Transactions on

High-Performance
Embedded Architectures
and Compilers Il




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6590



Per Stenstrom (Ed.)

Transactions on
High-Performance
Embedded Architectures
and Compilers III

@ Springer



Volume Editor

Per Stenstrom

Chalmers University of Technology

Department of Computer Science and Engineering
412 96 Gothenburg, Sweden

E-mail: per.stenstrom @chalmers.se

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 1864-306X (THIPEAC) e-ISSN 1864-3078 (THIPEAC)
ISBN 978-3-642-19447-4 e-ISBN 978-3-642-19448-1

DOI 10.1007/978-3-642-19448-1
Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2007923068

CR Subject Classification (1998): B.2, C.1,D.3.4,B.5,C.2,D.4

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Editor-in-Chief’s Message

It is my pleasure to introduce you to the third volume of Transactions on High-
Performance Embedded Architectures and Compilers. This journal was created as
an archive for scientific articles in the converging fields of high-performance and
embedded computer architectures and compiler systems. Design considerations
in both general-purpose and embedded systems are increasingly being based on
similar scientific insights. For example, a state-of-the-art game console today
consists of a powerful parallel computer whose building blocks are the same as
those found in computational clusters for high-performance computing. More-
over, keeping power/energy consumption at a low level for high-performance
general-purpose systems as well as in, for example, mobile embedded systems is
equally important in order to either keep heat dissipation at a manageable level
or to maintain a long operating time despite the limited battery capacity. It is
clear that similar scientific issues have to be solved to build competitive systems
in both segments. Additionally, for high-performance systems to be realized — be
it embedded or general-purpose — a holistic design approach has to be taken by
factoring in the impact of applications as well as the underlying technology when
making design trade-offs. The main topics of this journal reflect this development
and include (among others):

— Processor architecture, e.g., network and security architectures, application
specific processors and accelerators, and reconfigurable architectures

— Memory system design

— Power, temperature, performance, and reliability constrained designs

— Evaluation methodologies, program characterization, and analysis techniques

— Compiler techniques for embedded systems, e.g, feedback-directed opti-
mization, dynamic compilation, adaptive execution, continuous profiling/
optimization, back-end code generation, and binary translation/optimization

— Code size/memory footprint optimizations

This volume contains 14 papers divided into four sections. The first section
is a special section containing the top four papers from the Third International
Conference on High-Performance and Embedded Architectures and Compilers -
HiPEAC. T would like to thank Manolis Katevenis (University of Crete and
FORTH) and Rajiv Gupta (University of California at Riverside) for acting as
guest editors of that section. Papers in this section deal with cache performance
issues and improved branch prediction

The second section is a set of four papers providing a snapshot from the
Eighth MEDEA Workshop. I am indebted to Sandro Bartolini and Pierfrancesco
Foglia for putting together this special section.

The third section contains two regular papers and the fourth section pro-
vides a snapshot from the First Workshop on Programmability Issues for Mul-
ticore Computers (MULTIPROG). The organizers — Eduard Ayguade, Roberto



VI Editor-in-Chief’s Message

Gioiosa, and Osman Unsal — have put together this section. I thank them for
their effort.

The editorial board has worked diligently to handle the papers for the journal.
I would like to thank all the contributing authors, editors, and reviewers for their
excellent work.

Per Stenstrom, Chalmers University of Technology
Editor-in-chief
Transactions on HIPEAC



Editorial Board

Per Stenstrom is a professor of computer engineering at Chalmers University
of Technology. His research interests are devoted to design principles for high-
performance computer systems and he has made multiple contributions to espe-
cially high-performance memory systems. He has authored or co-authored three
textbooks and more than 100 publications in international journals and con-
ferences. He regularly serves Program Committees of major conferences in the
computer architecture field. He is also an associate editor of IFEE Transac-
tions on Parallel and Distributed Processing Systems, a subject-area editor of
the Journal of Parallel and Distributed Computing, an associate editor of the
IEEE TCCA Computer Architecture Letters, and the founding Editor-in-Chief
of Transactions on High-Performance Embedded Architectures and Compilers.
He co-founded the HiPEAC Network of Excellence funded by the European
Commission. He has acted as General and Program Chair for a large number
of conferences including the ACM/IEEE Int. Symposium on Computer Archi-
tecture, the IEEE High-Performance Computer Architecture Symposium, and
the IEEE Int. Parallel and Distributed Processing Symposium. He is a Fellow
of the ACM and the IEEE and a member of Academia Europaea and the Royal
Swedish Academy of Engineering Sciences.

Koen De Bosschere obtained his PhD from Ghent University in 1992. He is a
professor in the ELIS Department at the Universiteit Gent where he teaches
courses on computer architecture and operating systems. His current research
interests include: computer architecture, system software, code optimization.
He has co-authored 150 contributions in the domain of optimization, perfor-
mance modeling, microarchitecture, and debugging. He is the coordinator of the
ACACES research network and of the European HiPEAC2 network. Contact
him at Koen.DeBosschere@elis.UGent.be.



VIII Editorial Board

Jose Duato is a professor in the Department of Computer Engineering (DISCA)
at UPV, Spain. His research interests include interconnection networks and mul-
tiprocessor architectures. He has published over 340 papers. His research results
have been used in the design of the Alpha 21364 microprocessor, the Cray T3E,
IBM BlueGene/L, and Cray Black Widow supercomputers. Dr. Duato is the
first author of the book Interconnection Networks: An Engineering Approach.
He has served as associate editor of IEEE TPDS and IEEE TC. He was General
Co-chair of ICPP 2001, Program Chair of HPCA-10, and Program Co-chair of
ICPP 2005. Also, he has served as Co-chair, Steering Committee member, Vice-
Chair, or Program Committee member in more than 55 conferences, including
HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, Europar, and HiPC.

Manolis Katevenis received his PhD degree from U.C. Berkeley in 1983 and the
ACM Doctoral Dissertation Award in 1984 for his thesis on “Reduced Instruc-
tion Set Computer Architectures for VLSI.” After a brief term on the faculty of
Computer Science at Stanford University, he has been in Greece, with the Uni-
versity of Crete and with FORTH since 1986. After RISC, his research has been
on interconnection networks and interprocessor communication. In packet switch
architectures, his contributions since 1987 have been mostly in per-flow queue-
ing, credit-based flow control, congestion management, weighted round-robin
scheduling, buffered crossbars, and non-blocking switching fabrics. In multipro-
cessing and clustering, his contributions since 1993 have been on remote-write-
based, protected, user-level communication.
His home URL is http://archvlsi.ics.forth.gr/~kateveni



Editorial Board IX

Michael O’Boyle is a professor in the School of Informatics at the University
of Edinburgh and an EPSRC Advanced Research Fellow. He received his PhD
in Computer Science from the University of Manchester in 1992. He was for-
merly a SERC Postdoctoral Research Fellow, a Visiting Research Scientist at
IRISA/INRIA Rennes, a Visiting Research Fellow at the University of Vienna
and a Visiting Scholar at Stanford University. More recently he was a Visiting
Professor at UPC, Barcelona.

Dr. O’Boyle’s main research interests are in adaptive compilation, formal
program transformation representations, the compiler impact on embedded sys-
tems, compiler directed low-power optimization and automatic compilation for
parallel single-address space architectures. He has published over 50 papers in
international journals and conferences in this area and manages the Compiler
and Architecture Design group consisting of 18 members.

\ -k

Cosimo Antonio Prete is a full professor of computer systems at the Univer-
sity of Pisa, Italy, faculty member of the PhD School in Computer Science and
Engineering (IMT), Italy. He is Coordinator of the Graduate Degree Program
in Computer Engineering and Rector’s Adviser for Innovative Training Tech-
nologies at the University of Pisa. His research interests are focused on multi-
processor architectures, cache memory, performance evaluation and embedded
systems. He is an author of more than 100 papers published in international
journals and conference proceedings. He has been project manager for several
research projects, including: the SPP project, OMI, Esprit IV; the CCO project,
supported by VLSI Technology, Sophia Antipolis; the ChArm project, supported
by VLSI Technology, San Jose, and the Esprit III Tracs project.



X Editorial Board

André Seznec is “directeur de recherches” at IRISA/INRIA. Since 1994, he
has been the head of the CAPS (Compiler Architecture for Superscalar and
Special-purpose Processors) research team. He has been conducting research
on computer architecture for more than 20 years. His research topics have in-
cluded memory hierarchy, pipeline organization, simultaneous multithreading
and branch prediction. In 1999-2000, he spent a sabbatical year with the Alpha
Group at Compagq.

Olivier Temam obtained a PhD in computer science from the University of
Rennes in 1993. He was assistant professor at the University of Versailles from
1994 to 1999, and then professor at the University of Paris Sud until 2004. Since
then, he is a senior researcher at INRIA Futurs in Paris, where he heads the
Alchemy group. His research interests include program optimization, processor
architecture, and emerging technologies, with a general emphasis on long-term
research.



Editorial Board XI

Theo Ungerer is Chair of Systems and Networking at the University of Augsburg,
Germany, and Scientific Director of the Computing Center of the University of
Augsburg. He received a Diploma in Mathematics at the Technical University
of Berlin in 1981, a Doctoral Degree at the University of Augsburg in 1986,
and a second Doctoral Degree (Habilitation) at the University of Augsburg in
1992. Before his current position he was scientific assistant at the University of
Augsburg (1982-1989 and 1990-1992), visiting assistant professor at the Uni-
versity of California, Irvine (1989-1990), professor of computer architecture at
the University of Jena (1992-1993) and the Technical University of Karlsruhe
(1993-2001). He is Steering Committee member of HIPEAC and of the German
Science Foundation’s priority programme on “Organic Computing.” His current
research interests are in the areas of embedded processor architectures, embed-
ded real-time systems, organic, bionic and ubiquitous systems.

Mateo Valero obtained his PhD at UPC in 1980. He is a professor in the
Computer Architecture Department at UPC. His research interests focus on
high-performance architectures. He has published approximately 400 papers on
these topics. He is the director of the Barcelona Supercomputing Center, the
National Center of Supercomputing in Spain. Dr. Valero has been honored with
several awards, including the King Jaime I award by the Generalitat Valen-
ciana, and the Spanish national award “Julio Rey Pastor” for his research on IT
technologies. In 2001, he was appointed Fellow of the IEEE, in 2002 Intel Distin-
guished Research Fellow and since 2003 a Fellow of the ACM. Since 1994, he has
been a foundational member of the Royal Spanish Academy of Engineering. In
2005 he was elected Correspondant Academic of the Spanish Royal Academy of
Sciences, and his native town of Alfamén named their public college after him.



XII Editorial Board

Georgi Gaydadjiev is a professor in the computer engineering laboratory of the
Technical University of Delft, The Netherlands. His research interests focus on
many aspects of embedded systems design with an emphasis on reconfigurable
computing. He has published about 50 papers on these topics in international
refereed journals and conferences. He has acted as Program Committee mem-
ber of many conferences and is subject area editor for the Journal of Systems
Architecture.



Table of Contents

Third International Conference on High-Performance
and Embedded Architectures and Compilers
(HiPEAC)

Dynamic Cache Partitioning Based on the MLP of Cache Misses .. ... ..
Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, and
Mateo Valero

Cache Sensitive Code Arrangement for Virtual Machine...............
Chun-Chieh Lin and Chuen-Liang Chen

Data Layout for Cache Performance on a Multithreaded Architecture. . .
Subhradyuti Sarkar and Dean M. Tullsen

Improving Branch Prediction by Considering Affectors and Affectees

Correlations . . ..ottt
Yiannakis Sazeides, Andreas Moustakas, Kypros Constantinides, and
Marios Kleanthous

Eighth MEDEA Workshop (Selected Papers)

Introduction. . ... ... .
Sandro Bartolini, Pierfrancesco Foglia, and Cosimo Antonia Prete

Exploring the Architecture of a Stream Register-Based Snoop Filter . . . .
Matthias Blumrich, Valentina Salapura, and Alan Gara

CROB: Implementing a Large Instruction Window through
COMPIeSSION . ...ttt e e
Fernando Latorre, Grigorios Magklis, Jose Gonzilez,
Pedro Chaparro, and Antonio Gonzalez

Power-Aware Dynamic Cache Partitioning for CMPs .................
Isao Kotera, Kenta Abe, Ryusuke Egawa, Hiroyuki Takizawa, and
Hiroaki Kobayashi

A Multithreaded Multicore System for Embedded Media Processing . . ..
Jan Hoogerbrugge and Andrei Terechko

24

43

69

91

93

154



XIV Table of Contents

Regular Papers

Parallelization Schemes for Memory Optimization on the Cell

Processor: A Case Study on the Harris Corner Detector...............
Tarik Saidani, Lionel Lacassagne, Joel Falcou, Claude Tadonki, and
Samir Bouaziz

Constructing Application-Specific Memory Hierarchies on FPGAs . ... ..
Harald Devos, Jan Van Campenhout, Ingrid Verbauwhede, and
Dirk Stroobandt

First Workshop on Programmability Issues for
Multi-core Computers (MULTIPROG)

autopin — Automated Optimization of Thread-to-Core Pinning on

Multicore Systems .. ..... ..ot

Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis

Robust Adaptation to Available Parallelism in Transactional Memory

APDPLCAtIONS . . . oot

Mohammad Ansari, Mikel Lujdin, Christos Kotselidis, Kim Jarvis,
Chris Kirkham, and Ian Watson

Efficient Partial Roll-Backing Mechanism for Transactional Memory
SYSEEINS . .ot
M.M. Waliullah

Software-Level Instruction-Cache Leakage Reduction Using
Value-Dependence of SRAM Leakage in Nanometer Technologies .. . .. ..
Maziar Goudarzi, Tohru Ishihara, and Hamid Noori

Author Index . . ... .. .



Third International Conference on
High-Performance and Embedded
Architectures and Compilers (HIiPEAC)



Dynamic Cache Partitioning Based on the MLP
of Cache Misses

Miquel Moreto', Francisco J. Cazorla?, Alex Ramirez!2, and Mateo Valero!-2

! Universitat Politecnica de Catalunya, DAC, Barcelona, Spain
HiPEAC European Network of Excellence
2 Barcelona Supercomputing Center — Centro Nacional de Supercomputacién, Spain
{mmoreto ,aramirez ,mateo}@ac .upc.edu, francisco.cazorla@bsc.es

Abstract. Dynamic partitioning of shared caches has been proposed
to improve performance of traditional eviction policies in modern multi-
threaded architectures. All existing Dynamic Cache Partitioning (DCP)
algorithms work on the number of misses caused by each thread and
treat all misses equally. However, it has been shown that cache misses
cause different impact in performance depending on their distribution.
Clustered misses share their miss penalty as they can be served in par-
allel, while isolated misses have a greater impact on performance as the
memory latency is not shared with other misses.

We take this fact into account and propose a new DCP algorithm that
considers misses differently depending on their influence in performance.
Our proposal obtains improvements over traditional eviction policies up
t0 63.9% (10.6% on average) and it also outperforms previous DCP pro-
posals by up to 15.4% (4.1% on average) in a four-core architecture. Our
proposal reaches the same performance as a 50% larger shared cache. Fi-
nally, we present a practical implementation of our proposal that requires
less than 8KB of storage.

1 Introduction

The limitation imposed by instruction-level parallelism (ILP) has motivated
the use of thread-level parallelism (TLP) as a common strategy for improv-
ing processor performance. TLP paradigms such as simultaneous multithreading
(SMT) [I,2], chip multiprocessor (CMP) [3] and combinations of both offer the
opportunity to obtain higher throughputs. However, they also have to face the
challenge of sharing resources of the architecture. Simply avoiding any resource
control can lead to undesired situations where one thread is monopolizing all the
resources and harming the other threads. Some studies deal with the resource
sharing problem in SMTs at core level resources like issue queues, registers,
etc. []. In CMPs, resource sharing is focused on the cache hierarchy.

Some applications present low reuse of their data and pollute caches with
data streams, such as multimedia, communications or streaming applications,
or have many compulsory misses that cannot be solved by assigning more cache
space to the application. Traditional eviction policies such as Least Recently

P. Stenstrém (Ed.): Transactions on HiPEAC IIT, LNCS 6590, pp. 3 2011.
© Springer-Verlag Berlin Heidelberg 2011



4 M. Moreto et al.

Used (LRU), pseudo LRU or random are demand-driven, that is, they tend
to give more space to the application that has more accesses and misses to
the cache hierarchy [BL[6]. As a consequence, some threads can suffer a severe
degradation in performance. Previous work has tried to solve this problem by
using static and dynamic partitioning algorithms that monitor the L2 cache
accesses and decide a partition for a fixed amount of cycles in order to maximize
throughput [78.[Q] or fairness [10]. Basically, these proposals predict the number
of misses per application for each possible cache partition. Then, they use the
cache partition that leads to the minimum number of misses for the next interval.

A common characteristic of these proposals is that they treat all L2 misses
equally. However, in out-of-order architectures L2 misses affect performance dif-
ferently depending on how clustered they are. An isolated L2 miss has approxi-
mately the same miss penalty than a cluster of L2 misses, as they can be served
in parallel if they all fit in the reorder buffer (ROB) [II]. In Figure [Il we can
see this behavior. We have represented an ideal IPC curve that is constant until
an L2 miss occurs. After some cycles, commit stops. When the cache line comes
from main memory, commit ramps up to its steady state value. As a consequence,
an isolated L2 miss has a higher impact on performance than a miss in a burst
of misses as the memory latency is shared by all clustered misses.

L miss
issuns X 2 Limiss L2miss LZmss |
i £ meums  msues  sues

i Time line M\m;

' 5 Ll -—Average Memo:ry Latency—
-—~Average Memory Latency— ——Average Memory Lalency—s

—Pipeline Stalls—a Commit restarts +—+Average Memory Latency—e= - Cammit restarts

(a) Isolated L2 miss. (b) Clustered L2 misses.

Fig. 1. Isolated and clustered L2 misses

Based on this fact, we propose a new DCP algorithm that gives a cost to each
L2 access according to its impact in final performance. We detect isolated and
clustered misses and assign a higher cost to isolated misses. Then, our algorithm
determines the partition that minimizes the total cost for all threads, which is
used in the next interval. Our results show that differentiating between clustered
and isolated L2 misses leads to cache partitions with higher performance than
previous proposals. The main contributions of this work are the following.

1) A runtime mechanism to dynamically partition shared L2 caches in a CMP
scenario that takes into account the MLP of each L2 access. We obtain improve-
ments over LRU up to 63.9% (10.6% on average) and over previous proposals
up to 15.4% (4.1% on average) in a four-core architecture. Our proposal reaches
the same performance as a 50% larger shared cache.

2) We extend previous workloads classifications for CMP architectures with
more than two cores. Results can be better analyzed in every workload group.



Dynamic Cache Partitioning Based on the MLP of Cache Misses 5

3) We present a sampling technique that reduces the hardware cost in terms
of storage to less than 1% of the total L2 cache size with an average throughput
degradation of 0.76% (compared to the throughput obtained without sampling).
We also show that scalable algorithms to decide cache partitions give near opti-
mal partitions, 0.59% close to the optimal decision.

The rest of this paper is structured as follows. Section [2 introduces the meth-
ods that have been previously proposed to decide L2 cache partitions and related
work. Next, Section [B] explains our MLP-aware DCP algorithm. Section [ de-
scribes the experimental environment and in Section [l we discuss simulation
results. Finally, Section [6]l summarizes our results.

2 Prior Work in Dynamic Cache Partitioning

Stack Distance Histogram (SDH). Mattson et al. introduce the concept of
stack distance to study the behavior of storage hierarchies [12]. Common eviction
policies such as LRU have the stack property. Thus, each set in a cache can be
seen as an LRU stack, where lines are sorted by their last access cycle. In that
way, the first line of the LRU stack is the Most Recently Used (MRU) line while
the last line is the LRU line. The position that a line has in the LRU stack
when it is accessed again is defined as the stack distance of the access. As an
example, we can see in Table[I[(a) a stream of accesses to the same set with their
corresponding stack distances.

Table 1. Stack Distance Histogram

(a) Stream of accesses to a given cache set. (b) SDH example.

# Reference 1 2 3 45 6 7 8 Stack Distance 1 2 3 4 >4
Cache Lne A BCCADBD # Accesses 6020105 5
Stack Distance - - - 1 3 - 4 2

For a K-way associative cache with LRU replacement algorithm, we need
K + 1 counters to build SDHs, denoted C1,C5,...,Ck,Cs k. On each cache
access, one of the counters is incremented. If it is a cache access to a line in
the i*" position in the LRU stack of the set, C; is incremented. If it is a cache
miss, the line is not found in the LRU stack and, as a result, we increment
the miss counter Cs . SDH can be obtained during execution by running the
thread alone in the system [7] or by adding some hardware counters that profile
this information [8/[9]. A characteristic of these histograms is that the number
of cache misses for a smaller cache with the same number of sets can be easily
computed. For example, for a K’'-way associative cache, where K’ < K, the new
number of misses can be computed as misses = Cs g + Zi}iK,H C;.

As an example, in Table [[ib) we show an SDH for a set with 4 ways. Here,
we have 5 cache misses. However, if we reduce the number of ways to 2 (keeping
the number of sets constant), we will experience 20 misses (5 + 5 + 10).



6 M. Moreto et al.

Minimizing Total Misses. Using the SDHs of N applications, we can de-
rive the L2 cache partition that minimizes the total number of misses: this last
number corresponds to the sum of the number of misses of each thread for the
given configuration. The optimal partition in the last period of time is a suitable
candidate to become the future optimal partition. Partitions are decided period-
ically after a fixed amount of cycles. In this scenario, partitions are decided at a
way granularity. This mechanism is used in order to minimize the total number
of misses and try to maximize throughput. A first approach proposed a static
partitioning of the L2 cache using profiling information [7]. Then, a dynamic ap-
proach estimated SDHs with information inside the cache [9]. Finally, Qureshi
et al. presented a suitable and scalable circuit to measure SDHs using sampling
and obtained performance gains with just 0.2% extra space in the L2 cache [§].
Throughout this paper, we will call this last policy MinMisses.

Fair Partitioning. In some situations, MinMisses can lead to unfair parti-
tions that assign nearly all the resources to one thread while harming the oth-
ers [10]. For that reason, the authors propose considering fairness when deciding
new partitions. In that way, instead of minimizing the total number of misses,

they try to equalize the statistic X; = "°°°**"*™%i of each thread . They desire

missesalmmi
to force all threads to have the same increase in percentage of misses. Partitions
are decided periodically using an iterative method. The thread with largest X;
receives a way from the thread with smallest X; until all threads have a similar

value of X;. Throughout this paper, we will call this policy Fuair.

Table 2. Different Partitioning Proposals

Paper Partitioning Objective Decision Algorithm  Eviction Policy
[7] Static ~ Minimize Misses ~ Programmer — Column Caching
[ Dynamic Minimize Misses  Architecture =~ Marginal Gain Augmented LRU
[8] Dynamic Maximize Utility =~ Architecture Lookahead Augmented LRU
[I0] Dynamic Fairness Architecture Equalize X} Augmented LRU
[I3] Dynamic Maximize reuse Architecture Reuse Column Caching
[I4] Dyn./Static  Configurable Operating System Configurable Augmented LRU

Other Related Work. Several papers propose different DCP algorithms in a
multithreaded scenario. In Table[2] we summarize these proposals with their most
significant characteristics. Settle et al. introduce a DCP similar to MinMisses
that decides partitions depending on the average data reuse of each application
[13]. Rafique et al. propose to manage shared caches with a hardware cache
quota enforcement mechanism and an interface between the architecture and
the OS to let the latter decide quotas [14]. We have to note that this mechanism
is completely orthogonal to our proposal and, in fact, they are compatible as
we can let the OS decide quotas according to our scheme. Hsu et al. evaluate
different cache policies in a CMP scenario [15]. They show that none of them is
optimal among all benchmarks and that the best cache policy varies depending
on the performance metric being used. Thus, they propose to use a thread-aware



Dynamic Cache Partitioning Based on the MLP of Cache Misses 7

cache resource allocation. In fact, their results reinforce the motivation of our
paper: if we do not consider the impact of each L2 miss in performance, we can
decide suboptimal L2 partitions in terms of throughput.

Cache partitions at a way granularity can be implemented with column caching
[7], which uses a bit mask to mark reserved ways, or by augmenting the LRU
policy with counters that keep track of the number of lines in a set belonging
to a thread [9]. The evicted line will be the LRU line among its owned lines or
other threads lines depending on whether it reaches its quota or not.

In [I6] a new eviction policy for private caches was proposed in single-threaded
architectures. This policy gives a weight to each L2 miss according to its MLP
when the block is filled from memory. Eviction is decided using the LRU counters
and this weight. This idea was proposed for a different scenario as it focus on
single-threaded architectures.

3 MLP-Aware Dynamic Cache Partitioning
3.1 Algorithm Overview

Algorithm 3] shows the necessary steps to dynamically decide cache partitions
according to the MLP of each L2 access. At the beginning of the execution, we
decide an initial partition of the L2 cache. As we have no prior knowledge of the
applications, we evenly distribute ways among cores. Hence, each core receives

Associativity
Number of Cores WaYS of the shared L2 cache.

Algorithm 3.1. MLP-AwARE DCP()

Step 1: Establish an initial even partition for each core.

Step 2: Run threads and collect data for the MLP-aware SDHs.
Step 3: Decide new partition.

Step 4: Update MLP-aware SDHs.

Step 5: Go back to Step 2.

Afterwards, we begin a period where we measure the total MLP cost of each
application. The histogram of each thread containing the total MLP cost for each
possible partition is denoted MLP-aware SDH. For a K-way associative cache,
exactly K registers are needed to store this histogram. For short periods, dy-
namic cache partitioning (DCP) algorithms react quicker to phase changes. Our
results show that, for different periods from 10° to 10® cycles, small performance
variations are obtained, with a peak for a period of 5 million cycles.

At the end of each interval, MLP-aware SDHs are analyzed and a new parti-
tion is decided for the next interval. We assume that running threads will have
a similar pattern of L2 accesses in the next measuring period. Thus, the opti-
mal partition for the last period is chosen for the following period. Evaluating



8 M. Moreto et al.

all possible cache partitions gives the optimal partition. This evaluation is done
concurrently with a dedicated hardware, which sets the partition for each pro-
cess in the next period. Having old values of partitions decisions does not impact
correctness of the running applications and does not affect performance as de-
ciding new partitions typically takes few thousand cycles and is invoked once
every 5 million cycles.

