autopin — Automated Optimization of
Thread-to-Core Pinning on Multicore Systems

Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis

Technische Universitat Miinchen
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation / Parallelrechnerarchitektur
(LRR/TUM)
Boltzmannstrafie 3, 85748 Garching bei Miinchen
{klug,ottmi,weidendo,trinitic}@in.tum.de

Abstract. In this paper we present a framework for automatic detection
and application of the best binding between threads of a running paral-
lel application and processor cores in a shared memory system, by mak-
ing use of hardware performance counters. This is especially important
within the scope of multicore architectures with shared cache levels. We
demonstrate that many applications from the SPEC OMP benchmark
show quite sensitive runtime behavior depending on the thread/core
binding used. In our tests, the proposed framework is able to find the
best binding in nearly all cases. The proposed framework is intended to
supplement job scheduling systems for better automatic exploitation of
systems with multicore processors, as well as making programmers aware
of this issue by providing measurement logs.

Keywords: Multicore, CMP, automatic performance optimization,
hardware performance counters, CPU binding, thread placement.

1 Introduction

During recent years, a clear paradigm shift from increasing clock rates towards
multicore chip-architectures (CMP) has taken place. Considering chip manufac-
turers’ long-term objective of integrating 128 and more cores onto one die, there
are several open issues with respect to programmability and scalability that have
to be examined. In the past, a serial program could benefit from a new processor
model simply because processors’ clock frequencies were increased from current
models to successors. Consequently, even standard applications ran faster with-
out any need to modify a single line of source code. With energy efficiency as
a new optimization goal, clock frequencies have to stay more or less stable, and
additional performance gains are only obtainable by parallelism on the core level.
In order to take advantage of existing and future multicore processor architec-
tures, it is essential to develop parallel applications and to adapt existing serial
applications accordingly. Otherwise, all but one core remain idle, and no per-
formance gain can be achieved at all. Parallel programming is leaving the high
performance computing (HPC) niche and establishing itself as a mainstream
programming technique.

P. Stenstrom (Ed.): Transactions on HIPEAC III, LNCS 6590, pp. 219 2011.
© Springer-Verlag Berlin Heidelberg 2011

220 T. Klug et al.

Asymmetric particularities of the memory subsystem are a big obstacle for
runtime performance on shared memory machines, as they need to be taken
care of explicitly. Non Uniform Memory Access (NUMA) architectures are a
familiar example. A new type of asymmetric property comes with shared caches
in multicore processors: The access history of one or multiple nearside cores can
significantly influence the speed of memory accesses. While overlapping working
sets in threads running on cores sharing a cache can reduce runtime, the non-
existence of any overlapping usually degrades performance by cutting available
cache space into half. Without sophisticated tools and detailed analysis, the
programmer can only roughly assess the reason for acceleration or slowdown
in the parallel code, let alone come up with optimization strategies for badly
running code. This problem is expected to increase with the number of cores
available on one chi7 as in this case the need for complex on-chip interconnect
and cache buffer hierarchies is evident.

1400 T T T T
1200 (XXX XXX X XXX XXXXOXK L XXX X ><><X><><><X><,
X
1000 - X _
R R S S S S o T R, G G T
@
o 800 []
£
S 600 .
400 [.
200 [.
314.mgrid, 4 Threads, unpinned X
0 | 314.mgr,d, 4 Threads, qlnned +
0 10 20 30 40 50

sample run

Fig. 1. Comparison of unpinned runs vs. runs under control of autopin. Four threads
on the Caneland platform.

To overcome the issue with non-uniform memory subsystems, including the
shared cache problem, we propose an automatic approach in this paper: While
the application is running, the autopin tool checks a given set of fixed thread-to-
core bindings (called pinnings) in order to find the pinning with optimal perfor-
mance. In this study, we used autopin to find optimal pinnings for applications

! In the remainder of this work, the term chip will refer to a single physical processor
chip which may consist of multiple processor cores plus cache. Hence, the term core
will refer to a single x86 based physical processor unit.

Automatic Binding for CMP 221

in the SPEC OMP benchmarkf on various multicore systems. We check pinnings
where all cores are active as well as pinnings with a smaller number of threads
than cores available on a given system. This is due to the fact that one core on
a multicore processor can already fully exploit the available connection to main
memory, thus slowing down any work on other cores on the same chip. In this
case, it might be recommended to not use these cores for the parallel application.
In addition, there exist applications that run with thread counts which do not
match available core counts: Examples are parallel tree traversals or load bal-
ancing schemes generating/killing threads on the fly. The proposed framework is
intended to supplement job scheduling systems for better automatic exploitation
of systems with multicore processors, as well as making programmers aware of
the given issue by providing measurement logs.

