion, these
SLAM approaches are highly prone to failure, resulting in inconsistencies in the
global map. In [6], the authors combined the particle filter-based localization with
the UKF-based SLAM problem to cope with erratic camera motion while maintain-
ing a small number of landmarks.

On the other hand, in the vision community, structure-from-motion (SFM) ap-
proaches have been studied independent of SLAM to estimate camera trajectories
by using only a sequence of images. For example, Nister et al. introduced ‘visual
odometry’ that estimates the relative movements of the stereo head in the Euclidean
space [7]. Recently, Zhu et al. [8] developed a helmet-based visual odometry system
that consists of two pairs of stereo-cameras mounted on a helmet; one pair faces for-
ward while the other faces backward. By utilizing the multi-stereo fusion algorithm,
they improved the overall accuracy in pose estimation. Here, we should note that in
many previous studies, optimization techniques such as bundle adjustment [9, 10]
have been adopted to avoid inconsistencies in the global map. However, it is not
feasible to perform conventional bundle adjustment in on-line approaches because
the computational cost rapidly grows with the number of 3D landmarks and their
observations (the image coordinates over the sequence).

2 Motivation

SLAM approaches are described by two probabilistic models — the process and
measurement models [11]. The current state, xt , is governed by the probabilistic
function of the previous state xt−1, the control input ut , and the additive process
noise wt as follows :

xt = f (xt−1,ut ,wt ) . (1)
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Fig. 2 Bayesian network that describes dependency between process and measurement noise

The measurements zt are also governed by the probabilistic function of the current
state and the additive measurement noise vt . We re-estimate the posterior distribu-
tion of the state produced from the process model by using the measurement model
as follows :

zt = h(xt ,vt) . (2)

where wt and vt represent the process and measurement noise, respectively; they are
assumed to be independent, as shown in Fig. 1.

In many visual SLAM approaches, a constant-velocity model that is independent
of sensor data is employed [1, 2, 3] or another sensor such as a wheel encoder [12],
or IMU [13] is used for the process model. However, if a camera undergoes sudden
motion, a constant-velocity model is not valid, and wheel encoders cannot be used
to obtain the 6-DOF poses of the camera. In contrast, motion estimation approaches
can be adopted to obtain good estimates for the 6-DOF pose under erratic camera
motion.
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However, on the other hand, if we use motion estimation methods for the pro-
cess model, the control input, ut , directly depends on measurements, and the in-
dependence assumption is no longer valid, as shown in Fig. 2. Moreover, SLAM
approaches involve some problems related to dimensionality when estimating the
6-DOF camera pose and 3D landmarks, and scalability caused by the large number
of landmarks obtained during long-distance navigation.

The contributions of the proposed approach compared to the previous methods
can be summarized as follows:

(i) We achieve the independence between the process and measurement noise
when using conventional motion estimation approaches for the process model in
SLAM. (Section 4.2).

(ii) We use the key-frame SLAM approach to reduce the number of camera poses
to be estimated in the path by generating the poses only at key-frame locations. In
addition, we propose a method that effectively updates the posterior distribution of
the camera path by using many observations obtained at non key-frame locations.
(Section 4.3).

(iii) We use a data-driven proposal distribution computed using the RANSAC
to efficiently represent the posterior distribution of the camera pose by a limited
number of particles. (Section 4.5)

(iv) We develop a novel SLAM approach by integrating the above contributions
to reduce the error accumulation involved in conventional motion estimation ap-
proaches.

3 The Visual Odometry System

Our visual odometry system consists of a few sub-components. Fig. 3 shows the
overall procedure followed in our visual odometry system.

Stereo matching using key-frame

images

Feature tracking between 

incoming images and a previous 

key-frame image

Motion estimation with the 3-point

algorithm and RANSAC

Designation of an 

incoming image 

as a key-frame 

Image
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Stereo matching using key-frame

images

Feature tracking between 

incoming images and a previous 

key-frame image

Motion estimation with the 3-point

algorithm and RANSAC

Designation of an 

incoming image 

as a key-frame 

Image

no yes

Fig. 3 Overall procedure followed in our visual odometry system
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3.1 Feature Extraction and Stereo Matching

For each stereo pair, we first extract corner points in the left image and then apply
the 1D KLT feature tracker [14] to stereo images to obtain correspondences. The 3D
coordinates of the matched corner points are used for map building and for motion
estimation.

3.2 Motion Estimation

As mentioned previously, Nister et al. [7] introduced a method called ’visual odome-
try’ for the real-time estimation of the movement of a stereo head or a single camera.
In this approach, the 3-point algorithm [15] is employed: the images of three known
world points are used to obtain up to four possible camera poses and more than three
points are required to automatically obtain one solution. Here, we also employ the
RANSAC [16] where a set of 3 world points and their image coordinates are ran-
domly selected to compute the relative camera pose. The estimated pose is evaluated
from other correspondences.

3.3 Key-Frame Designation

The number of tracked corners between an incoming image and a previous key
image is a measure that is used to determine the key-frame locations. If the number
of points tracked by the KLT tracker [17] is smaller than a pre-defined threshold, we
designate an incoming image as a key-frame image and estimate the relative pose
w.r.t the previous key-frame. This strategy can partially prevent error accumulation
because we determine the relative pose w.r.t the previous key-frame pose.

4 Stochastic Filtering

4.1 Rao-Blackwellized Particle Filter

We initially employ a Rao-Blackwellized particle filtering technique [18, 19], by
which a SLAM problem is decomposed into a localization problem and a collection
of landmark estimation problems that are conditioned on pose estimates as follows:

p(x1:t ,M|z1:t ,d1:t) =
p(x1:t ,M,z1:t ,d1:t)

p(z1:t ,d1:t)
= p(x1:t |z1:t ,d1:t) p(M|x1:t ,z1:t ,d1:t) .

(3)

where x1:t and M represent the camera path and a collection of 3D landmarks,
respectively. z1:t and d1:t indicate the observations and data association up to t.



524 J. Kim, K.-J. Yoon, and I.S. Kweon

1
n

2
n

k
n

Non key-frame location

2
u

3
u

5
u

4
u

Key-frame location

1+k
n

3−t
u

2
x

3
x

4
x

2−t
u

5
x=

3−t
x

2−t
x

1−t
u

t
u

1−t
x

4−
=

t
x

6
u

6
x

4−t
u

1
x=

⋅⋅⋅   

t
x=

1
n

2
n

k
n

Non key-frame location

2
u

3
u

5
u

4
u

Key-frame location

1+k
n

3−t
u

2
x

3
x

4
x

2−t
u

5
x=

3−t
x

2−t
x

1−t
u

t
u

1−t
x

4−
=

t
x

6
u

6
x

4−t
u

1
x=

⋅⋅⋅   

t
x=

Fig. 4 A sequence of frames divided according to key-frame and non key-frame locations

In FastSLAM [19], the path estimator is implemented using the particle filter.
The landmark estimator is implemented using a Kalman filter, with a separate filter
for different landmarks, because all the 3D landmarks are independent of each other
with a given path as shown in Eq. (4).

p(M|x1:t ,z1:t ,d1:t) =
L

∏
l=1

p(ml|x1:t ,z1:t ,d1:t) (4)

where ml represents each landmark in M.

4.2 Independence between Process and Measurement Noise

We estimate the camera path that consists of a sequence of camera poses at only
the key-frame locations instead of all the frames, as mentioned in Section 3.3.
In other words, we estimate the posterior distribution p(n1:k|z1:t ,d1:t) instead of
p(x1:t |z1:t ,d1:t). When designating an incoming image as a key-frame image, we
elongate the path, n1:k+1, by adding the relative pose, ut , w.r.t the last key-frame
pose, nk, to the previous path, n1:k, as shown in Fig. 4. We first divide the obser-
vations into two categories: observed features common to two key-frame images zc

and newly detected features in the current key-frame image zd (= z− zc), as shown
in Fig. 5. zc are used to evaluate the posterior distribution of the path n1:k, and zd are
used to estimate the relative pose, ut . Thus, we have

p(n1:k|z1:t ,d1:t) = p
(

n1:k|zc
1:t ,z

d
1:t ,d1:t

)
(5)

We then achieve the independence between the process and measurement noise by
simply dividing the observations instead of using another sensor, as shown in Fig. 6.
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4.3 Path Estimation for Key-Frame SLAM

The posterior distribution of n1:k with given z1:t and d1:t (correspondences between
the landmarks, M, and observations, zc

1:t ) is represented as a weighted set of parti-
cles:

p
(

n1:k|zc
1:t ,z

d
1:t ,d1:t

)
=∑

i

p
(

ni
1:k|zc

1:t ,z
d
1:t ,d1:t

)
δ
(
n1:k −ni

1:k

)
(6)

where δ (x) represents the Dirac delta function that returns 1 if x is zero, and 0
otherwise.

For non key-frame locations, we re-estimate the posterior distribution of the cam-
era path n1:k by marginalizing the relative pose ut using Eq. (7).
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p
(

ni
1:k|zc

1:t ,z
d
1:t ,d1:t

)
=

∫
p
(

ni
1:k,ut |zc

1:t ,z
d
1:t ,d1:t

)
dut

=∑
j

p
(

ni
1:k,u

j
t |zc

1:t ,z
d
1:t ,d1:t

) (7)

The posterior distribution of the relative pose is represented by a set of particles
coming from the RANSAC, where relative poses are estimated by selecting multiple
sets of minimal correspondences. Each pair of the minimal set provides a single
hypothesis on the relative pose, and its weight is computed according to the number
of inliers among all correspondences. This will be described in Section 4.6. We
compute the joint probability of a camera path, ni

1:k, and a relative pose, u j
t , using

Eq. (8).

p
(

ni
1:k,u

j
t |zc

1:t ,z
d
1:t ,d1:t

)
=

p
(

ni
1:k,u

j
t ,z

c
t ,z

d
t ,dt ,zc

1:t−1,z
d
1:t−1,d1:t−1

)
p(z1:t−1,d1:t−1,zt ,dt)

=η p
(

zc
t |ni

1:k,u
j
t ,dt

)
p
(

u j
t |zd

t

)
p
(

ni
1:k|zc

1:t−1,z
d
1:t−1,d1:t−1

)
(8)

where p(zc
t |ni

1:k,u
j
t ,dt) is a likelihood and p(u j

t |zd
t ) is the posterior distribution of the

relative pose, as defined by Eq. (11). p(ni
1:k|z1:t−1,d1:t−1) is the previous posterior

distribution up to t − 1, and η is a normalization term that makes the sum of all
probabilities 1.

In our key-frame SLAM approach, we can reduce the number of camera poses
to be estimated in the path and update the particles of the camera path whose poses
are generated at the key-frame locations by using many observations obtained at the
non key-frame locations.

4.4 Likelihood Estimation

The likelihood estimation is based on the number of inliers for each particle of the
camera pose. It is computed by examining how many scene points ml are projected
close to relevant measurements zl

t , as defined in Eq. (9).

p
(

zc
t |ni

1:k,u
j
t ,dt

)
=

L

∑
l=1

d
(

zl
t ,ml,n

i
1:k,u

j
t

)
/L

d
(

zl
t ,ml ,n

i
1:k,u

j
t

)
=

{
1 if

∥∥∥zl
t − z

(
ml,

(
ni

1:k ⊕u j
t

))∥∥∥ < el

0 otherwise

(9)

where (ni
1:k ⊕ u j

t ) indicates the global pose of the camera computed from the path

ni
1:k and the relative pose u j

t . d(zl
t ,ml ,ni

1:k,u
j
t ) indicates whether the point ml is an

inlier or outlier with respect to the observation zl
t and the camera pose (ni

1:k ⊕ u j
t ),
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and z(ml,(ni
1:k ⊕ u j

t )) is the projection of a scene point ml for a particular camera

pose (ni
1:k ⊕u j

t ). L is the number of scene points that are associated with the current
measurements, as defined by dt , and el represents the uncertainty in the projection
of the 3D scene point (see Section 4.8).

4.5 Outlier Rejection

We eliminate the outliers zo
t among zl

t that are not supported by any particles in the
computation of the likelihood values as shown in Eq. (10).

zo
t =

{
zl
t |∑

i
∑

j
d
(

zl
t ,ml ,n

i
1:k,u

j
t

)
= 0

}
(10)

Thus, we eliminate the outliers in zd
t using the RANSAC when estimating the rela-

tive pose, ut , and the outliers in zc
t when computing the likelihood values.

4.6 Data-Driven Proposal Distribution

It is especially insufficient to represent the posterior distribution using the limited
number of particles in the 6-dimensional space. In our approach, we use multiple
hypotheses that are generated in the RANSAC step. The RANSAC is an efficient
technique for determining a good hypothesis, but unfortunately the hypothesis se-
lected with the best score (the number of inliers) does not always correspond to
the correct estimate. Therefore, in our approach, instead of selecting an unique hy-
pothesis, we propagate multiple reasonable hypotheses to the subsequent frames to
re-estimate the posterior distribution by using more observations. Fig. 7 shows the
projections of 3D camera poses that have the best score, i.e., the maximum number
of inliers computed using the RANSAC. We represent the posterior distribution of
the relative pose using these hypotheses and their weights according to the number
of inliers, as shown in Eq. (11).

p
(

u j
t |zd

t

)
∝ N j

inlier

Ntotal
, ∑

j
p
(

u j
t |zd

t

)
= 1 (11)

where N j
inlier is the number of inliers for u j

t , and Ntotal is the total number of cor-
respondences in zd

t . This means that the multiple hypotheses on the camera pose
generated by the RANSAC are probabilistically evaluated by using more incoming
observations than just two views.
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Fig. 7 Hypotheses of the camera pose that have the same score when using the RANSAC

4.7 Path Generation

Whenever we have a new key-frame image, we elongate the path using the previous
posterior distribution of the camera trajectory and the relative pose as follows:

n
Nj×i+ j
1:k+1 ←

{
ni

1:k,
(

ni
1:k ⊕u j

t

)}
,

p
(

n
Nj×i+ j
1:k+1 |z1:t ,d1:t

)
∝ p

(
u j

t |zd
t

)
p
(
ni

1:k|z1:t ,d1:t
)
,

(12)

where Nj is the number of particles for the relative pose. Here, before adding the
relative pose to the particles of the camera path, we prune some hypotheses on the
camera path on the basis of their weights. In our implementation, only the 10 best
particles remain.

4.8 Landmark Estimation

When designating an incoming image as a key-frame image, we update the posterior
distributions of the landmarks. We model the posterior distribution of each landmark
p(ml|n1:k,zl

1:k,d1:k) defined in Eq. (4) using a optimized 3D landmark location, m̂l ,
and its uncertainty ,el , in the image space; we re-triangulate 3 observations (first two
stereo views and the last view) corresponding to each landmark for each particle of
the camera path by using SVD [9] to compute m̂l , as shown in Fig. 8, and el is
determined by the projection error of m̂l for the pose of the last key-frame image
nN , as shown in Eq. (13).
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el =
∥∥∥zl

N − z(m̂l,nN)
∥∥∥+ e0 (13)

where N is the number of observations at the key-frame locations for each landmark,
and e0 is a pre-defined initial projection uncertainty of the landmark.

5 Experimental Results

For experiments, we used a stereo camera with a 12cm baseline and a 6mm lens,
which provide a narrow field of view. The resolution of the images is 320× 240
pixels. Fig. 9 shows the path obtained by using visual odometry (red line) and the
hypotheses on the trajectory computed by using the proposed SLAM method (blue
lines). For this experiment, we captured 552 images by driving a robot over a dis-
tance of 10m in an indoor environment and to evaluate the performance, we added
the first image to the end of the image sequence so that the initial and final locations
are identical. At the final location, we choose the path nm

1:k and the relative pose un
t

that maximize the posterior distributions as follows:

m = argmax
i

p
(
ni

1:k|z1:t ,d1:t
)
, where p

(
ni

1:k|z1:t ,d1:t
)

=∑
j

p
(

ni
1:k,u

j
t |z1:t ,d1:t

)

n = argmax
j

p
(

u j
t |z1:t ,d1:t

)
, where p

(
u j

t |z1:t ,d1:t

)
=∑

i
p
(

ni
1:k,u

j
t |z1:t ,d1:t

) (14)

Table 1 lists the errors of the final camera pose for visual odometry and the pro-
posed method. Fig. 11(a) shows the path computed by visual odometry and the cor-
responding global map obtained by integrating the structures computed by stereo
matching over time. In this experiment, many images (102 from the 312 images)
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Fig. 9 Camera trajectories estimated by visual odometry only (red line) and by using the
proposed method (blue lines)

Table 1 Pose errors for visual odometry and the proposed method (mm)

x y z total
visual odometry only -182.08 -147.70 -50.50 239.83

proposed -53.67 5.33 30.57 61.99

were influenced by motion blur because we captured images by using a hand-held
stereo camera that underwent erratic motion; the images are shown in Fig. 10. In
addition, a camera re-visited the scene where it first observed. We can easily find
the inconsistency in the global map caused by error accumulation of the path. How-
ever, the map produced by using the proposed method is more consistent than that
obtained by visual odometry, as shown in Fig. 11(b). Here, we randomly selected
500 sets of 3 correspondences to obtain 500 hypotheses of which we only chose a
maximum of 50 hypotheses on the basis of their weights (the number of inliers).
Fig. 12(a) shows the map computed by visual odometry using the same sequence of
images. In this experiment, we generated only 300 hypotheses of which we retained
a maximum of 50 hypotheses on the basis of their weights. Because the number
of hypotheses is small, this map has a larger error than the previous result. How-
ever, we can compensate for error accumulation by using the proposed method, as
shown in Fig. 12(b). Moreover, we can observe that the results obtained by using the
proposed method are more consistent than those obtained by visual odometry be-
cause the proposed method is not strongly affected by randomness. Fig. 13 (a) and
(b) show the global maps and the camera paths computed by visual odometry and
by using the proposed method, respectively. For this experiment, we captured more
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Fig. 10 Some images affected by motion blur

(a) The top-down view of the 3D map
and camera trajectory estimated by visual
odometry

(b) The top-down view of the 3D map
and camera trajectory estimated by the pro-
posed method

Fig. 11 The top-down view of the 3D map and camera trajectories obtained for 500 hypothe-
ses in the RANSAC step

than 3000 images while walking more than 200 m in the outdoor environment with
the stereo camera in hand. We can see that the results obtained with the proposed
visual SLAM approach, in which the visual odometry and stochastic filtering are
combined, are much better than those obtained by only visual odometry. To evalu-
ate the consistency, we overlap the maps and paths with the corresponding google
map as shown in Fig 13(c) and (d). The proposed SLAM algorithm can process
approximately 10 frames per second when using a 2.4 GHz CPU. Table 2 lists the
computational complexities for visual odometry and stochastic filtering.
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(a) The top-down view of the 3D map
and camera trajectory estimated by visual
odometry

(b) The top-down view of the 3D map
and camera trajectory estimated by the pro-
posed method

Fig. 12 The top-down view of the 3D map and camera trajectories obtained for 300 hypothe-
ses in the RANSAC step

Table 2 Average processing time for visual odometry and proposed stochastic filtering when
running 500 frames (ms)

operation processing time
visual odometry (partially 27.655

implemented by MMX programming)
stochastic filtering 75.733

total 103.388

6 Conclusion

We have presented a novel 3D visual SLAM method in which visual odometry and a
stochastic filtering approach are combined to cope with sudden camera motion and
to obtain consistent maps. To ensure that the process and the measurement noise are
independent, we simply divide observations into two categories: common features
observed in the consecutive key-frame images and new features detected in the cur-
rent key-frame image. The proposed stochastic filtering technique can be adopted in
existing motion estimation approaches to avoid error accumulation. In addition, our
approach is especially efficient in the following sense:

• Dimensionality — we use a data-driven proposal distribution computed by the
RANSAC approach with the 3-point algorithm to efficiently represent the poste-
rior distribution of the camera pose.
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(a) The top-down view of the 3D map and
the key-frame locations estimated by visual
odometry

(b) The top-down view of the 3D map and
the key-frame locations estimated by using
the proposed method

(c) The results obtained by visual odometry
overlapped with the corresponding google
map

(d) The results obtained by using the pro-
posed method overlapped with the corre-
sponding google map

Fig. 13 The global map and the key-frame locations for the outdoor environment
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• Scalability — we reduce the number of possible camera poses in the path by
formulating the key-frame SLAM, and our SLAM approach is based on the Rao-
Blackwellized particle filter that can manage more landmarks than the EKF and
particle filter-based approaches.

Acknowledgements. This work was supported by National Strategic R&D Program for In-
dustrial Technology and a project for Mega City Modeling, Korea.
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Towards Large-Scale Visual Mapping and
Localization

Marc Pollefeys, Jan-Michael Frahm, Friedrich Fraundorfer, Christopher Zach,
Changchang Wu, Brian Clipp, and David Gallup

Abstract. The topic of this paper is large-scale mapping and localization from im-
ages. We first describe recent progress in obtaining large-scale 3D visual maps from
images only. Our approach consists of a multi-stage processing pipeline, which can
process a recorded video stream in real-time on standard PC hardware by leveraging
the computational power of the graphics processor. The output of this pipeline is a
detailed textured 3D model of the recorded area. The approach is demonstrated on
video data recorded in Chapel Hill containing more than a million frames. While for
these results GPS and inertial sensor data was used, we further explore the possibil-
ity to extract the necessary information for consistent 3D mapping over larger areas
from images only. In particular, we discuss our recent work focusing on estimating
the absolute scale of motion from images as well as finding intersections where the
camera path crosses itself to effectively close loops in the mapping process. For this
purpose we introduce viewpoint-invariant patches (VIP) as a new 3D feature that we
extract from 3D models locally computed from the video sequence. These 3D fea-
tures have important advantages with respect to traditional 2D SIFT features such as
much stronger viewpoint-invariance, a relative pose hypothesis from a single match
and a hierarchical matching scheme robust to repetitive structures. In addition, we
also briefly discuss some additional work related to absolute scale estimation and
multi-camera calibration.

1 Introduction

In recent years there has been a growing interest in obtaining realistic visual rep-
resentations of urban environments. This has mainly been driven by the need to
provide a visual and spatial context for information on the internet. While currently
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most existing commercial products are limited to aerial views, such as Google Earth
and Virtual Earth/Bing Maps, or only provide 2D visualization, such as Google
Street View, the most effective and flexible representation would be a photo-realistic
ground-level 3D model. Besides virtual exploration, this would also support many
more applications such as for example autonomous navigation, visual localization
and mobile augmented reality.

There are two main types of approaches being explored for capturing realistic 3D
models of large-scale urban environments. One type uses LIDAR to capture the 3D
geometry and images to capture the appearance, while the other type of approach
uses solely images to capture both 3D geometry and appearance simultaneously. An
early example of a LIDAR-based approach is the work by Früh and Zakhor [13].
The earliest examples for image-based 3D modeling of urban scenes probably dates
back about a hundred years to the origin of photogrammetry. However, only in the
last decade or two has automation made it feasible to approach large scale ground-
based modeling of urban scenes from images. The early approaches for automated
3D modeling from images such as the ones proposed by Tomasi and Kanade [48]
and Pollefeys et al. [34] were limited to modeling more or less what could be seen
in a single image. Our more recent approaches could model larger scenes that could
not fully be seen from a single view-point [35], but was much too slow to use for
larger scale reconstructions as processing was in the order of a minute per frame. In
this paper, we will focus on our most recent approach [36], which leverages the com-
putational power of the graphics processing unit (GPU) to recover 3D models from
urban imagery at video-rate on a standard PC. The GPU is particularly well-suited
to achieve high performance for many image processing tasks such as tracking or
matching features [43, 59, 60, 53] and stereo matching [55, 57]. Other approaches
to perform 3D reconstruction of urban scenes from images have recently been pro-
posed, but they mostly generate simplified models without a lot of detail, e.g. [8, 54],
or require human interaction [44]. Another interesting approach for obtaining visual
3D models leverages the emergence of community photo-collections [45, 25, 1].
These approaches, however, are mostly limited to landmark structures for which
many photographs are available.

The simplest approach to obtain consistent maps over large scales is to use a
Global Positioning System (GPS), but this can be problematic for some applica-
tions such as mapping of indoor spaces, dense urban neighborhoods or other areas
where the GPS signals are weak or unavailable (GPS signals can be easily jammed).
While structure-from-motion allows to obtain consistent local 3D maps, over long
distances errors in position, orientation and scale accumulate. Therefore, an im-
portant challenge in large-scale reconstruction and mapping consists of obtaining
self-consistent maps. One of the most important steps to achieve this is to close
loops when the camera revisits the same location. Many approaches have been pro-
posed based on SIFT [26] and other invariant features. Specific approaches have
been proposed to efficiently match novel images to large number of previously ac-
quired images [32, 12, 9, 19]. However, these approaches all rely on the ability to
generate enough potential correspondences in the first place. This can be a signif-
icant problem in scenarios where the viewing angle can be very different when a
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place is revisited. Our approach introduced in Wu et al. [51] proposes to use the
local geometric reconstruction to extract visual features on the 3D surface instead
of in the images (i.e. we extract features in ortho-rectified patches). This provides
viewpoint invariance and allows for direct estimation of a 3D similarity transforma-
tion from a single match, which enables robust matching even with very few correct
correspondences.

The remainder of the paper is organized as follows. In Section 2 we introduce
our video-rate urban 3D modeling pipeline. In Section 3 we present our approach to
loop-closing under widely varying viewpoints. Section 4 discusses additional issues
related to calibration of multi-camera systems and solutions to the problem of ab-
solute scale estimation from video. A discussion of open issues and the conclusion
are given in Section 5.

2 Real-Time Urban 3D Modeling from Images

This section describes the different steps of our 3D modeling pipeline. The input to
our system consists of a video stream combined with a GPS and an Inertial Navi-
gation System (INS), although we are currently exploring how to perform drift free
large scale reconstruction without these additional sensors (see Section 3 for more
details). The output is a detailed dense textured 3D surface reconstruction of the
recorded urban scene. An example is shown in Fig. 1. The example was recorded
in Victorville, CA, on the site of the DARPA Urban Challenge. As our goal in this
case was to reconstruct 3D models of the facades (as opposed to robot navigation
for example), our cameras were oriented to the side of the vehicle. For this example
the camera recorded 170,000 video frames at 30Hz with a resolution of 1024×768.
This means that at 50 km/h an image is recorded approximately every 50 cm along
the path of the vehicle. The small baseline simplifies feature tracking for motion

Fig. 1 Urban 3D modeling from video: input video frames (top), top view of 3D model
of area of Victorville, CA, (bottom-left) and detailed frontal view of two buildings (bottom-
right)
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Fig. 2 Processing modules and data flow of our 3D reconstruction pipeline.

estimation. It also ensures very high overlap between the images. The high redun-
dancy facilitates the use of simple multi-view stereo algorithms that can be imple-
mented very efficiently on the GPU. In Fig. 2 an overview of the different stages of
our video processing pipeline is given. For efficiency a separate input thread deals
with reading the video data from disk. The first computing module extracts fea-
tures that are then tracked in subsequent frames. To achieve a high performance,
this step is performed on the GPU. Next, the feature tracks are used in comple-
ment with the INS/GPS system to determine the precise motion of the vehicle and
to localize the cameras in world coordinates. At the same time, the 3D location of
the tracked features is recovered. This is then used by the next module to obtain a
range for the depth of the scene, as well as to extract the dominant orientations of
the facades. This information is used to set up the dense multi-view stereo mod-
ule. This step is followed by a robust depth-map fusion processing, which computes
consensus depth-maps by making use of visibility constraints. Both of these steps
are efficiently performed on the GPU. Finally, the fused depth-maps are triangulated
to obtain a 3D surface mesh. Double representations are removed and a subset of
the original images are used as textures for the 3D model. The next sections are
discussing the main processing steps in more detail.
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2.1 2D Feature Tracking and Motion Estimation

The first step to determine the motion between consecutive video frames is to ex-
tract salient image features and track them from frame to frame. For this purpose
we use a variant of the well-known Kanade-Lukas-Tomasi (KLT) tracker [41]. To
deal with a mix of sunlit and shadow regions, it is important to vary the exposure
during recording. In [22] we showed that a consistent global exposure change for
the image can efficiently be recovered jointly with the feature displacement and that
this performs better than brightness invariant approaches. Our current pipeline uses
a very fast KLT implementation, which tracks 1000 features with more than 200Hz
in 1024×768 images [59]. This implementation is available in open-source [60].

The next step consists of determining the motion of the camera. As feature
tracks can drift and become erroneous, it is important to use robust techniques
for motion estimation. For this purpose we use the Random Sampling Consensus
(RANSAC) [10]. As this is an essential algorithm for many computer vision sys-
tems, many improvements have been proposed. We have for example proposed an
approach to deal with quasi-degenerate cases such as scenes where most points lie
on a single plane [11] (as these violate some assumptions of the basic algorithm
and tend to confuse RANSAC into stopping too early). As hypotheses generated by
RANSAC are dependent on a minimal sample, they can often strongly be affected
by noise and not allow to directly identify all the inliers. We have recently also pro-
posed a RANSAC algorithm, which properly takes the measurement uncertainties
and the transformation uncertainties into account to early identify additional poten-
tial inliers and gain up to an order of magnitude in efficiency [38]. In the current
system, we use a RANSAC approach, which combines the benefits of several pre-
vious approaches to minimize the amount of processing [37]. Knowing the internal
calibration of the cameras used we deploy minimal solvers to estimate the relative
motion from five points [30] and perform pose estimation from three points [17] as
hypothesis generators for RANSAC. The initial triangulation of feature points uses
the optimal approach proposed in [18]. Our approach is similar to the visual odom-
etry approach described in [31]. However, this approach only provides satisfying
results over relatively short distances. To obtain better results from video only, it is
important to perform visual loop-closure as will be discussed in Section 3.

For large scale reconstructions our current system uses a Kalman filter on the
2D feature tracks and the GPS/INS data to estimate geo-located camera poses and
3D feature locations. In Fig. 3 the benefit of fusing the GPS/INS data with the 2D
feature tracks in a Kalman filter is illustrated. In addition, as a by-product of the mo-
tion estimation, we also obtain the 3D location of the tracked salient scene features.
This is very useful as it provides us with a range of interest for the dense stereo
matching. In addition, we extract the dominant orthogonal facade orientations from
the salient 3D feature points to facilitate the generation of plane hypotheses aligned
with building facades as this improves the result of the stereo algorithm [14]. The
vertical facade direction is obtained from the INS system or by detecting the corre-
sponding vanishing points. The feature points are projected on a horizontal plane.



540 M. Pollefeys et al.

Fig. 3 Illustration of benefit of combining video and GPS/INS for motion estimation. The
central track of coordinate frames, which exhibits 10cm vertical drift while the vehicle
stopped at a red traffic light, corresponds to the GPS/INS only motion estimation. The coor-
dinate frames in the front and back represent the results from combined GPS/INS and video
tracking.

For each possible orientation in the plane the histograms of x and y coordinates are
computed and the orientation for which these histograms have the lowest entropy is
selected. This process is illustrated in Fig. 4.

Fig. 4 Top-view of 3D feature locations for two different orientations together with his-
tograms of x and y coordinates. The minimal histogram entropy configuration (shown on the
right) is selected.

2.2 Fast Multi-view Stereo Matching

To obtain a detailed reconstruction of the surface geometry the sparse set of points
reconstructed previously is insufficient. For each video frame and its temporal
neighbors we perform multi-view stereo matching to compute the depth for ev-
ery pixel. Our approach is based on the GPU-friendly multi-view stereo approach
proposed in [55, 57]. For a reference video frame its neighbors are identified and
a collection of scene planes is hypothesized which samples the depth range suffi-
ciently densely to avoid disparity aliasing. For a particular plane each neighboring
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image is now projected first on the plane and from there into the reference image
where its photo-consistency with respect to the reference image is evaluated. This
is done in a single image warping operation during which the exposure change is
also compensated. For each pixel the sum of absolute differences is computed. In
practice, this is done separately for the reference image and the five previous images
and for the reference image and the five succeeding images to provide robustness to
occlusions. The minimum of the previous images costs and the succeeding images
cost is kept. For each pixel costs are aggregated over a correlation window and the
plane with the lowest cost is selected for each pixel independently. From this plane
labels it is simple to obtain the depth for each pixel. The same process is repeated
for the next frame. A rolling buffer is used to store the eleven frames currently used
on the GPU so that each time only one new frame needs to be transferred. More
details on this algorithm are provided in [36, 21]. For urban scenes with dominant
facade orientations, better results are obtained by using plane hypotheses aligned
with the facades. This approach is described in detail in [14]. In this case three sets
of planes are hypothesized, two for orthogonal facade directions and one parallel
with the ground-plane (not necessarily horizontal in our implementation). For each
pixel one can now obtain a depth and a normal. This approach is illustrated in Fig. 5.
It can be seen from the figure that the orientations obtained by this approach are
largely correct. The depth results are also better as typically the lowest cost is now
achieved for the whole aggregation window consistently for the correct depth and
orientation. To help resolve the ambiguity in homogenous regions, we add a prior,
which is derived from the distribution of the sparse feature points along the different
axes as illustrated in Fig. 4. If needed, this stereo algorithm can also be accelerated
significantly by only considering the planes with the highest prior likelihoods. One
important issue with stereo is that the accuracy degrades quadratically with depth.
In many application though the goal is to recover a reconstruction of the scene up
to a pre-determined accuracy. In these cases fixed-baseline stereo often has trouble
reaching the required depth resolution in the far range of the working volume, this
often implies a prohibitive amount of computations are performed in the near range.
In [15] we proposed an approach to vary both baseline and resolution used through-
out the working volume. The discretization of space for both the standard algorithm
and our algorithm are shown in Fig. 6. The amount of computations and accuracy
are proportional to the density and shape of the volume elements respectively.

Fig. 5 Multi-view stereo with multiple surface orientation hypotheses: original video frame
(left), depth map (middle), orientation map (right).
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Fig. 6 Discretization of space and results for standard stereo (left) and variable base-
line/resolution stereo (right).

Once a depth map has been computed for each video frame, it is important to
reconcile overlapping depth maps. This is performed with a robust visibility-based
depth map fusion approach. Different types of visibility-based conflicts are shown
in Fig. 7. On the left current hypothesis A conflicts with the point A′ obtained from
view i and we say the free-space of A’ is violated. On the right current hypothesis C
would be occluded in the reference view by C′ obtained from view i. The approach
can very efficiently be implemented on the GPU. More details on this approach
can be found in [28]. Another very interesting depth-map fusion approach, which
minimizes the TV − L1 was recently proposed by Zach et al. [58]. While stereo
depth-maps were computed for every frame and had a lot of overlap (every point
on the surface is seen in 10-30 frames), fused depth-maps are only computed for a
subset of these frames. The goal is to maintain a factor of 2-3 overlap so that regions
of the scene that are occluded by foreground objects in one view can be filled in from
neighboring fused depth-maps.

Fig. 7 Visibility-based constraints for depth-map fusion.
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Fig. 8 Firestone evaluation: reconstructed 3D model (top-left), ground-truth 3D model (top-
right), color-coded accuracy evaluation (bottom-left) and color-coded completeness evalua-
tion (bottom-right). Blue indicates errors below 10cm while red indicates errors larger than
50cm.

2.3 3D Urban Modeling

Starting from the fused depth maps, a 3D mesh is obtained by overlaying a triangular
mesh on the image and projecting it into space according to the depth. An efficient
multi-resolution quad-tree algorithm is used to minimize the number of triangles in
the mesh [33]. As consecutive fused depth-maps still have a significant amount of
overlap, we remove double representations in a post-processing step.

To evaluate the quality of our results, our 3D reconstruction results were com-
pared to a ground-truth model obtained through a professional survey. The results of
this comparison are shown in Fig. 8. The accuracy was evaluated by determining the
closest point on the ground-truth model for each of the vertices in our model. Com-
pleteness is determined similarly by determining if for every vertex of a regular sam-
pled ground-truth model there is a point on our model within some pre-determined
distance (30cm in our case). The median and mean error for our approach on this
data set are 2− 3cm and 5− 6cm respectively, depending on the settings, and the
completeness varies from 66%− 73%. The relatively low completeness is mostly
due to unobserved surfaces and saturated white regions for which no surface was
reconstructed.

The complete 3D urban modeling pipeline can process incoming 1024 × 768
video streams collected at 30 frames per second in real-time on a single PC (with
stereo and depth-map fusion being run at half-resolution). This was for example
done for a 1.3 million frame data set captured in Chapel Hill. In Fig. 9 the path of
the vehicle is shown on the map and a top view of the complete reconstruction is
shown. In Fig. 10 a top view of a one reconstruction segment is shown, as well as
facade views of two buildings from that segment.
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Fig. 9 Map of Chapel Hill, NC, with vehicle path overlaid (left) and top view of recovered
reconstruction (right).

Fig. 10 Top view of segment of the Chapel Hill reconstruction with two views of facades.

3 Visual Loop-Closing

3D models that are created sequentially from input images are always subject to
drift. Each small inaccuracy in motion estimation will propagate forward and the
absolute positions and motions will be inaccurate. It is therefore necessary to do a
global optimization step afterwards to remove the drift. This makes constraints nec-
essary that are capable to remove drift. Such constraints can come from global pose
measurements like GPS, but more interesting is to exploit internal consistencies like
loops and intersections of the camera path. In this section we will therefore discuss
solutions to the challenging task of detecting loops and intersections and using them
for global optimization.
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3.1 Loop Detection Using Visual Words

Visual loop detection can be phrased as a location recognition problem as described
in [39]. The camera path is split up into distinct locations and the visual appearance
of each location is described by visual features. A similarity matrix based on the
visual features is computed for all image pair combinations. Locations that show a
high similarity are considered as loop hypothesis. Each loop hypothesis is then ver-
ified by a geometric consistency check. For this the epipolar geometry is computed
from feature matches between the two locations. Loop hypotheses that pass the ge-
ometric verification threshold are further used for the loop closing process. For an
efficient computation of the similarity matrix the visual word based approach origi-
nating from [32] is used. The approach quantizes a high-dimensional feature vector
(e.g. SIFT) by means of hierarchical k-means clustering, resulting in a so called hi-
erarchical vocabulary tree. The quantization assigns a single integer value, called a
visual word (VW), to the originally high-dimensional feature vector. This results in
a very compact image representation, where each location is represented by a list of
visual words, each only of integer size. The list of visual words from one location
forms a document vector, which is a v-dimensional vector where v is the number
of possible visual words (a typical choice would be v = 106). The document vector
is a histogram of visual words normalized to 1. To compute the similarity matrix
the L2 distance between all document vectors is calculated. The document vectors
are naturally very sparse and the organization of the database as an inverted file
structure makes this very efficient. To describe the visual appearance of a location
we propose the use of local features. Techniques for feature matching using scale
invariant or affine invariant local features have already achieved a level of maturity
and can be considered reliable enough for this application [29]. For each location a
set of discriminative and descriptive visual features is extracted. In our approach we
use SIFT features [26] or, when a local 3D model can be obtained, VIP features [51]
(see next section).

Fig. 11 shows the effect of loop closing on a 400m long trajectory of a ve-
hicle equipped with a camera. The path in blue is from the initial camera poses
from structure-from-motion. After filtering the obvious matches from neighboring
frames, one loop hypothesis, where the vehicle returns to the start position, can be
verified. Loop closing is performed using bundle adjustment and the result is the
red trajectory in Fig. 11, which shows that the loop is nicely closed. For this ex-
periment bundle adjustment [49] was used to optimize the camera positions and the
3D features. The detected loops were added as constraints to the bundle adjustment
optimization. We provide open source code for sparse bundle adjustment [60].

For the fast computation of SIFT features, we make use of SIFTGPU [53], which
can for example extract SIFT features at ∼ 10Hz from 1024× 768 images. This
was one of the key components enabling the real-time localization system described
in [19]. It is also very important for efficient large-scale reconstruction from commu-
nity photo collection [25]. An example of such a reconstruction is shown in Fig.12
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Fig. 11 Camera positions and triangulated features after loop closing (red). Initial estimates
are shown in blue and black. The loop is nicely closed.

Fig. 12 Reconstruction of part of San Marco square in Venice from a community photo
collection.

3.2 Viewpoint Invariant Patches (VIP) for Loop Closing and 3D
Model Registration

Almost all existing approaches attempt to close loops by matching 2D image fea-
tures only [9, 39]. However, in most applications scenarios for loop closure and
localization images are not recorded in isolation. Indeed, a robot navigating through
an environment typically collects videos. This imagery is often sufficient to build a
local 3D model at each pass using structure from motion and dense stereo match-
ing techniques as explained earlier in this paper. Therefore, we propose to leverage
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Fig. 13 While SIFT features are extracted from 2D images and are not fully invariant to view-
point (left), VIP features are extracted on the 3D surface which provide viewpoint invariance
and enables single match hypotheses (right).

local 3D scene geometry to achieve viewpoint invariance. For this purpose we have
introduced Viewpoint Invariant Patches (VIP) in [51]. VIP’s are textured 3D patches
extracted from the local textured 3D model in a viewpoint invariant way. Conceptu-
ally, our goal is to extract features directly on the surface, in stead of in the images.
In urban areas with many planar regions, this can be done efficiently by generating
an ortho-texture for each planar surface and then extract features from those texture
maps. As the ambiguity for a 3D model extracted from images is a 3D similarity
transformation (i.e. scale, orientation and location), for features on a 2D plane em-
bedded in the 3D world, 2D similarity invariance is sufficient to deal with viewpoint
changes. Therefore, extracting SIFT features (which are designed to be invariant
to 2D similarities) from the ortho-textures provides us full viewpoint invariance (up
to view-dependent effects due to non-Lambertian surface reflectance and non-planar
details). In addition, a single VIP correspondence is sufficient to uniquely determine
a full 3D similarity (scale is obtained from the scale of the feature, orientation from
the patch normal and the dominant texture gradient in the patch, location from the
keypoint at the center of the patch). The VIP concept is illustrate in Fig. 13

The viewpoint invariance of the VIP features makes them a perfect choice to
be used for 3D model registration or loop closing. In the case of 3D model reg-
istration we seek a similarity transformation between two overlapping 3D models.
For this, VIP features are extracted from each model and subsequently matched.
It should be noticed that the relative scale between all matching features extracted
from two separate models should be the same. Similarly, the relative rotation be-
tween models should also be constant for all patches. Therefore, these can be ver-
ified independently. This allows a very effective Hierarchical Efficient Hypothesis
Testing (HEHT) scheme. We first verify relative scale by finding the dominant scale
and remove all potential feature matches with inconsistent scales. Next, we find
the dominant rotation and eliminate outliers and finally we verify inliers for the
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Fig. 14 3D registration of 2 3D models with 45◦ viewing direction change using VIP fea-
tures.

dominant translation. It turns out that is approach is particularly effective on urban
scenes with many repeating structures and only few good matches supporting the
correct hypothesis. The reason is that repeated structures generally support the right
scale and –for structures repeating on the same or parallel planes– also the right
orientation. For the example shown in Fig. 14 (left), there were 2085 potential VIP
matches, 1224 scale inliers, 654 rotation and scale inliers and 214 true inliers. For
the example shown on the right of Fig. 14 there were 494 potential VIP matches, 141
scale inliers, 42 rotation and scale inliers and 38 true inliers. For this last example
alternative 2D registration approaches failed to return any valid solution. The view-
point invariance allows the detection of loops with much more significant viewpoint
changes. The hierarchical matching enables robustness to repetitive structures and
very high levels of outliers (> 90%).

4 Additional Calibration and Motion Estimation Issues

To be able to fuse the models of the different cameras of our capture system into one
coherent 3D model we need to determine a common coordinate system for the re-
constructions of each individual camera. In the case of known GPS tracking this can
be solved by calibrating all cameras internally and registering them into a common
coordinate system for which relative scale to the world coordinate system is known,
as well as translation and orientation difference to the world coordinate system. In
Section 4.1 we provide more detail about the method for internal calibration and ex-
ternal calibration of all cameras into a single common coordinate system. Even with
a calibrated (multi-)camera system it is often not straight-forward to determine the
scale of the vehicle motion. In Section 4.2 we discuss several approaches to obtain
the absolute scale of motion from cameras mounted on a vehicles.
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Fig. 15 The calibration setup up for a six camera head is shown on the left. On the right a set
of example calibration frames as observed by the cameras are provided.

4.1 Mirror-Based Calibration of Non-overlapping Cameras

For many mapping and robotics applications a wide field of view (FOV) is required
of the cameras system. This can be achieved using omnidirectional sensors such as
cata-dioptric or fish-eye lenses, or by using camera clusters. In both cases calibration
poses specific challenges. In [46, 47] we have proposed a simple self-calibration
approach for rotating omnidirectional cameras based on multi-view geometry. When
high resolution and high frame rates are desired, camera clusters can be a better
choice. To obtain the external calibration for the different cameras of the capture
system traditional calibration pattern based methods [50, 61] can not be used due
to the fact that the fields of view of the cameras have no overlap. To establish an
external calibration of all camera into a single coordinate system we deploy our
recently proposed technique for the calibration of non-overlapping cameras using a
mirror and a standard calibration pattern [24]. Our technique places one calibration
pattern in a fixed position to define the reference coordinate frame for the external
calibration of the system. This pattern is typically not seen by any of the cameras or
only a very few cameras. Then we use a planar front surface mirror to enable each
camera to observe the calibration pattern under multiple mirror positions. Since for
the internal calibration of the cameras the mirroring of the cameras does not have
any influence we can use any standard technique [50, 61] for pattern based internal
calibration directly.

