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Editor-in-Chief’s Message

It is my pleasure to introduce you to the third volume of Transactions on High-
Performance Embedded Architectures and Compilers. This journal was created as
an archive for scientific articles in the converging fields of high-performance and
embedded computer architectures and compiler systems. Design considerations
in both general-purpose and embedded systems are increasingly being based on
similar scientific insights. For example, a state-of-the-art game console today
consists of a powerful parallel computer whose building blocks are the same as
those found in computational clusters for high-performance computing. More-
over, keeping power/energy consumption at a low level for high-performance
general-purpose systems as well as in, for example, mobile embedded systems is
equally important in order to either keep heat dissipation at a manageable level
or to maintain a long operating time despite the limited battery capacity. It is
clear that similar scientific issues have to be solved to build competitive systems
in both segments. Additionally, for high-performance systems to be realized – be
it embedded or general-purpose – a holistic design approach has to be taken by
factoring in the impact of applications as well as the underlying technology when
making design trade-offs. The main topics of this journal reflect this development
and include (among others):

– Processor architecture, e.g., network and security architectures, application
specific processors and accelerators, and reconfigurable architectures

– Memory system design
– Power, temperature, performance, and reliability constrained designs
– Evaluation methodologies, program characterization, and analysis techniques
– Compiler techniques for embedded systems, e.g, feedback-directed opti-

mization, dynamic compilation, adaptive execution, continuous profiling/
optimization, back-end code generation, and binary translation/optimization

– Code size/memory footprint optimizations

This volume contains 14 papers divided into four sections. The first section
is a special section containing the top four papers from the Third International
Conference on High-Performance and Embedded Architectures and Compilers -
HiPEAC. I would like to thank Manolis Katevenis (University of Crete and
FORTH) and Rajiv Gupta (University of California at Riverside) for acting as
guest editors of that section. Papers in this section deal with cache performance
issues and improved branch prediction

The second section is a set of four papers providing a snapshot from the
Eighth MEDEA Workshop. I am indebted to Sandro Bartolini and Pierfrancesco
Foglia for putting together this special section.

The third section contains two regular papers and the fourth section pro-
vides a snapshot from the First Workshop on Programmability Issues for Mul-
ticore Computers (MULTIPROG). The organizers – Eduard Ayguade, Roberto



VI Editor-in-Chief’s Message

Gioiosa, and Osman Unsal – have put together this section. I thank them for
their effort.

The editorial board has worked diligently to handle the papers for the journal.
I would like to thank all the contributing authors, editors, and reviewers for their
excellent work.

Per Stenström, Chalmers University of Technology
Editor-in-chief

Transactions on HiPEAC
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Dynamic Cache Partitioning Based on the MLP
of Cache Misses

Miquel Moreto1, Francisco J. Cazorla2, Alex Ramirez1,2, and Mateo Valero1,2

1 Universitat Politècnica de Catalunya, DAC, Barcelona, Spain
HiPEAC European Network of Excellence

2 Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Spain
{mmoreto,aramirez,mateo}@ac.upc.edu, francisco.cazorla@bsc.es

Abstract. Dynamic partitioning of shared caches has been proposed
to improve performance of traditional eviction policies in modern multi-
threaded architectures. All existing Dynamic Cache Partitioning (DCP)
algorithms work on the number of misses caused by each thread and
treat all misses equally. However, it has been shown that cache misses
cause different impact in performance depending on their distribution.
Clustered misses share their miss penalty as they can be served in par-
allel, while isolated misses have a greater impact on performance as the
memory latency is not shared with other misses.

We take this fact into account and propose a new DCP algorithm that
considers misses differently depending on their influence in performance.
Our proposal obtains improvements over traditional eviction policies up
to 63.9% (10.6% on average) and it also outperforms previous DCP pro-
posals by up to 15.4% (4.1% on average) in a four-core architecture. Our
proposal reaches the same performance as a 50% larger shared cache. Fi-
nally, we present a practical implementation of our proposal that requires
less than 8KB of storage.

1 Introduction

The limitation imposed by instruction-level parallelism (ILP) has motivated
the use of thread-level parallelism (TLP) as a common strategy for improv-
ing processor performance. TLP paradigms such as simultaneous multithreading
(SMT) [1,2], chip multiprocessor (CMP) [3] and combinations of both offer the
opportunity to obtain higher throughputs. However, they also have to face the
challenge of sharing resources of the architecture. Simply avoiding any resource
control can lead to undesired situations where one thread is monopolizing all the
resources and harming the other threads. Some studies deal with the resource
sharing problem in SMTs at core level resources like issue queues, registers,
etc. [4]. In CMPs, resource sharing is focused on the cache hierarchy.

Some applications present low reuse of their data and pollute caches with
data streams, such as multimedia, communications or streaming applications,
or have many compulsory misses that cannot be solved by assigning more cache
space to the application. Traditional eviction policies such as Least Recently

P. Stenström (Ed.): Transactions on HiPEAC III, LNCS 6590, pp. 3–23, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



4 M. Moreto et al.

Used (LRU), pseudo LRU or random are demand-driven, that is, they tend
to give more space to the application that has more accesses and misses to
the cache hierarchy [5, 6]. As a consequence, some threads can suffer a severe
degradation in performance. Previous work has tried to solve this problem by
using static and dynamic partitioning algorithms that monitor the L2 cache
accesses and decide a partition for a fixed amount of cycles in order to maximize
throughput [7,8,9] or fairness [10]. Basically, these proposals predict the number
of misses per application for each possible cache partition. Then, they use the
cache partition that leads to the minimum number of misses for the next interval.

A common characteristic of these proposals is that they treat all L2 misses
equally. However, in out-of-order architectures L2 misses affect performance dif-
ferently depending on how clustered they are. An isolated L2 miss has approxi-
mately the same miss penalty than a cluster of L2 misses, as they can be served
in parallel if they all fit in the reorder buffer (ROB) [11]. In Figure 1 we can
see this behavior. We have represented an ideal IPC curve that is constant until
an L2 miss occurs. After some cycles, commit stops. When the cache line comes
from main memory, commit ramps up to its steady state value. As a consequence,
an isolated L2 miss has a higher impact on performance than a miss in a burst
of misses as the memory latency is shared by all clustered misses.

(a) Isolated L2 miss. (b) Clustered L2 misses.

Fig. 1. Isolated and clustered L2 misses

Based on this fact, we propose a new DCP algorithm that gives a cost to each
L2 access according to its impact in final performance. We detect isolated and
clustered misses and assign a higher cost to isolated misses. Then, our algorithm
determines the partition that minimizes the total cost for all threads, which is
used in the next interval. Our results show that differentiating between clustered
and isolated L2 misses leads to cache partitions with higher performance than
previous proposals. The main contributions of this work are the following.

1) A runtime mechanism to dynamically partition shared L2 caches in a CMP
scenario that takes into account the MLP of each L2 access. We obtain improve-
ments over LRU up to 63.9% (10.6% on average) and over previous proposals
up to 15.4% (4.1% on average) in a four-core architecture. Our proposal reaches
the same performance as a 50% larger shared cache.

2) We extend previous workloads classifications for CMP architectures with
more than two cores. Results can be better analyzed in every workload group.
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3) We present a sampling technique that reduces the hardware cost in terms
of storage to less than 1% of the total L2 cache size with an average throughput
degradation of 0.76% (compared to the throughput obtained without sampling).
We also show that scalable algorithms to decide cache partitions give near opti-
mal partitions, 0.59% close to the optimal decision.

The rest of this paper is structured as follows. Section 2 introduces the meth-
ods that have been previously proposed to decide L2 cache partitions and related
work. Next, Section 3 explains our MLP-aware DCP algorithm. Section 4 de-
scribes the experimental environment and in Section 5 we discuss simulation
results. Finally, Section 6 summarizes our results.

2 Prior Work in Dynamic Cache Partitioning

Stack Distance Histogram (SDH). Mattson et al. introduce the concept of
stack distance to study the behavior of storage hierarchies [12]. Common eviction
policies such as LRU have the stack property. Thus, each set in a cache can be
seen as an LRU stack, where lines are sorted by their last access cycle. In that
way, the first line of the LRU stack is the Most Recently Used (MRU) line while
the last line is the LRU line. The position that a line has in the LRU stack
when it is accessed again is defined as the stack distance of the access. As an
example, we can see in Table 1(a) a stream of accesses to the same set with their
corresponding stack distances.

Table 1. Stack Distance Histogram

(a) Stream of accesses to a given cache set. (b) SDH example.

# Reference 1 2 3 4 5 6 7 8
Cache Line A B C C A D B D

Stack Distance - - - 1 3 - 4 2

Stack Distance 1 2 3 4 >4
# Accesses 60 20 10 5 5

For a K-way associative cache with LRU replacement algorithm, we need
K + 1 counters to build SDHs, denoted C1, C2, . . . , CK , C>K . On each cache
access, one of the counters is incremented. If it is a cache access to a line in
the ith position in the LRU stack of the set, Ci is incremented. If it is a cache
miss, the line is not found in the LRU stack and, as a result, we increment
the miss counter C>K . SDH can be obtained during execution by running the
thread alone in the system [7] or by adding some hardware counters that profile
this information [8, 9]. A characteristic of these histograms is that the number
of cache misses for a smaller cache with the same number of sets can be easily
computed. For example, for a K ′-way associative cache, where K ′ < K, the new
number of misses can be computed as misses = C>K +

∑K
i=K′+1 Ci.

As an example, in Table 1(b) we show an SDH for a set with 4 ways. Here,
we have 5 cache misses. However, if we reduce the number of ways to 2 (keeping
the number of sets constant), we will experience 20 misses (5 + 5 + 10).
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Minimizing Total Misses. Using the SDHs of N applications, we can de-
rive the L2 cache partition that minimizes the total number of misses: this last
number corresponds to the sum of the number of misses of each thread for the
given configuration. The optimal partition in the last period of time is a suitable
candidate to become the future optimal partition. Partitions are decided period-
ically after a fixed amount of cycles. In this scenario, partitions are decided at a
way granularity. This mechanism is used in order to minimize the total number
of misses and try to maximize throughput. A first approach proposed a static
partitioning of the L2 cache using profiling information [7]. Then, a dynamic ap-
proach estimated SDHs with information inside the cache [9]. Finally, Qureshi
et al. presented a suitable and scalable circuit to measure SDHs using sampling
and obtained performance gains with just 0.2% extra space in the L2 cache [8].
Throughout this paper, we will call this last policy MinMisses.

Fair Partitioning. In some situations, MinMisses can lead to unfair parti-
tions that assign nearly all the resources to one thread while harming the oth-
ers [10]. For that reason, the authors propose considering fairness when deciding
new partitions. In that way, instead of minimizing the total number of misses,
they try to equalize the statistic Xi = missessharedi

missesalonei
of each thread i. They desire

to force all threads to have the same increase in percentage of misses. Partitions
are decided periodically using an iterative method. The thread with largest Xi

receives a way from the thread with smallest Xi until all threads have a similar
value of Xi. Throughout this paper, we will call this policy Fair.

Table 2. Different Partitioning Proposals

Paper Partitioning Objective Decision Algorithm Eviction Policy
[7] Static Minimize Misses Programmer − Column Caching
[9] Dynamic Minimize Misses Architecture Marginal Gain Augmented LRU
[8] Dynamic Maximize Utility Architecture Lookahead Augmented LRU
[10] Dynamic Fairness Architecture Equalize Xi

1 Augmented LRU
[13] Dynamic Maximize reuse Architecture Reuse Column Caching
[14] Dyn./Static Configurable Operating System Configurable Augmented LRU

Other Related Work. Several papers propose different DCP algorithms in a
multithreaded scenario. In Table 2 we summarize these proposals with their most
significant characteristics. Settle et al. introduce a DCP similar to MinMisses
that decides partitions depending on the average data reuse of each application
[13]. Rafique et al. propose to manage shared caches with a hardware cache
quota enforcement mechanism and an interface between the architecture and
the OS to let the latter decide quotas [14]. We have to note that this mechanism
is completely orthogonal to our proposal and, in fact, they are compatible as
we can let the OS decide quotas according to our scheme. Hsu et al. evaluate
different cache policies in a CMP scenario [15]. They show that none of them is
optimal among all benchmarks and that the best cache policy varies depending
on the performance metric being used. Thus, they propose to use a thread-aware
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cache resource allocation. In fact, their results reinforce the motivation of our
paper: if we do not consider the impact of each L2 miss in performance, we can
decide suboptimal L2 partitions in terms of throughput.

Cache partitions at a way granularity can be implemented with column caching
[7], which uses a bit mask to mark reserved ways, or by augmenting the LRU
policy with counters that keep track of the number of lines in a set belonging
to a thread [9]. The evicted line will be the LRU line among its owned lines or
other threads lines depending on whether it reaches its quota or not.