To illustrate this with an example, figure [I] shows runtimes for the SPEC
OMP’s 314.mgrid benchmark with four threads for 50 sample runs. The
314.mgrid benchmark will be explained in further detail in section [Without
any control of the pinning, the operating system’s scheduler decides on which
cores the threads will run. As can be seen in figure [[l runtimes can vary signifi-
cantly and are hard to predict. However, with the use of the autopin tool, op-
timal thread pinning ensures optimal performance as well as equally distributed
runtimes over all sample runs.

2 Related Work

With the large amount of different computer systems available today, regarding
available resources, from internode connection and memory subsystem param-
eters (e.g. cache sizes) to CPU features like superscalarity and vector units, it
has always been difficult to come up with an algorithm implementation that
optimally exploits these resources. A common approach is to use performance
analysis tools such as GProf [I] or Intel VTune [2], and to adapt the code to a
specific system. However, this approach is not always feasible: When software
is run by a user on a site other than the development site, there usually will
be an executable binary for a class of systems (as e.g. for commercial software).
Often, the user can not even check if the application runs at optimal perfor-
mance on his (expensive) system. To still allow for good exploitation, different
approaches exist: Foremost, the best code optimization approaches are architec-
ture independent, e.g. using algorithms with lower complexity. For caches, cache
oblivious algorithms [3] use recursive splitting of data structures for blocking op-
timization, independent on cache size. Another approach is to check for hardware
features at runtime (as in math libraries from vendors [4]) or at install time with
an automated search for best parameters and according recompilation. This also
includes a feedback compilation step as supported by most compilers (e.g. In-
tel Compiler Suite, PGI Compilers, GNU Compiler Collection), which can even
adapt to a user’s typical input data. A well known example for this strategy,

2 http://www.spec.org/OMP

http://www.spec.org/OMP

222 T. Klug et al.

searching for best parameters for cache optimization, is the Atlas library [5].
Our automated search for best thread-to-core pinning takes a similar approach.

Documented hardware performance counters are built into every processor
on the market today. Similar counters have always been present in processors
to allow for internal correctness checks after production. The good news is that
since quite some time these performance counters have been documented and
can be used by various tools. Unfortunately, the amount of different events that
can be measured varies from processor type to processor type (for example, see
the manuals for Intel [6] or AMD [7] processors). This means that there is no
standard (yet) that determines which performance counters have to be present
in a processor. Recently, Intel has added a simple counter interface and a few
specific events to its x86 architecture (for processors based on the Core microar-
chitecture). Typically, there are 2 or 4 counters available for a huge number of
event types related to the processor pipeline, the cache subsystem, and the bus
interface, thus allowing to check the utilization of resources. However, the seman-
tics of events can be difficult to interpret, and often, detailed documentation is
rare. Hardware Performance Counters are either used to read exact counts, or
to derive statistical measurements. The most common commercial tool is VTune
[2]. A library for multiple platforms and operating systems to read counters is
PAPI [§]. For Linux, there is a statistical measurement tool called OProfile [9],
available as part of the standard kernel. However, to get read access to counters,
it is required to install a kernel patch (Perfctr), complicating the use significantly.
Additionally, HP has started to work on another kernel patch called perfmon2
[10]. This patch initially existed for the Linux Itanium architecture only but now
also provides support for latest Intel and AMD processors. Its user level parts
(1ibpfm, pfmon) form the basis for autopin.

So far, the de facto standard shared memory API OpenMP [I1] was mostly used
on large shared memory architectures. With the new memory and cache hierar-
chies being introduced by multicore architectures, thread pinning becomes increas-
ingly important for OpenMP programs with regard to scalability issues. [12] and
[13] discuss operating system and compiler dependent calls to control pinning as
well as page allocation on ccNUMA, CMP (chip multiprocessing), and CMT/SMT
(chip multithreading/simultaneous multithreading) architectures running Linux
or SOLARIS. Carrying out several OpenMP benchmarks, the authors conclude
that affinity is especially important for OpenMP performance on ccNUMA ma-
chines, with OpenMP nesting still being difficult on those architectures. From the
operating systems’ point of view, SOLARIS and SunStudio provide better tools
to deal with the problem, however, Linux is catching up. The authors also observe
performance benefits through shared caches in multicore architectures.

In [I4], the author argues that using multicore platforms effectively will be a
key challenge for programmers in the future. The article discusses the challenges
posed by multicore technology, reviews recent work on programming languages
potentially interesting for multicore platforms, and gives an overview on on-going
activities to extend compiler technology with regard to multicore programming,
which also affects thread pinning.

Automatic Binding for CMP 223
3 The autopin Tool

As a proof-of-concept implementation of our framework for automated CPU
pinning, we extended the pfmon utility from the perfmon2 package (see [10])
with the required functionality.

The cores to be used and the order in which the cores are assigned to the
threads is specified by the user via an environment variable called SCHEDULE.
Each position of this string-variable defines a mapping of a thread ID to a CPU
core ID. For example, SCHEDULE=2367 would result in the first thread being
pinned to core #2, the second thread to core #3, and so on. The user may
pass several, comma-separated sets of scheduling mappings via this environment
variable.