A byproduct of these standard calibration methods is the camera position for
each frame captured that shows the pattern reflected by the mirror. Given that the
camera frame shows the reflected pattern the reconstructed camera pose for each
frame is also the reflected camera pose. This set of reflected camera poses describes
a three-dimensional family of camera poses corresponding to the three degrees of
freedom for the mirror position, which are the two off-mirror plane rotations and
the translation along the mirror normal. Since the mirror positions are unknown



550 M. Pollefeys et al.

from the frames captured for the calibration the camera position in the pattern co-
ordinate system can not be computed through inverse reflection. We showed that in
fact the observed three dimensional family of mirrored camera poses determines the
real cameras position and orientation uniquely without requiring known mirror po-
sitions [24] from as few as two images (five when using only linear equations). The
calibration accuracy obtained through this method are comparable to the precision
obtained from standard calibration methods like [50, 61]. One could also imagine a
self-calibration approach based on the shared motion (up to the relative pose) of the
different cameras in the cluster. This idea was explored for rotated cameras [3] and
for orthographic cameras [2], but more work is needed for an approach that works
well in the general case. In the next section we discuss how to obtain the true world
scale even in the absence of GPS measurements.

4.2 Absolute Scale Estimation of Motion

The standard way to get the absolute scale in motion estimation is the use of a
stereo setup with a known baseline, e.g. [31, 7]. The fields of views of the two cam-
eras need sufficient overlap and motion estimation is done by triangulating feature
points, tracking them, and estimating new poses from them. In [4, 20] we developed
algorithms that could compute the absolute scale of motion even without overlap
between the two cameras. From independently tracked features in both cameras and
with known baseline, full 6DOF motion can be estimated. Another approach [6]
makes use of a minimally overlapping stereo pair, which maximizes the field of
view of the combined system but leaves some minimal overlap to help compute the
absolute scale.

For the case of interest in this paper, where the camera is mounted on a wheeled
vehicle, we demonstrated recently that it is even possible to compute the absolute
scale of the motion from a single camera only [40] (for the planar motion case). This
is possible due to the non-holonomicity of a wheeled vehicle. A wheeled vehicle
(e.g. car, bike, etc.) that is constructed to follow the Ackermann steering principle
will undergo locally circular motion [16]. In particular, any point on the vertical
plane containing the fixed rear axle performs a circular motion, the others will not.
A camera, that is not located at the rear axle, will undergo a planar motion, differ-
ent than that of the circular motion of the car coordinate center. From this camera
motion and a measurement of the offset from the rear axle (in meters) the absolute
scale of the camera motion can be computed. This makes it possible to upgrade
an up-to-scale motion estimate for the camera to an absolutely scaled motion. The
absolute scale can be estimated at multiple location throughout the vehicle’s path.
From these points, the absolute scale can be propagated through structure from mo-
tion. Fig. 16 shows results of the absolute scale estimation on a 3 km long cam-
era path. To achieve accurate measurements the absolute scale is only estimated
at specific spots where circular vehicle motion is ensured and the turning angle is
sufficiently high.



Towards Large-Scale Visual Mapping and Localization 551

Fig. 16 Absolute scale results on a 3km camera path. The blue circles show spots where the
absolute scale was computed. To achieve accurate measurements the absolute scale is only
estimated at specific spots where circular vehicle motion is ensured and the turning angle is
high.

5 Discussion and Conclusion

In this paper we have discussed a video-rate processing pipeline for large-scale
scene reconstruction from ground reconnaissance video. To obtain the high perfor-
mance reconstructions the system deploys the graphics processing unit throughout
the different computation steps of the reconstruction pipeline. The current system
relies on GPS for consist modeling of large areas, but we discussed progress on
loop-closing and other techniques to enable consistent large scale reconstruction. In
particular, the VIP features presented in this paper were shown to be very effective
for closing loops in challenging circumstances. Also, depending on the camera con-
figuration, different methods exist to recover and maintain the correct absolute scale
of the motion. However, while many of the subproblems now have solutions, many
challenges remain to develop an automatic system for wide area reconstruction that
does not rely on GPS. Solving this will be important for example to allow the de-
ployment of robots that can operate fully autonomously in large buildings with vi-
sion as their main sensor. The techniques discussed here are also important for other
applications such as image-based localization. The possibility to determine the loca-
tion from an image for example is very important to enable advanced location-based
services for mobile phones. Although the hardware for our current real-time system
is only a single PC, future applications would greatly benefit from the possibility to
perform localization and mapping functions on smaller and more energy efficient
embedded platforms. We are currently investigating the possibility of performing
visual SLAM on very small embedded platforms to support autonomous navigation
of micro-aerial vehicles. Other related projects we are currently pursuing are image-
based localization for mobile phones and visual SLAM for humanoid robots. Notice
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that for autonomous robot navigation, besides performing traditional visual SLAM
with sparse features, we would also aim to recover a dense surface model and free
space from images.
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Place-Dependent People Tracking

Matthias Luber, Gian Diego Tipaldi, and Kai O. Arras

Abstract. People typically move and act under the constraints of an envi-
ronment, making human behavior strongly place-dependent. Motion patterns,
the places and the rates at which people appear, disappear, walk or stand are
not random but engendered by the environment. In this paper, we learn a
non-homogeneous spatial Poisson process to spatially ground human activity
events for the purpose of people tracking. We show how this representation
can be used to compute refined probability distributions over hypotheses in
a multi-hypothesis tracker and to make better, place-dependent predictions
of human motion. In experiments with data from a laser range finder, we
demonstrate how both extensions lead to more accurate tracking behavior in
terms of data association errors and number of track losses. The system runs
in real-time on a typical desktop computer.

1 Introduction

As robots enter more domains in which they interact and cooperate closely
with humans, people tracking is becoming a key technology for areas such as
human-robot interaction, human activity understanding or intelligent cars. In
contrast to air- and waterborne targets, people typically move and act under
environmental constraints. These constraints vary over space and enable and
limit possible motions and action patterns (people cannot walk through walls,
cooking is constraint to places with a stove), making human behavior strongly
place-dependent.

In this paper we learn and represent human spatial behavior for the pur-
pose of people tracking. By learning a spatial model that represents activity
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events in a global reference frame and on large time scales, the robot acquires
place-dependent priors on human behavior. As we will demonstrate, such pri-
ors can be used to better hypothesize about the state of the world (that is,
the state of people in the world), and to make place-dependent predictions of
human motion that better reflect how people are using space. Concretely, we
propose a non-homogeneous spatial Poisson process to represent the spatially
varying distribution over relevant human activity events. This representation,
called spatial affordance map, holds space-dependent Poisson rates for the oc-
currence of track events such as creation, confirmation or false alarm. The
map is then incorporated into a multi-hypothesis tracking framework using
data from a laser range finder.

In most related work on laser-based people tracking [1, 2, 3, 4, 5, 6, 7],
a person is represented as a single state that encodes torso position and
velocities. People are extracted from range data as single blobs or found by
merging nearby point clusters that correspond to legs. People tracking has
also been addressed as a leg tracking problem [8, 9, 10] where people are
represented by the states of two legs, either in a single augmented state [9] or
as a high-level track to which two low-level leg tracks are associated [8, 10].

Different tracking and data association approaches have been used for
laser-based people tracking. The nearest neighbor filter and variations thereof
are typically employed in earlier works [1, 2, 3]. A sample-based joint prob-
abilistic data association filter (JPDAF) has been presented in Schulz et al.
[4] and adopted by Topp et al. [5]. The Multi-hypothesis tracking (MHT) ap-
proach according to Reid [11] and Cox et al. [12] has been used in [8, 7, 10].
What makes the MHT an attractive choice is that it belongs to the most
general data association techniques. The method generates joint compati-
ble assignments, integrates them over time, and is able to deal with track
creation, confirmation, occlusion, and deletion events in a probabilistically
consistent way. Other multi-target data association techniques such as the
global nearest neighbor filter, the track splitting filter or the JPDAF are
suboptimal in nature as they simplify the problem in one or the other way
[13, 14]. For these reasons, the MHT has become a widely accepted tool in
the target tracking community [14].

For people tracking, however, the MHT approach relies on statistical as-
sumptions that are overly simplified and do not account for place-dependent
target behavior. It assumes new tracks and false alarms being uniformly dis-
tributed in the sensor field of view with fixed Poisson rates. While this might
be acceptable in settings for which the approach has been originally devel-
oped (using, e.g., radar or underwater sonar), it does not account for the
non-random usage of an environment by people. Human subjects appear, dis-
appear, walk or stand at specific locations. False alarms are also more likely
to arise in areas with cluttered backgrounds rather than in open spaces. In
this paper, we extend prior work by incorporating learned distributions over
track interpretation events in order to support data association and show how
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a non-homogeneous spatial Poisson process can be used to seamlessly extend
the MHT approach for this purpose.

For motion prediction of people, most researchers employ the Brownian
motion model and the constant velocity motion model. The former makes
no assumptions about the target dynamics, the latter assumes linear target
motion. Better motion models for people tracking have been proposed by
Bruce and Gordon [15] and Liao et al. [16].

In [15], the robot learns goal locations in an environment from people
trajectories obtained by a laser-based tracker. Goals are found as end points
of clustered trajectories. Human motion is then predicted along paths that
a planner generates from the location of people being tracked to the goal
locations. The performance of the tracker was improved in comparison to a
Brownian motion model. Liao et al. [16] extract a Voronoi graph from a map
of the environment and represent the state of people being on edges of that
graph. This allows them to predict motion of people along the edges that
follow the topological shape of the environment.

With maneuvering targets, a single model can be insufficient to represent
the target’s motion. Multiple model based approaches in which different mod-
els run in parallel and describe different aspects of the target behavior are
a widely accepted technique to deal with maneuvering targets, in particular
the Interacting Multiple Model (IMM) algorithm [17]. Different target motion
models are also studied by Kwok and Fox [18]. The approach is based on a
Rao-Blackwellized particle filter to model the potential interactions between
a target and its environment. The authors define a discrete set of different
target motion models from which the filter draws samples. Then, conditioned
on the model, the target is tracked using Kalman filters.

Regarding motion models, our approach extends prior work in two as-
pects: learning and place-dependency. Opposed to [16, 18] and IMM related
methods, we do not rely on predefined motion models but apply learning for
this task in order to acquire place-dependent models. In [16], the positions of
people is projected onto a Voronoi graph which is a topologically correct but
metrically poor model for human motion. While sufficient for the purpose
of their work, there is no insight why people should move on a Voronoi set,
particularly in open spaces whose topology is not well defined. Our approach,
by contrast, tracks the actual position of people and predicts their motion
according to metric, place-dependent models. Opposed to [15] where motion
prediction is done along paths that a planner plans to a set of goal locations,
our learning approach predicts motion along the trajectories that people are
actually following.

The paper is structured as follows: the next section gives a brief overview of
the people tracker that will later be extended. Section 3 introduces the theory
of the spatial affordance map and expressions for learning its parameters.
Section 4 describes how the spatial affordance map can be used to compute
refined probability distributions over hypotheses, while section 5 contains
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the theory for the place-dependent motion model. Section 6 presents the
experimental results followed by the conclusions in section 7.

2 Multi-Hypothesis Tracking of People

For people tracking, we pursue a Multi-Hypothesis Tracking (MHT) approach
described in Arras et al. [10] based on the original MHT by Reid [11] and Cox
and Hingorani [12]. As we will use the tracker to learn the spatial affordance
map described hereafter, we give a short outline. Sections 4 and 5, where the
approach will be extended, contains the technical details.

The MHT algorithm, in summary, hypothesizes about the state of the
world by considering all statistically feasible assignments between measure-
ments and tracks and all possible interpretations of measurements as false
alarms or new track and tracks as matched, occluded or obsolete. A hypoth-
esis Ω t

i is one possible set of assignments and interpretations at time t.
For learning the spatial affordance map, the hypothesis with maximal prob-

ability Ω t
best at time t is chosen to produce the track events that subsequently

serve as observations for the map. In case of a sensor mounted on a mobile
platform, we assume the existence of a metric map of the environment and
the ability of the robot to self-localize. Observations are then transformed
from local robot-centric coordinates into the world reference frame of the
map.

3 Spatial Affordance Map

We pose the problem of learning a spatial model of human behavior as a
parameter estimation problem of a non-homogeneous spatial Poisson process.
The resulting model, called spatial affordance map, is a global long-term
representation of human activity events in the environment. The name lends
itself to the concept of affordances as we consider the possible sets of human
actions and motions as a result from environmental constraints. An affordance
is a resource or support that an object (the environment) offers an (human)
agent for action. This section describes the theory and how learning in the
spatial affordance map is implemented.

A Poisson distribution is a discrete distribution to compute the probability
of a certain number of events given an expected average number of events
over time or space. The parameter of the distribution is the positive real
number λ , the rate at which events occur per time or volume units. As we
are interesting in modeling events that occur randomly in time, the Poisson
distribution is a natural choice.

Based on the assumption that events in time occur independently of
one another, a Poisson process can deal with distributions of time intervals
between events. Concretely, let N(t) be a discrete random variable to represent
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the number of events occurring up to time t with rate λ . Then we have that
N(t) follows a Poisson distribution with parameter λ t

P(N(t) = k) =
e−λ t(λ t)k

k!
k = 0,1, . . . (1)

In general, the rate parameter may change over time. In this case, the gen-
eralized rate function is given as λ (t) and the expected number of events
between time a and b is

λa,b =
∫ b

a
λ (t)dt. (2)

A homogeneous Poisson process is a special case of a non-homogeneous pro-
cess with constant rate λ (t) = λ .

The spatial Poisson process introduces a spatial dependency on the rate
function given as λ (x, t) with x ∈ X where X is a vector space such as R2 or
R3. For any subset S ⊂ X of finite extent (e.g. a spatial region), the number
of events occurring inside this region can be modeled as a Poisson process
with associated rate function λS(t) such that

λS(t) =
∫

S
λ (x, t)dx. (3)

In the case that this generalized rate function is a separable function of time
and space, we have:

λ (x, t) = f (x)λ (t) (4)

for some function f (x) for which we can demand∫
X

f (x)dx = 1 (5)

without loss of generality. This particular decomposition allows us to decouple
the occurrence of events between time and space. Given Eq. 5, λ (t) defines
the occurrence rate of events, while f (x) can be interpreted as a probability
distribution on where the event occurs in space.

Learning the spatio-temporal distribution of events in an environment is
equivalent to learn the generalized rate function λ (x, t). However, learning
the full continuous function is a highly expensive process. For this reason,
we approximate the non-homogeneous spatial Poisson process with a piece-
wise homogeneous one. The approximation is performed by discretizing the
environment into a bidimensional grid, where each cell represents a local ho-
mogeneous Poisson process with a fixed rate over time,

Pi j(k) =
e−λi j(λi j)k

k!
k = 0,1, . . . (6)



562 M. Luber, G.D. Tipaldi, and K.O. Arras

where λi j is assumed to be constant over time. Finally, the spatial affordance
map is the generalized rate function λ (x,t) using a grid approximation,

λ (x, t) 	 ∑
(i, j)∈X

λi j1i j(x) (7)

with 1i j(x) being the indicator function defined as 1i j(x) = 1 if x ∈ celli j and
1i j(x) = 0 if x /∈ celli j. The type of approximation is not imperative and goes
without loss of generality. Other space tessellation techniques such as graphs,
quadtrees or arbitrary regions of homogeneous Poisson rates can equally be
used. Subdivision of space into regions of fixed Poisson rates has the property
that the preferable decomposition in Eq. 4 holds.

Each type of human activity event can be used to learn its own probability
distribution in the map. We can therefore think of the map as a representation
with multiple layers, one for every type of event. For the purpose of this
paper, the map has three layers, one for new tracks, for matched tracks and
for false alarms. The first layer represents the distribution and rates of people
appearing in the environment. The second layer can be considered a space
usage probability and contains a walkable area map of the environment. The
false alarm layer represents the place-dependent reliability of the detector.

3.1 Learning

In this section we show how to learn the parameter of a single cell in our grid
from a sequence K1..n of n observations ki ∈ {0,1}. We use Bayesian inference
for parameter learning, since the Bayesian approach can provide information
on cells via a prior distribution. We model the parameter λ using a Gamma
distribution, as it is the conjugate prior of the Poisson distribution. Let λ be
distributed according to the Gamma density, λ ∼Gamma(α,β ), parametrized
by the two parameters α and β ,

Gamma(λ ;α,β ) =
βα

Γ (α)
λα−1e−β λ for λ > 0. (8)

Then, learning the rate parameter λ consists in estimating the parameters
of a Gamma distribution. At discrete time index i, the posterior probability
of λi according to Bayes’ rule is computed as P(λi|K1..i) ∼ P(ki|λi−1)P(λi−1)
with P(λi−1) = Gamma(αi−1,βi−1) being the prior and P(ki|λi−1) = P(ki) from
Eq. 6 the likelihood. Then by substitution, it can be shown that the update
rules for the parameters are αi = αi−1 + ki and βi = βi−1 + 1. The posterior
mean of the rate parameter in a single cell is finally obtained as the expected
value of the Gamma,
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λ̂Bayesian = E[λ ] =
α
β

=
#positive events+ 1
#observations+ 1

. (9)

For i = 0 the quasi uniform Gamma prior for α = 1, β = 1 is taken. The
advantages of the Bayesian estimator are that it provides a variance estimate
which is a measure of confidence of the mean and that it allows to properly
initialize never observed cells.

Given the learned rates we can estimate the space distribution of the vari-
ous events. This distribution is obtained from the rate function of our spatial
affordance map λ (x, t). While this estimation is hard in the general setting
of a non-homogeneous spatial Poisson process, it becomes easy to compute
if the separability property of Eq. 4 holds1. In this case, the pdf, f (x), is
obtained by

f (x) =
λ (x, t)
λ (t)

(10)

where λ (x,t) is the spatial affordance map. The nominator, λ (t), can be
obtained from the map by substituting the expression for f (x) into the con-
straint defined in Eq. 5. Hence,

λ (t) =
∫

X
λ (x, t)dx. (11)

In our grid, those quantities are computed as

f (x) =
∑(i, j)∈X λi j1i j(x)

∑(i, j)∈X λi j
. (12)

In case of several layers in the map, each layer contains the distribution f (x)
of the respective type of events. Note that learning in the spatial affordance
map is simply realized by counting in a grid. This makes life-long learning
particularly straightforward as new information can be added at any time by
one or multiple robots.

Figure 1 shows two layers of the spatial affordance map of our laboratory,
learned during a first experiment. The picture on the left shows the space
usage distribution of the environment. The modes in this distribution corre-
spond to often used places and have the meaning of goal locations in that
room (three desks and a sofa). On the right, the distribution of new tracks
is depicted whose peaks denote locations where people appear (doors). The
reason for the small peaks at other locations than the doors is that when
subjects use an object (sit on a chair, lie on the sofa), they cause a track loss.
When they reenter space, they are detected again as new tracks.

1 Note that for a non-separable rate function, the Poisson process can model places
whose importance changes over time.
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Fig. 1 Spatial affordance map of the laboratory in experiment 1. The probability
distribution of matched track events is shown on the left, the distribution of new
track events is shown on the right. The marked locations in each distribution (ex-
tracted with a peak finder and visualized by contours of equal probability) have
different meanings. While on the left they correspond to places that are often used
by people (three desks and a sofa), the maxima of the new track distribution (right)
denote locations where people appear (two doors, the couch and a desk).

4 MHT Data Association with Spatial Target Priors

The MHT assumes a Poisson distribution for the occurrences of new tracks
and false alarms over time and an uniform probability of these events over
space within the sensor field of view V . While this is a valid assumption for a
radar aimed upwards into the sky, it does not account for the place-dependent
character of human spatial behavior: people typically appear, disappear, walk
and stand at specific locations that correspond, for instance, to doors, eleva-
tors, entrances, or convex corners.

It is exactly this information that the spatial affordance map holds. We
can therefore seamlessly extend the MHT approach with the learned Poisson
rates for the arrival events of people and learned location statistics for new
tracks and false alarms.

At time t, each possible set of assignments and interpretations forms a
hypothesis Ω t

i . Let Z(t) = {zi(t)}mt
i=1 be the set of mt measurements which in

our case is the set of detected people in the laser data. For detection, we
use a learned classifier based on a collection of boosted features [19]. Let
further ψi(t) denote a set of assignments which associates predicted tracks
to measurements in Z(t) and let Zt be the set of all measurements up to
time t. Starting from a hypothesis of the previous time step, called a parent
hypothesis Ω t−1

p(i) , and a new set Z(t), there are many possible assignment sets
ψ(t), each giving birth to a child hypothesis that branches off the parent.
This makes up an exponentially growing hypothesis tree. For a real-time
implementation, the growing tree needs to be pruned. To guide the pruning,
each hypothesis receives a probability, recursively calculated as the product
of a normalizer η , a measurement likelihood, an assignment set probability
and the parent hypothesis probability [11],
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p(Ω t
l | Zt) = η · p(Z(t) | ψi(t),Ω t−1

p(i)) (13)

p(ψi(t) |Ω t−1
p(i) ,Z

t−1) · p(Ω t−1
p(i) | Zt−1).

While the last term is known from the previous iteration, the two expressions
that will be affected by our extension are the measurement likelihood and
the assignment set probability.

For the measurement likelihood, we assume that a measurement zi(t)
associated to a track x j has a Gaussian pdf centered on the measure-
ment prediction ẑ j(t) with innovation covariance matrix Si j(t), N (zi(t)) :=
N (zi(t) ; ẑ j(t),Si j(t)). The regular MHT now assumes that the pdf of a mea-
surement belonging to a new track or false alarm is uniform in V , the sensor
field of view, with probability V−1. Thus

p(Z(t) | ψi(t),Ω t−1
p(i)) = V−(NF +NN) ·

mt

∏
i=1

N (zi(t))δi (14)

with NF and NN being the number of measurements labeled as false alarms
and new tracks respectively. δi is an indicator variable being 1 if measurement
i has been associated to a track, and 0 otherwise.

Given the spatial affordance map, the term changes as follows. The prob-
ability of new tracks V−1 can now be replaced by

pN(x) =
λN(x, t)
λN(t)

=
λN(x, t)∫

V λN(x,t)dx
(15)

where λN(x,t) is the learned Poisson rate of new tracks in the map and x the
position of measurement z′i(t) transformed into global coordinates. The same
derivation applies for false alarms. Given our grid, Eq. 15 becomes

pN(x) =
λN(z′i(t), t)
∑(i, j)∈V λi j,N

. (16)

The probability of false alarms pF(x) is calculated in the same way using the
learned Poisson rate of false alarms λF(x, t) in the map.

The original expression for the assignment set probability can be shown to
be [10]

p(ψi(t) |Ω t−1
p(i) ,Z

t−1) = η ′ · pNM
M · pNO

O · pND
D (17)

λNN
N ·λNF

F ·V (NF +NN)

where NM, NO, and ND are the number of matched, occluded and deleted
tracks, respectively. The parameters pM, pO, and pD denote the probability
of matching, occlusion and deletion that are subject to pM + pO + pD = 1.
The regular MHT now assumes that the number of new tracks NN and false
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alarms NF both follow a fixed rate Poisson distribution with expected number
of occurrences λNV and λFV in the observation volume V .

Given the spatial affordance map, they can be replaced by rates from the
learned spatial Poisson process with rate functions λN(t) and λF(t) respec-
tively.

Substituting the modified terms back into Eq. 13 makes, like in the orig-
inal approach, that many terms cancel out leading to an easy-to-implement
expression for a hypothesis probability

p(Ω t
l | Zt) = η ′′ · pNM

M · pNO
O · pND

D ·
mt

∏
i=1

[N (zi(t))δi (18)

λN(z′i(t), t)
κi ·λF(z′i(t), t)

φi ] · p(Ω t−1
p(i) | Zt−1)

with δi and κi being indicator variables whether a track is matched to a mea-
surement or new, respectively, and φi indicating if a measurement is declared
to be a false alarm.

The insight of this extension of the MHT is that we replace fixed parame-
ters by learned distributions. This kind of domain knowledge helps the tracker
to better interpret measurements and tracks, leading to refined probability
distributions over hypotheses at the same run-time costs.

5 Place-Dependent Motion Models

Tracking algorithms rely on the predict-update cycle, where a motion model
predicts the future target position which is then validated by an observation
in the update phase. Without validation, caused, for instance, by the target
being hidden during an occlusion event, the state evolves blindly following
only the prediction model. Good motion models are especially important for
people tracking as people typically undergo lengthy occlusion events during
interaction with each other or with the environment.

As motion of people is hard to predict, having a precise model is difficult.
People can abruptly stop, turn back, left or right, make a step sideways or
accelerate suddenly. However, motion of people is not random but follows
place-dependent patterns. They, for instance, turn around convex corners,
avoid static obstacles, stop in front of doors and do not go through walls.
Clearly, the Brownian, the constant velocity and even higher-order motion
models are unable to capture the complexity of these movements.

For this reason, we extend the constant velocity motion assumption with
a place-dependent model derived from the learned space usage distribution
in the spatial affordance map. Let xt = ( xt yt ẋt ẏt )T be the state of a track
at time t and Σt its covariance estimate. The motion model p(xt |xt−1) is then
defined as
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p(xt |xt−1) = N (xt ;F xt−1,F Σt−1 FT + Q) (19)

with F being the state transition matrix. The entries in Q represent the accel-
eration capability of a human. We extend this model by considering how the
distribution of the state at a generic time t is influenced by the previous state
and the map. This distribution is approximated by the following factorization

p(xt |xt−1,m) 	 p(xt |xt−1) · p(xt |m) (20)

where m is the spatial affordance map and p(xt |m) = f (xt) denotes the space
usage probability of the portion of the environment occupied by xt , as defined
by Eq. 12.

A closed form estimation of this distribution does not exist since the map
contains a general density, poorly described by a parametric distribution. We
therefore follow a sampling approach and use a particle filter to address this
estimation problem. The particle filter is a sequential Monte Carlo technique
based on the importance sampling principle. In practice, it represents a target
distribution in form of a set of weighted samples

p(xt |xt−1,m) 	∑
i

w(i)δ
x(i)

t
(xt). (21)

where δ
x(i)

t
(xt) is the impulse function centered in x(i)

t . Sampling directly from
that distribution is not possible so the algorithm first computes samples from
a so called proposal distribution, π . The algorithm, then, computes the impor-
tance weight related to the i-th sample that takes into account the mismatch
among the target distribution τ and the proposal distribution w = τ

π . The
weights are then normalized such that ∑w = 1.

In our case, we take the constant velocity model to derive the proposal π .
The importance weights are then represented by the space usage probability

w(i) =
p(xt |xt−1,m)

p(x(i)
t |xt−1)

= p(x(i)
t |m). (22)

The new motion model has now the form of a weighted sample set. Since we
are using Kalman filters for tracking, the first two moments of this distribu-
tion is estimated by

μ̂ =∑
i

w(i)x(i)
t (23)

Σ̂ =∑
i

w(i)(μ̂−x(i)
t )(μ̂−x(i)

t )T . (24)

The target is then predicted using μ̂ as the state prediction with associated
covariance Σ̂ . Obviously, the last step is not needed when using particle filters
for tracking.
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Fig. 2 Four of 135 example tracks from experiment 1 (left). The total number of
data association errors as a function of NHyp, the maximum number of hypotheses
for the MHT algorithm to maintain (right). The solid red line shows the regu-
lar MHT tracker, the dotted green line the extended approach. The graph shows
that by replacing the fixed Poisson rates by the learned, place-dependent ones, the
tracker requires fewer hypothesis to reach the same level of accuracy and, given
more hypotheses, makes around 30% fewer data association errors.

An example situation that exemplifies how this motion model works is
shown in Figure 3. A person that takes a left turn in a hallway is tracked
over a lengthy occlusion event. The constant velocity motion model (dashed
ellipse) predicts the target into a wall and outside the walkable area of
the environment. The place-dependent model (solid ellipse) is able to fol-
low the left turn with a state covariance shaped like the hallway. In other
words, the model predicts the target “around the corner”. The tracker with
the constant velocity motion loses track as the reappearing person is outside
the validation gate (shown as 95% ellipses).

6 Experiments

For the experiments we collected two data sets, one in a laboratory (experi-
ment 1, Figure 2) and one in an office building (experiment 2, Figure 3). As
sensors we used a fixed Sick laser scanner with an angular resolution of 0.5
degree.

The spatial affordance maps were trained based on the tracker described
in [10], the grid cells were chosen to be 30 cm in size. The parameters of
the tracker have been learned from a training data set with 95 tracks over
28242 frames. All data associations including occlusions have been hand-
labeled. This led to a matching probability pM = 0.59, an occlusion probability
pO = 0.40, a deletion probability pD = 0.01, a fixed Poisson rate for new tracks
λN = 0.0102 and a fixed Poisson rate for false alarms as λF = 0.00008. The
rates have been estimated using the Bayesian approach in Eq. 9.

The implementation of our system runs in real-time on a 2.8 GHz quad-
core CPU. The cycle time of a typical setting with NHyp = 50, 500 samples
for the particle filter, and up to eight parallel tracks is around 12 Hz when
sensor data are immediately available.
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6.1 MHT Data Association with Spatial Target Priors

The original MHT is compared to the approach using the spatial affordance
map on the data set from the laboratory over 38994 frames and with a total
number of 135 people entering and leaving the sensor field of view. The ground
truth has been determined by manual inspection. For the comparison we count
the total number of data association errors that are created by the best hy-
potheses of the two tracking methods. The data association error is defined to
be the number of identifier switches over the life cycle of a ground truth track.
We use a pruning strategy which limits the maximum number of hypotheses
at every step to NHyp (the multi-parent variant of the pruning algorithm pro-
posed by Murty [20]). In order to show the evolution of the error as a function
of NHyp, the computational effort, NHyp is varied from 1 to 50.

The result shows a significant improvement of the extended MHT over the
regular approach (see Figure 2). The explanation is given by an example.
As can be seen in Figure 1 right, few new track events have been observed
in the center of the room. If at such a place a track occlusion occurs (e.g.
from another person), hypotheses that interpret this as an obsolete track
followed by a new track receive a much smaller probability through the spatial
affordance map than hypotheses that assume this to be an occlusion.

A data set with 15 people was collected to investigate whether the model
is overfitted and generalizes poorly for unusual behavior of people. Subjects
entered the sensor field of view through entry points that have never been
used (in between the couch and the desk at the bottom in Fig 1) or appeared
in the center of the room (by jumping off from tables). Manual inspection
of the resulting trees (using the graphviz-lib for visualization) revealed that
all 15 people are tracked correctly. The difference to the approach with fixed
Poisson rates is that, after track creation, the best hypothesis is not the true
one during the first few (less than five) iterations. However, the incorrect hy-
potheses that successively postulate the subjects being a false alarm become
very unlikely, causing the algorithm to backtrack to the true hypothesis.

6.2 Place-Dependent Motion Model

In the second experiment, the constant velocity motion model is compared
to our place-dependent motion model. A training set over 7443 frames with
50 person tracks in a office-like environment was recorded to learn the spatial
affordance map (see Figure 3). A test set with 6971 frames and 28 people
tracks was used to compare the two models. The data set was labeled by
hand to determine both, the ground truth positions of people and the true
data associations. In order to make the task more difficult, we defined areas
in which target observations are ignored as if the person had been occluded
by an object or another person. These areas were placed at hallway corners
and U-turns where people typically maneuver. As the occlusion is simulated,
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Fig. 3 Six (of 50) example tracks from experiment 2. Trajectory of a person in
experiment 2 taking a left turn during an occlusion event. Predictions from a con-
stant velocity motion model (dashed ellipse) and the new model (solid ellipse) are
shown. The background grid (in blue) shows the learned space usage distribution
of the spatial affordance map. The small black dots are the weighted samples of the
place-dependent motion model. The model is able to predict the target “around the
corner” yielding much better motion predictions in this type of situations.

Fig. 4 Comparison between constant velocity motion model (cvmm, left) and
place-dependent motion model (right). Peaks correspond to occluded target ma-
neuvers (turns around corners and U-turns). Fig. 3 shows the left turn of a person
at step 217 of this experiment. While both approaches are largely consistent from
a estimation point of view, the place-dependent model results in an overall smaller
estimation error and smaller uncertainties. For 28 manually inspected tracks, the
constant velocity motion model lost a track 15 times while the new model had only
one track loss.

the ground truth position of the targets is still available. As a measure of
accuracy, the posterior position estimates of both approaches to the ground
truth is calculated. The resulting estimation error in x is shown in Figure 4
(the error in y is similar).

The diagram shows much smaller estimation errors and 2σ bounds for the
place-dependent motion model during target maneuvers. An important result
is that the predicted covariances do not grow boundless during the occlusion
events (peaks in the error plots). As illustrated in Figure 3, the shape of the
covariance predictions follows the walkable area map at the very place of the
target. Smaller covariances lead to lower levels of data association ambiguity,
and thus, to decreased computational costs and more accurate probability
distribution over pruned hypothesis trees.
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For 28 manually inspected tracks, the constant velocity motion model lost
a track 15 times while the new model had only a single track loss. As a naive
countermeasure, one could enlarge the entries of the process noise covariance
Q to make the constant velocity motion model avoid such losses, but this is
clearly the wrong way to go as it brings along an even higher level of data
association ambiguity.

7 Conclusions

In this paper we presented a people tracking approach that accounts for the
place-dependency of human behavior. We posed the problem of learning a
spatial model of human behavior as a parameter estimation problem of a non-
homogeneous spatial Poisson process. The model, called spatial affordance
map, is learned using Bayesian inference from observations of track creation,
matching and false alarm events, gained by introspection of a laser-based
multi-hypothesis people tracker.

The map enabled us to relax and overcome the simplistic fixed Poisson rate
assumption for new tracks and false alarms in the MHT approach. Using a
learned spatio-temporal Poisson rate function, the system was able to com-
pute refined probability distributions over hypotheses, resulting in a clearly
more accurate tracking behavior in terms of data association errors at the
same costs.

The map further allowed us to derive a new, place-dependent model to
predict target motion. The model showed superior performance in predicting
maneuvering targets especially during lengthy occlusion events when com-
pared to a constant velocity motion model.

Future work will consider model-driven hypothesis generation at places
where the spatial affordance map is highly multi-modal for target predictions
during very long occlusion events.
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Combining Laser-Scanning Data and Images for
Target Tracking and Scene Modeling

Hongbin Zha, Huijing Zhao, Jinshi Cui, Xuan Song, and Xianghua Ying

Abstract. Working environments of modern robots have changed to unstructured,
dynamic and outdoor scenes. There emerged several new challenges along with
these changes, mainly in perception of both static and dynamic objects of the scenes.
To tackle these new challenges, this research focused on study of advanced percep-
tion systems that can simultaneously model static scenes and track dynamic objects.
Our research has three features. Multi-view and multi-type sensors, together with
machine learning based algorithms, are utilized to obtain robust and reliable map-
ping/tracking results. In addition, a car-based mobile perception system is developed
for exploring large sites. Finally, to improve robustness of the multi-view and mo-
bile perception system, some new camera calibration methods are proposed. This
paper presents an overview of our recent study on above mentioned ideas and tech-
nologies. Specifically we will focus on multi-sensor based multiple target tracking,
simultaneous 3D mapping and target tracking in a mobile platform, and camera
calibration.

1 Introduction

During last decade, with rapid developments in robotics technologies and their
applications, working environments of robots have changed much. They change
from indoor to outdoor, from structured to unstructured, from static to dynamically
changing environments.

To adapt to these changes, and also to achieve more complicated tasks in new
working environments, it is necessary to develop advanced robotics perception sys-
tems that are more reliable, robust and capable in scene recognition and understand-
ing. Specifically, the challenges emerging with changing environments include three
aspects. Firstly, most of the environment is unknown, and contains both static and

Hongbin Zha · Huijing Zhao · Jinshi Cui · Xuan Song · Xianghua Ying
Key Laboratory of Machine Perception (MoE), Peking University
e-mail: {zha,zhaohj,cjs,songxuan,xhying}@cis.pku.edu.cn

C. Pradalier, R. Siegwart, and G. Hirzinger (Eds.): Robotics Research, STAR 70, pp. 573–587.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{zha,zhaohj,cjs,songxuan,xhying}@cis.pku.edu.cn


574 H. Zha et al.

dynamic objects, with complex relationships and structures among them. Secondly,
there are various targets needing to be recognized, and their categories are more
complicated. The targets may include static objects for instance architectures, trees
and roads, as well as dynamic objects, like pedestrians, bicycles and cars. Finally,
in a dynamic and multi-object environment, when multiple dynamic objects interact
with each other, the perception task becomes more challenging in object recogni-
tion, localization and tracking due to inter-occlusion.

To address above problems, we need to find some new research directions. First
of all, it would be necessary to make full use of 3D information of various objects. At
the same time, we also have to utilize prior information of specific outdoor environ-
ments, gather data from multiple sensors and then fuse them efficiently. Moreover,
to cover a wide and complicated area, it would be indispensable to use a distributed
sensor network or an actively controlled mobile platform.

According to above mentioned directions, we explored research in multi-target
tracking and 3D environment mapping with laser scanners and video cameras. It has
three main features: 1) Multi-sensors and machine learning based algorithms are
utilized to obtain robust and reliable mapping and tracking. 2) A car-based mobile
perception system is developed for 3D mapping of static environment scenes, as well
as for recognizing and tracking of dynamic targets. 3) To improve robustness of the
multi-view and mobile perception systems, some new camera calibration methods
are proposed.

This paper presents an overview of our recent study on above technologies and
systems. Specifically we will focus on multi-sensor based multiple target tracking,
simultaneous 3D mapping and target tracking in a mobile platform, and camera
calibration.

2 Multi-target Tracking in Dynamic Scene

Multi-target tracking plays a vital role in various applications, such as surveillance,
sports video analysis, human motion analysis and many others. Multi-target track-
ing is much easy when the targets are distinctive and do not interact with each other.
It can be solved by employing multiple independent trackers. However, for those
targets that are similar in appearance, obtaining their correct trajectories becomes
significantly challenging when they are in close proximity or partial occlusions.
Previous approaches using joint trackers searching in joint state space requires high
time consumptions. Moreover, maintaining the correct tracking seems almost im-
possible when the well-known ”merge/split” condition occurs (some targets occlude
others completely, but they split after several frames). Hence, the goals of our re-
search are: 1) to design a multi-sensor system that will help obtain a better tracking
performance with lower time consumption than those obtained from independent or
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joint trackers when the interactions occur; 2) to make a new attempt to solve the
”merge/split” problem in multi-target tracking.

Our recent research on these goals covers three aspects: 1) To solve partial occlu-
sion and interaction in a joint space, a detection-driven MCMC based particle filter
framework is proposed. In this approach, MCMC sampling is utilized to increase
search speed with detection maps providing searching directions. 2) To address the
problem of severe occlusion and interaction, we use learning and classification loops
for data association. 3) To reduce time consumption and to improve tracking perfor-
mance, we fuse laser and vision data. Compared to traditional vision-based tracking
systems, the laser range scanner can provide directly 3D depth information of tar-
gets, which is absent in visual images. In a laser-based tracking system (as shown in
Fig.1), the targets are represented by several points, and hence the tracking become
much easy with good performance in both accuracy and time-cost.

2.1 Detection-Driven MCMC Based Particle Filter

In the visual tracking area, to keep track of multiple moving objects, one generally
has to estimate the joint probability distribution of the state of all objects. This, how-
ever, is intractable in practice even for a small number of objects since the size of the
state space grows exponentially in the number of objects. An optional solution of
the problem is to use the detection based data association framework, which is origi-
nated from radar tracking techniques. Most of existing laser based tracking systems
used this framework. In these systems, a clustering/segmentation based detection
algorithm provides locations of potential targets. Then, the measurements are asso-
ciated with previously estimated target trajectories in a data association step. Above
detection driven tracking schemes greatly rely on the performance of the detection
algorithms. Only observation at locations with high detection responses are consid-
ered as potential measurements. This will incur that false alarms and non-detections
significantly influence performance of the tracker.

In our recent research, we construct our novel observation with two types of
measurements, including a foreground image frame given by background subtrac-
tion and a detection map on the single frame. For inference, we proposed a detection
incorporated joint particle filter, considering the both types of measurements. First,
data association for the targets to detected measurements is incorporated to the state

(a) Measurement            (b) Experimental site       (c) Sample data 

Fig. 1 A typical laser based tracking system
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proposal, to form a mixture proposal that combines information from the dynamic
model and the detected measurements. Then, we utilize a MCMC sampling step to
obtain an efficient multi-target filter.

We applied this idea to laser scan frames [1]. Four laser scanners are used for
scanning on the height of 16cm from horizontal ground. Fig.2 is a screen copy of
trajectories of tracked persons using our MCMC particle filter, where green points
represent laser points of background (doors, tables, walls, etc.); white points rep-
resent the laser points of moving feet. Colour lines are trajectories. Red circles are
position of people at current time. The numbers denotes the trajectory indices. The
standard particle filter can track an individual person very well using 100 particle
samples, if he/she is quite far away from other persons. However, if two persons
walk closely, it is very common that one person’s trajectory ”hijacks” another per-
son’s, since there is not a joint likelihood to handle the interaction situation. Our
MCMC particle filter benefits from the feature detection and the mixture transition
proposal. It tracks 28 persons simultaneously and nearly in real-time, and gives a
robust tracking result, even using only 100 particle samples.

We also applied this idea to vision based tracking systems. In [2],we proposed
a Probabilistic Detection-based Particle Filter (PD-PF) for multi-target tracking. In
our method, we incorporate possible probabilistic detections and information from
dynamic models to construct a mixed proposal for the particle filter, which models
interactions and occlusions among targets quite effectively.

2.2 On-Line Learning for Data Association

To address long-time occlusion and severe interactions, we proposed an online
learning based approach for data association. The core idea of our research is il-
lustrated in Fig.3 and Fig.4. When two targets do not interact with each other (see
Fig.3), tracking becomes very easy and multiple independent trackers are employed.
Due to the reliability of these tracking results, they are used as positive or nega-
tive samples to train a classifier for each target. When the two targets are in close

Fig. 2 Laser based tracking results using detection-driven MCMC based PF.
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proximity (see Fig.4), the learned classifiers are used to assist in tracking. Specifi-
cally, when the two targets merge, we assign a new state space and track this ”merg-
ing target” as one target. When they split, their classifiers are used again to specify
a correct identification.

We applied this idea respectively to vision based systems [3] and laser based
systems [4]. In a vision based tracking system, when the targets do not interact with
each other, we utilize independent trackers to perform the tracking. Once we obtaine
the tracking results of each target, a set of random image patches are spatially sam-
pled within the image region of each target. We utilize these random image patches
as samples for the online supervised learning. In this case, each target is represented
by a ”bag of patches” model.When the targets are in close proximity or present par-
tial occlusions, a set of random image patches are sampled within the interacting
region of the detected map, and the feature vectors of these image patches are input
to the classifiers of interacting targets respectively. The outputs of these classifiers
are scores, which are used to weight the observation model in the particle filter. The
overview of the process is shown in Fig.5.

Sometimes, several targets occlude another target completely. Maintaining the
correct tracking of targets seems quite impossible. Once it occurs, we initialize
the state of the ”merging targets” and track it as one target. If we detect that this
”merging target” splits and becomes an interacting condition or a non-correlated
condition, we utilized the classifiers of these targets to identify them (as shown in
Fig.6). Hence, we can link the trajectories of these targets without difficulty. Some
experimental results were shown in Fig.7.
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We have applied the same idea to laser based tracking systems [4]. Although it
performs better than previous approaches in the situations of interactions and occlu-
sions, due to the missing appearance information, it is very hard to obtain a set of
features that uniquely distinguish one object from another.

2.3 Fusion of Laser and Vision

The work on fusion of laser and visual data is motivated from pursuing a reliable and
real-time multi-target tracking system, which is difficult to achieve via only laser or
only visual data. We have tried several strategies for the fusion of two modes. In
[5], a Kalman Filter based approach is utilized for decision-level fusion of two in-
dependent tracking results respectively from a laser-based sub-system and a vision-
based subsystem. Although the time-consuming of this approach is rather high, it
can provide reasonable tracking results. In [6], the fusion is processed in the detec-
tion stage at first to improve detection rates and decrease false-alarm rates. Then, an
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observation model that combines visual and laser features is utilized for filtering.
The fusion in detection-level saves a lot time since no more window scanning is
necessary in image frames. However, it still request much time for gathering mea-
surements from both modes in filtering process. Moreover, it is difficult to decide
the confidence coefficients of laser data and vision data when complex interaction
situations occur.

In our most recent research, we proposed a fusion strategy that tries to make these
two modes to fully display their respective advantages in one framework. The key
idea of this work is illustrated in Fig.8. When the targets do not interact with each
other, the laser scanner can perform the efficient tracking and it is easy for us to ex-
tract visual information from the camera data. Due to the reliability of these tracking
results, they are used as positive or negative samples to train some classifiers for the
“possible interacting targets”. When the targets are in close proximity, the learned
classifiers and visual information will in turn assist in tracking. This mode of coop-
eration between laser and vision, and between tracking and learning, offers several
advantages: (1) Laser and vision can fully display their respective advantages (fast
measurements of laser scanners and rich information of cameras) in this system. (2)
Because the “possible interacting targets” are represented by a discriminative model
with a supervised learning process, the method can employ information from the
“confusing targets” and can sufficiently exploit the targets’ history. Through these
discriminative models, we can easily deal with some challenging situations in the
tracking. (3) This “tracking-learning adaptive loop” ensures that the entire processes
can be completely on-line and automatic.

3 Omni-Directional Sensing of a Dynamic Environment Using
an Intelligent Vehicle

This research focuses on the sensing technologies of intelligent vehicles. We intend
to develop a car of omni-directional eyes looking at the environment of both static
and dynamic objects, where the car detects the moving objects in surrounds, and
tracks their states, such as speed, direction, and size, so that dangerous situations
can be predicted. Moreover, the car can be also used to generate a 3D copy of the
dynamic urban scenery that contains both stationary objects, e.g. buildings, trees,
road, and mobile objects, e.g. people, bicycles and cars. Here, we need to consider
the following issues: finding the vehicle’s pose as it moves around, detecting and
tracking the moving objects in surroundings, and generate a 3D representation of
the whole environment.