Since characteristics of applications dynamically change, MLP-aware SDHs
should reflect these changes. However, we also wish to maintain some history of
the past MLP-aware SDHs to make new decisions. Thus, after a new partition
is decided, we multiply all the values of the MLP-aware SDHs times p € [0, 1].
Large values of p have larger reaction times to phase changes, while small values
of p quickly adapt to phase changes but tend to forget the behavior of the
application. Small performance variations are obtained for different values of p
ranging from 0 to 1, with a peak for p = 0.5. Furthermore, this value is very
convenient as we can use a shifter to update histograms. Next, a new period of
measuring MLP-aware SDHs begins. The key contribution of this paper is the
method to obtain MLP-aware SDHs that we explain in the following Subsection.

3.2 MLP-Aware Stack Distance Histogram

As previously stated, MinMisses assumes that all L2 accesses are equally im-
portant in terms of performance. However, it has been shown that cache misses
affect differently the performance of applications, even inside the same applica-
tion [ITL16]. An isolated L2 data miss has a penalty cost that can be approxi-
mated by the average memory latency. In the case of a burst of L2 data misses
that fit in the ROB, the penalty cost is shared among misses as L.2 misses can
be served in parallel. In case of L2 instruction misses, they are serialized as fetch
stops. Thus, L2 instruction misses have a constant miss penalty and MLP.

We want to assign a cost to each L2 access according to its effect on perfor-
mance. In [16] a similar idea was used to modify LRU eviction policy for single
core and single threaded architectures. In our situation, we have a CMP sce-
nario where the shared L2 cache has a number of reserved ways for each core.
At the end of each period, we decide either to continue with the same partition
or change it. If we decide to modify the partition, a core ¢ that had w; reserved
ways will receive w; # w;. If w; < w}, the thread receives more ways and, as a
consequence, some misses in the old configuration will become hits. Conversely,
if w; > w}, the thread receives less ways and some hits in the old configuration
will become misses. Thus, we want to have an estimation of the performance ef-
fects when misses are converted into hits and vice versa. Throughout this paper,
we will call this impact on performance M LP cost.

MLP cost of L2 misses. In order to compute the M LP cost of an L2 miss with
stack distance d;, we consider the situation shown in Figure If we force an L2
configuration that assigns exactly w, = d; ways to thread ¢ with w} > w;, some
of the L2 misses of this thread will become hits, while other will remain being
misses, depending on their stack distance. In order to track the stack distance



Dynamic Cache Partitioning Based on the MLP of Cache Misses 9

Current L2 Current L2
misses that misses that
L2 miss would remain would become
under study misses hits
I_l |_| : I _! 1 _!
IPC Y
i
i1
2 Time line
«—=1 2 miss is served from Main Memory——
(a) MLP cost of an L2 miss.
L2 hit under Current L2 Current L2 hits that Non overlapped
study misses would become misses L2 miss
IPC : :

Time line

d—EROE\ size commétled instructinnsi—b
(b) Estimated MLP cost when an L2 hit becomes a miss.

Fig. 2. MLP cost of L2 accesses

and M LP cost of each L2 miss, we have modified the L2 Miss Status Holding
Registers (MSHR) [17]. This structure is similar to an L2 miss buffer and is used
to hold information about any load that has missed in the L2 cache. The modified
L2 MSHR has one extra field that contains the M LP cost of the miss as can be
seen in Figure It is also necessary to store the stack distance of each access
in the MSHR. In Figure we show the MSHR in the cache hierarchy.

MAIN
MEMORY
L2 miss L2
MSHR
s L2 MSHR entry
L2 Cache | [Thumsss : ‘
Valid | Owner | Access Miss Bytes [MLP| Stack
tag Id Type | Address |Required | Cost | Distance
(a) MSHR. (b) MSHR fields.

Fig. 3. Miss Status Holding Register

When the L2 cache is accessed and an L2 miss is determined, we assign an
MSHR entry to the miss and wait until the data comes from Main Memory. We
initialize the M LP cost field to zero when the entry is assigned. We store the
access stack distance together with the identifier of the owner core. Every cycle,
we obtain N, the number of L2 accesses with stack distance greater or equal
to d;. We have a hardware counter that tracks this number for each possible



10 M. Moreto et al.

number of d;, which means a total of Associativity counters. If we have N L2
misses that are being served in parallel, the miss penalty is shared. Thus, we
assign an equal share of ]{, to each miss. The value of the M LP cost is updated
until the data comes from Main Memory and fills the L2. At this moment we
can free the MSHR entry.

The number of adders required to update the M LP cost of all entries is equal
to the number of MSHR entries. However, this number can be reduced by sharing
several adders between valid MSHR entries in a round robin fashion. Then, if an
MSHR entry updates its M LP cost every 4 cycles, it has to add ]‘\1[. In this work,
we assume that the MSHR contains only four adders for updating M LP cost
values, which has a negligible effect on the final M LP cost [16].

MLP cost of L2 hits. Next, we want to estimate the M LP cost of an L2 hit
with stack distance d; when it becomes a miss. If we forced an L2 configuration
that assigned exactly w} = d; ways to the thread ¢ with w} < w;, some of the L2
hits of this thread would become misses, while L2 misses would remain as misses
(see Figure . The hits that would become misses are the ones with stack
distance greater or equal to d;. Thus, we count the total number of accesses with
stack distance greater or equal to d; (including L2 hits and misses) to estimate
the length of the cluster of L2 misses in this configuration.

Deciding the moment to free the entry used by an L2 hit is more complex
than in the case of the MSHR. As it was said in [I1], in a balanced architecture,
L2 data misses can be served in parallel if they all fit in the ROB. Equivalently,
we say that L2 data misses can be served in parallel if they are at ROB dis-
tance smaller than the ROB size. Thus, we should free the entry if the number
of committed instructions since the access has reached the ROB size or if the
number of cycles since the hit has reached the average latency to memory. The
first condition is clear as L2 misses can overlap only if their ROB distance is
less than the ROB size. When the entry is freed, we have to add the number of
pending cycles divided by the number of misses with stack distance greater or
equal to d;. The second condition is also necessary as it can occur that no L2
access is done for a period of time. To obtain the average latency to memory,
we add a specific hardware that counts and averages the number of cycles that
a given entry is in the MSHR.

We use new hardware to obtain the M LP cost of L2 hits. We denote this
hardware Hit Status Holding Registers (HSHR) as it is similar to the MSHR.
However, the HSHR is private for each core. In each entry, the HSHR needs an
identifier of the ROB entry of the access, the address accessed by the L2 hit,
the stack distance value and a field with the corresponding M LP cost as can be
seen in Figure In Figure we show the HSHR in the cache hierarchy.

When the L2 cache is accessed and an L2 hit is determined, we assign an
HSHR entry to the L2 hit. We initialize the fields of the entry as in the case of
the MSHR. We have a stack distance d; and we want to update the M LP cost
field in every cycle. With this objective, we need to know the number of active
entries with stack distance greater or equal to d; in the HSHR, which can be
tracked with one hardware counter per core. We also need a ROB entry identifier



Dynamic Cache Partitioning Based on the MLP of Cache Misses 11

L2 Cache
[ Lehit HSHR
L11$ (L1 D% HSHR entry
Core Valid | Instruction | Pending Hit Bytes [MLP| Stack
tag Identifier | Cycles | Address |Required |Cost | Distance
(a) HSHR. (b) HSHR fields.

Fig. 4. Hit Status Holding Register

for each L2 access. Every cycle, we obtain N, the number of L2 accesses with
stack distance greater or equal to d; as in the L2 MSHR case. We have a hardware
counter that tracks this number for each possible number of d;, which means a
total of Associativity counters.

In order to avoid array conflicts, we need as many entries in the HSHR as
possible L2 accesses in flight. This number is equal to the L1 MSHR size. In our
scenario, we have 32 L1 MSHR entries, which means a maximum of 32 in flight
L2 accesses per core. However, we have checked that we have enough with 24
entries per core to ensure that we have an available slot 95% of the time in an
architecture with a ROB of 256 entries. If there are no available slots, we simply
assign the minimum weight to the L2 access as there are many L2 accesses in
flight. The number of adders required to update the M LP cost of all entries is
equal to the number of HSHR entries. As we did with the MSHR, HSHR entries
can share four adders with a negligible effect on the final M LP cost.

Quantification of MLP cost. Dealing with values of M LP cost between 0
and the memory latency (or even greater) can represent a significant hardware
cost. Instead, we decide to quantify this M LP cost with an integer value between
0 and 7 as was done in [I6]. For a memory latency of 300 cycles, we can see in
Table Bl how to quantify the M LP cost. We have split the interval [0; 300] with
7 intervals of equal length.

Table 3. MLP cost quantification

MLP cost Quantification M LP cost Quantification
From 0 to 42 cycles 0 From 171 to 213 cycles 4
From 43 to 85 cycles 1 From 214 to 256 cycles 5
From 86 to 128 cycles 2 From 257 to 300 cycles 6
From 129 to 170 cycles 3 300 or more cycles 7

Finally, when we have to update the corresponding MLP-aware SDH, we add
the quantified value of M LP cost. Thus, isolated L2 misses will have a weight
of 7, while two overlapped L2 misses will have a weight of 3 in the MLP-aware
SDH. In contrast, MinMisses always adds one to its histograms.



12 M. Moreto et al.

3.3 Obtaining Stack Distance Histograms

Normally, L2 caches have two separate parts that store data and address tags to
know if the access is a hit. Basically, our prediction mechanism needs to track
every L2 access and store a separated copy of the L2 tags information in an
Auwziliary Tag Directory (ATD), together with the LRU counters [§]. We need
an ATD for each core that keeps track of the L2 accesses for any possible cache
configuration. Independently of the number of ways assigned to each core, we
store the tags and LRU counters of the last K accesses of the thread, where K
is the L2 associativity. As we have explained in Section [2 an access with stack
distance d; corresponds to a cache miss in any configuration that assigns less
than d; ways to the thread. Thus, with this ATD we can determine whether an
L2 access would be a miss or a hit in all possible cache configurations.

3.4 Putting All Together

In Figure[fl we can see a sketch of the hardware implementation of our proposal.
When we have an L2 access, the ATD is used to determine its stack distance d;.
Depending on whether it is a miss or a hit, either the MSHR or the HSHR is
used to compute the M LP cost of the access. Using the quantification process we
obtain the final M LP cost. This number estimates how performance is affected
when the applications has exactly w} = d; assigned ways. If w} > w;, we are
estimating the performance benefit of converting this L2 miss into a hit. In case
w; < w;, we are estimating the performance degradation of converting this L2
hit into a miss. Finally, using the stack distance, the M LP cost and the core
identifier, we can update the corresponding MLP-aware SDH.

We have used two different partitioning algorithms. The first one, that we de-
note MLP-DCP (standing for MLP-aware Dynamic Cache Partitioning), decides

MAIN
MEMORY
} 2
- L2 s - MlélziR — Quantifier
1 i
MLP-aware
L2 Cache ATDs SOHs
3 T
i ) 1
! L2 HSHRSs H—+ Quantifier
L11$ |L1 D$‘ L11$ |L1 D$
Core 1 e o Core N

Fig. 5. Hardware implementation



Dynamic Cache Partitioning Based on the MLP of Cache Misses 13

the optimal partition according to the MLP cost of each way. We
define the total M LP cost of a thread ¢ that uses w; ways as TMLP(i,w;) =
MLP SDH; »x + Z MLP SDH; ;. We denote the total M LP cost of all
accesses of thread i Wlth stack distance j as MLP SDH; ;. Thus, we have to
minimize the sum of total M LP costs for all cores:

N N
ZTMLP(i7 w;), where Z w; = Associativity.
i=1 i=1

The second one consists in assigning a weight to each total M LP cost using the
IPC of the application in core ¢, I PC;. In this situation, we are giving priority
to threads with higher IPC. This point will give better results in throughput at
the cost of being less fair. I PC; is measured at runtime with a hardware counter
per core. We denote this proposal MLPIPC-DCP, which consists in minimizing
the following expression:

N N
Z IPC; - TMLP(i,w;), where Z w; = Associativity.

i=1 i=1

3.5 Case Study

We have seen that SDHs can give the optimal partition in terms of total L2
misses. However, total number of L2 misses is not the goal of DCP algorithms.
Throughput is the objective of these policies. The underlying idea of MinMisses
is that while minimizing total L.2 misses, we are also increasing throughput. This
idea is intuitive as performance is clearly related to L2 miss rate. However, this
heuristic can lead to inadequate partitions in terms of throughput as can be seen
in the next case study.

In Figure[6, we can see the IPC curves of benchmarks galgel and gzip as we
increase L2 cache size in a way granularity (each way has a 64KB size). We also
show throughput for all possible 15 partitions. In this curve, we assign x ways to
gzip and 16 —z to galgel. The optimal partition consists in assigning 6 to gzip
and 10 ways to galgel, obtaining a total throughput of 3.091 instructions per
cycle. However, if we use MinMisses algorithm to determine the new partition,
we will choose 4 to gzip and 12 ways to galgel according to the SDHs values.
In Figure [6] we can also see the total number of misses for each cache partition
as well as the per thread number of misses.

In this situation, misses in gzip are more important in terms of performance
than misses in galgel. Furthermore, gzip IPC is larger than galgel IPC. As
a consequence MinMisses obtains a non optimal partition in terms of IPC and
its throughput is 2.897, which is a 6.3% smaller than the optimal one. In fact,
galgel clusters of L2 misses are, in average, longer than the ones from gzip. In
that way, MLP-DCP assigns one extra way to gzip and increases performance
by 3%. If we use MLPIPC-DCP, we are giving more importance to gzip as it
has a higher IPC and, as a consequence, we end up assigning another extra way
to gzip, reaching the optimal partition and increasing throughput an extra 3%.



14 M. Moreto et al.

4 200000
& —de—galgel (IPC) ——7ip [IPC) ——Throughput
35 galgel (Misses) = & = gzip (Misses) = & =Total Misses 1 175000
3 ﬁ‘%ﬁ_ﬂ._.};“_ﬁ;ﬁéli_‘\ SOy 150000 8
1 o e 8
25 - 125000 §
© & PO S /B D . . O . . =
a 2 . o 100000 5
o, - . H
“T S B e ERIR g
1 < — ﬁ—‘——é 50000 Z
05 | 9 : x = 25000
0 O D O Qg D B OO 09 O |
1 2 3 4 5 5] 7 8 9 w112 13 14 15 18

Number of ways

Fig. 6. Misses and IPC curves for galgel and gzip

4 Experimental Environment
4.1 Simulator Configuration

We target this study to the case of a CMP with two and four cores with their
respective own data and instruction L1 caches and a unified L2 cache shared
among threads as in previous studies [8/OL10]. Each core is single-threaded and
fetches up to 8 instructions each cycle. It has 6 integer (I), 3 floating point (FP),
and 4 load/store functional units and 32-entry I, load/store, and FP instruction
queues. Each thread has a 256-entry ROB and 256 physical registers. We use a
two-level cache hierarchy with 64B lines with separate 16KB, 4-way associative
data and instruction caches, and a unified L2 cache that is shared among all
cores. We have used two different L2 caches, one of size 1IMB and 16-way asso-
ciativity, and the second one of size 2MB and 32-way associativity. Latency from
L1 to L2 is 15 cycles, and from L2 to memory 300 cycles. We use a 32B width
bus to access L2 and a multibanked L2 of 16 banks with 3 cycles of access time.

We extended the SMTSim simulator [2] to make it CMP. We collected traces
of the most representative 300 million instruction segment of each program, fol-
lowing the SimPoint methodology [18]. We use the FAME simulation method-
ology [19] with a Maximum Allowable IPC Variance of 5%. This evaluation
methodology measures the performance of multithreaded processors by reexe-
cuting all threads in a multithreaded workload until all of them are fairly repre-
sented in the final IPC taken from the workload.

4.2 Workload Classification

In [20] two metrics are used to model the performance of a partitioning algorithm
like MinMisses for pairings of benchmarks in the SPEC CPU 2000 benchmark
suite. Here, we extend this classification for architectures with more cores.

Metric 1. The wpy(B) metric measures the number of ways needed by a
benchmark B to obtain at least a given percentage P% of its maximum IPC
(when it uses all L2 ways).



Dynamic Cache Partitioning Based on the MLP of Cache Misses 15

25 4

[

15

IPC

Average Miss Penalty (cycles)
=
<

._‘__,.,__n—.—"-r —e—Small Waorking Set (azip)
05

= 0w Ll by (Appiu)
—&—High LElity (ammp)

G
£

mesa
sixtrac

']
2
2%
Low Utiity Small High Uity

Number of L2 ways Working Set

1 2 3 45 6 7 8 810111212314 1516

(a) IPC as we vary the number of assigned (b) Average miss penalty of an L2 miss
ways of a IMB 16-way L2 cache. with a 1IMB 16-way L2 cache.

Fig. 7. Benchmark classification

The intuition behind this metric is to classify benchmarks depending on their
cache utilization. Using P = 90% we can classify benchmarks into three groups:
Low utility (L), Small working set or saturated utility (S) and High utility (H). L
benchmarks have 1 < wgqge, < IS( where K is the L2 associativity. L benchmarks
are not affected by L2 cache space because nearly all L2 accesses are misses. S
benchmarks have 18( < wggy, < 12( and just need some ways to have maximum
throughput as they fit in the L2 cache. Finally, H benchmarks have wggo, > 12(
and always improve IPC as the number of ways given to them is increased. Clear
representatives of these three groups are applu (L), gzip (S) and ammp (H) in
Figure In Table Ml we give wggy, for all SPEC CPU 2000 benchmarks.

Table 4. The applications used in our evaluation. For each benchmark, we give the two
metrics needed to classify workloads together with IPC for a IMB 16-way L2 cache.

Bench wggy, APTC IPC Bench wggy, APTC IPC Bench wggy APTC IPC
ammp 14 23.63 1.27 applu 1 16.83 1.03 apsi 10 21.14 2.17
art 10 46.04 0.52 bzip2 1 1.18 2.62 crafty 4 7.66 1.71
eon 3 7.09 2.31 equake 1 18.6 0.27 facerec 11 10.96 1.16
fma3d 9 15.1 0.11 galgel 15 18.9 1.14 gap 1 2.68 0.96
gce 3 6.97 1.64 gzip 4 21.5 2.20 lucas 1 7.60 0.35
mcf 1 9.12 0.06 mesa 2 3.98 3.04 mgrid 11 9.52 0.71
parser 11  9.09 0.89 perl 5 3.82 2.68 sixtrack 1 1.34 2.02
swim 1 28.0 0.40 twolf 15 12.0 0.81 vortex 7 9.65 1.35
vpr 14 119 0.97 wupw 1 5.99 1.32

The average miss penalty of an L2 miss for the whole SPEC CPU 2000 bench-
mark suite is shown in Figure We note that this average miss penalty varies
a lot, even inside each group of benchmarks, ranging from 30 to 294 cycles. This
Figure reinforces the main motivation of the paper, as it proves that the clus-
tering level of L2 misses changes for different applications.



16 M. Moreto et al.

Metric 2. The wpry(th;) metric measures the number of ways given by
LRU to each thread th; in a workload composed of N threads. This can be done
simulating all benchmarks alone and using the frequency of L2 accesses for each
thread [5]. We denote the number of L2 Accesses in a Period of one Thousand
Cycles for thread i as APTC;. In Table[dlwe list these values for each benchmark.

APTC;

N - Associativity
> = APTC;

wrry (th:) =

Next, we use these two metrics to extend previous classifications [20] for work-
loads with more than two benchmarks.

Case 1. When wggy (th;) < wrry(th;) for all threads. In this situation LRU
attains 90% of each benchmark performance. Thus, it is intuitive that in this
situation there is very little room for improvement.

Case 2. When there exists two threads A and B such that wggy(tha) >
wr gy (tha) and wegy (thp) < wrry (thp). In this situation, LRU is harming the
performance of thread A, because it gives more ways than necessary to thread B.
Thus, in this situation LRU is assigning some shared resources to a thread that
does not need them, while the other thread could benefit from these resources.

Case 3. Finally, the third case is obtained when wggy (th;) > wy gy (th;) for
all threads. In this situation, our L2 cache configuration is not big enough to
assure that all benchmarks will have at least a 90% of their peak performance.
In [20] it was observed that pairings belonging to this group showed worse results
when the value of |wggy (th1) — wegy (tha)| grows. In this case, we have a thread
that requires much less L2 cache space than the other to attain 90% of its peak
IPC. LRU treats threads equally and manages to satisfy the less demanding
thread necessities. In case of MinMisses, it assumes that all misses are equally
important for throughput and tends to give more space to the thread with higher
L2 cache necessity, while harming the less demanding thread. This is a problem
due to MinMisses algorithm. We will show in next Subsections that MLP-aware
partitioning policies are available to overcome this situation.

Table 5. Workloads belonging to each case for a 1MB 16-way and a 2MB 32-way
shared L2 caches

1MB 16-way 2MB 32-way
#tcores| Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

2 155 (48%)| 135 (41%) 35 (11%) | 159 (49%)| 146 (45%) 20 (6.2%)
4 624 (4%) | 12785 (86%) |1541 (10%) 286 (1.9%)| 12914 (86%) | 1750 (12%)
6 306 (0.1%)| 219790 (95%) |10134 (5%) | 57 (0.02%)| 212384 (92%) |17789 (7.7%)
8 19 (0%) [1538538 (98%)|23718 (2%)| 1 (0%) |1496215 (96%)|66059 (4.2%)

In Table Bl we show the total number of workloads that belong to each case
for different configurations. We have generated all possible combinations without
repeating benchmarks. The order of benchmarks is not important. In the case
of a 1IMB 16-way L2, we note that Case 2 becomes the dominant case as the



Dynamic Cache Partitioning Based on the MLP of Cache Misses 17

number of cores increases. The same trend is observed for L2 caches with larger
associativity. In Table [Bl we can also see the total number of workloads that
belong to each case as the number of cores increases for a 32-way 2MB L2 cache.
Note that with different L2 cache configurations, the value of wggy, and APTC;
will change for each benchmark. An important conclusion from Table [ is that
as we increase the number of cores, there are more combinations that belong to
the second case, which is the one with more improvement possibilities.

To evaluate our proposals, we randomly generate 16 workloads belonging to
each group for three different configurations. We denote these configurations 2C
(2 cores and 1MB 16-way L2), 4C-1 (4 cores and 1MB 16-way L2) and 4C-2 (4
cores and 2MB 32-way L2). We have also used a 2MB 32-way L2 cache as future
CMP architectures will continue scaling L2 size and associativity. For example,
the IBM Powerb [21] has a 10-way 1.875MB L2 cache and the Niagara 2 has a
16-way 4MB L2.

4.3 Performance Metrics

As performance metrics we have used the IPC throughput, which corresponds to
the sum of individual IPCs. We also use the harmonic mean of relative IPCs to
measure fairness, which we denote Hmean. We use Hmean instead of weighted
speed up because it has been shown to provide better fairness-throughput bal-
ance than weighted speed up [22].

Average improvements do consider the distribution of workloads among the
three groups. We denote this mean weighted mean, as we assign a weight to the
speed up of each case depending on the distribution of workloads from Table (Bl
For example, for the 2C configuration, we compute the weighted mean improve-
ment as 0.48 - x1 + 0.41 - 2 4+ 0.11 - 3, where x; is the average improvement in
Case 1.

5 Evaluation Results

5.1 Performance Results

Throughput. The first experiment consists in comparing throughput for differ-
ent DCP algorithms, using LRU policy as the baseline. We simulate MinMisses
and our two proposals with the 48 workloads that were selected in the pre-
vious Subsection. We can see in Figure the average speed up over LRU
for these mechanisms. MLPIPC-DCP systematically obtains the best average
results, nearly doubling the performance benefits of MinMisses over LRU in
the four-core configurations. In configuration 4C-1, MLPIPC-DCP outperforms
MinMisses by 4.1%. MLP-DCP always improves MinMisses but obtains worse
results than MLPIPC-DCP.

All algorithms have similar results in Case 1. This is intuitive as in this sit-
uation there is little room for improvement. In Case 2, MinMisses obtains a
relevant improvement over LRU in configuration 2C. MLP-DCP and MLPIPC-
DCP achieve an extra 2.5% and 5% improvement, respectively. In the other



18 M. Moreto et al.

125 - 115
12 aMinMisses BMLP-DCFP OMLPPC.OCF |_

115 11

@hMaMisses  BNLP-DOP
LOMFIFC.OCF OFair

il

) c [Z-C 1[4Ez
Case 3

mU

11

LRU

105

095 H

Speed Up over
Speead Up over L

o
o

088
08 H
0.7

2 [z.. |4c 2
Weightad Mean

2 |z.r.-1[z.|:.z 2c-|4|:-- 4c

Case 1 Case 2

2 |zc 1|4c -2
Wiightied Mign

o |4c 1|4c . ¢ |ac- 1|4c 2 |4c 2

r,|_m° Cased

(a) Throughput speed up over LRU. (b) Fairness speed up over LRU.

Fig. 8. Average performance speed ups over LRU

configurations, MLP-DCP and MLPIPC-DCP still outperform MinMisses by a
2.1% and 3.6%. In Case 3, MinMisses presents larger performance degradation
as the asymmetry between the necessities of the two cores increases. As a con-
sequence, it has worse average throughput than LRU. Assigning an appropriate
weight to each L2 access gives the possibility to obtain better results than LRU
using MLP-DCP and MLPIPC-DCP.

Fairness. We have used the harmonic mean of relative IPCs [22] to measure
fairness. The relative IPC is computed as IIP CSh”ed .In Flgure we show the
average speed up over LRU of the harmonic mean of relative IPCs. Fair stands
for the policy explained in Section[Z2l We can see that in all situations, MLP-DCP
always improves over both MinMisses and LRU (except in Case 3 for two cores).
It even obtains better results than Fair in configurations 2C and 4C-1. MLPIPC-
DCP is a variant of the MLP-DCP algorithm optimized for throughput. As a
consequence, it obtains worse results in fairness than MLP-DCP.

20 127

o E 1148 f| LR “

§ S 116 MInMIGGF!G

3 14 ﬂll_zniltc‘flcp

o : = i =D

SgnRT——————

-z 1

b2 1m

2+

0 o 105 //'

3,?.1,fm

5L s

O — _‘/’

éi 1 & — T T T T T T T 1
> w © o = e} @ @ =
fo 7z ¥z 7z TS = €z = Ta
SE RIS o 38 ;0 3R 28 13
- o o ' o I~
— szrﬁgﬂrﬁgmrgfm

Associativity

Fig. 9. Average throughput speed up over LRU with a 1MB 16-way L2 cache

Equivalent cache space. DCP algorithms reach the performance of a larger L2
cache with LRU eviction policy. Figure @ shows the performance evolution when
the L2 size is increased from 1MB to 2MB with LRU as eviction policy. In this



Dynamic Cache Partitioning Based on the MLP of Cache Misses 19

experiment, the workloads correspond to the ones selected for the configuration
4C-1. Figure [@ also shows the average speed up over LRU of MinMisses, MLP-
DCP and MLPIPC-DCP with a 1MB 16-way L2 cache. MinMisses has the same
average performance as a 1.25MB 20-way L2 cache with LRU, which means that
MinMisses provides the performance obtained with a 25% larger shared cache.
MLP-DCP reaches the performance of a 37.5% larger cache. Finally, MLPIPC-
DCP doubles the increase in size of MinMisses, reaching the performance of a
50% larger L2 cache.