In [16] a new eviction policy for private caches was proposed in single-threaded
architectures. This policy gives a weight to each L2 miss according to its MLP
when the block is filled from memory. Eviction is decided using the LRU counters
and this weight. This idea was proposed for a different scenario as it focus on
single-threaded architectures.

3 MLP-Aware Dynamic Cache Partitioning

3.1 Algorithm Overview

Algorithm 3.1 shows the necessary steps to dynamically decide cache partitions
according to the MLP of each L2 access. At the beginning of the execution, we
decide an initial partition of the L2 cache. As we have no prior knowledge of the
applications, we evenly distribute ways among cores. Hence, each core receives

Associativity
Number of Cores ways of the shared L2 cache.

Algorithm 3.1. MLP-aware DCP()

Step 1: Establish an initial even partition for each core.
Step 2: Run threads and collect data for the MLP-aware SDHs.
Step 3: Decide new partition.
Step 4: Update MLP-aware SDHs.
Step 5: Go back to Step 2.

Afterwards, we begin a period where we measure the total MLP cost of each
application. The histogram of each thread containing the total MLP cost for each
possible partition is denoted MLP-aware SDH. For a K-way associative cache,
exactly K registers are needed to store this histogram. For short periods, dy-
namic cache partitioning (DCP) algorithms react quicker to phase changes. Our
results show that, for different periods from 105 to 108 cycles, small performance
variations are obtained, with a peak for a period of 5 million cycles.

At the end of each interval, MLP-aware SDHs are analyzed and a new parti-
tion is decided for the next interval. We assume that running threads will have
a similar pattern of L2 accesses in the next measuring period. Thus, the opti-
mal partition for the last period is chosen for the following period. Evaluating
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all possible cache partitions gives the optimal partition. This evaluation is done
concurrently with a dedicated hardware, which sets the partition for each pro-
cess in the next period. Having old values of partitions decisions does not impact
correctness of the running applications and does not affect performance as de-
ciding new partitions typically takes few thousand cycles and is invoked once
every 5 million cycles.

Since characteristics of applications dynamically change, MLP-aware SDHs
should reflect these changes. However, we also wish to maintain some history of
the past MLP-aware SDHs to make new decisions. Thus, after a new partition
is decided, we multiply all the values of the MLP-aware SDHs times ρ ∈ [0, 1].
Large values of ρ have larger reaction times to phase changes, while small values
of ρ quickly adapt to phase changes but tend to forget the behavior of the
application. Small performance variations are obtained for different values of ρ
ranging from 0 to 1, with a peak for ρ = 0.5. Furthermore, this value is very
convenient as we can use a shifter to update histograms. Next, a new period of
measuring MLP-aware SDHs begins. The key contribution of this paper is the
method to obtain MLP-aware SDHs that we explain in the following Subsection.

3.2 MLP-Aware Stack Distance Histogram

As previously stated, MinMisses assumes that all L2 accesses are equally im-
portant in terms of performance. However, it has been shown that cache misses
affect differently the performance of applications, even inside the same applica-
tion [11, 16]. An isolated L2 data miss has a penalty cost that can be approxi-
mated by the average memory latency. In the case of a burst of L2 data misses
that fit in the ROB, the penalty cost is shared among misses as L2 misses can
be served in parallel. In case of L2 instruction misses, they are serialized as fetch
stops. Thus, L2 instruction misses have a constant miss penalty and MLP.

We want to assign a cost to each L2 access according to its effect on perfor-
mance. In [16] a similar idea was used to modify LRU eviction policy for single
core and single threaded architectures. In our situation, we have a CMP sce-
nario where the shared L2 cache has a number of reserved ways for each core.
At the end of each period, we decide either to continue with the same partition
or change it. If we decide to modify the partition, a core i that had wi reserved
ways will receive w′

i �= wi. If wi < w′
i, the thread receives more ways and, as a

consequence, some misses in the old configuration will become hits. Conversely,
if wi > w′

i, the thread receives less ways and some hits in the old configuration
will become misses. Thus, we want to have an estimation of the performance ef-
fects when misses are converted into hits and vice versa. Throughout this paper,
we will call this impact on performance MLP cost.

MLP cost of L2 misses. In order to compute the MLP cost of an L2 miss with
stack distance di, we consider the situation shown in Figure 2(a). If we force an L2
configuration that assigns exactly w′

i = di ways to thread i with w′
i > wi, some

of the L2 misses of this thread will become hits, while other will remain being
misses, depending on their stack distance. In order to track the stack distance
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(a) MLP cost of an L2 miss.

(b) Estimated MLP cost when an L2 hit becomes a miss.

Fig. 2. MLP cost of L2 accesses

and MLP cost of each L2 miss, we have modified the L2 Miss Status Holding
Registers (MSHR) [17]. This structure is similar to an L2 miss buffer and is used
to hold information about any load that has missed in the L2 cache. The modified
L2 MSHR has one extra field that contains the MLP cost of the miss as can be
seen in Figure 3(b). It is also necessary to store the stack distance of each access
in the MSHR. In Figure 3(a) we show the MSHR in the cache hierarchy.

(a) MSHR. (b) MSHR fields.

Fig. 3. Miss Status Holding Register

When the L2 cache is accessed and an L2 miss is determined, we assign an
MSHR entry to the miss and wait until the data comes from Main Memory. We
initialize the MLP cost field to zero when the entry is assigned. We store the
access stack distance together with the identifier of the owner core. Every cycle,
we obtain N , the number of L2 accesses with stack distance greater or equal
to di. We have a hardware counter that tracks this number for each possible
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number of di, which means a total of Associativity counters. If we have N L2
misses that are being served in parallel, the miss penalty is shared. Thus, we
assign an equal share of 1

N to each miss. The value of the MLP cost is updated
until the data comes from Main Memory and fills the L2. At this moment we
can free the MSHR entry.

The number of adders required to update the MLP cost of all entries is equal
to the number of MSHR entries. However, this number can be reduced by sharing
several adders between valid MSHR entries in a round robin fashion. Then, if an
MSHR entry updates its MLP cost every 4 cycles, it has to add 4

N . In this work,
we assume that the MSHR contains only four adders for updating MLP cost
values, which has a negligible effect on the final MLP cost [16].

MLP cost of L2 hits. Next, we want to estimate the MLP cost of an L2 hit
with stack distance di when it becomes a miss. If we forced an L2 configuration
that assigned exactly w′

i = di ways to the thread i with w′
i < wi, some of the L2

hits of this thread would become misses, while L2 misses would remain as misses
(see Figure 2(b)). The hits that would become misses are the ones with stack
distance greater or equal to di. Thus, we count the total number of accesses with
stack distance greater or equal to di (including L2 hits and misses) to estimate
the length of the cluster of L2 misses in this configuration.

Deciding the moment to free the entry used by an L2 hit is more complex
than in the case of the MSHR. As it was said in [11], in a balanced architecture,
L2 data misses can be served in parallel if they all fit in the ROB. Equivalently,
we say that L2 data misses can be served in parallel if they are at ROB dis-
tance smaller than the ROB size. Thus, we should free the entry if the number
of committed instructions since the access has reached the ROB size or if the
number of cycles since the hit has reached the average latency to memory. The
first condition is clear as L2 misses can overlap only if their ROB distance is
less than the ROB size. When the entry is freed, we have to add the number of
pending cycles divided by the number of misses with stack distance greater or
equal to di. The second condition is also necessary as it can occur that no L2
access is done for a period of time. To obtain the average latency to memory,
we add a specific hardware that counts and averages the number of cycles that
a given entry is in the MSHR.

We use new hardware to obtain the MLP cost of L2 hits. We denote this
hardware Hit Status Holding Registers (HSHR) as it is similar to the MSHR.
However, the HSHR is private for each core. In each entry, the HSHR needs an
identifier of the ROB entry of the access, the address accessed by the L2 hit,
the stack distance value and a field with the corresponding MLP cost as can be
seen in Figure 4(b). In Figure 4(a) we show the HSHR in the cache hierarchy.

When the L2 cache is accessed and an L2 hit is determined, we assign an
HSHR entry to the L2 hit. We initialize the fields of the entry as in the case of
the MSHR. We have a stack distance di and we want to update the MLP cost
field in every cycle. With this objective, we need to know the number of active
entries with stack distance greater or equal to di in the HSHR, which can be
tracked with one hardware counter per core. We also need a ROB entry identifier
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(a) HSHR. (b) HSHR fields.

Fig. 4. Hit Status Holding Register

for each L2 access. Every cycle, we obtain N , the number of L2 accesses with
stack distance greater or equal to di as in the L2 MSHR case. We have a hardware
counter that tracks this number for each possible number of di, which means a
total of Associativity counters.

In order to avoid array conflicts, we need as many entries in the HSHR as
possible L2 accesses in flight. This number is equal to the L1 MSHR size. In our
scenario, we have 32 L1 MSHR entries, which means a maximum of 32 in flight
L2 accesses per core. However, we have checked that we have enough with 24
entries per core to ensure that we have an available slot 95% of the time in an
architecture with a ROB of 256 entries. If there are no available slots, we simply
assign the minimum weight to the L2 access as there are many L2 accesses in
flight. The number of adders required to update the MLP cost of all entries is
equal to the number of HSHR entries. As we did with the MSHR, HSHR entries
can share four adders with a negligible effect on the final MLP cost.

Quantification of MLP cost. Dealing with values of MLP cost between 0
and the memory latency (or even greater) can represent a significant hardware
cost. Instead, we decide to quantify this MLP cost with an integer value between
0 and 7 as was done in [16]. For a memory latency of 300 cycles, we can see in
Table 3 how to quantify the MLP cost. We have split the interval [0; 300] with
7 intervals of equal length.

Table 3. MLP cost quantification

MLP cost Quantification MLP cost Quantification
From 0 to 42 cycles 0 From 171 to 213 cycles 4
From 43 to 85 cycles 1 From 214 to 256 cycles 5
From 86 to 128 cycles 2 From 257 to 300 cycles 6
From 129 to 170 cycles 3 300 or more cycles 7

Finally, when we have to update the corresponding MLP-aware SDH, we add
the quantified value of MLP cost. Thus, isolated L2 misses will have a weight
of 7, while two overlapped L2 misses will have a weight of 3 in the MLP-aware
SDH. In contrast, MinMisses always adds one to its histograms.
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3.3 Obtaining Stack Distance Histograms

Normally, L2 caches have two separate parts that store data and address tags to
know if the access is a hit. Basically, our prediction mechanism needs to track
every L2 access and store a separated copy of the L2 tags information in an
Auxiliary Tag Directory (ATD), together with the LRU counters [8]. We need
an ATD for each core that keeps track of the L2 accesses for any possible cache
configuration. Independently of the number of ways assigned to each core, we
store the tags and LRU counters of the last K accesses of the thread, where K
is the L2 associativity. As we have explained in Section 2, an access with stack
distance di corresponds to a cache miss in any configuration that assigns less
than di ways to the thread. Thus, with this ATD we can determine whether an
L2 access would be a miss or a hit in all possible cache configurations.

3.4 Putting All Together

In Figure 5 we can see a sketch of the hardware implementation of our proposal.
When we have an L2 access, the ATD is used to determine its stack distance di.
Depending on whether it is a miss or a hit, either the MSHR or the HSHR is
used to compute the MLP cost of the access. Using the quantification process we
obtain the final MLP cost. This number estimates how performance is affected
when the applications has exactly w′

i = di assigned ways. If w′
i > wi, we are

estimating the performance benefit of converting this L2 miss into a hit. In case
w′

i < wi, we are estimating the performance degradation of converting this L2
hit into a miss. Finally, using the stack distance, the MLP cost and the core
identifier, we can update the corresponding MLP-aware SDH.

We have used two different partitioning algorithms. The first one, that we de-
note MLP-DCP (standing for MLP-aware Dynamic Cache Partitioning), decides

Fig. 5. Hardware implementation
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the optimal partition according to the MLP cost of each way. We
define the total MLP cost of a thread i that uses wi ways as TMLP (i, wi) =
MLP SDHi,>K +

∑K
j=wi

MLP SDHi,j . We denote the total MLP cost of all
accesses of thread i with stack distance j as MLP SDHi,j . Thus, we have to
minimize the sum of total MLP costs for all cores:

N∑
i=1

TMLP (i, wi), where
N∑

i=1

wi = Associativity.

The second one consists in assigning a weight to each total MLP cost using the
IPC of the application in core i, IPCi. In this situation, we are giving priority
to threads with higher IPC. This point will give better results in throughput at
the cost of being less fair. IPCi is measured at runtime with a hardware counter
per core. We denote this proposal MLPIPC-DCP, which consists in minimizing
the following expression:

N∑
i=1

IPCi · TMLP (i, wi), where
N∑

i=1

wi = Associativity.