An intelligent vehicle system has been developed as shown in Fig. 9, where five
single layer laser scanners (briefly noted by ”L”) are mounted on the car to profile
object geometry along the streets from different viewpoints and with different direc-
tions; a video camera is also integrated to monitor the front of the vehicle and ob-
tain textures; a GPS (Global Positioning System)/IMU (Inertial Measurement Unit)
based navigation unit is applied to give outputs of the vehicle pose. Sensor layouts
might be varied according to applications. However, a common and important issue
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here is how to fuse such a large number of sensors, so that the multi-modal sens-
ing data can conduct the above missions, while a comprehensive perception that
overcomes the shortages of each singular sensor is achieved.

Fig. 9 A picture of the intelligent vehicle.

3.1 System Architecture

Normally, localization of the host vehicle is conducted by using the positioning
sensors such as GPS, IMU, and VMS (Vehicle Motion Sensor). Thus the vehicle
pose that contains the position (x,y,z) and orientation (ω ,φ ,κ) of the host vehicle
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is estimated in a high frequency. With it as input, the environmental sensors such
as laser scanners, radars, video cameras are exploited, so that the sensing of local
environments as the intelligent vehicle running along streets can be integrated to
generate a global knowledge of the whole environment.

Such an approach is widely accepted in existing intelligent vehicles and
mobile mapping systems. Localization and environmental perception are conducted
individually using different sensing technologies. The system architecture is straight-
forward. However, disadvantage of such an approach is that the environmental per-
ception is heavily dependent on outputs of the localization module. For example,
erroneous localization outputs yield displacements between the environmental sens-
ing data to the same static objects, and the slow motion objects such as pedestrians
might not be reliably detected due to localization errors.

In this research, the system architecture is designed as shown in Fig. 10, where
localization of the host vehicle is formulated as a SLAM with MODT (Simultaneous
Localization And Mapping with Moving Object Detection and Tracking) by fusing
both the positioning sensors (GPS/IMU) and the environmental sensors (laser scan-
ners/cameras). We proposed a method of integrating both positioning (GPS/IMU)
and environmental (laser scanners) sensors to improve localization accuracy, mean-
while, to conduct a 2D mapping and moving object detection/tracking. With these
as inputs, other environmental sensors can perform an advanced (e.g. 3D) environ-
mental perception with high accuracy.

In order to achieve the purpose, a sensor fusion strategy and software implemen-
tation is proposed as shown in Fig. 11. There are four processors inside the vehicle,
for sensor data logging, SLAM with MODT, 3D mapping, moving object (briefly
”MO”) recognition, respectively. All the processors are connected through Ether-
net, so that the data processing and transferring are conducted in an online mode.
The processor 1 controls all the sensors, records GPS/IMU/laser scan data, and dis-
tribute them to other processors through Ethernet. The processor 2 will receive the

Fig. 10 System Architecture.
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GPS/IMU data and the horizontal scanning laser data (L1) to conduct SLAM with
MODT [7],[8]. The laser data of moving objects are forwarded to the processer 4,
where each object is recognized as a person, a group of people, a bicycle or a car
by fusion with video images [9] . On the other hand, the vehicle pose estimated by
processor 2 is forwarded to processor 3, as well as the other processing results on
static and moving objects. A 3D mapping is conducted by processor 4, which with
the input of vehicle poses and sensor geometry parameters, integrates all laser scan
data in a global coordinate system [10] .

3.2 SLAM with MODT

A laser-based SLAM is proposed in our previous research [7] , where the problem
is formulated as SLAM with object tracking and classification, and the focus is
on managing a mixture of data from both dynamic and static objects in a highly
cluttered environment. Here people and cars might get very close to each other,
and their motion patterns have much variability and are always unpredictable. Thus,
it is risky to discriminate moving or static objects just by buffering an area using
the data from a previous measurement. Also, it is risky to judge based only on an
instance measurement, as many objects might have similar data appearance due
to limited spatial resolution, range error, partial observation, and occlusions. The
general idea behind our system is that the detected objects should be discriminated
in a spatial-temporal domain. In this way, after an object is detected, it is tracked
until the system can classify the object into either a static or moving object with
certainty. On the other hand, in order to achieve a localization of global accuracy
and robustness, especially when the vehicle makes a non-cyclical measurement in

Fig. 11 Sensor fusion and software modules.
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Fig. 12 Experimental results on SLAM with MODT and MO recognition.

a large outdoor environment, a GPS/IMU assisted strategy is also developed. The
sporadically-available GPS measurements in urban areas are used to diagnose errors
in the vehicle pose estimation, and the vehicle trajectory is then adjusted to close the
gap between the estimated vehicle pose and the GPS measurement. An extensive
experiment is presented in [8] ,where the host vehicle ran a course about 4.5km
in a highly dynamic environment, and a map is generated containing the data of
both the static and moving objects observed along the road. Some of the results are
demonstrated in Fig. 12.

3.3 Sensor Alignment and 3D Mapping

A method is developed in [10] for calibrating the sensor system of multiple single-
layer laser scanners. The problem is formulated into registration of laser point clouds
of different laser scanners in a short run where the relative vehicle poses are consid-
ered of necessary accuracy. The registration is conducted in two steps: horizontal and
vertical matching, using the laser points of vertical objects and ground surfaces re-
spectively. An experiment is shown in Fig. 13, demonstrating the results before and
after the sensor alignment. After the sensor alignment, the laser points from different
laser scanners can be integrated into a global coordinate system with more consis-
tency. In Fig. 14, a result is shown for integrating the laser points from laser scanners
L1 (colored trajectories), L2 (on-the-road in gray, off-the-road in green), L4 (blue)
and L5 (red). In the center of the view, a person is captured by the laser scanner L5
(red). It is easy to know that the person is walking on the road, with the laser points
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Fig. 13 Experimental results of sensor alignment.

Fig. 14 An omni-directional view of the dynamic environment.

measured by the laser scanner L2 nearby its feet being colored with gray. A trajec-
tory of the person is also known, which is captured by the laser scanner L1 (colored
trajectories), so that we can predict where the person is walking ahead, etc.

4 Camera Calibration

Camera calibration is a process of modeling the mapping between 3D objects and
their 2D images, and this process is often required when recovering 3D information
from 2D images, such as in 3D reconstruction and motion estimation. The parame-
ters of a camera to be calibrated are divided into two classes: intrinsic and extrinsic.
The intrinsic parameters describe the camera’s imaging geometric characteristics,
and the extrinsic parameters represent the camera’s orientation and position with re-
spect to the world coordinate system. Many approaches to camera calibration have
been proposed and they can be classified into two categories: using calibration ob-
jects and self-calibration. We have investigated those using spheres, conics and cir-
cles [11], [12],[13]. Here we describe some results given in [12] and [13].
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4.1 Calibration from Unknown Principal-Axes Aligned Central
Conics

Conics are one of the most important image features like points and lines in com-
puter vision. The motivation to study the geometry of conics arises from the facts
that conics have more geometric information, and can be more robustly and exactly
extracted from images than points and lines. In addition, conics are very easy to
be produced and identified than general algebraic curves, though general algebraic
curves may have more geometric information. In our research [13], we discovered
a novel useful pattern, principal-axes aligned. Moreover, the properties of two arbi-
trary principal-axes aligned conics with unknown or known eccentricities are deeply
investigated and discussed.

These properties are obtained by utilizing the generalized eigenvalue decomposi-
tion of two principal-axes aligned conics. We define the absolute points of a conic in
standard form, which is analogy of the circular points of a circle. Furthermore, we
define the dual conic formed by two absolute points, which is analogy of the dual
conic consisted of circular points. By using the dual conic formed by two absolute
points, we proposed a linear algorithm to obtain the extrinsic parameters of the cam-
era. We also discovered a novel example of the principal-axes aligned conics, which
is consisted of a circle and a conic concentric with each other while the parameters
of the circle and the conic are both unknown, and two constraints on the IAC can be
obtained from a single image of this pattern.

4.2 Calibration from a Circle and a Coplanar Point at Infinity

In a large scene, like football or basketball courts, very large calibration patterns
may be required. In most of such cases, however, setting a large planar pattern on
the site is infeasible. One may suggest that the lines in the courts may be used
for calibration. However, it requires that the locations of these lines must be given
in advance. Another problem is that, the field of view (FOV) of a camera usually
involves a portion of the whole court, and this often makes the number of lines in
FOV not sufficient to estimate any intrinsic or extrinsic parameters of the camera.
In the case of calibrating multiple cameras distributed in the football or basketball
scenes, cameras with common FOVs are often required. It is not difficult to achieve
this by changing the orientations of all cameras in the scenes to view the center
circle and the midfield line.

The main contributions of our another research [13] is: It is the first work to deal
with the problem of camera calibration just using the information in the midfield,
i.e., the center circle and the midfield line. It shows that the camera calibration using
one circle and one line passing through the circle’s center, and that using one circle
and one point at infinity in the support plane of the circle, are equivalent. From
the latter one, the derivations may become very clear. It may be used for multiple
camera calibration or camera network calibration in football or basketball scenes.
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Fig. 15 Some calibration results

We performed a number of experiments, both simulated and real, to test our al-
gorithms with respect to noise sensitivity. In order to demonstrate the performance
of our algorithm, we capture an image sequence of 209 real images, with resolu-
tion 800∗ 600, to perform an augmented reality task. Edges were extracted using
Canny’s edge detector and the ellipses were obtained using a least squares ellipse
fitting algorithm. One of the examples is shown in Fig. 15 to illustrate the calibration
results.

5 Discussion

When dealing with unknown, unstructured and dynamic working environments,
robots need to recognize both static and dynamic objects of the scene. This paper
gives an overview of our recent research on moving target tracking and 3D scene
modeling via multi-sensor perception systems in a multi-view or mobile platform.
3D information from laser scanning data complements the missing depth in video
images. Therefore 3D scene modeling and target detection/tracking become much
easy and robust. On the other hand, assistance from visual data improves the recog-
nition accuracy by allowing many machine learning algorithms to be put into use
easily. The results showed that the proposed methods can find many potential ap-
plications in robotics and other fields such as intelligent transportation and surveil-
lance.
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Towards Lifelong Navigation and Mapping in an
Office Environment

Gordon Wyeth and Michael Milford

Abstract. This paper addresses the challenge of developing robots that map and
navigate autonomously in real world, dynamic environments throughout the robot’s
entire lifetime — the problem of lifelong navigation. Static mapping algorithms
can produce highly accurate maps, but have found few applications in real environ-
ments that are in constant flux. Environments change in many ways: both rapidly
and gradually, transiently and permanently, geometrically and in appearance. This
paper demonstrates a biologically inspired navigation algorithm, RatSLAM, that
uses principles found in rodent neural circuits. The algorithm is demonstrated in an
office delivery challenge where the robot was required to perform mock deliveries
to goal locations in two different buildings. The robot successfully completed 1177
out of 1178 navigation trials over 37 hours of around the clock operation spread
over 11 days.

1 Introduction

A mobile robot can achieve its goals more efficiently if it can remember the layout
of its surroundings, maintain a representation of its own position, and use its mem-
ory of the spatial layout to execute paths to goal locations. The problem of getting a
robot to build a spatial representation of its world and to localize within that spatial
representation has been extensively studied as the problem of Simultaneous Local-
ization and Mapping (SLAM). There are several solutions to the SLAM problem,
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and many demonstrations of highly accurate mapping ability (such as [6, 13]), yet it
is widely recognized that these solutions are not finding their way into practical ap-
plications with autonomous robots [14]. The existing solutions are geared towards
building maps based on static features, and assume that the mapped features of the
surroundings will not change. SLAM maps are not easily updated, and rapidly be-
come out of date as alterations to the robot’s surroundings accrue. In visual SLAM,
where the robots use cameras to detect features, the problem is exacerbated by con-
stant visual changes caused by variations in lighting. For a map to be useful to a
robot, the map must adapt to all kinds of change: rapid and gradual, transient and
permanent, visual and functional.

Animals, on the other hand, seem to adapt to changes in spatial layout with ease.
The navigation ability of the rodent has been widely studied in biology at both a
behavioral and neural level [4]. Rats can forage over ranges of kilometers, remem-
bering sources of food, avoiding dangerous areas, and returning to the nest [5]. The
rat navigates equally well through urban back alleys, under houses, through pipes,
and across grasslands. All of these environments are constantly changing from the
activities of other animals or humans, and from the weather and the season. Biolo-
gists inspired by the remarkable navigation performance of the rodent family have
made major advances in unraveling the neural circuitry that stores the map, localizes
the rat and plans the paths. In this paper, we use that neural circuitry as inspiration
for a solution to the problem of lifelong mapping and navigation for a mobile robot.

There have been a number of robot systems built based on the neural circuitry of
the rat: some have been designed to test biological ideas (for example, [1]), others
have explored improvements for robotic applications (for example, [2]). Our pre-
vious work has been focused on the application of the rodent inspired algorithm,
RatSLAM, to challenging robot problems. RatSLAM has been demonstrated map-
ping indoor environments [10], a university campus [11], and an entire suburb [8].
In this paper, we show that the maps built by RatSLAM are well suited to planning
for navigation, and readily maintainable in changing environments.

The challenge we set for RatSLAM in this paper was to build a map suitable
to plan “deliveries” in two working office environments operating at all times in
the 24 hour day/night cycle over a two week period. The robot was given an initial
period to autonomously explore the first environment and generate a user readable
map. The delivery locations were then marked on that map, and delivery requests
randomly generated for over 1000 trials. The robot was then moved (without no-
tice) to a second building where it built a new map, and performed deliveries to
new locations. The robot was finally returned to the original building where it au-
tonomously relocalized and performed deliveries to locations in the original map.
While performing deliveries in both buildings, the robot autonomously found and
remembered the location of its charger, and autonomously recharged its batteries as
required.

The paper describes the RatSLAM system in the next section, detailing how
the system can be used to build maps that remain stable in size and computation
requirements over time. After describing the delivery challenge in detail, the paper
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Fig. 1 The RatSLAM system. Each local view cell is associated with a distinct visual scene
in the environment, and becomes active when the robot sees that scene. A three-dimensional
continuous attractor network forms the pose cells, where active pose cells encode the estimate
of the robot’s pose. Each pose cell is connected to proximal cells by excitatory and inhibitory
connections, with wrapping across all six faces of network. Intermediate layers in the (x’,
y’) plane are not shown. The network connectivity leads to clusters of active cells known as
activity packets. Active local view and pose cells drive the creation of experience nodes in
the experience map, a semi-metric graphical representation of places in the environment and
their interconnectivity.

then shows results that illustrate both reliability and stability of the mapping and
navigation system. A more detailed and authoritative version of this study can be
found in [9].

2 RatSLAM

RatSLAM has three principal components: the pose cells which use odometry to
provide a locally consistent spatial reference, the local view cells which provide
the interface to the robot’s external sensors, and the experience map which fuses the
information in the pose cells and the local view cells to provide a representation suit-
able for autonomous navigation. The components of RatSLAM and the interactions
of the components are illustrated in Figure 1, and described briefly in the following
sections. Further details of the operation of RatSLAM can be found in [8, 9].

2.1 Pose Cells

The pose cells are a three-dimensional Continuous Attractor Network (CAN), a type
of neural network that consists of an array of neural units [12]. Unlike other neural
networks that operate by changing the value of connections between neural units, the
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CAN predominantly operates by varying the activity of the neural units while keeping
the connection strengths fixed. During operation, the pose cell network will generally
have clusters of highly active units: activity packets. The active cells of an activity
packet provide a representation of the robot’s pose that is consistent with the pose
cell network’s rectangular prism structure, as shown in Figure 1. Each of the three
dimensions of the prism corresponds to one of the three spatial dimensions x′, y′, and
θ ′. Primed co-ordinates are used as the pose cells’ representation of space is heavily
distorted and aliased. To interpret the pose of the robot from the pose cells, the activity
packet(s) must be transformed into the more useful experience map representation.
The purpose of the pose cells and the activity packet is to provide a representation that
is readily associated with external perception through the local view.

Attractor Dynamics

An activity packet is self-maintained by fixed local excitatory connections that in-
crease the activity of units that are close in (x′, y′, θ ′) space to an active unit. Fixed
inhibitory connections suppress the activity of smaller clusters of activity elsewhere
in the network. Connections wrap across all six faces of the pose cell network, as
shown by the longer red arrows in Figure 1. The change in the cells’ activity level
ΔP is given by:

ΔP = P∗ ε−φ (1)

where P is the activity matrix of the network, ε is the connection matrix, and ∗
is the convolution operator. As well as the inhibition in the connection matrix, the
constant φ creates further global inhibition. At each time step, activation levels in P
are restricted to non-negative values and the total activation is normalized.

Path Integration

Path integration involves shifting the activity packet in the pose cell network based
on odometry information. At each time step, RatSLAM interprets the odometry in-
formation to displace a copy of the current activity state in the pose cell network.
The path integration process can cause a cluster of activity in the pose cells to shift
off one face of the pose cell structure and wrap around to the other, as is shown in
both packets in Figure 1, one of which is wrapping across the θ ′ boundary, the other
across the y′ boundary. Recording from a single cell under path integration will cre-
ate firing fields with rectangular tessellations, similar to the triangular tessellations
seen in a rodent’s grid cells found in entorhinal cortex [7].

2.2 Local View Cells

The local view cells produce a sparse vector based on a classification of the robot’s
external perception. A local view cell is created every time the robot sees a scene
that is distinct from any other scene that the robot has seen before. Each local view
cell is paired with a template of its associated distinct scene. If the scene is viewed
again then the local view cell will become active.
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Scene Recognition

In this implementation of RatSLAM, the external perception for the local view sys-
tem was driven entirely from panoramic images obtained from a camera facing ver-
tically upwards at a parabolic mirror, mounted at the central rotation axis of the
robot. Some typical images are shown in Figure 2. The image is unwrapped to 128
pixels representing 360◦ in the horizontal dimension and 20 pixels representing 90◦

in the vertical dimension. Gain and exposure control are applied to the entire image,
with patch normalization on the lower half of the image. In order to provide rota-
tionally invariant matching, each row in the image is transformed to a set of Fourier
coefficients. Image similarities between the current image and template images are
calculated using the multiplication of the Fourier coefficients, which is equivalent
to convolution in image space:

C = F−1

[
h

∑
y=1

F (iy) ·F(ry)

]
(2)

where F() is the Fourier Transform operator and iy and ry are the pixels rows at y
in the current and template images, respectively. The value of the maximum real
correlation coefficient gives the quality of the match m:

m = max(Re(C)) (3)

Fig. 2 Vision hardware and vision processing system. A camera and mirror produces panora-
mas which are unwrapped into 360 degree by 90 degree images. The image is then reduced in
resolution, patch normalized to enhance local image contrast and correlated with all template
images. Template images that are close matches to the current image activate local view cells,
which link to the pose cells and experience map.
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A new image template and local view cell is created if the best match for all current
image-template image pairings is below a threshold mmin. The match quality scores
for each image pair are used to set the activation levels for the corresponding local
view cells:

Vi = max(mi,0)∀i (4)

Multiple local view cells can be simultaneously active to varying degrees in regions
with perceptual aliasing, and there is no competition imposed between the cells. The
connections from the local view cells to the pose cells, and the spatio-temporal filter-
ing properties of the pose cells, prevent perceptual aliasing from adversely affecting
the representation built in the experience map.

Connecting Local View to Pose

RatSLAM increases the strength of connections between local view cells and pose
cells that are active simultaneously. In other words, RatSLAM learns an association
between a visual scene and the robot pose. During a loop closure event, the familiar
visual scene activates local view cells with learnt connections to the pose cells rep-
resenting the pose where the visual scene was first encountered. Due to the attractor
dynamics of the pose cells, a single visual scene is not enough to force an immediate
change of pose; several consecutive and consistent views are required to update the
pose. The attractor dynamics temporally and spatially filter the information from the
local view cells, providing rejection of spurious loop closure events.

The connections between local view cells and pose cells are stored in a connec-
tion matrix β , where the connection between local view cell Vi and pose cell Px′,y′,θ ′
is given by:

β t+1
i,x′,y′,θ ′ = max

(
β t

i,x′,y′,θ ′ ,λViPx′,y′,θ ′
)

(5)

where λ is the learning rate. When a familiar visual scene activates a local view cell,
the change in pose cell activity, ΔP, is given by:

ΔPx′,y′,θ ′ =
δ

nact
∑

i

βi,x′,y′,θ ′Vi (6)

where the δ constant determines the influence of visual cues on the robot’s pose es-
timate, normalized by the number of active local view cells nact. Figure 1 represents
the moment in time when a strongly active local view cell has injected sufficient
activity into the pose cells to cause a shift in the location of the dominant activ-
ity packet. The previously dominant activity packet can also be seen, which is less
strongly supported by a moderately activated local view cell.

2.3 Experience Mapping

The experience map combines the activity pattern of the pose cells with the activity
of the local view cells to create a topologically consistent and semi-metric map. The
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pose cells’ representation of space is distorted and aliased, making it unsuitable for
path planning. Often when a loop closure event occurs, the odometric error intro-
duces a discontinuity into the pose cells’ representation of space, creating two sets
of cells that might represent the same area in space. Similarly, the wrapped connec-
tivity of the pose cell network leads to pose ambiguity, where a pose cell encodes
multiple locations in the environment, forming the tessellated firing fields seen in
grid cells in the rat. The experience map does not contain the discontinuities and
ambiguities of the pose cells.

The experience map contains representations of places combined with views,
called experiences, ei, based on the conjunction of a certain activity state Pi in the
pose cells and the local view cells V i. Links between experiences, li j , describe the
spatio-temporal relationships between places. Each experience is positioned at a
location pi, a position that is constantly updated based on the spatial connectivity
constraints imposed by the links. Consequently, the complete state of an experience
can be defined as the triple:

ei =
{

Pi,V i,pi} (7)

Figure 1 shows the region of pose cells and the single local view cell associated with
the currently active experience A.

Transition links, li j , encode the change in position, Δpi j, computed directly from
odometry, and the elapsed time, Δti j, since the last experience was active:

li j =
{
Δpi j,Δti j} (8)

where li j is the link from the previously active experience ei to the new experience
e j. The temporal information stored in the link provides the travel time between
places in the environment. Path planning is achieved by integrating the time values
in the transition links starting at the robot’s current location to form a temporal
map. The fastest path to a goal experience can be computed by performing steepest
gradient ascent from the goal experience to the current location.

Creating Experiences and Closing Loops

At each time step, the current pose cell and local view cell states are compared with
each experience. If a previously stored experience matches the current state, it is
chosen as the ‘active’ experience, and represents the best estimate of the robot’s
location within the experience map. If the activity state in the pose cells or local
view cells is not sufficiently described by any of the existing experiences, a new
experience is created using the current pose and local view cell activity states. The
odometry information defines the initial location space of a newly created experi-
ence relative to the previous experience:

e j =
{

P j,V j,pi +Δpi j} (9)

When loop closure occurs, the relative position of the two linked experiences in the
map will typically not match the odometric transition information between the two,
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as shown in the discrepancy between experience A and A′ in Figure 1. A relaxation
method seeks to minimize the discrepancy between odometric transition informa-
tion and absolute location in experience space, by applying a change in experience
location Δpi:

Δpi = α

[
Nf

∑
j=1

(
p j −pi −Δpi j)+

Nt

∑
k=1

(
pk −pi −Δpki

)]
(10)

where α is a correction rate constant, Nf is the number of links from experience
ei to other experiences, and Nt is the number of links from other experiences to
experience ei. Equation 10 is applied iteratively at all times during robot operation;
there is no explicit loop closure detection that triggers map correction. The effect of
the repeated application of Equation 10 is to move the arrangement of experiences
in experience map space incrementally closer to an arrangement that averages out
the odometric measurement error around the network of loops.

Experience Pruning

The experience map algorithm will continue to add experiences about the changing
state of the world as the robot operates. In this way, the robot constantly updates
and maintains its representations of the world. For example, if the robot proceeds
along a corridor on one day with an adjoining door open, then the robot will build
an experience that captures the open door. If the door is closed on the next day,
then a new experience will be constructed with the door closed. The experiences
will overlap in the experience map, by virtue of their connectivity to surrounding
experiences, effectively mapping the same position with the alternate states of the
door. This is not an extension of the existing algorithm; it is a property inherited
from the algorithm’s biological origins.

The difficulty with using this method of map maintenance is that the robot will
remember all experiences from throughout its lifetime, creating an unmanageable
list of experiences to search and update. The list of experiences must be pruned to
a manageable level in order to attain the goal of lifelong navigation and mapping.
Experience pruning consolidates parts of the experience map which exceed a max-
imum spatial density threshold. In this way the number of experiences grows in
proportion to the size of the environment that has been explored, but not with time.

Figure 3 illustrates an experience being pruned from the map. The pruning algo-
rithm uses a grid overlaid on the experience map to tag squares that contain more
than one experience. Other methods for choosing the experience to delete were in-
vestigated (using measures such as recency and connectivity) but were found to
have no effect on performance. Existing transitions to removed experiences are ei-
ther deleted or updated to link to another experience. The odometric information for
the new link is inferred from the current positions of the experiences in experience
space, while the temporal information is calculated by dividing the inter-experience
distance by the average robot speed. If, after the pruning process, any local view
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Fig. 3 Experience map pruning. Experiences are removed to maintain a one experience per
grid square density. (b) Transitions to or from removed experiences are either deleted or
reconnected to remaining experiences.

cells no longer define any experiences, the cells and the visual templates associated
with them are removed. Any local view — pose cell links from these removed local
view cells are also deleted.

3 The Office Delivery Challenge

The challenge set for the system was to perform the role of a delivery robot in a real
world workplace over a two week period. The workplace consisted of floors in two
different buildings at The University of Queensland in Brisbane, Australia, shown
in Figure 2. The two buildings, Axon and General Purpose South (GP South), are
typical research environments, moderately populated during the day and cleaned by
janitors at night. The sizes of the two environments were 43 by 13 metres and 60
by 35 metres. The robot had to navigate through open plan office space, corridors,
kitchens and laboratories. The environments were by no means static, with mov-
ing people, changing door states, re-arrangement of furniture and equipment, and
a range of trolleys that intermittently appeared and disappeared during deliveries,
maintenance and cleaning operation. Perceptually the environments also changed,
with the most significant example being the day-night time cycles, which had an
especially significant impact in areas with many windows.

We used a Pioneer 3 DX robot equipped with a panoramic imaging system, a ring
of forward facing sensors, a Hokuyo laser range finder and encoders on the wheels
(shown in Figure 2). All computation and logging was run onboard on a 2 GHz
single core computer running Windows XP. The robot’s typical operation speed
was 0.3–0.5 ms−1. The robot operated continuously for two to three hours between
recharging cycles. Due to the need for supervision of the robot during operation (to
ensure the integrity of the experiment), the total active time was limited to one to
four recharge cycles in a typical day. In order to capture the effect of around-the-
clock operation, experiments were conducted across all hours of the day and night.
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3.1 Procedure

The experimenter first placed the charging station at a location in the Axon build-
ing. The experimenter then positioned the robot at a random location, turned it on,
and initiated the software suite. The robot commenced exploration of the environ-
ment. After 117 minutes, the experimenter specified six desired delivery locations,
by clicking on these locations in the experience map. Detecting the specification of
delivery locations, the robot commenced a process of picking a delivery location at
random and navigating to it to make a mock ‘delivery’. When the robot detected a
low battery state, it navigated to the recharging dock and docked to recharge. Dur-
ing re-charging the robot powered down in a fashion that retained the map, but lost
localization.

Fig. 4 Photos of the two environments. (a) Cluttered open plan office space in Axon building,
note the number of windows. (b) Robotics laboratory in Axon building. (c-e) Corridors in GP
South building. Panoramas generated using Autostitch software demo [3].
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After eight days and 1017 delivery trials in the Axon environment, the experi-
menter turned off the robot and re-deployed it in the GP South environment. The
experimenter also placed the charging station in the new environment, and then
turned on the robot and initiated the software suite. To take advantage of the wider
corridors, the experimenter made a single change to a movement parameter govern-
ing the top speed and obstacle clearance; this change was not required but enabled
higher speed operation. The robot was not told that it had been put in a new en-
vironment, and since it had no path solutions to any existing delivery locations,
commenced exploration. After 68 minutes, the experimenter specified five desired
delivery locations, by clicking on the experience map. With delivery goals that were
now accessible, the robot commenced random delivery navigation. After 54 delivery
trials the robot returned to the charger to recharge, after which the robot was turned
off and replaced in the original Axon environment, with no notification that it had
changed environments. The robot commenced navigation to the original delivery
locations. A further 72 delivery trials were conducted in the Axon building, before
the experiment ended after 11 days.

4 Results

The results show the performance of the robot in its main task of navigating to
delivery locations, and the stability of the performance over the 11 days of the trial.
Results were obtained from analysis of more than nine gigabytes of data including
video from the robot, logged every time the robot docked to recharge.

4.1 Delivery Performance

Over the entire experiment, the robot had 1177 successful navigation trials (includ-
ing navigation for deliveries and for recharging) and only one failure. The robot
failed to complete delivery trial number 579, in that it did not get to the delivery
location within five minutes. This failure was due to an extended localization failure
in the open space in the robotics laboratory pictured in Figure 4(b). The global nav-
igation system provided a local path to the local navigation system which could not
be fulfilled, and the robot became ‘stuck’ in the corner, before eventually timing out
the delivery attempt and reporting a delivery failure. The robot laboratory was one
of the most challenging environments for the mapping system, because robot mo-
tion was relatively unconstrained in the large open space, leading to many unique
template sequences. The delivery accuracy was worst for the delivery location in
this room.

Figure 5 shows the accuracy of the global navigation system with respect to
ground truth when making deliveries. The global navigation system uses 0.1 m as
the acceptable tolerance for a delivery to be deemed complete. Perfect localization
at delivery would be shown as a delivery error of 0.1 m. Goal location 3 was the
delivery point located in open space in the robot laboratory.
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Fig. 5 Accuracy of delivery tasks, shown using a box whisker plot. Whiskers encompass the
full range of delivery errors for each goal location.

4.2 Experience Maps

The experience map is the core global representation that forms the basis for nav-
igation performance. In Figure 6, the experiences are plotted as a green circle at
the (x,y) coordinates in the stored position p. Linked experiences are joined with
a blue line. The spatial integrity of the map is important for efficient operation of
the pruning algorithm, while topological integrity is important for path planning and

Fig. 6 Experience map progression for Axon and GP South buildings over the entire exper-
iment. For the purposes of presentation, the experience map in the GP South building was
initialized with an offset, to keep the maps separate.
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navigation. The maps are not strictly accurate in a Cartesian sense, but need not be
for effective navigation. For clarity, the map of GP-South in Figure 6(e) has been
represented with an offset to the map of Axon. Note that there are no topological
connections between the two buildings.

4.3 Stability

In order to address the question of the long term stability of the persistent naviga-
tion and mapping system, various measures were assessed to investigate trends in
performance over time. The first indicator is the average time taken to navigate to
each delivery location, plotted against time as in Figure 7. The delivery duration is
dependent on the distance from the robot starting location and the randomly chosen
delivery location. Durations are shown as averages over 100 deliveries, or over the
period spent in the building whichever is shorter, smoothing the data sufficiently to
obtain a measure of whether there is any increasing trend in navigation times as the
map evolves. The graph shows no increase in delivery times, even after the robot
has mapped another building.

The second indicator of stability used is the number of experiences and visual
templates retained by the system over time, shown in Figure 8. The number of ex-
periences and visual templates in use is stable after the first two hours, although
the robot does gradually learn extra sections of the environment. In particular, the
robotics laboratory (see Figure 4(b)) continued to build new experiences as the robot
visited new areas of the room on subsequent visits. The extended coverage of the
room is illustrated by the map evolution shown in Figure 6. About 1200 new ex-
periences and 800 new visual templates were learnt in 90 minutes when the robot

Fig. 7 Navigate-to-goal durations for the initial navigation trials in the Axon building (in
groups of 100), General Purpose South building, and the final trials in Axon. Error bars show
the standard deviation.
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Fig. 8 Graph of the number of experiences and the number of view templates over the entire
active duration of the experiment.

was moved to GP South, after which the number of experiences reaches a plateau
of 2500. When placed back into Axon building at 35 hours, a small number of new
experiences and templates are learned.

There were ample computational resources at all times during the eleven day ex-
periment to maintain a 7 Hz rate of vision processing, localization and navigation
planning. Spare compute time was used to run the experience map relaxation al-
gorithm in Equation 10, which stabilized at 50 Hz in the initial Axon trials, and
dropped to 25 Hz when the extra GP-South trials were included.

5 Conclusions

We presented the RatSLAM algorithm as a possible solution to the challenge of life-
long mapping and navigation. RatSLAM is significantly different to other SLAM
algorithms: it relies on remembering sequences of observed features across a tra-
jectory of poses, rather than geometric optimization of motion and feature measure-
ments. Our biological analogy of memory for places is built in a system inspired by
the neural computation believed to take place in the rodent hippocampus. The neural
inspiration lends itself readily to a paradigm of learning, remembering and forget-
ting, rather than geometry, probability and optimization. The flexibility introduced
by our paradigm shift enables the creation of maps that can adapt to the constant
change found in real environments.

It is important to realize that functional integrity rather than absolute Cartesian
accuracy is the key criteria for success in lifelong navigation and mapping. Per-
formance metrics must be principally concerned with the measurement of goal at-
tainment, rather than the accuracy of the underlying map. In this paper, we have
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presented a series of metrics that are of principal importance to the measurement of
success of a lifelong navigation and mapping system. The rate of goal attainment
(> 99.9%) is the key metric, with metrics showing the stability of the number of
retained elements in the map providing evidence that this system could continue to
function with high reliability for months or possibly years.
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Multi-robot systems

Cédric Pradalier

Using multiple mobile robots appears as a natural evolution to the traditional
robotic research. Introducing multiple agents increases the potential performance
of the system: adding more degrees of freedom to manipulation tasks, adding par-
allelism  to  delivery  tasks,  adding  more  view-points  for  observation  tasks.
However, as shown in the following chapters, this comes with a significant in-
crease in complexity of the control, planning, and data-fusion systems. 

In  “Coordinating  Construction  of  Truss  Structures  using  Distributed
Equal-mass Partitioning ”, Yun et al. propose a methodology for a mul-
ti-robot construction system, in particular in the context of multiple parts
and  specialised  robots.  The paper presents  simulation  results  and dis-
cusses the stability and adaptation properties of the proposed method.
In “Synthesis of Controllers to Create, Maintain, and Reconfigure Robot
Formations with Communication Constraints ”, Ayanian et al. develop a
framework for controlling groups of robots with high-bandwidth intra-
group  communication  but  limited  inter-group  communication.  The
chapter reports simulation results and discusses the complexity of the ap-
proach.
In “Planning and Control for Cooperative Manipulation and Transporta-
tion with Aerial Robots ”, Fink et al. consider the problem of transporting
a pay-load using multiple quad-copter. Individual robot control laws and
motion plan are developed, and the chapter reports results both in simula-
tion and with a set-up made of three quad-copters. 
In “Adaptive Highways on a Grid ”, Roozbehani and D'Andrea address
the problem of planning paths for a multitude of real robots moving in a
grid environment. This chapter considers the dynamic of the robots and
presents results in simulation for several algorithms, in particular the Ad-
aptive Highway Algorithm. 
In  “Environment  modeling  for  cooperative  aerial/ground  robotic
systems”, Vidal et al. implement a SLAM approach suitable for the coop-
eration of multiple heterogeneous robots. Using a combination of ground
and aerial platforms make this problem particularly challenging because
of the extreme difference of view-point between the two types of robots. 



In “Energy-Efficient Data Collection from Wireless Nodes using Mobile 
Robots ”, Tekdas et al. address a different aspect of the synchronisation 
of multiple autonomous systems in the context of wireless sensor net-
works. In this case, the energy constraints are so high that a robot and a 
group of deployed sensors must synchronise their communication to op-
timise their global energy efficiency.

As mentioned earlier, the complexity increase due to the use of multiple robotic 
devices is significant. This is particularly visible in that many of the chapters in 
this part  of  the ISRR'09 proceedings only report  results  on simulated systems. 
Even when real platforms are used, rarely more than three are reported, with the 
exception  of  the  Kiva  systems  mentioned  in  the  work  of  Roozbehani  and 
D'Andrea. A reason for the rarity of real multi-robot systems with number of ro-
bots with at least two digits is simply the complexity of maintaining, program-
ming, and deploying a large number of robots, especially when the team is hetero-
geneous. Engineering solutions to this problem are provided by company such as 
Kiva in specific cases. Nonetheless, there is still  a lot of space for research to 
provide generic solution to the communication problems, fault management and 
reporting, task planning and distribution, and the general programming and de-
ployment problems. 
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Coordinating Construction of Truss Structures
Using Distributed Equal-Mass Partitioning

Seung-kook Yun, Mac Schwager, and Daniela Rus

Abstract. This paper presents a decentralized algorithm for the coordinated assem-
bly of 3D objects that consist of multiple types of parts, using a networked team of
robots. We describe the algorithm and analyze its stability and adaptation properties.
We instantiate the algorithm to building truss-like objects using rods and connectors.
We implement the algorithm in simulation and show results for constructing 2D and
3D parts. Finally, we discuss briefly preliminary hardware results.

1 Introduction

We wish to develop cooperative robot systems for complex assembly tasks. A typ-
ical assembly scenario requires that parts of different types get delivered at the lo-
cation where they are needed and incorporated into the structure to be assembled.
We abstract this process with two operations: (1) tool and part delivery carried out
by delivering robots, and (2) assembly carried out by assembling robots. In this pa-
per, we consider how a team of robots will coordinate to achieve assembling the
desired object. Tool and part delivery requires robots capable of accurate navigation
between the part cache and the assembly location. Assembly requires robots capable
of complex grasping and manipulation operations, perhaps using tools. Different as-
sembling robots work in parallel on different subcomponents of the desired object.
The delivering robots deliver parts (of different types) in parallel, according to the
sequence in which they are needed at the different assembling stations. We consider
the case where the parts are (a) rods of different lengths and (b) connectors for con-
necting the rods into truss-structured objects. The robots can communicate locally
to neighbors. The delivering robots have the ability to find the correct part type in
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the part cache, pick it up, and deliver it to the correct spot for the assembling process
requesting the part, and return to the part cache for the next round of deliveries. The
assembling robots have the ability to receive the part from a delivering robot and
incorporate it into the assembly.

Fig. 1 Concept art for construction of a truss
structure by mobile delivering robots and truss-
climbing assembling robots. Reprinted with
permission from Jonathan Hiller, Cornell
University, USA.

We assume that the target object
is given by a material-density func-
tion which encodes the object geom-
etry and is known to all the robots.
The construction process starts by
a “coverage”-like process during
which the assembling robots partition
the target structure adaptively into
sub-assemblies, such that each robot1

is responsible for the completion of
that section. To achieve this division,
the robots locally compute a Voronoi
partition, weighted by the mass of all
the rods contained in the partition,
and perform a gradient descent algo-
rithm to balance the mass of the re-
gions. The delivery robots also know
the density function describing the
target structure and the location of the
parts. Each delivering robot carrying a part enters the assembling region and deliv-
ers the part to the region with the highest demanding mass. That is, the robot asks
each assembling robot within communication range what is the current mass of the
structure they have created and selects the site of the least completion. This ensures
global and local balance for part delivery.

We describe decentralized control algorithms for the partition, part delivery, and
assembling steps. The algorithms are inspired by the approach in [2, 9, 7] and use
equal-mass partitioning as the optimization criterion. The algorithms rely on local
information only (e.g. neighbors exchange information about their local mass). The
task allocation and part delivery algorithms are provably stable. They are adaptive
to the number of delivering robots and assembling robots as well as to the amount
of source material. We implemented these algorithms in simulation. Several 2D and
3D truss-structures were created using our algorithms. We have started a hardware
implementation using iCreate robots extended with Meraki communication and a
CrustCrawler 4-dof robot arm. The part delivery algorithm has been implemented
on these robots to demonstrate the coordination infrastructure of the system and the
correctness of the delivery algorithm. Assembly execution is under development.

1 The robot represents all the skills needed for each required assembly step; in some cases
multiple robots will be needed, for example the connection of two rods with a screw is
done by three robots, one robot holding each rod, and one robot placing the connector.
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1.1 Related Work

This work combines distributed coverage and robotic construction. We follow the
notion of locational optimization developed by Cortes et al. [2], who introduced
distributed coverage with mobile robots. The same optimization criteria was used
in a distributed coverage controller for real-time tracking by Pimenta et al. [8]. In
our previous work, Schwager [9] used adaptive coverage control in which networked
robots learn a sensory function while they are controlled for the locational optimiza-
tion. This research inherits the distributed coverage concept, and pursues equal-mass
partitioning in which every networked robot is controlled to have the same amount
of construction (in our case, truss elements and connectors) to be built, rather than
optimal sensing locations. Pavone et al. [7] have been independently working on
equitable partitioning by the power diagram.

Algorithms and hardware have been developed for manipulator robots that climb
and build a truss structure. SM2, a truss-walking inspection robot, was developed for
space station trusses [6]. Skyworker demonstrated truss-like assembly tasks [10].
Werfel et al. [11] introduced a 3D construction algorithm for modular blocks. Our
previous work on truss assembling robots includes Shady3D [1, 4, 5] that utilizes a
passive bar with active communication and may include itself in a truss structure,
and is controlled by locally optimized algorithms. We also proposed a centralized
optimal algorithm to reconfigure a given truss structure to a target structure [3].
This work introduces a framework in which robots are specialized as delivery and
assembling robots, distributed algorithms control the assembly of a structure with
multiple kinds of source materials.

2 Problem Formulation

We are given a team of robots, n of which are specialized as part delivering robots
and the rest are specialized as assembling robots. The robots can communicate lo-
cally with other robots within their communication range. The robots are given a
target shape represented as a mass-density function φt. We wish to develop a decen-
tralized algorithm that coordinates the robot team to deliver parts so that the goal
assembly can be completed with maximum parallelism.

Suppose for now that the robots move freely in an Euclidean space (2D and 3D).
This assumption makes sense when the robots move in the plane to achieve a planar
assembly. However, for 3D assemblies, factors such as gravity and connectivity of
structure, as well as 3D motion for the robots, must be considered. We will general-
ize in Section 5.

Algorithm 1 shows the main flow of construction in a centralized view. In
the first phase, assembling robots spread in a convex and bounded target area
Q ⊂ RN(N = 2, 3) which includes the target structure. They find placements
using a distributed coverage controller which assigns to each robot areas of the tar-
get structure that have approximately the same assembly complexity. In the second
phase the delivering robots move back and forth to carry source components to the
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assembling robots. They deliver their components to the assembling robot with max-
imum demanding mass. The demanding mass is defined as the amount of a source
component required for an assembling robot to complete its substructure. In this
work, the source components include two types: truss elements and connectors. The
truss elements are rods and they may be of different lengths. Details of the demand-
ing mass for each type of the source components are presented in Section 4.1. After
an assembling robot obtains a component from a delivering robot, it determines the
optimal placement for this component in the overall assembly and moves there to
assemble the component. The assembly phase continues until there is no source
component left or the assembly structure is complete.

Algorithm 1. Construction Algorithm
1: Deploy the assembling robots in Q
2: Place the assembling robots at optimal task locations in Q (Section 3)
3: repeat
4: delivering robots: carry source components to the assembling robots (Section 4.2)
5: assembling robots: assemble the delivered components (Section 4.1)
6: until task completed or out of parts

2.1 Example

Figure 2(a) shows a construction system with 4 assembling robots. Intuitively, robot
1 and robot 4 move towards the other robots in order to expand their partition,
whereas robot 2 moves away from the other robots because it has the largest area.

Q

p1 p2

p3

l12

l13

l23

p4

l24

l34

(a)

1
4t

VM
2

0t
VM

3
2t

VM
4

1t
VM

(b)

Fig. 2 Example of the equal-mass partitioning and delivery by the gradient of the demand-
ing mass. 4 mobile manipulators (assembly robots) are displayed in a convex region Q that
includes the A-shaped target structure. The yellow region has high density φt. The mass of a
robot is the size of the total yellow region in its partition (Voronoi region.) pi(i = 1, 2, 3) de-
notes the position of the assembling robots and the red-dotted lines lij are shared boundaries
of the partitions between two robots. ΔM t

Vi
is the demanding mass.
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The moving direction of the robots is determined by combining the normals to the
Voronoi edges. Figure 2(b) shows the red delivering robot carrying a red truss el-
ement driven by the gradient of the demanding mass. The yellow region denotes
the target density function φt. The hashed region denotes completed assembly. The
demanding mass of a region can be thought of as the difference between the area of
yellow regions and the area of hashed regions.

Suppose a delivering robot is in the region of robot 4. Among its neighbors (robot
2 and 3) the maximum demanding mass is with robot 3. Thus the delivering robot
moves to robot3. The delivering robot finds that robot 1 has the maximum demand-
ing mass among robot 3’s neighbors, therefore it advances to robot 1 and delivers
the truss component. Following the maximum demanding mass gives a local balance
for the target structure.

3 Task Allocation by Coverage with Equal-Mass Partitions

This section describes a decentralized equal-mass partitioning controller which is
inspired by distributed coverage control [2, 9]. The algorithm allocates to each as-
sembling robot the same amount of assembly work, which is encoded as the same
number of truss elements. This condition ensures maximum parallelism. We con-
tinue with a review of the key notation in distributed coverage, then give the mass
optimization criteria and end the section with the decentralized controller.

3.1 Equal-Mass partitioning

Suppose n assembling robots cover region Q with a configuration {p1, ...,pn},
where pi is the position vector of the ith robot. Given a point q in Q, the nearest
robot to q will execute the assembly task at q. Each robot is allocated the assembly
task that included its Voronoi partition Vi in Q.

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j �= i} (1)

The target density function φt is the density of truss elements, and it is fixed during
the construction phase. Given Vi, we define its mass property as the integral of the
target density function in the area.