5.2 Design Parameters

Figure [10(a)| shows the sensitivity of our proposal to the period of partition de-
cisions. For shorter periods, the partitioning algorithm reacts quicker to phase
changes. Once again, small performance variations are obtained for different pe-
riods. However, we observe that for longer periods throughput tends to decrease.
As can be seen in Figure the peak performance is obtained with a period
of 5 million cycles.

r
X

12
115 4+ | BMNMSSES EMLP CIMLP-IPC ||

11

' 1,05 1
2 — ;
2 0.95
; % oo
. . . : : . | goss

S & & & & 2 ag
& & & F L&

Period ROB size

e
n

]

Intructions Per Cycle
; [
& =

Up over LRU

@
@

")

(a) Average throughput for different pe- (b) Average speed up over LRU for different
riods for the MLP-DCP algorithm with ROB sizes with the 4C-1 configuration.
the 2C configuration.

Fig. 10. Sensitivity analysis to different design parameters

Finally, we have varied the size of the ROB from 128 to 512 entries to show the
sensitivity of our proposals to this parameter of the architecture. Our mechanism
is the only one which is aware of the ROB size: The higher the size of the ROB,
the larger size of the cluster of L2 misses. Other policies only work with the
number of L2 misses, which will not change if we vary the size of the ROB.
When the ROB size increases, clusters of misses can contain more misses and,
as a consequence, our mechanism can differentiate better between isolated and
clustered misses. As we show in Figure average improvements in the 4C-1
configuration are a little bit higher for a ROB with 512 entries, while MinMisses
shows worse results. MLPIPC-DCP outperforms LRU and MinMisses by 10.4%
and 4.3% respectively.

5.3 Hardware Cost

We have used the hardware implementation of Figure [ to estimate the hard-
ware cost of our proposal. In this Subsection, we focus our attention on the



20 M. Moreto et al.

configuration 2C. We suppose a 40-bit physical address space. Each entry in the
ATD needs 29 bits (1 valid bit + 24-bit tag + 4-bit for LRU counter). Each set
has 16 ways, so we have an overhead of 58 Bytes (B) for each set. As we have
1024 sets, we have a total cost of 58KB per core.

The hardware cost that corresponds to the extra fields of each entry in the L2
MSHR is 5 bits for the stack distance and 2B for the M LP cost. As we have 32
entries, we have a total of 84B. Four adders are needed to update the M LP cost
of the active MSHR entries. HSHR entries need 1 valid bit, 8 bits to identify
the ROB entry, 34 bits for the address, 5 bits for the stack distance and 2B for
the M LP cost. In total we need 64 bits per entry. As we have 24 entries in each
HSHR, we have a total of 192B per core. Four adders per core are needed to
update the M LP cost of the active HSHR entries. Finally, we need 17 counters
of 4B for each MLP-Aware SDH, which supposes a total of 68B per core. In
addition to the storage bits, we also need an adder for incrementing MLP-aware
SDHs and a shifter to halve the hit counters after each partitioning interval.

T A —a—LRU
. —+—MLP.DCP

= & =Hardware Casl|

Average Throughput

\
L o
Hardware Cost (% of L2 size)

= A
17 ——— S R e
1 2 4 & 16 32 64 128 256 512 1024
Sampling Distance

Fig. 11. Throughput and hardware cost depending on d, in a two-core CMP

Sampled ATD. The main contribution to hardware cost corresponds to the
ATD. Instead of monitoring every cache set, we can decide to track accesses
from a reduced number of sets. This idea was also used in [8] with MinMisses
in a CMP environment. Here, we use it in a different situation, say to estimate
MLP-aware SDHs with a sampled number of sets. We define a sampling distance
ds that gives the distance between tracked sets. For example, if ds = 1, we are
tracking all the sets. If ds = 2, we track half of the sets, and so on. Sampling
reduces the size of the ATD at the expense of less accuracy in MLP-aware
SDHs predictions as some accesses are not tracked, Figure [[Tl shows throughput
degradation in a 2 cores scenario as the ds increases. This curve is measured
on the left y-axis. We also show the storage overhead in percentage of the total
L2 cache size, measured on the right y-axis. Thanks to the sampling technique,
storage overhead drastically decreases. Thus, with a sampling distance of 16
we obtain average throughput degradations of 0.76% and a storage overhead of
0.77% of the L2 cache size, which is less than 8KB of storage. We think that this
is an interesting point of design.



Dynamic Cache Partitioning Based on the MLP of Cache Misses 21

5.4 Scalable Algorithm to Decide Cache Partitions

Evaluating all possible combinations allows determining the optimal partition
for the next period. However, this algorithm does not scale adequately when
associativity and the number of applications sharing the cache is raised. If we
have a K-way associativity L2 cache shared by IV cores, the number of possible
partitions without considering the order is (N+II(( _1). For example, for 8 cores
and 16 ways, we have 245157 possible combinations. Consequently, the time to
decide new cache partitions does not scale. Several heuristics have been proposed
to reduce the number of cycles required to decide the new partition [8/[0], which
can be used in our situation. These proposals bound the length of the decision
period by 10000 cycles. This overhead is very low compared to 5 million cycles
(less than 0.2%).

@EEvalAl  mMarginal Gains  OLook Ahead ]

Speed Up over LRU

Weighted
Mean

4 cores - TMB 16-way L2 cache

Fig. 12. Average throughput speed up over LRU for different decision algorithms in
the 4C-1 configuration

Figure [I2 shows the average speed up of MLP-DCP over LRU with the 4C-1
configuration with three different decision algorithms. Evaluating all possible par-
titions (denoted FwvalAll) gives the highest speed up. The first greedy algorithm
(denoted Marginal Gains) assigns one way to a thread in each iteration [9]. The
selected way is the one that gives the largest increase in M LP cost. This process
is repeated until all ways have been assigned. The number of operations (com-
parisons) is of order K - N, where K is the associativity of the L2 cache and N
the number of cores. With this heuristic, an average throughput degradations of
0.59% is obtained. The second greedy algorithm (denoted Look Ahead) is similar
to Marginal Gains. The basic difference between them is that Look Ahead con-
siders the total M LP cost for all possible number of blocks that the application
can receive [§] and can assign more than one way in each iteration. The number
of operations (add-divide-compare) is of order N - I;Q, where K is the associativ-
ity of the L2 cache and N the number of cores. With this heuristic, an average
throughput degradations of 1.04% is obtained.



22 M. Moreto et al.

6 Conclusions

In this paper we propose a new DCP algorithm that assigns a cost to each
L2 access according to its impact in final performance: isolated misses receive
higher costs than clustered misses. Next, our algorithm decides the L2 cache
partition that minimizes the total cost for all running threads. Furthermore, we
have classified workloads for multiple cores into three groups and shown that
the dominant situation is precisely the one that offers room for improvement.

We show that our proposal reaches high throughput for two- and four-core
architectures. In all evaluated configurations, our proposal consistently outper-
forms both LRU and MinMisses, reaching a speed up of 63.9% (10.6% on aver-
age) and 15.4% (4.1% on average), respectively. With our proposals, we reach
the performance of a 50% larger cache. Finally, we used a sampling technique to
propose a practical implementation with a storage cost to less than 1% of the
total L2 cache size and a scalable algorithm to determine cache partitions with
nearly no performance degradation.

Acknowledgments

This work is supported by the Ministry of Education and Science of Spain un-
der contracts TIN2004-07739, TIN2007-60625 and grant AP-2005-3318, and by
SARC European Project. The authors would like to thank C. Acosta, A. Falcon,
D. Ortega, J. Vermoulen and O. J. Santana for their work in the simulation tool.
We also thank F. Cabarcas, I. Gelado, A. Rico and C. Villavieja for comments
on earlier drafts of this paper and the reviewers for their helpful comments.

References

1. Serrano, M.J., Wood, R., Nemirovsky, M.: A study on multistreamed superscalar
processors, Technical Report 93-05, University of California Santa Barbara (1993)

2. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximizing
on-chip parallelism. In: ISCA (1995)

3. Hammond, L., Nayfeh, B.A., Olukotun, K.: A single-chip multiprocessor. Com-
puter 30(9), 79-85 (1997)

4. Cazorla, F.J., Ramirez, A., Valero, M., Fernandez, E.: Dynamically controlled
resource allocation in SMT processors. In: MICRO (2004)

5. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting inter-thread cache contention
on a chip multi-processor architecture. In: HPCA (2005)

6. Petoumenos, P., Keramidas, G., Zeffer, H., Kaxiras, S., Hagersten, E.: Modeling
cache sharing on chip multiprocessor architectures. In: IISWC, pp. 160-171 (2006)

7. Chiou, D., Jain, P.;, Devadas, S., Rudolph, L.: Dynamic cache partitioning via
columnization. In: Design Automation Conference (2000)

8. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In: MICRO (2006)

9. Suh, G.E., Devadas, S., Rudolph, L.: A new memory monitoring scheme for
memory-aware scheduling and partitioning. In: HPCA (2002)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Dynamic Cache Partitioning Based on the MLP of Cache Misses 23

Kim, S., Chandra, D., Solihin, Y.: Fair cache sharing and partitioning in a chip
multiprocessor architecture. In: PACT (2004)

Karkhanis, T.S., Smith, J.E.: A first-order superscalar processor model. In: ISCA
(2004)

Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation techniques for
storage hierarchies. IBM Systems Journal 9(2), 78-117 (1970)

Settle, A., Connors, D., Gibert, E., Gonzalez, A.: A dynamically reconfigurable
cache for multithreaded processors. Journal of Embedded Computing 1(3-4) (2005)
Rafique, N., Lim, W.T., Thottethodi, M.: Architectural support for operating
system-driven CMP cache management. In: PACT (2006)

Hsu, L.R., Reinhardt, S.K., Iyer, R., Makineni, S.: Communist, utilitarian, and
capitalist cache policies on CMPs: caches as a shared resource. In: PACT (2006)
Qureshi, M.K., Lynch, D.N.,; Mutlu, O., Patt, Y.N.: A case for MLP-aware cache
replacement. In: ISCA (2006)

Kroft, D.: Lockup-free instruction fetch/prefetch cache organization. In: ISCA
(1981)

Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.: Discovering and
exploiting program phases. IEEE Micro (2003)

Vera, J., Cazorla, F.J., Pajuelo, A., Santana, O.J., Fernandez, E., Valero, M.:
FAME: Fairly measuring multithreaded architectures. In: PACT (2007)

Moreto, M., Cazorla, F.J., Ramirez, A., Valero, M.: Explaining dynamic cache
partitioning speed ups. IEEE CAL (2007)

Sinharoy, B., Kalla, R.N., Tendler, J.M., Eickemeyer, R.J., Joyner, J.B.: Powerb
system microarchitecture. IBM J. Res. Dev. 49(4/5), 505-521 (2005)

Luo, K., Gummaraju, J., Franklin, M.: Balancing throughput and fairness in SM'T
processors. In: ISPASS (2001)



Cache Sensitive Code Arrangement for
Virtual Machine®

Chun-Chieh Lin and Chuen-Liang Chen

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei,
10764, Taiwan
{d93020,clchen}@csie.ntu.edu.tw

Abstract. This paper proposes a systematic approach to optimize the code layout
of a Java ME virtual machine for an embedded system with a cache-sensitive
architecture. A practice example is to run JVM directly (execution-in-place) in
NAND flash memory, for which cache miss penalty is too high to endure. The
refined virtual machine generated cache misses 96% less than the original
version. We developed a mathematical approach helping to predict the flow of
the interpreter inside the virtual machine. This approach analyzed both the static
control flow graph and the pattern of bytecode instruction streams, since we
found the input sequence drives the program flow of the virtual machine
interpreter. Then we proposed a rule to model the execution flows of Java
instructions of real applications. Furthermore, we used a graph partition
algorithm as a tool to deal with the mathematical model, and this finding helped
the relocation process to move program blocks to proper memory pages. The
refinement approach dramatically improved the locality of the virtual machine
thus reduced cache miss rates. Our technique can help Java ME-enabled devices
to run faster and extend longer battery life. The approach also brings potential for
designers to integrate the XIP function into System-on-Chip thanks to lower
demand for cache memory.

Keywords: cache sensitive, cache miss, NAND flash memory, code arrange-
ment, Java virtual machine, interpreter, embedded system.

1 Introduction

Java platform extensively exists in all kinds of embedded and mobile devices. The
Java™ Platform, Micro Edition (Java ME) [1] is no doubt a de facto standard platform
of smart phone. The Java virtual machine (it is KVM in Java ME) is a key component
that affects performance and power consumptions.

NAND flash memory comes with serial bus interface. It does not allow random
access, and the CPU must read out the whole page at a time, which is a slow operation
compared to RAM. This property leads a processor hardly to execute programs stored

" We acknowledge the support for this study through grants from National Science Council of
Taiwan (NSC 95-2221-E-002 -137).

P. Stenstrom (Ed.): Transactions on HIPEAC III, LNCS 6590, pp. 24 2011.
© Springer-Verlag Berlin Heidelberg 2011



Cache Sensitive Code Arrangement for Virtual Machine 25

in NAND flash memory using the “execute-in-place” (XIP) technique. In the mean-
while, NAND flash memory offers fast write access time, and the most important of all,
the technology has advantages in offering higher capacity than NOR flash technology
does. As the applications of embedded devices become large and complicated, more
mainstream devices adopt NAND flash memory to replace NOR-flash memory.

In this paper, we tried to offer an answer to the question: can we speed up an em-
bedded device using NAND flash memory to store programs? “Page-based” storage
media, like NAND flash memory, have higher access penalty than RAM does. Re-
ducing the page miss becomes a critical issue. Thus, we set forth to find way to reduce
the page miss rate generated by the KVM. Due to the unique structure of the KVM
interpreter, we found a special way to exploit the dynamic locality of the KVM that is to
trace the patterns of executed bytecode instructions instead of the internal flow of the
KVM. It turned out to be a combinatorial optimization problem because the code layout
must fulfill certain code size constraints. Our approach achieved the effect of static
page preloading by properly arranging program blocks. In the experiment, we imple-
mented a post-processing program to modify the intermediate files generated by the C
compiler. The post-processing program refined machine code placement of the KVM
based on the mathematical model. Finally, the obtained tuned KVMs dramatically
reduced page accesses to NAND flash memories. The outcome of this study helps
embedded systems to boost performance and extend battery life as well.

2 Related Works

Park et al., in [2], proposed a hardware module to allow direct code execution from
NAND flash memory. In this approach, program codes stored in NAND flash pages
will be loaded into RAM cache on-demand instead of moving entire contents into
RAM. Their work is a universal hardware-based solution without considering appli-
cation-specific characteristics.

Samsung Electronics offers a commercial product called “OneNAND” [3] based on
the same. It is a single chip with a standard NOR flash interface. Actually, it contains a
NAND flash memory array for storage. The vendor intent was to provide a
cost-effective alternative to NOR flash memory used in existing designs. The internal
structure of OneNAND comprises a NAND flash memory, control logic, hardware
ECC, and 5KB buffer RAM. The 5KB buffer RAM is comprised of three buffers: 1KB
for boot RAM, and a pair of 2KB buffers used for bi-directional data buffers. Our
approach is suitable for systems using this type of flash memories.

Park et al., in [4], proposed yet another pure software approach to achieve exe-
cute-in-place by using a customized compiler that inserts NAND flash reading opera-
tions into program code at proper place. Their compiler determines insertion points by
summing up sizes of basic blocks along the calling tree. Special hardware is no longer
required, but in contrast to earlier work [2], there is still a need for tailor-made compiler.

Typical studies of refining code placement to minimize cache misses can apply to
NAND flash cache system. Parameswaran et al., in [5], used the bin-packing approach.
It reorders the program codes by examining the execution frequency of basic blocks.
Code segments with higher execution frequency are placed next to each other within
the cache. Janapsatya et al., in [6], proposed a pure software heuristic approach to
reduce number of cache misses by relocating program sections in the main memory.



26 C.-C. Lin and C.-L. Chen

Their approach was to analyze program flow graph, identify and pack basic blocks
within the same loop. They have also created relations between cache miss and energy
consumption. Although their approach can identify loops within a program, breaking
the interpreter of a virtual machine into individual circuits is hard because all the loops
share the same starting point.

There are researches in improving program locality and optimizing code placement
for either cache or virtual memory environment. Pettis [7] proposed a systematic
approach using dynamic call graph to position procedures. They tried to place two
procedures as close as possible if one of the procedure calls another frequently. The
first step of Pettis’ approach uses the profiling information to create weighted call
graph. The second step iteratively merges vertices connected by heaviest weight edges.
The process repeats until the whole graph composed of one or more individual vertex
without edges.

However, the approach to collect profiling information and their accuracy is yet
another issue. For example, Young and Smith in [8] developed techniques to extract
effective branch profile information from a limited depth of branch history. Ball and
Larus in [9] described an algorithm for inserting monitoring code to trace programs.
Our approach is very different by nature. Previous studies all focused in the flow of
program codes, but we tried to model the profile by input data.

This research project created a post-processor to optimize the code arrangements. It
is analogous to “Diablo linker” [10]. They utilized symbolic information in the object
files to generate optimized executable files. However, our approach will generate
feedback intermediate files for the compiler, and invoke the compiler to generate
optimized machine code.

3 Background

3.1 XIP with NAND Flash

NOR flash memory is popular as code memory because of the XIP feature. There are
several approaches designed for using NAND flash memory as an alternative to NOR
flash memory. Because NAND flash memory interface cannot connect to the CPU host
bus, there has to be a memory interface controller to move data from NAND flash
memory to RAM.

ROM, or
NOR Flash.
with
Bootloader
NAND
Flash CcPU

Address/Data Bus

deUT AWl Yse|d
Wyy mopeys

Fig. 1. Access NAND flash through shadow RAM



Cache Sensitive Code Arrangement for Virtual Machine 27

In system-level view, Figure 1 shows a straightforward design which uses RAM as
the shadow copy of NAND flash. The system treats NAND flash memory as secondary
storage device [11]. There should be a boot loader or RTOS resided in ROM or NOR
flash memory. It copies program codes from NAND flash to RAM, then the processor
executes program codes in RAM [12]. This approach offers best execution speed
because the processor operates with RAM. The downside of this approach is it needs
huge amount of RAM to mirror NAND flash. In embedded devices, RAM is a precious
resource. For example, the Sony Ericsson T610 mobile phone [13] reserved 256KB
RAM for Java heap. In contrast to using 256MB for mirroring NAND flash memory, all
designers should agree that they would prefer to retain RAM for Java applets rather
than for mirroring. The second pitfall is the implementation takes longer time to boot
because the system must copy contents to RAM prior to execution.

Figure 2 shows a demand paging approach uses limited amount of RAM as the cache
of NAND flash. The “romized” program codes stay in NAND flash memory, and a
MMU loads only portions of program codes which is about to be executed from NAND
into the cache. The major advantage of this approach is it consumes less RAM. Several
kilobytes of RAM are enough to mirror NAND flash memory. Using less RAM means
integrating CPU, MMU and cache into a single chip (the shadowed part in Figure 2) can
be easier. The startup latency is shorter since the CPU is ready to run soon after the first
NAND flash page is loaded into the cache. The component cost is lower than in the
previous approach. The realization of the MMU might be either hardware or software
approach, which is not covered in this paper.

Optional
z ROM,
5 NOR Flash @
= m
] 8

NAND 3 | a
Flash Memory | < i CPU

3 5
m =
3 <
(]
® Cache

> RaM

Fig. 2. Using cache unit to access NAND flash

However, performance is the major drawback of this approach. The penalty of each
cache miss is high, because loading contents from a NAND flash page is nearly 200
times slower than doing the same operation with RAM. Therefore reducing cache
misses becomes a critical issue for such configurations.

3.2 KVM Internals

Source Level. In respect of functionality, the KVM can be broken down into several
parts: startup, class files loading, constant pool resolving, interpreter, garbage collection,



28 C.-C. Lin and C.-L. Chen

and KVM cleanup. Lafond et al., in [14], have measured the energy consumptions of
each part in the KVM. Their study showed that the interpreter consumed more than
50% of total energy. In our experiments running Embedded Caffeine Benchmark [15],
the interpreter contributed 96% of total memory accesses. These evidences lead to the
conclusion that the interpreter is the performance bottleneck of the KVM, and they

motivated us to focus on reducing the cache misses generated by the interpreter.

Figure 3 shows the program structure of the interpreter. It is a loop enclosing a large
switch-case dispatcher. The loop fetches bytecode instructions from Java applications,
and each “case” sub-clause deals with one bytecode instruction. The control flow graph
of the interpreter, as illustrated in Figure 4, is a flat and shallow spanning tree. There are
three major steps in the interpreter,

ReschedulePoint:

RESCHEDULE

opcode = FETCH BYTECODE ( ProgramCounter );
switch ( opcode )

{

}

BranchPoint:

case ALOAD:

goto ReschedulePoint;

case IADD:

case IFEQ: /* do something */
goto BranchPoint;

take care of program counter;

/* do something */

goto ReschedulePoint;

/* do something */

Fig. 3. Pseudo code of KVM interpreter

Rescheduling and
Fetching

aload

iinc

iadd

iconst0

Invokestatic#1

| resolveMethodReference |

Invokestatic#2 |

Fig. 4. Control flow graph of the interpreter



Cache Sensitive Code Arrangement for Virtual Machine 29

(1) Rescheduling and Fetching. In this step, KVM prepares the execution context and
the stack frame. Then it fetches a bytecode instruction from Java programs.

(2) Dispatching and Execution. After reading a bytecode instruction from Java pro-
grams, the interpreter jumps to corresponding bytecode handlers through the big
“switch...case...” statement. Each bytecode handler carries out the function of the
corresponding bytecode instruction.

(3) Branching. The branch bytecode instructions may bring the Java program flow
away from original track. In this step, the interpreter resolves the target address and
modifies the program counter.

Trunk #1 N
FastInterpret: | BytecodefFetching |
mov ip, sp 2/
.LCFIU;:d (
» stmfd sp!, {r4, r5, r6, ...
.LCFI1: P
sub fp, ip, #4
FI2:
sub sp, sp, #216 B
1L573: [Trunk #2
word .L11 | LookupTable
word .L14
word .L15
word .L16
word .L17
L14: TTrunk #3
ldr r1, [.L574, #}--. | BytecodeDispatch |
add r1, r1, #4 iy S
¢ b .L11 = 8
.L15: 2 =
bl isAssignableToFast 2O x
— o g
b .L11 = 2
L574: b2 iy
word 0 & 5
.word 0 = =
.word 1072698248 ® S
L566: (Trunk #4 0

,'L"fri?fggzoﬂ -.\.fExcept.‘onHandﬁng/,'
Idr r3, [r3, #12] ) )
Idr r3, [r3, #8]

isAssignableToFast: <

L0 1dmfd sp, {fp, s, pc}

Other trunks |

i
¥

Fig. 5. The organization of the interpreter at assembly level

Assembly Level. Our analysis of the source files revealed the peculiar program
structure of the VM interpreter. Analyzing the code layout in the compiled executables
of the interpreter helped this study to create a code placement strategy. The assembly
code analysis in this study is restricted to ARM and gcc for the sake of demonstration,



30 C.-C. Lin and C.-L. Chen

but applying our theory to other platforms and tools is an easy job. Figure 5 illustrates
the layout of the interpreter in assembly form (FastInterpret() in interp.c). The first
trunk BytecodeFetching is the code block for rescheduling and fetching, it is exactly the
first part in the original source code. The second trunk LookupTable is a large lookup
table used in dispatching bytecode instructions. Each entry links to a bytecode handler.
It is actually the translated result of the “switch...case...case” statement.

The third trunk BytecodeDispatch is the aggregation of more than a hundred byte-
code handlers. Most bytecode handlers are self-contained which means a bytecode
handler occupies a contiguous memory space in this trunk, and it does not jump to
program codes stored in other trunks. There are only a few exceptions which call
functions stored in other trunks, such as “invokevirtual.” Besides, there are several
constant symbol tables spread over this trunk. These tables are referenced by the pro-
gram codes within the BytecodeDispatch trunk.

The last trunk ExceptionHandling contains code fragments for exception handling.
Each trunk occupies a number of NAND flash pages. In fact, the total size of Byteco-
deFetching and LookupTable is about 1200 bytes (compiled with arm-elf-gcc-3.4.3),
which is almost small enough to fit into two or three 512-bytes-page. Figure 6 shows
the size distribution of bytecode handlers. The average size of a bytecode handler is 131
bytes, and there are 79 handlers smaller than 56 bytes. In other words, a 512-bytes-page
could gather 4 to 8 bytecode handlers. The inter-handler execution flow dominates the
number of cache misses generated by the interpreter. This is the reason that our ap-
proach tries to rearrange bytecode handlers within the ByfecodeDispatch trunk.

70
60 —
50

240

Coun

30
20

o UL D_H_D_D_D_D 1

LR B R N I N
O Y. T S G o
Range of Handler Size

Fig. 6. Distribution of Bytecode Handler Size (compiled with gcc-3.4.3)

4 Analyzing Control Flow

4.1 Indirect Control Flow Graph

Static branch-prediction and typical code placement approaches derive the layout of a
program from its control flow graph (CFG). However, the CFG of a VM interpreter is a
special case, its CFG is a flat spanning tree enclosed by a loop. The CFG does not
provide sufficient information to distinguish the temporal relations of each bytecode
handler pair. If someone wants to improve the program locality by observing the dy-
namic execution order of program blocks, the CFG is apparently not a good tool to this



Cache Sensitive Code Arrangement for Virtual Machine 31

end. Therefore, we propose a concept called “Indirect Control Flow Graph” (ICFG); it
uses the real bytecode instruction sequences to construct the dual CFG of the interpreter.
Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D, and E,
and use the virtual machine to run a very simple user applet. Consider the following
short alphabetic sequence as the instruction sequence of the user applet:
A-B-A-B-C-D-E-C

Each alphabet in the sequence represents a bytecode instruction. In Figure 7, the graph
connected with the solid lines is the CFG of the simplified interpreter. By observing the
flow in the CFG, the program flow becomes:

[Dispatch] — [Handler A] — [Dispatch] — [Handler B]...