3.5 Case Study

We have seen that SDHs can give the optimal partition in terms of total L2
misses. However, total number of L2 misses is not the goal of DCP algorithms.
Throughput is the objective of these policies. The underlying idea of MinMisses
is that while minimizing total L2 misses, we are also increasing throughput. This
idea is intuitive as performance is clearly related to L2 miss rate. However, this
heuristic can lead to inadequate partitions in terms of throughput as can be seen
in the next case study.

In Figure 6, we can see the IPC curves of benchmarks galgel and gzip as we
increase L2 cache size in a way granularity (each way has a 64KB size). We also
show throughput for all possible 15 partitions. In this curve, we assign x ways to
gzip and 16−x to galgel. The optimal partition consists in assigning 6 to gzip
and 10 ways to galgel, obtaining a total throughput of 3.091 instructions per
cycle. However, if we use MinMisses algorithm to determine the new partition,
we will choose 4 to gzip and 12 ways to galgel according to the SDHs values.
In Figure 6 we can also see the total number of misses for each cache partition
as well as the per thread number of misses.

In this situation, misses in gzip are more important in terms of performance
than misses in galgel. Furthermore, gzip IPC is larger than galgel IPC. As
a consequence MinMisses obtains a non optimal partition in terms of IPC and
its throughput is 2.897, which is a 6.3% smaller than the optimal one. In fact,
galgel clusters of L2 misses are, in average, longer than the ones from gzip. In
that way, MLP-DCP assigns one extra way to gzip and increases performance
by 3%. If we use MLPIPC-DCP, we are giving more importance to gzip as it
has a higher IPC and, as a consequence, we end up assigning another extra way
to gzip, reaching the optimal partition and increasing throughput an extra 3%.
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Fig. 6. Misses and IPC curves for galgel and gzip

4 Experimental Environment
4.1 Simulator Configuration

We target this study to the case of a CMP with two and four cores with their
respective own data and instruction L1 caches and a unified L2 cache shared
among threads as in previous studies [8, 9, 10]. Each core is single-threaded and
fetches up to 8 instructions each cycle. It has 6 integer (I), 3 floating point (FP),
and 4 load/store functional units and 32-entry I, load/store, and FP instruction
queues. Each thread has a 256-entry ROB and 256 physical registers. We use a
two-level cache hierarchy with 64B lines with separate 16KB, 4-way associative
data and instruction caches, and a unified L2 cache that is shared among all
cores. We have used two different L2 caches, one of size 1MB and 16-way asso-
ciativity, and the second one of size 2MB and 32-way associativity. Latency from
L1 to L2 is 15 cycles, and from L2 to memory 300 cycles. We use a 32B width
bus to access L2 and a multibanked L2 of 16 banks with 3 cycles of access time.

We extended the SMTSim simulator [2] to make it CMP. We collected traces
of the most representative 300 million instruction segment of each program, fol-
lowing the SimPoint methodology [18]. We use the FAME simulation method-
ology [19] with a Maximum Allowable IPC Variance of 5%. This evaluation
methodology measures the performance of multithreaded processors by reexe-
cuting all threads in a multithreaded workload until all of them are fairly repre-
sented in the final IPC taken from the workload.

4.2 Workload Classification

In [20] two metrics are used to model the performance of a partitioning algorithm
like MinMisses for pairings of benchmarks in the SPEC CPU 2000 benchmark
suite. Here, we extend this classification for architectures with more cores.

Metric 1. The wP%(B) metric measures the number of ways needed by a
benchmark B to obtain at least a given percentage P% of its maximum IPC
(when it uses all L2 ways).
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(a) IPC as we vary the number of assigned
ways of a 1MB 16-way L2 cache.

(b) Average miss penalty of an L2 miss
with a 1MB 16-way L2 cache.

Fig. 7. Benchmark classification

The intuition behind this metric is to classify benchmarks depending on their
cache utilization. Using P = 90% we can classify benchmarks into three groups:
Low utility (L), Small working set or saturated utility (S) and High utility (H). L
benchmarks have 1 ≤ w90% ≤ K

8 where K is the L2 associativity. L benchmarks
are not affected by L2 cache space because nearly all L2 accesses are misses. S
benchmarks have K

8 < w90% ≤ K
2 and just need some ways to have maximum

throughput as they fit in the L2 cache. Finally, H benchmarks have w90% > K
2

and always improve IPC as the number of ways given to them is increased. Clear
representatives of these three groups are applu (L), gzip (S) and ammp (H) in
Figure 7(a). In Table 4 we give w90% for all SPEC CPU 2000 benchmarks.

Table 4. The applications used in our evaluation. For each benchmark, we give the two
metrics needed to classify workloads together with IPC for a 1MB 16-way L2 cache.

Bench w90% APTC IPC Bench w90% APTC IPC Bench w90% APTC IPC
ammp 14 23.63 1.27 applu 1 16.83 1.03 apsi 10 21.14 2.17
art 10 46.04 0.52 bzip2 1 1.18 2.62 crafty 4 7.66 1.71
eon 3 7.09 2.31 equake 1 18.6 0.27 facerec 11 10.96 1.16
fma3d 9 15.1 0.11 galgel 15 18.9 1.14 gap 1 2.68 0.96
gcc 3 6.97 1.64 gzip 4 21.5 2.20 lucas 1 7.60 0.35
mcf 1 9.12 0.06 mesa 2 3.98 3.04 mgrid 11 9.52 0.71
parser 11 9.09 0.89 perl 5 3.82 2.68 sixtrack 1 1.34 2.02
swim 1 28.0 0.40 twolf 15 12.0 0.81 vortex 7 9.65 1.35
vpr 14 11.9 0.97 wupw 1 5.99 1.32

The average miss penalty of an L2 miss for the whole SPEC CPU 2000 bench-
mark suite is shown in Figure 7(b). We note that this average miss penalty varies
a lot, even inside each group of benchmarks, ranging from 30 to 294 cycles. This
Figure reinforces the main motivation of the paper, as it proves that the clus-
tering level of L2 misses changes for different applications.
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Metric 2. The wLRU (thi) metric measures the number of ways given by
LRU to each thread thi in a workload composed of N threads. This can be done
simulating all benchmarks alone and using the frequency of L2 accesses for each
thread [5]. We denote the number of L2 Accesses in a Period of one Thousand
Cycles for thread i as APTCi. In Table 4 we list these values for each benchmark.

wLRU (thi) =
APTCi∑N

j=1 APTCj

· Associativity

Next, we use these two metrics to extend previous classifications [20] for work-
loads with more than two benchmarks.

Case 1. When w90%(thi) ≤ wLRU (thi) for all threads. In this situation LRU
attains 90% of each benchmark performance. Thus, it is intuitive that in this
situation there is very little room for improvement.

Case 2. When there exists two threads A and B such that w90%(thA) >
wLRU (thA) and w90%(thB) < wLRU (thB). In this situation, LRU is harming the
performance of thread A, because it gives more ways than necessary to thread B.
Thus, in this situation LRU is assigning some shared resources to a thread that
does not need them, while the other thread could benefit from these resources.

Case 3. Finally, the third case is obtained when w90%(thi) > wLRU (thi) for
all threads. In this situation, our L2 cache configuration is not big enough to
assure that all benchmarks will have at least a 90% of their peak performance.
In [20] it was observed that pairings belonging to this group showed worse results
when the value of |w90%(th1) − w90%(th2)| grows. In this case, we have a thread
that requires much less L2 cache space than the other to attain 90% of its peak
IPC. LRU treats threads equally and manages to satisfy the less demanding
thread necessities. In case of MinMisses, it assumes that all misses are equally
important for throughput and tends to give more space to the thread with higher
L2 cache necessity, while harming the less demanding thread. This is a problem
due to MinMisses algorithm. We will show in next Subsections that MLP-aware
partitioning policies are available to overcome this situation.

Table 5. Workloads belonging to each case for a 1MB 16-way and a 2MB 32-way
shared L2 caches

1MB 16-way 2MB 32-way
#cores

2
4
6
8

Case 1 Case 2 Case 3
155 (48%) 135 (41%) 35 (11%)
624 (4%) 12785 (86%) 1541 (10%)

306 (0.1%) 219790 (95%) 10134 (5%)
19 (0%) 1538538 (98%) 23718 (2%)

Case 1 Case 2 Case 3
159 (49%) 146 (45%) 20 (6.2%)
286 (1.9%) 12914 (86%) 1750 (12%)
57 (0.02%) 212384 (92%) 17789 (7.7%)

1 (0%) 1496215 (96%) 66059 (4.2%)

In Table 5 we show the total number of workloads that belong to each case
for different configurations. We have generated all possible combinations without
repeating benchmarks. The order of benchmarks is not important. In the case
of a 1MB 16-way L2, we note that Case 2 becomes the dominant case as the
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number of cores increases. The same trend is observed for L2 caches with larger
associativity. In Table 5 we can also see the total number of workloads that
belong to each case as the number of cores increases for a 32-way 2MB L2 cache.
Note that with different L2 cache configurations, the value of w90% and APTCi

will change for each benchmark. An important conclusion from Table 5 is that
as we increase the number of cores, there are more combinations that belong to
the second case, which is the one with more improvement possibilities.

To evaluate our proposals, we randomly generate 16 workloads belonging to
each group for three different configurations. We denote these configurations 2C
(2 cores and 1MB 16-way L2), 4C-1 (4 cores and 1MB 16-way L2) and 4C-2 (4
cores and 2MB 32-way L2). We have also used a 2MB 32-way L2 cache as future
CMP architectures will continue scaling L2 size and associativity. For example,
the IBM Power5 [21] has a 10-way 1.875MB L2 cache and the Niagara 2 has a
16-way 4MB L2.

4.3 Performance Metrics

As performance metrics we have used the IPC throughput, which corresponds to
the sum of individual IPCs. We also use the harmonic mean of relative IPCs to
measure fairness, which we denote Hmean. We use Hmean instead of weighted
speed up because it has been shown to provide better fairness-throughput bal-
ance than weighted speed up [22].

Average improvements do consider the distribution of workloads among the
three groups. We denote this mean weighted mean, as we assign a weight to the
speed up of each case depending on the distribution of workloads from Table 5.
For example, for the 2C configuration, we compute the weighted mean improve-
ment as 0.48 · x1 + 0.41 · x2 + 0.11 · x3, where xi is the average improvement in
Case i.

5 Evaluation Results

5.1 Performance Results

Throughput. The first experiment consists in comparing throughput for differ-
ent DCP algorithms, using LRU policy as the baseline. We simulate MinMisses
and our two proposals with the 48 workloads that were selected in the pre-
vious Subsection. We can see in Figure 8(a) the average speed up over LRU
for these mechanisms. MLPIPC-DCP systematically obtains the best average
results, nearly doubling the performance benefits of MinMisses over LRU in
the four-core configurations. In configuration 4C-1, MLPIPC-DCP outperforms
MinMisses by 4.1%. MLP-DCP always improves MinMisses but obtains worse
results than MLPIPC-DCP.

All algorithms have similar results in Case 1. This is intuitive as in this sit-
uation there is little room for improvement. In Case 2, MinMisses obtains a
relevant improvement over LRU in configuration 2C. MLP-DCP and MLPIPC-
DCP achieve an extra 2.5% and 5% improvement, respectively. In the other
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(a) Throughput speed up over LRU. (b) Fairness speed up over LRU.

Fig. 8. Average performance speed ups over LRU

configurations, MLP-DCP and MLPIPC-DCP still outperform MinMisses by a
2.1% and 3.6%. In Case 3, MinMisses presents larger performance degradation
as the asymmetry between the necessities of the two cores increases. As a con-
sequence, it has worse average throughput than LRU. Assigning an appropriate
weight to each L2 access gives the possibility to obtain better results than LRU
using MLP-DCP and MLPIPC-DCP.

Fairness. We have used the harmonic mean of relative IPCs [22] to measure
fairness. The relative IPC is computed as IPCshared

IPCalone
. In Figure 8(b) we show the

average speed up over LRU of the harmonic mean of relative IPCs. Fair stands
for the policy explained in Section 2. We can see that in all situations, MLP-DCP
always improves over both MinMisses and LRU (except in Case 3 for two cores).
It even obtains better results than Fair in configurations 2C and 4C-1. MLPIPC-
DCP is a variant of the MLP-DCP algorithm optimized for throughput. As a
consequence, it obtains worse results in fairness than MLP-DCP.

Fig. 9. Average throughput speed up over LRU with a 1MB 16-way L2 cache

Equivalent cache space. DCP algorithms reach the performance of a larger L2
cache with LRU eviction policy. Figure 9 shows the performance evolution when
the L2 size is increased from 1MB to 2MB with LRU as eviction policy. In this
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experiment, the workloads correspond to the ones selected for the configuration
4C-1. Figure 9 also shows the average speed up over LRU of MinMisses, MLP-
DCP and MLPIPC-DCP with a 1MB 16-way L2 cache. MinMisses has the same
average performance as a 1.25MB 20-way L2 cache with LRU, which means that
MinMisses provides the performance obtained with a 25% larger shared cache.
MLP-DCP reaches the performance of a 37.5% larger cache. Finally, MLPIPC-
DCP doubles the increase in size of MinMisses, reaching the performance of a
50% larger L2 cache.