MVi =
∫

Vi

φt(q)dq (2)

We wish for each robot to have the same amount of assembly work. We call this
equal-mass partitioning. The cost function can be modeled as the product of all the
masses:

H = H0 −
n∏

i=1

MVi , (3)
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where H0 is a constant and the bound of the product term as:

H0 =

(
1
n

n∑
i=1

MVi

)n

=
(

1
n

∫
Q

φt(q)dq
)n

. (4)

The cost function is continuously differentiable since each MVi is continuously dif-
ferentiable [8]. Minimizing this cost function leads to equal-mass partitioning, be-
cause of the relationship between the arithmetic mean and the geometric mean.

1
n

n∑
i=1

MVi ≥ n

√√√√ n∏
i=1

MVi , (5)

where the equality holds only if all the terms are the same. Therefore the prefect
equal-mass partitioning makes the cost function zero. Using the cost function in
( 5), we have developed a decentralized controller that guarantees H converges to a
local minimum.

3.2 Controller with Guaranteed Convergence

We wish for the controller to continuously decrease the cost function: Ḣ ≤ 0, t > 0.
Differentiating H yields

Ḣ =
n∑

i=1

∂H
∂pi

ṗi. (6)

When Ni is a set of neighbor robots of the ith robot, each term of the partial deriva-
tives is

∂H
∂pi

= −
∑

j=i,Ni

∂MVj

∂pi

∏
k={1,...,n},k �=j

MVk
(7)

= −
∏

l/∈{i,Ni}
MVl

∑
j=i,Ni

∂MVj

∂pi

n∏
k∈{i,Ni},k �=j

MVk
(8)

where

∂MVi

∂pi
=

∑
j∈Ni

Mij ,
∂MVj

∂pi
= −Mij (9)

Mij is computed along the sharing edges (sharing faces in 3D) lij between Vi and
Vj as in [8]:

Mij =
∫

lij

φt(q)
∂qlij

∂pi
nlij dq =

∫
lij

φt(q)
q− pi

‖pi − pj‖
dq (10)
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where nlij is a normal vector to lij as

lij = Vi ∩ Vj , nlij =
pj − pi

‖pi − pj‖
. (11)

We can rewrite equation 6 as

Ḣ = −
n∑

i=1

∏
l/∈{i,Ni}

MVl

∑
j=i,Ni

∂MVj

∂pi

n∏
k∈{i,Ni},k �=j

MVk
ṗi (12)

Let J i denote the part of the partial derivative term ∂H
∂pi

which is related with the set
{i,Ni}.

J i =
∑

j=i,Ni

∂MVj

∂pi

n∏
k∈{i,Ni},k �=j

MVk
(13)

Note that J i is a vector. Given a velocity control for each robot, the decentralized
controller that achieves task allocation is given by the control law:

ṗi = k
J i

‖J i‖2 + λ2
, (14)

where k is a positive control gain and λ is a constant to stabilize the controller even
around singularities where ‖J i‖2 = 0.

Note that all the equations can be computed in a distributed way, since they only
depend on the variables of the neighboring robots.

Theorem 1. The proposed controller guarantees that H converges to either a local
maximum or a global maximum.

Proof. The proposed control input ṗi yields

Ḣ = −k

n∑
i=1

‖J i‖2

‖J i‖2 + λ2

∏
l/∈{i,Ni}

MVl
. (15)

Since k and MVl
are positive, each term of Ḣ is always negative. In addition, the cost

function is differentiable, and trajectories of robots are bounded in Q. Therefore,
the controller keeps the cost function decreasing unless all the J i are empty vectors
(relocating the robots does not change the cost function), which implies a local
minimum.2

2 Pavone et. al [7] also developed equitable partitioning using power diagrams that are
weighted generalized Voronoi diagrams. They used a different cost function as the av-
erage of inverse of the masses. They targeted a different application in the space of the
multi-vehicle routing.
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4 Delivery and Assembly Algorithms

Once the assembling robots are in place according to the equal-mass partitioning
controller, construction may begin. State machines drive the delivering robots and
the assembling robots. During construction we wish to distribute the source compo-
nents (truss elements and connectors) to the assembling robots in a balanced way.
Global balance is asymptotically achieved by a probabilistic target selection of de-
livering robots that uses φt as a probability density function. For local balance, the
delivering robots are driven by the gradient of demanding mass defined as the re-
maining structure to be assembled by the robot. Robots with more work left to do
get parts before robots with less work left. Each assembling robot waits for a new
truss element or connector and assembles it to the most demanding location in its
Voronoi region. Therefore, construction is purely driven by the density functions
regardless of the amount of the source components and it can be done without an
explicit drawing of the target structure. We ensure that all the processes of the con-
trollers work in a distributed way and each robot needs to communicate only with
neighbors. Details of the control algorithms are explained next.

4.1 Assembly Algorithm

WAITING

MOVINGASSEMBLING

IDLE

construction startsno more spot to fill in

A source material
is delivered

reached the target point

the delivered material
has been assembled

Fig. 3 The state machine for an assembling robot.
Each assembling robot waits for the delivery of a
source component, moves the component to the opti-
mal spot and adds it to the structure. The robot’s task
is complete when there is no demanding mass left.

Each assembling robot operates
using a state machine as shown in
Figure 3. The robot has the fol-
lowing states:

• IDLE
• WAITING: waiting for a new

component
• MOVING: moving to the opti-

mal location to add the part
• ASSEMBLING: adding the

component to the assembly

Each robot has a graph repre-
sentation Gi = (Ri, Ei) of the
already built substructure. The
graph is composed of sets of
nodes and edges in the Voronoi region. For simplicity of exposition, we assume
truss elements of two sizes: the unit-box size, and the unit box diagonal. The exten-
sion to multiple sizes is trivial. We design the density function according to a grid.
The unit length of the grid is the length of the truss element. Vertices of the grid
have density values equal to the number of truss elements at the vertex. The density
of the intermediate points in the space is interpolated. The interpolated value is used
in the coverage implementation only. We can generalize this cost function to be a
continuous function that encodes the geometry of the object. The demanding mass



Coordinating Construction of Truss Structures 615

is defined uniquely for each component type. As for a truss element, the demanding
mass ΔM t

Vi
is computed as:

ΔM t
Vi

=
∫

Vi

φt(q)dq −
∫

Vi

ρ(q)dq, (16)

where ρ(q) is the density function of the built structure, which increases as a robot
assembles truss elements. Note φt(q) of the target shape is fixed. Therefore, a big-
ger demanding mass means that more elements should be included in that area. The
demanding mass for connectors ΔM c

Vi
is the number of required connectors Φc for

the current structure Gi. Note that ΔM c
Vi

is a function of φ(q). The demanding
masses drive a delivering robot according to gradients as in (Section 4.2). If a struc-
ture is composed of other components, we can define the demanding mass for each
material.

Algorithm 2 shows the details of the state machine. When construction starts,
an assembling robot initializes the parameters R, E, ρ, Φc and changes its state to
WAITING. Once a new truss element is delivered, the robot finds the optimal place
to add it to the structure using Algorithm 3. Since we want the structure to gradu-
ally grow, the optimal edge is chosen among a set of edges E1 that are connected
to G. Let E2 be a set of edges that have maximum demanding mass in E1. The
demanding mass of an edge can be computed as the sum of masses of two nodes
defining the edge. Each node of the edges in E2 should have a density value greater

Algorithm 2. Control Algorithm of assembling robots

STATE: IDLE
1: R = ∅, E = ∅

2: ρ(q) = 0, Φc = ∅

3: state=WAITING
STATE: WAITING
4: if truss delivered then
5: e=findOptimalEdge(R, E, φt, ρ)

(Alg. 3)
6: if e �= ∅ then
7: t = q(node1(e)+node2(e))/2

8: state=MOVING
9: else

10: state=IDLE
11: end if
12: end if
13: if connector delivered then
14: v ← Φc

15: t = qv

16: state=MOVING
17: end if

STATE: MOVING
18: if reached t then
19: state=ASSEMBLING
20: else
21: move to t
22: end if
STATE: ASSEMBLING
23: assemble the material
24: if the material = truss then
25: update ρ(e)
26: if node2 ∈ R and nodei /∈ Φc then
27: Φc ← nodei

28: end if
29: E ← e
30: R ← {node1(e), node2(e)}
31: end if
32: if the material = connector then
33: Φc = Φc − {v}
34: end if
35: state=WAITING
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than the threshold preventing the robot from assembling the component outside the
target structure. In order to achieve a spreading-out structure, priority is given to
unconnected edges. If no such edge exists, we choose another seed edge that is not
connected to G and has the maximum demanding mass. This jump is required in
case that the robot covers substructures which are not connected to each other. If
the delivered material is a connector, the optimal location is a node v ∈ Φc that
is connected to the largest number of edges in E. The state machine sets a target
location t according to the optimal location and changes the state to MOVING. In
the MOVING state, an assembling robot moves to the target location t and changes
the state to ASSEMBLING when it arrives. Finally, a robot assembles the delivered
material and updates the parameters. It adds a node of the optimal edge to Φc if the
node /∈ Φc and is connected to other edges. If the material is a connector, the robot
removes the node from Φc. The state switches to WAITING again.

4.2 Delivery Algorithm

delivering robots operate by a state machine as shown in Figure 4. Each robot has
the following states:

• IDLE
• ToSOURCE: moving to get a new element
• ToTARGET: moving to a picked point at the target area Q
• ToASSEMBLY: delivering the element to an assembling robot

Algorithm 3. Finding the Optimal Edge to Build
1: E1 = ∅, E2 = ∅, E3 = ∅

2: if E1 = ∅ then
3: eopt = argmaxe(φt(e) − ρ(e))∩ (φt(e) > Δφthreshold)
4: else
5: E1 ← e, (e /∈ E, node(e) ∈ R)
6: E2 ← argmaxe∈E1

(φt(e) − ρ(e)) ∩ (φt(e) > Δφthreshold)
7: if E2 = ∅ then
8: eopt = argmaxe(φt(e) − ρ(e))∩ (φt(e) > Δφthreshold)
9: else

10: E3 ← e, (e ∈ E2, {node1(e), node2(e)} ∈ {Ri, Rj,j∈Ni})
11: if E3 �= E2 then
12: eopt= random(E2 − E3)
13: else
14: eopt= random(E2)
15: end if
16: end if
17: end if
18: return eopt
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ToSOURCE

ToTARGETToASSEMBLY

IDLE

construction startsno more material

obtained 
a source material

reached the target point

passed the material
to an assembly robot

Fig. 4 The state machine for a delivering robot.
A delivering robot repeatedly passes source com-
ponents from the source location to an assembling
robot. The initialization of construction causes the
delivering robots to start moving. The robots finish
working when there is no more source material left
at the source location or the assembly is complete.

Algorithm 4 describes the details of
the state machine.3 Given an ini-
tially empty state, a delivering robot
changes its state to ToSOURCE and
moves to S (the source location). At
S, the robot picks a source compo-
nent if one exists. Otherwise, it stops
working. The state is switched to To-
TARGET and the robot moves to
a randomly chosen point in Q fol-
lowing the probability density func-
tionφt.Therefore,materialsaremore
likely to be delivered to an area
with a denser φt. After arrival at the
chosen point, the robot changes the
state to ToASSEMBLY and moves
following the gradient of the
demanding mass ΔMVi of assem-
bling robots. Delivery by the gradi-
ent of the demanding mass yields a
locallybalancedmassdistribution.Notethattheglobalbalanceismaintainedbytheran-
domlychosendeliverywithdensityφt.Whentherobotmeetstheassemblingrobotwith
the maximum demanding mass, it checks if the state of the assembling robot is WAIT-
ING and passes the material. The state changes to ToSOURCE and the robot repeats
delivery.

5 Adaptation

We briefly discuss the adaptive features of the construction algorithm. Proofs, details
and implementation will be in future work.

Theorem 2. Continuous coverage during construction compensates for failure of
robots

In the proposed framework for robotic construction, a failure of an assembling robot
is critical since the robot covers a unique region. Control that uses equal-mass par-
titioning continuously during the construction makes the remaining robots automat-
ically compensate for the failed assembling robot. The assembling robots recon-
struct the Voronoi regions when the surrounding network of the robots has changed
(in implementation, assembling robots keep contact with the neighbor robots.) The

3 Theassemblyand thedeliveryalgorithmsprovablyguaranteecompletionof thecorrect target
structure. In the interest of space, the proof is omitted. Empirical results in Section 6 shows
correctness of the algorithms since all the simulations with different initial conditions end up
with the same final structure.
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Algorithm 4. Control Algorithm of delivering robots

STATE: IDLE
1: state = ToSOURCE
2: t = S

STATE: ToSOURCE
3: if reached t then
4: if source material remains then
5: pick a material element
6: t = q, q ∼ φt(q)
7: state = ToTARGET
8: else
9: state = IDLE

10: end if
11: else
12: move to t
13: end if

STATE: ToTARGET
14: if reached t then
15: state=ToASSEMBLY
16: else
17: move to t
18: end if
STATE: ToASSEMBLY
19: communicate with robot ri s.t. q ∈ Vi

20: deliveryID = argmax(k=i,j∈Ni)
ΔMVk

21: t = pdeliveryID

22: if reached t & state of ri = WAITING
then

23: pass the material
24: state = ToSOURCE
25: t = S
26: else
27: move to t
28: end if

assembling robots also need to update the parameters such as the graph of the built
structure, the demanding mass, etc. The delivering robots achieve this transparently.

Theorem 3. The algorithms are adaptive to construction in order.

The construction algorithm is also adaptive to a time varying density function. This
property has a nice side-effect: it enables construction in order, with connectivity
constraints in 3D. For example, the robots can build a structure from the ground up
by revealing only part of φt that is connected to the current structure.

Theorem 4. The proposed algorithms can be extended for reconfiguration from an
existing structure.

The goal structure might change after or during construction. The construction al-
gorithm can be to adapt the robots to build a new goal structure from the current
structure. Equal-mass partitioning can be used with difference of the target density
functions, assuming the assembling robot is capable of disassembly. The delivering
robots grab source material from the part of the current structure that is unnecessary
for the new goal structure.

6 Implementation

Algorithm 2, 4 and the equal-mass partitioning were implemented for building 2D
and 3D structures. We use side truss elements and connectors that lie at a single
source location. We have built several structures using these algorithms.
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6.1 Building an A-shaped Bridge

The first simulation demonstrates the construction of a bridge from a single source
location of trusses and connectors. The density function φt and the final Voronoi
regions resulting from using the equal-mass partitioning controller for 4,6, and 10
assembling robots are shown in Figure 5. We use a discrete system so that φt is
defined at every node (integer points). The unit length is the length of a truss ele-
ment. At an arbitrary point q, φt(q) is interpolated from 4 surrounding nodes by
barycentric interpolation. The interpolation ensures continuity of φ that is required
for the cost function H. The robots are deployed from randomly selected starting
positions. Figure 5 shows that each robot has approximately the same area of the
yellow region. As expected, the masses converge to the same value as shown in Fig-
ure 6(b), and the cost function H approaches zero as in Figure 6(a). A little jitter in
the masses and the cost function graphs comes from discrete numerical integrals.
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Fig. 5 Density function for an A-shaped bridge and coverage by the equal-mass partitioning.
The blue circles are assembling robots. Yellow regions have dense φt.

Figure 7 shows snapshots from the simulation after partitioning. We use 4 robots
for truss delivery and 4 robots for connector delivery. They deliver source materials
which have 250 side truss elements and 150 connectors. The area with high den-
sity is gradually filled with truss elements and connectors. Because the controller
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Fig. 6 Result from the equal-mass partitioning controller for 4 assembling robots. (a) Cost
function H (b) Masses of four assembling robots
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Fig. 7 Snapshots of simulation. Green circles denote assembling robots and red circles denote
delivering robots. The blue line is a truss elements and the black dot is a connector. The blue
box is the source location. The dotted lines in Q are boundaries of the Voronoi regions.

uses equal mass partitioning and the gradient of the demanding mass, the assem-
bling robots maintain almost the same ΔMV all the time. Therefore, each Voronoi
region has a balanced amount of truss elements. Note that the control algorithms
do not depend on the amount of the source truss elements. With fewer elements,
we obtain a thinner structure, while the availability of more truss element yields a
denser structure. At the end of the simulation, the assembling robot that has built
the least amount of the truss component has assembled 58 truss elements while the
robot with the maximum amount has assembled 63. The robot with the minimum
number of connectors assembled 33 connectors and the robot with the maximum
number assembled 38.

Figure 8 shows the demanding masses for a truss part and a connector. All four
curves are completely overlapped, meaning all the substructures have been balanced
at all time. The demanding mass for a connector oscillates since it depends on the
already built substructure.

6.2 Constructing an Airplane

Figure 9 shows snapshots of building an airplane. 3D grids are used and the target
density functions are given and computed in the grids.
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Fig. 8 (a) Demanding masses for a truss part and (b) a connector. 4 assembling robots and 8
delivering robots are used. The assembly time is set to ten times the velocity. All the graphs
are almost overlapped.

Fig. 9 Snapshots of building an airplane pyramid. There are 10 assembling robots, 20 deliv-
ering robots for truss parts and 10 robots for connectors. 1575 truss parts and 656 connectors
are assembled.

6.3 Experiment

We have implemented Algorithm 4 using a team of robots. The robots are networked
using the Meraki mesh networking infrastructure. The robots (Figure 10) combine
an iRobot platform for navigation with a Crust Crawler 4-dof arm and use a Vicon
system for location feedback. The setup allowed us to verify the coordination and
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Fig. 10 iRobot platform with Crust Crawler 4-dof arm.

computation required by part delivery. Currently, we have a single type of source
component as the screw in Figure 10. Two delivering robots have performed 20
times of delivery to three assembling robots.

7 Conclusion

We propose a framework for distributed robotic construction. Robots with special-
ized tasks (assembly and delivery of various parts) cover the target structure which
is given by a density function, and perform their tasks with only local communi-
cation. To divide the structure in equally-sized substructures, the equal-mass parti-
tioning controller is introduced, guaranteeing convergence of the cost function that
is the product of the all the masses. An intuitive control criteria with probabilistic
deployment and a gradient of the demanding masses is proposed to maintain a bal-
ance among the substructures. Implementation with two kinds of source materials
(truss and connector) shows that the proposed algorithms assign an equal amount
of construction work to the assembling robots, and effectively construct the target
structures. This work has opened many interesting questions which we are pursuing
as part of our on-going work. We are currently expanding the hardware experiment.

1. Goal-driven structure. A target structure can be given as an abstract goal such
as connecting two points, not as a density function. In this case, each assembling
robot should make the locally best decision of how to build a partial structure.

2. Connectivity in sub-structure. Assembling robots may be constrained to work
only on the truss structure in practice. In this case, connectivity through each
Voronoi region is critical, since a robot may not reach its own region if some part
of the region is separated. We need to incorporate this constraint in distributed
coverage.
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Synthesis of Controllers to Create, Maintain,
and Reconfigure Robot Formations with
Communication Constraints�

Nora Ayanian��, Vijay Kumar, and Daniel Koditschek

Abstract. We address the synthesis of controllers for groups of multi-robot systems
that enable them to create desired labelled formations and maintain those formations
while travelling through an environment with obstacles, with constraints on commu-
nication. We assume that individuals in a group are capable of close coordination
via high bandwidth communication, but coordination across groups must be limited
because communication links are either sporadic or more expensive. We describe a
method for developing feedback controllers that is entirely automatic, and provably
correct by construction. We provide a framework with which navigation of multiple
groups in environments with obstacles is possible. Our framework enables scaling
to many groups of robots. While our paper mainly addresses groups of planar robots
in R2, the basic ideas are extensible to R3.

1 Introduction

There are many types of tasks which require multiple groups working on subtasks
concurrently. For example, building an automobile requires many subassemblies
which are built in parallel for efficiency. When building a house, each wall of the
wooden frame is built separately, then fastened together. These kinds of tasks require
coordination of groups on different levels: we want each group to work closely to
accomplish subtasks, but we also want them to coordinate on the inter-group level
to ensure that they accomplish the higher-level task.
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These types of tasks often occur in cluttered environments, where it may be costly
(either in time, energy, or other currency) to allow groups to communicate large
amounts of information to other groups. Exchanging information with unnecessary
detail results in loss of time and energy, thereby increasing cost. It is imperative to
exchange information between groups on a limited basis, while ensuring that ulti-
mately the task is accomplished. We address the problem of synthesizing controllers
for labelled robots working in multiple groups in the same workspace, merging and
splitting to form a group of desired size and formation shape for a specific task. We
will assume that individuals in a group are capable of close coordination via high
bandwidth communication but coordination across groups has to be limited because
communication links are either sporadic or more expensive.

The configuration space for an N robot system is the Cartesian product of each
robot’s configuration space, C = C1 ×C2 × ·· ·×CN . Planning in a space of such
large dimension causes computational as well as combinatorial problems which are
challenging to address. To decrease complexity, constraints on desired inter-robot
distances or relative positions are typically added, reducing dimensionality. Instead,
we propose an approach which allows more flexibility. Our goal is to construct
controllers similar to navigation functions, which have desirable properties such
as safety and convergence guarantees [15], while allowing for larger group sizes.

1.1 Related Work

Similar problems have been studied in the mobile robotics literature both in large
and small groups of robots. In small sized groups we can provide guarantees and
formal proofs that specific formations can be achieved and maintained, even in the
presence of obstacles [2,5,14,4]. As the groups grow, however, formal proofs [4] or
controller synthesis [2, 15] become prohibitively complex.

In large groups, one cannot feasibly synthesize a specialized controller for each
robot, thus achieving specific, labelled formations is not addressed. Some works
use abstractions to control an entire group [3, 12, 19]; in this case, navigation and
obstacle avoidance is at the abstraction level, decreasing computation significantly.
However, we forfeit control over the network topology, which can change as the
group moves. In [3], safety is not guaranteed: robots can collide and escape from
the abstraction. Some limitations of [3] are addressed in [12], which still does not
enable us to specify formations in the sense of exact shape and topology. A partic-
ular formation can be sepcified in [19], but the number of moments which must be
supplied to specify a particular formation increases with the number of robots, and
the method is not entirely automatic.

Flocking or schooling strategies also enable control of large groups of robots with
relatively little computation [18]. These strategies stabilize the entire group’s veloc-
ity to a single velocity. However, like the above large scale controllers, they lack
the capability of specifying particular formations; the final shape of the formation
depends on the initial conditions, and cannot be controlled directly.
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Fig. 1 The levels of hierarchy in our controller. We address group navigation at the team
level, decoupling it from the formation problem. This allows us to limit the complexity of the
problem.

In [7], large groups of robots are stabilized to shapes. However, the presence
of obstacles in the workspace could cause local minima or deadlock. Additionally,
there is no ordering to the robots on the shape; this is a function of initial conditions.

With sizes between small and large groups, one can provide some guarantees
while taking advantage of some reduction in complexity. In [13], proofs are provided
for creating and maintaining formations, but collision avoidance is guaranteed only
in most cases, requiring careful parameter choices. In [10], undesirable local minima
can occur if sufficient virtual leaders are not added. Additionally, the authors do not
provide a stable way to switch between formations. In [17] a method is proposed for
creating a formation and maintaining it during motion. However, no guarantees are
made in the presence of obstacles, and formations must be unlabelled.

1.2 Proposed Approach

The method we propose is for large but finite-sized groups with labels; it provides
global guarantees on shapes, communication topology, and relative positions of in-
dividual robots. We define a group of agents as a collection of agents which work
simultaneously to complete a single task. Two or more groups act in a team to com-
plete a task which requires completing multiple parallel subtasks [1]. Our contri-
bution is twofold. First, we provide a framework for synthesizing controllers for
multiple groups of robots in environments with obstacles with communication con-
straints. Second, we provide a method for automatically reconfiguring groups of
robots into desired labelled formation shapes without local minima.

A key feature in our approach is a hierarchical decomposition of the problem of
constructing feedback controllers (Fig. 1). This reduces the complexity of synthesiz-
ing individual robot controllers that meet such specifications as collision avoidance
and shapes of formations. We design multi-group navigation controllers at the team
level, and the control input for individual robots is derived by summing the inputs
from the feedback controller for the robot within its group and the feedback con-
troller for the group. The multi-group navigation problem is equivalent to the multi-
robot navigation problem, so we focus in this paper on merging groups of robots into
groups of arbitrary numbers of robots, and constructing desired formation shapes.
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Our approach is as follows. First, the groups which are involved in the merge
convene at some negotiated rendezvous area. We abstract the groups by enclosing
them in deformable rectangles, centered at the group centroid and sized appropri-
ately (we address size in Section 4). When the groups are within a pre-specified
merging distance, they merge into one group and begin reconfiguration, ending at
the desired formation shape. In the case that there are more robots than required for
the task assignment, the extra robots split into a separate group. Once the desired
formation is achieved, the newly-formed group(s) navigates toward the task.

In Section 2 we formulate the problem. In Section 3 we develop controllers for
reconfiguration and formation maintenance. In Section 4 we describe and develop
controllers on the abstraction. In Section 5 we describe the process of merging and
splitting groups, and follow in Section 6 with MATLAB simulation results. We dis-
cuss complexity in Section 7, and conclude in Section 8.

2 Problem Formulation

Consider a team with multiple groups, G i, i = {1, . . . ,m}, of Ni kinematic agents
V i

A = {ai
j| j = 1, · · · ,Ni}. A group consists of a small number of robots, which can

communicate with each other at high bandwidth, enabling centralization. While
communication is facilitated by having a complete graph, it is not necessary since
agents can exchange information about their neighbors. The team must form a group
of Ng ≤∑m

i=1 Ni agents to accomplish a large task. Each agent has the configuration
or state xi

j ∈ R2 with the dynamics:

ẋi
j = Ui

j, xi
j ∈ Xi

j ⊂ R
2, j = 1, . . . ,Ni. (1)

Within groups, communication of state information occurs very frequently, so that
control is centralized over the entire group. Communication across teams occurs
less frequently. Long-range communication occurs rarely if at all, requiring decen-
tralized control.

We use an abstraction on groups of robots to reduce the computational complex-
ity of the problem.

Definition 1. An abstraction of a group of robots is a surjection

S : C i
T → B, S(xi) = b (2)

so that the dimension of B is not dependent on the number of robots Ni.

The abstraction models the extent of the formation, which we call the boundary,
while the controllers on the robot level ensure that the boundary is satisfied. There-
fore, a group of robots can reconfigure from one formation to another knowing only
the limits of the abstraction, decoupling the agents from the physical space. The
specific abstraction we use is discussed in detail in Section 4.

Figure 2 is a graphical representation of the hierarchichal structure of our ap-
proach. At the top level, groups interact with limited knowledge of other groups. At
the middle level, there is interaction between individual robots in order to maintain
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Fig. 2 Hierarchical structure. At the top level, groups interact with limited knowledge about
other groups. Within each group, formations must be maintained. At the lowest level, indi-
vidual robots implement the continuous controllers. As the number of robots increases, the
spatial resolution required for planning and control decreases, and the time scale increases so
that dynamics get faster.

the formation. At the lowest level, individual robots execute the continuous con-
troller. In the examples we present, we assume that there are no obstacles within the
group boundary. However, should an obstacle appear within a group boundary, the
group can split appropriately, then rejoin in a location without obstacles.

The input to each agent is the sum

Ui
j = ui

j + ui
b (3)

where ui
j is the formation shape controller (Section 3), and ui

b ∈R2 is the abstraction
controller (Section 4). As shown in Fig. 2, the two control inputs drive dynamics at
two different time scales. Group dynamics (motion within a group) must evolve on
a much faster time scale than the team dynamics (motion of the group). In other
words, time required for robots to converge to a target formation within the group is
much smaller than the motion of the group. This time-scale separation is necessary
to guarantee convergence at all levels.

The number of agents required for the task, the goal formation shape, and the en-
vironment are known to all agents. We assume each agent is capable of synthesizing
controllers (both for group navigation and reconfiguration), its group’s abstraction,
and whether certain criteria are satisfied (such merging criteria). This information
propagates through the group rapidly through explicit communication, therefore we
are not concerned with which agent is responsible for these calculations. Agents
observe relative state of their neighbors and exchange this information with other
neighbors to construct a complete group configuration. Groups are capable of long-
range communication in short bursts to determine a rendezvous point. Once the
rendezvous point is determined, they no longer use long-range communication.
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3 Formation Shape Controllers

In this section we develop the formation shape controllers, which both reconfigure
the robots and maintain the formation once it is achieved.

Let the set of all agents be VA ≡ V 1
A ∪V 2

A ∪ ·· · ∪V m
A . (Hereafter, for simplicity,

where we describe a property for ∪m
i=1 ∪Ni

j=1 ai
j, we will drop the superscript i.) Con-

nectivity between all agents VA is modeled by a robot formation graph. Agents must
maintain proximity constraints, which are represented by edges on the robot forma-
tion graph and the collision graph. Recall that a graph is a pair of sets G=(V,E),
where V ={v1, ...,vn} is the set of vertices or nodes and E⊆ [V ]2 is the set of edges
on the graph. Pairs of vertices for which (vi,v j)∈E are called adjacent. A graph in
which all pairs of vertices are adjacent is called a complete graph.

Definition 2. A robot formation graph is a graph Gρ
N = (VA,EN) where EN is the set

of edges which denote pairs of agents which directly communicate state informa-
tion, and ρ is a metric for determining inter-agent distances. To enable communica-
tion, pairs (a j,ak) ∈ EN must be within a maximum distance |x j − xk|ρ ≤ δmax. The
constraint can be written

νρ(x j,xk) ≤ 0 ∀(x j,x j) ∈ EN . (4)

We call pairs of agents which are adjacent on this graph neighbors.

Definition 3. The collision graph on a group Gi of agents is a static graph Gi,ρ
L =

(V i
A,Ei

L) where Ei
L is the set of all pairs of agents in V i

A which cannot occupy the same
coordinates simultaneously. Pairs (ai

j,a
i
k) ∈ Ei

L must maintain a nonzero minimum
distance |xi

j − xi
k|ρ ≥ δmin. The constraint can be written

λ i,ρ(xi
j,x

i
k) ≥ 0 ∀(xi

j,x
i
k) ∈ Ei

L. (5)

For homogeneous agents occupying the same space, this graph will be complete.

The proximity constraints specified by the robot formation graph Gρ
N = (VA,EN) and

the collision graph Gi,ρ
L = (V i

A,Ei
L) are realized using metric ρ . For pairs of agents

(ai
j,a

i
k) ∈ EN ∩Ei

L the intersection of these constraints corresponds to an annulus in
the relative space of two agents. One can choose any underestimation of the annulus,
with a tessellation consisting of convex regions, and call this the metric ρ . A few
options are shown in Fig. 3. Our metric of choice is the infinity norm, in Fig. 3e
since it has fewer regions, decreasing complexity and allowing more flexibility in the
formation. Hence, the proximity constraints become a square annulus in the relative
space of two agents as in Fig. 4a (the shaded region denotes illegal configurations).
Pairs (ai

j,a
i
k) ∈ EN −Ei

L have only the maximum distance constraint (Fig. 4b), and
pairs (ai,a j) ∈ EL −EN have infinite annuli (Fig. 4c).

To accomplish the task, a specific formation shape is required of the new group.
The formation shape can be provided in exact, continuous form, or approximate,
discrete form. In defining the discrete robot formation shape, we desire a non-
overlapping partition of the square annulus whose union is the entire region. The
description must also contain information about connectivity.
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(a) (b) (c) (d) (e)

Fig. 3 The annulus in relative space of a pair of robots (a) and a few approximations (b)-
(e). The dark blue center corresponds to the collision constraint, while the light green area
depicts allowable configurations. Note that in panels (b)-(e) the dark blue polygons are over-
approximations of the unsafe region (encircled in white), while the large green polygons
underapproximate the safe region (shaded blue circle).
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xk – xj

yk – yj

kj ,
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(c)

Fig. 4 Proximity constraints for pairs of robots. Shaded area indicates illegal configurations.
(a) Neighbors with collision constraints. (b) Neighbors with no collision constraint. (c) Col-
lision constraint on non-neighbors.

Definition 4. A robot formation shape F of N robots describes the relative loca-
tions of the set of robots, specified exactly using continuous shape variables. F is a(

N
2

)
-tuple of vectors F = {r(1,2),r(1,3), . . . ,r(N−1,N)} where r( j,k) = xk − x j. We use

a superscript (F i) to refer to the subset corresponding to group G i.

Definition 5. The discrete robot formation shape Fd of N robots describes approx-
imate relative locations of the set of robots using discrete shape descriptors. The
shape descriptors are integers corresponding to regions of the tessellation of the an-
nulus. Fd is a

(
N
2

)
-tuple of these integers, Fd = { f(1,2), f(1,3), . . . , f(N−1,N)}. For

each pair of robots (a j,ak) j < k, f( j,k) describes the position of ak with respect to
a j, according to Fig. 5a. Regions 1-4 correspond to communication between the pair
(i.e. (a j,ak)∈ EN). Regions 5-8 correspond to no direct communication between the
pair ((a j,ak) �∈ EN). We use (F i

d) to refer to the subset corresponding to group G i.

An example discrete formation shape for a group of three robots is shown in Fig. 5c.
Here, f i

(1,2) = 1, f i
(1,3) = 2, and f i

(2,3) = 3, so that F i
d = (1,2,3).

To build the space on which we develop the controllers, we combine the proxim-
ity constraints with the configuration spaces of the robots.
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Fig. 5 The shape descriptors (regions) for discrete robot formation shapes. (a) For pair
(ai

j,a
i
k) the shape descriptor represents the location of ai

k with respect to ai
j. Here, the re-

gion is 1. (b) We can use this discrete system to build an adjacency graph. (c) Overlapping
proximity regions of a group of three robots. Dashed (dotted) lines correspond to boundaries
of proximity regions for ai

1 (ai
2). Letters A-E correspond to possible polytopes through which

ai
3 would pass to get to F i

d = (1,1,1).

3.1 The Task Configuration Space

Definition 6. The configuration space C i
j of an agent ai

j is the set of all transforma-

tions of ai
j. The free space C i, f ree

j of ai
j is the set of all transformations of ai

j which
do not intersect with obstacles in the configuration space.

In this work, navigation (and therefore obstacles), are dealt with on the abstraction
level. The abstraction constrains the free space of a group so that C i

j �= C i, f ree
j . In

fact, C i, f ree
j is a local space, whose origin is the center of the abstraction.

Definition 7. The group configuration space is the Cartesian product of the free
spaces of each agent in a group,

C i
all = C i, f ree

1 ×C i, f ree
2 ×·· ·×C i, f ree

Ni

xi = [xi
1, . . . ,x

i
Ni ] ∈ C i

all .
(6)

Thus the configuration of a group G i of Ni agents is described by a single point in
C i

all ⊂ Rd , d = 2Ni.

Definition 8. The task configuration space C i
T for the group G i is the set

C i
T = C i

all ∩L i
ρ ∩Nρ , (7)

L i
ρ ≡{xi|xi ∈ C i

all ,λρ(x
i
j,x

i
k) ≥ 0 ∀(ai

j,a
i
k) ∈ Ei

L},
Nρ ≡{xi|xi ∈ C i

all ,νρ (x
i
j,x

i
k) ≤ 0 ∀(ai

j,a
i
k) ∈ EN}.

C i
T is a polytopic space in which robots cannot collide or lose communication.
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Note that each group’s task configuration space is independent of other groups; that
is, robots in a group rely only on each other’s positions. Thus, reconfigurations of a
group from one formation to another is entirely decoupled from other groups.

Each discrete group formation corresponds to a unique polytope in C i
T . By plan-

ning and synthesizing controllers on C i
T , we drive the robots to the desired formation

and keep them there as the group navigates the space.

Problem 1. For any initial group formation F i
0, consider the system (1) on R2Ni

,
with goal formation F i

g and metric ρ . Find an input function ui : [0,T0] → U for
any xi

0 ∈ F i
0 ⊂ C i

T such that

1. for all time t ∈ [0,T0], xi ∈ C i
T and F i

T0
= F i

g,
2. ẋi

j = ui
j,

3. xi(t) ∈ L i
ρ ∩Nρ , ∀t ∈ [0,T0].

3.2 Shape Controllers on C i
T

In this section, we synthesize feedback controllers to solve Problem 1. We follow
closely [2], specifying our modifications for the present problem. We choose to
use a centralized version, since state information is shared among all connected
agents. Unlike [2], we simultaneously build a discrete representation of the task
configuration space and find a path in this representation. We then translate the path
into feedback controllers. The key step in the first stage is to define an adjacency
graph on the set of polytopes.

Definition 9. The polytope graph Gi
P = (V i

P,Ei
P) on the polytopes in C i

T is the pair
of sets V i

P = {ci
1, . . . ,c

i
n}, where ci

q is the Chebyshev1 center of the q-th polytope Pi
q,

and Ei
P, the set of all pairs of polytopes which share a facet.

By using the discrete group formation shape notation, we build the polytope graph
online, on an as-needed basis. For example, in the three robot group formation F i

d =
(1,2,3) in Fig. 5c, we use the graph in Fig. 5b to generate adjacent formations by
moving to adjacent regions. By changing the region corresponding to the location
of ai

2 with respect to ai
1, we get F i

d = (2,2,3) and F i
d = (4,2,3). By changing the

integer corresponding to the location of ai
3 with respect to ai

1, we get F i
d = (1,1,3)

or F i
d = (1,3,3). Using this method, we build an adjacency graph online while

concurrently minimizing cost via a graph search algorithm.
In Fig. 5b we have included separate weights wpq for each edge. Thus the cost of

moving from one formation2 F r
d to another adjacent formation F r+1

d is

C
(
F r

d ,F r+1
d

)
=

N

∑
j=1

N

∑
k=1
k> j

w f r
( j,k) f r+1

( j,k)
. (8)

1 The Chebyshev center of a polytope is the center of the largest inscribed ball.
2 Although this applies to a group G i, here we drop the subscript i for clarity.
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This induces a heuristic cost for going from the initial to the goal formation. If F 0
d

and F g
d are the initial and final formations, the minimum cost of reconfiguring is

h
(
F 0

d ,F g
d

)
=

Ni

∑
j=1

Ni

∑
k=1
k> j

w f 0
( j,k) f g

( j,k)
.

In our simulations, we choose to minimize the number of transitions, and thus set
all weights wpq = 1.

It is important to note that not all nodes will be valid. From Fig. 5c it is obvious
that F i

d = (4,2,3) is an invalid formation: it is impossible for ai
2 to be in region 4

of ai
1 and simultaneously have ai

3 in region 3 of ai
2. Therefore, while we anticipate

nodes by using the graph in Fig. 5b, before adding nodes to Gi
P we check if the

polytopes are empty, corresponding to invalid formations. Thus the cost heuristic
can be used as an underestimate for the cost-to-goal in a best-first-search algorithm.

Problem 2. For the initial discrete group formation shape F i,0
d , find a path t =

{ci
t1 , · · · ,ci

tg} on Gi
P to the goal discrete formation shape F i,g

d , such that we min-
imize the actual cost

h∗
(
F 0

d ,F g
d

)
=

g−1

∑
r=0

C
(
F i,r

d ,F i,r+1
d

)
.

Theorem 1 (Necessary and Sufficient condition). Problem 1 has a solution iff
Problem 2 has a solution.

Proof. C i
T contains every allowable configuration xi in our polytopic world model.

Gi
P contains all the information about the connectivity of C i

T . Thus, if there is a
solution to Problem 1, there must exist a path from the start node in Gi

P to the goal
node. Conversely, if there is no path on the graph Gi

P between the start node and the
goal node, there is no solution to Problem 1. ��

Corollary 1 (Completeness). Problem 2, and therefore Problem 1, has a solution
if the start and goal nodes on the polytope graph Gi

p are connected.

After a path to the goal is determined, we want to be able to synthesize feedback
controllers to drive the system through those polytopes to the goal. We choose to
use a controller developed by Lindemann and Lavalle which is applicable in high
dimensions and results in smooth feedback [11].

We set the vector field on each facet except the exit facet to be a unit inward
normal; on the exit facet, we set the vector field to the unit normal pointing outward.
By using a bump function, vector fields on the faces of each transitional polytope
are smoothly blended with an attractor field on the Generalized Voronoi Diagram
(GVD) of the polytope. For each polytope on the path to the goal formation, we
implement the controller using the Chebyshev center of the exit facet as the attractor.

In the goal polytope, if an exact formation shape is prescribed, we decompose the
polytope so that the vertices of each polytope in the decomposition are the vertices
of a facet along with the goal point. Then we set all facet vector fields to be pointing
inward, and the field on the faces of the decomposition always pointing to the goal.
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If a discrete formation shape is prescribed, we set the attractor field to always
point to the Chebyshev center of the polytope (not the exit facet), satisfying the re-
quirements set in [11] to guarantee convergence. There are several advantages to
using the Chebyshev center. First, it allows a minimum radius around the attractor,
providing some robustness (for disturbances or feedback linearization for nonholo-
nomic robots). Second, the Chebyshev center lies on the GVD, so we do not need
to use a separate decomposition that would force us to enumerate the vertices of the
polytope, which is computationally expensive.

To smoothly stabilize the system at the Chebyshev center, we normalize the at-
tractor field until it is within the radius of the Chebyshev ball. Once within the
Chebyshev ball, we use a second bump function to drive the input to zero as we
approach the center.

We use the controller for the goal polytope to maintain the desired group forma-
tion of the group as it moves through the space, inside the bounds of the abstraction.

4 Geometric Abstractions for Groups

The abstraction enables robots to operate in an obstacle-free (but limited) environ-
ment, while group navigation is handled by a higher-level controller for the abstrac-
tion. This controller is then summed onto the individual controllers as in (3). .

Definition 10. The group abstraction Bi is a pair

Bi =
(
xi

b,s
i(Ni)

)
∈ R

4 (9)

where si(Ni) is a shape vector, and

xi
b =

1
Ni

Ni

∑
j=1

xi
j.

The center of the group abstraction is xi
b, and the shape vector si(Ni) represents the

boundary and size of the abstraction which encloses the group of robots.

Although any boundary can be chosen for the group, we choose a rectangle for all
groups boundaries since a rectangle corresponds well with our choice of the infinity
norm. Therefore, the shape vector is a pair si(Ni) = (si

w,si
h) where si

w corresponds to
the width and si

h to the height of the rectangle. Knowing the shape of the abstraction,
we can determine the minimum size of the abstraction so that the rectangle is large
enough to contain the number of robots in the group,

Ni ≤
(
�si

w(Ni)/δmin�+ 1
)(
�si

h(N
i)/δmin�+ 1

)
. (10)

To ensure graph completeness in the abstraction, we can also enforce
{si

w(Ni),si
h(N

i)} ≤ δmax. This induces a limit for the number of robots which can be
in a group with a complete graph using our abstraction

Nmax = (�δmax/δmin�+ 1)2 . (11)
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δmax

(a)

δmin

(b)

Fig. 6 The limits of the size of the abstraction. (a) The upper bound for number of robots in a
group is a function of the ratio (δmax/δmin). (b) The minimum size of the square is a function
of δmin and Ni.

An example of the maximum number of robots in a group is shown in Fig. 6a. Here,
δmax/δmin = 4, so that Nmax = (4 + 1)2 = 25 is the maximum number of robots in
the group. An example of the minimum of si(Ni) is in Fig. 6b. Here, �

√
Ni� = 4, so

the minimum width is 4δmin.
We treat the abstraction as a single robot. Because multiple abstractions share

one workspace, we need a multi-robot controller to ensure they do not collide.
To emulate the cost of sharing information across large spaces, we place restric-

tions on communication between groups of robots on three levels based on inter-
group distances. The lowest level of communication occurs at the largest distances,
above the threshold γmax,

|xi
b − xk

b|ρ > γmax.

At this level, groups communicate as necessary to negotiate rendezvous points.
The mid-level of inter-group communication occurs below the threshold γmax,

|xi
b − xk

b|ρ ≤ γmax,

where groups perceive position relative to each other (xi
b − xk

b).
Once two groups are close enough that explicit inter-group communication is

established (i.e. a member from one group is able to communicate directly with a
member of the other group), groups can share both the number and position of each
group’s agents (xi

j, j = 1, . . . ,Ni) by passing this information through the robot for-
mation graph. Once the group is within a pre-specified distance of the other groups,

|xi
b − xk

b|ρ ≤ γmin, ∀ i,k ∈ {1, · · · ,m} (12)

the groups are able to commence the merging process.
As discussed in Section 1.1, there are many controllers applicable to multi-robot

problems. However, the inter-group communication restrictions as well as the real-
time nature of this problem require a decentralized controller to bring the groups to
the rendezvous area. (In our simulations, we have used path-planning to determine
a path for each group to the rendezvous point.) Once the groups are close enough to
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know relative position (xi
b−xk

b ≤ γmax), a more demanding controller may be used to
drive them close enough to communicate and merge (until they satisfy (12)). Then,
they must reconfigure into the desired formation, and continue to the task location
while maintaining that formation.

5 Merging and Splitting Groups

In this section we describe the process of merging groups. Once the groups have
satisfied (12), they combine their boundaries into the smallest boundary of the spec-
ified shape that contains all of the groups’ boxes. This will now be the boundary for
the reconfiguration discussed in Sec. 3.2.

The desired formation can be either connected or disconnected. If we have just
the right number of robots, the resulting graph is connected. If we have too many,
the formation graph is disconnected, and a group of robots break away.

If we have the exact number of robots required for the task, once they have
reconfigured into the desired formation, the boundary size must be adjusted. The
boundary is resized to within some small ε of the smallest rectangle centered at
the centroid of the group and enclosing all the robots. If it is possible to resize di-
rectly to the desired size (in the case of a rectangle, si

w(Ni)× si
h(N

i)), then we are
done, and the group can continue to the task. If not, we allow the robots to stabilize
to the Chebyshev center of the formation using the new boundary size. Then, we
re-evaluate the boundary size, and iterate until we get to the desired size.

If we have more robots than required, the group reconfigures into a formation
shape such that the required robots’ subgraph is that required for the task, and the
rest of the robots are connected to that subgraph by one edge. An example of this
is shown in Fig. 7. The dotted line in the example depicts where the group will
split. The desired formation is achieved after reconfiguration in Fig. 7a. The discrete
formation shape integer relating a1

3 to a1
7 is f 1

3,7 = 1. In Fig. 7b, the groups separate,

until f 1
3,7 = 5, meaning there is no direct communication between a1

3 and a1
7. This is

when the group splits into two as in Fig. 7c.