Upon creation, each new thread is enumerated and pinned to one specific CPU
core using the sched setaffinity() system call according to the first entry of
the SCHEDULE variable. Pinning of the additional management thread created by
Intel’s OpenMP implementation is omitted. Hence, this thread is scheduled by
the operating system.

If the user provided more than one scheduling mapping, the tool will probe
each of these mappings for a certain time interval ¢. Probing is performed using
the following algorithm:

1. Let the program initialize for ¢ seconds.

2. Read the current timestamp ts; and value pc; of the performance counter
for each thread.

3. Run the program for ¢ seconds.

4. Read the current timestamp tss and value pcy of the performance counter
for each thread.

5. Calculate the performance rate r; = (pcg — pe1)/(ts2 — tsq1) for each thread
j and the average performance rate 74,4 over all threads.

6. If further mappings are left for probing, re-pin the threads according to the
next pinning in the list, let the program ” warm up” for w seconds, and return
to 2.

The initialization step in 1. is required to avoid measuring potential sequential
phases in the initial stage of the program [15].

The ”warm up” time after each re-pinning is needed for the actual rescheduling
of the threads and to refill the cache.

All parameters t, i, and w can be specified in the command line. Otherwise,
the following default values (obtained by previous experiments) will be used:
t=30,w=1t/2, and i = w.

The specific average performance rate r4,, of each scheduling mapping is
written to the console. After all mappings have been probed, autopin displays
the mapping which achieved the highest performance rate and re-pins the threads
accordingly. The program then continues execution with this optimal pinning
which will not be changed until the program terminates. Additionally, every ¢
seconds the current performance rate is calculated and written to the console.

224 T. Klug et al.

As non-optimal pinnings might be used in the beginning, a slight overhead
is imposed during this phase. However, in most cases this overhead can be ne-
glected, especially if t and w are small compared to total application runtime,
see section [f] for detailed analysis.

The performance counter event which is used for the calculation of the perfor-
mance rate can be specified by the user with the —e parameter. A list of events
which are supported by libpfm for the used architecture can be retrieved by
calling autopin -L.

As outlined in [I6], thread migration on NUMA systems poses additional
challenges: As accesses to non-local memory can decrease performance, not only
the thread itself has to be migrated, but also its referenced memory pages. On
operating systems which support next touch memory policy, pages are migrated
automatically after thread repinning. The current stable Linux kernel only allows
for manual page migration. However, there is a patch for the development branch
which provides the required functionality [I7]. autopin triggers automatic page
migration as provided by this kernel patch.

4 Experimental Setup

This chapter describes the experimental setup that has been chosen in order to
assess the performance of the autopin framework. First, the deployed benchmark
suite SPEC OMP is described. After this, the hardware platforms that were used
to perform the benchmark applications under control of autopin are specified.
The last section deals with different CPU pinnings that were selected to be
evaluated by autopin during the benchmark run.

4.1 Benchmark

SPEC OMP was used as a benchmark basis for autopin. It is an OpenMP
benchmark suite for measuring performance of shared memory parallel systems
consisting of eleven applications (see table[I]), most of which are taken from the
scientific area [I§].

There are two different levels of workload for SPEC OMP: Medium and Large.
All benchmark runs were executed with medium size, as the maximum number
of cores used was 16, whereas runs with workload size large are intended to be
used for large scale systems of 128 and more cores. In SPEC OMP all benchmark
applications are provided in form of source code and have to be compiled with an
appropriate compiler. For all hardware platforms described below, Intel Compiler
Suite 9.1 was utilized.

4.2 Hardware Environment
Our testbed consists of several machines:

— One node with two Intel Clovertown processors. The Clovertown processor
consists of four cores, while two cores have a shared Level 2 cache (4 MB),

Automatic Binding for CMP 225

Table 1. SPEC OMP benchmark applications

application name description

310.wupwise
312.swim
314.mgrid
316.applu
318.galgel
320.equake
324.apsi
326.gafort
328.fma3d
330.art
332.ammp

quantum chromodynamics

shallow water modeling

multi-grid solver in 3D potential field
parabolic/elliptic partial differential equations
fluid dynamics analysis of oscillatory instability
finite element simulation of earthquake modeling
weather prediction

genetic algorithm code

finite-element crash simulation

neural network simulation of adaptive resonance theory
computational chemistry

respectively. Our system has 16 MB of cache in total, runs at a clock rate
of 2.66 GHz and has 8 GB RAM, DDR2 667 MHz. The frontside bus has a
clock rate of 1333 MHz.

Figure [2 demonstrates a schematical diagram of this machine, which will
be referred to as Clovertown. The core numbers in the figure are correspond-
ing to the logical processor id assigned by the Linux kernel. The drawing also
illustrates which cores are sharing a cache (for instance core #0 and core #2).