5.2 Design Parameters

Figure 10(a) shows the sensitivity of our proposal to the period of partition de-
cisions. For shorter periods, the partitioning algorithm reacts quicker to phase
changes. Once again, small performance variations are obtained for different pe-
riods. However, we observe that for longer periods throughput tends to decrease.
As can be seen in Figure 10(a), the peak performance is obtained with a period
of 5 million cycles.

(a) Average throughput for different pe-
riods for the MLP-DCP algorithm with
the 2C configuration.

(b) Average speed up over LRU for different
ROB sizes with the 4C-1 configuration.

Fig. 10. Sensitivity analysis to different design parameters

Finally, we have varied the size of the ROB from 128 to 512 entries to show the
sensitivity of our proposals to this parameter of the architecture. Our mechanism
is the only one which is aware of the ROB size: The higher the size of the ROB,
the larger size of the cluster of L2 misses. Other policies only work with the
number of L2 misses, which will not change if we vary the size of the ROB.
When the ROB size increases, clusters of misses can contain more misses and,
as a consequence, our mechanism can differentiate better between isolated and
clustered misses. As we show in Figure 10(b), average improvements in the 4C-1
configuration are a little bit higher for a ROB with 512 entries, while MinMisses
shows worse results. MLPIPC-DCP outperforms LRU and MinMisses by 10.4%
and 4.3% respectively.

5.3 Hardware Cost

We have used the hardware implementation of Figure 5 to estimate the hard-
ware cost of our proposal. In this Subsection, we focus our attention on the
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configuration 2C. We suppose a 40-bit physical address space. Each entry in the
ATD needs 29 bits (1 valid bit + 24-bit tag + 4-bit for LRU counter). Each set
has 16 ways, so we have an overhead of 58 Bytes (B) for each set. As we have
1024 sets, we have a total cost of 58KB per core.

The hardware cost that corresponds to the extra fields of each entry in the L2
MSHR is 5 bits for the stack distance and 2B for the MLP cost. As we have 32
entries, we have a total of 84B. Four adders are needed to update the MLP cost
of the active MSHR entries. HSHR entries need 1 valid bit, 8 bits to identify
the ROB entry, 34 bits for the address, 5 bits for the stack distance and 2B for
the MLP cost. In total we need 64 bits per entry. As we have 24 entries in each
HSHR, we have a total of 192B per core. Four adders per core are needed to
update the MLP cost of the active HSHR entries. Finally, we need 17 counters
of 4B for each MLP-Aware SDH, which supposes a total of 68B per core. In
addition to the storage bits, we also need an adder for incrementing MLP-aware
SDHs and a shifter to halve the hit counters after each partitioning interval.

Fig. 11. Throughput and hardware cost depending on ds in a two-core CMP

Sampled ATD. The main contribution to hardware cost corresponds to the
ATD. Instead of monitoring every cache set, we can decide to track accesses
from a reduced number of sets. This idea was also used in [8] with MinMisses
in a CMP environment. Here, we use it in a different situation, say to estimate
MLP-aware SDHs with a sampled number of sets. We define a sampling distance
ds that gives the distance between tracked sets. For example, if ds = 1, we are
tracking all the sets. If ds = 2, we track half of the sets, and so on. Sampling
reduces the size of the ATD at the expense of less accuracy in MLP-aware
SDHs predictions as some accesses are not tracked, Figure 11 shows throughput
degradation in a 2 cores scenario as the ds increases. This curve is measured
on the left y-axis. We also show the storage overhead in percentage of the total
L2 cache size, measured on the right y-axis. Thanks to the sampling technique,
storage overhead drastically decreases. Thus, with a sampling distance of 16
we obtain average throughput degradations of 0.76% and a storage overhead of
0.77% of the L2 cache size, which is less than 8KB of storage. We think that this
is an interesting point of design.
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5.4 Scalable Algorithm to Decide Cache Partitions

Evaluating all possible combinations allows determining the optimal partition
for the next period. However, this algorithm does not scale adequately when
associativity and the number of applications sharing the cache is raised. If we
have a K-way associativity L2 cache shared by N cores, the number of possible
partitions without considering the order is

(
N+K−1

K

)
. For example, for 8 cores

and 16 ways, we have 245157 possible combinations. Consequently, the time to
decide new cache partitions does not scale. Several heuristics have been proposed
to reduce the number of cycles required to decide the new partition [8,9], which
can be used in our situation. These proposals bound the length of the decision
period by 10000 cycles. This overhead is very low compared to 5 million cycles
(less than 0.2%).

Fig. 12. Average throughput speed up over LRU for different decision algorithms in
the 4C-1 configuration

Figure 12 shows the average speed up of MLP-DCP over LRU with the 4C-1
configuration with three different decision algorithms. Evaluating all possible par-
titions (denoted EvalAll) gives the highest speed up. The first greedy algorithm
(denoted Marginal Gains) assigns one way to a thread in each iteration [9]. The
selected way is the one that gives the largest increase in MLP cost. This process
is repeated until all ways have been assigned. The number of operations (com-
parisons) is of order K · N , where K is the associativity of the L2 cache and N
the number of cores. With this heuristic, an average throughput degradations of
0.59% is obtained. The second greedy algorithm (denoted Look Ahead) is similar
to Marginal Gains. The basic difference between them is that Look Ahead con-
siders the total MLP cost for all possible number of blocks that the application
can receive [8] and can assign more than one way in each iteration. The number
of operations (add-divide-compare) is of order N · K2

2 , where K is the associativ-
ity of the L2 cache and N the number of cores. With this heuristic, an average
throughput degradations of 1.04% is obtained.
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6 Conclusions

In this paper we propose a new DCP algorithm that assigns a cost to each
L2 access according to its impact in final performance: isolated misses receive
higher costs than clustered misses. Next, our algorithm decides the L2 cache
partition that minimizes the total cost for all running threads. Furthermore, we
have classified workloads for multiple cores into three groups and shown that
the dominant situation is precisely the one that offers room for improvement.

We show that our proposal reaches high throughput for two- and four-core
architectures. In all evaluated configurations, our proposal consistently outper-
forms both LRU and MinMisses, reaching a speed up of 63.9% (10.6% on aver-
age) and 15.4% (4.1% on average), respectively. With our proposals, we reach
the performance of a 50% larger cache. Finally, we used a sampling technique to
propose a practical implementation with a storage cost to less than 1% of the
total L2 cache size and a scalable algorithm to determine cache partitions with
nearly no performance degradation.
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Abstract. This paper proposes a systematic approach to optimize the code layout 
of a Java ME virtual machine for an embedded system with a cache-sensitive 
architecture. A practice example is to run JVM directly (execution-in-place) in 
NAND flash memory, for which cache miss penalty is too high to endure. The 
refined virtual machine generated cache misses 96% less than the original  
version. We developed a mathematical approach helping to predict the flow of 
the interpreter inside the virtual machine. This approach analyzed both the static 
control flow graph and the pattern of bytecode instruction streams, since we 
found the input sequence drives the program flow of the virtual machine  
interpreter. Then we proposed a rule to model the execution flows of Java  
instructions of real applications. Furthermore, we used a graph partition  
algorithm as a tool to deal with the mathematical model, and this finding helped 
the relocation process to move program blocks to proper memory pages. The 
refinement approach dramatically improved the locality of the virtual machine 
thus reduced cache miss rates. Our technique can help Java ME-enabled devices 
to run faster and extend longer battery life. The approach also brings potential for 
designers to integrate the XIP function into System-on-Chip thanks to lower 
demand for cache memory. 

Keywords: cache sensitive, cache miss, NAND flash memory, code arrange-
ment, Java virtual machine, interpreter, embedded system. 

1   Introduction 

Java platform extensively exists in all kinds of embedded and mobile devices. The 
Java™ Platform, Micro Edition (Java ME) [1] is no doubt a de facto standard platform 
of smart phone. The Java virtual machine (it is KVM in Java ME) is a key component 
that affects performance and power consumptions. 

NAND flash memory comes with serial bus interface. It does not allow random 
access, and the CPU must read out the whole page at a time, which is a slow operation 
compared to RAM. This property leads a processor hardly to execute programs stored 
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in NAND flash memory using the “execute-in-place” (XIP) technique. In the mean-
while, NAND flash memory offers fast write access time, and the most important of all, 
the technology has advantages in offering higher capacity than NOR flash technology 
does. As the applications of embedded devices become large and complicated, more 
mainstream devices adopt NAND flash memory to replace NOR-flash memory. 

In this paper, we tried to offer an answer to the question: can we speed up an em-
bedded device using NAND flash memory to store programs? “Page-based” storage 
media, like NAND flash memory, have higher access penalty than RAM does. Re-
ducing the page miss becomes a critical issue. Thus, we set forth to find way to reduce 
the page miss rate generated by the KVM. Due to the unique structure of the KVM 
interpreter, we found a special way to exploit the dynamic locality of the KVM that is to 
trace the patterns of executed bytecode instructions instead of the internal flow of the 
KVM. It turned out to be a combinatorial optimization problem because the code layout 
must fulfill certain code size constraints. Our approach achieved the effect of static 
page preloading by properly arranging program blocks. In the experiment, we imple-
mented a post-processing program to modify the intermediate files generated by the C 
compiler. The post-processing program refined machine code placement of the KVM 
based on the mathematical model. Finally, the obtained tuned KVMs dramatically 
reduced page accesses to NAND flash memories. The outcome of this study helps 
embedded systems to boost performance and extend battery life as well. 

2   Related Works 

Park et al., in [2], proposed a hardware module to allow direct code execution from 
NAND flash memory. In this approach, program codes stored in NAND flash pages 
will be loaded into RAM cache on-demand instead of moving entire contents into 
RAM. Their work is a universal hardware-based solution without considering appli-
cation-specific characteristics. 

Samsung Electronics offers a commercial product called “OneNAND” [3] based on 
the same. It is a single chip with a standard NOR flash interface. Actually, it contains a 
NAND flash memory array for storage. The vendor intent was to provide a 
cost-effective alternative to NOR flash memory used in existing designs. The internal 
structure of OneNAND comprises a NAND flash memory, control logic, hardware 
ECC, and 5KB buffer RAM. The 5KB buffer RAM is comprised of three buffers: 1KB 
for boot RAM, and a pair of 2KB buffers used for bi-directional data buffers. Our 
approach is suitable for systems using this type of flash memories. 

Park et al., in [4], proposed yet another pure software approach to achieve exe-
cute-in-place by using a customized compiler that inserts NAND flash reading opera-
tions into program code at proper place. Their compiler determines insertion points by 
summing up sizes of basic blocks along the calling tree. Special hardware is no longer 
required, but in contrast to earlier work [2], there is still a need for tailor-made compiler. 

Typical studies of refining code placement to minimize cache misses can apply to 
NAND flash cache system. Parameswaran et al., in [5], used the bin-packing approach. 
It reorders the program codes by examining the execution frequency of basic blocks. 
Code segments with higher execution frequency are placed next to each other within 
the cache. Janapsatya et al., in [6], proposed a pure software heuristic approach to 
reduce number of cache misses by relocating program sections in the main memory.  
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Their approach was to analyze program flow graph, identify and pack basic blocks 
within the same loop. They have also created relations between cache miss and energy 
consumption. Although their approach can identify loops within a program, breaking 
the interpreter of a virtual machine into individual circuits is hard because all the loops 
share the same starting point. 

There are researches in improving program locality and optimizing code placement 
for either cache or virtual memory environment. Pettis [7] proposed a systematic 
approach using dynamic call graph to position procedures. They tried to place two 
procedures as close as possible if one of the procedure calls another frequently. The 
first step of Pettis’ approach uses the profiling information to create weighted call 
graph. The second step iteratively merges vertices connected by heaviest weight edges. 
The process repeats until the whole graph composed of one or more individual vertex 
without edges. 

However, the approach to collect profiling information and their accuracy is yet 
another issue. For example, Young and Smith in [8] developed techniques to extract 
effective branch profile information from a limited depth of branch history. Ball and 
Larus in [9] described an algorithm for inserting monitoring code to trace programs. 
Our approach is very different by nature. Previous studies all focused in the flow of 
program codes, but we tried to model the profile by input data. 

This research project created a post-processor to optimize the code arrangements. It 
is analogous to “Diablo linker” [10]. They utilized symbolic information in the object 
files to generate optimized executable files. However, our approach will generate 
feedback intermediate files for the compiler, and invoke the compiler to generate 
optimized machine code. 