1
6a

1
3a

1
2a

1
1a 1

7a

1
4a

1
5a

(a) Desired formation shape

2
4a

2
3a

2
2a

2
1a 3

3a

3
1a

3
2a

(b) Preparing to split

2
4a

2
3a

2
2a

2
1a 3

3a

3
1a

3
2a

(c) After splitting

Fig. 7 An example of a desired robot formation shape and the splitting process when the task
requires less robots than the total number in all groups.
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In summary, the algorithm for our approach involves the following six steps.

Algorithm 1

1. Construct the goal controller for formation maintenance in C i
T for each group of

robots.
2. Drive the groups toward each other in the space.
3. When (12) is satisfied, solve Problem 2 while selectively constructing the task

configuration space for the joint group of robots.
4. Solve Problem 1 on all polytopes on the path, and solve for a goal controller in

the goal polytope.
5. If ∑m

i=1 Ni > Ng, break the team into two separate groups and construct the task
configuration space and goal polytope controller for the new groups.

6. Drive the newly formed group(s) to the task location while using the new goal
polytope controller to maintain the formation.

6 Simulations

We simulate a two-group example where the groups merge into the correct number
of robots required for the task, and a three-group example where there are more
robots than necessary to complete the task. The simulations run on MATLAB, using
the Multi-Parametric Toolbox for polytope computations [9].

Although our simulations run on MATLAB, by using a MATLAB interface for
PLAYER and GAZEBO, we can transition this controller directly to a three-dimesional
dynamic simulator (GAZEBO) or perform experiments on robots using PLAYER, parts
of the PLAYER/STAGE/GAZEBO project [6]. As in [2], we can use feedback lineariza-
tion to provide controllers for nonholonomic robots.

6.1 Two Groups Merging and Continuing to Task Location

The goal in this example (Fig. 8) is to join groups of four and three robots into a
single group for a task which requires seven robots. Once the groups are merged and
in the desired boundary shape and size, they proceed to the task location. We used
as parameters δmax = 2.5, δmin = 0.2, γmax = 5, γmin = 0.2, ε = 0.1, and si

h = si
w =

2.5−2/Ni.

6.2 Three Groups Merging and Splitting

In this example (Fig. 9), two tasks require seven and two robots each. Nine robots
are available across three groups of three. The three groups merge, then split into
two groups of seven and two robots. The groups now proceed to their respective task
locations. Here we used the same parameters as above (except γmin = 0.5).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 A two group simulation. Dashed lines represent communication links (omitted in (h)),
dotted lines represent the path, and the star represents the task location. (a) Initial condition.
(b) Direct inter-group communication established. (c) Merging criterion satisfied. (d) A sin-
gle group is formed. (e) Mid-reconfiguration. (f) At the desired formation. (g) The box is
reshaped. (h) At the task location.

7 Complexity

In this section we discuss the complexity of our method. For each pair of agents with
collision constraints we have one annulus with 8 regions, resulting in a maximum

Pmax = 8Ni(Ni−1)/2

polytopes in C i
T . Although this scales exponentially with the number of robots in the

group, we only construct the polytopes as we expand nodes in the polytope graph.
To solve Problem 2, we use an A∗ algorithm. In an A∗ algorithm, the number

of nodes expanded is exponential in the actual path length, unless the error of the
heuristic grows no faster than the logarithm of the actual cost [16]∣∣h(F 0

d ,F g
d

)
−h∗

(
F 0

d ,F g
d

)∣∣≤ O(logh∗(n)).

Although we do not have a bound for our heuristic error, empirically we have found
that there exists a path to the goal of the heuristic cost. If there exists a path to the
goal, then there likely exist other paths of the same length to the goal (though in the
case of differently weighted transitions, equal length may not correspond to equal
cost). For example, if the start formation is F 0

d = {1,2,3} and the goal formation
F g

d = {1,1,1}, h(F 0
d ,F g

d )= 3, there exist three paths (ABE , CBE , CDE in Fig. 5c),
with cost h∗(F 0

d ,F g
d ) = 3. In general, since the graph is cyclic, it is likely that a path
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 A three group simulation. Dashed lines represent communication links (omitted (g)-(j)
where graphs are complete), dotted lines represent the path, and stars represent task locations.
(a) Initial conditions. (b) Inter-group direct communication established. (c) Merging criterion
satisfied. (d) One group is formed. (e) Prior to disconnection. (f) Groups split. (g) Boxes are
resized. (h) At the task locations.

exists with the exact cost of the heuristic. (If the graph is weighted such that each
edge is not of equal cost, this is not generally the case).

We construct a controller in each polytope in t = {ci
t1 , · · · ,ci

tg} to solve Problem 1.

The vector field can be computed in O(∑2Ni

d=0Φd) time, whereΦd is the total number
of d-dimensional cells in the GVD [11]. For bounds on Φd for a certain class of
polytopes, see [8].

The complexity increases linearly in the number of concurrent merging and re-
configuring processes, since each group computes its own controllers.

8 Conclusion

We have presented a method for controlling multiple groups of robots to create, re-
configure, and maintain formations under communication constraints. We provide
guarantees of safety, preventing inter-robot collisions and collisions with obstacles
in the workspace. Our controller is entirely automatic, and requires information
about the space, the desired formation, and the task location. We have discussed
briefly the complexity of our approach, which in the worst case scales exponentially
in Ni and h∗

(
F 0

d ,F g
d

)
.
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The algorithm is complete based on the choice of abstraction boundary. Since the
abstraction is an overestimate of the area occupied by the robots, it is possible that
some solutions will be lost. This is especially the case when fixing the boundary of
the abstraction while the group is navigating through the space. It should be possible
to enforce a minimum area of the space inside the boundary, and maintain discrete
formations under some deformations. Further study is required for the case where
the abstraction can be reshaped to allow for navigation through cluttered spaces.

Finally, our approach lends itself to planning and control for heterogeneous
teams. This is an issue of future research.
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Planning and Control for Cooperative
Manipulation and Transportation
with Aerial Robots

Jonathan Fink, Nathan Michael, Soonkyum Kim, and Vijay Kumar

Abstract. We consider the problem of controlling multiple robots manipulating and
transporting a payload in three dimensions via cables. Individual robot control laws
and motion plans enable the control of the payload (position and orientation) along a
desired trajectory. We address the fact that robot configurations may admit multiple
payload equilibrium solutions by developing constraints for the robot configura-
tion that guarantee the existence of a unique payload pose. Further, we formulate
individual robot control laws that enforce these constraints and enable the design
of non-trivial payload motion plans. Finally, we propose two quality measures for
motion plan design that minimize individual robot motion and maximize payload
stability along the trajectory. The methods proposed in the work are evaluated on a
team of aerial robots in experimentation.

1 Introduction

Aerial transport of payloads by towed cables is common in emergency response,
industrial, and military applications for object transport to environments inaccessi-
ble by other means. Examples of aerial towing range from emergency rescue mis-
sions where individuals are lifted from dangerous situations to the delivery of heavy
equipment to the top of a tall building. Typically, aerial towing is accomplished via
a single cable attached to a payload. However, only limited controllability of the
payload is achievable with a single attachment point [9].

In this work we consider the problem of cooperative aerial manipulation. Un-
like aerial towing, which addresses the issue of controlling a point-model payload,
aerial manipulation considers the control of a payload with six degrees of free-
dom. The cooperative aerial manipulation problem can be shown to be analogous to
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cable-actuated parallel manipulators in three dimensions, where in the former the
payload pose is affected by robot positions and in the latter pose control is accom-
plished by varying the lengths of multiple cable attachments. The analysis of the
mechanics of cable-driven parallel manipulators is a special case of the analysis of
the general problem of payloads suspended by n cables in three dimensions. The
n = 6 case is addressed in the literature on cable-actuated payloads, where the pay-
load pose is fully specified. When n = 5, if the line vectors are linearly independent
and the cables are taut, the line vectors and the gravity wrench axis must belong
to the same linear complex [5]. The payload is free to instantaneously twist about
the reciprocal screw axis. When n = 4, under similar assumptions on linear inde-
pendence and positive tension, the line vectors and the gravity wrench must belong
to the same linear congruence. The unconstrained freedoms correspond (instanta-
neously) to a set of twists whose axis lie on a cylindroid. The n = 3 case admits
solutions where all three cables and the gravity wrench axis lie on the same regulus
- the generators of a hyperboloid which is a ruled surface [10].

Of note are the unilateral constraints imposed by cables that can only admit pos-
itive forces. As the tension on a cable can only be positive and the distance between
the two end-points of a cable cannot be more than its free length, and further the
tension is non-zero only when the distance is equal to the free lengths – each cable
introduces a complementarity constraint of the type:

s ≥ 0, λ ≥ 0, λ s = 0 (1)

where s is the slack in the cable and λ is the tension in the cable. The solutions to
systems of linear equations subject to such constraints, the so-called Linear Com-
plementarity Problem (LCP), have been studied extensively [3]. Even though all the
terms in the LCP are linear in the unknowns, the system can have multiple solutions
or no solutions at all.

In prior work, we formulated the mechanics of aerial manipulation (reviewed in
Sect. 2) [7]. We focused this development for an under-actuated system with three
robots and presented pose control of a payload to a sequence of desired poses. Our
prior work did not address a significant challenge resulting from the under-actuation
which is of great relevance when considering the problem of planning non-trivial
manipulation tasks: the fact that for a given robot configuration, the physical system
may admit multiple payload equilibrium solutions.

In this paper, we build upon our prior work to develop individual robot con-
trol laws and motion plans that permit the control of the payload along a desired
trajectory. We address the fact that robot configurations may admit multiple pay-
load equilibrium solutions by developing constraints for the robot configuration that
guarantee the existence of a unique payload pose. We formulate individual robot
control laws that enforce these constraints and enable the design of non-trivial pay-
load motion plans.
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Fig. 1 A team of three point-model robots manipulate a payload in three dimensions. The
coordinates of the robots in the inertial frame W are qi = [xi, yi, zi] and in the body-fixed
frame (attached to the payload) B are q̃i = [x̃i, ỹi, z̃i]. The rigid body transformation from the
payload body frame aligned at the center of mass to W is A ∈ SE(3). Additionally, we denote
the projection of the robot position q̃i along qi − pi to the plane z̃ = 1 as q̂i = [x̂i, ŷi, 1].

2 Mechanics of Cooperative Manipulation

2.1 Model

We begin by considering the problem with three robots in three dimensions car-
rying an object (although the analysis readily extends to n robots). We consider
point-model robots for the mathematical formulation and algorithmic development
although the experimental implementation requires us to consider the full twelve-
dimensional state-space of each quadrotor and a formal approach to realizing these
point-model abstractions, which we provide in Sect. 6.1. Thus, our configuration
space is given by Q = R3 ×R3 ×R3. Each robot is modeled by qi ∈ R3 with coor-
dinates qi = [xi,yi,zi]T in an inertial frame, W (Fig. 1). Define the robot configuration
as q = [q1,q2,q3]T. The ith robot cable with length li is connected to the payload at
the point Pi with coordinates pi =

[
xp

i ,yp
i ,zp

i

]
T in W . Let p = [p1, p2, p3]T denote

all attachment points. We require P1, P2, and P3 to be non-collinear and span the
center of mass. The payload has mass m with the center of mass at C with position
vector r = [xC,yC,zC]T. We denote the fixed Euclidean distance between attachment
points Pi and Pj as ri, j . The payload’s pose A ∈ SE(3) can be locally parameter-
ized using the components of the vector r and the Euler angles with six coordinates:
[xC,yC,zC,α,β ,γ]T. The homogeneous transformation matrix describing the pose
of the payload is given by:

A =

⎡
⎢⎢⎣R(α, β , γ)

⎛
⎝xC

yC

zC

⎞
⎠

0 1

⎤
⎥⎥⎦ . (2)
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Note that R is the rotation matrix going from the object frame B to the world frame
W (as depicted in Fig. 1). Additionally, for this work we follow the Tait-Bryan Euler
angle parameterization for {α, β , γ}.

The equations of static equilibrium can be written as follows. The cables exert
zero-pitch wrenches on the payload which take the following form after normaliza-
tion:

wi =
1
li

[
qi − pi

pi × (qi − pi)

]
.

The gravity wrench takes the form:

g = −mg

[
e3

r× e3

]
,

where g is the acceleration due to gravity and e3 = [0,0,1]T. For static equilibrium:

W λ =
[
w1 w2 w3

]⎡⎣λ1

λ2

λ3

⎤
⎦ = −g (3)

where λi ≥ 0 is the tension in the ith cable.
In order for (3) to be satisfied (with or without non-zero tensions), the four line

vectors or zero pitch wrenches, w1, w2, w3, and g must belong to the same regulus.
The lines of a regulus are points on a 2-plane in PR

5 [11], which implies that the
body is under constrained and has three degrees of freedom. Instantaneously, these
degrees of freedom correspond to twists in the reciprocal screw system that are
reciprocal to w1, w2, and w3. They include zero pitch twists (pure rotations) that lie
along the axes of the complementary regulus (the set of lines each intersecting all
of the lines in the original regulus). Geometrically, (3) simply requires the gravity
wrench to be reciprocal to the reciprocal screw system, a fact that will be exploited
in our calculations in the next section.

We will make the following simplifying assumptions:

1. The payload is a homogeneous, planar object and the center of mass lies in the
plane of the attachment points.

2. The robots are positioned initially on one side of the plane of the attachment
points.

3. The mass of the object is sufficiently small that three robots are able to lift the
object.

4. The system is quasi-static and we may neglect the transients associated with the
payload converging to an equilibrium position.

For the analysis, we will use a local frame, B, attached to the payload that is defined
with the origin at P1, the x axis pointing toward P2 and the x−y plane coincident with
the plane formed by P1, P2, and P3. In this local coordinate system, the components
are denoted by (·̃) and given as:
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P1 = [0, 0, 0]T, P2 = [x̃p
2 , 0, 0]T, P3 = [x̃p

3 , ỹp
3 , 0]T;

q̃1 = [x̃1, ỹ1, z̃1]T, q̃2 = [x̃2, ỹ2, z̃2]T, q̃3 = [x̃3, ỹ3, z̃3]T.

Note that without loss of generality, we assume that x̃P
2 > x̃P

3 , restricting the possible
permutations of Pi.

2.2 Kinematics

In this section, we determine the pose of the payload for given positions of the
quadrotors (the direct problem) and the positioning of the quadrotors for a desired
pose of the payload (the inverse problem). The direct and inverse problems are anal-
ogous to the direct and inverse kinematics for manipulators. However, they are dif-
ferent in that one must incorporate the equations of static equilibrium in order to
determine the answer.

2.2.1 The Direct Problem

With hovering robots and cables in tension, we can treat the object as being attached
to three stationary points through rigid rods and ball joints to arrive at the constraints

‖qi − pi‖ = li, (4)

for i = {1, 2, 3}. In addition, we impose the three equations of static equilibrium,
(3), to further constrain the solutions.

Problem 1 (Direct Problem). Given the positions of the robots, qi, i = {1, 2, 3},
find the position(s) and orientation(s) of the payload satisfying the kinematics of the
robots-cables-payload system (4) and the equations of equilibrium (3).

We solve this problem by finding the three screws (twists) that are reciprocal to the
three zero pitch wrenches. Define the 6× 3 matrix S of twists with three linearly
independent twists such that the vectors belong to the null space of WT:

WTS = 0.

S is an algebraic function of the positions of the three pivot points, Pi. In order to
satisfy (3), pi must satisfy the three algebraic conditions:

S(xP
i , yP

i , zP
i )Tg = 0. (5)

Finally, we require that there exist a positive, 3× 1 vector of multipliers, λ , that
satisfies (3). We find the multipliers using the Moore-Penrose inverse, W†, of W,

λ = −W†g,

This allows us to eliminate equilibrium poses corresponding to tensions that violate
the non-negativity constraints on the multipliers.
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Thus, the direct problem reduces to solving (4, 5). Accordingly, the object has
three degrees of freedom. Imposing the three equilibrium conditions in (5) we can,
in principle, determine a finite number of solutions for this analog of the direct
kinematics problem.

2.2.2 The Inverse Problem

The inverse problem reduces to the problem of solving for the three-dimensional set
Qc ⊂ Q by solving for the nine variables {(x̃i, ỹi, z̃i), i = 1, 2, 3} subject to (4, 5).

Problem 2 (Inverse Problem). Given the desired payload position and orientation
(2), find positions of the robots (qi) that satisfy the kinematics of the robots-cables-
payload system and the equations of equilibrium (3).

We now restrict our attention to a reduced space of possible configurations based
upon the assumptions (1, 2). We introduce the notion of normalized components,
denoted by (·̂), with q̂i = [x̂i, ŷi, 1] to define the position of the ith robot projected
to a constant height z̃i = 1 above the payload. Based on this simplification (we now
only need to solve for three planar positions), we redefine the static equilibrium
condition as

S(x̂i, ŷi, 1)Tg̃ = 0. (6)

Solving the system of equations in (6) yields algebraic solutions for {x̂2, x̂3, ŷ3}
as functions of {x̂1, ŷ1, ŷ2}. Note that any solution to (6) is indeed a solution to
(5). Further, we may compute the position of the robots q̃i given the normalized
coordinates q̂i and the kinematic constraint (4) as

q̃i = li
q̂i

‖q̂i‖
+ Pi.

By using q̂i as coordinates, we can obtain closed-form analytic solutions for the
positions of all robots that respect the kinematic constraints and the condition for
static equilibrium.

3 Solving the Direct Problem

In this section, we consider an optimization-based formulation to determining so-
lutions to the direct problem. We begin by stating the optimization problem that
minimizes the potential energy of the rigid payload.

Problem 3 (Optimization-Based Formulation of the Direct Problem)

min
pi

zp
1 + zp

2 + zp
3

s.t. ‖qi − pi‖ ≤ li, i = {1, 2, 3}
‖pi − p j‖ = ri, j, i, j = {1, 2, 3}, i �= j.
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Fig. 2 A graphical depiction of the cone constraints presented in Proposition 1.

We have replaced the equations of static equilibrium for cables in tension, (4), with
inequalities (a more accurate restatement of Problem 1). The minimization in Prob-
lem 3 explicitly prohibits local maxima while ensuring λi ≥ 0, allowing for λi = 0
(the ith cable becoming slack) as modeled in the complementarity constraints (1).

Problem 3 is non-convex due to the payload rigidity, which shows up as the equal-
ity constraint ‖pi − p j‖ = ri, j. However, by relaxing this condition, we see that the
program becomes convex.

Problem 4 (Convex Formulation of the Relaxed Direct Problem)

min
pi

zp
1 + zp

2 + zp
3

s.t. ‖qi − pi‖ ≤ li, i = {1, 2, 3}
‖pi − p j‖ ≤ ri, j, i, j = {1, 2, 3}, i �= j.

Clearly, this formulation relaxes the rigidity requirement of the payload. However,
the problem of solving for the equilibrium pose of the payload is now a Second
Order Cone Program (SOCP) [6] and convex.

We now seek conditions on robot positions that enforce the rigidity of the payload
while preserving the structure of the SOCP in Problem 4.

Proposition 1 (Conditions for Unique Solutions to the Direct Problem). The so-
lution to Problem 3 is unique provided that qi − pi lies strictly inside the convex
cone Ci, defined by the vectors (pi − p j), (pi − pk), and e3 ( j �= i, k �= i, j �= k),
where e3 = [0, 0, 1]T.

Proof. We begin by considering the SOCP in Problem 4. The First Order Necessary
Conditions (FONC) are:

μ1(p1 −q1)+ μ4(p1 − p2)+ μ6(p1 − p3)+
1
2

e3 = 0

μ2(p2 −q2)+ μ4(p2 − p1)+ μ5(p2 − p3)+
1
2

e3 = 0

μ3(p3 −q3)+ μ5(p3 − p2)+ μ6(p3 − p1)+
1
2

e3 = 0

(7)
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with

‖pi −qi‖ ≤ li, μi ≥ 0, μi(‖pi −qi‖2 − l2
i ) = 0 for i = {1, 2, 3},

and

‖p1 − p2‖ ≤ r1,2, μ4 ≥ 0, μ4(‖p1 − p2‖2 − r2
1,2) = 0

‖p2 − p3‖ ≤ r2,3, μ5 ≥ 0, μ5(‖p2 − p3‖2 − r2
2,3) = 0

‖p3 − p1‖ ≤ r3,1, μ6 ≥ 0, μ6(‖p3 − p1‖2 − r2
3,1) = 0.

Eliminating the condition when the payload is in a vertical orientation, pi × p j ·
e3 �= 0, for all i �= j, from (7) it is clear that μ1, μ2, and μ3 are all strictly positive.
The variables μi correspond to forces in the physical system, with i = {1, 2, 3}
representing the cable tensions. If we can show that μ4, μ5, and μ6, the three internal
forces between the anchor points of the triangle, are strictly positive, the inequalities
‖pi − p j‖ ≤ ri, j satisfy the rigidity (strict equality) requirement of Problem 3.

Consider the FONC for q1,

q1 − p1 =
μ4

μ1
(p1 − p2)+

μ6

μ1
(p1 − p3)+

1
2μ1

e3. (8)

This equation is the force balance equation at P1 up to a scalar multiplier. If we
require that q1 − p1 lies strictly inside the convex cone C1, generated by (p1 − p2),
(p1 − p3), and e3:

q1 − p1 = η1,1(p1 − p2)+η1,2(p1 − p3)+η1,3e3, (9)

with η1,i > 0 for i = {1, 2, 3}, the coefficients μ4
μ1

, μ6
μ1

, and 1
2μ1

must be strictly
positive. A similar argument holds for q2 and q3 to show that μ4, μ5, and μ6 are all
strictly positive under this requirement.

Thus, if qi − pi lies strictly inside the convex cone Ci, the solution to the SOCP
is also a solution to Problem 3. Further, as an SOCP is convex, the solution to Prob-
lem 3 is unique with the restriction on robot positions defined by (9). ��

The result of Proposition 1 is a set of conditions on individual robot positions with
respect to the payload that guarantee a unique solution to the direct problem (as de-
picted in Fig. 2). We will call the conditions qi− pi ∈ Ci the cone constraints. In the
next section we develop individual robot control laws that ensure these constraints
are preserved while driving the robot configuration, q, to a desired state.

4 Robot Control Laws

We begin by formulating (9) for the ith robot as

qi = Aiηi + pi,

where
ηi =

[
ηi,1, ηi,2, ηi,3

]
T
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and
Ai =

[
pi − p j, pi − pk, e3

]
, j �= i, k �= i, j �= k.

Ai is full rank and invertible, permitting the computation of ηi given the robot posi-
tion qi and payload configuration p:

ηi = A−1
i (qi − pi). (10)

Note that ηi is unique for any qi and p up to a rigid body translation and rotation
of the payload about e3. Additionally, for the development that follows we treat the
system as quasi-static (the fourth assumption stated in Sect. 2.1).

We wish to design control laws for individual kinematic agents, ui = q̇i, that drive
the full system q and p to a desired time-invariant configuration defined by qd and
pd while respecting the cone constraints. The easiest way to guarantee convergence
to a time-invariant qd

i (and thus qd) is to require the error, qe
i = (qd

i −qi), to converge
exponentially to zero:

q̇�
i = Kiq

e
i , (11)

where Ki is any positive definite 3×3 matrix. From (11), we obtain robot velocities
that guarantee globally asymptotic convergence to the desired robot configuration.
However, due to the conditions on ηi, j for the ith robot with j = {1, 2, 3}, we must
also consider the position of each robot with respect to the payload pose p.

We relax the requirement of exponential convergence to a desired robot config-
uration and replace it with a slightly different notion of convergence in order to
accommodate the cone constraints. Specifically instead of insisting on (11), we find
the solution closest to the velocities corresponding to the exponential solution which
also enforce the cone constraints; and thus guarantee a unique solution to the direct
problem.

We require that the error in the robot state decrease monotonically:

qe
i

TKiq̇i ≥ 0, (12)

treating Ki as a diagonal matrix. Further, from (10), we see that the cone constraints
of Proposition 1 are met when ηi, j > 0. Therefore, we introduce active constraints
that enforce this requirement when ηi, j < δi, j, where δi, j is a value selected near the
constraint boundary. We will require

η̇i, j ≥ 0 (13)

when ηi, j < δi, j. Differentiating (10),

η̇i, j = Ȧ−1
i (qi − pi)+ A−1

i (q̇i − ṗi).

Recalling that AiA−1
i = I3×3 and thus ȦiA−1

i = −AiȦ−1
i , (13) is equivalently written

as
q̇i ≥ Ȧηi + ṗi. (14)

Proposition 2 (Decentralized Robot Control Law). Equation (15) is a decentral-
ized control law that selects a unique control input that is instantaneously closest to



652 J. Fink et al.

(11) while satisfying the monotonic convergence inequality and enforcing the cone
constraints.

q̇i = argmin
˙̄qi

‖q̇�
i − ˙̄qi‖2, s.t. (12,14) (15)

Proof. The constraints in (12,14) provide the monotonic convergence condition and
enforcement of the cone constraints. The function being minimized is the discrep-
ancy from the exponentially convergent solution. Since the inequality constraints
are linear in q̇i and the function being minimized is a positive-definite, quadratic
function of q̇i, (15) is a convex, quadratic program (QP) with a unique solution. Fur-
ther, as each robot only relies on its own state and knowledge of the payload pose, it
is a decentralized control law. ��

Remark 1. The requirement of the cone constraints implies that robots will not col-
lide. Therefore, inter-robot collision avoidance is maintained through (14) as en-
forced by (15).

Convergence properties of (15) To investigate the global convergence properties,
we introduce the Lyapunov function

V (q) =
1
2

qeTqe,

for the system of robots, q. Recalling from Proposition 1 that the enforcement of
ηi, j > 0 implies uniqueness of p, it is sufficient to consider the convergence of q to qd

to show p = pd . Since the solution of (15) must satisfy the inequality (12), we know
that qeTKq̇ ≥ 0. If K is chosen to be a diagonal 9× 9 matrix with positive entries,
this condition also implies qeTq̇ ≥ 0. In other words, V̇ (q) = −qeTq̇ ≤ 0. Clearly
V (q) → ∞ as ‖q‖ → ∞. Further, V (q) is globally uniformly asymptotically stable.
Therefore, from LaSalle’s invariance principle, we know that the robot configuration
will converge to the largest invariant set given by qeTq̇ = 0. Additionally, we know
that q̇ = 0 only when q̇i = 0 for i = {1, 2, 3}. Thus the invariant set is characterized
by the set of conditions that lead to the system of inequalities given by (12, 14) to
have q̇i = 0 as the only solution for i = {1, 2, 3}.

5 Planning for Aerial Manipulation

In this work, we take a decoupled approach to motion planning for the payload
subject to the constraints of aerial manipulation. That is, we first plan a collision-free
path in SE(3) for a conservative approximation of the full robots-cables-payload
system and then generate coordinated robot trajectories that enact that plan. Here
we focus on the task of choosing robot trajectories for a given payload path.

Consider the manipulation workspace QM ⊂ Qc, where Qc is a function of the
payload orientation and is computed in Sect. 2.2.2 to be the set of robot positions
such that there is positive tension in each cable and the payload is in equilibrium.
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Other factors that further constrain feasible robot configurations are maximum al-
lowable tension (λi < λmax) and the cone constraints (ηi > 0) presented in Proposi-
tion 1. While these constraints are easily computable, they are non-smooth in nature
and generate a nontrivial workspace for planning.

As the constraints on QM do not reduce it to a unique solution for a given pay-
load pose, there are in fact sets of configurations parameterized by {x̂1, ŷ1, ŷ2} that
can be chosen to stabilize the payload to a given orientation. The planning problem
is: (a) to find feasible robot configurations at each point along the desired payload
trajectory and (b) exploit the redundancy in configurations to optimize specified sec-
ondary design goals or quality measures. Examples of optimizing quality measures
include minimizing the distance traveled by individual robots or maximizing the
natural frequency of the robots-cables-payload system to lead to faster attenuation
of disturbances.

5.1 Algorithm and Quality Measure

The motion planning problem we are considering is formalized as follows. Given a
payload path specified by a series of waypoints {A0,A1, . . . ,An} where Ak ∈ SE(3),
find a series of robot poses {q0, q1, . . . , qn} where qk = {qk

1, qk
2, qk

3} ∈ QM(A) such
that the payload under the quasi-static assumption achieves the desired pose, Ak.
Since there are generally a set of feasible configurations q for a given payload pose
A but no analytic representation of the set Qm(A), we use a sampling-based ap-
proach to evaluate candidate configurations. Selection of {x̂1, ŷ1, ŷ2} yields a point
in QC(A) which is mapped to q and verified with respect to ηi > 0 and λi < λmax to
be in QM(A). Configurations are chosen to minimize a metric D(qk+1,qk).

Since we have no formal completeness guarantees for this algorithm, we make the
following assumption. The set of feasible payload configurations A f easible such that
QM(A f easible) �= ø is defined by bounds on the roll and pitch angles of the payload
and QM(A f easible) is sufficiently large that an initial feasible sample is always found.
The space QM(A) is explored with uniform sampling.

As with any sampling-based planning method, attention must be paid to the
edges connecting states. In this work, we naively consider states to be connected
by straight lines in Euclidean space and necessary deviations from this plan are
computed by the individual robot control laws in (15).

We focus on two candidate quality measures for manipulation planning: a distance-
based measure that seeks to minimize robot paths and a natural frequency-based
measure that maximizes natural frequency of the payload around the stable equilib-
rium. For the distance-based quality measure, a candidate configuration is evaluated
according to the function

Ddistance(qk+1,qk) = ||qk+1 −qk||.

The natural frequency-based quality measure is computed as

D f requency(qk+1,qk) = −eig0(H (qk+1))
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where H (q) is the hessian of the potential energy as computed in [8] and eig0(M)
is the smallest eigenvalue of the matrix M.

5.2 Coordinated Control

In order for the payload to follow the desired trajectory Ak, the individual robots
must follow their computed plans in a coordinated way. That is, the control of the
robots along their paths must occur in R9. Given the piecewise linear interpolation
q(s) of robot waypoints qk and a current robot configuration q, we compute an in-
stantaneous goal for the system as q(s∗ +Δs) where q(s∗) is the closest point along
the path to the current configuration and Δs relates to the velocity along the path
by vpath = Δ s

Δ t where vpath is chosen to be small enough to maintain our quasi-static
assumption. If q(s∗ +Δs) is not in QM , a sweep along Δs is performed to find the
next feasible point (the next waypoint qk+1 in the worst case). The individual robot
control law (15) navigates around these infeasible regions.

6 Experimentation

Here, we evaluate the individual robot control laws and motion planning strategies
presented in Sects. 4-5. In the presentation that follows we study the performance
of the system shown in Fig. 3 to control along desired trajectories or to desired
configurations via the previously discussed methods.

The experiments are conducted with the AscTec Hummingbird quadrotor [1],
from Ascending Technologies GmbH, with localization information being provided
by a Vicon motion capture system [2] running at 100Hz with millimeter accuracy.
Control commands are sent to each robot via Zigbee at 20Hz. The quadrotor is
specified to have a payload capacity of 0.2kg.

Robots are positioned inside the 6.7m×4.4m×2.75m workspace with an accu-
racy of approximately±0.05m in each direction. However, as the robots experience
the effects of external loads and interactions during manipulation, this accuracy de-
creases to approximately ±0.15m.

The payload is a rigid frame with cable attachment points given by x̃p
2 = 1m,

x̃p
3 = 0.5m, and ỹp

3 = 0.87m with mass m = 0.25kg. Therefore, the mass of the
payload is more than the payload capacity of a single robot. The cable lengths are
equal with li = 1m.

6.1 The Quadrotor Robots

We begin by considering an aerial robot in R3 with mass m and position and ori-
entation, q = [x, y, z] ∈ R3, and R(α, β , γ) ∈ SO(3), respectively. We do not have
direct access to the six control inputs for linear and angular force control, but in-
stead have access to four control inputs related to these values. Therefore, we must
restrict our interaction with the robot to the control inputs ν = [ν1, . . . ,ν4] defined
over the intervals [ν1, ν2, ν3] ∈ [−1, 1] and ν4 ∈ [0, 1].
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Based on system identification and hardware documentation, we assume the fol-
lowing transformation from the control inputs to the force control running on the
robot (in the body frame of the robot):

τx = −Kq
v,xα̇−Kq

p,x(α−ν1αmax)

τy = −Kq
v,yβ̇ −Kq

p,y(β −ν2βmax)

τz = −Kq
v,zγ̇−Kq

p,zν3γinc

where τ is the torque applied by the robot in the body frame. Thrust along the z-
axis in the body frame is defined as fz = ν4 fmax. Through system identification, we
determined values for these parameters. Therefore, in the discussion that follows,
we consider the following desired inputs:[

αd , β d , γd , f d
z

]
=

[
ν1αmax, ν2βmax, ν3γinc, ν4 fmax

]
, (16)

noting that we can compute the control inputs, νi, given the desired values with
known parameters.

We now derive a transformation from point-model control in the world frame to
the hardware-dependent control inputs, νi. Define the robot dynamics in the world
frame, but only as a function of position (q ∈ R3), as

mI3q̈ = Fg +
[
Fx, Fy, Fz

]
T.

If we consider the forces applied to the system in the robot body frame,[
0, 0, fz

]
=

[
Fx, Fy, Fz

]
R(α, β , γ), (17)

we find a well-posed equation for α , β , and fz given the current γ and forces Fx,
Fy, and Fz in the world frame. Solving the system in (17), considering that fz ≥ 0
and physical system performance, yields a piece-wise smooth function such that we
may define a force F in the world frame that is transformed into appropriate control
input via (16) (see [7] for further details). To this end, we compute these values
in implementation based on proportional-integral-derivative (PID) feedback control
laws determined by the desired robot positions and velocities. For the purposes of
this work, we additionally control γ = 0.

Fig. 3 The aerial robots and manipulation payload for experimentation. The payload is de-
fined by m = 0.25kg and x̃p

2 = 1m, x̃p
3 = 0.5m, and ỹp

3 = 0.87m, with li = 1m.
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6.2 Results

Here we present three specific examples of aerial manipulation. The first highlights
the manipulation of the payload along a complex trajectory. The second considers
the effect of different quality measures on planning robot configurations. The final
evaluation studies the capability of the control laws to maintain cone constraints
when necessary. A C implementation of the SOCP allows us to solve the direct
problem and efficiently construct and validate complex motion plans for the robots
given a desired payload trajectory. Given these motion plans, we compute individual
robot controls (15) via a C++ QP solver [4] to follow the desired trajectory with a
20Hz update rate.

(a) (b)

(c) (d)
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Fig. 4 Pose of the payload while being manipulated along the circular trajectory of
Sect. 6.2.1. Figures 4(a)–4(d) are snapshots from an experimental trial. The robots control the
payload in experimentation (solid line) along a desired trajectory (dashed line) (Figs. 4(e)–
4(h)). A video of a trial run is available at http://kumar.cis.upenn.edu/movies/ISRR2009.flv

http://kumar.cis.upenn.edu/movies/ISRR2009.flv
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Fig. 5 A disturbance is applied to the payload at time 55s. Notice that the configuration
in Fig. 5(b), chosen to maximize natural frequency, attenuates error more quickly than the
configuration in Fig. 5(a) where robot motions are minimized.

6.2.1 Trajectory Control

Depicted in Figs. 4(a)–4(d), this trial consist of a circular trajectory defined for the
payload center of mass with varying roll and pitch such that

xc(θ ) = 0.5sin(θ )+ 0.45, yc(θ ) = 0.5cos(θ ), zc = 1.0,

α(θ ) = 0.3cos(θ ), β (θ ) = 0.3sin(θ ), γ = 0.

The motion plan is generated with θ = nπ/16 for n = {0, . . . , 32} using the Ddistance

metric that seeks to minimize the distance traveled by the robots.
Figures 4(e)–4(h) depict the trajectory followed by the payload and the control

error of the robots following their planned trajectories. In this trial, a root-mean-
square (RMS) error on robot control of approximately 9 cm yields RMS error on
the payload of 7 cm for the center of mass and 3◦ for the orientation. We have ob-
served similar robot control and payload error over many trials as detailed in Table 1.
Each waypoint in the motion plan is selected to satisfy equilibrium conditions and
maximum tension and cone constraints.

6.2.2 Effect of Planning Quality Measure

In this test, the payload is carried along a translational trajectory designed with both
Ddistance and D f requency. During transport, an external disturbance is applied to the
payload and we observe the response. Figure 5 depicts the behavior of the motion
plans for each measure and shows that the system configuration determined by the
natural frequency-based measure attenuates payload error more quickly than the
equivalent configuration specified by the distance-based measure.

6.2.3 Non-trival Waypoint Navigation

For a final experimental evaluation, we demonstrate the utility of the individual
robot control laws for navigation between two waypoints when the straight-line
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Table 1 RMS error of robot positions and payload position and orientation as compared to
the desired robot-payload configuration. Note that the sixth trial corresponds to Fig. 4.

Trial 1 2 3 4 5 6
Robot Error (m) 0.095 0.102 0.106 0.103 0.098 0.087

Payload Center of Mass Error (m) 0.075 0.087 0.084 0.089 0.086 0.067
Payload Orientation Error (deg) 4.13 3.95 4.32 3.74 4.05 2.89

5 10 15
Time �s�

0.1
0.2
0.3
0.4
0.5

Min�Ηi�

Fig. 6 Robot velocities are chosen to maintain ηi > 0 via the individual robot control law
(15).

interpolated path is not feasible. The trial consists of desired waypoints requiring
a rotation of the system by 120◦ about e3. Figure 6 shows that the cone constraints
are maintained throughout the trial and illustrates in areas of free-space that the
planner need only focus on gross motions of the payload and robot configurations at
the endpoints as the online controller will find the constraint-free robot trajectories.

7 Conclusion and Future Work

We presented individual robot control laws and motion plans that permit the control
of the payload along a desired trajectory. We address the fact that robot configura-
tions may admit multiple payload equilibrium solutions by developing constraints
for the robot configuration that guarantee the existence of a unique payload pose. We
formulate individual robot control laws that enforce these constraints and enable the
design of non-trivial payload motion plans. We propose two quality measures for
motion plan design that minimize individual robot motion and maximize payload
stability along the trajectory. The methods proposed in this work are evaluated on a
team of aerial robots in experimentation.

We are currently addressing limiting factors relating to system performance in-
cluding the rate and effects of sensing and actuation errors on the control of the
robots. To this end, we are implementing on-board estimation and control methods
that consider the stochasticity of the system, increase control rates, and reduce our
reliance on global localization. Additionally, we are exploring the limitations of the
quasi-static assumption and the effect of transients on our individual robot control
laws.
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Adaptive Highways on a Grid

Hajir Roozbehani and Raffaello D’Andrea

Abstract. The primary objective of this paper is to introduce the adaptive
highways algorithm, a path planning algorithm for vehicles moving on a grid.
We consider a workspace that consists of a symmetric grid and a large number
of vehicles that move on the grid to accomplish a certain task. Each vehicle
is assigned the task of visiting a set of randomly selected locations, which
are updated over time. The dynamics of the vehicles are described by a con-
strained linear double-integrator model. The objective is to find, in real time,
a set of trajectories that maximize the average speed of the vehicles while en-
suring safety. The trajectory optimization problem is solved locally, whereas
a central entity is employed for distribution of information. Safety guarantees
are provided through a space reservation mechanism. Several algorithms are
presented and compared in terms of performance.

1 Introduction

This paper is primarily concerned with path planning for vehicles that move
on a grid to accomplish a certain task. The objective is to move the vehi-
cles along collision-free trajectories from their starting points to their final
destinations as quickly as possible. Various algorithms are explored in this
context and evaluated in terms of robustness and performance.

A reservation mechanism is used to ensure collision-free trajectories. In
other words, vehicles must reserve space before using it. Collision-free nav-
igation can then be achieved if the vehicles are always contained within
their reserved areas. Hence, regardless of the algorithm used for trajectory
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optimization, the vehicles always remain safe. Three algorithms are explored
for trajectory optimization: Reservation Based Algorithm (RBA), Fixed
Highways Algorithm (FHA), and Adaptive Highways Algorithm (AHA).

The proposed algorithms quantify the desirability of a given candidate path
in different ways. The RBA favors trajectories that do not pass through the
current space reserved by other vehicles at any given time. The FHA builds on
the RBA by further imposing a predefined structure that allows the vehicles
to move only in certain directions in such a way that excludes the possibility of
two vehicles running into head-to-head conflicts. The AHA achieves avoiding
head-to-head conflicts without imposing any predefined structure; instead,
it favors paths where the traffic flows in only one direction. As a result,
highways emerge and periodically change direction. This paper compares the
RBA, FHA, and AHA algorithms in simulated experiments and shows that
the AHA demonstrates better performance over the other methods.

In addition to its promising performance in simulations with hundreds of
vehicles, the AHA is further shown to be a real-time algorithm that can be
implemented on systems comprising of large number of autonomous vehicles.
The Kiva Mobile Fulfillment System (Kiva MFS), is one such system. In the
Kiva MFS, hundreds of robots (see Fig.1) navigate around a warehouse to
pick inventory items and carry them to fixed stations for packing, leading to
increased productivity [2] [3] [11]. In such systems, a robot must complete
its assigned task in the shortest possible time, while avoiding conflicts with
all other robots. However, finding conflict-free minimum-time paths for such
large number of robots in real time is a difficult problem. The AHA is shown
to be able to tackle such large-scale problems in contexts similar to that of
the Kiva MFS.

The underlying path planning problem has been widely studied in the
literature and dates back to early research in robotics motion planning. A
recent book that covers the vast field of algorithms and their applications to
path planning is referenced in [4]. Path planning for autonomous vehicles in
the presence of dynamic obstacles is relatively more recent. For example, a
method based on rapidly-exploring random trees [5] is presented in [1]. The
algorithm is based on randomly choosing intermediary waypoints that might
generate feasible trajectories to the destination. The algorithm is powerful in
adversarial settings where the robots have to generate trajectories on-line in
unknown environments. Path planning has also been of high interest in co-
operative settings. For instance, Raffard et al. [9] have developed an iterative
algorithm based on decomposition of the global problem into a sequence of
tractable sub-problems. A method based on decentralized receding horizon
control is presented in [10]. Safety is guaranteed through maintaining a reach-
able loiter pattern in all intermediate planning steps. While keeping in mind
that these results can potentially be extended to large-scale systems, most
of the approaches focus on applications with small number of vehicles. Real-
time implementation of such approaches, which rely in one way or another
on expensive iterations of an optimization process, is not a trivial task. Other
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Fig. 1 A Kiva warehouse. The blue shelves hold the inventory and can be moved
by the robots. The workers stay at fixed stations and the robots move around the
warehouse to pick up the inventories and bring them to the stations. The underlying
navigation grid can be inferred from the marks left by the robot wheels.

approaches that move toward full decentralization provide promising scala-
bility features. These, however, come at the cost of decreased performance.
For instance, a fully decentralized approach to multi-vehicle path planning is
presented in [8]. Note, however, that the proposed algorithm behaves rather
conservatively since it perceives any intersecting paths as a conflict without
considering the time course of the vehicles on their paths.

The AHA is based on predicting the potential conflicts and evaluating
the expected time loss they incur. To do so, the algorithm explores an ex-
tra dimension in its search space to determine if any conflict occurs along a
candidate path based on a time estimation of the available trajectories. Fur-
thermore, the AHA algorithm distinguishes three different types of conflicts:
head-to-head, head-to-side, and head-to-back. This enables it to favor more
moderate conflicts (such as head-to-side) to tighter ones (such as head-to-
head) on a candidate trajectory.
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2 Preliminaries

This works considers the optimization problem of finding the minimum time
paths for a group of N vehicles with independent dynamics moving under
both coupled and individual constraints. The vehicles are assumed to navi-
gate on a workspace W ⊂ R2 and follow target points drawn from a spatially
uniform distribution. The workspace, as shown in Fig.2a, is a symmetric 2-
torus. The working region is further discretized into a set of M identical parti-
tions, called cells W1, ..., WM , such that

⋃M
j=1 Wj = W and Wi

⋂
i�=j Wj = ∅.

Every cell Wj represents a unit square:

Wj = {(x, y) ∈ R
2 | x̄j − 1

2
≤ x < x̄j +

1
2
, ȳj − 1

2
≤ y < ȳj +

1
2
}

with (x̄j , ȳj) ∈ { 1
2 , 3

2 , ...,
√

M
2 } × { 1

2 , 3
2 , ...,

√
M
2 } being the center of the cell. It

is assumed that a vehicle can be contained within a cell. More details on the
vehicles will be given later. Once a vehicle is contained in the interior of its
destination cell, a new target point is assigned to it.