Whether two cores share a cache or not can be detected with the authors’
false sharing benchmark [19].

Core Core Core Core
#0 #2 #1 #3
Core Core Core Core
#4 #6 #5 #7

Chipset

Fig. 2. Intel Clovertown System

226 T. Klug et al.

— A system with four Intel Tigerton processors. The Tigerton processor con-
sists of four cores, while two cores have a shared Level 2 cache (4 MB), re-
spectively. There are four independent frontside buses (1066 MHz), so each
CPU has a dedicated FSB. Each FSB is connected to the Chipset (Clarks-
boro) which has a 64 MB snoop filter. The memory controller can manage
four fully buffered DIMM channels (see figure B). Our system has 32 MB of

cache in total, runs at a clock rate of 2.93 GHz and has 16 GB RAM (DDR2
667 MHz). This machine will be referred to as Caneland.

Core Core Core Core
#0 #4 #1 #7
Core Core Core Core
#5 #6 #8 #9

Chipset

Core Core Core Core
#2 #10 #3 #13
Core Core Core
#12 #14 #15

Fig. 3. Intel Caneland Platform

Core
#11

— A two socket machine, equipped with two AMD Opteron 2352. Each CPU
has four cores, each of which has a L2 cache size of 512 KB. All cores on a
chip are sharing a 2 MB L3 Cache. The four cores are running at a clock
rate of 2.1 GHz. The system has 16 GB main memory, DDR2 667 MHz. In
contrast to the two hardware platforms described above, this system repre-
sents a NUMA-Architecture. Each CPU has an integrated memory controller
and can access local memory faster than remote memory. Access to remote
memory takes place via HyperTransport (see figure d)). This machine will be
referred to as Barcelona in the following sections.

4.3 Thread-to-Core Pinning

All benchmark applications were started with autopin monitoring the hard-
ware counters INSTRUCTIONS RETIRED on Intel architecture and accordingly

Automatic Binding for CMP 227

Core
#0

Core
#1

HT

Core Core
#4 #5

Core
#2

Core
#3

Core Core
#6 #7

Fig. 4. AMD Barcelona System

RETIRED INSTRUCTIONS on AMD architecture. As the deltas of the performance
counters are divided by the measurement time interval, the measured metric
represents the MIPS rate. For floating point intensive programs it might also
be interesting to count the retired floating point instructions and calculate the

FLOPS rate.

Table 2. Investigated CPU Pinnings for Different CPU Architectures. The first column
shows the number of threads used, the second to fourth columns stand for the different

thread-to-core pinnings.

#Threads Caneland

1
2

1
1,2

1,7

1,8

1,7,8,9

1,8,2,11

5,8,11,14

8,9,11,12
1,7,8,9,2,10,11,12
4,6,7,9,10,12,13,15
5,6,8,9,11,12,14,15

Clovertown Barcelona

4 1
2,6 4,5
45 2,6
4,6 4,6
4,5,6,7 2,6,3,7
2,3,6,7 4,6,5,7
1,3,5,7 1,3,5,7

0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7

We did not probe all possible pinnings, as most of them are redundant due
to symmetries of the architectures:

— For the 1-thread runs we chose a core which is located on a different chip
than core #0 as this one often is used for operating systems tasks and thus
could disturb the benchmark.

— For runs with 2 threads we chose configurations on two different chips, on
one chip with the 2 cores sharing the L2 cache (Intel only), and on one chip
with both cores not sharing the cache.

— The measurements with 4 threads were carried out on 1 chip with all cores
utilized, on 2 chips once with 2 cores not sharing the L2 cache and — where

228 T. Klug et al.

applicable — once with 2 cores sharing the L2 cache. On the Caneland plat-
form we additionally made a run on 4 chips, using one core per chip.

— On Clovertown and Barcelona 8 threads were pinned to the core IDs in the
same order as they were forked (e.g. the 1st thread on core #0, the 2nd on
core #1, and so on). On the Caneland platform we probed configurations
exploiting all 4 cores on 2 chips, and 4 chips utilizing 2 cores each — once
with shared cache once without.

— The 16-core runs on Caneland were conducted analogously to the 8-core runs
on the Clovertown platform.

The detailed list of probed CPU pinnings can be found in table2l In order to find
the best and worst pinning, we made additional runs with autopin being called
with one SCHEDULE-parameter only, so the CPU pinning stayed unchanged from
start to finish. Such runs were performed for every pinning listed in table[2l So
for example, on the Caneland platform for two threads there are the following
CPU pinnings to investigate: (1,2), (1,7) and (1,8). Accordingly autopin was
called with SCHEDULE=12,17,18. Additionally, autopin was called three times
one after another with parameter SCHEDULE=12 for the first run, SCHEDULE=17
for the second run and SCHEDULE=18 for the last run. This way it is possible to
double-check if autopin really found the perfect CPU pinning.