3   Background 

3.1   XIP with NAND Flash 

NOR flash memory is popular as code memory because of the XIP feature. There are 
several approaches designed for using NAND flash memory as an alternative to NOR 
flash memory. Because NAND flash memory interface cannot connect to the CPU host 
bus, there has to be a memory interface controller to move data from NAND flash 
memory to RAM. 

 

Fig. 1. Access NAND flash through shadow RAM 
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In system-level view, Figure 1 shows a straightforward design which uses RAM as 
the shadow copy of NAND flash. The system treats NAND flash memory as secondary 
storage device [11]. There should be a boot loader or RTOS resided in ROM or NOR 
flash memory. It copies program codes from NAND flash to RAM, then the processor 
executes program codes in RAM [12]. This approach offers best execution speed 
because the processor operates with RAM. The downside of this approach is it needs 
huge amount of RAM to mirror NAND flash. In embedded devices, RAM is a precious 
resource. For example, the Sony Ericsson T610 mobile phone [13] reserved 256KB 
RAM for Java heap. In contrast to using 256MB for mirroring NAND flash memory, all 
designers should agree that they would prefer to retain RAM for Java applets rather 
than for mirroring. The second pitfall is the implementation takes longer time to boot 
because the system must copy contents to RAM prior to execution. 

Figure 2 shows a demand paging approach uses limited amount of RAM as the cache 
of NAND flash. The “romized” program codes stay in NAND flash memory, and a 
MMU loads only portions of program codes which is about to be executed from NAND 
into the cache. The major advantage of this approach is it consumes less RAM. Several 
kilobytes of RAM are enough to mirror NAND flash memory. Using less RAM means 
integrating CPU, MMU and cache into a single chip (the shadowed part in Figure 2) can 
be easier. The startup latency is shorter since the CPU is ready to run soon after the first 
NAND flash page is loaded into the cache. The component cost is lower than in the 
previous approach. The realization of the MMU might be either hardware or software 
approach, which is not covered in this paper. 

 

Fig. 2. Using cache unit to access NAND flash 

However, performance is the major drawback of this approach. The penalty of each 
cache miss is high, because loading contents from a NAND flash page is nearly 200 
times slower than doing the same operation with RAM. Therefore reducing cache 
misses becomes a critical issue for such configurations. 

3.2   KVM Internals 

Source Level. In respect of functionality, the KVM can be broken down into several 
parts: startup, class files loading, constant pool resolving, interpreter, garbage collection, 
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and KVM cleanup. Lafond et al., in [14], have measured the energy consumptions of 
each part in the KVM. Their study showed that the interpreter consumed more than 
50% of total energy. In our experiments running Embedded Caffeine Benchmark [15], 
the interpreter contributed 96% of total memory accesses. These evidences lead to the 
conclusion that the interpreter is the performance bottleneck of the KVM, and they 
motivated us to focus on reducing the cache misses generated by the interpreter. 

Figure 3 shows the program structure of the interpreter. It is a loop enclosing a large 
switch-case dispatcher. The loop fetches bytecode instructions from Java applications, 
and each “case” sub-clause deals with one bytecode instruction. The control flow graph 
of the interpreter, as illustrated in Figure 4, is a flat and shallow spanning tree. There are 
three major steps in the interpreter, 

ReschedulePoint: 
RESCHEDULE 
opcode = FETCH_BYTECODE ( ProgramCounter ); 
switch ( opcode ) 
{ 
 case ALOAD: /* do something */ 
  goto ReschedulePoint; 
 case IADD: /* do something */ 
  … 
 case IFEQ: /* do something */ 
  goto BranchPoint; 
  … 
} 
BranchPoint: 
 take care of program counter; 
 goto ReschedulePoint;  

Fig. 3. Pseudo code of KVM interpreter 

 

Fig. 4. Control flow graph of the interpreter 
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(1) Rescheduling and Fetching. In this step, KVM prepares the execution context and 
the stack frame. Then it fetches a bytecode instruction from Java programs. 
(2) Dispatching and Execution. After reading a bytecode instruction from Java pro-
grams, the interpreter jumps to corresponding bytecode handlers through the big 
“switch…case…” statement. Each bytecode handler carries out the function of the 
corresponding bytecode instruction. 
(3) Branching. The branch bytecode instructions may bring the Java program flow 
away from original track. In this step, the interpreter resolves the target address and 
modifies the program counter. 

 

Fig. 5. The organization of the interpreter at assembly level 

Assembly Level. Our analysis of the source files revealed the peculiar program 
structure of the VM interpreter. Analyzing the code layout in the compiled executables 
of the interpreter helped this study to create a code placement strategy. The assembly 
code analysis in this study is restricted to ARM and gcc for the sake of demonstration, 
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but applying our theory to other platforms and tools is an easy job. Figure 5 illustrates 
the layout of the interpreter in assembly form (FastInterpret() in interp.c). The first 
trunk BytecodeFetching is the code block for rescheduling and fetching, it is exactly the 
first part in the original source code. The second trunk LookupTable is a large lookup 
table used in dispatching bytecode instructions. Each entry links to a bytecode handler. 
It is actually the translated result of the “switch…case…case” statement. 

The third trunk BytecodeDispatch is the aggregation of more than a hundred byte-
code handlers. Most bytecode handlers are self-contained which means a bytecode 
handler occupies a contiguous memory space in this trunk, and it does not jump to 
program codes stored in other trunks. There are only a few exceptions which call 
functions stored in other trunks, such as “invokevirtual.” Besides, there are several 
constant symbol tables spread over this trunk. These tables are referenced by the pro-
gram codes within the BytecodeDispatch trunk. 

The last trunk ExceptionHandling contains code fragments for exception handling. 
Each trunk occupies a number of NAND flash pages. In fact, the total size of Byteco-
deFetching and LookupTable is about 1200 bytes (compiled with arm-elf-gcc-3.4.3), 
which is almost small enough to fit into two or three 512-bytes-page. Figure 6 shows 
the size distribution of bytecode handlers. The average size of a bytecode handler is 131 
bytes, and there are 79 handlers smaller than 56 bytes. In other words, a 512-bytes-page 
could gather 4 to 8 bytecode handlers. The inter-handler execution flow dominates the 
number of cache misses generated by the interpreter. This is the reason that our ap-
proach tries to rearrange bytecode handlers within the BytecodeDispatch trunk. 

 

Fig. 6. Distribution of Bytecode Handler Size (compiled with gcc-3.4.3) 

4   Analyzing Control Flow 

4.1   Indirect Control Flow Graph 

Static branch-prediction and typical code placement approaches derive the layout of a 
program from its control flow graph (CFG). However, the CFG of a VM interpreter is a 
special case, its CFG is a flat spanning tree enclosed by a loop. The CFG does not 
provide sufficient information to distinguish the temporal relations of each bytecode 
handler pair. If someone wants to improve the program locality by observing the dy-
namic execution order of program blocks, the CFG is apparently not a good tool to this 
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end. Therefore, we propose a concept called “Indirect Control Flow Graph” (ICFG); it 
uses the real bytecode instruction sequences to construct the dual CFG of the interpreter. 
Consider a simplified virtual machine with 5 bytecode instructions: A, B, C, D, and E, 
and use the virtual machine to run a very simple user applet. Consider the following 
short alphabetic sequence as the instruction sequence of the user applet: 

A-B-A-B-C-D-E-C 

Each alphabet in the sequence represents a bytecode instruction. In Figure 7, the graph 
connected with the solid lines is the CFG of the simplified interpreter. By observing the 
flow in the CFG, the program flow becomes: 

[Dispatch] – [Handler A] – [Dispatch] – [Handler B]… 

 

Fig. 7. The CFG of the simplified interpreter 

It is hard to tell the relation between handler-A and handler-B because the loop 
header hides it. In other words, this CFG cannot easily present which handler would be 
invoked after handler-A is executed. The idea of the ICFG is to observe the patterns of 
the bytecode sequences executed by the virtual machine, not to analyze the structure of 
the virtual machine itself. Figure 8 expresses the ICFG in a readable way, it happens to 
be the sub-graph connected by the dashed directed lines in Figure 7. 

 

Fig. 8. An ICFG example. The number inside the circle represents the size of the handler 
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4.2   Tracing the Locality of the Interpreter 

As stated, the Java applications that a KVM runs dominate the temporal locality of the 
interpreter. Precisely speaking, the incoming Java instruction sequence dominates the 
temporal locality of the KVM. Therefore, the first step to exploit the temporal locality 
is to consider the bytecode sequences executed by the virtual machine. Consider the 
previous example sequence, the order of accessed NAND flash pages is supposed to be: 

[BytecodeFetching]–[LookupTable]–[A]–[BytecodeFetching]–[LookupTable]– 
[B]–[BytecodeFetching]–[LookupTable]–[A]… 

Obviously, memory pages containing BytecodeFetching and LookupTable are much 
often to appear in the sequence than those containing BytecodeDispatch. As a result, 
pages containing BytecodeFetching and LookupTable are favorable to last in the cache. 
Pages holding bytecode handlers have to compete with each other to stay in the cache. 
Thus, we induced that the order of executed bytecode instructions is the key factor 
impacts cache misses. 

Consider an extreme case: In a system with three cache blocks, two cache blocks 
always hold memory pages containing BytecodeFetching and LookupTable due to the 
stated reason. Therefore, there is only one cache block available for swapping pages 
containing bytecode handlers. If all the bytecode handlers were located in distinct 
memory pages, processing a bytecode instruction would cause a cache miss. This is 
because the next-to-execute bytecode handler is always located in an uncached memory 
page. In other words, the sample sequence causes at least eight cache misses. Never-
theless, if both the handlers of A and B are grouped to the same page, cache misses will 
decline to 5 times, and the page access trace becomes: 

fault-A-B-A-B-fault-C-fault-D-fault-E-fault-C 

If we extend the group (A, B) to include the handler of C, the cache miss count would 
even drop to four times, and the page access trace looks like the following one: 

fault-A-B-A-B-C-fault-D-fault-E-fault-C 

Therefore, the core issue of this study is to find an efficient code layout method parti-
tioning all bytecode instructions into disjoined sets based on their execution relevance. 
Each NAND flash page contains one set of bytecode handlers. We propose partitioning 
the ICFG reaches this goal. 

Back to Figure 8, the directed edges represent the temporal order of the instruction 
sequence. The weight of an edge is the transition count for transitions from one bytecode 
instruction to the next. If we remove the edge (B, C), the ICFG is divided into two 
disjoined sets. That is, the bytecode handlers of A and B are placed in one page, and the 
bytecode handlers of C, D, and E are placed in the other. The page access trace becomes: 

fault-A-B-A-B-fault-C-D-E-C 

This placement causes only two cache misses, which is 75% lower than the worst case! 
The next step is to transform the ICFG diagram to an undirected graph by merging 
reversed edges connecting same vertices, and the weight of the undirected edge is the 
sum of weights of the two directed edges. The consequence is actually a variation of the 
classical MIN k-CUT problem. Formally speaking, we can model a given graph  
G(V, E) as: 
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 Vi – represents the i-th bytecode instruction. 
 Ei,j – the edge connecting i-th and j-th bytecode instruction. 
 Fi,j – number of times that two bytecode instructions i and j executed after each 

other. It is the weight of edge Ei,j. 
 K – number of expected partitions. 
 Wx,y – the inter-set weight. ∀ x ≠ y, Wx,y= ΣFi,j where Vi ∈ Px and Vj ∈ Py. 

The goal is to model the problem as the following definition: 

Definition 1. The MIN k-CUT problem is to divide G into K disjoined partitions {P1, 
P2,…,Pk} such that ΣWi,j is minimized. 

4.3   The Mathematical Model 

Yet there is an additional constraint in our model. It is impractical to gather bytecode 
instructions to a partition regardless of the sum of the program size of consisted byte-
code handlers. The size of each bytecode handler is distinct, and the code size of a 
partition cannot exceed the size of a memory page (e.g. NAND flash page). Our aim is 
to distribute bytecode handlers into several disjoined partitions {P1, P2,…,Pk}. We 
define the following notations: 

 Si – the code size of bytecode handler Vi. 
 N – the size of a memory page. 
 M(Pk ) – the size of partition Pk . It is ΣSm for all Vm∈ Pk . 
 H(Pk ) – the value of partition Pk . It is ΣFi,j for all Vi , Vj ∈ Pk . 

Our goal is to construct partitions that satisfy the following constraints. 

Definition 2. The problem is to divide G into K disjoined partitions {P1, P2,…,Pk}. For 
each Pk that M(Pk) ≤ N such that Wi,j is minimized, and maximize ΣH(Pi ) for all Pi ∈ 
{P1, P2,…,Pk}. 