(a) The world model (b) The atomic decisions

Fig. 2 a) The world model: The navigation map is a symmetric grid with wrap-
around. If a vehicle leaves the map from one edge, it enters it from the opposite
side, similar to The Game of Life or the PacMan video game from the 80’s. Ri,t

denotes the reserved space (see 2.4) of vehicle i at step t. ζi is a discrete trajectory
(see 2.2). wi denotes the current destination, which is a corner point (or breakpoint)
located along the robot’s trajectory. b) The atomic decisions: The atomic decisions
either impose a rotation or guide the vehicle toward one of its neighboring cells.
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2.1 Vehicle Dynamics

The position of every vehicle is denoted by qi = (xi, yi) ∈ W and the head-
ing is represented by θi ∈ [0, π

2 ], measured with respect to the global ref-
erence frame. We denote by vi ∈ V = [−v̄, v̄] the linear velocity, and by
ωi ∈ Ω = [−ω̄, ω̄] the rotational velocity of vehicle i. The admissible lin-
ear and rotational accelerations are represented by ui ∈ U = [−ū, ū] and
αi ∈ ϑ = [−ᾱ, ᾱ], respectively. The vehicle dynamics are modeled by a dou-
ble integrator system under input and velocity constraints (see Fig. 3). It is
assumed that, at any given time, the vehicle can either rotate or move in only
one direction, and that transitions between horizontal (θ = 0) and vertical
(θ = π

2 ) states must go through a rotational state:

ẍi = ui, ẋi ∈ V , ẏi = 0, θ̇i = 0, θi = 0, yi ∈ {ȳj} (1a)

θ̈i = αi, θ̇i ∈ Ω, ẋi = 0, ẏi = 0, (xi, yi) ∈ {x̄j , ȳj} (1b)

ÿi = ui, ẏi ∈ V , ẋi = 0, θ̇i = 0, θi =
π

2
, xi ∈ {x̄j} (1c)

These constraints are incorporated in the task specification process and
fulfilled during task implementation. It is assumed throughout the paper that
the input and state constraints are ū = v̄ = 1 for translational motions and
ᾱ = ω̄ = 2π for rotational motions. Note that the above choice of dynamics
in combination with the gridded workspace resembles the navigation scheme
of the Kiva MFS shown in Fig.1.

Fig. 3 The three states of Eq.1. In order to transit from moving horizontally
(Eq.1a) to moving vertically (Eq.1c), the vehicle must visit an intermediary rota-
tional state (Eq.1b).
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2.2 Trajectories

The motion characteristics of the vehicle can be abstracted into a finite state
model. This is useful for the path planning algorithms in Section 4. Con-
tinuous variables qi and θi can be mapped into the discrete state variable
σi = {(xi, yi), Ri}. The pair (xi, yi) represents the cell position of qi (i.e.,
the center of the cell that contains qi). For example, (0.75, 0.5) is mapped to
(1
2 , 1

2 ). Furthermore, the discrete rotational state Ri is defined by:

Ri =
{

H 0 ≤ θi < π
4

V π
4 ≤ θi ≤ π

2

In other words, a vehicle is perceived to be in a horizontal/vertical state H/V
if its orientation is closer to the horizontal/vertical axis. The set of admissible
decisions is denoted by D = {dN , dS , dE , dW , dR, d∅}. The atomic decisions
presented in Fig.2b define discrete steps to move either horizontally {dE , dW }
or vertically {dN , dS}, to rotate dR, or to wait and do nothing d∅. Naturally,
the discrete states evolve according to the adopted decisions. This can be
described with a discrete dynamical system:

σi
k+1 = F(σi

k, di
k) (2)

For example, F(1
2 , 1

2 , H, dE) = (3
2 , 1

2 , H). Furthermore, note that
vertical/horizontal moves are not allowed when the vehicle is facing hori-
zontally/vertically.

A discrete trajectory ζi (see Fig.4), which leads vehicle i from its starting
coordinate to its target, is defined as follows:

Definition 1. A discrete trajectory,

ζi =
{
(σi

0, t
i
0, d

i
0), (σ

i
1, t

i
1, d

i
1), .., (σ

i
n, tin, d∅)

}
is a finite sequence whose elements are the vehicle’s discrete position and
orientation σi

k, a time estimate tik, and an atomic decision di
k with di

n = ∅.

2.3 Central Hub

Although the trajectory optimization problem is solved locally, the vehicles
can rely on a central entity for communication purposes. We assume that
an omniscient central hub H exists that is aware of the reserved space and
discrete trajectory of every vehicle. This central hub can be considered as
a blackboard on which every vehicle can write about its intentions and sta-
tus. Furthermore, the central hub imposes a fixed ordering on the vehicles
for communicating to the hub, reserving space, and path planning. Note that
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Fig. 4 A discrete trajectory. The vehicle starts in a horizontal state Ri
0 = H at

time ti
0 = 0s. Given the constraints on the maximum velocities and accelerations,

it follows that rotations and horizontal/vertical moves take 1s. Note that each
acceleration/deceleration takes an extra 0.5s.

the information stored in the hub contains discrete states of the vehicles and
is updated at a relatively slow rate. Hence, the communication and mem-
ory requirements of the central hub are modest. Distribution of information
can be achieved in a decentralized fashion as well, by exploiting geometrical
distribution of the vehicles.

2.4 Ensuring Collision-Free Paths

A reservation mechanism ensures that the vehicles move on collision-free
paths. In short, the mechanism requires the vehicles to reserve space as they
move. The reserved space of each vehicle (the green areas in Fig.2a) is a se-
quence of cells located on its trajectory that contain the vehicle itself. As long
as a cell is reserved by some vehicle, no other vehicle can use it. Furthermore,
it is required that each vehicle can stop within its reserved area without
requiring any more reservations. Hence, the vehicles are always contained
within their exclusive reserved areas, ensuring safe navigation. In addition,
once a vehicle is finished using its reserved space, it releases that space so
that other vehicles can use it.

To express the reservation mechanism more formally, we let the collision
region Pi,t ⊂ W indicate the smallest union of cells that fully contains vehicle
i at time t. Collision avoidance requires that Pj,t

⋂
i�=j Pi,t = ∅ for all t. At any

time t ∈ [tik, tik+1], the collision region is a subset of the cells corresponding to
{σi

k, σi
k+1}. If the vehicles could instantly transfer into a stationary state in

their Pi,t zones, safety would be guaranteed by making the Pi,t zone always
unreachable to j �= i. A conflict zone comprised of all cells on the discrete
trajectory that lie on vehicle i’s path until it can fully stop is considered,
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in order to ensure safety under dynamical constraints,. This gives a lower
bound on the number of cells that each vehicle must reserve. In the example
shown in Fig.4, the conflict zone at t = 0s is the cell centered at (1

2 , 1
2 ) and at

t = 0.5s is the set of cells centered at (1
2 , 1

2 ) and (1
2 , 3

2 ). As mentioned earlier,
it is required that every vehicle i be completely contained inside its reserved
area Ri,t at all times. Therefore, collision-free navigation is guaranteed if
Rj,t

⋂
i�=j Ri,t = ∅.

From a single vehicle point of view, the optimal reservation policy for
vehicle i is to request a space that contains its entire trajectory. However, this
prevents other vehicles from using the available cells. Hence, for performance
reasons, the request from the central hub contains just enough space so that
the vehicle can be safe while moving at maximum speed. Every vehicle sets
a candidate goal point g̃i ∈ R2:

g̃i = qi + (v̄
2/

2ū + 2hv̄ +
1
2
)sgn(wi − qi).

where h is a discrete sampling time and wi denotes the current destination.
Note that since diagonal moves are not allowed, the vector sgn(wi−qi) always
has one zero element. Next, the vehicle evaluates its next target point:

gi = min
r∈{g̃i,wi}

{‖qi − r‖}.

When the next target point is not included in the vehicle’s reserved area
gi /∈ Ri,t, a request is sent to the central hub. The maximum number of cells
to be requested is then:

ceil(‖qi − gi‖/l)

Given that v̄ = ū = 1, the reserved area Ri,t, with t ∈ [tik, tik+1], is a subset of
the cells corresponding to {σi

k, σi
k+1, σ

i
k+2}. Also, note that during rotations

we have: wi = qi and the vehicle is safe by remaining in its own cell. After
receiving a response packet from the central hub, the reserved space Ri,t is
updated and the next target point is modified such that it can be contained
within the reserved area. Therefore, gi = min

r∈Ri,t

{‖wi − r‖}. At this time, the

vehicle also releases the unneeded portion of its reserved space.
The above scheme ensures that the vehicles remain within their reserved

spaces at all times.

2.5 Problem Statement

Problem 1: Consider a group of N vehicles that follow the dynamics given in
(2), can communicate with a central entity H, and comply with the rules of
the reservation mechanism. Given a fixed ordering defined by the central hub,
find for each i ∈ N , a discrete trajectory ζ∗i that minimizes the required time
to reach its destination.
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(a) Phase portrait of the minimum-time path (b) The generated trajec-
tory

Fig. 5 The continuous, minimum-time trajectory: a) Phase portrait of the
minimum-time path: The optimal controller leads the vehicle toward its current
destination with at most two switches, which occur on the switching curve (the
orange line). b) The generated trajectory: A vehicle, its minimum-time trajectory,
and its reserved zone are shown in an obstacle free environment.

3 Control Architecture

A two-layer control architecture is proposed. At the higher layer, a discrete
trajectory is extracted from a discrete search algorithm implemented on a
local planner. Then, a low-level controller provides a continuous execution
in order to implement and preserve the properties of the discrete trajectory.
Note that the planners act centrally in the sense of information retrieval, but
solve the path planning problem locally based on the information they have
about other vehicles.

Once the discrete trajectory is decided by the planner, the vehicle looks for
break points in the trajectory, where it must come to a full stop. Hence, every
vehicle heads to a current destination wi ∈ W with the intent of reaching
a final destination denoted by fi ∈ W . The vehicles adopt a bang-bang
control [6] policy in order to traverse between current destinations as well as
to rotate.

The minimum time trajectories for a single vehicle scenario are shown in
Fig. 5. As can be seen from the figure, the optimal controller has no more
than two switching points. Note that each degree of freedom is controlled
independently and the above figure corresponds to a general coordinate νi.
Each vehicle traverses on the minimum time trajectories with the maximum
acceleration until it reaches its switching curve. At this point, the vehicle
starts coasting at maximum possible speed. Once the turning point is reached,
the vehicle moves toward its current destination with maximum deceleration.
Interested readers can refer to [7] for a thorough analysis of the adopted
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control policy. Note that in the presence of multiple vehicles the discrete
trajectories extracted from the planner might be suboptimal. Nevertheless,
the optimal policy at the controller level remains the same.

4 Path Planning Algorithms

This section is concerned with presenting three path planning algorithms in
the scope of Problem 1. In short, the algorithms estimate the required time for
a transition in discrete states, and further compute a feasible combination
of transitions that minimizes the accumulated estimated time to reach a
final state. The estimated time for transitions varies from one algorithm to
another.

In the RBA (Reservation Based Algorithm), in addition to the traveled dis-
tance, the current reserved areas of the vehicles are taken into account. For
each vehicle, the algorithm penalizes a candidate path for passing through a
cell reserved by other vehicles based on the current distance between the vehi-
cle and the reserved cell. In the FHA (Fixed Highways Algorithm), in addition
to accounting for reservations, a highway structure dividing the workspace
into odd and even lanes is imposed. The vehicles are allowed to move in only
one direction on each lane. Hence, the vehicles never encounter one another
in a head-to-head situation. In other words, the algorithm prunes any subset
of the search space that may potentially lead to head-to-head conflicts. The
drawback is that a large portion of the search space, which could otherwise be
exploited by the vehicles, is omitted in a conservative way. The AHA (Adap-
tive Highways Algorithm), however, is based on estimating whether a conflict
occurs on a candidate path or not. This is achieved by comparing the time
estimations and atomic decisions on the candidate path with those available
in the trajectories of other vehicles. By taking the time and decisions into
account, the AHA is able to omit only unpromising candidate paths rather
than a large subset of the search space. In the rest of this section, we provide
details on how the algorithms work.

4.1 Description of Cost-to-Go

The time required for transition from a state σi
k to a neighbor state σi

k+1 is
denoted by L(σi

k, di
k). A lower bound on L(., .) is given by:

L(σi
k, di

k) = τmin(F(σi
k, di

k), σi
k)

with τmin(F(σi
k, di

k), σi
k) = 1/v̄ if the vehicle is to move either horizontally

or vertically, i.e., Ri
k = Ri

k+1. If a rotation must be performed, a minimum of
τrot(F(σi

k, di
k), σi

k) = 2
√

π/2ᾱ must be considered in the cost. Therefore, if the
transition is compatible with the safety requirements posed by the reserva-
tion mechanism, the transition time is restricted only by the kinematic and
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dynamic constraints. Furthermore, the heuristic cost-to-go to the terminal
state σi

f is simply:

λ(σi
k, σi

f ) =
1
v̄
dman(σi

k, σi
f ) + τrot(σi

f , σi
k)

where dman(σi
k, σi

f ) is the manhattan distance to the destination cell and
τrot(σi

f , σi
k) is a lower bound on the potential rotations that might take place

in the future. Here, we account only for one such rotation. Moreover, the
stage cost is defined as follows:

φ(σi
0, σ

i
k) =

k∑
j=0

L(σi
j , d

i
j) + λ(σi

k, σi
f )

With the above ingredients, a standard A* algorithm can be applied to find
the shortest path, i.e., to minimize φ(σi

0, σ
i
f ).

4.2 Reservation Based Algorithm

The minimum-time optimization problems considered for each vehicle in
Problem 1 are coupled through the reservations. This has several implica-
tions on the design of the algorithms. In fact, algorithms that react only
myopically to avoid collisions with other vehicles, fail to demonstrate an ade-
quate level of performance in multi-vehicle settings. This can be understood
by noting that, in the presence of multiple vehicles, the system may get stuck
in a local minima or in an oscillatory trajectory. Fig. 6 shows a scenario where
the vehicles myopically account for the position of each other without taking
the reserved areas or future decisions of each other into account. In this case,
the transition cost penalizes trajectories that pass through the current cells
of other vehicles:

L(σi
k, di

k) = τmin(F(σi
k, di

k), σi
k) + δ(σi

k, di
k, σ−i

0 ) (3)

where σ−i
0 denotes the initial discrete states of other vehicles j �= i at the start

of the planning, which is always assumed to be at t = 0s for convenience. In
this algorithm, δ(., ., .) is defined as follows:{

δ(σi
k, di

k, σj
0) = δ̂ if discrete position of σi

k = discrete position of σj
0

δ(σi
k, di

k, σj
0) = 0 otherwise

where δ̂ is a non-zero constant. In other words, if the node σi
k expanded at the

k-th layer of the search algorithm is occupied by another robot, the transition
cost increases by a constant. It can be shown that there exists a critical cost
δc such that for δ̂ < δc the vehicles can get stuck in a local minima and for
δ̂ ≥ δc they oscillate between two cells. If the vehicles take the reserved spaces
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(a) (b)

(c) (d)

Fig. 6 A two vehicle scenario with myopic planning. The big squares are the
destination cells, the rectangles are the vehicles, the arrows are the trajectories,
and the green cells are the reservations. The red vehicle (on the left) is heading to
the red square (on the right). Note that the reservations cover the arrows. a) The
vehicles move toward their destinations. b) The vehicles encounter a head-to-head
conflict and cannot further reserve the space needed to move on their trajectories.
They start re-planning. c) First, the red vehicle plans a trajectory around the
orange one. The trajectory goes up and continues to the right as shown in the
figure. The orange vehicle starts planning immediately after the red vehicle and
avoids its current position. Consequently, both vehicles go up. d) They meet again
and the scenario repeats. Therefore, the vehicles demonstrate vertical oscillations.
Re-planning can not resolve the oscillation deadlock.

of one another into account, the oscillation deadlocks are resolved as shown
in Fig.7a. The transition cost is modified to:

L(σi
k, di

k) = τmin(F(σi
k, di

k), σi
k) + δ(σi

k, di
k, R−i,0) (4)

where {
δ(σi

k, di
k, Rj,0) = δ̂ if discrete position of σi

k ∈ Rj,0

δ(σi
k, di

k, Rj,0) = 0 otherwise

In addition, the utilized information R−i,0 is valid only within a short time
horizon close to the start of planning. The reserved areas that are located at
a relatively far distance from σi

0 are likely to have been released by the time
the vehicle wants to use them. For this reason, an estimation horizon ê can
be introduced in the planner such that:
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δ(., ., .) =
{

δ(., ., .) dist(σi
0, σ

i
k) ≤ ê

0 otherwise (5)

However, the performance may still be substantially influenced by conflicts.
This can be better understood by realizing that, in this scheme, up to four
equally optimal trajectories might exist. Hence, if a vehicle can predict that a
conflict might occur on one of its shortest paths, it can choose an alternative,
conflict-free trajectory. Moreover, the second order nature of the vehicles’
dynamics penalizes switches on the control input. Hence, predicting the con-
flicts, especially in scenarios which involve a head-to-head encounter similar
to Fig. 6, enables the vehicles to traverse with a smaller number of switchings
on their control trajectory.

4.3 Fixed Highways Algorithm

A highway structure can be imposed on the RBA explained above. This
leads to a navigation scheme prohibiting head-to-head encounters such as
the scenario in Fig.7. In the FHA, the lanes are numbered with integers and
the vehicles are allowed to move in only one direction on each lane based on
the lane number being odd or even.

Although the highway structure resolves the head-to-head conflicts in a
subtle way, the vehicles travel a longer distance on average. Furthermore,
deadlocks similar to Fig. 8a may still happen. In order to circumvent the
deadlock, the vehicles exploit the modified cost defined in either Eq. 3 or
Eq. 4 combined with the estimation horizon defined in Eq. 5. The transition
cost δ̂ must be high enough to force the vehicles to deviate from their paths
in a head-to-side conflict. However, if there is no deadlock, the deviation

(a) Reservation Based Algorithm (b) Adaptive Highways Algorithm

Fig. 7 Comparing the RBA with the AHA in a two vehicle scenario. a) Reserva-
tion Based Algorithm: The vehicles first meet in a head-to-head situation and start
re-planing similar to Fig. 6b. The vehicles proceed to reserving space immediately
after planning. Hence, the symmetry in the conflict is broken, which leads to the
resolution of the deadlock. However, the conflict has an adverse effect on the perfor-
mance of both vehicles. b) Adaptive Highways Algorithm: The red vehicle plans first
and the orange vehicle plans after it. Once the red vehicle plans a straight trajec-
tory to its destination, the orange vehicle takes a detour to avoid any head-to-head
conflicts.
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diminishes the performance of the algorithm in head-to-side encounters (see
Fig.9) where deviation is likely to be suboptimal.

4.4 Adaptive Highways Algorithm

In the AHA algorithm, each vehicle attempts to predict the future conflicts
with other vehicles along a candidate path based on the list of trajectories
(cell positions, decisions, and time estimates) stored in the central hub. The
inclusion of time estimates in the algorithm requires augmenting a time ele-
ment to the states of the search space, which further induces a discrete search
on a hyper graph with a time dimension. To augment the states by time, a
discrete planning step can be defined to incrementally increase the state of
the vehicle as a function of time during the planning. Note that the dynamic
constraints can be used to significantly reduce the dimension of the search
problem and make the algorithm faster.

The actual time required for any transition through the states of a tra-
jectory depend on whether or not the vehicle can reserve the corresponding
cells. Moreover, the availability of the space Ri,k requested at the k-th layer
of a trajectory ζi depends on ζj for j �= i, more conveniently denoted by ζ−i.
Hence, by comparing the pairs {σi

k, tik, di
k} on a candidate path with those in

ζ−i during planning, we can more accurately determine if any conflict occurs
along the candidate path. The transition cost can then be defined as follows:

L(σi
k, di

k) = τmin(F(σi
k, di

k), σi
k) + δ(σi

k, di
k, ζ−i) (6)

Note that the direction of the expected encounter can be inferred from the
decision elements of the trajectories. Since the time loss due to a conflict
depends on the direction of the conflict, it is likely that one has to distinguish
the constraints from each other, depending on the direction of the expected
encounters. For instance, the optimal cost for head-to-head encounters is
likely to be higher than that of head-to-side encounters since it must be high
enough to encourage deviations as can be seen in Fig.7b.

4.5 Congestion Avoidance

The cost can be further adapted to account for static vehicles. The main idea
is to scan the level of traffic at each cell and associate an integral gain with
the cells that contain static vehicles. A first order system is considered for
the congestion equation:

ċ(σ) =
1
τ

(−c(σ) + cmaxĉin(σ))

ĉin(σ) =
{

1 if vi = 0 and i is located at σ
0 otherwise



Adaptive Highways on a Grid 675

(a) (b) (c)

Fig. 8 A deadlock scenario resolved with the AHA. a) Four vehicles are put in a
deadlock scenario. Each vehicle blocks the path of its counter-clockwise neighbor.
(The blue vehicle blocks the path of the orange vehicle, which itself blocks the
path of the red one, etc.). b) The vehicles re-plan. The two orange vehicles plan
on moving backwards one step and heading to their destinations after the others
pass. c) The conflict is resolved. Note that the solution is based on accurate timing
between the vehicles. Solving the same deadlock involves deviations in both the
RBA and the FHA.

(a) (b)

Fig. 9 A four vehicle scenario using the AHA. The big squares are the destinations
and the rectangles are the vehicles. a) The vehicles face a mixture of head-to-head
and head-to-side conflicts b) The vehicles deviate to avoid head-to-head conflicts
and wait on their paths to resolve head-to-side conflicts.

requiring two more parameters τ, cmax to be optimized. The transition cost
is further modified to:

L(σi
k, di

k) = τmin(F(σi
k, dk), σi

k) + δ(σi
k, di

k, ζ−i) + c(σi
k)

The main impact of the congestion avoidance is to add robustness to the
proposed algorithms.
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Fig. 10 A view of the platform in operation: the green areas are the reserved spaces
and the arrows represent the trajectories. The thickness of the lines are proportional
to number of trajectories passing through a certain cell.

5 Results

We developed a C++ platform (see Fig. 10) to study the performance of the
proposed algorithms. The simulation environment is a test-bed that captures
the path planning aspects of a large-scale multi vehicle system. To exam-
ine the efficacy of the proposed algorithms, we conducted several systematic
experiments. Results are provided in this section. Fig. 11 demonstrates the
performance of different algorithms presented above. Experiments were car-
ried out on a 20 × 20 grid, on systems ranging from twenty to two hundred
vehicles in size. The parameters of each algorithm were optimized at each
density using a line search algorithm. It should be pointed out that, in all
algorithms, if a vehicle does not move for a certain amount of time t̂, it re-
plans again to avoid congestions. As can be seen from the results, the AHA
demonstrates superiority over the other methods. Hence, we consider it as the
main approach for further analysis. The parameters required to be optimized
for the algorithms are presented in Table 1 followed by a description for each
parameter.

Furthermore, the algorithm is promising from the computation time point
of view. As shown in Table 2, the algorithm performs seven times faster than
real time in an experiment on a 50×50 grid with 625 vehicles, corresponding
to a density of 0.25. The computation times provided in Table 2 can give some
insight on the real-time implementability of the algorithms. Experimental
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Fig. 11 Comparing the performance of different algorithms in simulation.

Table 1 The parameters of the algorithms. The optimization is done based on the
average speed of the vehicles after 200 seconds of simulated time using a line search
algorithm at a density of 0.25 on a 20× 20 grid. t̂ is the maximum wait time before
re-planing as explained earlier in this section. τ and cmax are the time constant and
maximum cost of congestion. δ̂ is the cost associated with conflicts in the RBA and
the FHA. ê is the estimation horizon. δ̂h is the cost associated with head-to-head
conflicts in the AHA. As expected, this value is higher than δ̂s, which corresponds
to head-to-side conflicts. δ̂0 corresponds to head-to-back encounters where vehicles
plan to move toward the same direction. An optimal value of 0 implies that the
algorithm encourages platooning.

Algorithm t̂ τ ê cmax δ̂ δ̂h δ̂s δ̂0

RBA 2s 1s 2 15 10 - - -

FHA 2s 1s 1 15 8 - - -

AHA 2s 1s - 10 - 13 2 0

evidence suggests that the complexity of the algorithm grows almost linearly
with respect to the number of the vehicles and the size of the grid.

Fig. 12 shows the robustness of the AHA with respect to individual vehicle
failures. The conducted experiment concerns the performance of the AHA in
the presence of inactive vehicles, i.e., the vehicles that do not move and do
not interact with the central hub. In the studied case every vehicle becomes
inactive once in every five missions and stays inactive for one mission time.
The mission time is the average time required for the vehicles to move from
a starting cell to a destination cell.
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Fig. 12 The robustness test. The congestion avoidance scheme can help retrieve
the performance in the presence of vehicle failures. Note that the performance is
averaged over the working vehicles, and that the inactive vehicles are not counted.
The small loss in performance is inevitable as the congestion is perceived with some
delay.

Table 2 Comparing the running time of the algorithms. This experiment lasts 200
seconds of simulated time and is conducted on a laptop with 2.2GHZ Intel CPU
and 2GB memory. The provided numbers are the ratio of the simulation time with
respect to the running time of each algorithm. The simulation is carried out in
a 50 × 50 environment with 625 vehicles, corresponding to a density of 0.25. The
experiment suggests that the AHA can be considered as a real time algorithm,
although it is slower than its fixed counterpart.

Algorithm Simulation Time/Real Time

RBA 50

FHA 28

AHA 7

6 Discussion

While the AHA is shown to be promising in the studied context, there is
no claim on the global optimality of the algorithm. Simple scenarios can be
constructed to show that policies extracted from the algorithm correspond
to a local minima of the global optimization problem. Fig.13a shows such
an example. Iterative planning is further introduced here to deal with such
cases (see Fig.13b). In this case, the vehicles plan in multiple iterations. Ini-
tially, the costs (δh,δs, and δ0) are set to zero and a trajectory is generated and
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(a) Adaptive Highways Algo-
rithm

(b) Adaptive Highways Algo-
rithm with iterative planning

Fig. 13 The role of iterative planning. a) Adaptive Highways Algorithm: The red
vehicle, which has two equally good paths to reach its destination, plans first.
The orange vehicle plans next. The solution requires the orange vehicle to wait
in the middle of its trajectory until the red vehicle passes. Observe that the fixed
planning order in the AHA leads to sub-optimal strategies. b) Adaptive Highways
Algorithm with iterative planning : Each vehicle plans twice. In the first iteration, all
costs are zero. Therefore, each vehicles plans as if there is no other vehicle around,
leading to the same trajectories as those in Fig.13a. In the second iteration, the
cost for the head-to-side conflict increases to 1. The red vehicle predicts the conflict
and chooses the alternative conflict-free trajectory. The orange vehicles keeps its
previous trajectory, which is now conflict-free. In this scenario, iterative planning
yields the globally optimal solution.

stored in the central hub for each vehicle. The costs are then increased by
some constant and this process repeats until the costs reach their optimal
value.

Finally, despite its relative complexity compared to other algorithms stud-
ied in this work, the AHA is still a real-time algorithm that can be imple-
mented on systems comprised of large number of autonomous vehicles such
as the Kiva MFS. The flexibility of the algorithm to work with a scalable
number of vehicles can be further exploited to design even larger systems
through distribution of computation and communication load. Furthermore,
the robustness test suggests that the AHA algorithm, when combined with
congestion avoidance, demonstrates a high level of robustness with respect
to vehicle failures–a feature that is of high interest in practical applications.
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Environment Modeling for
Cooperative Aerial/Ground
Robotic Systems

Teresa Vidal, Cyrille Berger, Joan Sola, and Simon Lacroix

Abstract. This paper addresses the cooperative localization and visual map-
ping problem for multiple aerial and ground robots. We propose the use of het-
erogeneous visual landmarks, points and line segments. A large-scale SLAM
algorithm is generalized to manage multiple robots, in which a global graph
maintains the topological relationships between a series of local sub-maps
built by the different robots. Only single camera setups are considered: in
order to achieve undelayed initialization, we present a novel parametrization
for lines based on anchored Plücker coordinates, to which we add extensible
endpoints to enhance their representativeness. The built maps combine such
lines with 3D points parametrized in inverse-depth. The overall approach is
evaluated with real-data taken with a helicopter and a ground rover in an
abandoned village.

1 Introduction

In a aerial / ground multi-robot context, as in any multi-robot context, the
ability to build and share environment models among the robots is an es-
sential pre-requisite to the development of cooperation schemes. Be it for
exploration, surveillance or intervention missions, environment models are
indeed necessary to plan and coordinate paths, but also to determine the
utility of vantage points, to assess whether robots will be able to commu-
nicate or not, and to localize the robots in a common frame. In particular,
3D information on the environment is required: not only the robots evolve
in the three dimensions, but the determination of vantage points calls for
visibility computations in the 3D space. Also, vision is here the primary
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environment sensor to build environment representations: besides the fact
that images carry a lot of information on the environment, vision is passive,
it has the main advantage to perceive features that are arbitrarily far away,
and it is the only sensor that can be exploited on-board micro-drones – that
have undoubtedly a promising future.

Approach. Our aerial / ground context requires the resolution of the two
following issues: on the one hand the mapping approach must be distributed
so as to cope with the communications constraints, and on the other hand
the map structure must allow data association and fusion, coping with the
fact that the sensors or viewpoints can be very different among the different
robots. The contribution of this paper is therefore twofold.

We first propose a distributed mapping approach in which robots build series
of sub-maps using a classical EKF-based SLAM paradigm. The overall spa-
tial consistency of the maps among the robots is ensured by an optimization
process, that takes into account various inter-robot and absolute localization
estimates. This work stems from the work on hierarchical SLAM proposed
by Estrada et al in [1], which relies on a hierarchical representation of the
map: the global level is an adjacency graph, where nodes are local maps (or
“sub-maps”), and edges are relative locations between local maps. In a multi-
robot context, various events can trigger loop closures and later map merging,
namely rendezvous between robots, landmark correspondences (“map match-
ing”) and absolute localizations provided by GPS fixes or by matches with
an a priori existing map. These events exhibit a cycle on the graph of the
map poses, and thus define constraints that allows the system to refine the
estimates of the sub-maps origins.

Among the three possibilities to close loops in the overall graph of maps,
map matching is the most difficult to achieve when maps have been built by
heterogeneous robots, i.e. with different kinds of sensors or vantage points.
To be able to match maps, we need to represent in maps characteristics of
the environment that are invariant with respect to large viewpoint changes.
For this purpose, we exploit line segments detected in the images in order to
build 3D wireframe maps that can be matched among the robots. This calls
for a dedicated implementation of the EKF-based SLAM approach, which
relies on the undelayed initialization of anchored Plücker 3D lines.

Outline. Sections 2 and 3 present the localization and mapping approach
to deal with multiple robots. The approach is based on the scalable SLAM
approaches, known as hybrid or hierarchical, that consider sub-maps and
graph levels. Section 4 is devoted to the building of a 3D wireframe model
on the basis of line segments detected in monocular imagery. It introduces
the anchored Plücker line parametrization to use segments as landmarks in a
monocular EKF SLAM approach. Finally, Section 5 present results obtained
with data gathered by a helicopter and a ground rover.
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2 Hierarchical SLAM

The multiple robot localization and mapping problem is formulated using
sub-maps in a similar manner to hierarchical SLAM in [1] or hybrid metric-
topological SLAM in [2], where there are two levels: metric (local sub-maps),
and topological (global graph).

The topological (global) level represents the relationships sj
i between local

maps i and j. The metric level contains the local maps, composed of the
set of landmarks mi and the current robot pose xi. Each local map stores
information in its own lrf. At a certain point a new local map is generated
with the robot pose acting as the new local reference frame (lrf ). Thus the
robot pose xi truly represents the relation between the previous map and the
new one, and one can set si+1

i = xi. Other non-correlative relations sj
i may

be established between maps as we will see. Based on simple frame composi-
tions, information in the world reference frame (wrf) is also available for the
origins Si of each map, and for the map itself Mi if it is required.

Metric Level. The local or metric level contains the feature-based locally
referred stochastic maps, built with the standard EKF-SLAM. The i-th local
map is defined by

xi
m =

[
xi

mi

]
, (1)

where xi is the current pose of the robot, and mi = [li1 . . . l̂im]� is the set of
m mapped landmarks, both with respect to the i-th lrf. EKF-SLAM keeps a
Gaussian estimate xi

m ∼ N{x̂i
m,Pi

m} of this map, namely

x̂i
m =

[
x̂i

m̂i

]
, Pi

m =
[

Pxixi Pximi

(Pximi)� Pmimi

]
. (2)

The maps are built sequentially as mentioned above. Once a threshold is
passed, either in number of landmarks or in robot’s uncertainty, a new map
is created. Let us consider for now that no information is shared between
these sub-maps, thus the new map starts in a lrf with robot’s pose and error
covariance equal to zero.

Topological Level. The global or topological level is represented as an ad-
jacency graph in which origins of local maps Si in wrf are nodes, and the
links between them are the relative transformations si+1

i . Let us define the
global level as the Gaussian state s ∼ N{ŝ;Ps} of relative transformations
between local maps, namely:

ŝ =

⎡
⎢⎣

ŝ1
0
...

ŝi+1
i

⎤
⎥⎦ , Ps =

⎡
⎣Ps10

0 0
0 . 0
0 0 Psi+1

i

⎤
⎦ . (3)
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The global origins of the maps in the wrf are computed as the compounding
of the previous global origin with the relative transformation between sub-
maps, Si+1 = Si ⊕si+1

i . The current position of the robot in wrf is computed
as Xi = Si ⊕ xi. Also, the global map can be obtained through,

Mi = Si ⊕ mi . (4)

Mean and covariances of the Gaussian estimates are obtained by regular
linear-Gaussian propagation using the Jacobians of ⊕ and �.

Considering the relative transformations between local maps as past robot
poses, we note that the global level can be viewed as a sparse delayed-state
pose-SLAM [3], where local maps are like landmarks hanging from robot
poses in wrf. The main difference is associated to the fact that the state-
space in our case contains relative poses xi, instead of absolute poses Si.

Loop Closure. At the global level, a loop closure corresponds to a cycle in
the graph, that appears for instance when a relative position estimate between
non-consecutive sub-maps is established by a map matching process. Such a
cycle defines a constraint between a series of relative transformations:

h(s) = s1
0 ⊕ s2

1 · · · ⊕ s0
i = 0 (5)

= Si ⊕ s0
i = 0 . (6)

Given that h(s) is not linear due to the angular terms, the enforcement of
this constraint can be formulated as a nonlinear constrained optimization
problem. A solution for instance could be based on the Iterative EKF [1]: the
part of the state involved in the loop closure at global level then becomes
correlated, resulting in a non-sparse covariance matrix Ps.

Note that for a single robot, local maps are obtained sequentially, hence
the relative transformation between the local maps is given by the last robot
pose in the current lrf, si+1

i = xi.

3 Multiple Robots

A hierarchical/hybrid SLAM approach in the multi-robot case seems a priori
straightforward: each robot manages a set of sub-maps and a global graph
of poses. But the interests of multi-robot mapping arise of course when the
robots exchange mapping or position information, which allows to enhance
the spatial consistency and to build up a multi-robot global graph of map
poses (origins of local sub-maps).

In general when multiple robots are exploring the same area, they meet
sooner or later or their maps partially overlap: these events will allow the
system to establish connections between robot locations [4]. The events we
have identified are: (i) robots rendezvous (Figure 1(a)), (ii) common infor-
mation match within sub-maps (Figure 1(b)), and (iii) receiving external
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(a) Rendezvous event (b) Common landmark
event

(c) GPS fix

Fig. 1 Loop-closing events for multiple robots.

information that provide absolute localizations (e.g. a GPS fix (Figure 1(c)),
or feature matches with an existing environment model. The latter is not
exactly a multi-robot loop closure, it provides a link between a lrf and a
global geo-referenced frame: this yields the possibility to establish a link with
another robot that has already been absolutely localized once.

All these events create a link between the robots’ global levels. Whereas in
a single robot case a loop closure only occurs when the robot revisits a previ-
ously mapped place, in a multi-robot case these events trigger loop closures:
any cycle that appears in the overall graph defined by the concatenation of
each robot graph (the multi-robot graph) is a loop closure. The compounding
of all relative transformations that define a cycle is equal to zero as in Eq. 5,
and a batch optimization over the transformations can be performed. Note
that to obtain a cycle in the graph defined by the concatenation of two robots
global levels, at least two events between these robots are required.

The main advantage to exploit a hierarchical map structure in multi-robot
mapping is the low communication bandwidth required among the robots:
only the individual graphs need to be exchanged to update the multi-robot
graph. We will however see that in the map-matching case, the sub-maps that
match must also be communicated: but they have naturally already been ex-
changed to establish the matches. Most importantly is that in the general
case, only marginal distributions of each node has to be communicated, as
opposed to the full joint distributions of the graph. As we will see later, each
robot performs its own optimization based on the minimal cycle.

Robot Rendezvous. The event occurs when a robot observes another
robot (partial rendezvous) or when both robots observe each other (full ren-
dezvous). We will focus on the case when the relative transformation between
two robots it is fully recovered, from the information obtained through a par-
tial or full rendezvous.

New local maps are created in the instant of the rendezvous, then the current
robot poses are promoted to the global level. In this way, the observed transfor-
mation z naturally produces a link between the maps’ origins Si and Sj on the
global level, thus z = si

j .
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Matching common information. There exist at least two different ways
to match common information. For example, using information completely
independent to the SLAM, e.g. image’s descriptors matching (SIFT, SURF),
image indexing techniques or scan matching (ICP). A common way to pro-
duce a map of poses [3] is to find the rotation and translation between two
robot poses using one of these techniques, as opposed to tracking features. A
second way to match common information is using the available information
of the maps (position and uncertainty in global level). This is usually done
using the current position of the robot or robots in the wrf.

• The “image to image” association produces a link directly between images,
that are associated to certain poses Si and Sj . Note, the robot poses have
to be part of the global graph when this event occurs.
This is a simple, but effective manner to obtain the relationship between
two robots, or even to close a loop with a single robot. Note that the
observations are independent from the previous mapped information. As
in the rendezvous case, this event produces the missing link z = si

j . In
practical terms, image to image matching is equivalently to rendezvous.

• The “map to map” kind of data association requires both local maps to
be transformed to a common frame, e.g. promoted to the global level as
Mi and Mj using Eq. 4. In other words, the matching process happens in
a common frame, being the wrf or one of the lrf. The disadvantage of this
method is that in the worst case the absolute position of the two maps
must be computed. Moreover, once the maps are matched, they have to be
fused into a single one, otherwise it could lead into inconsistencies when
merging all the maps.

Absolute Localization. In an aerial/ground context, it is reasonable to
assume that both kind of robots receive GPS fixes from time to time. The
relative transformation provided by a GPS fix for vehicle i is simply sGi , where
G is the geo-referenced frame. Such information provides a link between a lrf
and a global geo-referenced frame, and generates a loop at the graph level
for an individual robot.

Impact on the sub-maps. From the point of view of a hierarchical SLAM
formulation, the hierarchical nature of this model manifests itself in the abil-
ity to apply a loop-consistency constraint to a subset of local transformations
(e.g. a single loop) without taking into account the local sub-maps. Partic-
ularly, when no information is shared between sub-maps, which is the case
between sub-maps built by different robots, but an approximation for the
sub-maps that are built by the same robot, the origin of the local sub-map
is the only state that changes after the constraint is applied. It can be eas-
ily shown that mi−1 ⊥ mi | xi−1, i.e., given the relative transformations,
the consecutive local sub-maps are independent. Notice that the global poses
S are d-separated of all possible paths between any pair of sub-maps m or
even M. Note that the approximation can be palliated using conditionally
independent local maps as proposed in [5].
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Also, in the multi-robot case it can happen that two different events cre-
ate a link on the same node, i.e. if a map-matching is established after a
rendezvous. To avoid this problem, new sub-maps are started after an event
occurs. In the case of receiving GPS fixes once in a while, the fact of starting
a new local map at the time t when the fix is received, removes the dynamics
aspects of the internal local maps setting a fix pose at global level.

Similarly, to avoid counting information twice if one eventually wants to
merge all the sub-maps, after a map-matching event both sub-maps should
be fused into a single sub map. This has the disadvantage that the sub-maps
must be shared among the two robots, but on the one hand this is a pre-
requisite for at least one robot to establish the matches, and on the other
hand such events will occur when the robots are within communication range.

4 Line Segments for Monocular EKF-SLAM

We explore the possibility of using linear landmarks or line segments, which
provide an improved semantic over points: lines inherently contain the notions
of connectivity and boundary, which open the door to potential automatic
interpretations of the environment, both at the metrical and topological lev-
els. A 3D model based on lines, akin to a wireframe model, can further allow
the possibility to build higher level entities (planes, closed regions, objects).

Plucker lines (PL). Plücker lines have been used in major vision works
with straight 3D lines [6, 7]. These works, and other ones referenced therein,
are based on Structure From Motion approaches. We showed in [8], drawing
on previous work in [9], the way to employ Plücker lines to achieve undelayed
initialization of lines in monocular SLAM.

The Plücker coordinates for a line consist of a homogeneous 6-vector in pro-
jective space, L ∈ P5. In this vector, one can identify two sub-vectors1,
L = (n : v), with {n,v} ∈ R3, with which an intuitive geometrical inter-
pretation of the line in 3D Euclidean space is possible (Fig. 2):

• The sub-vector n is a vector normal to the plane π supporting the line L
and the origin O.

• The sub-vector v is a director vector of the line.
• The distance from the line to the origin is given by d = ‖n‖/‖v‖.

The twomost remarkableproperties of thePlücker line are its linear transforma-
tion and projection equations and the inverse-depth behavior of the sub-vector
v, something that will allow us to design appropriate initialization methods for
EKF. For details on the use of Plücker lines in monocular EKF-SLAM see [8].

1 We use a colon (:) to separate the non-homogeneous and homogeneous parts in
projective space.
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d =
‖n‖
‖v‖

π

n

v

L

O

Q

P2

P1

Fig. 2 Geometrical representation of the Plücker coordinates and sub-vectors n
and v. The line L and the origin O define the support plane π. The line’s sub-vector
n ∈ R

3 is orthogonal to π. The sub-vector v ∈ R
3 is a director vector of the line,

and lies on π. This implies n ⊥ v. The closest point to O is Q = (v×n : v�v) ∈ P
3.

The distance from L to O is d = ‖n‖/‖v‖, showing that v acts as the homogeneous
part of L, thus exhibiting inverse-depth properties.

Anchored Plücker lines (APL). Now, we add an anchor to the parametriza-
tion to improve linearity, as it is done for points in the inverse-depthparametriza-
tion [10]. Anchoring the Plücker line means referring it to a pointp0 in 3D space
different from the origin (Fig. 3). The anchor point p0 is chosen to be the op-
tical center at initialization time. The effect of such anchoring is that, on sub-
sequent EKF updates, only the accumulated errors from the anchor p0 to the
current camera position T are considered, in contrastwith regular Plücker lines
where the error accounts for the absolute motion of the sensor from the origin of
coordinates.

The anchored Plücker line (APL, Fig. 3) is then the 9-vector:

Λ =

⎡
⎣p0

n
v

⎤
⎦ ∈ R

9 (7)

Transformation and projection expressions are as follows:
Frame transformation: Given a (camera) reference frame C specified by a

rotation R and a translation T, an anchored Plücker line Λ in global frame is
obtained from a line ΛC in frame C with the affine transformation

Λ =

⎡
⎣R 0 0

0 R 0
0 0 R

⎤
⎦·ΛC +

⎡
⎣T

0
0

⎤
⎦ . (8)
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n

v
q

p0

O

π

Λ

(a) Geometrical interpretation of anchor
p0 and sub-vectors n and v. The closest
point to the anchor is q = p0 + (v ×
n)/(v�v)

n

v
π

Λ

observable

non-observable
p0

T

T

(b) Observability conditions. The line is
3D-observable if and only if the motion
vector (T−p0) does not lie on the line’s
support plane π.

Fig. 3 The anchored Plücker line.

The inverse transformation is performed with

ΛC =

⎡
⎣R 0 0

0 R 0
0 0 R

⎤
⎦
�

·
(
Λ −

⎡
⎣T

0
0

⎤
⎦)

. (9)

Un-anchoring: given an anchored Plücker line Λ = (p0,n :v), its correspond-
ing (un-anchored) Plücker line L is computed with

L =
[
n + p0 × v

v

]
(10)

Pin-hole projection: Projection is better expressed for regular Plücker lines.
Given a perspective camera defined by the intrinsic parameters
k = (u0, v0, αu, αv), a Plücker line LC = (nC :vC), expressed in the camera’s
coordinate system, projects into a homogeneous line l ∈ P2 in the image plane
with the linear expression [6, 11]

l = K·nC �
[

αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

]
·nC ∈ P

2. (11)

where K is called the Plücker intrinsic matrix.
Transformation and projection: Transformation and projection are accom-

plished with a transformation to the camera frame (9), un-anchoring (10),
and projection (11). This can be composed in one single expression with:

l = K·R� ·(n − (T − p0) × v) ∈ P
2, (12)

in which we will notice:
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• The linear behavior with respect to n.
• For accurate estimates of the camera motion (T − p0), which is true for

observations shortly after initialization, the linear behavior with respect
to v, which additionally exhibits inverse-depth behavior.

Expression (12) gives us the means to analyze line observability as a function
of the camera motion (Fig. 3(b)). Let (T − p0) be the camera motion since
initialization time. Because the projected line l is expressed in projective
space, any vector l′ = αl, with α ∈ R, represents the same line and the line
sub-vector v is only observable if the vector (T −p0) × v is not proportional
to n. If we remind the Plücker constraint stating that v ⊥ n, this resumes
to a motion (T − p0) that does not belong to the plane π. As the anchor
p0 belongs to this plane, we conclude that the new camera position T must
escape the plane π in order to fully observe the line.

Segment endpoints. The line’s endpoints in 3D space are maintained out
of the filter via two abscissas defined in the local 1D reference frame of the
line, whose origin is at the point q = p0 + v×n

v�v
, the closest point to the

anchor (see Fig. 3(a)). Given the line Λ = (p0,n : v) and abscissas {t1, t2},
the 3D Euclidean endpoints are obtained with

pi = q + ti ·
v

‖v‖ ∈ E
3 , i ∈ {1, 2}. (13)

Back-projection of an APL. APL back-projection consists in defining a
Plücker line L from a segment observation l, and anchoring it at the camera
position T to obtain an APL Λ. These operations are detailed below.