5 Results

5.1 Verification of the autopin Approach

As described in chapter] we used the SPEC OMP benchmark suite to evaluate
the effectiveness of our approach. As this suite consists of 11 individual bench-
mark applications, presenting the runtimes for all benchmarks, architectures, and
configurations (# of cores used, pinning to cores) would go beyond the scope of
this paper. Therefore, we only discuss three of the benchmark applications in
detail: 314.mgrid, 316.applu, and 332.ammp. For the remaining benchmarks we
will only sum up our observations shortly.

In comparison with the measurements presented in [16], the slightly modified
algorithm (extended by the initialization phase), in combination with page mi-
gration on NUMA architectures as described in section 3] is able to find optimal
pinnings for almost all benchmarks on all three platforms: In nearly all cases
a pinning with a total runtime not exceeding the perfect pinning’s runtime by
one per cent was found. Only on the Caneland platform, in two cases (312.swim
and 332.ammp) a pinning with a total runtime of less than 5% above the per-
fect pinning’s runtime was found. The experiments have been carried out using
autopin’s default parameters (¢t = 30, w =¢/2, and i = w).

On all platforms, different CPU pinnings had only little effect on the total
runtime of the benchmarks if only one core or all available cores were utilized.
Note that this does not mean that one can neglect CPU pinning in these cases.
Pinning is still important to prevent threads from moving from one core to
another.

Automatic Binding for CMP 229

On the Clovertown platform, CPU pinning is most important for configura-
tions with 2 cores. For 8 benchmarks, the difference in total runtime between
the optimal and the worst configurations was over 20% (over 50% for 314 and
316). For the remaining three (324, 328, 332) it is in the range of 3-10%. For
configurations with 4 utilized cores, pinning improved the total runtime between
1 and 7% and in one case (314) by 17%.

The Caneland platform is very sensitive to CPU pinning. Pinnings on two
cores showed runtime differences in the range of 25-65% for 8 benchmarks out of
11. 324, 328, and 332 were in the range of 4-15%. The gap between the optimal
and the worst pinning even increases for setups with 4 cores: only for 3 bench-
marks (324, 328, 332) the difference was below 50%, 312 and 314 even showed
differences over 100%. For 8 cores the runtime differences were widely distributed
between 7 and 78%. Furthermore, for all benchmarks besides the usual suspects
324, 328, and 332, the best 4-core pinning showed better runtimes than the
worst 8-core pinning. Utilizing all 16 cores improves runtime only slightly for
most benchmarks. In fact, for 314 and 320, the optimal 4-core pinnings achieve
better runtimes.

In general, the Barcelona platform seems to be more tolerant on wrong CPU
pinnings. At least on 2-thread runs: runtime differences for the best and worst
pinning were between 0.1 and 6.5%, except for 312 where the gap was 32%. On
4-thread configurations the pinning has a higher impact, though not as high as
on the Caneland platform: for most benchmarks the runtimes differed between
1.5 and 28%, with 312 making an exception again by showing a gap of 58%.

For all data sets, the 2-core configurations which pinned the threads to cores
on different chips showed the best runtimes. With 4 threads, it is best to pin
them on cores which don’t share a common cache on Intel Platforms. This is
simply due to the fact, that with two cores sharing a common L2 cache, one core
can utilize the whole 4MB L2 cache for one thread if the other one is idle. The
same is true for 8-core configurations on Caneland. On the Barcelona it is best
to distribute the threads equally to both chips. Being a NUMA architecture, this
gives the highest aggregated memory bandwidth to all threads. Furthermore, as
the L3 cache is shared between all cores on one chip, the available cache per
thread is higher, if half of the cores are idling.

Figures [l [and @ show the total runtimes (in seconds) of the 314.mgrid
benchmark on the Clovertown, Caneland and Barcelona platform utilizing 1, 2,
4, 8, and 16 (Caneland only) cores. For 1 core and 8 cores (16 on Caneland)
we only show the runtime for one CPU pinning as different pinnings had only
little effect on the total runtime in these cases. For the other core counts we
show runtimes of the worst ("max”) and the best ("optimal”) pinning, as well
as for the configuration autopin has proposed (”autopin”) - which in all cases is
identical to the optimal pinning. Note that on the Intel systems, utilizing more
than 4 cores does not improve runtimes any further - even with perfect pinning.
If the wrong pinning is chosen, the runtime can be worse than the runtime with
perfect pinning on half the number of cores. This effect significantly influences
performance on the Caneland platform: The worst 2- and 4-core setups are less

230 T. Klug et al.

3500
max —
3000 optimal —
autopin ==
2500 [. 7
2000 [7
1500 |- 7
1000 z BCR
Z B
= F
500 - g R
g z
0 2
1 4 8
Fig. 5. 314.mgrid on Clovertown
3500
max —
3000 | optimal f
autopin =
2500 T
2000 [7
1500 |- T
1000 |- 7
500 | 2 T
0