This rectified model is exactly an application of the graph partition problem, i.e., the 
size of each partition must satisfy the constraint (size of a memory page), and the sum 
of inter-partition path weights is minimal. The graph partition problem is NP-complete 
[16]. However, the purpose of this paper was neither to create a new graph partition 
algorithm nor to discuss the difference between existing algorithms. The experimental 
implementation just adopted the following algorithm to demonstrate our approach 
works. Other implementations based on this approach may choose another graph 
partition algorithm that satisfies specific requirements. 

Partition (G) 

1. Find the edge with maximal weight Fi,j among graph G, while the Si + Sj ≤ N. If 
there is no such an edge, go to step 4. 

2. Call Merge (Vi , Vj ) to combine vertices Vi and Vj. 
3. Remove both Vi and Vj from G, go to step 1. 
4. Find a pair of vertices Vi and Vj in G such that Si + Sj ≤ N. If there isn’t any pair 

satisfied the criteria, go to step 7. 
5. Call Merge (Vi , Vj ) to combine vertices Vi and Vj. 
6. Remove both Vi and Vj out of G, go to step 4. 
7. End. 
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The procedure of merging both vertices Vi and Vj is: 

Merge (Vi , Vj ) 

1. Add a new vertex Vk to G. 
2. Pickup an edge E connects Vt with either Vi or Vj . If there is no such an edge, go 

to step 6. 
3. If there is already an edge F connects Vt to Vk. 
4.  Then, add the weight of E to F, and discard E. 
5.  Else, replace one end of E which is either Vi or Vj with Vk. 
6. End. 

Finally, each vertex in G is a collection of several bytecode handlers. The refinement 
process is to collect bytecode handlers belonging to the same vertex and place them into 
one memory page. 

5   The Process of Rewriting the Virtual Machine 

Our approach emphasizes that the arrangements of bytecode handlers affects cache 
miss rate. In other words, it implies that programmers should be able to speed up their 
programs by properly changing the order of the “case” sub-clauses in the source files. 
Therefore, this study tries to optimize the virtual machine in two distinct ways. The first 
approach revises the order of the “case” sub-clauses in the sources of the virtual ma-
chine. If our theory were correct, this tentative approach should show that the modified 
virtual machine performs better in most test cases. The second version precisely reor-
ganizes the layout of assembly code blocks of bytecode handlers, and this approach 
should be able to generate larger improvements than the first version. 

5.1   Source-Level Rearrangement 

The concept of the refining process is to arrange the order of these “case” statements in 
the source file (execute.c). The consequence is that after translating the rearranged 
source files, the compiler will place bytecode handlers in machine code form in me-
ditated order. The following steps are the outline of the refining procedures. 

A. Profiling. Run the Java benchmark program on the unmodified KVM. A custom 
profiler traces the bytecode instruction sequence, and it generates the statistics of 
inter-bytecode instruction counts. Although we can collect some patterns of instruction 
combinations by investigating the Java compiler, using a dynamic approach can cap-
ture further application-dependent patterns. 

B. Measuring the size of each bytecode handler. The refining program compiles the 
KVM source files and measures the code size of each bytecode handler (i.e., the size of 
each ‘case’ sub-clause) by parsing intermediate files generated by the compiler. 

C. Partitioning the ICFG. The previous steps collect all necessary information for 
constructing the ICFG. Then, the refining program partitions the ICFG by using a graph 
partition algorithm. From that result, the refining program knows the way to group 
bytecode handlers together. For example, a partition result groups (A, B) to a bundle 
and (C, D, E) to another as shown in Figure 8. 
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D. Rewriting the source file. According to the computed results, the refining program 
rewrites the source file by arranging the order of all “case” sub-clauses within the 
interpreter loop. Figure 9 shows the order of all “case” sub-clauses in the previous 
example. 

switch ( opcode ) { 
case B:  …; 
case A:   …; 
case E:  …; 
case D:  …; 
case C:  …; 

} 

Fig. 9. The output of rearranged case statements 

5.2   Assembly-Level Rearrangement 

The robust implementation of the refinement process consists of two steps. The re-
finement process acts as a post processor of the compiler. It parses intermediate files 
generated by the compiler, rearranges program blocks, and generates optimized  
assembly codes. Our implementation is inevitably compiler-dependent and CPU- 
dependent. Current implementation tightly is integrated with gcc for ARM, but the 
approach is easy to apply to other platforms. Figure 10 illustrates the outline of the 
processing flow, entities, and relations between each entity. The following paragraphs 
explain the functions of each step. 

 

Fig. 10. Entities in the refinement process 
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A. Collecting dynamic bytecode instruction trace. The first step is to collect statis-
tics from real Java applications or benchmarks, because the following steps will need 
these data for partitioning bytecode handlers. The modified KVM dumps the bytecode 
instruction trace while running Java applications. A special program called TRACER 
analyzes the trace dump to find the transition counts for all instruction pairs. 

B. Rearranging the KVM interpreter. This is the core step and is realized by a 
program called REFINER. It acts as a post processor of gcc. Its duty is to parse byte-
code handlers expressed in the assembly code and organize them into partitions. Each 
partition fits into one NAND flash page. The program consists of several sub tasks 
described as follows. 

(i) Parsing layout information of the original KVM. The very first thing is to com-
pile the original KVM. REFINER parses the intermediate files generated by gcc. 
According to structure of the interpreter expressed in assembly code introduced in §3.2, 
REFINER analyzes the jump table in the LookupTable trunk to find out the address and 
size of each bytecode handler. 

(ii) Using the graph partition algorithm to group bytecode handlers into disjoined 
partitions. At this stage, REFINER constructs the ICFG with two key parameters: (1) 
the transition counts of bytecode instructions collected by TRACER; (2) the machine 
code layout information collected in the step A. It uses the approximate algorithm 
described in §4.3 to divide the undirected ICFG into disjoined partitions. 

(iii) Rewriting the assembly code. REFINER parses and extracts assembly codes of 
all bytecode handlers. Then, it creates a new assembly file and dumps all bytecode 
handlers partition by partition according to the result of (ii). 

(iv) Propagating symbol tables to each partition. As described in §3.2, there are 
several symbol tables distributed in the BytecodeDispatch trunk. For most RISC pro-
cessors like ARM and MIPS, an instruction is unable to carry arbitrary constants as 
operands because of limited instruction word length. The solution is to gather used 
constants into a symbol table and place this table near the instructions that will access 
these constants. Hence, the compiler generates instructions with relative addressing 
operands to load constants from the nearby symbol tables. Take ARM for example, its 
application binary interface (ABI) defines two instructions called LDR and ADR for 
loading a constant from a symbol table to a register [17]. The ABI restricts the maximal 
distance between a LDR/ADR instruction and the referred symbol table to 4K bytes. 

Besides, it would cause a cache miss if a machine instruction in page X loads a 
constant si from symbol table SY located in page Y. Our solution is to create a local 
symbol table SX in page X and copy the value si to the new table. Therefore, the relative 
distance between si and the instruction never exceeds 4KB neither causes  cache misses 
when the CPU tries to load si.  

(v) Dumping contents in partitions to NAND flash pages. The aim is to map byte-
code handlers to NAND flash pages. Its reassembled bytecode handlers belong to the 
same partition in one NAND flash page. After that, REFINER refreshes the address and 
size information of all bytecode handlers. The updated information helps REFINER to 
add padding to each partition and enforce the starting address of each partition to align 
to the boundary of a NAND flash page. 
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6   Evaluation 

In this section, we start from a brief introduction of the environment and conditions 
used in the experiments. The first part of the experimental results is the outcome of 
source-level rearranged virtual machine. Those positive results prove our theory works. 
The next part is the experiment of assembly-level rearranged virtual machine. It further 
proves our refinement approach is able to produce better results than the original 
version. 

6.1   Evaluation Environment 

Figure 11 shows the block diagram of our experimental setup. In order to mimic real 
embedded applications, we have implanted Java ME KVM into uClinux for ARM7 in 
the experiment. One of the reasons to use this platform is that uClinux supports FLAT 
executable file format which is perfect for realizing XIP. We ran KVM/uClinux on a 
customized gdb. This customized gdb dumped memory access traces and performance 
statistics to files. The experimental setup assumed there was a specialized hardware 
unit acting as the NAND flash memory controller, which loads program codes from 
NAND flash pages to the cache. It also assumed all flash access operations worked 
transparently without the help from the operating system. In other words, modifying the 
OS kernel for the experiment is unnecessary. This experiment used “Embedded Caf-
feine Mark 3.0” [15] as the benchmark. 

 
Embedded 

Caffeine Mark J2ME API

K Virtual Machine (KVM) 1.1
uClinux Kernel

GDB 5.0/ARMulator
Windows/Cygwin

ARM7 / FLASH

ARM7 / ROM

Java / RAM

Intel X86

 

Title Version 
arm-elf-binutil 2.15 
arm-elf-gcc 3.4.3 
uClibc 0.9.18 
J2ME (KVM) CLDC 1.1 
elf2flt 20040326  

Fig. 11. Hierarchy of simulation environment 

There are several kinds of NAND flash commodities in the market: 512-bytes, 
2048-bytes, and 4096-bytes per page. In this experiment, we model the cache simulator 
after the following conditions: 

1. There were four NAND flash page size options: 512, 1024, 2048 and 4096. 
2. The page replacement policy was full associative, and it is a FIFO cache. 
3. The number of cache memory blocks varied from 2, 4 … to 32. 

6.2   Results of Source-Level Rearrangement 

First, we rearranged the “case” sub-clauses in the source codes using the introduced 
method. Table 1 lists the raw statistics of cache miss rates, and Figure 12 plots the 
charts of normalized cache miss rates from the optimized KVM. The experiment  
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assumed the maximal cache size is 64K bytes. For each NAND flash page size, the 
number of cache blocks starts from 4 to (64K / NAND flash page size). 

In Table 1, each column is the experimental result from a kind of the KVM. The 
“original” column refers to statistics from the original KVM, in which bytecode han-
dlers is ordered by in machine codes. The second column “optimized” is the result from 
the KVM refined with our approach.  

For example, in the best case (2048 bytes per page, 8 cache pages), the optimized 
KVM generates 105,157 misses, which is only 4.5% of the misses caused by the 
original KVM, and the improvement ratio is 95%. 

Broadly speaking, the experiment shows that the optimized KVM outperforms the 
original KVM in most cases. Looking at the charts in Figure 12, the curves of nor-
malized cache miss rates (i.e., optimized_miss_rate / original_miss_rate ) tend to be 
concave. It means the improvement for the case of eight pages is greater than the one of 
four pages. It benefits from the smaller “locality” of the optimized KVM. Therefore, 
the cache could hold more localities, and this is helpful in reducing cache misses. After 
touching the bottom, the cache is large enough to hold most of the KVM program code. 
As the cache size grows, the numbers of cache misses of all configurations converge. 

However, the miss rate at 1024 bytes * 32 blocks is an exceptional case. This is 
because our approach rearranges the order of bytecode handlers at source level, and it 
hardly predicts the precise starting address and code size of a bytecode handler. This is 
the drawback of the approach. 
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Fig. 12. The charts of normalized cache-miss rates from the source-level refined virtual machine. 
Each chart is an experiment performs on a specific page size. The x-axis is the size of the cache 
memory ( number_of_pages * page_size ). 
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Table 1. Normalized cache miss rates generated from source-level modified virtual machines 

512 Bytes/Page Miss Count 11024 Bytes/Page Miss Count 
# Pgs Improve. Original Optimized # Pgs Improve. Original Optimized 

4 9.39% 25,242,319 22,871,780 4 42.58% 15,988,106 9,180,472 
8 42.25% 11,269,029 6,508,217 8 46.58% 5,086,130 2,717,027 
16 17.94% 2,472,373 2,028,834 16 73.10% 486,765 130,921 
32 47.84% 145,005 75,632 32 -8.63% 23,395 25,413 
64 3.75% 11,933 11,485 64 9.35% 3,230 2,928 
128 1.91% 2,507 2,459   
Total Access 567,393,732 567,393,732 Total Access 567,393,732 567,393,732 

         

2048 Bytes/Page Miss Count 44096 Bytes/Page Miss Count 
# Pgs Improve. Original Optimized # Pgs Improve. Original Optimized 

4 78.05% 10,813,688 2,373,841 4 59.33% 4,899,778 1,992,734 
8 95.51% 2,341,042 105,157 8 82.82% 422,512 72,580 
16 63.08% 68,756 25,388 16 22.37% 8,995 6,983 
32 4.98% 4,294 4,080   
Total Access 567,393,732 567,393,732 Total Access 567,393,732 567,393,732 

 

6.3   Results of Assembly-Level Rearrangement  

The last experiment proved the theory should work except a few cases. The assem-
bly-level rearrangement method is a remedy. We tuned four versions of KVM; each of 
them suited to one kind of page size. All the experimental measurements are compared  
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Fig. 13. The chart of normalized cache-miss rates from assembly-level rearranged virtual ma-
chines. Each chart is an experiment performs on a specific page size. The x-axis is the size of the 
cache memory ( number_of_pages * page_size ). 
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to those from the original KVM. Table 2 is the highlight of the experimental results and 
shows the extent of improvement of the optimized versions as well. 