Back-projection of a Plücker line: In the camera frame, the Plücker sub-
vector nC resulting from the observation l is simply

nC = K−1l. (14)

The sub-vector vC is not measured and must be obtained by injecting prior
information. We give here the formulation and refer the reader to [8] where full
explanations and justifications are provided. The sub-vector vC is obtained
with

vC = Eβ, (15)

where E ∈ R3×2 is a matrix transforming vectors β ∈ R2 in the Cartesian
plane into the plane in R3 supporting the line, defined by the optical center
and nC . It is constructed as a base spanning the plane orthogonal to nC , i.e.,
the two non-measured DOFs,

E =
[
e1 e2

]
, nC ⊥ e1 ⊥ e2 ⊥ nC , (16)
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the base vectors ei being chosen so that e1 is parallel to the image plane,

e1 =

[
nC

2 −nC
1 0

]�√
(nC

1 )2 + (nC
2 )2

and e2 =
nC

‖nC‖ ×e1. (17)

The vector β = (β1, β2) must be provided as prior. To help selecting an
appropriate one, we give here some intuitive notions about β:

• A vector β = (1, 0) is a line parallel to the image plane at a distance
d = ‖nC‖ from the optical center.

• A vector β = (0, 1) is a line perpendicular to the detected segment l in the
image.

• The distance from the optical center to the line is given by d = ‖nC‖/‖β‖.

Anchoring: This step is trivial as we have interest in making the anchor p0

coincide with the current camera position, which is the origin when we are
in camera frame,

ΛC =

⎡
⎣ 0
nC

vC

⎤
⎦ . (18)

Back-projection and transformation: The operations above plus the transfor-
mation to the global frame (8) can be composed and written as a single-step
function of R, T, l and β,

Λ =

⎡
⎣p0

n
v

⎤
⎦ =

⎡
⎣ T

RK−1l
REβ

⎤
⎦ . (19)

ALP initialization and update in EKF-SLAM. We now have expressed
all the basic relations to deal with APL, that are useful to exploit them
in an EKF framework. The line initialization and update equations are not
depicted here, details can be found in [8].

5 Experimental Results

The environment is “semi-structured”, in the sense that it does not contain
as many buildings as an urban area – and the building themselves do not
contain many straight lines or perfect planar areas, see Figures 4.

The ground robot Dala is an iRobot’s ATRV platform, equipped with a
calibrated stereo-vision bench made of two 1024 × 768 cameras with a base-
line of 0.35m. The helicopter Ressac is controlled by algorithms developed at
Onera [12], and is also equipped with a calibrated stereo vision bench made
of two 1024 × 768 cameras, with a 0.9m baseline (Figure 5).

Involved processes. Unfortunately, because of engineering issues encoun-
tered during the data collection, no inertial or odometric motion estimates
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Fig. 4 Aerial view of the experiment area (obtained on www.geoportail.fr). The
robot Dala evolves in the north-west group of buildings, while the helicopter Ressac
is flying along a swathing pattern oriented diagonally between the north-west and
south-east groups of buildings, at an elevation of about 40m. The red rectangle
approximately represents the field of view of the image acquired by Ressac shown
on top-right of the figure. On this latter image, the red angular sector shows ap-
proximately the field of view of Dala when taking the bottom-right image.

(a) Dala (b) Ressac

Fig. 5 Ground and aerial robots used for the experimental validation.

are available2. As a consequence, we use a visual odometry approach based
on stereo vision for the motion prediction steps of the EKF SLAM algo-
rithms – all the results presented hereafter have therefore been obtained using
exclusively visual data.

The SLAM algorithms integrate two types of observations from only one
camera; image points ( parametrized as inverse-depth points) and image line
segments (parametrized as anchored Plücker line segments). At each image

2 GPS ground truth could neither be recorded.
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acquisition, point observations are firstly processed: the resulting updated
motion estimate is exploited by the line segment tracker, and line landmarks
observations are then processed. A heuristic is used to select the points that
will be used as landmarks: the image is regularly partitioned in 3×3 regions,
in which one ensures that at least 2 landmarks are being tracked. As for
the lines, all the ones whose length is grater than 60 pixels are retained as
landmarks.

Point landmarks are Harris interest points, that are matched from one view
to the other with the group based matching procedure described in [13]. We
use different initialization parameters for inverse depth point parametrization
with Dala and Ressac. Dala’s parameters are ρinit = 0.1 m−1 and σρ = 0.2
m−1, while Ressac’s parameters are ρinit = 0.025 m−1 and σρ = 0.0125 m−1

(the points are initialized at 40m, which is its the helicopter average elevation
over the terrain.

We use the algorithms presented in [14] to detect and track segments. For
the estimation part, the a priori parameters used in the experiment for the
APL are β = (0.025, 0), σβ1 = 0.025 and σβ2 = 0.0375 for both robots. The

(a) Image frame for Dala (b) Image frame for Ressac

(c) Before an event (d) After an event

Fig. 6 Top: Image frames from both robots before the event. Green squares rep-
resent interest point currently considered as landmarks, yellow squares represent
interest points just initialized as landmarks. The line segments are in blue, with
endpoints in red. Yellow ellipses are the uncertainty in the image view. Bottom:
Event effect in the global map, the sub maps origins expressed in the wrf are the
large ellipsoids – only 3D line segments landmarks are shown here.
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prediction of the line segment position in the image, required for the segment
tracker, is done using the projection of the 3D line segment into the image
frame.

New local maps are created when 100 landmarks (combining points and
line segments) are in the map. Immediately after, the current robot’s pose is
the new relative transformation in the global graph.

Enforcing loop closures. In the experiments, we have two types of events:
rendezvous and image to image matching.

• The rendezvous is emulated using matches of interest points perceived by
the two robots using their current image frames. The 3D coordinates of
the points in each robot frame are obtained by stereo vision: as a result,
the point matches yields an estimate of the relative robot position.

• The image matching event recovers the relative transformation between
the current robot’s pose and a past pose from a different robot (origin
of a local sub-map), using also matches of interest points between their
respective frames.

Figure 7 shows results obtained by the integration of events between Dala and
Ressac. Dala starts at the entry of the north-west group of buildings, with
no uncertainty in its local map, but also in the wrf : the first Dala sub-map is
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Fig. 7 Comparative trajectory plots: visual odometry in dash-dot line, open loop
run in dashed line and cooperative run for Dala (left) and Ressac (right).
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the origin of the world. Ressac starts above Dala, and heads towards south-
east. A first rendezvous event occurs immediately after start, and Ressac is
localized in Dala’s reference frame.

A second event occurs after Ressac comes back from the south-east village,
passing above a place previously visited by Dala. The effects of the image to
image matching event are shown in Figure 6. The figure also shows the image
frames that were evaluated for the matching: new local maps are initiated
afterward for both robots. Note that Ressac’s uncertainty in height is pretty
large, especially before the second event: the visual motion estimates are in-
deed not very precise in the vertical direction, because Ressac stereo baseline
is small with respect to the depth of the perceived points – and the integra-
tion of points and lines in the sub-maps does not reduces much the elevation
estimates. However, after the image to image matching event, the elevation
of Ressac and the origins of all the built maps are strongly corrected.

6 Conclusion

We have explored the use of a multiple local maps technique for multi-robots
according to a hierarchical SLAM approach, in which loop closures are in-
tegrated through an optimization process (an Iterative EKF). Loop closures
are triggered using multi- or single-robot events such as finding information
correspondences between unconnected local maps, rendezvous between two
robots or GPS fixes. Therefore, the mapping problem is relegated within
the local sub-maps, and is decorrelated from the global localization problem,
making our approach akin to a cooperative localization approach. The ap-
proach is distributed, and the graph level is the sole information that must be
exchanged between the robots. It is well suited to a multi-robot context, and
it can in particular handle all the possible localization means, from odometry
to absolute localization with respect to an initial model.

In order to build more meaningful landmark maps and to be able to match
data acquired from very different vantage points (or even different sensors),
we have proposed to use line segments to build a wireframe model. An im-
portant contribution of this paper is the new line segment parametrization
for undelayed initialization. We add an anchor to our previously proposed
parametrization [8] to improve the linearity, exactly as it is done with inverse-
depth points. Thanks to the cross-correlations stored in the EKF, the anchor
allows the filter to account for accumulated errors only from the anchor to the
current position, not from the origin of coordinates. Ongoing work is a more
detailed analysis of different line parametrization in view of their linearity
behavior.

Heterogeneous visual landmarks are proposed to map semi-structured en-
vironments. We combine inverse-depth points and anchored Plücker line seg-
ments. Our experiments show that inverse-depth points, that are numerous
in the scene but not very robust to large viewpoint variations, play a cru-
cial role for robot localization, while Plücker line segments, that are seldom
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in semi-structured environments but allow detection and matching from dis-
parate viewpoints, are well suited to build a 3D model that exhibit some of
the environment structure.
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Energy-Efficient Data Collection from Wireless
Nodes Using Mobile Robots

Onur Tekdas, Nikhil Karnad, and Volkan Isler

Abstract. This work focuses on systems where mobile robots periodically collect
data from (static) wireless sensor network nodes. Suppose we are given approximate
locations of the static nodes, and an order with which the robot will visit these
nodes. We present solutions to the following problems. (i) From the static node’s
perspective: given the stochastic nature of the robot’s arrival, what is an energy-
efficient strategy to send beacon messages? Such a strategy must simultaneously
minimize the robot’s waiting time and the number of beacon messages. (ii) From
the robot’s perspective: given the stochastic nature of the wireless link quality, what
is an energy-efficient motion strategy to find a good pose (location and orientation)
from where the data can be downloaded efficiently? The robot must be able to find
such a location quickly but without taking too many measurements so as to conserve
the static node’s energy.

For the first problem, we present an optimal algorithm based on dynamic pro-
gramming. For the second problem, we present an efficient, data-driven heuristic
based on experiments. Finally, we present a system implementation for an indoor
data collection application, and validate our results on this system.

1 Introduction

Wireless sensor networks (WSNs) are finding increasing use in crucial applications
such as environmental monitoring, factory automation and security. However, de-
ploying such sensor systems and gathering the data collected by the sensors still
remains a challenge. This is especially true when the target application requires col-
lecting data over a large area such as a farm, a forest or a large warehouse.

In cases where the application requires a dense sampling of the environment, the
data can be gathered by forming a wireless network where sensor nodes also act as
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relays. In certain applications, the underlying environment is very large and sam-
pling locations are apart from each other. For example, in some habitat monitoring
applications, sensors are deployed to collect humidity and temperature data across
the entire habitat of species [11]. In building automation, a WSN can be rapidly
deployed to collect data (temperature, light) in a few key locations in a large ware-
house.

In these applications, a deployment that is dense enough to form a connected
network can be costly and difficult to maintain. It is also very expensive to install
a wired network just for data acquisition. Often, instead of deploying a dense, con-
nected network, data is manually downloaded from the motes.

An alternative to collecting data manually is to use mobile robots. The last decade
witnessed significant developments in mobile robot navigation. It is now feasible to
develop systems where robots periodically visit sensor nodes and gather the data
collected by them. Typically mobile robots are capable of carrying large batteries
and can recharge themselves autonomously. Therefore, the life-time of the static
nodes is usually the most crucial factor in determining the overall life-time of the
system. In this work, we focus on such systems and address two problems that affect
the life time of the automation system.

Beacon Scheduling. In most applications, a robot’s arrival to a sensor’s vicinity
will be a stochastic process due to uncertainties in the navigation times of robots
and changes in their trajectories. Therefore, sensor nodes must send beacon mes-
sages and listen to the channel for presence of robots. If this is done very frequently,
energy consumed in beaconing can reduce the life-time of the network. In Section 3,
we address the problem of scheduling beacon messages and present optimal beacon-
ing algorithms.

Data Download. The quality of the communication link between a robot and a sen-
sor can affect the time to download the data (and hence the energy consumption)
drastically. If the robot can utilize its mobility and find a “good” location to down-
load data, this can yield significant energy savings. This statement is further justified
in Section 4 where we address this search problem and present a data-driven strat-
egy to find a good download location. In indoor environments where the behavior
of the signal is unpredictable due to multipath effects and the dynamic nature of the
environment, it is easy to see that there is no online algorithm with provable per-
formance guarantees1. Therefore, we present a heuristic strategy based on extensive
experiments we performed to understand the effect of robot’s location and orienta-
tion on the signal quality.

In Section 5, we present the details of a system implementation that utilizes robots
for gathering data, and demonstrate the utility of our algorithms with experiments
run on this system. We start with an overview of related work.

1 For any given deterministic strategy, an adversary can pick the “good” location to be the
last location visited by the strategy.
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2 Related Work

Mobility in collecting sensor data is extensively studied. For example, Shah et al
presented an architecture that uses mobile entities in the environment for data de-
livery [13]. In most of the related literature, mobility is treated as an uncontrolled
process. More recently, researchers proposed architectures that exploit controlled
mobility [14, 6, 3, 18, 15]. A recent review on the state of the art in exploiting sink
mobility can be found in [9].

In existing approaches, the robot’s trajectory is either given or computed in ad-
vance. This constraint is relaxed in [6] where the robot’s velocity is modified (along
a fixed path) to improve transmission quality. In more recent work, a system where
robots efficiently collect data from static sensors have been presented [17]. This
work demonstrates the energy savings attained by using mobile robots over using
static relay nodes. In the present work, we take a further step and present a strategy
that fully utilizes the controllability of the robot’s mobility (position and orientation)
to find good download locations in an online fashion. The strategy does not make
strong assumptions about the wireless signal. We demonstrate its utility with real
implementations.

We also study the interactions between the robot and static nodes during the dis-
covery phase. This is related to sleep scheduling which is usually studied as a topol-
ogy management problem [2, 12]. In this work, we focus on a special case where the
arrival of the robot is given as a probability distribution, and present an algorithm
to compute the optimal sleep schedule which simultaneously minimizes the number
of beacon messages and the robot’s wait time. In a real system implementation, we
show how such distributions can be learned over time.

The interactions between robots and a static sensor network have also been ad-
dressed in the robotics literature for network repair [4], connectivity [1] and navi-
gation [7] problems. In this work, we model the interaction between the robot and
the nodes at a lower level and address signal-strength and node scheduling issues.
Such approaches have recently started appearing in the robotics literature, mostly in
tracking [8, 10] and connectivity maintenance [5, 16] applications.

3 Optimal Beacon Scheduling

There are many sources of uncertainty that causes variability in the robot’s arrival
time at each sensor. For instance, the robot may spend uncertain amounts of time to
locate the motes and download data from them. It may take alternate routes due to
obstacles, and spend time to compensate for uncertainties in its own actuators and
sensors. Therefore, we model the robot’s arrival as a stochastic process. Since the
robot’s arrival time is uncertain, each mote must periodically send beacon messages
and execute a receiver check to establish connection with the robot. By adaptively
scheduling beacons it is possible to keep the duty cycle of the mote as low as possi-
ble and conserve energy.
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3.1 Formulation

Consider a system in which m sensor motes have been statically deployed. The
approximate location of each mote is known with respect to a fixed origin: the home
base from where the robot starts its journey. An ordered sequence of labels S =
{s1,s2, . . . ,sm} is assigned to the sensor motes a priori.

If a mote knows the exact time (or the interval) the robot will be within its com-
munication range, then it could establish communication with a single beacon. In the
presence of uncertainties, one alternative is to send beacon messages infrequently
and have the robot wait in the mote’s vicinity until it hears a beacon. However, this
has the undesired effect of making the overall data collection time large which, in
turn, decreases the overall system performance. Therefore an efficient beaconing
strategy is desirable.

Let us call the time interval between consecutive robot arrivals at sensor mote
s as the interarrival time. Due to the stochastic nature, we represent the robot’s
interarrival time at sensor s as a probability distribution. This distribution can be
either guessed (e.g. by using a Gaussian which represents the expected arrival time
and uncertainty), or can be adaptively learned by keeping the history. In this work,
we assume that the distribution is given and omit the details of how it can be learned.

We assume that the time between consecutive robot arrivals at a mote is bounded
from above. In general, there can also be a lower bound that is non-zero, because
the robot’s velocity and the length of the complete path ensure that the robot takes a
non-zero amount of time to revisit the same sensor.

We now solve the following problem: Given a robot interarrival probability dis-
tribution at a mote, find a beacon schedule for that mote, using the least number of
beacons possible, such that the expected waiting time of the robot between its arrival
at that mote, and receiving a beacon message is bounded from above by a predeter-
mined value Tw. In the following section, we show how such a beacon schedule can
be computed.

3.2 Optimal Solution

We now focus on the scenario where the mobile robot visits a sensor s in rounds. As
explained in the formulation, we assume that for any round, the interarrival time is
bounded: there is a time before which the robot cannot be present in communication
range of the mote, and after which the robot is guaranteed to have visited the mote.
Denote this interval as T . We model time as discrete by dividing the interval T
into n time instants spaced equally by Δ t units, T = {t1, . . . ,tn}. A beacon can be
scheduled at any ti (1 ≤ i ≤ n).

The robot’s arrival during the interval T is given as a probability distribution over
the time instants in T . Let p(ti) denote the probability that the robot arrives at time
ti. In the case that the probability is continuous over time, one can interpret ti to be
the end point of a time interval [ti−1, ti], with the beacon being placed at the end of
that interval and p(ti) being the aggregate probability for that interval.
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Let B = {b1, . . . ,bk = tn} be a beacon schedule. The values bi denote the times in
the interval T at which beacons are scheduled. Given the arrival distribution p, the
robot’s expected waiting time ET (B, p) at sensor mote s is given by

ET (B, p) =
k−1

∑
i=0

bi+1

∑
t j=bi+Δ t

p(t j)(bi+1 − t j) (1)

In Equation 1, b0 is the start time of T .
Consider beacon bi. For any robot arrival at time t j > bi, the expression p(t j)(bi+1−

t j) is the expected waiting time for the robot, until beacon bi+1 is heard. Thus, the in-
ner summation in (1) gives the robot waiting times between beacons bi and bi+1. The
outer summation accumulates the expected waiting times over the entire schedule.

We would like to simultaneously minimize the cardinality of B and the expected
waiting time of the robot. Let the cardinality of B be denoted by k = |B|.

For a given value of k, we formulate the following decision problem: Given pa-
rameters k, Tw and an arrival distribution p, can we find a beacon schedule B such
that |B|= k and ET (B, p)≤ Tw? To minimize the number of beacons used to satisfy
this Tw, we perform a search over the possible values of k by solving the decision
problem for each value.

Typically, the time taken by the robot to traverse the whole round is much larger
than the length of T . For such cases, we obtain the following insight about an opti-
mal schedule.

Lemma 1. During each round, there has to be a beacon at the last instant of time
in T , to ensure that ET (B, p) ≤ Tw.

Proof. We prove this claim by contradiction. Suppose there is no beacon at the last
time instant over which p(ti) is distributed. Let t j < tn be the time at which the last
beacon is scheduled. If the robot arrives after t j, but before tn, then it has to wait
until the mote’s next beacon, which, according to the distribution occurs only at the
estimate of the next robot interarrival time. Since this can be of the order of the
duration of a round, the waiting time can grow arbitrarily large, giving us a value
greater than Tw: a contradiction.

Lemma 1 gives us a starting point to place a beacon: at time tn (the end of T ). Also,
note that, in Equation 1 the robot’s waiting time is determined by only the first bea-
con that it hears after arrival. This motivates the following dynamic programming
solution.

Let the cost function be C(i,t j) which denotes the expected waiting time (“cost”)
for robot arrivals after interarrival time t j, when beacon i is scheduled at time t j.

C(i,t j) = min
t j<tr<tn

{
tr

∑
tq=1+t j

p(tq) · (tr − tq)+C(i+ 1, tr)

}
(2)

Since beacon i is placed at time t j and beacon i + 1 at time tr, the first term on the
right-hand side in Equation 2 computes expected waiting time for a robot arrival
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between those two beacons. The second term computes the expected waiting time
for arrivals after time tr.

Since there must be a beacon at tn (Lemma 1), C(k, tn) = 0. Further, we do not
allow beacon k to be scheduled anywhere except at time tn, thus C(k, ty) = ∞ for
t1 ≤ ty < tn. We then use Equation 2 to compute the rest of the cost table, which
in total is of size k× n. To complete the computation, we need to increment each
value C(1,t) for all t by the expected waiting time for robot arrivals from t0 to t.
This accounts for robot arrivals before the first beacon.

The time at which the first beacon should be scheduled is the time step t j such that
the value of C(1,t j) is minimized, i.e. b1 = argmint j

C(1, t j) . Since the computation
of C(1,t j) uses a minimum value for some C(2, tr), we backtrack to find the best
possible scheduling times b2,b3, . . . ,bk.

We want the value of k to be the least possible to satisfy the expected waiting time
constraint. In order to do this minimization, we start with just k = 1 beacon i.e. a
cost table of size 1×n and increase k if the expected waiting time for that k exceeds
Tw. The entire computation can be performed in O(kn3) steps. Instead of this linear
search, we could also use a binary search to find the best k, but that approach does
not allow us to incrementally build the cost table. As a result, it ends up computing
the whole table and then eliminating half of the values at each step.

3.2.1 Simulation Results

We demonstrate the utility of using the dynamic programming algorithm through
simulated robot arrival times and beacon schedules.

We compare three different types of robot interarrival patterns: uniform, Gaussian
and bimodal Gaussian (mixture of two Gaussian). In all three cases, the desired
waiting time is 2.5 seconds and the robot interarrival times lie between 300 sec and
500 sec.

Figure 1 (left) models the robot’s arrival pattern at a mote as a unimodal Gaussian.
Uniform beaconing uses 34 beacons for an expected waiting time of 2.489 seconds.
In contrast, our algorithm uses 10 beacons (≈ 70% better) with an expected waiting
time of 2.233 seconds.
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Fig. 1 A comparison of optimal beacon scheduling (red circles, tall) to uniform scheduling
(blue circles, short) for different robot arrival patterns: unimodal Gaussian (left), uniform
(middle), and bimodal Gaussian (right).
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The algorithm is applicable to any type of arrival distribution. For instance, if
the arrival pattern at a mote is a bimodal Gaussian (right of Fig. 1: N (350,10) and
N (450,10) with equal weights), our solution uses 7 beacons (≈ 79% better) with
an expected wait time of 2.115 seconds.

4 Local Search for Finding the Download Location

When the robot is downloading data from a node, the quality of the wireless com-
munication link is a crucial factor in determining energy spent in communication:
when the link quality is high, the same amount of data can be transferred using less
energy. This in turn, drastically affects the lifetime of the node. In this section, we
present a motion strategy for a robot to find a good location to download the data.
The algorithm is based on insights from a series of experiments which we describe
next.

Fig. 2 Left: Experimental setup to measure the link quality of data transfer from a mobile
robot to a base station, with the robot moving on a uniform grid.

We started our experiments by collecting data using the setup shown in Figure 2
where we placed an 11× 11 grid on a 3m× 3m indoor environment. We mounted
a base station mote on our robot (iRobot Create with Asus Eee PC) and the robot
autonomously visited grid points while pointing to a fixed direction.

Figure 3 shows signal strength measurements on the grid when the mote was
placed at (3,10). Each measurement was taken by sending a 4 byte message during
which Radio Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI)
values were recorded. From each location, robot samples 50 measurements. The
left plots in Figure 3 show the mean (top) and median (bottom) values of the LQI
measurements. The right plots show the RSSI values. All plots give a unified view of
the link quality: although in general the LQI increases as we get closer to the mote,
the surface is not smooth and contains many deep drops due to multi-path effects.

The next experiment illustrates the effects of the location and the link quality on
the time to download the data. In Figure 4, the top figure shows the time to download
50 messages from each grid point. The peaks show a correlation with the deep fading
effects in the previous experiment (Figure 3). Bottom left (resp. right) figure shows
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Fig. 3 The robot visited each location, and took 50 measurements. Left: mean (top) and
median (bottom) values of the LQI measurements. Right: mean (top) and median (bottom)
values of the RSSI measurements.
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Fig. 4 Time to download 50 messages from each grid point as function of location (top),
and as functions of LQI (bottom-left) and RSSI (bottom-right). With controlled mobility, the
robot can decrease the download time significantly by moving slightly.

the relation between LQI (resp. RSSI) measurements and time transfer. As it can be
seen in the left figure, the transfer time is very low for LQI measurements above 95.
On the other hand, the transfer time increases drastically for values lower than 95.
This observation shows the potential utility of controlled mobility: robots can reduce
the data download time (and increase the life of the sensor network) by finding a
“good”2 location to download the data.

The next experiment sheds further light on path-loss and multi-path affects on
link quality. To cover a wider range, we moved the robot on a line-segment in a
corridor in our building and placed a mote on the mid-point of this line segment. In
Figure 5-left, the mote is located at x = 26 and robot starts taking measurements at
x = 1 and ends at x = 51 . The discretization level is 1 foot, the robot takes 50 mea-
surements from each location. Top figure shows mean values of 50 measurements,

2 In this case, a good location is one where the LQI value is greater than 95.
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bottom figure shows median of the measurements. As expected, the link quality
increases when robots get closer to the mote, while it tends to decrease while get-
ting further away from it. After performing similar experiments, we concluded that
the following observation explains the link-quality behavior better: Within a certain
range (±8 ft, in this case), the link quality is consistently “good” and unpredictable
(random) outside this range.
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Fig. 5 Left: The mote is located at x = 26. The robot moves from x = 1 to x = 51. Within
a range of ±8 ft, the link quality is consistently “good”. It is unpredictable (random) outside
this range. Right: The θ -values correspond to robot orientations. Each curve corresponds to
a different location on a line. The mote is located at x = 0. The behavior of RSSI or LQI as a
function of rotation is not easily predictable.

Most robotic systems have a rotational component which means that we can con-
trol the orientation of the robot. Therefore, the robot should search for not only a
good location but a good orientation as well. The next experiment focuses on this
aspect. Figure 5-right shows the change in link quality with the various orientations
of the base station (on the robot) at fixed locations. The figure shows the results for
4 fixed points at distances 5,10,15 and 20 feet from the mote. The results show that
when the base station is close to the mote, the orientation does not affect the link
quality significantly. However, when the distance is large, small changes in orienta-
tion may result in drastic changes in link quality. Moreover, this change is not easily
predictable. For example, when the robot is at the furthest point (the 20-feet curve),
mote and base station point towards each other when the angle is 180◦. In this ori-
entation, the LQI is 95. If robot turns 45◦ in counter-clockwise direction, the LQI
value increases to 100. If the robot turns 45◦ more on counter-clockwise direction,
then the LQI value suddenly drops to 80. This example also shows that measure-
ments from various orientations may not give a clear indication about the direction
of the mote.

The results of these experiments can be summarized as follows:

• Within a certain distance (an environment dependent parameter), the signal qual-
ity is predictably good and the orientation of the robot does not make a significant
difference.

• When the robot is outside this range, it is very difficult to use local information
(such as gradient) to find the location or orientation of the mote.

In the next section, we present a search strategy based on these observations.
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4.1 The Search Algorithm

In this section, we describe a search algorithm to find a good download location.
In many applications, it is beneficial to search for this location in an online fash-
ion because the location of the mote whose data will be downloaded can change
locally, the signal properties may change over-time, or the robot may not have the
localization capability to visit a location accurately.

The experiment in the previous section indicates that it is very difficult, if not
impossible, to use local gradient information to seek a good location. A global ap-
proach is needed. The strategy we present uses two environment dependent param-
eters. The first parameter β is a lower-bound for an acceptable signal strength (LQI
value). For example, an appropriate β value for the environment where the experi-
ment shown in Figure 4 was performed, is 95. The second value α is mainly a grid
resolution and it is set to the distance within which the link quality is predictably
good. For the environment where the experiment shown in Figure 5-left was per-
formed, an appropriate α value is 8 ft.

Upon hearing a beacon message, the robot searches for a good location by plac-
ing a grid on the environment where the dimension of each cell is determined by
α . When the robot visits a grid cell, it rotates 0,90,180,270 degrees. This allows
us to get rid of local multi-path effects and to simultaneously seek a good orienta-
tion. At each rotation, the robot takes five link quality measurements. The quality of
each orientation is defined as the median of these five measurements. The weight of
each cell is then set to the the highest of these four median values. In the algorithm
below, measure(c) subroutine performs these steps at cell location c. We also keep
track of a table where we store the expected link quality values. For each unvisited
cell, we set the expected_weight value to the average link quality value of its im-
mediate neighbors. Next, robot visits the location with maximum expected weight.
The algorithm is given below:

Algorithm 1 LocalSearch

1: expected_weight(c ∈C) ← 0, c ← (0,0) (initial location)
2: while there are unexplored cells do
3: if measure(c)≥ β then
4: return
5: end if
6: Forall c′ ∈ Neighbor(c) if c′ is unvisited,

expected_weight(c′) = mean(∀c′′∈Neighbor(c′)measure(c′′))
7: c ← maxc′ expected_weight(c′)
8: end while

Remark 1. If the β value is not known, we can set it to a high value. In this case, the
robot will visit all grid-cells. We can then pick the best location.

Remark 2. We can incorporate collision avoidance into the strategy by setting the
weight of a cell to zero if there is an obstacle at that cell.
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In the next section, we demonstrate the utility of this strategy with a series of exper-
iments.

4.2 Search Experiments

We tested the search algorithm in a number of settings. In this section, we present
two of these results.

The first experiment was performed in the indoor setting shown in Figure 6-left.
The signal strength level in TelosB mote was set to 3. The other system parameters
were α = 1.5m and β = 100.

When the robot started from the initial location shown in the figure, it quickly
converged to a good location. Robot’s steps are shown in Figure 6-left bottom where

(1,86)

(2,91)

(3,96)(4,102)

(1,83)

(2,0)

(3,obs) (4,84) (5,76)

(6,76)(7,98)(8,88)

(9,108)

Fig. 6 Bottom figures show a virtual grid used by the search algorithm. The visited cells are
labeled with the format (s,r): s is the order the cell was visited and r is the maximum median
value sampled from four orientations. The black rectangles show the location of the mote.
Top Left: The setup for an indoor experiment. The picture shows the best configuration
found by the search algorithm. Bottom Left: Steps in finding a good location in the setup
shown on top. Top Right: Search performed in an outdoor setting. The picture shows the
best configuration found by the search algorithm. The shaded cell corresponds to the obstacle
that robot avoided. Bottom Right: Steps taken during outdoor search.
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the visited cells are labeled with the format (s,r): s is the order the cell was visited
and r is the maximum median value sampled from four orientations.

The second experiment was performed outdoors with α = 3m and β = 100. As
shown in Figure 6-right, the robot quickly converged to a good location.

In conclusion, the simple search strategy presented in this section was efficient
in finding a good download location. Where most local search heuristics would get
stuck with a single cell, the presented search strategy quickly converges to a robot
pose from where the data can be downloaded efficiently.

5 System Design

In this section, we describe a system which incorporates the results presented in this
paper. In Section 5.3 we present experimental results which demonstrate the utility
of these components.

5.1 Hardware Components

Our system consists of three classes of devices. (i) The sensor motes are Crossbow
Telos, (rev. B) 802.15.4 compliant. We deployed three static motes in the fourth
floor lounge of the Digital Technology Center (DTC) at the University of Minnesota,
Twin-Cities. The experimental setup is shown in Figure 7. (ii) The mobile robot is
an iRobot Create without the command module. (iii) The control program for the
robot runs on an Asus Eee PC, which interfaces with the Create directly through
a USB-to-Serial cable. The system ran Linux (Ubuntu) and our Java and C++ pro-
grams used serial communication libraries to write motion commands to the robot,
in accordance with the Create Open Interface (OI) specifications.

5.2 Adaptive Beacon Scheduling

The control program on the TelosB motes was written in the nesC language, then
compiled and programmed onto the mote using TinyOS 2.x. In our design, sens-
ing motes transmit beacon messages and the base station mote attached to the mobile
robot listens for these messages.

To allow the TelosB motes to have an adaptive beacon schedule, we store a bea-
con time interval array on each mote. A one-shot timer cycles through the array, al-
lowing the mote to keep its transmitter off for arbitrary intervals. We set the receiver
sleep interval using the LowPowerListening interface. However, we believe
that since we have packet acknowledgments enabled, the receiver of the sensing
mote is turned on every time it sends a beacon. This design decision could be re-
placed with unacknowledged packets. In both cases, our optimal beacon schedule
helps save power on the mote by reducing the amount of time during which the
transmitter and/or the receiver are active.
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5.3 Experiments

We performed four experiments to demonstrate the utility of incorporating both
beacon scheduling, and local search. The experiments are: baseline (B), beacon
scheduling (BS), local search (LS) and both local search and beacon scheduling
(LSBS). Each experiment consisted of 8 rounds. In each round, robot visits a pre-
defined location for each mote, and downloads the data from that mote. The loca-
tions that the robot starts downloading (shown as squares in Fig. 7) are fixed for
comparison purposes: For example, if in experiment B the robot downloads from a
fixed location then in experiment LS, the robot starts the local search from the same
location.

We picked a range of download locations in a mote’s vicinity to simulate the
effects of localization uncertainty: If the robot does not have accurate means of lo-
calization, even if it targets a fixed location to download data, it may be off from
that location by a distance given by the uncertainty range. After arriving at a prede-
termined location, the robot either directly downloads the data (experiment B and
BS), or performs a local search to find a good location before downloading (LS and
LSBS experiments). After download finishes, the robot either continues to the next
mote directly (experiments B and LS), or computes an updated beacon schedule
based on interarrival times, uploads it to that mote and proceeds to the next mote
(experiments BS and LSBS).

In all experiments, the beacons are special messages whose payload consists of
(i) the node id of the mote, and (ii) a sequence number of the triggered beacon.
To compare the local search with base case, we needed a mechanism to compare
the trade-off between energy gain in efficient download and energy spent in extra
beacons sent during the search phase. Therefore, we used data packages which are
the same as the beacon type messages. To download the data on the mote, the robot
must successfully hear 100 additional beacons. This represents scenarios where the

15 m

16 m

Fig. 7 A proof-of-concept deployment. The stars are approximate locations of the data nodes.
The dashed lines show their communication range. The squares are locations where the robot
starts either the download or the local search.
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Fig. 8 The robot interarrival times from our experiments were modeled as normal distribu-
tions.

data stored on the mote corresponds to 100 messages and all of it must be success-
fully downloaded. This way, we can use the last received beacon sequence number
for each mote to represent the total energy consumption metric spent in beaconing
and download. Even with this modest amount of data, each experiment lasted about
an hour.

In experiment B, we chose the beacon interval for discovery phase as 5 sec-
onds. This guaranteed an expected robot waiting time of 2.5sec. The optimal beacon
scheduling algorithm of Section 3 and the robot inter-arrival distribution observed
in experiment B are used to achieve 2.5sec waiting time in experiment BS. In ex-
periment LSBS, we used the interarrival times from the LS experiment to compute
the optimal beacon schedule for this case. The recorded interarrival times and the
robot’s arrival model are shown in Figure 8. In experiment BS, the optimum beacon
schedule uses 8 beacons.

In comparison to the number of beacons (550/5 = 110) in the base experiment B,
the beaconing strategy yields significant energy savings (8 beacons) while satisfying
the same expected waiting time constraint. Comparing the total number of beacons,
we can see the effect in total performance. Beacon scheduling in experiment BS
reduced the total number of beacons to 2791 compared to 4839 in experiment B, the
baseline (first and second columns in right of Table 1).

The left one of the two tables shown in Table 1, shows the packet loss rates for
various locations in each experiment. Clearly, local search provides a significant
reduction in packet loss rate for the first two locations (compare B versus LS and
BS versus LSBS) where the distance prevents a lossless communication between
the mote and robot. For example, in the experiment B, the first mote has to sent 538
packets until the robot successfully downloads all of the 100 data packets, whereas
after local search no packet is lost. We can see the efficiency of local search for
the first two rounds of the examples in table on the right (Table 1). On the other
hand, for the rest of the rounds, the local search does not provide significant gains.
In fact, the energy consumption slightly increases in experiment LSBS compared
to BS experiment due to the overhead (i.e. number of beacons sent during local
search).
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It is worth noting that in this indoor setting, the robot’s total path is relatively
short compared to the search distance. Thus, the search overhead becomes compa-
rable to the number of discovery beacons. When the travel distances are large, (e.g.
in outdoor settings), the search overhead will become negligible. In this case, local
search will yield more significant energy savings.

Overall, the experiments clearly demonstrate that (i) adaptive beaconing strate-
gies yield significant savings in the number of discovery beacons sent, and (ii) local
search strategies can result in drastic improvements in the download time when the
link quality is unpredictable.

Table 1 The Left table shows the package loss rates for each experiments (B:Base,LS:Local
Search,BS: Beacon Schedule, LSBS: Local Search and Beacon Schedule together) with re-
spect to the distance that robot starts to download or starts to the local search. For each
download we calculate the number of packet loss until robot hears 100 beacons. Right figure
shows the total number of beacons send from 3 motes during the experiment.

Dist. B BS LS LSBS

7.5m 173% 36% 0% 1%
6.25m 7% 21% 0% 1%
5m 11% 0% 0% 0%
3.75m 8% 0% 0% 0%
2.5m 2% 3% 0% 3%
1.7m 0% 0% 0% 0%
0.9m 0% 0% 0% 0%
0.1m 0% 0% 0% 0%

B BS LS LSBS

1-2 1642 897 997 828
3-8 3197 1894 3215 2152

Total 4839 2791 4212 2980

6 Conclusion

In this paper, we addressed two problems that arise in applications where robots
collect data from static nodes. In the first problem, the goal is to minimize the energy
spent by the static nodes for beaconing. For this problem, an optimal beaconing
strategy based on dynamic programming was presented. In the second problem, the
goal is to minimize the energy spent in communication. For this purpose, we present
a strategy for the robot to adaptively discover a download location where the signal
is strong. The strategy is based on insights gathered by the experiments. We report
these in the paper as well. Finally, we present an indoor system for data collection
which incorporates the algorithms presented in the paper. Experiments performed
on the system demonstrate the utility of the two results in the paper.

There are additional factors (e.g. robot’s interarrival times, the amount of data to
be downloaded at each round) which effect the overall system performance. Cur-
rently, we are building an outdoor system for habitat monitoring including a new
robotic platform. In the near future, we will demonstrate the use of these results
within the context of a field application in environmental monitoring.
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Micro-Robots

Cédric Pradalier

This final chapter of the ISRR'09 proceedings report on a very particular field
of robotic research, namely micro-robotic. While more classical robotic focuses
on perception and control, micro-robotic is more concerned with the question of
manufacturing and actuation at the millimetre or sub-millimetre scale.

In “ Design and Fabrication of the Harvard Ambulatory Micro-Robot ”,
Baisch and Wood report on the challenges related to the manufacturing
of a 90 mg hexapod robot, using smart materials and innovative fabrica-
tion  techniques.  Actuation  is  implemented  using  shape  memory  alloy
controlled from external electrical sources. 
In “Assembly and Disassembly of  Magnetic Mobile Micro-Robots to-
wards 2-D Reconfigurable Micro-Systems ”, Pawashe et al. address the
problem of  designing  a  modular  reconfigurable  system with  modules
smaller than 1mm. They consider, in particular, the question of assembly
and disassembly of the modules, using only electrostatic and magnetic
forces.

These chapters show that micro-robotic technology has reached a stage where
controlled locomotion of a miniature system is possible. There is still, however, a
considerable amount of research and engineering required to be able to one day
use these systems for medical inspection as envisioned in the “Innerspace” film,
directed by Joe Dante.



Design and Fabrication of the Harvard
Ambulatory Micro-Robot

Andrew T. Baisch and Robert J. Wood

Abstract. Here we present the design and fabrication of a 90mg hexapedal micro-
robot with overall footprint dimensions of 17 mm long x 23 mm wide. Utilizing
smart composite microstructure fabrication techniques, we combine composite ma-
terials and polymers to form articulated structures that assemble into an eight degree
of freedom robot. Using thin foil shape memory alloy actuators and inspiration from
biology we demonstrate the feasibility of manufacturing a robot with insect-like
morphology and gait patterns. This work is a foundational step towards the creation
of an insect-scale hexapod robot which will be robust both structurally and with
respect to locomotion across a wide variety of terrains.

1 Introduction

Autonomous mobile robots are a desirable alternative to sending humans into haz-
ardous environments such as natural disasters. Such robots equipped with embedded
sensors could provide quick reconnaissance regarding survivor locations and chem-
ical toxicity levels, or simply map out an area for rescue workers. In these situations,
large numbers of insect-scale devices using swarm algorithms might be more effi-
cient than larger, less agile, and more expensive robots.

There are multiple potential locomotion modes for microrobots, including crawl-
ing [10], rolling, flying [24], jumping [3], gliding [26], slithering, or rockets [22].
This work focuses on ambulation, which has been shown to be robust and efficient
on diverse terrain by studies of insect locomotion. Some species of cockroach are
capable of running at speeds up to 20 body lengths per second (Blaberus discoidalis)
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and even 40 body lengths per second (Periplaneta Americana) [8]. Cockroaches are
known to maintain high speed ambulation across rough, uneven terrain [21] and
provide further design inspiration with their ability to climb sheer vertical and even
inverted surfaces [17]. Furthermore, they have efficient navigational aids such as
antennae that allow obstacle avoidance even in low lighting [13]. These aspects of
insect morphology enable robust locomotion, and we strive to translate the underly-
ing principles into designs for an insect-scale ambulatory robot.

Roboticists have already proven the importance of using nature as a design guide,
as evidenced by legged robots that are more agile than their wheeled counterparts
[19],[15],[16]. There has been work to create climbing robots for rough [11] or
smooth [12] surfaces, and even efforts to integrate insect-like proximity sensors for
navigation along walls [14], [4]. Others have attempted to use MEMS fabrication to
create silicon insect-scale ambulatory robots [6], [27], [5].

Our goal is to combine many of these functions into a single autonomous
millimeter-scale robot. This work focuses on the design and fabrication of tho-
racic and leg mechanics, actuation, and electronics required to achieve such a goal.
Furthermore we examine potential modes of attachment as a preliminary study on
scaling vertical surfaces with a microrobot. We conclude with an overview of re-
maining research topics towards the creation of a fully autonomous ambulatory
robotic insect.

2 Robot Design

The design of the Harvard Ambulatory Microrobot (HAMR), presented in Fig. 1,
was motivated by several factors, including available fabrication techniques, and
the necessary body mechanics to achieve gaits inspired by insects. Important con-
straints in designing a microrobot are brought about by the fabrication techniques
and materials that may be used. A solution will be discussed in Section 3, however
our designs will be based on standardized components such as rigid links, flexure
joints, and linear actuators.

Proximal 
Actuator Mount

Dry Adhesion
Mechanism

Distal ‘knee’ 
Joint

Leg Transmission

Fig. 1 Notional design of the thorax and legs of the Harvard Ambulatory Microrobot (left)
and initial prototype (right)
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Insect, and in particular cockroach, morphology demonstrates the utility of a
hexapedal structure for static stability during locomotion. As opposed to bipedal or
quadrupedal animals, hexapods typically exhibit static stability through the duration
of their gait (for non-running gaits). We chose six legs as opposed to a greater num-
ber primarily for fabrication simplicity. Additionally, we believe a sprawled posture
will be beneficial for future endeavors such as scaling vertical surfaces [9]. Our
design adheres to insect-scale physical parameters: 100mg maximum body mass
(excluding electronics), and overall footprint of approximately 2cm2.

To achieve maximum functionality in diverse environments HAMR must be ca-
pable of attaining and transitioning between numerous basis gaits. In forward loco-
motion, hexapods typically exhibit an alternating tripod gait (Fig. 2a) in which the
anterior and posterior leg on one side of the body and the opposite center leg are
in ground contact during each half period of a gait. The stance legs move towards
the rear of the body, propelling the body center of mass (COM) forward. During
the airborne, or swing phase, legs come into ground contact when stance legs reach
their maximum displacement. Alternating tripod is not the sole required motion,
however, since our robot must have maneuverability in diverse environments. We
must achieve zero-radius turns (Fig. 2b) and/or gradual turns, which require phase
adjustment between legs. As in animals, transitions between gaits must occur con-
tinually in response to locomotion speed and terrain. This dynamic gait modulation
(DGM) must be achievable without unnecessarily increasing the robot complexity,
power and control requirements, or exceeding physical constraints.

Stance 1 Step 2Stance 2Step 1 Stance 1

=COM

Alternating Tripod Gait

=Stance Set =Swing Set

Second Step
First Step
Start

(a)

Stance 1 Step 2Stance 2Step 1 Stance 1

=COM

Zero-Radius Static Right Turn

=Stance Set =Swing Set

(b)

Fig. 2 Hexapods can achieve a variety of gaits. a) An alternating tripod gait propels the body
COM forward during each step, as indicated by horizontal lines. b) Proposed gait pattern for
zero-radius static turns that operate when one or more of HAMR’s stance legs slips during
rotation.
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2.1 Thoracic Mechanics

To achieve the design requirements, HAMR’s mechanics are separated into two dis-
tinct modes of actuation: proximal, which is controlled in the thorax, and distal,
or lower-leg control. This feature allows simple control of transverse (parallel to
ground) leg movement through two thoracic DOFs and gait definition by addition
or removal of each of the six legs to the stance set.

HAMR’s proximal mechanics consist of two leg transmissions, each controlling
three legs. The transmissions are mirrored across the sagittal plane, and therefore
legs are grouped on each side of the robot’s thorax. An alternative grouping would
couple the anterior and posterior leg with the center leg on the opposite side of
the body. However, this method would require crossing linkages and dividing the
single actuation plane into two. With the two leg transmissions coplanar, fabrication
complexity is minimized and it ensures that the body center of mass lies in the
sagittal plane. Any mass asymmetry could lead to difficulties in attaining a stable
gait.