Fetching &
Dispatching

[ Next Iteration j

Fig. 7. The CFG of the simplified interpreter

It is hard to tell the relation between handler-A and handler-B because the loop
header hides it. In other words, this CFG cannot easily present which handler would be
invoked after handler-A is executed. The idea of the ICFG is to observe the patterns of
the bytecode sequences executed by the virtual machine, not to analyze the structure of
the virtual machine itself. Figure 8 expresses the ICFG in a readable way, it happens to
be the sub-graph connected by the dashed directed lines in Figure 7.

@

Fig. 8. An ICFG example. The number inside the circle represents the size of the handler




32 C.-C. Lin and C.-L. Chen

4.2 Tracing the Locality of the Interpreter

As stated, the Java applications that a KVM runs dominate the temporal locality of the
interpreter. Precisely speaking, the incoming Java instruction sequence dominates the
temporal locality of the KVM. Therefore, the first step to exploit the temporal locality
is to consider the bytecode sequences executed by the virtual machine. Consider the
previous example sequence, the order of accessed NAND flash pages is supposed to be:

[BytecodeFetchingl—[LookupTable]-[Al—[BytecodeFetching]—[LookupTable]—
[B]—[BytecodeFetchingl—[LookupTable]—[A]...

Obviously, memory pages containing BytecodeFetching and LookupTable are much
often to appear in the sequence than those containing BytecodeDispatch. As a result,
pages containing BytecodeFetching and LookupTable are favorable to last in the cache.
Pages holding bytecode handlers have to compete with each other to stay in the cache.
Thus, we induced that the order of executed bytecode instructions is the key factor
impacts cache misses.

Consider an extreme case: In a system with three cache blocks, two cache blocks
always hold memory pages containing BytecodeFetching and LookupTable due to the
stated reason. Therefore, there is only one cache block available for swapping pages
containing bytecode handlers. If all the bytecode handlers were located in distinct
memory pages, processing a bytecode instruction would cause a cache miss. This is
because the next-to-execute bytecode handler is always located in an uncached memory
page. In other words, the sample sequence causes at least eight cache misses. Never-
theless, if both the handlers of A and B are grouped to the same page, cache misses will
decline to 5 times, and the page access trace becomes:

fault-A-B-A-B-fault-C-fault-D-fault-E-fault-C

If we extend the group (A, B) to include the handler of C, the cache miss count would
even drop to four times, and the page access trace looks like the following one:

fault-A-B-A-B-C-fault-D-fault-E-fault-C

Therefore, the core issue of this study is to find an efficient code layout method parti-
tioning all bytecode instructions into disjoined sets based on their execution relevance.
Each NAND flash page contains one set of bytecode handlers. We propose partitioning
the ICFG reaches this goal.

Back to Figure 8, the directed edges represent the temporal order of the instruction
sequence. The weight of an edge is the transition count for transitions from one bytecode
instruction to the next. If we remove the edge (B, C), the ICFG is divided into two
disjoined sets. That is, the bytecode handlers of A and B are placed in one page, and the
bytecode handlers of C, D, and E are placed in the other. The page access trace becomes:

Sfault-A-B-A-B-fault-C-D-E-C

This placement causes only two cache misses, which is 75% lower than the worst case!
The next step is to transform the ICFG diagram to an undirected graph by merging
reversed edges connecting same vertices, and the weight of the undirected edge is the
sum of weights of the two directed edges. The consequence is actually a variation of the
classical MIN k-CUT problem. Formally speaking, we can model a given graph
G(V, E) as:



Cache Sensitive Code Arrangement for Virtual Machine 33

® V;—represents the i-th bytecode instruction.

e [E;; —the edge connecting i-th and j-th bytecode instruction.

® F;; — number of times that two bytecode instructions 7 and j executed after each
other. It is the weight of edge E; ;.

® K — number of expected partitions.

e W, —the inter-set weight. V x #y, W, ,= XF;; where V;€ P,and V; € P,.

The goal is to model the problem as the following definition:

Definition 1. The MIN k-CUT problem is to divide G into K disjoined partitions {P;,
P»,...,P.} such that ZW;; is minimized.

4.3 The Mathematical Model

Yet there is an additional constraint in our model. It is impractical to gather bytecode
instructions to a partition regardless of the sum of the program size of consisted byte-
code handlers. The size of each bytecode handler is distinct, and the code size of a
partition cannot exceed the size of a memory page (e.g. NAND flash page). Our aim is
to distribute bytecode handlers into several disjoined partitions {P;, P,,...,P }. We
define the following notations:

® S, —the code size of bytecode handler V.

® N —the size of a memory page.

® M(Py,) — the size of partition P, . It is XS, for all V,,.e P;..

® H(P, ) —the value of partition P . Itis ZF;;forall V;, V€ Py.

Our goal is to construct partitions that satisfy the following constraints.

Definition 2. The problem is to divide G into K disjoined partitions {P;, P»,...,P;}. For
each Py that M(P;) < N such that W;; is minimized, and maximize XH(P; ) for all P; €
{P}, Py,....PL}.

This rectified model is exactly an application of the graph partition problem, i.e., the
size of each partition must satisfy the constraint (size of a memory page), and the sum
of inter-partition path weights is minimal. The graph partition problem is NP-complete
[16]. However, the purpose of this paper was neither to create a new graph partition
algorithm nor to discuss the difference between existing algorithms. The experimental
implementation just adopted the following algorithm to demonstrate our approach
works. Other implementations based on this approach may choose another graph
partition algorithm that satisfies specific requirements.

Partition (G)

1. Find the edge with maximal weight F;; among graph G, while the S; + §; < N. If
there is no such an edge, go to step 4.

2. Call Merge (V;, V;) to combine vertices V; and V.

3. Remove both V; and V; from G, go to step 1.

4. Find a pair of vertices V; and V;in G such that S; + S; < N. If there isn’t any pair
satisfied the criteria, go to step 7.

5. Call Merge (V;, V;) to combine vertices V; and V.

6. Remove both V; and V; out of G, go to step 4.

7. End.



34 C.-C. Lin and C.-L. Chen

The procedure of merging both vertices V; and V; is:
Merge (V;, V;)

1. Add a new vertex V, to G.

2. Pickup an edge E connects V, with either V; or V; . If there is no such an edge, go
to step 6.

3. If there is already an edge F connects V, to V.

4. Then, add the weight of E to F, and discard E.

5. Else, replace one end of E which is either V; or V; with V.

6. End.

Finally, each vertex in G is a collection of several bytecode handlers. The refinement
process is to collect bytecode handlers belonging to the same vertex and place them into
one memory page.

S The Process of Rewriting the Virtual Machine

Our approach emphasizes that the arrangements of bytecode handlers affects cache
miss rate. In other words, it implies that programmers should be able to speed up their
programs by properly changing the order of the “case” sub-clauses in the source files.
Therefore, this study tries to optimize the virtual machine in two distinct ways. The first
approach revises the order of the “case” sub-clauses in the sources of the virtual ma-
chine. If our theory were correct, this tentative approach should show that the modified
virtual machine performs better in most test cases. The second version precisely reor-
ganizes the layout of assembly code blocks of bytecode handlers, and this approach
should be able to generate larger improvements than the first version.

5.1 Source-Level Rearrangement

The concept of the refining process is to arrange the order of these “case” statements in
the source file (execute.c). The consequence is that after translating the rearranged
source files, the compiler will place bytecode handlers in machine code form in me-
ditated order. The following steps are the outline of the refining procedures.

A. Profiling. Run the Java benchmark program on the unmodified KVM. A custom
profiler traces the bytecode instruction sequence, and it generates the statistics of
inter-bytecode instruction counts. Although we can collect some patterns of instruction
combinations by investigating the Java compiler, using a dynamic approach can cap-
ture further application-dependent patterns.

B. Measuring the size of each bytecode handler. The refining program compiles the
KVM source files and measures the code size of each bytecode handler (i.e., the size of
each ‘case’ sub-clause) by parsing intermediate files generated by the compiler.

C. Partitioning the ICFG. The previous steps collect all necessary information for
constructing the ICFG. Then, the refining program partitions the ICFG by using a graph
partition algorithm. From that result, the refining program knows the way to group
bytecode handlers together. For example, a partition result groups (A, B) to a bundle
and (C, D, E) to another as shown in Figure 8.



Cache Sensitive Code Arrangement for Virtual Machine 35

D. Rewriting the source file. According to the computed results, the refining program
rewrites the source file by arranging the order of all “case” sub-clauses within the
interpreter loop. Figure 9 shows the order of all “case” sub-clauses in the previous
example.

switch ( opcode ) {
case B:
case A:
case E:
case D
case C

}

Fig. 9. The output of rearranged case statements

5.2 Assembly-Level Rearrangement

The robust implementation of the refinement process consists of two steps. The re-
finement process acts as a post processor of the compiler. It parses intermediate files
generated by the compiler, rearranges program blocks, and generates optimized
assembly codes. Our implementation is inevitably compiler-dependent and CPU-
dependent. Current implementation tightly is integrated with gcc for ARM, but the
approach is easy to apply to other platforms. Figure 10 illustrates the outline of the
processing flow, entities, and relations between each entity. The following paragraphs
explain the functions of each step.

KVM source Statistics
in C/C++ from original
\m___,/I"'_H\“ KVM
gce i feedback 4 | REFINER
.S assembly Altered
output .S assembly input
\.__,_._./-—-‘\

as/id

Fig. 10. Entities in the refinement process



36 C.-C. Lin and C.-L. Chen

A. Collecting dynamic bytecode instruction trace. The first step is to collect statis-
tics from real Java applications or benchmarks, because the following steps will need
these data for partitioning bytecode handlers. The modified KVM dumps the bytecode
instruction trace while running Java applications. A special program called TRACER
analyzes the trace dump to find the transition counts for all instruction pairs.

B. Rearranging the KVM interpreter. This is the core step and is realized by a
program called REFINER. It acts as a post processor of gcc. Its duty is to parse byte-
code handlers expressed in the assembly code and organize them into partitions. Each
partition fits into one NAND flash page. The program consists of several sub tasks
described as follows.

(i) Parsing layout information of the original KVM. The very first thing is to com-
pile the original KVM. REFINER parses the intermediate files generated by gcc.
According to structure of the interpreter expressed in assembly code introduced in §3.2,
REFINER analyzes the jump table in the LookupTable trunk to find out the address and
size of each bytecode handler.

(ii) Using the graph partition algorithm to group bytecode handlers into disjoined
partitions. At this stage, REFINER constructs the ICFG with two key parameters: (1)
the transition counts of bytecode instructions collected by TRACER; (2) the machine
code layout information collected in the step A. It uses the approximate algorithm
described in §4.3 to divide the undirected ICFG into disjoined partitions.

(iii) Rewriting the assembly code. REFINER parses and extracts assembly codes of
all bytecode handlers. Then, it creates a new assembly file and dumps all bytecode
handlers partition by partition according to the result of (ii).

(iv) Propagating symbol tables to each partition. As described in §3.2, there are
several symbol tables distributed in the BytecodeDispatch trunk. For most RISC pro-
cessors like ARM and MIPS, an instruction is unable to carry arbitrary constants as
operands because of limited instruction word length. The solution is to gather used
constants into a symbol table and place this table near the instructions that will access
these constants. Hence, the compiler generates instructions with relative addressing
operands to load constants from the nearby symbol tables. Take ARM for example, its
application binary interface (ABI) defines two instructions called LDR and ADR for
loading a constant from a symbol table to a register [17]. The ABI restricts the maximal
distance between a LDR/ADR instruction and the referred symbol table to 4K bytes.

Besides, it would cause a cache miss if a machine instruction in page X loads a
constant s; from symbol table Sy located in page Y. Our solution is to create a local
symbol table Sy in page X and copy the value s; to the new table. Therefore, the relative
distance between s; and the instruction never exceeds 4KB neither causes cache misses
when the CPU tries to load s;.

(v) Dumping contents in partitions to NAND flash pages. The aim is to map byte-
code handlers to NAND flash pages. Its reassembled bytecode handlers belong to the
same partition in one NAND flash page. After that, REFINER refreshes the address and
size information of all bytecode handlers. The updated information helps REFINER to
add padding to each partition and enforce the starting address of each partition to align
to the boundary of a NAND flash page.



Cache Sensitive Code Arrangement for Virtual Machine 37

6 Evaluation

In this section, we start from a brief introduction of the environment and conditions
used in the experiments. The first part of the experimental results is the outcome of
source-level rearranged virtual machine. Those positive results prove our theory works.
The next part is the experiment of assembly-level rearranged virtual machine. It further
proves our refinement approach is able to produce better results than the original
version.

6.1 Evaluation Environment

Figure 11 shows the block diagram of our experimental setup. In order to mimic real
embedded applications, we have implanted Java ME KVM into uClinux for ARM7 in
the experiment. One of the reasons to use this platform is that uClinux supports FLAT
executable file format which is perfect for realizing XIP. We ran KVM/uClinux on a
customized gdb. This customized gdb dumped memory access traces and performance
statistics to files. The experimental setup assumed there was a specialized hardware
unit acting as the NAND flash memory controller, which loads program codes from
NAND flash pages to the cache. It also assumed all flash access operations worked
transparently without the help from the operating system. In other words, modifying the
OS kernel for the experiment is unnecessary. This experiment used “Embedded Caf-
feine Mark 3.0” [15] as the benchmark.

Embedded JOME AP Java/ RAM Title Version
Caffeine Mark arm-elf-binutil | 2.15
K Virtual Machine (KVM) 1.1 ARM7/FLASH | arm-elf-gcc 3.4.3
uClinux Kemnel ARM7 / ROM uClibe 09.18
J2ME (KVM) | CLDC 1.1
GDB 5.0/ARMulator Intel X86 elf2flt 20040326
Windows/Cygwin

Fig. 11. Hierarchy of simulation environment

There are several kinds of NAND flash commodities in the market: 512-bytes,
2048-bytes, and 4096-bytes per page. In this experiment, we model the cache simulator
after the following conditions:

1. There were four NAND flash page size options: 512, 1024, 2048 and 4096.
2. The page replacement policy was full associative, and it is a FIFO cache.
3. The number of cache memory blocks varied from 2, 4 ... to 32.

6.2 Results of Source-Level Rearrangement

First, we rearranged the “case” sub-clauses in the source codes using the introduced
method. Table 1 lists the raw statistics of cache miss rates, and Figure 12 plots the
charts of normalized cache miss rates from the optimized KVM. The experiment



38 C.-C. Lin and C.-L. Chen

assumed the maximal cache size is 64K bytes. For each NAND flash page size, the
number of cache blocks starts from 4 to (64K / NAND flash page size).

In Table 1, each column is the experimental result from a kind of the KVM. The
“original” column refers to statistics from the original KVM, in which bytecode han-
dlers is ordered by in machine codes. The second column “optimized” is the result from
the KVM refined with our approach.

For example, in the best case (2048 bytes per page, 8 cache pages), the optimized
KVM generates 105,157 misses, which is only 4.5% of the misses caused by the
original KVM, and the improvement ratio is 95%.

Broadly speaking, the experiment shows that the optimized KVM outperforms the
original KVM in most cases. Looking at the charts in Figure 12, the curves of nor-
malized cache miss rates (i.e., optimized_miss_rate | original_miss_rate ) tend to be
concave. It means the improvement for the case of eight pages is greater than the one of
four pages. It benefits from the smaller “locality” of the optimized KVM. Therefore,
the cache could hold more localities, and this is helpful in reducing cache misses. After
touching the bottom, the cache is large enough to hold most of the KVM program code.
As the cache size grows, the numbers of cache misses of all configurations converge.

However, the miss rate at 1024 bytes * 32 blocks is an exceptional case. This is
because our approach rearranges the order of bytecode handlers at source level, and it
hardly predicts the precise starting address and code size of a bytecode handler. This is
the drawback of the approach.

—&— 512 bytes/page
—&— 1024 bytes/page

1.20

1.00 -

o
@
S

o
>
S

Normalized Cache Miss Rates
o
N
S
T

—k— 2048 bytes/page
—— 4096 bytes/page

2048 4096 8192 16384 32768 65536
Cache Memory Sizes (bytes)

Fig. 12. The charts of normalized cache-miss rates from the source-level refined virtual machine.
Each chart is an experiment performs on a specific page size. The x-axis is the size of the cache
memory ( number_of_pages * page_size ).



Cache Sensitive Code Arrangement for Virtual Machine

39

Table 1. Normalized cache miss rates generated from source-level modified virtual machines

512 Bytes/Page Miss Count 1024 Bytes/Page Miss Count
# Pgs | Improve. Original Optimized # Pgs | Improve. Original Optimized
4 9.39%| 25,242,319| 22,871,780 4 42.58%]| 15,988,106 9,180,472
8 42.25%| 11,269,029 6,508,217, 8 46.58% 5,086,130 2,717,027,
16 17.94% 2,472,373 2,028,834l 16 73.10% 486,765 130,921
32 47.84% 145,005 75,632l 32 -8.63% 23,395 25,413
64 3.75% 11,933 11,485 64 9.35% 3,230 2,928
128 1.91% 2,507 2,459
Total Access | 567,393,732 | 567,393,732 ||| Total Access | 567,393,732 | 567,393,732
2048 Bytes/Page Miss Count 4096 Bytes/Page Miss Count
# Pgs | Improve. Original Optimized # Pgs | Improve. Original Optimized
4 78.05%| 10,813,688 2,373,841 4 59.33% 4,899,778 1,992,734
8 95.51%| 2,341,042 105,157 8 82.82% 422,512 72,580
16 63.08% 68,756 25,388||[ 16 22.37% 8,995 6,983
32 4.98% 4,294 4,080
Jotal Access | 567,393,732 | 567,393,732 ||| 7ota/ Access | 567,393,732 | 567,393,732

6.3 Results of Assembly-Level Rearrangement

The last experiment proved the theory should work except a few cases. The assem-
bly-level rearrangement method is a remedy. We tuned four versions of KVM; each of
them suited to one kind of page size. All the experimental measurements are compared

o
o

o
©

e
N
T

o
o
T

—&— 512 bytes/page
—i- 1024 bytes/page
—&— 2048 bytes/page

—@- 4096 bytes/page

A 4

Normalized Cache Miss Rates
o o
» wv

o
w

o
N

0.1 |

A
W\

\

\ //\A//R/

pant
L

¥

| S/

1024

5120

9216

13312

17408

21504

Cache Memory Sizes (bytes)

25600

29696

Fig. 13. The chart of normalized cache-miss rates from assembly-level rearranged virtual ma-
chines. Each chart is an experiment performs on a specific page size. The x-axis is the size of the

cache memory ( number_of _pages * page_size ).



40 C.-C. Lin and C.-L. Chen

to those from the original KVM. Table 2 is the highlight of the experimental results and
shows the extent of improvement of the optimized versions as well.

In the test case with 4KB/512-bytes per page, the cache miss rate of the tuned KVM
is less than 1%, in contrast to the cache miss rate of the original KVM that is greater
than 3%. In the best case, the cache miss rate of the tuned KVM is 96% lower than the
value from the original one. Besides, in the case with only two cache blocks
(1KB/512-bytes per page), the improvement is about 50%. It means the tuned KVMs
outperform on devices with limited cache blocks.

Figure 13 is the chart of the normalized miss rates. The envelope lines of these charts
are tending to be concave. In the conditions that the amounts of cache blocks is small,
the cache miss rates of the tuned KVM decline faster than the rates of the original
version, and the curve goes downward. Once there is enough cache blocks to hold the
entire locality of the original KVM, the tuned version gradually loses its advantages,
and the curve turns upward.

In both experiments, the normalized miss rate curves are tending to be concave. We
conclude this is a characteristic of our approach.

Table 2. Experimental cache miss counts. Data of 21 to 32 pages are omitted due to being less
relevant.

512 Bytes/Page Miss Count 1024 Bytes/Page Miss Count
# Pgs | Improve. Original Optimized # Pgs | Improve. Original Optimized
2 48.94% | 52106472 | 25275914 2 38.64% | 29760972 | 17350643
4 50.49% | 34747976 | 16345163 4 69.46% | 21197760 6150007
6 71.19% | 26488191 7249424 6 78.15% | 13547700 2812730
8 80.42% | 17709770 3294736 8 88.11% 8969062 1013010
10 78.02% | 12263183 2560674 10 96.72% 6354864 197996
12 89.61% 9993229 986256 12 96.02% 3924402 148376
14 95.19% 6151760 280894 14 92.97% 1735690 115991
16 95.63% 4934205 204975 16 90.64% 1169657 104048

18 94.37% 3300462 176634 18 75.11% 380285 89934

20 90.48% 1734177 156914 20 58.30% 122884 48679

Total Access | 548980637 | 521571173 Jotal Access | 548980637 | 521571046
2048 Bytes/Page Miss Count 4096 Bytes/Page Miss Count

# Pgs | Improve. Original Optimized # Pgs | Improve. Original Optimized
2 40.74% | 25616314 | 14421794 2 62.32% | 14480682 5183539
4 78.17% | 14733164 3055373 4 86.32% 7529472 978537
6 80.10% 8284595 1566059 6 93.27% 2893864 185037

8 93.80% 4771986 281109 8 74.91% 359828 85762
10 95.66% 2297323 94619 10 33.39% 88641 56096
12 81.33% 458815 81395 12 -89.68% 25067 45173
14 54.22% 96955 42166 14 0.08% 16547 15708
16 52.03% 62322 28403 16 -33.81% 7979 10144
18 24.00% 26778 19336 18 -17.08% 5484 6100
20 10.08% 18390 15710 20 -24.69% 3536 4189

Total Access | 548980637 | 521570848 Total Access | 548980637 | 521570757




Cache Sensitive Code Arrangement for Virtual Machine 41

7 Conclusion

In this study, we present a refinement process to distribute bytecode handlers into
logical partitions that can map to pages of NAND flash memory. The technique we
used to profile the virtual machine analyzes not only the CFG of the interpreter but also
the patterns of bytecode instruction streams, since we observe the input sequence drives
the program flow. From this point of view, we conclude it is a kind of graph partition
problem.

We use two different approaches in the experiments. By modifying either source
codes or assembly codes, the refined KVMs effectively cause lower cache misses than
the unmodified version. The success in source code modification even implies that our
technique can help programmers to write efficient programs without the knowledge of
modifying compiler-backend. Certainly, the assembly-level (or machine-code-level)
rewriting tool is definitely the best solution and provides the ultimate performance.

The most important of all, the refined virtual machine has excellent performance on
the devices with limited cache memory blocks. Consider the case of 8KB/512-bytes per
page, the cache miss rate of the tuned KVM is 0.6%. Compare to the 3.2% of the original
KVM, this is a significant improvement. Undoubtedly, if the cache size is large, the miss
rate will not be an issue. However, our approach can ensure that the KVM generates
lower cache misses at smaller cache sizes. This technique also enables SOC to integrate
a small block of embedded cache RAM and still execute the KVM efficiently.

Comparing our improvement on the KVM interpreter with JIT (dynamic compila-
tion) is an interesting issue. The outcome of JIT is usually good so that it seems the
effort on improving interpreter is in vain. However, a JIT VM usually consumes huge
amount of memory that a small-scaled embedded device cannot afford, it is still
worthwhile to refine the interpreter VM. The experimental results in [18] by Anderson
Faustino da Silva et al. suggest that an interpreter VM is between 3 to 11 times slower
than a JIT VM. However, by taking timing parameters of real NAND flash memory and
DRAM into our formula, the performance boost by our improvement helps an inter-
preter VM runs as faster as a JIT VM.

Actually, our approach is not exclusively for interpreters. Our investigation shows
our approach is applicable to the part of translating bytecodes to native codes in a JIT
VM. We left this issue for future development.

Furthermore, our systematic method can apply to any program with the following
two properties. First, its program flow branches to a large number of sibling sub-blocks,
i.e., abig “switch... case... case...” compound statement in the interpreter. Second, the
input data patterns drive the execution flows of those sibling sub-blocks, so that we can
plot an ICFG to capture the dynamic trace. In practice, our approach can apply to other
virtual machines, like Microsoft NET Common Language Runtime, or an XML-driven
processing program besides KVM.

References

1. Sun Microsystem. J2ME Building Blocks for Mobile Devices. Sun Microsystems, Inc. (May
19, 2000)

2. Park, C., Seo, J., Bae, S., Kim, H., Kim, S., Kim, B.: A Low-Cost Memory Architecture with
NAND XIP for Mobile Embedded Systems. In: ISSS+CODES 2003: First IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis. ACM
Press, New York (2003)



42

10.

11.

12.

13.

14.

15.
16.

17.

18.

C.-C. Lin and C.-L. Chen

Samsung Electronics. OneNAND Features & Performance. Samsung Electronics
(November 4, 2005)

Park, C., Lim, J., Kwon, K., Lee, J., Min, S.L.: Compiler Assisted Demand Paging for
Embedded Systems with Flash Memory. In: Proceedings of the 4th ACM international
Conference on Embedded Software (EMSOFT 2004), Pisa, Italy, September 27-29, pp.
114-124. ACM Press, New York (2004)

Parameswaran, S., Henkel, J.: I-CoPES: Fast Instruction Code Placement for Embedded
Systems to Improve Performance and Energy Efficiency. In: Proceedings of the 2001
IEEE/ACM International Conference on Computer-Aided Design, pp. 635-641. IEEE
Press, Piscataway (2001)

Janapsatya, A., Parameswaran, S., Henkel, J.: REMcode: relocating embedded code for
improving system efficiency. In: IEE Proc.-Comput. Digit. Tech., vol. 151(6) (November
2004)

Pettis, K., Hansen, R.: Profile-guided code positioning. In: The Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and Implementation PLDI
1990, vol. 25(6), pp. 16-27. ACM Press, New York (1990)

Young, C., Smith, M.D.: Improving the Accuracy of Static Branch Prediction Using Branch
Correlation. In: Proceedings of the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS VI ) (October 1994)

Ball, T., Larus, J.R.: Optimally profiling and tracing programs. ACM Transactions on Pro-
gramming Languages and Systems 16(4), 1319-1360 (1994)

Van Put, L., Chanet, D., De Bus, B., De Sutler, B., De Bosschere, K.: DIABLO: a reliable,
retargetable and extensible link-time rewriting framework. In: The Proceedings of the Fifth
IEEE International Symposium on Signal Processing and Information Technology, pp.
7-12. IEEE Press, Piscataway (2005)

Santarini, M.: NAND versus NOR-Which flash is best for bootin’ your next system? In:
EDN, Reed Business Information, a division of Reed Elsevier Inc., October 13, pp. 4148
(2005)

Micron Technology, Inc. Boot-from-NAND Using Micron® MT29F1GOSABA NAND
Flash with the Texas Instruments™ (TI) OMAP2420 Processor, Micron Technology, Inc.
(2006)

Sony Ericsson. Java™ Support in Sony Ericsson Mobile Phones. Sony Ericsson Mobile
Communications AB (2003)

Lafond, S., Lilius, J.: An Energy Consumption Model for Java Virtual Machine. Turku
Centre for Computer Science TUCS Technical Report No 597, TUCS (March 2004)
CaffeineMark 3.0, Pendragon Software Corp., http: //www.benchmarkhg.ru/cm30
Garey, M.R., Johnson, D.S.: Computer and Intractability - A Guide to the Theory of
NP-Completeness. Bell Telephone Laboratories (1979)

Fuber, S.: ARM System-on-Chip Architecture, 2 edn. August 25, pp. 49-72. Addi-
son-Wesley Professional, Reading (2000)

da Silva, A.F., Costa, V.S.: An Experimental Evaluation of JAVA JIT Technology. Journal
of Universal Computer Science 11(7), 1291-1309 (2005)



Data Layout for Cache Performance on a
Multithreaded Architecture

Subhradyuti Sarkar and Dean M. Tullsen

Department of Computer Science and Engineering,
University of California, San Diego

Abstract. High performance embedded architectures will in some cases
combine simple caches and multithreading, two techniques that increase
energy efficiency and performance at the same time. However, that com-
bination can produce high and unpredictable cache miss rates, even when
the compiler optimizes the data layout of each program for the cache.