1 2 4 8 16

Fig. 7. 314.mgrid on Caneland

3500
3000
2500
2000
1500
1000 [
500 -

max —/
optimal

= autopin m—

0

Fig

B AR
RN

1

(oo}

. 9. 314.mgrid on Barcelona

1600
max —
1400 optimaj 1
e
1200 [_ autopin |
1000 - 7]
800 - 7
600 - 7]
400 - Z IR
"
200 £z Zl
0 Z HZ
1 4 8

Fig. 6. 316.applu on Clovertown

1600
1400 - [optmqala),(l 7
1200 | autopin Em=m |
1000 - =]
800 - n
600 -]
400 - N
200 -]
0

1 2 4 8 16
Fig. 8. 316.applu on Caneland

1600
max —
1400 optimal -
—
1200 | autopin i
1000 |- n
800 7
600 [n
400 E - 7
200 - g i
Z z
0
1 4 8

Fig. 10. 316.applu on Barcelona

Automatic Binding for CMP 231

6000 6000
tmax| tmax|
i optimal === | L optimal === |
5000 alFJ)topin E— 5000 alFJ)topin E—
4000 4 4000 F i
3000 - [41 3000 - -
g
2000 [& 4 2000 [.
1000 g - 1 1000 |- -
LB _|E A 0 A @ s
1 2 4 8 1 2 4 8 16
Fig.11. 332.ammp on Clovertown Fig.12. 332.ammp on Caneland

6000
= tmax|
L optimal == |
5000 aﬁtopin E—
4000 [.
3000 [.
2000 [.
1000 F EI -
0

1 2 4 8
Fig. 13. 332.ammp on Barcelona

than 9% faster than the single-core setup. On Barcelona, wrong pinning does not
show problems for 2 threads: the runtimes for both cases are within metering
precision. For 4 cores the difference is approximately 20%. Furthermore, the
scaling behavior on Barcelona is better than on Intel platforms: while the latter
one can not benefit from more than 4 cores, the AMD system scales fine up
to 8 cores. This leads to the fact that the total runtime for 8 Opteron cores is
shorter than the runtime for 16 Tigerton cores. Given the fact that the single
core runtime on the Opteron was 40% higher than on the Intel processors, this
is remarkable.

Similar effects can be observed on the 316.applu benchmark (see figures [G
and [IT)), especially on Caneland: Doubling the number of utilized CPU cores
can slow down the computation if the wrong pinning is used. While this effect
is weaker for the Clovertown, it still shows poor scaling performance. Again,
using more than 4 cores does not improve performance at all. The Barcelona
only shows runtime differences for the 4 core setup (44%). For optimal pinning,
runtimes and scaling behavior is very similar to the Intel processors.

232 T. Klug et al.

The 332.ammp benchmark draws a whole different picture as one can see on
figures Pinning of threads has almost no impact on the runtime and even
on the Intel platforms we can see almost linear speedups up to 16 cores. We
assume that this benchmark can run almost totally in cache and is therefore not
limited by the memory bandwidth which is shared with the other cores.

5.2 Overhead Examination

As shown above, autopin was able to reliably detect optimal pinnings for nearly
all benchmarks under consideration using the default parameters. However, to
obtain maximum benefit for the user, the overhead imposed by autopin should
be kept at a minimum level. This overhead is caused by the fact that during the
different phases (initialization, warmup, and measurement) the application also
runs with “slow” pinnings.

Hence, in order to find an optimal tradeoff between minimum overhead and
reliable detection of optimal pinning, further experiments were carried out for
different values of 7, w, and t on the Barcelona and Clovertown platforms. These
experiments showed that even for ¢ = 30s, w = 3s, and ¢ = 10s, optimal pin-
ning is found for all benchmarks on the Clovertown platform. On the Barcelona

Table 3. autopin overhead on Clovertown: The first column shows the benchmark
under consideration, the second column the number of threads, the third column the
benchmark’s total runtime with the fixed optimal pinning, the fourth column the total
runtime under autopin probing several pinnings, the sixth column shows the difference
between column three and four in per cent, the seventh column the total runtime with
the slowest fixed pinning, and the last column shows the difference between column
four and seven in per cent.

Best autopin Worst
Benchmark #Threads Pinning [s] [s] diff [%] Pinning [s] diff [%)]
310 2 655.12 659.27 0.63 785.95 19.22
310 4 484.53 486.94 0.5 656.02 34.72
312 2 932.41 949.13 1.79 1426.97 50.35
312 4 910.28 916.16 0.65 1388.78 51.59
314 2 1227.04 1231.28 0.35 1840.65 49.49
314 4 1058.51 1069.58 1.05 1779.32 66.36
316 2 656.73 667.29 1.61 882.99 32.32
316 4 522.95 528.57 1.07 787.69 49.02
320 2 287.24 295.01 2.71 379.63 28.68
320 4 253.64 258.25 1.82 350.08 35.56
324 2 572.85 574.82 0.34 604.66 5.19
324 4 313.63 314.83 0.38 345.05 9.6
328 2 1085.02 1090.55 0.51 1213.67 11.29
328 4 668.01 670.81 0.42 800.9 19.39
330 2 350.34 358.13 2.22 463.95 29.55
330 4 281.75 286.16 1.57 361.56 26.35
332 2 1755.84 1769.65 0.79 1795.86 1.48
332 4 941.98 941.57 -0.04 971.8 3.21

Automatic Binding for CMP 233

Table 4. autopin overhead on Barcelona. See caption of table Bl for an explanation of
the table’s columns.