In the test case with 4KB/512-bytes per page, the cache miss rate of the tuned KVM 
is less than 1%, in contrast to the cache miss rate of the original KVM that is greater 
than 3%. In the best case, the cache miss rate of the tuned KVM is 96% lower than the 
value from the original one. Besides, in the case with only two cache blocks 
(1KB/512-bytes per page), the improvement is about 50%. It means the tuned KVMs 
outperform on devices with limited cache blocks. 

Figure 13 is the chart of the normalized miss rates. The envelope lines of these charts 
are tending to be concave. In the conditions that the amounts of cache blocks is small, 
the cache miss rates of the tuned KVM decline faster than the rates of the original 
version, and the curve goes downward. Once there is enough cache blocks to hold the 
entire locality of the original KVM, the tuned version gradually loses its advantages, 
and the curve turns upward. 

In both experiments, the normalized miss rate curves are tending to be concave. We 
conclude this is a characteristic of our approach. 

Table 2. Experimental cache miss counts. Data of 21 to 32 pages are omitted due to being less 
relevant. 

512 Bytes/Page Miss Count 11024 Bytes/Page Miss Count 
# Pgs Improve. Original Optimized # Pgs Improve. Original Optimized 

2 48.94% 52106472 25275914 2 38.64% 29760972 17350643 
4 50.49% 34747976 16345163 4 69.46% 21197760 6150007 
6 71.19% 26488191 7249424 6 78.15% 13547700 2812730 
8 80.42% 17709770 3294736 8 88.11% 8969062 1013010 
10 78.02% 12263183 2560674 10 96.72% 6354864 197996 
12 89.61% 9993229 986256 12 96.02% 3924402 148376 
14 95.19% 6151760 280894 14 92.97% 1735690 115991 
16 95.63% 4934205 204975 16 90.64% 1169657 104048 
18 94.37% 3300462 176634 18 75.11% 380285 89934 
20 90.48% 1734177 156914 20 58.30% 122884 48679 

Total Access 548980637 521571173 Total Access 548980637 521571046 
         

2048 Bytes/Page Miss Count 44096 Bytes/Page Miss Count 
# Pgs Improve. Original Optimized # Pgs Improve. Original Optimized 

2 40.74% 25616314 14421794 2 62.32% 14480682 5183539 
4 78.17% 14733164 3055373 4 86.32% 7529472 978537 
6 80.10% 8284595 1566059 6 93.27% 2893864 185037 
8 93.80% 4771986 281109 8 74.91% 359828 85762 
10 95.66% 2297323 94619 10 33.39% 88641 56096 
12 81.33% 458815 81395 12 -89.68% 25067 45173 
14 54.22% 96955 42166 14 0.08% 16547 15708 
16 52.03% 62322 28403 16 -33.81% 7979 10144 
18 24.00% 26778 19336 18 -17.08% 5484 6100 
20 10.08% 18390 15710 20 -24.69% 3536 4189 

Total Access 548980637 521570848 Total Access 548980637 521570757 
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7   Conclusion 

In this study, we present a refinement process to distribute bytecode handlers into 
logical partitions that can map to pages of NAND flash memory. The technique we 
used to profile the virtual machine analyzes not only the CFG of the interpreter but also 
the patterns of bytecode instruction streams, since we observe the input sequence drives 
the program flow. From this point of view, we conclude it is a kind of graph partition 
problem. 

We use two different approaches in the experiments. By modifying either source 
codes or assembly codes, the refined KVMs effectively cause lower cache misses than 
the unmodified version. The success in source code modification even implies that our 
technique can help programmers to write efficient programs without the knowledge of 
modifying compiler-backend. Certainly, the assembly-level (or machine-code-level) 
rewriting tool is definitely the best solution and provides the ultimate performance.  

The most important of all, the refined virtual machine has excellent performance  on 
the devices with limited cache memory blocks. Consider the case of 8KB/512-bytes per 
page, the cache miss rate of the tuned KVM is 0.6%. Compare to the 3.2% of the original 
KVM, this is a significant improvement. Undoubtedly, if the cache size is large, the miss 
rate will not be an issue. However, our approach can ensure that the KVM generates 
lower cache misses at smaller cache sizes. This technique also enables SOC to integrate 
a small block of embedded cache RAM and still execute the KVM efficiently. 

Comparing our improvement on the KVM interpreter with JIT (dynamic compila-
tion) is an interesting issue. The outcome of JIT is usually good so that it seems the 
effort on improving interpreter is in vain. However, a JIT VM usually consumes huge 
amount of memory that a small-scaled embedded device cannot afford, it is still 
worthwhile to refine the interpreter VM. The experimental results in [18] by Anderson 
Faustino da Silva et al. suggest that an interpreter VM is between 3 to 11 times slower 
than a JIT VM. However, by taking timing parameters of real NAND flash memory and 
DRAM into our formula, the performance boost by our improvement helps an inter-
preter VM runs as faster as a JIT VM. 

Actually, our approach is not exclusively for interpreters. Our investigation shows 
our approach is applicable to the part of translating bytecodes to native codes in a JIT 
VM. We left this issue for future development. 

Furthermore, our systematic method can apply to any program with the following 
two properties. First, its program flow branches to a large number of sibling sub-blocks, 
i.e., a big “switch… case… case…” compound statement in the interpreter. Second, the 
input data patterns drive the execution flows of those sibling sub-blocks, so that we can 
plot an ICFG to capture the dynamic trace. In practice, our approach can apply to other 
virtual machines, like Microsoft .NET Common Language Runtime, or an XML-driven 
processing program besides KVM. 
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Abstract. High performance embedded architectures will in some cases
combine simple caches and multithreading, two techniques that increase
energy efficiency and performance at the same time. However, that com-
bination can produce high and unpredictable cache miss rates, even when
the compiler optimizes the data layout of each program for the cache.

This paper examines data-cache aware compilation for multithreaded
architectures. Data-cache aware compilation finds a layout for data ob-
jects which minimizes inter-object conflict misses. This research extends
and adapts prior cache-conscious data layout optimizations to the much
more difficult environment of multithreaded architectures. Solutions are
presented for two computing scenarios: (1) the more general case where
any application can be scheduled along with other applications, and (2)
the case where the co-scheduled working set is more precisely known.

It is shown that these techniques reduce data cache misses for a variety
of cache architectures, multithreading environments, and cache latencies.

1 Introduction

High performance embedded architectures seek to accelerate performance in
the most energy-efficient and complexity-effective manner. Cacheing and multi-
threading are two technologies that improve performance and energy efficiency
at the same time. However, when used in combination, these techniques can be in
conflict, as unpredictable interactions between threads can result in high conflict
miss rates. It has been shown that in large and highly associative caches, these
interactions are not large; however, embedded architectures are more likely to
combine multithreading with smaller, simpler caches. This paper demonstrates
techniques which allow the architecture to maintain these simpler caches, rather
than necessitating more complex and power-hungry caches. It does so by solving
the problem in software via the compiler and the runtime, rather than through
more complex hardware.

Cache-conscious Data Placement (CCDP) [1] is a technique which finds an
intelligent layout for the data objects of an application, so that at runtime objects
which are accessed in an interleaved pattern are not mapped to the same cache
blocks. On a processor core with a single execution context, this technique has
been shown to significantly reduce the cache conflict miss rate and improve
performance over a wide set of benchmarks.
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Fig. 1. Percentage of data cache misses that are due to conflict. The cache is 32 KB
direct-mapped, shared by two contexts in an SMT processor. The program listed on
top is T1.

However, in a multithreaded environment, such as simultaneous multithread-
ing (SMT) [2,3], CCDP can lose much of its benefit, or even reduce performance.
In an SMT processor multiple threads run concurrently in separate hardware
contexts. This architecture has been shown to be a much more energy effi-
cient approach to accelerate processor performance than other traditional per-
formance optimizations [4,5]. In a simultaneous multithreading processor with
shared caches, however, objects from different threads compete for the same
cache lines – resulting in potentially expensive inter-thread conflict misses. These
conflicts cannot be analyzed in the same manner that was applied successfully
by prior work on intra-thread conflicts. This is because inter-thread conflicts are
not deterministic.

Figure 1, shows the percentage of conflict misses for various pairs of co-
scheduled threads. This figure shows two important trends. First, inter-thread
conflict misses are just as prevalent as intra-thread conflicts (26% vs. 21% of all
misses). Second, the infusion of these new conflict misses significantly increases
the overall importance of conflict misses, relative to other types of misses.

Inter-thread cache conflicts are not strictly confined to multithreaded archi-
tectures. We also see this phenomenon in multi-core architectures. Multi-cores
may share on-chip L2 caches, or possibly even L1 caches [6,7]. A data-layout
strategy that reduces both intra-thread and inter-thread conflict misses will be
helpful in those architectural scenarios as well. However, in this work we focus
in particular on multithreaded architectures, because they interact and share
caches at the lowest level.

In this paper, we develop new techniques that allow the ideas of CCDP to
be extended to multithreaded architectures, and be effective. We consider the
following compilation scenarios:

(1) In the most general case, we cannot assume we know which applications
will be co-scheduled. This may occur, even in an embedded processor, if we have
a set of applications that can run in various combinations. In this scenario, the
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compiler does not know which applications are going to be co-scheduled by the
operating system or runtime system, and in fact the combination of co-scheduled
threads may even change over the lifetime of a particular thread.

(2) In more specialized environments, we will be able to more precisely ex-
ploit specific knowledge about the applications and how they will be run. We
may have a priori knowledge about application sets to be co-scheduled in the
multithreaded processor. In these situations, it should be feasible to co-compile,
or at least cooperatively compile, these concurrently running applications.

This paper makes the following contributions: (1) It shows that traditional
multithreading-oblivious cache-conscious data placement is not effective in a
multithreading architecture. In some cases, it does more harm than good. (2)
It proposes two extensions to CCDP that can identify and eliminate most of
the inter-thread conflict misses for each of the above mentioned scenarios. We
show as much as a 26% average reduction in misses after our placement op-
timization. (3) It shows that even for applications with many objects and in-
terleavings, temporal relationship graphs of reasonable size can be maintained
without sacrificing performance and quality of placement. (4) It presents sev-
eral new mechanisms that improve the performance and realizability of cache
conscious data placement (whether multithreaded or not). These include object
and edge filtering for the temporal relationship graph. (5) We show that these
algorithms work across different cache configurations. We show results for vari-
ous caches and cache latencies, including set-associative caches. Previous CCDP
algorithms have targeted direct-mapped caches – we show that they do not trans-
late easily to set-associative caches. We present a new mechanism that eliminates
set-associative conflict misses much more effectively. (6) Additionally, we extend
these techniques to higher numbers of threads.

The rest of the paper is organized as follows. Section 2 discusses related
work. Our simulation environment and benchmarks are described in Section 3.
Section 4 and Section 5 provide algorithms and results for independent and
co-ordinated data placement methods respectively. Section 6 shows that these
techniques can work across a broad range of cache and processor configurations.
We conclude in Section 7.

2 Related Work

Direct-mapped caches, although faster and simpler than set-associative caches,
are prone to conflict misses. Consequently, much research has been directed
toward reducing conflicts in a direct-mapped cache. Several papers [8,9,10] ex-
plore unconventional line-placement policies to reduce conflict misses. Lynch, et
al. [11] demonstrate that careful virtual to physical translation (page-coloring)
can reduce the number of cache misses in a physically-indexed cache. Rivera
and Tseng [12] predict cache conflicts in a large linear data structure by com-
puting expected conflict distances, then use intra- and inter-variable padding to
eliminate those conflicts. A compiler-directed partitioning of the process address-
space for a real-time system is described in [13], such that no pre-emptible process
will share cache location with other processes.



46 S. Sarkar and D.M. Tullsen

The Split Cache [14] is a technique to virtually partition the cache through
special hardware instructions, which the compiler can exploit to put potentially
conflicting data structures in isolated virtual partitions.

Other works [15,16] dynamically detect and remove conflict misses, without
requiring any support from the compiler. These methods logically partition the
cache into pages, and can recolor conflicting pages to reduce conflict misses. This
research attempts to reduce cache conflict misses without specialized hardware,
or reducing the ability of any single thread to use the entire cache.

In a simultaneous multithreading architecture [2,3],various threads share exe-
cution and memory system resources on a fine-grained basis. Sharing of the L1
cache by multiple threads usually increases inter-thread conflict misses [2,17,18].
Until now, few studies have been conducted which try to improve cache perfor-
mance in an SMT processor, particularly without significant hardware support.
It has been shown [19] that partitioning the cache into per-thread local regions
and a common global region can avoid some inter-thread conflict misses. Com-
piler directed cache partitioning for SMT processors has been explored by May,
et al. [20]. However, static partitioning reduces the amount of cache memory
available to a particular thread, which is undesirable. Traditional code trans-
formation techniques (tiling, copying and block data layout) have been applied,
along with a dynamic conflict detection mechanism to achieve significant perfor-
mance improvement [21]; however, these transformations yield good results only
for regular loop structures. Lopez, et al. [22] also look at the interaction between
caches and simultaneous multithreading in embedded architectures. However,
their solutions also require dynamically reconfigurable caches to adapt to the
behavior of the co-scheduled threads.