This paper examines data-cache aware compilation for multithreaded
architectures. Data-cache aware compilation finds a layout for data ob-
jects which minimizes inter-object conflict misses. This research extends
and adapts prior cache-conscious data layout optimizations to the much
more difficult environment of multithreaded architectures. Solutions are
presented for two computing scenarios: (1) the more general case where
any application can be scheduled along with other applications, and (2)
the case where the co-scheduled working set is more precisely known.

It is shown that these techniques reduce data cache misses for a variety
of cache architectures, multithreading environments, and cache latencies.

1 Introduction

High performance embedded architectures seek to accelerate performance in
the most energy-efficient and complexity-effective manner. Cacheing and multi-
threading are two technologies that improve performance and energy efficiency
at the same time. However, when used in combination, these techniques can be in
conflict, as unpredictable interactions between threads can result in high conflict
miss rates. It has been shown that in large and highly associative caches, these
interactions are not large; however, embedded architectures are more likely to
combine multithreading with smaller, simpler caches. This paper demonstrates
techniques which allow the architecture to maintain these simpler caches, rather
than necessitating more complex and power-hungry caches. It does so by solving
the problem in software via the compiler and the runtime, rather than through
more complex hardware.

Cache-conscious Data Placement (CCDP) [I] is a technique which finds an
intelligent layout for the data objects of an application, so that at runtime objects
which are accessed in an interleaved pattern are not mapped to the same cache
blocks. On a processor core with a single execution context, this technique has
been shown to significantly reduce the cache conflict miss rate and improve
performance over a wide set of benchmarks.

P. Stenstrom (Ed.): Transactions on HIPEAC III, LNCS 6590, pp. 43 2011.
© Springer-Verlag Berlin Heidelberg 2011



44 S. Sarkar and D.M. Tullsen

90
Ointer-thread conflict
80 1 B T1 intra-thread conflict
70 4 O TO intra-thread conflict
60 - ]
2
© 50
»
B 40 —
£
30
20 B
10 ﬂ
ol o 1

ammp applu  apsi art bzip2 crafty eon facerec fma3d galgel gzip mesa mgrid perl sixtrack swim twolf vortex vpr wupwise
applu  apsi art  bzip2 crafty eon facerec fma3d galgel gzip mesa mgrid perl sixtrack swim twolf vortex vpr wupwise ammp

Workload

Fig. 1. Percentage of data cache misses that are due to conflict. The cache is 32 KB
direct-mapped, shared by two contexts in an SMT processor. The program listed on
top is T1.

However, in a multithreaded environment, such as simultaneous multithread-
ing (SMT) [213], CCDP can lose much of its benefit, or even reduce performance.
In an SMT processor multiple threads run concurrently in separate hardware
contexts. This architecture has been shown to be a much more energy effi-
cient approach to accelerate processor performance than other traditional per-
formance optimizations [45]. In a simultaneous multithreading processor with
shared caches, however, objects from different threads compete for the same
cache lines — resulting in potentially expensive inter-thread conflict misses. These
conflicts cannot be analyzed in the same manner that was applied successfully
by prior work on intra-thread conflicts. This is because inter-thread conflicts are
not deterministic.

Figure [l shows the percentage of conflict misses for various pairs of co-
scheduled threads. This figure shows two important trends. First, inter-thread
conflict misses are just as prevalent as intra-thread conflicts (26% vs. 21% of all
misses). Second, the infusion of these new conflict misses significantly increases
the overall importance of conflict misses, relative to other types of misses.

Inter-thread cache conflicts are not strictly confined to multithreaded archi-
tectures. We also see this phenomenon in multi-core architectures. Multi-cores
may share on-chip L2 caches, or possibly even L1 caches [6/7]. A data-layout
strategy that reduces both intra-thread and inter-thread conflict misses will be
helpful in those architectural scenarios as well. However, in this work we focus
in particular on multithreaded architectures, because they interact and share
caches at the lowest level.

In this paper, we develop new techniques that allow the ideas of CCDP to
be extended to multithreaded architectures, and be effective. We consider the
following compilation scenarios:

(1) In the most general case, we cannot assume we know which applications
will be co-scheduled. This may occur, even in an embedded processor, if we have
a set of applications that can run in various combinations. In this scenario, the



Data Layout for Cache Performance on a Multithreaded Architecture 45

compiler does not know which applications are going to be co-scheduled by the
operating system or runtime system, and in fact the combination of co-scheduled
threads may even change over the lifetime of a particular thread.

(2) In more specialized environments, we will be able to more precisely ex-
ploit specific knowledge about the applications and how they will be run. We
may have a priori knowledge about application sets to be co-scheduled in the
multithreaded processor. In these situations, it should be feasible to co-compile,
or at least cooperatively compile, these concurrently running applications.

This paper makes the following contributions: (1) It shows that traditional
multithreading-oblivious cache-conscious data placement is not effective in a
multithreading architecture. In some cases, it does more harm than good. (2)
It proposes two extensions to CCDP that can identify and eliminate most of
the inter-thread conflict misses for each of the above mentioned scenarios. We
show as much as a 26% average reduction in misses after our placement op-
timization. (3) It shows that even for applications with many objects and in-
terleavings, temporal relationship graphs of reasonable size can be maintained
without sacrificing performance and quality of placement. (4) It presents sev-
eral new mechanisms that improve the performance and realizability of cache
conscious data placement (whether multithreaded or not). These include object
and edge filtering for the temporal relationship graph. (5) We show that these
algorithms work across different cache configurations. We show results for vari-
ous caches and cache latencies, including set-associative caches. Previous CCDP
algorithms have targeted direct-mapped caches — we show that they do not trans-
late easily to set-associative caches. We present a new mechanism that eliminates
set-associative conflict misses much more effectively. (6) Additionally, we extend
these techniques to higher numbers of threads.

The rest of the paper is organized as follows. Section [2 discusses related
work. Our simulation environment and benchmarks are described in Section Bl
Section M and Section Bl provide algorithms and results for independent and
co-ordinated data placement methods respectively. Section [0l shows that these
techniques can work across a broad range of cache and processor configurations.
We conclude in Section [1

2 Related Work

Direct-mapped caches, although faster and simpler than set-associative caches,
are prone to conflict misses. Consequently, much research has been directed
toward reducing conflicts in a direct-mapped cache. Several papers [S[9[T0] ex-
plore unconventional line-placement policies to reduce conflict misses. Lynch, et
al. [11] demonstrate that careful virtual to physical translation (page-coloring)
can reduce the number of cache misses in a physically-indexed cache. Rivera
and Tseng [12] predict cache conflicts in a large linear data structure by com-
puting expected conflict distances, then use intra- and inter-variable padding to
eliminate those conflicts. A compiler-directed partitioning of the process address-
space for a real-time system is described in [13], such that no pre-emptible process
will share cache location with other processes.



46 S. Sarkar and D.M. Tullsen

The Split Cache [I4] is a technique to virtually partition the cache through
special hardware instructions, which the compiler can exploit to put potentially
conflicting data structures in isolated virtual partitions.

Other works [I5/16] dynamically detect and remove conflict misses, without
requiring any support from the compiler. These methods logically partition the
cache into pages, and can recolor conflicting pages to reduce conflict misses. This
research attempts to reduce cache conflict misses without specialized hardware,
or reducing the ability of any single thread to use the entire cache.

In a simultaneous multithreading architecture [213],various threads share exe-
cution and memory system resources on a fine-grained basis. Sharing of the L1
cache by multiple threads usually increases inter-thread conflict misses [2/17/18].
Until now, few studies have been conducted which try to improve cache perfor-
mance in an SMT processor, particularly without significant hardware support.
It has been shown [19] that partitioning the cache into per-thread local regions
and a common global region can avoid some inter-thread conflict misses. Com-
piler directed cache partitioning for SMT processors has been explored by May,
et al. [20]. However, static partitioning reduces the amount of cache memory
available to a particular thread, which is undesirable. Traditional code trans-
formation techniques (tiling, copying and block data layout) have been applied,
along with a dynamic conflict detection mechanism to achieve significant perfor-
mance improvement [21]; however, these transformations yield good results only
for regular loop structures. Lopez, et al. [22] also look at the interaction between
caches and simultaneous multithreading in embedded architectures. However,
their solutions also require dynamically reconfigurable caches to adapt to the
behavior of the co-scheduled threads.

This research builds on the profile-driven data placement proposed by Calder,
et al. [1]. The goal of this technique is to model temporal relationships between
data objects through profiling. The temporal relationships are captured in a
Temporal Relationship Graph (TRG), where each node represents an object and
edges represent the degree of temporal conflict between objects. Hence, if objects
P and @ are connected by a heavily weighted edge in the TRG, then placing
them in overlapping cache blocks is likely to cause many conflict misses. The
TRG is constructed by keeping a queue of objects accessed in the recent past.
The queue is examined at each memory reference to check if the newly accessed
object has a previous occurrence. Accessing other objects between two successive
accesses to the same object indicates a temporal conflict. A simple example of a
TRG and a possible resulting cache mapping is shown in Figure 2

We have extended this technique to SMT processors and set associative caches.
Also, we have introduced the concept of object and edge trimming - which sig-
nificantly reduces the time and space complexity of our placement algorithm.
Kumar and Tullsen [23] describe techniques, some similar to this paper, to min-
imize instruction cache conflicts on an SMT processor. However, the dynamic
nature of the sizes, access patterns, and lifetimes of memory objects makes the
data cache problem significantly more complex.



Data Layout for Cache Performance on a Multithreaded Architecture 47

D,CA
E,G
B,F

Fig. 2. A simplified Temporal Relationship Graph of the interleavings of 8 equal-sized
objects (left), and a mapping of those objects (right) into a cache big enough to hold
four objects, which minimizes conflicts between objects.

This paper contains several enhancements over a prior published version [24].
For example, this version contains more detailed descriptions of the compiler
algorithms used, and several new results, particularly in Section [6l

3 Simulation Environment and Benchmarks

We run our simulations on SMTSIM [25], which simulates an SMT processor. The
detailed configuration of the simulated processor is given in Table [Il For most
portions of the paper, we assume the processor has a 32 KB, direct-mapped data
cache with 64-byte blocks. We also model the effects on set associative caches
in Section [6, but we focus on a direct-mapped cache both because the effects of
inter-thread conflicts are more severe, and because direct-mapped caches can be
an attractive design point for many embedded designs. We assume the address
mappings resulting from the compiler and dynamic allocator are preserved in
the cache. This would be the case if the system did not use virtual to physical
translation, if the cache is virtually indexed, or if the operating system uses page
coloring to ensure that our cache mappings are preserved.

The fetch unit in our simulator fetches from the available execution contexts
based on the ICOUNT fetch policy [3] and the flush policy from [26], a perfor-
mance optimization that reduces the overall cost of any individual miss. The
ICOUNT fetch policy gives fetch priority to that thread which has the fewest in-
structions in the front end (fetch/decode/rename/queue) stages of the pipeline,
thus always seeking to provide an even mix of instructions in the instruction
window to maximize parallelism. The flush policy recognizes that in the pres-
ence of very long memory latencies, it is better for a stalled thread to release all
held resources for use by non-stalled threads.



48 S. Sarkar and D.M. Tullsen

Table 1. SMT Processor Details

Parameter Value

Fetch Bandwidth 2 Threads, 4 Instructions Total
Functional Units 4 Integer, 4 Load/Store, 3 FP
Instruction Queues 32 entry Integer, 32 entry FP
Instruction Cache 32 KB, 2-way set associative

Data Cache 32 KB, direct-mapped

L2 Cache 512 KB, 4-way set associative

L3 Cache 1024 KB, 4-way set associative

Miss Penalty L1 15 cycles, L2 80 cycles, L3 500 cycles

Pipeline Depth 9 stages

It is important to note that a multithreaded processor tends to operate in
one of two regions, in regards to its sensitivity to cache misses. If it is latency-
limited (no part of the hierarchy becomes saturated, and the memory access
time is dominated by device latencies), sensitivity to the cache miss rate is low,
because of the latency tolerance of multithreaded architectures. However, if the
processor is operating in bandwidth-limited mode (some part of the subsystem
is saturated, and the memory access time is dominated by queuing delays), the
multithreaded system then becomes very sensitive to changes in the miss rate.
For the most part, we choose to model a system that has plenty of memory and
cache bandwidth, and never enters the bandwidth-limited regions. This results
in smaller observed performance gains for our placement optimizations, but we
still see significant improvements. However, real processors will likely reach that
saturation point with certain applications, and the expected gains from our
techniques would be much greater in those cases.

Table [2] alphabetically lists the 20 SPEC2000 benchmarks that we have used.
The SPEC benchmarks represent a more complex set of applications than repre-
sented in some of the embedded benchmark suites, with more dynamic memory
usage; however, these characteristics do exist in real embedded applications. For
our purposes, these benchmarks represent a more challenging environment to
apply our techniques. In our experiments, we generate a k-threaded workload by
picking each benchmark along with its (k — 1) successors (modulo the size of the
table) as they appear in Table[2l Henceforth we shall refer to a workload by the
ID of its first benchmark. For example, workload 10 (at two threads) would be
the combination {galgel gzip}. Our experiments report results from a simulation
window of two hundred million instructions; however, the benchmarks are fast-
forwarded by ten billion dynamic instructions beforehand to ensure that we are
executing in the main execution body of the application. Table[2 also lists the L1
hit rate of each application when run independently. All profiles (used to drive
the compiler and layout optimizations) are generated running the SPEC train
inputs, and simulation and measurement with the ref inputs. We also profile and
optimize for a much larger portion of execution than we simulate.



Data Layout for Cache Performance on a Multithreaded Architecture 49

Table 2. Simulated Benchmarks

ID Benchmark Type Hit Rate(%) ID Benchmark Type Hit Rate(%)

1 ammp FP 84.19 11 gzip INT 95.41
2 applu FP 83.07 12 mesa FP 98.32
3 apst FP 96.54 13 mgrid FP 88.56
4 art FP 71.31 14 perl INT 89.89
5 bzip2 INT 94.66 15  sixtrack FP 92.38
6 crafty INT 94.48 16 swim FP 75.13
7 eon INT 97.42 17 twolf INT 88.63
8 facerec FP 81.52 18 vortex INT 95.74
9 fmadd FP 94.54 19 upr INT 86.21
10 galgel FP 83.01 20  wupwise INT 51.29

This type of study represents a methodological challenge in accurately report-
ing performance results. In multithreaded experimentation, every run consists
of a potentially different mix of instructions from each thread, making relative
IPC a questionable metric. In this paper we use weighted speedup [26] to report
our results.

Weighted speedup (WS) is given by

1 IPC’VL@’LU
WS =
number of threads t’z IPChyasetine

reads
Weighted speedup much more accurately reflects system-level performance im-
provements, and makes it more difficult to create artificial speedups by changing
the bias of the processor toward certain threads.

4 Independent Data Placement

The next two sections handle two different execution scenarios. In this first
section, we solve the more general and difficult scenario, where the compiler ac-
tually does not know which applications will be scheduled together dynamically,
or the set of co-scheduled threads changes frequently; however, we assume all
applications will have been generated by our compiler. In the following section,
we handle the case where we have specific knowledge about which jobs will be
co-scheduled.

In the current execution scenario, then, co-scheduling will be largely unpre-
dictable and dynamic. However, we can still compile programs in such a way that
conflict misses are minimized. Since all programs would essentially be compiled
in the same way, some support from the operating system, runtime system, or
the hardware is required to allow each co-scheduled program to be mapped onto
the cache differently.

CCDP techniques tend to create balanced access across the cache. We have
modified CCDP techniques to create an intentionally unbalanced utilization of



50 S. Sarkar and D.M. Tullsen

the cache, mapping objects to a hot portion and a cold portion. This does not
necessarily imply more intra-thread conflict misses. For example, the two most
heavily accessed objects in the program can be mapped to the same cache index
without a loss in performance, if they are not typically accessed in an inter-
leaved pattern — this is the point of using the temporal relationship graph of
interleavings to do the mapping, rather than just using reference counts. CCDP
would typically create a more balanced distribution of accesses across the cache;
however, it can be tuned to do just the opposite. This is a similar approach to
that used in [23] for procedure placement, but applied here to the placement of
data objects.

However, before we present the details of the object placement algorithm, we
first describe the assumptions about hardware or OS support, how data objects
are identified and analyzed, and some options that make the CCDP algorithms
faster and more realizable.

4.1 Support from Operating System or Hardware

Our independent placement technique (henceforth referred to as IND) reposi-
tions the objects so that they have a top-heavy access pattern, i.e. most of the
memory accesses are limited to the top portion of the cache. Let us consider an
SMT processor with two hardware contexts, and a shared L1 cache (whose size
is at least twice the virtual-memory page size). If the architecture uses a virtual
cache, the processor can xor the high bits of the cache index with a hardware
context ID (e.g., one bit for 2 threads, 2 bits for 4 threads), which will then map
the hot portions of the address space to different regions of the cache.

In a physically indexed cache, we don’t even need that hardware support.
When the operating system loads two different applications in the processor, it
ensures (by page coloring or otherwise) that heavily accessed virtual pages from
the threads do not collide in the physically indexed cache.

For example, let us assume an architecture with a 32 KB data cache and 4
KB memory pages — so the cache can accommodate 8 memory pages. Physical
pages whose page number is from the set L = {0,1,2,3} (modulo 8) map to
the top half of the cache. Similarly, pages having page-numbers from the set
U = {4,5,6,7} (modulo 8) map to the bottom half. The compiler creates an
unbalanced partition by placing most of the heavily accessed objects in virtual
pages having page-number from set L (modulo 8). During execution, before
the OS allocates a physical page for the virtual page V of process p, it examines
the virtual page number of V' and the hardware context in which p is running.
If the page-number of V' is in the set L and p is running in context 0, the OS
tries to allocate a physical page whose page number is from the set L. If p is
running in context 1 instead, the OS tries to allocate a physical page having
page-number from the set U. Thus, the mapping assumed by the compilers is
preserved, but with each thread’s hot area mapped to a different half of the
cache. This is simply an application of page coloring, which is a common OS
function.



Data Layout for Cache Performance on a Multithreaded Architecture 51

4.2 Analysis of Data Objects

To facilitate data layout, we consider the address space of an application as
partitioned into several objects. An object is loosely defined as a contiguous
region in the (virtual) address space that can be relocated with little help from
the compiler and/or the runtime system. The compiler typically creates several
objects in the code and data segment, the starting location and size of which
can be found by scanning the symbol table. A section of memory allocated by a
malloc call can be considered to be a single dynamic object, since it can easily
be relocated using an instrumented front-end to malloc. However, since the
same invocation of malloc can return different addresses in different runs of an
application — we need some extra information to identify the dynamic objects
(that is, to associate a profiled object with the same object at runtime). Similar
to [I], we use an additional tag (henceforth referred to as HeapTag) to identify
the dynamic objects. HeapTag is generated by xor-folding the top four addresses
of the return stack and the call-site of malloc.

Reordering the objects in the stack segment can be more difficult. First, no
symbol table entry is created for the objects that are allocated in stack frames.
Second, addresses on the stack are specified relative to the stack or frame pointer
— so the same variable can be assigned different virtual addresses at different
points of execution, based on the current call stack. Hence, in this analysis we
treat the whole stack segment as a single object. To place stack objects more
finely could require adding significant padding to the stack, which would reduce
spatial locality, and increase stack overflow events. As a result, our techniques are
not expected to be particularly effective for stack objects. However, stack objects
tend to be short-lived and accessed with high temporal locality. Therefore, our
techniques tend to still be effective overall for two reasons. First, stack objects
tend to have low miss rates, and second, short-lived objects tend to be ignored
(marked as unimportant) in our placement algorithm, anyway.

After the objects have been identified, their reference count and lifetime in-
formation over the simulation window can be retrieved by instrumenting the
application binary with a tool such as ATOM [27]. Also found are the temporal
relationships between the objects, which can be captured using a temporal re-
lationship graph (henceforth referred to as TRGSelect graph). The TRGSelect
graph contains nodes that represent objects (or portions of objects) and edges
between nodes contain a weight which represents how many times the two ob-
jects were interleaved in the actual profiled execution.

Temporal relationships are collected at a finer granularity than full objects
— mainly because some of the objects are much larger than others, and usu-
ally only a small portion of a bigger object has temporal association with the
smaller one. It is more logical to partition the objects into fixed size chunks,
and then record the temporal relationship between chunks. Though all the
chunks belonging to an object are placed sequentially in their original order,
having finer-grained temporal information helps us to make more informed de-
cisions when two conflicting objects must be put in an overlapping cache re-
gion. The size of the chunk used for tracking conflicts is an important policy



52 S. Sarkar and D.M. Tullsen

decision — smaller chunks capture more information at the expense of a larger
TRGSelect graph. We have set the chunk size equal to the block size of the tar-
geted cache. This provides the best performance, as we now track conflicts at
the exact same granularity that they occur in the cache.

4.3 Object and Edge Filtering

Profiling a typical SPEC2000 benchmark, even for a few millions of committed
instructions, involves tens of thousands of objects, and generates hundreds of mil-
lions of temporal relationship edges between objects. To make this analysis man-
ageable, we must reduce both the number of nodes (the number of objects) as well
as the number of edges (temporal relationships between objects) in the TRGSelect
graph. This is possible because finding a suitable placement for all the identifiable
objects is not necessary. Most of these objects are rarely accessed and/or have a
very short life-time — hence their relative placement with respect to other objects
has little effect on L1 miss rates. We classify objects as unimportant if their refer-
ence count is zero, or the sum of the weights of incident edges in TRGSelect graph
lies below a certain threshold. In our experiment, that threshold was set to be ei-
ther first percentile or fifth percentile — depending on the total number of objects
enumerated for a particular workload. Object filtering follows Algorithm [

If a HeapTag assigned to a heap object is non-unique, we mark all but the
most frequently accessed object having that HeapTag as unimportant. Multiple
objects usually have the same HeapTag when dynamic memory is being allocated
in a loop and they usually have similar temporal relationship with other objects.
Since heap objects with the same HeapTag would be indistinguishable from one
another to the customized memory allocator, making a placement decision based
on the most prominent member of the group seems to be a logical choice.

A similar problem exists for building the TRGSelect graph. Profiling creates
a TRGSelect graph with a very large number of edges. Since it is desirable to
store the entire TRGSelect graph in memory, keeping all these edges would not
be practical. Fortunately, we have noted that in a typical profile more than 90%
of all the edges are light-weight, having an edge weight less than one tenth of
the heavier edges. We use the following epoch-based heuristic to periodically
trim off the potentially light-weight edges, limiting the total number of edges to
a preset maximum value. In a given epoch, edges with weight below a particular
threshold are marked as potentially light-weight. In the next epoch, if the weight
of an edge marked as potentially light-weight does not increase significantly from
the previous epoch, it is deleted from the TRGSelect graph. The threshold is
liberal when the total number of edges is low, but made more aggressive when
the number of edges nears our preset limit on the number of edges. Algorithm
describes the edge trimming more precisely. In practice, we have noticed that a
TRGSelect graph with an upper threshold of 10 million edges can capture all
the important temporal relationships between the object-chunk pairs.

In this algorithm, then, we prune the edges dynamically during profiling,
and prune the objects after profiling, but before the placement phase. We find
pruning has little impact on the quality of our results.



Data Layout for Cache Performance on a Multithreaded Architecture 53

mark all objects as important

if an object has a reference count of zero then
mark the object is unimportant

end if

for all object o with nonzero reference count do
TRGSum[o] < sum of TRG edge weights incident on this object

end for

if total number of objects is less than 4096 then
find the objects below 1 percentile (based on TRGSum)
mark these objects as unimportant

: else

find the objects below 5 percentile (based on TRGSum)

mark these objects as unimportant

: end if

: for all non-unique HeapTag do

add all objects having that HeapTag to a list L

find the object p in L having maximum reference count

delete p from L

mark all objects in L as unimportant

: end for

D = = = e b e s e e
QORI RPN OO

Algorithm 1. Object Filtering

The various parameters that we have determined via experiment for Algo-
rithm [2] are given in Table 3

4.4 Building the TRGSelect Graph

To build the TRGSelect graph, memory references in the profiling window are
scanned sequentially and each of these memory references is attributed to some
profiled object. Then, the access patterns with respect to other objects in the
window are used to add appropriate edges (or increase edge-weights) in the
TRGSelect graph, with the help of the following data structures:

1. set Orgrag: objects of a given executable, which is also the set of vertices of
TRGSelect graph

2. set Ergrg: edges of the TRGSelect graph

3. queue TRGQueue: A FIFO queue which records a finite history of object access
patterns in the profile

Ideally, TRGQueue (the reference history window) should be able to grow without
any bound so that all interleavings are accurately reflected in TRGSelect. How-
ever, maintaining such an accurate history is space and time-prohibitive, and
also quite unnecessary for the following reason. An object, after being brought
into the cache, does not stay there indefinitely — it typically gets evicted after
a while due to a conflict or capacity miss. Thus, if consecutive accesses to an
object are so far apart as to not appear in a large window, the particular in-
terleavings not recorded are less important (that is, it would be very difficult



54 S. Sarkar and D.M. Tullsen

1: if number of edges is TRGSelect > trigger value then
2:  low cutoff < A percentile of all edge weights
3:  high cutoff « 7 percentile of all edge weights
4:  for all edges E in TRGSelect graph do
5: if F is marked as ‘spurious’ and its weight < high cutoff then
6: delete E
7 end if
8:  end for
9:  for all edges F in TRGSelect graph do
10: if weight of £ < low cutoff then
11: mark E as ‘spurious’
12: else
13: mark E as ‘important’
14: end if
15: end for
16: end if

17: if number of edges is TRGSelect > max trg size then
18: aggressive cutoff « O percentile of all edge weights
19:  for all edges F in TRGSelect graph do

20: if weight of E < aggressive cutoff then
21: delete

22: end if

23: end for

24: end if

25: trigger value < number of edges in TRGSelect + trigger delta
Algorithm 2. Edge Filtering for a Particular Epoch

Table 3. Parameters for Edge Filtering

Parameter Value
initial trigger value 5 x 10°
trigger delta 106
max trg size 12 x 10°

A 30
r 40
C 30

to remove all interleavings and keep the object in the cache over a long time
period, anyway). We have observed that we can trim TRGQueue after its size
exceeds twice the targeted cache size without affecting the quality of placement.
Algorithm [3] sketches the steps involved in building the TRGSelect graph.