Best autopin Worst
Benchmark #Threads Pinning [s] [s] diff [%] Pinning [s] diff [%]
310 2 913.14 924.27 1.22 941.49 1.86
310 4 482.99 494.04 2.29 543.41 9.99
312 2 650.17 696.41 7.11 903.09 29.68
312 4 464.64 495.98 6.75 776.7 56.6
314 2 1440.37 1448.52 0.57 1545.21 6.68
314 4 784.52 793.36 1.13 1102.33 38.94
316 2 757.97 T713.11 -5.92 779.39 9.29
316 4 445.45 420.22 -5.66 546.74 30.11
320 2 318.86 322.72 1.21 334.81 3.75
320 4 200.23 204.09 1.93 235.12 15.2
324 2 768.28 775.6 0.95 850.34 9.64
324 4 373.72 376.84 0.83 428.73 13.77
328 2 1064.43 1075.35 1.03 1125.79 4.69
328 4 571.38 599.47 4.92 655.09 9.28
330 2 567.76 569.73 0.35 573.98 0.75
330 4 297.51 299.4 0.64 306.17 2.26
332 2 2673.66 2697.62 0.9 2698.7 0.04
332 4 1334.3 1349.42 1.13 1343.9 -0.41

platform a slightly higher value of w = 10s was required, which is necessary for
page migration to take place.

Tables [and @l show the total runtimes of the SPEC OMP benchmarks for the
fixed optimal pinning, under autopin probing several pinnings, and for the fixed
slowest pinning. Column five shows the relative runtime overhead in per cent im-
posed by autopin. On the Clovertown platform this overhead turns out to be
below 3% in all cases. Running the application without autopin may cause run-
times up to 66% higher than those yielded by autopin in case the operating sys-
tem’s scheduler happens to choose the worst pinning as depicted in the last two
columns. Due to the additional cost of memory page migration, the overhead on
the Barcelona platform is slightly higher for memory intensive applications (up to
7.5%). Nevertheless, compared to the worst pinning, significant runtime improve-
ments can be achieved. Interestingly, for the 316.applu benchmark the runtimes
under autopin are even lower than the best fixed pinning. This might be due to
the fact that this application prefers different pinnings in different program exe-
cution phases. See section [l for a further discussion of this observation.

6 Conclusion and Outlook

In this paper we pinpointed the importance of correct CPU pinnings that account
for both application characteristics as well as hardware properties. It is obvious
that this topic will become even more crucial with future multicore processor

234 T. Klug et al.

architectures, which will have much more complicated on-chip interconnects with
strongly varying access speeds. Remarkably, the best and worst pinnings for some
applications yielded a runtime difference of more than 100 per cent.

Additionally, we presented the autopin framework, which allows to automat-
ically determine the thread pinning best suited for a shared memory parallel
program on a selected architecture. This is achieved by evaluating the perfor-
mance of different pinnings by means of hardware performance counters. It has
been shown that autopin reliably proposes optimal pinnings for the SPEC OMP
benchmark on UMA as well as NUMA architectures.

Future versions of autopin can be improved in several ways. At the moment
the user needs profound knowledge on the hardware infrastructure (i.e. how
many cores are available on how many sockets, how many cores are on a chip,
which cores do share caches, etc.) in order to choose a reasonable set of schedule
mappings. To make the tool easier to use for people with no background in
computer architecture, a mechanism could be implemented that automatically
detects the hardware infrastructure and selects appropriate schedule mappings
to be analyzed. A promising idea that goes one step further is to integrate parts
of autopin into the scheduler of the Linux kernel.

In its current version, autopin starts with one pinning and switches to the
next pinning after a specified time frame and so on. When no more pinnings to
be tested are left, autopin re-pins to the best mapping found so far and uses this
pinning until the program terminates. This behavior could be inappropriate for
programs that have strongly varying execution phases. For example, a parallel
program with four active threads might have a first phase in which it is memory
bound. Within this phase, distributing threads over four different chips makes
much more sense than putting all threads together onto one chip. Consider the
next phase to be dominated by very fine grain communication with all relevant
data being held in caches. This time the situation is vice versa, and pinning
all threads onto one chip with four cores sharing a L3 cache would be most
efficient. Taking these considerations into account, the idea is to adapt autopin
to continuously monitor the application and restart the repinning process if the
application’s performance drops under a certain threshold.