2.1.1 Kinematics

The kinematic coupling of a single transmission requires that the angles, θi of each
outer leg (i = 1,3) move in the same direction, while the center leg (i = 2) moves
with opposite sign. To determine the orientation, θi of each leg coupled by a single
transmission, we can analyze the forward kinematic mapping of the two four-bar
mechanisms that comprise each transmission given a single input angle the most
anterior leg θL1. Analysis of the linkages labeled in Fig. 3 was done assuming each
link is rigid and each joint is a pin joint. Using four-bar mechanism kinematic anal-
ysis software from [20], the lower four-bar mapping (θL2 output) is

i = 1

i = 2

i = 3i = 6

i = 5

i = 4

Posterior

Anterior

R4

R1
R3

R2

Ra

Rb

R5 R7

R6

R8

Θ1
Θ2Θ3

Θ4 Θ7
Θ5

Θ8

ΘL3

ΘL2

ΘL1

Rc

Rd

i=3

i=2

i=1

Re

(a) (b)

Fig. 3 a) HAMR’s thoracic mechanics design with leg numbering convention that is used in
this paper. b) Kinematics of HAMR’s thoracic mechanics
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θL2 = θ4 = atan2(y1,x1)− cos−1((x2
1 + y2

1 + R2
4 −R2

3)/(2R4

√
x2

1 + y2
1)) (1)

where x1 = R1 ×cos(θ1)−R2×cos(θ2), y1 = R1× sin(θ1)−R2 × sin(θ2), R1−4 are
known link lengths, and θ1 is the known ground link orientation. We can again use
eqn.(1) to calculate θL3 using θL2 as input. This yields

θL3 = atan2(y2,x2)− cos−1((x2
2 + y2

2 + R2
8 −R2

7)/(2R8

√
x2 + y2))

− tan−1(Rc/Rd) (2)

Where x2 = R5 × cos(θ5)−R2 × cos(θ6), y2 = R5 × sin(θ5)−R6 × sin(θ6), R5,7,8

and θ5 are known, R6 =
√

R2
4 −R2

e , θ6 = θ4 +asin(Re/R4). Eqns.(1), (2) map input
angle to output angles for one half of a leg-stroke. The thoracic mechanics are driven
by two sets of proximal actuators (driving θL1). The stance is determined by distal
knee actuators described in sec. 2.2.1.

2.1.2 Proximal Actuation

Shape memory alloy (SMA) and piezoelectric actuators were considered for proxi-
mal actuation. Piezoelectric actuators provide benefits such as greater efficiency and
bandwidth, and will be considered for future iterations to achieve dynamic gaits.
However, for this version of HAMR we chose SMA for ease of powering, control,
and integrability. SMA materials can be actuated simply by Joule heating and there-
fore require only a switched current source as detailed in sec. 2.3. SMA actuators,
as opposed to piezoelectric cantilever or stack actuators, require minimal additional
transmission to convert small oscillatory motions into the desired leg swing.

Discrete SMA actuators are unidirectional linear actuators, and therefore a single
DOF requires an antagonist pair (Fig. 4). Each of HAMR’s four thorax actuators
control a unipolar motion of one leg transmission. A two-dimensional spring design
(Fig. 5) was chosen since it provides linear actuation when pre-strained in tension,
and receives a larger displacement in a smaller actuator length than a wire. Since we
are using a linear actuator to move along a radial path, HAMR’s proximal actuators
are oriented parallel to the sagittal plane to prevent singularities. A flexible attach-
ment is provided to prevent the actuator from bending across its thickness, and is
therefore constrained to motion in a single plane. To characterize our spring design,
we tested output displacement for a single SMA spring acting against an antagonist.
The resulting displacement was approximately 300 μm.

2.2 Leg Mechanics

HAMR’s legs, each of which has an articulated knee joint, allows addition or sub-
traction of a leg from the stance set. Including thorax and legs, there are a total
8 DOFs, each driven with binary actuation and therefore we may define 28 or 256
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Fig. 4 HAMR’s thorax and leg transmission. Each transmission DOF requires two SMA
spring actuators. A flexure joint between actuator and transmission prevents singularities and
restricts actuator movement to a single plane.

Fig. 5 HAMR’s Proximal and distal actuators.

stances. Many of these stance patterns are useless to locomotion, but by transition-
ing between various stances we may prescribe numerous gaits including alternating
tripod, zero-radius turns, and pre-loading attachment mechanisms for wall climbing.

2.2.1 Distal Actuation

HAMR’s distal motion is provided by SMA actuators, however they function as
cantilevers rather than the planar spring in Section 2.1.2. To conserve power during
immobile stance phases, HAMR’s knee joints are held down with a passive antag-
onist 2D spring (Fig. 5) and actuated to a raised position. Because of the simplicity
and short time constant of thin foil spring fabrication (See Section 3.2), we used an
iterative design process to find an appropriate force/displacement balance for leg ac-
tuation. This balance included a large displacement with a short full-cycle actuation
time. Fig. 6 shows the maximum attainable actuated displacement of our design of
9.1 degrees.

To further inform our design we determined optimal actuation parameters. First,
we experimentally determined the current limits for each actuator, the lower limit
being necessary for Martensite-Austenite transition and upper limit causing the
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(a) (b)

Fig. 6 HAMR’s leg a) unactuated and b) actuated to maximum displacement. The maximum
measured angle was 9.1 degrees.

bonding solder to melt. These limits are 100-150mA and 200-300mA for proximal
and distal actuators, respectively. Using ProAnalyst 2D motion tracking software,
we characterized the optimal current amplitude and pulse width for distal actuation.
Here, optimal is defined as minimum overall actuation period (upstroke and down-
stroke) while maintaining at least 90 percent of maximum displacement. However
in future iterations with on-board power we will also consider energy efficiency as a
metric. For these tests the series resistance (See Fig. 7) was tuned to 5Ω and voltage
was varied to obtain a current. The optimal leg actuation parameters are 280mA for
0.24s. This corresponds to 274mW power dissipation across the 3.5Ω SMA, and a
total of 66mJ of energy per leg, per cycle.

2.3 Power and Control Electronics

HAMR’s power electronics must be capable of driving four proximal SMA actuators
each with 5.5Ω resistance and six distal actuators each 3.5Ω . We have experimen-
tally determined that each thorax actuator requires 100-150mA and each leg actuator
requires 200-300mA for actuation. We simply use ten n-type metal oxide semicon-
ductor (NMOS) switches for binary control of the actuators with current tuned by
10Ω potentiometers in series with each actuator. The input signals are generated
using Simulink and an xPc target system, which mimics the functionality of an in-
tegrated microcontroller, a feature of future iterations. Fig. 7 shows a schematic of
the drive circuitry.

Vdd

L3 SMA
Actuator

L3 Signal

0-10Ω

Anterior
Thorax
Actuator

Anterior
Thorax
Signal

0-10Ω

Posterior
Thorax
Actuator

Posterior
Thorax
Signal

0-10Ω

L2 SMA
Actuator

L2 Signal

0-10Ω

L1 SMA
Actuator

L1 Signal

0-10Ω

Fig. 7 Circuit drive for one of two contralateral actuator sets.
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3 Fabrication Processes

When considering available fabrication techniques, millimeter-scale structures lie
in an unconventional size regime. The overall system is too large to use micro-
electromechanical system (MEMS) fabrication exclusively, however too small for
macro-scale machining. Additionally, when creating articulated structures at the
millimeter-scale we are unable to consider classic revolute and telescopic joints or
motors since they become inefficient as surface area effects become more relevant
than Newtonian forces [23]. Therefore HAMR’s physical structure was created uti-
lizing the smart composite microstructure (SCM) manufacturing paradigm [25].

3.1 Smart Composite Microstructures

SCM fabrication utilizes laser-micromachining to pattern two structural compos-
ites and a flexible polymer layer, which assemble to form complex 3D articulated
microstructures. Using the fabrication process detailed in Fig. 8, we created three
leg transmission components (Fig. 9) from M60J carbon fiber laminates and 7.5μm
polymide film that assemble into a complete eight DOF mechanism. Articulation is
afforded through flexure joints, which exist where cuts in the composite face sheets
allow the polymer to bend. This technique of creating flexures also enables the cre-
ation of sacrificial flexure joints, thereby creating 3D structures.

Fig. 8 SCM Fabrication process flow for creating flexure-based articulated structures. Car-
bon fiber prepreg (a) is laser micromachined to create a face sheet (b) and a polymer layer is
debulked onto the face sheet (c). The polymer is patterned using different laser settings (d)
and aligned to a second face sheet using kinematic mounts or optical alignment techniques
(e). This laminate is vacuum bagged and cured (f). The quasi-planar stucture is released (g)
and subsequently folded into 3D shapes (h).
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(a) (b)

Fig. 9 HAMR’s leg and transmission parts before folding to a 3D structure: a) Thorax b) Leg
and leg transmission.

3.2 Actuators, Attachment Mechanisms, and Electronics

3.2.1 Actuators

HAMR’s two dimensional shape memory alloy (SMA) actuators were laser-cut
from 50μm Nitinol sheets. As detailed in Sec. 2.2.1, passive springs were used as
an antagonist for leg actuation. These springs were laser-cut from 25μm stainless
steel. Similarly, ribbed attachment mechanisms for rough vertical terrain were cut
from 50μm stainless steel. Fabrication of all three thin-foil metal structures required
approximately one minute per batch.

3.2.2 Flexible Circuits

Flexible circuits are used to create an electrical path between HAMR’s power input
lines and each actuator. Using conventional photolithographic methods, circuits are
fabricated from a 12.5 μm copper layer deposited on a 12.5 μm flexible polyimide
layer. The resulting compliant circuits (Fig. 10a) are layered on the microstructures
and cured along with the entire laminate. The entire structure may be fold-assembled
without fracturing the copper traces. Using this process we created 500μm square
solder terminals connected by 125μm thick wire traces. Future iterations will use
flex circuits to house on-board power and control electronics. We also implemented
flex circuits to increase joint rigidity by soldering across two terminals placed on
orthogonal surfaces (Fig. 10b).

4 Results

HAMR is capable of displaying various leg gaits such as an alternating tripod and
static zero-radius turns. To demonstrate gaits we actuated using our empirically-
derived optimal parameters, defined here as minimizing simulated actuation period
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(a) (b)

Fig. 10 a) Flex circuits trace power to HAMR’s actuators. The copper traces may be folded
without fracturing (top circuit). b) Solder is used structurally to increase joint strength once
folded into the desired configuration.

while obtaining maximum leg deflection. Using ProAnalyst 2D motion tracking
software to plot leg deflection for various energy inputs, we determined the maxi-
mum actuated leg angle to be 9.1 degrees. The parameters to obtain maximum angle
at minimum speed are 280mA with a 0.24s pulse width. In the future we must con-
sider energy usage in our description of optimality to conserve the limited lifetime
of on-board power.

4.1 Alternating Tripod Gait

We were able to display the most fundamental gait to hexapod locomotion, the al-
ternating tripod at 1/3Hz and 1Hz (See Fig. 11).

We were able to increase actuation speed up to 1 Hz, however this decreased
leg displacements. Using ProAnalyst motion capture software we were able to track
joint angles during a 1Hz alternating tripod gait. Fig. 13 plots transmission and leg
joint angles over three periods, and tab. 1 gives the total measured sweep angle
of each joint. By inspection, the 1Hz actuation cycle produces smaller proximal
actuation displacements.

Table 1 Total measured sweep angle of each joint at 1Hz operation. All angles measured in
degrees

Leg 1 2 3 4 5 6
Maximum Transverse Angle 2.4187 2.5458 3.2078 2.9191 3.8016 3.1618
Maximum Leg Angle 6.3407 5.1809 8.4887 8.4985 5.9961 5.8315

We were also able to demonstrate locomotion on a flat surface using the alternat-
ing tripod gait (Fig. 12) at approximately 1cm/min.
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(a) (b)

(c) (d)

(e)

Fig. 11 The alternating tripod gait at 1/3Hz while suspended. Anterior is towards the bottom
of the image, and arrows indicate powered actuators. a) All six legs are in stance while leg
groupings change. b) Legs 1,3,5 are in swing. c) All six are again ground during a transition.
d) Legs 2,4,6 are in swing. e) All six are again in stance at the end of the period.
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(a) (b)

(c)

Fig. 12 Locomotion on a flat surface at 1/3Hz using the alternating tripod gait. a) at 0 sec-
onds, b) at 15 seconds, c) at 30 seconds.
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Fig. 13 a) Motion capture software is used to track HAMR’s a) transmission angles and b)
leg angles over three periods of 1Hz motion.
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4.2 Turning

With a similar actuation scheme to alternating tripod, we are able to demonstrate the
mechanics for a zero-radius turn. By maintaining identical tripod stance and swing
groupings but actuating the transmissions in phase we obtain these mechanics. This
turn requires one or more stance legs to slip. An alternative static turn mechanism
is to pivot the body about one fixed ground leg, which is also achievable.

4.3 Attachment

This paper covers the numerous difficulties faced when designing a robotic insect,
however it is important to note the benefits of small-scale robots with regards to wall
attachment. Insects are capable of adhering to many vertical and inverted surfaces
with attachment mechanisms such as tarsal claws [18], capillary adhesion [7] and
Van Der Waals adhesion [2]. An un-actuated clawed version of HAMR illustrates
the possibility of rough vertical surface attachment (Fig. 14a). Each leg includes
an attachment mechanism containing eleven 200μm claws (Fig. 14b). They allow
HAMR to support greater than 100 times its body weight while hanging from three
legs on a rough felt surface (Fig. 14c). This experiment does not prove vertical
locomotion but provides the foundation of research on one form of dry adhesion.
Further research will explore the claw geometry [1] and body mechanics necessary
to climb vertical surfaces of varying roughness.

(a) (b) (c)

Fig. 14 100 mg, unactuated, clawed version of HAMR. Outfitting the legs with attachment
claws facilitates hanging a) in the direction of a vertical climb, b) while supporting a 10 g
weight. c) Close-up of HAMR’s 200μm claws.

5 Conclusions / Future Work

This paper has proven the feasibility of creating a hexapedal ambulatory microrobot
with dynamic gait modulation. We have demonstrated the alternating tripod gait
and zero-radius turns at 1/3Hz and 1Hz, and a simple mechanism for attachment to
moderately rough surfaces. There is significant work yet to complete to create an au-
tonomous, untethered, millimeter scale hexapod mobile robot capable of traversing
any terrain, however this paper presents the initial steps.
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5.1 Actuation and Control

Future work will include a thorough study of thin foil SMA actuators as well as
exploration of other actuation alternatives such as piezoelectric ceramics and active
fiber composites. As stated in Section 4.1, by increasing actuation speed from 1/3
to 1Hz we reduce thoracic actuator displacement, presumably because at the higher
speed we do not allow actuator temperature to reach the required level. Therefore,
we require a comprehensive model of thermodynamic and mechanical properties of
our SMA spring to inform future designs. We must also model our distal actuators
to achieve an appropriate force/displacement balance to clear a reasonable height
during swing phases, yet produce enough force to overcome friction when lifting
off the walking terrain.

As previously stated, HAMR will be untethered in future iterations by integrating
an on-board power supply and microcontroller. Not only is this important for auton-
omy, but it is imperative to achieve forward locomotion since the tethering wires
greatly outweigh the thorax and leg masses. Integrated power and control will also
allow us to modulate the current to each of the 10 actuators, giving us more con-
trol over actuation timing. An onboard controller will also allow us to actuate with
non-constant current. Actuator efficiency will increase with more complex control
signals such as a short spike to quickly heat the SMA, followed by a lower, constant
current to keep the actuator above its transition temperature [10]. This will have sev-
eral effects such as reducing the thermal time constant of cooldown and prolonging
the actuator lifetime.

5.2 Vertical Locomotion

Further research will explore the mechanics of wall-climbing, including attachment
mechanisms for rough and smooth surfaces, transitions between orthogonal sur-
faces, and animal climbing mechanics.
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Assembly and Disassembly of Magnetic Mobile
Micro-Robots towards 2-D Reconfigurable
Micro-Systems

Chytra Pawashe∗, Steven Floyd�, and Metin Sitti

Abstract. A primary challenge in the field of reconfigurable robotics is scaling down
the size of individual robotic modules. We present a novel set of permanent magnet
modules that are 900 μm × 900 μm × 270 μm in size, called Mag-μMods, for
use in a reconfigurable micro-system. The module is actuated by oscillating exter-
nal magnetic fields less than 5 mT in strength, and is capable of locomoting on a
2-D surface. Multiple modules can be controlled by using an electrostatic anchoring
surface, which can selectively prevent specific modules from being driven by the ex-
ternal field while allowing others to move freely. We address the challenges of both
assembling and disassembling two modules. Assembly is performed by bringing
two modules sufficiently close that their magnetic attraction causes them to com-
bine. Disassembly is performed by electrostatically anchoring one module to the
surface, and applying magnetic forces or torques from external sources to separate
the unanchored module.

1 Introduction

The field of reconfigurable robotics proposes versatile robots that can reconfigure
into various configurations depending on the task at hand [1]. These types of robotic
systems consist of many independent and often identical modules, each capable of
motion, and capable of combining with other modules to create assemblies. These
modules can then be disassembled and reassembled into alternate configurations.
For example, Shen et al. [2] demonstrate SuperBot; this robot consists of 20 modules
that can combine to form a mobile mechanism that can roll across the ground for 1
km and then reconfigure into one that can climb obstacles.
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Another concept in the field of reconfigurable robotics is programmable smart
matter, which is matter that can assemble and reconfigure into arbitrary three-
dimensional (3-D) shapes, giving rise to synthetic reality [3]. This is similar to vir-
tual or augmented reality, where a computer can generate and modify an arbitrary
object. However, in synthetic reality, this object has physical realization. A primary
goal for programmable matter is scaling down the size of each individual module,
with the aim of increasing spatial resolution of the final assembled product. Cur-
rently, the smallest actuated module in a reconfigurable robotic system fits inside a
2 cm cube [4], which is a self-contained module that is actuated using shape memory
alloy. Scaling down further into the sub-millimeter scale brings new issues, includ-
ing module fabrication, control, and communication. Micro-robotics technologies of
the past few years have been progressing, with the introduction of untethered mobile
micro-robots under 1 mm in size; these robots can potentially be used as micron-
scale modules. The micro-robots that operate on two-dimensional (2-D) surfaces in
the literature can be controlled either electrostatically [5], electromagnetically [6, 7],
or using laser thermal excitation [8]. 3-D swimming micro-robots are also possible,
and are often electromagnetically controlled [9, 10], and can even be powered by
bacteria [10, 11].

For the purposes of micron-scale assembly using micro-robots, Donald et al. [5]
demonstrate the assembly of four MEMS-fabricated silicon micro-robots, each un-
der 300 μm in all dimensions, actuated by electric fields. Once assembled however,
they cannot detach and reconfigure, because the electrostatic driving fields do not
allow for disassembly. As a result, disassembling micron-scale modules is currently
an unsolved problem.

2 Concept: Reconfigurable Micro-Robotics

In this work, we propose using sub-millimeter untethered permanent magnet micro-
robots (Mag-μBots) actuated by external magnetic fields [6] as components of mag-
netic micro-modules (Mag-μMods), for creating deterministic reconfigurable 2-D
micro-assemblies; this implies that the Mag-μMods will be able to both assemble
and disassemble. Permanent magnet modules will attract each other with large mag-
netic forces, therefore it is necessary to reduce this inter-magnet force to facilitate
disassembly. This is done by adding an outer shell to the Mag-μBot for the de-
sign of a module. The outer shell prevents two magnetic modules from coming into
close contact, where magnetic forces will become restrictively high. A schematic of
a Mag-μMod is illustrated in Fig. 1(a).

Motion of multiple Mag-μMods is achieved by employing a surface divided
into a grid of cells, where each cell on the surface contains an addressable elec-
trostatic trap capable of anchoring individual Mag-μMods to the surface and pre-
venting them from moving. Unanchored Mag-μMods can move on the surface due
to the imposed magnetic fields, and move in parallel. This technique is identical
to controlling multiple Mag-μBots, explained in detail in [12]. Assembling two
Mag-μMods is straightforward - by moving an unanchored Mag-μMod towards an
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Fig. 1 (a) Schematic of a Mag-μMod. A permanent magnetic core with indicated magnetiza-
tion is surrounded by a magnetically inactive shell. (b) Photograph of a Mag-μMod. A 300 ×
300 × 170 μm3 Mag-μBot is used as the magnetic core of the module, with a polyurethane
shell 900 μm × 900 μm × 270 μm in outer dimensions surrounding the core.

anchored one, magnetic forces eventually dominate and cause the two Mag-μMods
to self-assemble.

Disassembling two Mag-μMods is problematic. For this to occur, the magnetic
force between two Mag-μMods must be overcome and the two separated without
physically contacting either one. To do this, we use the electrostatic grid surface to
anchor parts of assembled modules, and examine the effectiveness of both externally
applied magnetic forces and torques to disassemble unanchored modules on the
assembly.

Figure 2 displays the concept of multiple Mag-μMods assembling, disassem-
bling, and reconfiguring into different configurations. Because the Mag-μMods are
magnetic, they can only assemble into configurations that are magnetically stable.

3 Experimental Setup, Operation, and Fabrication

Mag-μBots are actuated by six independent electromagnetic coils, aligned to the
faces of a cube approximately 11 cm on a side, with horizontal and vertical coils
capable of producing maximum field strengths at the position of the Mag-μBot (see
Fig. 3) of 3.0 mT and 2.3 mT, respectively. Control of the electromagnetic coils is
performed by a PC with a data acquisition system at a control bandwidth of 1 kHz,
and the coils are powered by custom-made electronic amplifiers.

Actuation of each Mag-μBot is accomplished by using two or three electromag-
netic coils. One or more horizontal coils are first enabled (coil D in Fig. 3), causing
the Mag-μBot to orient in the direction of the net magnetic field. The magnetic
force exerted by the coils on the Mag-μBot is insufficient to translate it, due to
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Fig. 2 Schematic of five Mag-μMods operating on an electrostatic grid surface, where each
cell can be individually activated to anchor-down individual Mag-μMods; unanchored Mag-
μMods can be moved by the global magnetic field. (a) The five Mag-μMods are separate, and
(b) assemble into a magnetically-stable line. In (c), the two outer Mag-μMods disassemble
from the line, and (d) reconfigure into a magnetically stable ‘U’ shape.

friction from the surface. Thus, vertical clamping coils (coils C and F in Fig. 3) are
enabled and pulsed using a sawtooth waveform. This results in a non-uniform rock-
ing motion of the Mag-μBot, which induces stick-slip motion across the surface. In
general, the Mag-μBot’s velocity increases with pulsing frequency, typically from
1-100 Hz, and can exceed velocities of 16 mm/s in air. The Mag-μBot is also capa-
ble of operating in fluids of viscosities less than about 50 cSt, and can operate on a
variety of smooth and rough magnetically inactive surfaces, provided that the adhe-
sion between the Mag-μBot and surface is low. Further explanation of this system
is discussed in [6, 12, 13] and demonstration movies can be found online at [14].

3.1 Mag-μBot and Mag-μMod Fabrication

Mag-μBots can be produced in a batch process using soft-lithography techniques
in a manner similar to [15]. The Mag-μBot used in this work is rectilinear, 300 ×
300 × 170 μm3, and is composed of a mixture of neodymium-iron-boron (NdFeB)
particles (Magnequench MQP-15-7, refined in a ball mill to produce particles under
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Fig. 3 Photograph of the electromagnetic coil setup, where A is the camera for visual feed-
back, B is the microscope lens, C is the top coil, D is one of four upright coils that orients
the Mag-μBot within the plane on the surface, E is the surface on which the Mag-μBot loco-
motes, and F is the bottom coil. The top and bottom coils are clamping coils, which provide
a clamping force and a torque that pushes and orients the Mag-μBot towards the surface,
respectively.

2 μm in size) suspended in a polyurethane (TC-892, BJB enterprises) matrix. The
fabrication process used is shown in Fig. 4.

A Mag-μMod is a polyurethane shell encasing a magnetic core, the Mag-μBot.
The shells are fabricated in a manner similar to the Mag-μBot, omitting the addition
of NdFeB powder into the mold mixture and the magnetization step. Assembly of
the Mag-μBot into a shell is performed manually using tweezers under an optical
microscope, and the two components are held together by a pressure-fit (an adhesive
can also be used to bind the two components). Figure 1(b) displays an assembled
Mag-μMod. In the presence of the global magnetic fields, these modules move sim-
ilarly to individual Mag-μBots without shells, exhibiting stick-slip motion across
the working surface, however at lower velocities of about 0.5 mm/s.

3.2 Electrostatic Grid Surface Fabrication

The electrostatic grid surface, described in [12], is necessary to enable the control
of multiple Mag-μBots or Mag-μMods. It consists of an array of independently
addressable pads, each pad containing a set of interdigitated electrodes to generate
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Fig. 4 The fabrication steps used to batch manufacture polymer Mag-μBots. (a) SU-8 is
spin coated onto a silicon wafer to the desired thickness of the final micro-robot, and (b) is
patterned and hardened to create the positive mold. (c) Polydimethylsiloxane (PDMS, Dow
Corning HS II RTV) mold making material is poured onto the positive mold and allowed to
cure. (d) The PDMS is removed from the positive mold, creating the negative mold, and a
mixture of magnetic-powder-impregnated polyurethane (MPIP) is prepared by mixing 4 parts
NdFeB powder to 1 part polyurethane, degassed in a vacuum, and then poured onto the PDMS
mold. A large permanent magnet (not shown) is placed under the PDMS mold to ensure the
NdFeB powder is densely packed in the mold. After a second degassing, a polypropylene
flat punch is pressed and held against the mold, which pushes excess NdFeB-polyurethane
out, leaving a thin backing layer. Next, the large magnet is moved to the front of the mold so
that the NdFeB particles will orient along the lengths of the Mag-μBots, facilitating a higher
net magnetization in the length-wise direction, as magnetic domains will be more favorably
oriented. (e) After hardening and removing the punch, excess polyurethane is peeled off man-
ually using tweezers. (f) Finished polymer Mag-μBots can be easily removed from the mold
with tweezers or micro-probes, and are later magnetized in a 1 T magnetizing field along its
length. This results in a magnetization of about 58 kA/m, estimated from measurements using
a vibrating sample magnetometer (ADE Technologies Inc.).
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Fig. 5 Steps for fabricating an interdigitated electrostatic anchoring surface used for the con-
trol of multiple Mag-μMods. (a) 100 nm of aluminum is sputtered onto a glass substrate. (b)
Photoresist is spun onto the metal surface, and patterned in (c) with a spacing of 10 μm. The
aluminum layer is etched in (d) to create the interdigitaded electrode pattern. For this work,
four 2 mm × 2 mm electrode pads are patterned in a 2 × 2 grid configuration. After creating
interconnects from the electrodes to external electronics (not shown), a 400 nm spin-on glass
(SOG) insulation layer is deposited in (e). Mag-μMods operate directly on this spin-on glass
surface.

high electric fields. The surface is fabricated with the steps shown in Fig. 5. Mag-
μMods are placed on this surface and are operated in a low-viscosity silicone oil
(Dow Corning 200 fluid, 20 cSt) which supports the generation of the large elec-
tric fields required to anchor individual Mag-μMods. Anchoring occurs through a
capacitive coupling force to the surface for conductive materials.
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4 Modeling

Each of the Mag-μMods is subject to magnetic forces created by the driving mag-
netic field and other Mag-μMods, electrostatic anchoring forces created by the grid
surface, and surface forces such as adhesion and friction. In this section, these dif-
ferent forces are briefly modeled to provide insight to their relative magnitude and
effect on both assembly and disassembly of Mag-μMods.

4.1 Magnetic Influences

Each magnetized Mag-μMod and each electromagnet creates a magnetic field:
Bmr(x,y,z) and Bec(z), respectively. Within these magnetic fields, magnetized Mag-
μMods experience both a torque and a force. This magnetic torque is proportional
to the magnetic field strength, and acts to bring the internal magnetization of the
Mag-μMod into alignment with the field. Magnetic force is proportional to the gra-
dient of the magnetic field, and acts to move Mag-μMods to a local maximum. The
relations that govern these interactions are:

Tm = VmM×B(x,y,z) (1)

Fm = Vm(M •∇)B(x,y,z) (2)

where Tm is the torque the Mag-μMod experiences, Vm is the volume of the Mag-
μMod’s magnetic core, M is the magnetization of the Mag-μMod’s magnetic core,
and Fm is the force the Mag-μMod experiences.

To approximate the forces and torques Mag-μMods exert on each other, they are
modeled as magnetic dipoles, located at their geometric center, with a value equal to
their core’s magnetic moment. Due to the symmetry inherent in this approximation,
it is convenient to describe the field produced by the Mag-μMod’s core in spherical
coordinates:

Bmr(r,θ ) =
μ0

4π
VmM

(
2cos(θ )

r3 er +
sin(θ )

r3 eθ

)
(3)

where μ0 = 4π× 10−7 H/m is the permeability of free space, M = 58 kA/m is the
estimated magnetization of each Mag-μBot, er is a unit vector aligned with the
magnetization of the Mag-μBot, eθ is a unit vector representing rotations about the
y-axis, r is the distance from the center of the Mag-μMod, and θ is the azimuthal
angle. Coordinate conventions are shown in Fig. 6. The attractive force that arises
between two aligned Mag-μMods when separated by a distance r is:

Fmr(r) =
μ0

4π
(VmM)2 6

r4 (4)

The magnetic field created by each of the electromagnets is directed towards the coil
and is experienced by all Mag-μMods:
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Fig. 6 Side view cross-section schematic of two Mag-μMods. Relevant geometry and coor-
dinates used in equations are shown.

Bec(z′) ≈
μ0NIa2

2(z′2 + a2)3/2
= 9.49×10−4(I)

[
T
A

]
(5)

where, z′ = 0.095 m is the approximate distance from the center of an electromagnet
to the workspace, N = 510 is the number of turns, I is the current flowing through it,
and a = 0.0695 m is its characteristic radius [16]. From this, the gradient produced
by a single electromagnet can be derived:

∣∣ΔBec(z′)
∣∣≈ 3μ0NIa2z′

2(z′2 + a2)5/2
= 1.95×10−2(I)

[
T

A ·m

]
(6)

If two electromagnets are used in opposition, the combined field gradient is larger:

∣∣ΔB2ec(z′)
∣∣≈ μ0NI

2az′
= 4.85×10−2(I)

[
T

A ·m

]
(7)

4.2 Electrostatic Influences

A conductive object with non-negligible surface roughness operating on an insulat-
ing surface covering a set of interdigitated electrodes at an applied voltage differ-
ence of Vid will assume a potential halfway between the two, or 1

2Vid , if it overlaps
equal areas of electrodes at both voltages; applicable when the electrode and gap
widths (10 μm each) are much smaller than the length of the object (300 μm). For
the conductive magnetic core of a Mag-μMod, its surface roughness traps a fluid
layer with thickness comparable to the its maximum asperity height of about b = 9
μm beneath it, increasing the separation from the electrodes and causing the total
capacitance Ctot between the Mag-μMod and the electrodes to be:

C1 =
ε0εr1Aid

g
≈ 3.48×10−12 [F] (8)

C2 =
ε0εr2Aid

b
≈ 1.11×10−13 [F] (9)
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Ctot =
(
C−1

1 +C−1
2

)−1 ≈ 1.07×10−13 [F] (10)

where C1 is the capacitance associated with the glass insulation layer, ε0 = 8.854×
10−12 F/m is the permittivity of free space, εr1 = 3.5 is the relative permittivity of the
glass surface, Aid = 4.5×10−8 m2 is half the apparent area of the overlap between
the Mag-μMod’s magnetic core and the electrodes, C2 is associated with the fluid
gap, and εr2 = 2.5 is the relative permittivity of the silicone oil environment. Using
the principal of virtual work, the electrostatic anchoring force with a fluid gap, Fe,
will be:

Fe =
1

16
V 2

idC2
tot

[
1

C1g
k +

1
C2a

(1− k)
]
≥ 5.16×10−10(V 2

id)
[

N
V2

]
(11)

where k is an empirical constant (0 < k < 1) used to bound the solution space.
To anchor a Mag-μMod to the surface, the electrostatic anchoring force must

suppress three effects: (1) out-of-plane rotations about an axis in the x − y plane
of the Mag-μMod from magnetic fields in the z-direction, (2) rotations within the
plane of motion about the z-axis due to magnetic fields in the x− y direction, and
(3) translation due to magnetic field gradients in a direction in the x− y plane.

During stick-slip locomotion, each Mag-μMod can experience fields of up to
4.82 mT when using multiple coils. This creates out-of-plane magnetic torques up
to 4.28× 10−9 N ·m on the Mag-μMod, which can be approximated as a pair of
14.3 μN forces acting in opposite directions on opposite sides of the Mag-μMod.
To prevent this rotation, the electrostatic surface must exert double this force, or
approximately 28.6 μN, applied at the centroid of the Mag-μMod. Using Eq. (11),
this force requires Vid = 235 V applied to the electrostatic surface.

4.3 Surface Forces

While immersed in silicone oil, Mag-μMods experience reduced adhesion forces
to the surface [17, 13] when compared to air. Adhesion to the surface while im-
mersed in silicone oil can be taken to be negligible. Thus, the maximum friction
force, Ff ,max, experienced by a Mag-μMod is determined using a Coulomb friction
relation:

Ff ,max = μ f (W + Fe + Fm) (12)

where μ f is the coefficient of friction, W is the Mag-μMod’s buoyant weight, Fe

is any electrostatic anchoring force, and Fm is any magnetic force that pushes the
Mag-μMod toward the surface. Based upon the densities of polyurethane (1140
kg/m3) and NdFeB (7400 kg/m3), and assuming close packing of NdFeB spheres,
the effective density of a Mag-μMod is 5770 kg/m3. When immersed in silicone oil
(density 950 kg/m3), the buoyant weight W = 1.09 μN. From empirical results in
Sec. 7, Ff ,max = 228 nN for a Mag-μMod, when Fe = Fm = 0; thus using Eq. (12),
μ f = 0.21 in the experiments.
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5 Mag-μMod Assembly

As two Mag-μMods approach each other, the forces and torques between them in-
crease due to the r3 dependence of their fields, from Eq. (3), and they will eventually
combine into the configuration shown in Fig. 6. Using the dipole approximation (Eq.
(4)), the distance where two Mag-μMods jump-into-contact can be estimated by de-
termining when the inter-magnetic force overcomes the friction force, based upon
the Mag-μMod’s buoyant weight. Conversely, given the jump-into-contact distance,
the friction coefficient can be estimated.

When two Mag-μMods are assembled, they are separated by two shells, each
one approximately 300 μm thick; thus their center-to-center distance is approxi-
mately 900 μm. From Eq. (4), the mutual attractive force is 720 nN. The assembled
structure can continue to locomote, as shown in Fig. 10(d).

6 Mag-μMod Disassembly

To disassemble two Mag-μMods that are assembled, the application of external
magnetic forces, torques, or both may be utilized. In this work, three methods for
disassembly are described, and the necessary forces and torques for disassembly, as
well as necessary anchoring forces, are derived.

Method 1 - Translation Disassembly: To separate two assembled Mag-μMods by
translating one away from another, one Mag-μMod must first be anchored to the
surface. Next, the global magnetic field gradient acting upon the unanchored Mag-
μMod must overcome the local magnetic field gradient created by the anchored
Mag-μMod, and the friction force, shown in Fig. 7. From Sec. 5, two Mag-μMods
have an attraction force of 720 nN. Combined with the friction force of 228 nN,
the total lateral force which must be overcome is 948 nN, this corresponds to a
necessary field gradient of 1.07 T/m from Eq. (2). To produce this gradient from a
single coil in Fig. 3, 55 amps would have to be passed through an electromagnet
(Eq. (6)). Alternatively, using two coils separated by 19 cm, 22 amps per coil (or 44
amps total) would be required (Eq. (7)).

The anchored Mag-μMod experiences forces from both the electromagnet and
the other Mag-μMod, totaling 1.67 μN. This force must be balanced by a friction
force to the surface, which ensures that this Mag-μMod remains stationary. Using a
friction coefficient of μ f = 0.21 and Eq. (12), with Fm = W = 0 to attain a conser-
vative estimate, Fe > 7.94 μN is necessary to remain stationary. This corresponds
to Vid > 124 V (Eq. (11)).

Method 2 - In-Plane Rotation Disassembly: Applied magnetic torques can be
used to separate two assembled Mag-μMods. As in Method 1, one of the Mag-
μMods must be electrostatically anchored to remain stationary. Then, the in-plane
magnetic field is rotated about the z-axis, twisting the unanchored Mag-μMod about
its point of contact with the anchored Mag-μMod. The unanchored Mag-μMod is
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Fig. 7 Side view cross-section schematic of two Mag-μMods being disassembled via trans-
lation disassembly and the relevant forces from the electromagnetic coils (Fec) and from other
Mag-μMods (Fmr) acting upon them. M1 is anchored to the surface while M2 is pulled by
the externally-induced field gradient ΔBec.

rotated until it is in a configuration with the anchored Mag-μMod that minimizes
their attractive force. Once this orientation is achieved, the unanchored Mag-μMod
can move away using its standard locomotion method using pulsed magnetic fields,
leaving the anchored Mag-μMod in place. Fig. 8 displays a schematic of this disas-
sembly technique.

The applied magnetic torque that rotates the unanchored Mag-μMod must over-
come the torque created by the anchored Mag-μMod, which acts to align the two.
This torque is calculated as a function of θ and φ as one Mag-μMod rotates about
the other at a constant distance r = 900 μm, shown schematically in Fig. 8. Us-
ing Eqs. (1) and (3), the maximum torque is 2.16× 10−10 N ·m, and occurs when
θ = 0, φ = [π/2,3π/2]. A weight-based friction torque of 5.13×10−11 N ·m, act-
ing at the centroids of opposite sides of the Mag-μMod, is added to the magnetic
torque, as it must too be overcome. To counteract this torque, using Eq. (5), a single
electromagnet from Fig. 3 must impose a field of Bec = 301 μT, which corresponds
to I = 0.32 A.

To determine the necessary anchoring force, both the electromagnet’s applied
torque and the rotating Mag-μMod’s torque are applied on the stationary Mag-
μMod. To resist these moments, the electrostatic-based friction is treated as a force
couple acting at the half body centroids of the Mag-μBot, as it is the only part of
the Mag-μMod being pulled down. Each force in this force pair must exceed 3.22
μN, leading to a conservative total anchoring force of Fe = 30.7 μN that must be
applied; from Eq. (11), Vid = 244 V.

Method 3 - Out-of-Plane Rotation Disassembly: Another approach for using ap-
plied torques to separate two Mag-μMods requires that one of the Mag-μMods
be anchored to the surface, while the other Mag-μMod is unanchored and rotated
about an axis in the x− y plane, shown schematically in Fig. 9. The unanchored
Mag-μMod rotates until the mutual attractive force between the two Mag-μMods is
minimized, or becomes repulsive. When this orientation achieved, the unanchored
Mag-μMods can move away using its standard locomotion method.
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Fig. 8 Top view schematic of two Mag-μMods being disassembled via in-plane rotation
disassembly, and the relevant torques from the electromagnetic coils (Tec), from other Mag-
μMods (Tmr), and from friction (Tf ) acting upon them. M1 is anchored to the surface while
M2 is disassembled by rotating it using the global electromagnet-induced field (Bec).
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Fig. 9 Side view cross-section schematic of two Mag-μMods being disassembled via out-
of-plane rotation disassembly, the relevant torques from the electromagnetic coils (Tec), from
other Mag-μMods (Tmr), and the friction forces (Ff ) acting upon them. M1 is anchored to the
surface while M2 is disassembled by rotating it using the global electromagnet-induced field
(Bec).

Assuming that the point of contact for the rotating Mag-μMod remains fixed (see
Fig. 9), the maximum torque required to rotate it upward is 7.98×10−10 N ·m, and
occurs at an angle of β = 11.5◦. This torque is a function of the magnetic force
and torque exerted on the unanchored Mag-μMod by the anchored Mag-μMod (see
Eqs. (1), (2) and (3)), the weight, and the contact friction between the two (see Eqs.
(4) and (12)). After passing a critical angle, βcrit = 69.3◦, the force between the two
Mag-μMods becomes repulsive.

To overcome this maximum torque, a single electromagnet has to produce a field
of Bec = 899 μT using Eq. (5), implying I = 0.95 A. For electrostatic anchoring
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to effectively resist the torques from both the magnetic field and the moving Mag-
μMod, a force of Fe = 10.6 μN must be applied with Vid = 144 V from Eq. (11).

7 Experimental Results and Discussion

In the experiments, two Mag-μMods are placed on an electrostatic grid surface with
four anchoring pads, in a 2 × 2 configuration, and operated in a silicone oil environ-
ment. Motion is achieved by pulsing the electromagnetic coils from 1-3 Hz using a
sawtooth waveform. An anchoring voltage of Vid = 400 V is used, which is greater
than any of the estimated requirements presented in Sec. 6, and ensures proper an-
choring. Movies of assembly and disassembly can be found online [14].

Assembly: The process of Mag-μMods assembling is demonstrated in Fig. 10. In
this experiment, the magnetic attraction between the Mag-μMods is sufficient to
combine them when their center to center distance is 1.2 mm. Using Eq. (4), This
corresponds to an attractive force of 228 nN. The assembled Mag-μMod structure
is capable of motion, shown in Fig. 10(d).

Two Mag-μMods can also combine in 3-D when one slides over the other, re-
sulting in a cuboid structure. In this configuration, the Mag-μMods are much closer
than the case in Fig. 10, and as a result are held together with a greater force. Dis-
assembly techniques for this 3-D configuration will be investigated in future works.

Method 1 - Translation Disassembly: Fig. 11 demonstrates two Mag-μMods be-
ing disassembled. Due to hardware limitations of the electromagnetic coil system,
a permanent NdFeB magnet 6.3× 6.3× 31.8 mm3 (N42 grade, magnetized along
its length) was placed approximately 1.5 cm from the workspace, and is used to
generate the necessary large magnetic field gradient. When the permanent magnet
is brought near the workspace, its field gradient exceeds that of the anchored Mag-
μMod, forcing the unanchored Mag-μMod to separate.

Method 2 - In-Plane Rotation Disassembly: Disassembly of two Mag-μMods us-
ing torques exerted by the electromagnetic coils is demonstrated in Fig. 12. One
Mag-μMod is electrostatically anchored while the other is rotated about the z-axis
to minimize the attractive force. Once in a configuration with nearly zero attractive
force between them (θ = π/2, φ = π/2 using the convention of Fig. 8), the unan-
chored Mag-μMod is moved away from the anchored Mag-μMod using a standard
locomotion signal from the electromagnets.

Method 3 - Out-of-Plane Rotation Disassembly: In Fig. 13, a magnetic field was
created by placing a 1.27 cm cube-shaped NdFeB (grade N42) permanent magnet
approximately 9 cm beneath the surface, and the unanchored Mag-μMod rotated
out-of-plane about its contact point with the surface. When the angle of rotation is
sufficiently large, the force between the two two Mag-μMods becomes repulsive,
and the unanchored Mag-μMod can be disassembled by moving it away with a stan-
dard locomotion signal from the electromagnets.
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Fig. 10 Frames from a video of two Mag-μMods assembling; arrows on Mag-μMods in-
dicate magnetization direction. In (a), the Mag-μMods are initially separated, and oriented
towards the surface by the electromagnetic clamping field, which is turned off in (b). The
Mag-μMods attract each other and assemble in (c). The assembled Mag-μMods move to-
gether in (d), shown as superimposed frames.

Fig. 11 Superimposed frames from a video of two Mag-μMods, M1 and M2, disassembling
by manually bringing in a strong permanent magnet to the right of the image. M1 and M2 are
initially assembled, and M1 is anchored. M2 disassembles in (a) when the permanent magnet
is sufficiently close to the working area.

From the three methods of disassembly, Method 2 - In-Plane Rotation Disassem-
bly, is advantageous because only small magnetic fields are required, which can be
created by the electromagnetic coils used to locomote the Mag-μMods. Method 1
- Translation Disassembly requires a large field gradient, which must currently be
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Fig. 12 Superimposed frames from a video of two Mag-μMods, M1 and M2, disassembling
by using applied electromagnetic torques from the electromagnetic coils. M1 is anchored to
the surface and initially combined with M2. The external fields are applied and cause M2 to
orient downwards from (a) to (b) by rotating it clockwise. In this configuration, M2 can walk
away from M1 in (c), as the two modules repel each other.

Fig. 13 Superimposed frames from a video of two Mag-μMods, M1 and M2, disassembling
by manually bringing permanent magnet below the surface, with magnetization pointing into
the page. M1 and M2 are initially assembled, and M1 is anchored. A leftward driving field is
initially applied, and M2 disassembles in (a) when the permanent magnet is positioned. M2
then moves upwards in (b).
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produced by an external permanent magnet. While Method 3 - Out-of-Plane Rota-
tion Disassembly should be possible with the current electromagnetic system, suc-
cessful disassembly occurred intermittently, implying that the necessary fields can
be significantly larger than estimated. For assured success, a permanent magnet was
used in Methods 1 and 3, though placed much further away for Method 3.

These permanent magnets can potentially be replaced by high-field electromag-
netic coils to support future automation at the cost of increasing the complexity of
the electromagnetic coil system. On the other hand, Methods 1 and 3 require fewer
magnetic field direction changes, and can potentially be quicker and more reliable
than Method 2 for disassembly. Method 3 in particular can be implemented by a
single high-field coil placed underneath the working surface, only marginally in-
creasing complexity of the system.

8 Conclusion

In this study, robotic magnetic micro-modules, under 1 mm in size, have been shown
to assemble and disassemble by using externally applied electromagnetic fields and
electrostatic anchoring techniques. Future work will include extending this concept
to larger numbers of modules, demonstrating reconfigurable magnetically-stable
configurations, implementing autonomous control to generate these configurations,
and further developing the theory to describe forces between modules and assem-
blies of modules. In addition, a more powerful electromagnet system will be created
so that all disassembly methods can be computer controlled.
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Jodogne, Sébastien 399

Kajita, Shuuji 301
Kakiuchi, Yohei 379
Kaneiro, Fumio 301
Kaneko, Kenji 301
Karnad, Nikhil 697
Katz, Dov 285
Kelly, Alonzo 211
Kim, Hyun-Don 227
Kim, Jungho 519
Kim, Soonkyum 643
Kober, Jens 469
Koditschek, Daniel 625
Koditschek, Daniel E. 105
Kojima, Mitsuharu 379
Kraft, Dirk 399
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