4.5 Placement Algorithm

For independent data placement, the cache blocks are partitioned into native
and foreign sets. If we know the application is going to be executed on an SMT
processor with k contexts, the top i cache blocks are marked as native, and



Data Layout for Cache Performance on a Multithreaded Architecture 55

1: Orrg — @
2: Erpra — @
3: add the stack object to Orra
4: add the constant and global objects to Orra by scanning symbol-table
5: add the heap objects to Orre by scanning the memory-allocation calls
6: repeat
7 scan the next memory reference m,
8: find object o such that m, accesses o and o € Orgra
9: if o is not the tail of TRGQueue then
10: enqueue o to TRGQueue
11: object p « second-last object in TRGQueue
12: while p # NULL or p # o do
13: if edge(o,p) € Errc then
14: edge-weight[edge(o, p)] < edge-weight[edge(o, p)] +1
15: else
16: Errc < ErrcU edge(o, p)
17: edge-weightledge(o, p)] — 1
18: end if
19: p < predecessor of p in TRGQueue
20: end while
21: if size of all objects in TRGQueue exceeds threshold Strgg then
22: prune TRGQueue
23: end if
24: if size of Errg exceeds threshold Sgrrag then
25: prune Ergc {see Algorithm I}
26: end if
27: end if
28: until there are no more memory references to scan
29:

30: prune Orgre {see Algorithm [I}

Algorithm 3. Building the TRGSelect Graph

other cache blocks are marked as foreign. For any valid placement of an object
in a native block, we define an associated cost, which is the sum of the costs
for each chunk placed in the contiguous cache blocks. The cost of a chunk is
the edge weight (interleaving factor) between that chunk and all chunks of other
objects already placed in that cache block (see algorithm H).

If the cache block is marked as foreign, a bias is added to the overall cost to
force the algorithm to only place an object or part of an object in the foreign
section if there is no good placement in the native. The bias for an object is set to
be A times the maximum edge weight between a chunk belonging to this object
and any other chunk in the TRGSelect graph. If an object faces high resistance
(thus signifying a high probability of conflict) with the objects already placed in
the native cache block, it might be (fully or partially) placed in the foreign cache
blocks. Varying this bias allows a tradeoff between combined cache performance,
and uncompromised cache performance when running alone.



56 S. Sarkar and D.M. Tullsen

cost «— 0

for all cache block C that is going to be occupied by this object do
let p be the chunk of this object to be placed in C
for all object-chunk pair ¢ already placed in C do

cost < cost + edge weight between p and ¢ in TRGSelect graph

end for

end for

return cost

Algorithm 4. Finding Cost of a Placement

Our basic placement heuristic is to order the objects and then place them
each, in that order, into the cache where they incur minimal cost. Since some
objects are fundamentally different in nature and size from others, we came up
with a set of specialized placement strategies, each targeting one particular type
of object. Specifically, we will separately consider constant objects, small global
objects, important global objects, and heap objects.

An object which resides in the code segment is defined as a constant object.
Constant objects are placed in their default location (altering the text segment
might have adverse effects on the instruction cache). However, when other ob-
jects are placed in cache, their temporal relationship with the constant objects
is taken into consideration.

Small global objects are handled differently than larger objects, allowing us
to transform potential conflicts into cache prefetch opportunities. A statically
allocated object which resides in the data segment is defined as a global object.
Furthermore, a global object is classified as small if its size is less than three-
fourths of the block size. As in [I], we try to cluster the small global objects
that have heavily-weighted edges in the TRGSelect graph and place them in the
same cache block. Accessing any of the objects in the cluster will prefetch the
others, avoiding costly cache misses in the near future. Small global objects are
clustered greedily, starting with the pair of objects with the highest edge weight
between them.

After a cluster has been formed, nodes representing individual objects in the
cluster are coalesced into a single node (in the TRGSelect graph). The cluster
will be assigned a starting location along with other non-small objects in the
next phase of the placement algorithm.

Next, we place the global objects. Our greedy placement algorithm is sensitive
to the order in which the objects are placed. By experimentation, we have found
the following approach to be effective. We build a TRGPlace graph from the
TRGSelect graph, where chunks of individual objects are merged together into
a single node (edge weights are adjusted accordingly). Next, the most heavily
weighted edge is taken from the TRGPlace graph. The two objects connected by
that edge are placed in the cache, and marked as placed; however, recall that
the actual placement still uses the TRGSelect graph, which tracks accesses to
the individual chunks. Thus, two objects with a heavy edge between them may
still overlap in the cache, if only some chunks of those objects have interleaving
access pattern.



Data Layout for Cache Performance on a Multithreaded Architecture 57

In each subsequent iteration of the algorithm, an unplaced object is chosen
which maximizes the sum of TRGPlace edge-weights between itself and the ob-
jects that have been already placed. In case of a tie, the object with a higher
reference count is given preference.

Unimportant global objects are placed so as to fill holes in the address space
created by the allocation of the important global objects. Placement of important
global objects usually creates large holes (a contiguous section in the address
space where no object has been placed) in the data segment. When placing an
unimportant object, we scan the data segment and place the object in the first
available free region big enough to accommodate it.

Heap objects also reside in the data segment, however they are dynamically
created and destroyed at runtime using malloc and free calls. Specifying a
placement for heap objects is more difficult because a profiled heap object might
not be created, or might have different memory requirements in a later execution
of the same application with different input. Thus, we determine the placement
assuming the object is the same size, but only indicate to our custom malloc
the location of the first block of the desired mapping. The object gets placed
there, even if the size differs from the profiled run.

Our customized memory allocation/deallocation routines are closely based on
the FastFit algorithm [2§]. Every memory request of less than 4 KB in size is
rounded to the next power of two. For every power of two from 16 to 4096,
there is a corresponding linked list of memory blocks. When malloc receives an
allocation request, it tries to satisfy it from the corresponding linked list. If no
free block is available in the corresponding linked list, or the request is for more
than 4 KB of memory, then memory is allocated from a wilderness chunk using
the traditional FirstFit algorithm [29].

During execution, our customized malloc first computes the HeapTag for the
requested heap object. If the HeapTag matches any of the recorded HeapTags for
which a customized allocation should be performed, malloc returns a suitably
aligned address. When the newly created heap object is brought in the cache, it
occupies the blocks specified by the placement algorithm.

4.6 Independent Placement Results

The effects of data placement by IND on miss rate and weighted speedup are
shown in Figure Bl and Figure @l respectively. The Baseline series shows data
cache miss rate without any type of placement optimization. CCDP shows the
miss rate if traditional CCDP is performed on each of the applications. Since
CCDP ignores inter-thread conflicts, for four workloads CCDP actually increases
the miss rate over Baseline. LG2ACC shows the miss rate if L1 data cache is
implemented as a Double access local-global split cache [19]. Split caches are
designed to reduce conflicts in a multithreaded workload, though in our exper-
iments the split cache was not overly effective. The final three series (IND-30,
IND-40, IND-50) show the effect of co-ordinated data placement with A (the
placement bias) set to 0.30, 0.40 and 0.50 respectively. The figure shows that
no single value of A is universally better than others, though all of them yield



58 S. Sarkar and D.M. Tullsen

N
=3

w
o

M Baseline OCCDP OLG2ACC COIND 30 EIND 40 OIND 50

M ss rate(%)
_- —_ [\ N W
> & 5 & 8
A ,

wn
L

Workload ID

Fig. 3. Data Cache miss rate after Independent Placement (IND)

OCCDP OLG2ACC OIND 30 EIND 40 OIND 50

We ghted Speedup
=

09

08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 avg
Workload ID

Fig. 4. Weighted Speedup after Independent Placement (IND)

improvement over traditional CCDP. For future work, it may be that setting
A individually for each application, based on number and size of objects, for
example, will yield even better results.

A careful comparison of Figure [} and Figure [Il shows that the effectiveness
of co-ordinated data placement is heavily correlated with the fraction of cache
misses that are caused by conflicts. On workloads like { crafty eon} (workload 6)
or {gzip mesa} (11), more than half of the cache misses are caused by conflicts,
and IND-30 reduces the miss rate by 54.0% and 46.8%, respectively. On the
other hand, only 6% of the cache misses in workload {wupwise ammp} (20) are
caused by conflicts, and IND-30 achieves only a 1% gain.



Data Layout for Cache Performance on a Multithreaded Architecture 59

IND reduced overall miss rate by 19% on average, reduced total conflict misses
by more than a factor of two, and achieved a 6.6% speedup. We also ran exper-
iments with limited bandwidth to the L2 cache (where at most one pending
L1 miss can be serviced in every two cycles), and in that case the performance
tracked the miss rate gains more closely, achieving an average weighted speedup
gain of 13.5%.

IND slightly increases intra-thread cache conflict (we still are applying cache-
conscious layout, but the bias allows for some inefficiency from a single-thread
standpoint). For example, the average miss rate of the applications, when run
alone with no co-scheduled jobs increases from 12.9% to 14.3%, with X set to 0.4.
However, this result is heavily impacted by one application, ammp for which this
mapping technique was largely ineffective due to the large number of heavily-
accessed objects. If the algorithm was smart enough to just leave ammp alone,
the average single-thread miss rate would be 13.8%. Unless we expect single-
thread execution to be the common case, the much more significant impact on
multithreaded miss rates makes this a good tradeoff.

5 Co-ordinated Data Placement

In many embedded or application-specific environments, programs that are going
to be co-scheduled are known in advance. In such a scenario, it might be more
beneficial to co-compile those applications and lay out their data objects in
unison. This approach provides more accurate information about the temporal
interleavings of objects to the layout engine.

Our coordinated placement algorithm (henceforth referred to as CORD) is
similar in many ways to IND. However, in CORD the cache is not split into
native and foreign blocks, and thus there is no concept of biasing. In CORD, the
TRGSelect graph from all the applications are merged together and important
objects from all the applications are assigned a placement in a single pass.

5.1 Merging of TRGSelect Graphs

The TRGSelect graph generated by executing the instrumented binary of an
application captures the temporal relationships between the objects of that ap-
plication. However, when two applications are co-scheduled on an SMT proces-
sor, objects from different execution contexts will vie for the same cache blocks
in the shared cache. We have modeled inter-thread conflicts by merging the
TRGSelect graphs of the individual applications. It is important to note that
we profile each application separately to generate two graphs, which are then
merged probabilistically. While we may have the ability to profile the two threads
running together and their interactions, there is typically little reason to believe
the same interactions would occur in another run. The exception would be if the
two threads communicate at a very fine granularity, in which case it would be
better to consider them a single parallel application.

Assigning temporal relationship weights between two objects from different
applications requires modeling interactions that are much less deterministic than



60 S. Sarkar and D.M. Tullsen

interactions between objects in the same thread. We thus use a probabilistic
model to quantify expected interactions between objects in different threads.

Two simplifying assumptions have been made for estimating the inter-thread
temporal edge weights, which make it easier to quantify the expected interactions
between objects in separate threads. (1) The relative execution speeds of the
two threads is known a priori. Relative execution speed of co-scheduled threads
typically remains fairly constant unless one of the threads undergoes a phase
change — which can be discovered via profiling. (2) Within its lifetime, an object
is accessed in a regular pattern, i.e. if the lifetime of an object o is k cycles, and
the total reference count of o is n, then o is accessed once every fL cycles. Few
objects have very skewed access pattern so this assumption gives a reasonable
estimate of the number of references made to an object in a particular interval.

We use these assumptions to estimate the interleavings between two objects
(in different threads). From the first assumption, along with the known lifetimes
of objects, we can calculate the likelihood that two objects have overlapping
lifetimes (and the expected duration). From the second assumption, we can
estimate the number of references made to those objects during the overlap.
The number of interleavings cannot be more than twice the lesser of the two
(estimated) reference counts. We apply a scaling factor to translate this worst-
case estimate of the interleavings during an interval, into an expected number of
interleavings. This scaling factor is determined experimentally. To understand
the point of the scaling factor, if the two objects are being accessed at an equal
rate by the two threads, but we always observe a run of two accesses from one
thread before the other thread issues an access, the scaling factor would be 0.50.
The steps required to merge two TRGSelect graphs into a single, unified graph
is outlined in Algorithm

In our experiments we have found it sufficient to only put temporal edges
between important objects (i.e., objects not marked as unimportant) of each
application, which eliminates edge explosion.

5.2 Coordinated Placement Results

The miss-rate impact and weighted speedup achieved by CORD is shown in
FiguresBland Bl The three series CORD-60, CORD-70 and CORD-80 represents
the result of independent data placement with scaling factor set to 0.6, 0.7 and
0.8 respectively. The scaling factor represents the degree of interleaving we expect
between memory accesses from different threads accessing the same cache set.
In most of the workloads, the speedup is somewhat more than that obtained
from independent placement, thus confirming our hypothesis that being able to
exploit more specific information about conflicting objects leads to better place-
ment decisions. On the average CORD reduced miss rate by 26% and achieved
8.8% speedup. However, if one of these optimized applications is run alone (i.e.
without its counterpart application) we do sacrifice single-thread performance
slightly, but the effect is much less than the gain when co-scheduled. The amount
of the single-thread loss depends somewhat on the scaling factor. The average
Baseline miss rate was 12.9%. With coordinated placement, and a scaling factor



T
8

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

M ss rate (%)

Data Layout for Cache Performance on a Multithreaded Architecture 61

OrRra,o0 < set of vertices in TRGSelect graph of application 0
Orra,1 < set of vertices in TRGSelect graph of application 1
Errag,0 < set of edges in TRGSelect graph of application 0
Errag,1 < set of edges in TRGSelect graph of application 0
{Orre and Ergrg are respectively the vertex and edge sets of the merged
TRGSelect graph}
Orra < Orra,o UOTRaG,1
: Errc < ErTrG,0U ETRG1
for all object 0 € Orgra,0 do
for all object p € Orrg,1 do
LT, « life-time of o
R, < number of memory references to o
LT, « life-time of p
R, <+ number of memory references to p
LT, , — overlapping life-time of o and p {computed from LT,, LT, and
relative rate of executions of two applications}
if LT, > 0 then
R} — R, X LLT;’O”
R, — R, x LLT;:’
Errc + ErrcU edge(o, p)
edge-weight[edge(o, p)] < 2 x min(Ry, R,) X s {s being the scaling factor}
end if
end for
end for
Algorithm 5. Merging TRGSelect graphs
4
35 M Baseline OCCDP OLG2ACC OCORD 60 MCORD 70 @CORD 80

30

25 4

20

Workload ID

Fig. 5. Data Cache miss rate after Coordinated Placement (CORD)



62 S. Sarkar and D.M. Tullsen

‘ OCCDP HLG2ACC OCORD-60 OCORD-70 B CORD-80

N
[N

1.0

Weighted Speedup

o
©
.

0.8

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 Avg
Workload ID

Fig. 6. Weighted Speedup after Coordinated Placement (CORD)

of 0.7, the average single-thread miss rate goes up to 13.1%, but when the scaling
factor is 0.8, the miss rate actually becomes 12.7%.

We see in these figures, however, that overall the results are fairly insensitive
to the scaling factor, which is closely tied to our estimates of relative execution
speed of the two programs and the lifetimes of the objects. Thus, inexact esti-
mates of any of these factors (expected rate of interleaving, relative execution
rate, object lifetimes) should not have significant impact on the effectiveness of
the technique.

6 Exploring Other Processor and Cache Configurations

Up to this point, we have demonstrated the effectiveness of our placement tech-
niques for a single hardware configuration. We did extensive sensitivity analysis
to understand how these techniques work as aspects of the architecture — such as
cache sizes and organizations, cache latencies, and number of execution contexts
in the processors — are modified. In this section we present and interpret the
results of some of those experiments.

6.1 Effects of Cache Size and Associativity

Cache associativity is the most interesting alternative, in large part because pro-
posed CCDP algorithms do not accommodate associative caches. The naive ap-
proach would model a set-associative cache as a direct-mapped cache with the
same number of sets. This has the benefit of retaining the correct model of line
mapping — that is, two addresses that conflict in a 32 KB 2-way cache will also map
to the same set in a 16 KB direct-mapped cache. However, this simplistic approach
does not take into consideration false positives while enumerating conflicts, (i.e.
this technique does not take into consideration the fact that k objects can share a
single set in a k-way associative cache without causing any conflicts) and generally
leads to sub-optimal object placement. The reason for the suboptimal placement
is that the cost function is incorrect, and begins penalizing placements before they



Data Layout for Cache Performance on a Multithreaded Architecture 63

OBaseline
30 4 E Naive CORD

miss rate
N
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Workload ID

Fig.7. Naive Coordinated Data Placement with a Set-Associative Cache (32 KB,
2-way)

actually cause any misses. This can be particularly harmful for our independent
placement (IND) algorithm, because a set-associative cache actually increases our
ability to create unbalanced mappings — but only if the cost model allows us to.

But even in the case of coordinated placement, the incorrect cost function
results in poor placement. This is shown in Figure[[, where we have modeled a
2-way 32 KB cache as a direct-mapped 16 KB cache, and the quality of the co-
ordinated placement is actually consistently worse than the baseline placement.

For associative caches, any mapping function that used our TRGSelect graph
would be an approximation, because we only capture 2-way conflicts. On the
other hand, profiling and creating a hypergraph to capture more complex con-
flicts would be computationally prohibitive. However, we found the following
heuristic to work well when using our existing TRGSelect graph. We have ad-
justed our default placement algorithm such that for a k-way set-associative
cache, an object incurs placement cost only if is placed in a set where at least
k objects have already been placed. This new policy tends to fill up every set
in the associative cache to its maximum capacity before potentially conflicting
objects are put in the set that already contains more than k objects.

Average miss-rate reductions and weighted speedups for the variety of bench-
mark pairs is given in Figures [§] and [ for different cache configurations. The
split cache results (LG2ACC) are only shown for direct-mapped caches, because
that technique is not applicable for set-associative caches. The results for set-
associative caches, in particular, are indicative of the low incidence of conflict
misses for these workloads. However, we do see that our techniques are effective
— we eliminate the vast majority of remaining conflict misses. For a 16 KB, 2-way
cache, we reduce total miss rate from 15.8% to 13.8%.

Although in some cases the performance gains are not high, they all still follow
the trends we have seen so far. This is encouraging, since the low performance
results are primarily the result of cache performance being good overall for those
workloads. But because the trends remain the same, and we effectively reduce or
nearly eliminate conflict misses in all cases, we have confidence that workloads
that exhibit higher miss rates will be able to make good use of these techniques.



64 S. Sarkar and D.M. Tullsen

M Baseline OCCDP EIND 30 OCORD 60 ELG2ACC

M ss rate(%)

S

o

16 KB DM 16 KB 2w 16 KB 4W 32Ke DM 32KB 2W 32KB 4W 64 KB DM G4 KB 2w
Cache Configuration

Fig. 8. Miss Rates for Different Cache Configurations. The set-associative results as-
sume the new multithreaded set-associative cache placement algorithm.

DOCCDP BIND 30 @ CORD 60 BLG2ACC

110 +

We ghted Speedup
g

,_.
o
S

095 +

090 +
16 KB DM 16 KB 2w 16 KB 4W 32 KB DM 32 KB 2W 32 KB 4w 64 KB DM 64 KB 2w
Cache Configuration

Fig. 9. Weighted Speedup for Different Cache Configurations

6.2 Increasing the Number of Execution Contexts

Our placement techniques were designed to adapt easily to processors having
more than two execution contexts. For co-ordinated data placement of k appli-
cations, k TRGSelect graphs must be merged together before placement. Inde-
pendent data placement requires the cache be partitioned into k regions, where
each region contains the hot objects from one of the applications. Figure [[0] and
[T shows the result of our placement techniques being applied to a four-threaded
SMT processor.

For a 4-thread processor, IND-30 and CORD-60 reduced miss rates by 14%
and 22% on the average; however, the actual weighted speedups were smaller
(2.0% and 3.1% respectively), due to the SMT processors’ ability to tolerate
cache misses in a latency-limited configuration like the one we simulate. How-
ever, the more threads running on a core, the more likely we are to saturate
memory bandwidth (both instruction execution rate and misses per instruction



Data Layout for Cache Performance on a Multithreaded Architecture 65

M Baseline OCCDP OLG2ACC WIND 30 OCORD 60

Mss rate(%)

Workload ID

Fig. 10. Miss rate for a 4-context SMT processor

110
[

[OccpP OLG2ACC MIND 30 EICORD 60 |

105 n

100

We ghted Speedup

090

oss WL LA LR LU L L U U U U i e U U LU UL

Workload ID

Fig. 11. Weighted Speedup for a 4-context SMT processor

go up significantly with more threads) — and in those scenarios the substantial
reduction in miss rate would likely be translated directly into performance, as
was demonstrated in the two-thread case. Moreover, there are other important
advantages of reducing L1 miss rate, such as lowering net power dissipation.

6.3 Effects of Cache Miss Penalty

Up to this point we have assumed the L1 miss penalty (to the L2 cache) to be 15
cycles, which is a reasonable figure for current microprocessors. However, in fu-
ture multi-core processors, pressure on L2 bandwidth and the overhead of cache-
coherence protocols will result in higher L1 miss penalty. In figure [I2] we plot
the weighted speedup of co-ordinated and independent placement techniques for
a range of L1 miss penalties. Not surprisingly, weighted speedup resulting from
our placement algorithms increase monotonically with miss penalty. Thus, as we



66 S. Sarkar and D.M. Tullsen

115

‘DIND 30 WIND 40 OIND 50 OCORD 60 ECORD 70 COCORD 80

110

We ghted Speedup

o
8

8cyc 12 cyc 15 cyc 20 cye 25 cye
Miss Penalty

Fig. 12. Variation of Weighted Speedup with Miss Penalty

increasingly pack more contexts (cores and thread contexts) onto the die, while
communication latencies across the die continue to increase, the importance of
these techniques will only increase.

7 Conclusion

As we seek higher performance embedded and other processors, we will increas-
ingly see architectures that feature caches and multiple thread contexts (either
through multithreading or multiple cores), and thus we shall see greater incidence
of threads competing for cache space. The more effectively each application is
tuned to use the caches, the more interference we see between competing threads.

This paper demonstrates that it is possible to compile threads to share the
data cache, to each thread’s advantage. We specifically address two scenarios.
Our first technique does not assume any prior knowledge of the threads which
might be co-scheduled together, and hence is applicable to all general-purpose
computing environments. Our second technique shows that when we do have
more specific knowledge about which applications will run together, that knowl-
edge can be exploited to enhance the quality of object placement even further.
Our techniques demonstrated 26% improvement in miss rate and 9% improve-
ment in performance, for a variety of workloads constructed from the SPEC2000
suite.

It is also shown that our placement techniques scale effectively across different
hardware configurations, including various cache sizes, cache latencies, numbers
of threads, and even set-associative caches.

Acknowledgments

This reasearch was supported in part by NSF Grant CCF-0541434 and Semi-
conductor Research Corporation Grant 2005-HJ-1313.



Data Layout for Cache Performance on a Multithreaded Architecture 67

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Calder, B., Krintz, C., John, S., Austin, T.: Cache-conscious data placement. In:

Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (1998)

. Tullsen, D.M., Eggers, S., Levy, H.M.: Simultaneous multithreading: Maximizing

on-chip parallelism. In: Proceedings of the 22nd Annual International Symposium
on Computer Architecture (1995)

. Tullsen, D.M., Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L.: Exploit-

ing choice: Instruction fetch and issue on an implementable simultaneous multi-
threading processor. In: Proceedings of the 23rd Annual International Symposium
on Computer Architecture (1996)

. Li, Y., Brooks, D., Hu, Z., Skadron, K., Bose, P.: Understanding the energy ef-

ficiency of simultaneous multithreading. In: Intl Symposium on Low Power Elec-
tronics and Design (2004)

. Seng, J., Tullsen, D., Cai, G.: Power-sensitive multithreaded architecture. In:

International Conference on Computer Design (September 2000)

. Kumar, R., Jouppi, N., Tullsen, D.M.: Conjoined-core chip multiprocessing. In:

37th International Symposium on Microarchitecture (December 2004)

. Dolbeau, R., Seznec, A.: Cash: Revisiting hardware sharing in single-chip parallel

processor. In: IRISA Report 1491 (November 2002)

. Agarwal, A., Pudar, S.: Column-associative caches: A technique for reducing the

miss rate of direct-mapped caches. In: International Symposium on Computer
Architecture (1993)

. Topham, N., Gonzélez, A.: Randomized cache placement for eliminating conflicts.