Acknowledgements

The work presented in this paper has been carried out in the context of the Munich
Multicore Initiative MMI. The authors would like to thank Sun Microsystems and
Intel Corporation, who kindly provided hardware platforms for our experiments.

References

1. Graham, S.L., Kessler, P.B.,; McKusick, M.K.: gprof: a Call Graph Execution Pro-
filer. In: SIGPLAN Symposium on Compiler Construction, pp. 120-126 (1982)

2. Intel: VTune Performance Analyzer, http://www.intel. com/software/products/
vtune

3 http://mmi.in.tum.de

http://www.intel.com/software/products/vtune
http://www.intel.com/software/products/vtune
http://mmi.in.tum.de

11.

12.

13.

14.

15.

16.

17.

18.

19.

Automatic Binding for CMP 235

. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-Oblivious Algo-

rithms. In: FOCS 1999: Proceedings of the 40th Annual Symposium on Founda-
tions of Computer Science, p. 285. IEEE Computer Society Press, Washington, DC
(1999)

. Intel: Math Kernel Library,

http://developer.intel.com/software/products/mkl

. Whaley, R.C., Dongarra, J.J.: Automatically Tuned Linear Algebra Software. Tech-

nical report (1997)

. Intel Corporation: Intel 64 and TA-32 Architectures: Software Developer’s Manual,

Denver, CO, USA (2007)

. Advanced Micro Devices: AMD64 Architecture Programmer’s Manual. Number

24593 (2007)

. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-

platform infrastructure for application performance tuning using hardware coun-
ters. In: Supercomputing 2000: Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, Washington, DC, USA, p. 42. IEEE Computer Society, Los
Alamitos (2000)

. Levon, J.: OProfile manual, http://oprofile.sourceforge.net/doc/
. Eranian, S.: The perfmon2 Interface Specification. Technical Report HPL-2004-

200R1, Hewlett-Packard Laboratory (February 2005)

OpenMP.org: The OpenMP API specification for parallel programming,
http://www.openmp.org/

Chapman, B., an Mey, D.: The Future of OpenMP in the Multi-Core Era. In:
ParCo 2007: Proceedings of the International Conference on Parallel Computing:
Architectures, Algorithms and Applications, pp. 571-572. IOS Press, Amsterdam
(2008)

an Mey, D., Terboven, C.: Affinity Matters!, http://www.compunity.org/events/
pastevents/parco07/AffinityMatters_DaM.pdf

Chapman, B.: The Multicore Programming Challenge. In: Xu, M., Zhan, Y.-W.,
Cao, J., Liu, Y. (eds.) APPT 2007. LNCS, vol. 4847, p. 3. Springer, Heidelberg
(2007)

Firlinger, K., Moore, S.: Continuous runtime profiling of openmp applications. In:
Proceedings of the 2007 Conference on Parallel Computing (PARCO 2007), pp.
677686 (September 2007)

Ott, M., Klug, T., Weidendorfer, J., Trinitis, C.: autopin - Automated Optimization
of Thread-to-Core Pinning on Multicore Systems. In: Proceedings of 1st Workshop
on Programmability Issues for Multi-Core Computers (MULTIPROG) (January
2008), http://www.lrr.in.tum.de/~ottmi/docs/multiprog08.pdf
Schermerhorn, L.T.: Automatic Page Migration for Linux - A Matter of Hygiene
(January 2007); Talk at linux.conf.au 2007

Saito, H., Gaertner, G., Jones, W.B., Eigenmann, R., Iwashita, H., Lieberman,
R., van Waveren, G.M., Whitney, B.: Large system performance of spec omp2001
benchmarks. In: Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki, M. (eds.) ISHPC
2002. LNCS, vol. 2327, pp. 370-379. Springer, Heidelberg (2002)

Weidendorfer, J., Ott, M., Klug, T., Trinitis, C.: Latencies of conflicting writes
on contemporary multicore architectures. In: Malyshkin, V.E. (ed.) PaCT 2007.
LNCS, vol. 4671, pp. 318-327. Springer, Heidelberg (2007)

http://developer.intel.com/software/products/mkl
http://oprofile.sourceforge.net/doc/
http://www.openmp.org/
http://www.compunity.org/events/pastevents/parco07/AffinityMatters_DaM.pdf
http://www.compunity.org/events/pastevents/parco07/AffinityMatters_DaM.pdf
http://www.lrr.in.tum.de/~ottmi/docs/multiprog08.pdf

	autopin – Automated Optimization of Thread-to-Core Pinning on Multicore Systems
	Introduction
	Related Work
	The autopin Tool
	Experimental Setup
	Benchmark
	Hardware Environment
	Thread-to-Core Pinning

	Results
	Verification of the autopin Approach
	Overhead Examination

	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