IEEE Transactions on Computer 48(2) (1999)

Seznec, A., Bodin, F.: Skewed-associative caches. In: International Conference on
Parallel Architectures and Languages, pp. 305-316 (1993)

Lynch, W.L., Bray, B.K., Flynn, M.J.: The effect of page allocation on caches. In:
25th Annual International Symposium on Microarchitecture (1992)

Rivera, G., Tseng, C.W.: Data transformations for eliminating conflict misses. In:
SIGPLAN Conference on Programming Language Design and Implementation, pp.
38-49 (1998)

Mueller, F.: Compiler support for software-based cache partitioning. In: Workshop
on Languages, Compilers and Tools for Real-Time Systems, pp. 125-133 (1995)
Juan, T., Royo, D.: Dynamic cache splitting. In: XV International Confernce of
the Chilean Computational Society (1995)

Bershad, B.N., Lee, D., Romer, T.H., Chen, J.B.: Avoiding conflict misses dynam-
ically in large direct-mapped caches. In: Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Operating
Systems, San Jose, CA, USA, October 5-7, pp. 158-170 (1994)

Sherwood, T., Calder, B., Emer, J.S.: Reducing cache misses using hardware and
software page placement. In: International Conference on Supercomputing, pp.
155-164 (1999)

Nemirovsky, M., Yamamoto, W.: Quantitative study on data caches on a mul-
tistreamed architecture. In: Workshop on Multithreaded Execution, Architecture
and Compilation (1998)

Hily, S., Seznec, A.: Standard memory hierarchy does not fit simultaneous multi-
threading. In: Proceedings of the Workshop on Multithreaded Execution Architec-
ture and Compilation, with HPCA-4 (1998)



68

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

S. Sarkar and D.M. Tullsen

Jos, M.G.: Data caches for multithreaded processors. In: Workshop on Multi-
threaded Execution, Architecture and Compilation (2000)

May, D., Irwin, J., Muller, H.L., Page, D.: Effective caching for multithreaded pro-
cessors. In: Communicating Process Architectures, pp. 145-154. IOS Press, Ams-
terdam (2000)

Nikolopoulos, D.S.: Code and data transformations for improving shared cache per-
formance on SMT processors. In: International Symposium on High Performance
Computing, pp. 54-69 (2003)

Lopez, S., Dropsho, S., Albonesi, D.H., Garnica, O., Lanchares, J.: Dynamic
capacity-speed tradeoffs in smt processor caches. In: Intl Conference on High Per-
formance Embedded Architectures & Compilers (January 2007)

Kumar, R., Tullsen, D.M.: Compiling for instruction cache performance on a mul-
tithreaded architecture. In: 35th Annual International Symposium on Microarchi-
tecture (2002)

Sarkar, S., Tullsen, D.M.: Compiler techniques for reducing data cache miss rate
on a multithreaded architecture. In: Proceedings of the International Conference
on High Performance Embedded Architectures and Compilers (2008)

Tullsen, D.M.: Simulation and modeling of a simultaneous multithreading proces-
sor. In: 22nd Annual Computer Measurement Group Conference (December 1996)
Tullsen, D.M., Brown, J.: Handling long-latency loads in a simultaneous mul-
tithreaded processor. In: 34th International Symposium on Microarchitecture
(December 2001)

Srivastava, A., Eustace, A.: Atom: a system for building customized program anal-
ysis tools. SIGPLAN Notices 39, 528-539 (2004)

Grunwald, D., Zorn, B.G., Henderson, R.: Improving the cache locality of mem-
ory allocation. In: SIGPLAN Conference on Programming Language Design and
Implementation (1993)

Robson, J.M.: Worst case fragmentation of first fit and best fit storage allocation
strategies. The Computer Journal 20(3) (1977)



Improving Branch Prediction by Considering
Affectors and Affectees Correlations

Yiannakis Sazeides', Andreas Moustakas?*,
Kypros Constantinides?*, and Marios Kleanthous!

! University of Cyprus, Nicosia, CYPRUS/HiPEAC
2 University of Michigan, Ann Arbor, USA

Abstract. This work investigates the potential of direction-correlations
to improve branch prediction. There are two types of direction-correlation:
affectors and affectees. This work considers for the first time their im-
plications at a basic level. These correlations are determined based on
dataflow graph information and are used to select the subset of global
branch history bits used for prediction. If this subset is small then affec-
tors and affectees can be useful to cut down learning time, and reduce
aliasing in prediction tables. This paper extends previous work explaining
why and how correlation-based predictors work by analyzing the proper-
ties of direction-correlations. It also shows that branch history selected
based on direction-correlations improves the accuracy of the limit and re-
alistic conditional branch predictors, that won at the recent branch pre-
diction contest, by up to 30% and 17% respectively. The findings in this
paper call for the investigation of predictors that can efficiently learn cor-
relations that may be non-consecutive (i.e. with holes between them) from
long branch history.

1 Introduction

The ever growing demand for higher performance and technological constraints
drive for many years the computer industry toward processors with higher clock
rates and more recently to multiple cores per chip. Both of these approaches
can improve performance but at the same time can increase the cycle latency
to resolve an instruction, the former due to deeper pipelines and the latter due
to inter-core contention for shared on-chip resources. Longer resolution latency
renders highly accurate conditional branch prediction a necessity because branch
instructions are very frequent in programs and need to be resolved as soon as
they are fetched in a processor to ensure continuous instruction supply.

Today, after many years of branch prediction research and the two recent
branch prediction championship contests [1J2], the accuracies of the state of
the art predictors are high but far from perfect. For many benchmarks the O-
GEHL and L-TAGE predictord] [3/4] have more than five misses per thousand

* The author contributed to this work while at the University of Cyprus.
1 O-GEHL won the best practice award in the 2004 branch prediction contest and
L-TAGE won the realistic track of the 2006 contest.

P. Stenstrém (Ed.): Transactions on HiPEAC IIT, LNCS 6590, pp. 69 2011.
© Springer-Verlag Berlin Heidelberg 2011



70 Y. Sazeides et al.

instructions. Such a rate of misprediction, depending on the average branch
resolution latency and other execution overheads, can correspond to a substantial
part of the total execution time of a program. A recent study shows that the
misprediction overhead for an 8-way out-of-order processor using an 8KB O-
GEHL predictor, for SPECINT CPU2000 benchmarks, can be up to 50% and
on the average 17% of the execution time [5]. Consequently, we believe there is
still a need to further improve prediction accuracy. The challenge is to determine
how to achieve such an improvement.

In the seminal work by Evers et al. [6] it is shown that choosing more selec-
tively the correlation information can be conducive for improving branch pre-
diction. In particular, using an exhaustive search is determined for a gshare [7]
predictor that only a few, not necessarily consecutive, of the most recent branches
are sufficient to achieve best prediction accuracy. Furthermore, is demonstrated
that a correlation may exist between branches that are far apart. The same
work, introduces two reasons for why global history correlation exists between
branches: direction and in-path correlation, and divides direction-correlations
into affectors and affecteesld These various types of correlations can mainly be
derived by considering the data and control flow properties of branches. These
causes of correlation are only discussed qualitatively in [6] to explain what makes
two-level branch predictors work, no measurements of their frequency or quan-
tification of their importance are given.

The work by [6] motivated subsequent prediction research with goal the selec-
tive correlation from longer global history. One of the most notable is perceptron
based prediction [9] that identifies, through training, the important history bits
that a branch correlates on. The success of perceptron based prediction pro-
vides a partial justification for the claims by [6] for the importance of selective
correlation. However, it was never established that the dominant perceptron
correlations correspond to direction or in-path correlation and therefore remains
uncertain if indeed such correlations are important or whether predictors exploit
them efficiently.

One other interesting work by [8] investigated the usefulness of affectors
branches, one of the types of direction-correlation introduced by [6] . In [8] the
affector branches are selected dynamically from the global history using data de-
pendence information and are used to train an overriding tagged predictor when
a baseline predictor performs poorly. The experimental analysis, for specific mi-
croarchitectural configurations and baseline predictors, show that this idea can
potentially improve both prediction accuracy and performance. This work also
provides the first concrete evidence that the direction-correlation is an impor-
tant information for prediction. However, [8] did not examine the importance of
affectees.

In this paper we investigate the significance for improving branch prediction
accuracy using the two types of direction-correlation: affectors and affectees.

2 In [6] the two types of direction-correlations are defined but not named. In [§] they
referred to them as affectors and forerunners. In this work, for symmetry we decided
to name the forerunners as affectees.



Improving Branch Prediction by Considering Affectors 71

Our analysis is done at a basic level because it does not consider implementation
issues for detecting affectors and affectees correlations. The primary objectives of
this paper is to establish the extent that state of the art predictors learn direction-
correlations, and determine how precise the detection of direction-correlations
needs to be for best accuracy. Our evaluation uses the two winning predictors
of the limit and realistic track of the recent championship prediction [2] and
considers their accuracy when they use the global history as is versus the global
history packed [§] to “ignore” the positions with no direction-correlation.

Contributions
The key contributions and findings of this paper are:

— A framework that explains why some branches are more important than
others to correlate on. The framework can be used to precisely determine
these branches based on architectural properties without regard to imple-
mentation.

— An experimental analysis of the potential of direction-correlations to improve
branch prediction accuracy.

— An investigation of the position and the number of direction-correlations
reveals that their behavior varies across programs. Also, is very typical for
programs to have branches with the number of correlations ranging from few
branches to several hundreds. The correlations can be clustered together but
also be very far apart, i.e. correlations may not be consecutive and can have
holes between them. Affectees are found to be more frequent than affectors.

— Demonstrate that for best accuracy both affectors and affectees correlations
are needed. Their use can provide accuracy improvements of up to 30% for
the limit predictor, and 17% for the realistic predictor

— Show that it is crucial to include in branch history direction-correlations that
are detectable by tracking dependences through memory.

— Establish a need to further study predictors that can learn correlation
patterns with and without holes from long branch history.

The remaining of the paper is organized as follows. Section [2] defines what af-
fectors and affectees correlations are and discusses parameters that influences
the classification of a branch as correlating. Section B presents the experimental
framework. Section Hl discusses the experimental results of this study and estab-
lishes the significance of affectors and affectees. Section [6 discusses related work.
Finally, Section [6] concludes the paper and provides directions for future work.

2 Affectors and Affectees

This section defines what affector and affectee branches are and provides intu-
ition as to why these are important branches to select for correlation. It also
discusses how the treatment of memory dependences influence the classification
of a branch as an affector or affectee of another branch. Finally, a discussion is
presented on how this correlation information can be used for prediction. Part
of this discussion is based on earlier work [G}8].



72 Y. Sazeides et al.

AFFECTO|

IMPLIES:
R2is1 i
R1is5 R1=R2+4 ||[R5is<7 R4=R5+4
R3is6 R3=R1+R2

(c)

2=
2
=5 n
& e >3
Am hY
e ma
B

éFFECTEE

(a) (b)

(d)

Fig.1. (a) Example control flow graph, (b) affector graph, (c) affectee graph and (d)
affector plus affectee graph

2.1 Definitions and Intuition

Affectors: A dynamic branch, A, is an affector for a subsequent dynamic branch,
B, if the outcome of A affects information (data) used by the subsequent branch
B. Affectors are illustrated using the example control flow graph in Fig. [la.
Assume that the (predicted) program order follows the shaded basic-blocks and
we need to predict the branch in the basic-block 7. The affector branches are
all those branches that steer the control flow to the basic-blocks that contain
instructions that the branch, in basic-block 7, has direct or indirect data depen-
dence. In our example, these correspond to the branches in basic-blocks BBO,
BB2 and BB4. Effectively, the selected affector branches can be thought of as
an encoding of the data flow graph leading to the branch to be predicted (this
affector data flow graph is shown in Fig. [[Ib). Predictors may benefit by learn-
ing affector correlations because when branches repeat with the same data flow
graph they will likely go the same direction. Furthermore, affector correlations
use a more concise branch history to capture the data flow graph leading to a
branch and thus reduce learning time and table pressure for training a predictor.

Affectees: A dynamic branch, A, is affectee of a subsequent dynamic branch, B,
if A is testing the outcome of an instruction C that can trace a data dependence
to an instruction D in the data flow graph leading to BB The direction of an
affectee branch encodes, in a precise or imprecise manner, the values produced

3 C and D can be the same instruction.



Improving Branch Prediction by Considering Affectors 73

or yet to be produced by D and of other instructions in the data dependence
graph from branch B to instruction D.

In the example in Fig.[Ila the branch in BB7 has two affectees, the branches in
BB/ and BB6. More specifically, the branch R2==1in BB/ is an affectee because
it tests the outcome of the load instruction LW R2,(R1), on which the branch
R3==R/ in BB7has an indirect data dependence (through the instructions R3
= R1 + R2in BB3 and R1 = R2 + 4 in BB2). Since the direction of R2==1 is
taken it implies that the test condition is true and consequently the value loaded
from the load instruction LW R2,(R1) is 1, the value produced by R = R2 +
4 is 5 and the result of R3 = R1 + R2is 6. Therefore, in this case the direction
of branch R2==1 in BB/ provides a precise encoding for the operand R3 of the
branch R8==R/ in BB7. On the other hand, the false condition of the affectee
branch R/>10in BB6 is less precise and provides a range of possible values for
the second operand R/ of the branch.

Essentially, affectees provide an encoding for values consumed or produced in
the dataflow graph leading to the branch to be predicted. The affectee value en-
codings for the example in Fig.[Ila are shown in Fig.[lc. Note that a branch can
be both affector and affectee of another branch depending on its dependences.
An example of such branch is R2==1 in BB/ in Fig. [dla.

Combo: It is evident that the combination of affectors and affectees can be
more powerful than either correlation alone since affectees can help differentiate
between branches with the same data affector data flow graphs but different in-
put values. Similarly, affectors can help distinguish between same affectee graphs
that correspond to different affector graphs. The combined affector and affectee
data flow graph of our running example is shown in Fig. [ld.

Section Ml investigates how the above types of correlations affect branch pre-
diction accuracy. We believe that existing predictor schemes are able to learn
data flow graphs, as those shown in Fig. [l but they do this inefficiently using
more history bits than needed. Therefore, they may suffer from cold effects and
more table pressure/aliasing. Our analysis will establish how much room is there
to improve them.

2.2 Memory Dependences

For accurate detection of the direction-correlations data dependences need to
be tracked through memory. That way a branch that has a dependence to a
load instruction can detect correlation to other branches through the memory
dependence. Although, tracking dependences through memory may be important
for developing a better understanding for the potential and properties of affectors
and affectees correlations, it may be useful to know the extent that such precise
knowledge is necessary. Thus may be interesting to determine how well predictors
will work if direction-correlations detected through memory dependences are
approximated or completely ignored.

We consider two approximations of memory dependences. The one tracks the
dependence of address operands of a load instruction ignoring the dependence
for the data. And the other does not consider any dependences past a load



74 Y. Sazeides et al.

instruction, i.e. limiting a branch to correlations emanating from the most recent
load instructions leading to the branch. These two approximations of memory
dependences need to track register dependences whereas the precise scheme re-
quires maintaining dependences between stores and load through memory. We
will refer to the precise scheme of tracking dependences as Memory, and to the
two approximations as Address, and NoMemory. In Section ] we will compare
the prediction accuracy of the various schemes to determine the importance of
tracking accurately correlations through memory.

For the Memory scheme we found that is better to not include the address
dependences of a load when a data dependence to a store is found (analysis
not presented due to limited space). This is reasonable because the correlations
of the data encode directly the information affecting the branch whereas the
address correlations are indirect and possibly superfluous.

Recall that our algorithm for detecting direction-correlations does not con-
sider implementation constraints. It is based on analysis of the dynamic data
dependence graph of a program. The intention of this work is to establish if
there is potential from using more selective correlation.

2.3 How to Use Affectors and Affectees for Prediction

Based on the findings of this paper one can attempt to design a predictor
grounds-up that exploits the properties exhibited by affectors and affectees cor-
relations. That is also our ultimate goal and hopefully this paper will serve as a
stepping stone in that direction. This, however, may be a non-trivial effort and
before engaging in such a task may be useful to know its potential.

Therefore, in this paper we decided to determine the potential of affectors and
affectees using unmodified existing predictors. We simply feed these predictors
with the complete global history and with the history selected using affectors and
affectees and compare their prediction accuracy. If this analysis reveals that the
selective correlations have consistently and substantially better accuracy then
may be worthwhile to design a new predictor.

The only predictor design space option we have is how to represent the selected
bits in the global history register. In [8] they were confronted with a similar
problem and proposed the use of zeroing and packing. Zeroing means set a history
bit to zero if it is not selected while branches retain their original position in the
history register. Packing moves all the selected bits to the least significant part of
the history register while other bits are set to zero. Therefore, in packing selected
branches lose their original position but retain their order. Our experimental
data (not shown due to space constraints) revealed that packing had on average
the best accuracy and is the representation we used for the results reported
in Section [

Our methodology for finding the potential of affectors and affectees may be sub-
optimal because it uses an existing predictor without considering the properties
exhibited in the global history patterns after selection. Another possible limitation
of our study has to do with our definition of affectors and affectees. Alternative
definitions may lead to even more selective and accurate correlations. For instance



Improving Branch Prediction by Considering Affectors 75

by considering only affectees that trace dependences to load instructions. These
and other limitations to be found may lead to increased potential and thus the
findings of this study should be viewed as the potential under the assumptions
and constraints used in the paper.

3 Experimental Framework

To determine the potential of affectors and affectees to increase branch prediction
accuracy we used a functional simulation methodology using a simplescalar [10]
derived simulator. A subset of SPEC2000 and three SPEC95 benchmarks, listed
in Table [I], are used for our analysis. For the SPEC2000 benchmarks the early
regions, of 10-100 million instructions, identified by sim-point [II] are used,
whereas for SPEC95 complete runs of modified reference inputs are executed.
Some SPEC2000 benchmarks are not included because they required large mem-
ory and/or long simulation time to track dependences, affectors and affectees.
The selected SPEC95 benchmarks exhibit the higher misprediction rates with a
32KB L-Tage predictor among integer SPEC95 benchmarks.

Table 1. Benchmarks

SPECINT CPU2000 bzip200, crafty00, eon00, gap00, gcc00, gzip00,
mcf00, perlbmk00, twolf00, vortex00, vpr00

SPECFP CPU2000 ammp00, equake00, fma3d00, galgel00, mesa00
mgrid00 sixtrack00, wupwise00

SPECINT CPU95  gcc95, go95, ijpeg9dh

Two predictors are used in the experimentation: a 32KB L-TAGE [12] pre-
dictor with maximum history length of 400 bits, and the GTL [4] predictor with
400 maximum history length for the GEHL component and 100000 maximum
history length for the TAGE component.

For the experiments where selective correlation is used, the selection is applied
to the 400 bit global history of the L-TAGE predictor and to the 400 bit history
used to access the GEHL component of the GTL predictor. Selection was not
used for the TAGE component of GTL because the memory required to track
affectors and affectees for a 100000 global history were extremely large and
beyond the memory capacities of todays servers.

The detection of affectors and affectees is done on-line using the dynamic data
flow graph of a program. Unless stated otherwise, the default policy is to track
correlations through memory dependencesH

4 In the conference version of the paper [I3] the term oracle was used to signify the
precise tracking of memory dependences assumed for obtaining some of the results.
The same assumption is used for this paper but the term is omitted to avoid confusion
with an oracle off-line analysis for detecting affectors and affectees.



76 Y. Sazeides et al.

The algorithm used to determine affectors is the simple approximation pro-
posed in [§]. A dynamic branch is an affector, of a branch to be predicted, if
it is the last, in the dynamic program order, branch that executed before an
instruction in the dataflow graph of the branch to be predicted.

The algorithm that detects affectees tracks the sources for each unique state,
register or memory location, updated during a program’s execution. Sources are
the roots in the dynamic data dependence graph of each dynamic instruction.
Sources are either dynamic instances of instructions with no inputs, like a move
immediate, or locations with program data input, i.e. locations read but not
updated by a program instruction. Each unique source contains a bit vector
with n bits. Every time an instruction executes it computes the union of its input
operand sources to produce the set of sources to be written in its destination.
Every time a conditional branch executes all sources shift their bit vector by
oneld Also, the sources of the branch set their least significant bit to indicate
that this branch can trace a dependence to this source. The above imply that
when bit i of a source is set then the ith most recent branch has a dependence
to this source. To determine the affectees of a branch we determine the union of
its operands sources and bitwise-or these sources bit vectors. All the positions
that are set in the resultant bit vector correspond to the global branch history
positions with a correlation.

4 Results

We present three sets of results, the first analyzes the properties of affectors and
affectees, the second discusses the accuracy of the GTL predictor, and the third
shows the accuracy of the L-TAGE predictor.

4.1 Characterization of Affectors and Affectees

Fig. @ and Bl show the cumulative distribution of dynamic branches according
to the number of affector and affectee correlations they have. The number of
correlations can not exceed 400 since we consider only correlations from the
400 most recent branches. We decided to analyze the behavior for the 400 most
recent branches since the two predictors used in the study use a 400 entry global
branch history register.

The results reveal that branches usually have much fewer affectors than af-
fectees. For most benchmarks 80% of the branches have at most 30 affectors.
According to the definition of affectors, this means that the computation that
determines the outcome of a branch can be found in less than 30 out of the most
recent 400 basic blocks preceded by a conditional branch. The outlier is gcc00
where many branches have large number of affectors. The data about affectees

5 A key optimization is to not shift all sources every time a branch executes but only
the sources of the branch. The shift amount is determined based on the distance in
branches between the current branch instruction and the last branch that updated
the particular source.



Improving Branch Prediction by Considering Affectors 7

90 A

80 ;-

70 +

(%)

60

a
40 + —e—ammp00 —=—bzip200
| crafty00 eon00
—*—equake00 —e—fma3d00
[s 304 ~ ——galgel)0  ——gap00
/ ——gcc00 gcc95
20 “ 5 go95 9zip00 L
I ijpeg95 mcf00
e mesa00 mgrid00
10 ——perlbmk00 —— sixtrack00 —
—+—twolf00 vortex00
0 —4—vpr00 —»%—wupwise00
O © N © & ©O © N O F O © N © F © © N O ¢ © © N 0 T O
- MO ¥ © 0 O - N ¥ O N~ 0O O N T IO N~ 0O O N MO UL O 0 O
- - v = = = N N N N N N O MmO O O 0o O
Number of Cor (Aff
Fig. 2. Affectors distribution
100 — :
/4 r £ "
/
2
—e—ammp0l —#—bzip200 7
crafty0 eon00
—o—fma3d00 |
[ ——galgel0 ——gap00
——gcc00
go95 i L
ijpeg9:
mesa0
et DEl] 0.+ sixtrack00  —
—+—twolf00 vortex00
0 . —+—vpr00 ——wupwise00
O © N © ¥ O © N O ¥ O © N O T O © ¥ © © N O ¥ O
- M ¢ © O O - N F O© N O O NN ¥ 10N~ 0 O N M B © 0 O
~ - - - Y Y AN N N N N N O O O O O O <

Number of Correlations (Affectees)

Fig. 3. Affectees distribution



78 Y. Sazeides et al.

100 B ——
f 1

—=—bzip200
eon00

Cumulative Dynamic Branches (%)

rid00
sixtrack00
twolf00 vortex00
vpr00 ——wupwise00

1
2
4
6
7
9;
0:
2:
41
51
7.
8
304
320
3
5.
{5}
8.
]

Number of Correlations (Affectors + Affectees)

Fig. 4. Combined Affectors and Affectees distribution

correlations show clearly that for most programs 50% of the branches have 30
or more affectees. This means that a branch frequently checks information that
directly or indirectly has been tested by at least 30 other out of the 400 most
recent branches. The data also show few benchmarks, bzip00, galgel00, gcc00,
and mgrid00, to have 300 or more affectee correlations.

The above observations suggest that the dynamic dataflow graphs of branch
instructions are usually small and shallow (implied by the small number of af-
fectors), and branches often share part of their dynamic data flow graphs with
other branches (indicated by the large number of affectees).

The graph in Fig. [ shows the distribution of the branches when we consider
both affectors and affectees correlations. Overall, the data show that there are
more correlations when we consider affectors and affectees in combination (com-
pare Fig. @ against Fig. 2 and [B]). Nonetheless, the results for ALL benchmarks
reveal that there are many branches that have much less than maximum number
correlations. Therefore, if: (a) affectors and affectees are the dominant types of
correlation that predictors need to learn, and (b) existing predictors are unable
to use only the relevant part of history, then these data suggest that there may
be room for improving prediction.

In Fig. Blwe attempt to give more insight by presenting the dominant patterns
of correlation when we consider the combination of affectors and affectees. The
figure shows for six benchmarks, twolf00, bzip00, ammp00, crafty00, perlbmk00
and equake00 what are the most frequent 1000 patterns of correlations. To help
the reader we present these top patterns sorted from top to bottom according to
the oldest position with a correlation (i.e. the most recent correlation position is



Improving Branch Prediction by Considering Affectors 79

% 100% 75%  50% 25% 0%

100% 75%  50% 25% 0% 100% 75%  50% 25% O
H
]
g
E
ih—
M
=
r
.a"-
L
(a) (©)
100% 75%  50% 25% 100% 75%  50% 25% 0% 100% 75%  50% 25% 0%
B e -_- ‘_"h- =
e e
O T o
- A il 11 -
o o - — 11 N
Z A i
/g’ A Baer R
- - M=
/| i 7,
i = . -
g
-
- E
= = 4
- B 3 - X
- be -
(& E
= o .
~
= :
| — -
- - L
(d) (e ®

Fig. 5. Most frequent correlation patterns for (a) twolf00, (b) bzip00, (¢) ammp00, (d)
crafty00, (e) perlbmk00, and (f) equake00



80 Y. Sazeides et al.

Table 2. Representative Benchmarks for Correlation Patterns

Benchmark Representative of Benchmarks

twolf00 vpr00, gcc95 and go95

bzip00 gcc00, gzip00, mcf00 and ijpeg95

ammp00  galgel00, mgrid00 and sixtrack00

crafty00 mesa00

perlbmk00 eon00, fma3d00, gap00, vortex00 and wupwise00
equake00 -

to the right). The curve that cut-across each graph represents from top to bottom
the cumulative branch distribution of the patterns. This line is not reaching 100%
since we only display the top 1000 patterns. A given pattern has a gray and white
part representing the bit positions with and without correlations. To help the
reader we present patterns with 100 positions where each position corresponds to
4 bits (a position is set to one if any of its corresponding four bits is set). These
six graphs are representative of the remaining benchmarks we considered in this
paper as shown in Table Pl Benchmark equake00 has a unique behavior with
very few dominant correlations patterns. For the following discussion we define
the length of a correlation pattern to be the oldest position with a correlation.

One of the main observation from these data is that branch correlations are
not always consecutive, there are holes between correlated branches. These holes
can be of any size and a given correlation pattern can have one or more holes.
The hole behavior varies across benchmarks, for twolf00 and crafty00 like bench-
marks is dominant whereas for bzip00 like benchmarks they occur less frequently.
Within a benchmark there can be both sparse and dense patterns.

More specifically, the results indicate that virtually always correlation patterns
include at least few of the most recent branches (for each benchmark almost all
patterns have at the right end - most recent branches - few positions set). Also,
it is observed across almost all benchmarks that for a given correlation length
the pattern with all positions set is very frequent. However, for twolf00 like
benchmarks many patterns have correlations that occur at the beginning and at
the end of the pattern with all the branches in the middle being uncorrelated.
Benchmark crafty00 exhibits similar behavior with twolf00 except that some
correlations may exist in the middle. Another remark for bzip00, ammp00 and
equake00 like benchmarks, is that they have many branches with correlations
distributed over all 100 positions (bottom pattern in Fig. [Bl for bzip00, ammp00
and equake00 accounts for over 40% of the patterns). Finally, perlbmk00 like
benchmarks are distinct because of few but often long correlation patterns.

Provided it is important to predict by learning precisely the above corre-
lations, the results suggest that there is a need for predictors that can learn
efficiently patterns with holes.

Another key observation from Fig.[Blis that correlation patterns occur usually
across all history lengths. These underlines the need for predictors to be capable
of predicting with variable history length. The distribution of patterns according



Improving Branch Prediction by Considering Affectors 81

7
6 BGTL o
O Affectees
M W Affectors
5 O Combo
£ 4
@
Q
n
i)
= 3 A
2 i
1 | | L
o [ ﬂ]l[m N I

arP0070200ty00 60n9%52400 4009 9090 171p0q 609 c0G ese0G o 00 ypr0®

Fig. 6. GTL accuracy with selective correlation

to length is similar to the distribution in Fig. @l Assuming is important to learn
precisely the correlation patterns, the exponential like cumulative distributions
of correlation lengths, for most benchmarks, suggests that most prediction re-
sources should be devoted to capture correlations with short history length and
incrementally use less resources for longer correlations. This observation clearly
supports the use of geometric history length predictors [I4].

The above observations may represent a call for predictors that can handle
both geometric history length and holes. As far as we know no such predictor
exists today. In the next section we attempt to establish the potential of such
a predictor using two existing geometric history length predictors that are ac-
cessed with selected history, with holes, using affectors and affectees correlations.
In the remaining paper we only present data for the benchmarks that exhibited
at least 0.25 misses per one thousand instructions. The other benchmarks dis-
played minimal sensitivity to the predictor used and for the sake of graph clarity
are omitted.

4.2 GTL Results

Fig. [0l shows the accuracy of the GTL predictor when accessed with full global
history, only with affectors correlations, only with affectees, and with the combi-
nation of affectors and affectees. The data show that the combination of affectors



82 Y. Sazeides et al.

100 —
90
80

70

/ —e— crafty00
60 - —e—gcc95
/ —=—go95

50 +

Normalized Cumulative Accuracy Improvement

/ ijpeg95
40 1+ - twolf00
vpr00
30 -
20
10 +
o —-"T"—T"—T—""—T—7— 7
O ©W N 0O ¥ © © N 0O < © ©W N 0O < © © N O ¥ © © N 0o ¥ O
- M < © 0 O - N I O~ O O N UK~ O O NN MO 1B © 0 O
~ - - - = — N N N NN ANO O o OoO>O®OS
a

Correlations (Affectors and Affectees)
Fig. 7. Number of Correlations vs. Accuracy Improvement

and affectees provides the best performance. It is always the same or better than
GTL and almost always better than each correlation separately. The exception
are ¢zip00 and vpr00 where the combination does slightly worse than using only
affectees and affectors respectively. This can happen when the one type of cor-
relation is sufficient to capture the program behavior and the use of additional
information is detrimental. The improvement provided by combining affectors
and affectees is substantial for several benchmarks. In particular, for crafty00,
gce95, go95, ijpeg95, twolf00, and vpr00 it ranges from 15% to 30%. The data
clearly support the claim by [6] that direction-correlation is one of the basic types
of correlations in programs that predictors need to capture. For the remaining
paper we present results for experiments that combine affectors and affectees
since they provide the best overall accuracy.

Fig. [0 shows the normalized cumulative improvement in prediction accuracy
when using affectors and affectees over GTL as a function of the number of
correlations. This is shown only for the benchmarks that experienced the largest
accuracy improvement when using affectors and affectees. To illustrate how to
interpret the graph consider crafty00. The Combo configuration in Fig. Bl reduces
mispredictions of crafty by 20%. The data in Fig. [[] indicate that 90% of this
improvement is due to correlations patterns that include less than 75 affectors
and affectees. In general, the data in Fig. [[lreveal that most of the improvement
from selective correlation is due to better prediction accuracy for the branches
that have fewer than 100 branch correlations. This may indicate that the GTL
predictor may be slow to learn or using more table resources than necessary
for such branches. For all benchmarks there is little improvement for branches
with over 300 correlations. This may suggest that the more bits in a correlation



Improving Branch Prediction by Considering Affectors 83

OGTL

B NoMemory
OAddress

Misses/KI

07M' T T L 1

ammpogi\pz%?a“\!Ooeoq(‘.)‘(\)anoogcogs 909591'\90893995‘.“0{(%?\8530%\,0\’(00 \19‘00
Fig. 8. Significance of Memory Dependences

pattern the closer the resemblance to the global history register and thus little
room for improvement from selective correlation.

Fig. [8 shows the prediction accuracy when we combine affectors and affectees
but with no correlations through memory. For each benchmark we present three
results, the GTL predictor with full history, the affectors and affectees with
no correlations past load instructions (NoMemory), and with correlations past
load instructions using their address dependences (Address). The data show
that there is very little improvement to gain when we do not consider correla-
tions through memory dependences. The data indicate that an approximation
of memory dependences using addresses dependences offers very little improve-
ment. This underlines that important correlations from the data predecessors of
load instructions are needed for improved accuracy.

The data show that selective correlation using the combination of affectors
and affectees can provide substantial improvement in prediction accuracy. The
results also show that correlations past memory instructions are important and
that address dependences provide a poor approximations of the data dependence
correlations. Overall, we believe the data suggest that may be worthwhile inves-
tigating the development of a predictor that is capable of learning correlations
from long history with holes. These conclusions are true for GTL an unreal-
istically large predictor that demonstrate that the improvements are not mere
accident but due to basic enhancements in the prediction process. However, we



84 Y. Sazeides et al.

10 OL-TAGE
B Combo

Misses/KI
D

o +m |

ammpogi\ong\'a“\JoO eoﬂ?‘g\a'bdgo 90095 909591'\90?\93995 mdog\esao(%wo\‘oo \,pr()()
Fig. 9. L-TAGE accuracy with selective correlation

are interested to know if these observations hold for a realistic predictor. Next
we consider selective correlation for a 32KB L-TAGE predictor.

4.3 L-TAGE Results

Fig. @ shows the prediction accuracy for a 32KB L-TAGE when accessed us-
ing the complete global history (L-TAGE) and with selective history using the
combination of affectors and affectees (Combo). The results show that selective
correlation with affectors and affectees can also improve the accuracy of the
L-TAGE predictor at a realistic size. The amount of improvement is significant
for several benchmarks. In particular, for gcc95, ijpeg95, and vpr00 is above
15% (for vpr 17%). We believe that these improvements call for the design of a
predictor that can exploit direction-correlations.

The amount of improvements for L-TAGE are smaller as compared to GTL.
However, one should recall that GTL is a completely different predictor not
simply a bigger L-TAGE predictor. We also performed analysis of the importance
of correlations through memory and the data suggest, similarly to GTL, that it
is necessary to include such correlations for better accuracy.

5 Related Work

Since Smith [I5] proposed the first dynamic table based branch predictor, inno-
vation in the field of prediction has been sporadic but steady. Some of the key



Improving Branch Prediction by Considering Affectors 85

milestones are: correlation-based prediction [I6] that exploits the global and or
local correlation between branches, hybrid prediction [7] that combines different
predictors to capture distinct branch behavior, variable history length [I7] that
adjusts the amount of global history used depending on program behavior, the
use of perceptrons [9] to learn correlations from long history, geometric history
length prediction [14] that employs different history lengths that follow a geo-
metric series to index the various tables of a predictor, and partial tagging [18]
of predictor table entries to better manage their allocation and deallocation. The
above innovations have one main theme in common: the correlation information
used to predict a branch is becoming increasingly more selective. This facilitates
both faster predictor training time and less destructive aliasing. Our paper ex-
tends this line of work and shows that there is room for further improvement if
we could select correlations with holes out of long history.

The importance for selective correlation is first established in the work by
Evers et al. [6]. In that paper it is shown that a predictor that selectively cor-
relates on few bits from the global history register can outperform a predictor
that correlates on the entire global history register. The paper argues that the
improvement is due to a reduction in the number of correlation patterns that
need to learned which leads to faster training and less aliasing. However, the
findings in [6] are based on an off-line oracle analysis. Fern et al. [I9] proposed
a possibly implementable on-line predictor based on the principles of dynamic
decision trees capable of learning and correlating on a subset of history bits.
An initial evaluation of this predictor revealed comparable performance to equal
sized Gap [16] and Pap [16] predictors.

A return-history-stack [20] is a method that can introduce holes in the branch
history. In broad terms, a return history stack pushes in a stack the branch
history register on a call and recovers it on a return, thus introducing holes in the
history. A return history stack is shown to be useful for a trace predictor [20] and
offers modest improvements for a direction branch predictor [21]. This suggests
that there are many cases where branches executed in a function are often no
significant to correlate on for the branches that execute after the function return.

In two recently organized branch prediction championships [1I2] researchers
established the state of the art in branch prediction. In 2006, the L-TAGE global
history predictor [12] was the winner for a 32KB budget. L-TAGE is a multi-table
predictor with partial tagging and geometric history lengths that also includes
a loop predictor. In the 2006 championship limit contest the GTL predictor [4]
provided the best accuracy. GTL combines GEHL [I4] and L-TAGE predictors
using a meta-predictor. The GEHL global history predictor [14] employs multiple
components indexed with geometric history length. Our paper uses the L-TAGE
and GTL predictors to examine our ideas to ensure that observations made are
not accidental but based on basic principles. The use of longer history is central
to these two predictors and the analysis in this paper confirmed the need and
usefulness for learning geometrically longer history correlations.

Several previous paper explored the idea of improving prediction by encoding
the data flow graphs leading to instructions to be predicted. They use information



86 Y. Sazeides et al.

from instructions in the data flow graph [22I23[2412526], such as opcodes, imme-
diate values, and register names, to train a predictor. Effectively these papers are
implementing variations of predictors that correlate on affector branches. In [26],
they consider using the live in values of the dataflow graphs when they become
available and in [23] they examined the possibility of predicting such values. The
inclusion of actual or predicted live-in values is analogous to the correlation on
affectee branches of such values, since the predicted or actual outcome of affectee
branches represents an encoding of the live-in values.

Mahlke and Natarajan [27] performed profiling analysis to determine simple
correlation functions between register values and branch outcomes. Instructions
are inserted in the code by the compiler to dynamically compute the branch di-
rection according to the derived functions. In our view, this work also attempts
to implement a variation of affectees correlation since the functions supply anal-
ogous information to what can be provided by affectee branches.

6 Conclusions and Future Work

In this paper we investigate the potential of selective correlation using affectors
and affectees branches to improve branch prediction. Experimental analysis of
affectors and affectees revealed that many branches have few correlations and
often the correlations have holes between them. Prediction using selective corre-
lation, based on affectors and affectees, is shown to have significant potential to
improve accuracy for a both a limit and a realistic predictor. The analysis also
shows that correlations past memory instruction are needed for best accuracy.
Overall, our study suggests that may be worthwhile to consider the design of
a realistic predictor that can exploit the properties exhibited by affectors and
affectees correlation patterns by learning correlations with and without holes
from long history.

A possible venue for future work is to train the tables of TAGE like predictors,
that contain multiple prediction tables, with branch history with holes. The
challenge is to decide what are going to be the holes in the branch history
since different benchmarks have different hole patterns. To design efficiently such
scheme it may be useful to first investigate and determine what is the relation
between dynamic program properties and holes.

One other direction of work is to focus on difficult to predict branches and
investigate their correlation patterns with increasingly longer history. Such an
analysis will reveal the importance of selective correlation to distant correlations.

Another possible direction of future work, is to investigate which affectors
and affectees are more important. A decision-tree based approach [B[19] can be
used to establish such classification. Such an analysis can be useful for better
understanding and hopefully further reduce the correlations required for best
prediction.

Finally, the approach proposed in this paper can be applied to static branch
prediction, and to other types of predictors, such as value and dependence
predictors.



Improving Branch Prediction by Considering Affectors 87

Acknowledgments. This work is partially supported by an Intel research grant
and the University of Cyprus. Yiannakis Sazeides would like to thank Ronny
Ronen, Roni Rosner, Avi Mendelson, Pierre Michaud, Hans Vandierendonck
and Veerle Desmet for their encouragement and feedback on earlier versions of
this work. The authors like also to thank the anonymous reviewers for their
constructive critique and suggestions that helped improve the presentation of
this manuscript.

References

10.

11.

12.

13.

14.

15.

. Wilkerson, C., Stark, J.: Introduction to JILP’s Special Edition for Finalists of the

Championship Branch Prediction (CBP1) Competition. Journal of Instruction-
Level Parallelism 7 (2005)

. Jiménez, D.A.: The Second Championship Branch Prediction Competition. Journal

of Instruction-Level Parallelism 9 (2007)

Seznec, A.: Genesis of the O-GEHL Branch Predictor. Journal of Instruction-Level
Parallelism 7 (2005)

Seznec, A.: The Idealistic GTL Predictor. Journal of Instruction-Level Parallelism 9
(2007)

Desmet, V.: On the Systematic Design of Cost-Effective Branch Prediction. PhD
Thesis, University of Ghent, Belgium (2006)

Evers, M., Patel, S.J., Chappel, R.S., Patt, Y.N.: An Analysis of Correlation and
Predictability: What Makes Two-Level Branch Predictors Work. In: 25th Interna-
tional Symposium on Computer Architecture (June 1998)

McFarling, S.: Combining Branch Predictors. Technical Report DEC WRL TN-36,
Digital Western Research Laboratory (June 1993)

Thomas, R., Franklin, M., Wilkerson, C., Stark, J.: Improving Branch Prediction
by Dynamic Dataflow-based Identification of Correlated Branches from a Large
Global History. In: 30th International Symposium on Computer Architecture, pp.
314-323 (June 2003)

Jimenez, D.A.; Lin, C.: Dynamic Branch Prediction with Perceptrons. In: 7th In-
ternational Symposium on High Performance Computer Architecture (February
2001)

Burger, D., Austin, T.M., Bennett, S.: Evaluating Future Microprocessors: The
SimpleScalar Tool Set. Technical Report CS-TR-96-1308, University of Wisconsin-
Madison (July 1996)

Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using
SimPoint for Accurate and Efficient Simulation. In: International Conference on
Measurement and Modeling of Computer Systems (2003)

Seznec, A.: The L-TAGE Branch Predictor. Journal of Instruction-Level Paral-
lelism 9 (2007)

Sazeides, Y., Moustakas, A., Constantinides, K., Kleanthous, M.: The Significance
of Affectors and Affectees Correlations for Branch Predicion. In: International Con-
ference on High Performance Embedded Architectures and Compilers, pp. 243-257
(January 2008)

Seznec, A.: Analysis of the O-GEometric History Length branch predictor. In: 32nd
International Symposium on Computer Architecture (2005)

Smith, J.E.: A Study of Branch Prediction Strategies. In: 8th International
Symposium on Computer Architecture, pp. 135-148 (May 1981)



88

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Y. Sazeides et al.

Yeh, T.Y., Patt, Y.N.: Two-Level Adaptive Branch Prediction. In: 24th Interna-
tional Symposium on Microarchitecture, pp. 51-61 (November 1991)

Juan, T., Sanjeevan, S., Navarro, J.J.: Dynamic History-Length Fitting: A third
level of adaptivity for branch prediction. In: 25th International Symposium on
Computer Architecture, pp. 155-166 (June 1998)

Michaud, P.: A PPM-like, Tag-based Predictor. Journal of Instruction-Level
Parallelism 7 (2005)

Fern, A., Givan, R., Falsafi, B., Vijaykumar, T.N.: Dynamic feature selection for
hardware prediction. Journal of Systems Architecture 52(4), 213-234 (2006)
Jacobson, Q., Rottenberg, E., Smith, J.E.: Path-Based Next Trace Prediction. In:
30th International Symposium on Microarchitecture, pp. 14-23 (December 1997)
Gao, F., Sair, S.: Exploiting Intra-function Correlation with the Global History. In:
Héamaldinen, T.D., Pimentel, A.D., Takala, J., Vassiliadis, S. (eds.) SAMOS 2005.
LNCS, vol. 3553, pp. 172-181. Springer, Heidelberg (2005)

Farcy, A., Temam, O., Espasa, R., Juan, T.: Dataflow analysis of branch mis-
predictions and its application to early resolution of branch outcomes. In: 31st
International Symposium on Microarchitecture, pp. 59-68 (December 1998)
Thomas, R., Franklin, M.: Using Dataflow Based Context for Accurate Value Pre-
diction. In: 2001 International Conference on Parallel Architectures and Compila-
tion Techniques, pp. 107-117 (September 2001)

Sazeides, Y.: Dependence Based Value Prediction. Technical Report CS-TR-02-00,
University of Cyprus (February 2002)

Constantinides, K., Sazeides, Y.: A Hardware Based Method for Dynamically De-
tecting Instruction Isomorphism and its Application to Branch Prediction. In: 2nd
Value Prediction Workshop (2004)

Chen, L., Dropsho, S., Albonesi, D.H.: Dynamic Data Dependence Tracking and
its Application to Branch Prediction. In: 9th International Symposium on High
Performance Computer Architecture, pp. 65-76 (February 2003)

Mabhlke, S., Natarajan, B.: Compiler Synthesized Dynamic Branch Prediction. In:
29th International Symposium on Microarchitecture, pp. 153-164 (December 1996)



Eighth MEDEA Workshop
(Selected Papers)



Eighth MEDEA Workshop

ek . .2k . . 2%
Sandro Bartolini * , Pierfrancesco Foglia™ , and Cosimo Antonia Prete

! Department of Information Engineering, University of Siena, Siena, Italy
bartolini@dii.unisi.it
? Department of Information Engineering, University of Pisa, Pisa, Italy
foglia, prete@iet.unipi.it

Members of the HIPEAC EU Network of Excellence

It is our pleasure to welcome you to this special section of Transactions on High-
Performance Embedded Architectures and Compilers (HiPEAC), presenting selected
papers from the 2007 edition of Medea Workshop. This workshop, held in conjunc-
tion with the PACT conference since 2000, has moved its topics of interest from
decoupled architectures to memory hierarchy arguments, with emphasis on embedded
and application-specific CMP systems.

In these years, due to the growth of wire delay and power consumption issues, the
focus of research in high performance systems has shifted towards CMP architectures.
As a consequence, also memory hierarchy research need to cope with open issues
related to CMP systems design: homogeneous vs heterogeneous architectures, exploi-
tation of parallelism to improve performance and hide memory latency, acting at
hardware and/or software levels, techniques to reduce power consumption and coher-
ence-related traffic. Furthermore, the memory wall problem must be reconsidered in
the new scenario, adapting old solutions or developing new ones. The papers in this
section demonstrate some of the hot topics in CMP systems design, with authors com-
ing from both industry and academia. We hope that you find these papers interesting
in their insights, and informative in the details provided.

The first paper in this issue, “Exploring the Architecture of a Stream Register-
Based Snoop Filter” by Blumrich et al., aims at reducing the negative effects of
coherence-related traffic on performance and power in homogeneous CMP systems.
This is achieved by proposing a combination of snoop filters and a small number of
ad-hoc stream registers. The authors evaluate different filtering approaches, analyzing
the effects of their parameters, and figure-out the most suitable filter combination.
The proposed scheme demonstrates to eliminate 94%-99% of the unnecessary snoop
requests (addresses that are not in cache) in case of Splash-2 benchmarks.

Clustered architectures represent one of the solutions to face out wire delay limits
in conventional super-scalar architectures. To improve ILP, big reorder buffers are
requested, but such big structures increase power consumption and are detrimental for
performance due to wire delay. In “CROB: Implementing a Large Instruction Win-
dow though Compression”, Latorre et al. propose a novel reorder buffer architecture,
CROB (compressed ROB), that compresses ROB entries giving the illusion of having

* Guest Editors Transactions on HiPEAC.

P. Stenstrom (Ed.): Transactions on HIiPEAC III, LNCS 6590, pp. 91 2011.
© Springer-Verlag Berlin Heidelberg 2011



92 S. Bartolini, P. Foglia, and C.A. Prete

a larger ROB, without paying the associated implementation costs. Results show an
average speed-up of 20% for a 128-entry ROB.

CMP cores usually adopt large last level caches to hide memory latency. Such
caches may be private or shared among cores, but both solutions may be not adequate
due to the different “memory pressures” exercised by the different cores. Besides,
large caches can waste energy when execution phases of the running applications do
not have a big working-set to accommodate. Mechanisms for dynamic management
of cache allocation to cores and dynamic activation of cache portions can help solving
both problems. The paper “Power-Aware Dynamic Cache Partitioning for CMPs” by
Kotera et al. propose a power-aware cache management algorithm which employs
power-gating and cache partitioning. It can be tuned to favor maximum power reduc-
tion, sacrificing some performance, or to reduce power while maintaining the
same performance output. Dynamic tracking of cache locality is used both for alloca-
tion of cache ways to cores and for power control with negligible hardware imple-
mentation overhead. The proposed mechanism reduces energy consumption by 20%,
while maintaining the same performance level, and up to 54% sacrificing 13% of
performance.

Heterogeneous architectures are an interesting alternative to homogeneous CMP
systems, but require significant programming effort to optimize the available compu-
tational power to the behavior of the application, and to hide memory latency. The
paper “Parallelization Schemes for Memory Optimization on the Cell Processor: A
Case Study on the Harris Corner Detector” by Saidani et al. evaluates various
parallelization schemes driven by the application domain and by the underlying Cell
architecture, in the case of Harris algorithm for detecting interesting points of an
image. The authors highlight the impact of DMA transfers, SPE synchronizations and
the effect of chaining techniques. The achieved performance are compared to conven-
tional cache-based CMP systems.

Taken as a whole, the articles in this special issue illustrate some of the active top-
ics in the domain of memory hierarchy research for CMP systems. We hope you
enjoy reading them, and that you learn something from each, as we did. Big thanks go
to Per Stenstrom, the editor-in-chief of these transactions, and to the people who made
this special issue possible: the peer-reviewers and Roberto Giorgi, co-organizer of
Medea workshop with us and our friend and collaborator in many research activities.



Exploring the Architecture of a Stream Register-Based
Snoop Filter

Matthias Blumrich, Valentina Salapura, and Alan Gara

IBM Thomas J. Watson Research Center
Yorktown Heights, NY, USA

Abstract. Multi-core processors have become mainstream; they provide paral-
lelism with relatively low complexity. As true on-chip symmetric multiprocessors
evolve, coherence traffic between cores is becoming problematic, both in terms
of performance and power. The negative effects of coherence (snoop) traffic can
be significantly mitigated through the use of snoop filtering. The idea is to shield
each cache with a device that can eliminate snoop requests for addresses that are
known not to be in the cache. This improves performance significantly for caches
that cannot perform normal load and snoop lookups simultaneously. In addition,
the reduction of snoop lookups yields power savings. This paper describes Stream
Register snoop filtering, which captures the spatial locality of multiple memory
reference streams in a small number of registers. We propose a snoop filter that
combines Stream Registers with ”snoop caching”, a mechanism that captures the
temporal locality of frequently-accessed addresses. Simulations of SPLASH-2
benchmarks on a 4-core multiprocessor illustrate tradeoffs and strengths of these
two techniques. We show that their combination is most effective, eliminating
94% - 99% of all snoop requests using only a small number of stream registers
and snoop cache lines.

1 Introduction

As single-core performance becomes increasingly hard to improve, and marginal costs
are growing, both in terms of complexity and power/performance inefficiency [1]], the
use of multi-core solutions to improve throughput in multi-threaded workloads has be-
come increasingly attractive [2]].

Unlike designs which target single-thread solutions with degrading power/perfor-
mance efficiency, suitably scalable parallel workloads show little or no degradation in
efficiency while delivering significant increases in performance through the use of mul-
tithreaded workloads. Using parallelism at the processor level also aligns with the limits
of future technologies. Although performance growth has been driven by technologi-
cally-enabled increases in processor operating frequency for the past 20 years, it is in-
creasingly hard to obtain with new technologies. One of the main reasons is the impact
of wire delays as feature sizes are shrunk [3]], requiring increasingly more sophisticated
microarchitectures.

While faster transistors and wires are increasingly hard to obtain, the application of
Dennard’s CMOS scaling theory [4] is continuing to deliver improvements in density.
Thus, multi-core solutions are based on a commercially viable exploitation of modern
CMOS fabrication processes.

P. Stenstrom (Ed.): Transactions on HIPEAC III, LNCS 6590, pp. 93 2011.
(© Springer-Verlag Berlin Heidelberg 2011



94 M. Blumrich, V. Salapura, and A. Gara

Several multi-core solutions have been introduced over the past few years, such as
the IBM POWER4 and POWERS servers, the IBM Blue Gene/P system [J5]], the Intel
Quad Core processors [6], and the Cell Broadband Architecture [7]]. Indeed, multi-core
is now a well-established trend. A major challenge in the implementation of chip multi-
processors is providing a suitable memory subsystem and on-chip interconnect that
combines low average access latency with high bandwidth.

As the number of processors per chip rises, the coherence traffic per processor con-
sequently increases. One solution to reducing the cost of coherence is to manage it
in software; a solution adopted by both the Blue Gene/L [8]] and Cell system archi-
tectures. In Blue Gene/L, software managed coherence is achieved by using one of
two software abstraction models: virtual node mode, wherein each processor is a sep-
arate node in the Blue Gene/L-optimized MPI implementation, or coprocessor mode,
where one processor is a dedicated computational node and a second processor provides
I/O and system management functions. In the Cell Broadband Architecture, coherent
DMA and the SPU-local store provide the necessary memory abstractions for building
high-performance systems. Although software-managed coherence offers an attractive
solution to achieving low-complexity memory architectures, it requires advanced
compilation technologies and careful application tuning. While this is acceptable for
high-end application-specific systems, providing low-complexity, coherent memory is
an attractive solution for a wider range of systems.

To reduce the complexity of implementing coherence in chip multiprocessors, two
component costs must be addressed:

— The bottleneck of a bus-based snoop implementation, which must be arbitrated
between a high number of nodes.

— The cost of providing snoop ports to each processor’s cache, or the cost of main-
taining a central directory.

In this paper we have investigated the use of coherence request filtering (or snoop filter-
ing) in a point-to-point coherence network to address these costs. The basic idea is to
provide a mechanism which will significantly reduce the interference of coherence re-
quests with pro