This research builds on the profile-driven data placement proposed by Calder,
et al. [1]. The goal of this technique is to model temporal relationships between
data objects through profiling. The temporal relationships are captured in a
Temporal Relationship Graph (TRG), where each node represents an object and
edges represent the degree of temporal conflict between objects. Hence, if objects
P and Q are connected by a heavily weighted edge in the TRG, then placing
them in overlapping cache blocks is likely to cause many conflict misses. The
TRG is constructed by keeping a queue of objects accessed in the recent past.
The queue is examined at each memory reference to check if the newly accessed
object has a previous occurrence. Accessing other objects between two successive
accesses to the same object indicates a temporal conflict. A simple example of a
TRG and a possible resulting cache mapping is shown in Figure 2.

We have extended this technique to SMT processors and set associative caches.
Also, we have introduced the concept of object and edge trimming - which sig-
nificantly reduces the time and space complexity of our placement algorithm.
Kumar and Tullsen [23] describe techniques, some similar to this paper, to min-
imize instruction cache conflicts on an SMT processor. However, the dynamic
nature of the sizes, access patterns, and lifetimes of memory objects makes the
data cache problem significantly more complex.
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Fig. 2. A simplified Temporal Relationship Graph of the interleavings of 8 equal-sized
objects (left), and a mapping of those objects (right) into a cache big enough to hold
four objects, which minimizes conflicts between objects.

This paper contains several enhancements over a prior published version [24].
For example, this version contains more detailed descriptions of the compiler
algorithms used, and several new results, particularly in Section 6.

3 Simulation Environment and Benchmarks

We run our simulations on SMTSIM [25], which simulates an SMT processor. The
detailed configuration of the simulated processor is given in Table 1. For most
portions of the paper, we assume the processor has a 32 KB, direct-mapped data
cache with 64-byte blocks. We also model the effects on set associative caches
in Section 6, but we focus on a direct-mapped cache both because the effects of
inter-thread conflicts are more severe, and because direct-mapped caches can be
an attractive design point for many embedded designs. We assume the address
mappings resulting from the compiler and dynamic allocator are preserved in
the cache. This would be the case if the system did not use virtual to physical
translation, if the cache is virtually indexed, or if the operating system uses page
coloring to ensure that our cache mappings are preserved.

The fetch unit in our simulator fetches from the available execution contexts
based on the ICOUNT fetch policy [3] and the flush policy from [26], a perfor-
mance optimization that reduces the overall cost of any individual miss. The
ICOUNT fetch policy gives fetch priority to that thread which has the fewest in-
structions in the front end (fetch/decode/rename/queue) stages of the pipeline,
thus always seeking to provide an even mix of instructions in the instruction
window to maximize parallelism. The flush policy recognizes that in the pres-
ence of very long memory latencies, it is better for a stalled thread to release all
held resources for use by non-stalled threads.
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Table 1. SMT Processor Details

Parameter Value

Fetch Bandwidth 2 Threads, 4 Instructions Total
Functional Units 4 Integer, 4 Load/Store, 3 FP
Instruction Queues 32 entry Integer, 32 entry FP
Instruction Cache 32 KB, 2-way set associative
Data Cache 32 KB, direct-mapped
L2 Cache 512 KB, 4-way set associative
L3 Cache 1024 KB, 4-way set associative
Miss Penalty L1 15 cycles, L2 80 cycles, L3 500 cycles
Pipeline Depth 9 stages

It is important to note that a multithreaded processor tends to operate in
one of two regions, in regards to its sensitivity to cache misses. If it is latency-
limited (no part of the hierarchy becomes saturated, and the memory access
time is dominated by device latencies), sensitivity to the cache miss rate is low,
because of the latency tolerance of multithreaded architectures. However, if the
processor is operating in bandwidth-limited mode (some part of the subsystem
is saturated, and the memory access time is dominated by queuing delays), the
multithreaded system then becomes very sensitive to changes in the miss rate.
For the most part, we choose to model a system that has plenty of memory and
cache bandwidth, and never enters the bandwidth-limited regions. This results
in smaller observed performance gains for our placement optimizations, but we
still see significant improvements. However, real processors will likely reach that
saturation point with certain applications, and the expected gains from our
techniques would be much greater in those cases.

Table 2 alphabetically lists the 20 SPEC2000 benchmarks that we have used.
The SPEC benchmarks represent a more complex set of applications than repre-
sented in some of the embedded benchmark suites, with more dynamic memory
usage; however, these characteristics do exist in real embedded applications. For
our purposes, these benchmarks represent a more challenging environment to
apply our techniques. In our experiments, we generate a k-threaded workload by
picking each benchmark along with its (k −1) successors (modulo the size of the
table) as they appear in Table 2. Henceforth we shall refer to a workload by the
ID of its first benchmark. For example, workload 10 (at two threads) would be
the combination {galgel gzip}. Our experiments report results from a simulation
window of two hundred million instructions; however, the benchmarks are fast-
forwarded by ten billion dynamic instructions beforehand to ensure that we are
executing in the main execution body of the application. Table 2 also lists the L1
hit rate of each application when run independently. All profiles (used to drive
the compiler and layout optimizations) are generated running the SPEC train
inputs, and simulation and measurement with the ref inputs. We also profile and
optimize for a much larger portion of execution than we simulate.
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Table 2. Simulated Benchmarks

ID Benchmark Type Hit Rate(%) ID Benchmark Type Hit Rate(%)
1 ammp FP 84.19 11 gzip INT 95.41
2 applu FP 83.07 12 mesa FP 98.32
3 apsi FP 96.54 13 mgrid FP 88.56
4 art FP 71.31 14 perl INT 89.89
5 bzip2 INT 94.66 15 sixtrack FP 92.38
6 crafty INT 94.48 16 swim FP 75.13
7 eon INT 97.42 17 twolf INT 88.63
8 facerec FP 81.52 18 vortex INT 95.74
9 fma3d FP 94.54 19 vpr INT 86.21
10 galgel FP 83.01 20 wupwise INT 51.29

This type of study represents a methodological challenge in accurately report-
ing performance results. In multithreaded experimentation, every run consists
of a potentially different mix of instructions from each thread, making relative
IPC a questionable metric. In this paper we use weighted speedup [26] to report
our results.

Weighted speedup (WS) is given by

WS =
1

number of threads

∑
threads

IPCnew

IPCbaseline

Weighted speedup much more accurately reflects system-level performance im-
provements, and makes it more difficult to create artificial speedups by changing
the bias of the processor toward certain threads.

4 Independent Data Placement

The next two sections handle two different execution scenarios. In this first
section, we solve the more general and difficult scenario, where the compiler ac-
tually does not know which applications will be scheduled together dynamically,
or the set of co-scheduled threads changes frequently; however, we assume all
applications will have been generated by our compiler. In the following section,
we handle the case where we have specific knowledge about which jobs will be
co-scheduled.

In the current execution scenario, then, co-scheduling will be largely unpre-
dictable and dynamic. However, we can still compile programs in such a way that
conflict misses are minimized. Since all programs would essentially be compiled
in the same way, some support from the operating system, runtime system, or
the hardware is required to allow each co-scheduled program to be mapped onto
the cache differently.

CCDP techniques tend to create balanced access across the cache. We have
modified CCDP techniques to create an intentionally unbalanced utilization of
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the cache, mapping objects to a hot portion and a cold portion. This does not
necessarily imply more intra-thread conflict misses. For example, the two most
heavily accessed objects in the program can be mapped to the same cache index
without a loss in performance, if they are not typically accessed in an inter-
leaved pattern – this is the point of using the temporal relationship graph of
interleavings to do the mapping, rather than just using reference counts. CCDP
would typically create a more balanced distribution of accesses across the cache;
however, it can be tuned to do just the opposite. This is a similar approach to
that used in [23] for procedure placement, but applied here to the placement of
data objects.

However, before we present the details of the object placement algorithm, we
first describe the assumptions about hardware or OS support, how data objects
are identified and analyzed, and some options that make the CCDP algorithms
faster and more realizable.

4.1 Support from Operating System or Hardware

Our independent placement technique (henceforth referred to as IND) reposi-
tions the objects so that they have a top-heavy access pattern, i.e. most of the
memory accesses are limited to the top portion of the cache. Let us consider an
SMT processor with two hardware contexts, and a shared L1 cache (whose size
is at least twice the virtual-memory page size). If the architecture uses a virtual
cache, the processor can xor the high bits of the cache index with a hardware
context ID (e.g., one bit for 2 threads, 2 bits for 4 threads), which will then map
the hot portions of the address space to different regions of the cache.

In a physically indexed cache, we don’t even need that hardware support.
When the operating system loads two different applications in the processor, it
ensures (by page coloring or otherwise) that heavily accessed virtual pages from
the threads do not collide in the physically indexed cache.

For example, let us assume an architecture with a 32 KB data cache and 4
KB memory pages – so the cache can accommodate 8 memory pages. Physical
pages whose page number is from the set L = {0, 1, 2, 3} (modulo 8) map to
the top half of the cache. Similarly, pages having page-numbers from the set
U = {4, 5, 6, 7} (modulo 8) map to the bottom half. The compiler creates an
unbalanced partition by placing most of the heavily accessed objects in virtual
pages having page-number from set L (modulo 8). During execution, before
the OS allocates a physical page for the virtual page V of process p, it examines
the virtual page number of V and the hardware context in which p is running.
If the page-number of V is in the set L and p is running in context 0, the OS
tries to allocate a physical page whose page number is from the set L. If p is
running in context 1 instead, the OS tries to allocate a physical page having
page-number from the set U . Thus, the mapping assumed by the compilers is
preserved, but with each thread’s hot area mapped to a different half of the
cache. This is simply an application of page coloring, which is a common OS
function.
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4.2 Analysis of Data Objects

To facilitate data layout, we consider the address space of an application as
partitioned into several objects. An object is loosely defined as a contiguous
region in the (virtual) address space that can be relocated with little help from
the compiler and/or the runtime system. The compiler typically creates several
objects in the code and data segment, the starting location and size of which
can be found by scanning the symbol table. A section of memory allocated by a
malloc call can be considered to be a single dynamic object, since it can easily
be relocated using an instrumented front-end to malloc. However, since the
same invocation of malloc can return different addresses in different runs of an
application – we need some extra information to identify the dynamic objects
(that is, to associate a profiled object with the same object at runtime). Similar
to [1], we use an additional tag (henceforth referred to as HeapTag) to identify
the dynamic objects. HeapTag is generated by xor-folding the top four addresses
of the return stack and the call-site of malloc.

Reordering the objects in the stack segment can be more difficult. First, no
symbol table entry is created for the objects that are allocated in stack frames.
Second, addresses on the stack are specified relative to the stack or frame pointer
– so the same variable can be assigned different virtual addresses at different
points of execution, based on the current call stack. Hence, in this analysis we
treat the whole stack segment as a single object. To place stack objects more
finely could require adding significant padding to the stack, which would reduce
spatial locality, and increase stack overflow events. As a result, our techniques are
not expected to be particularly effective for stack objects. However, stack objects
tend to be short-lived and accessed with high temporal locality. Therefore, our
techniques tend to still be effective overall for two reasons. First, stack objects
tend to have low miss rates, and second, short-lived objects tend to be ignored
(marked as unimportant) in our placement algorithm, anyway.

After the objects have been identified, their reference count and lifetime in-
formation over the simulation window can be retrieved by instrumenting the
application binary with a tool such as ATOM [27]. Also found are the temporal
relationships between the objects, which can be captured using a temporal re-
lationship graph (henceforth referred to as TRGSelect graph). The TRGSelect
graph contains nodes that represent objects (or portions of objects) and edges
between nodes contain a weight which represents how many times the two ob-
jects were interleaved in the actual profiled execution.

Temporal relationships are collected at a finer granularity than full objects
– mainly because some of the objects are much larger than others, and usu-
ally only a small portion of a bigger object has temporal association with the
smaller one. It is more logical to partition the objects into fixed size chunks,
and then record the temporal relationship between chunks. Though all the
chunks belonging to an object are placed sequentially in their original order,
having finer-grained temporal information helps us to make more informed de-
cisions when two conflicting objects must be put in an overlapping cache re-
gion. The size of the chunk used for tracking conflicts is an important policy
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decision – smaller chunks capture more information at the expense of a larger
TRGSelect graph. We have set the chunk size equal to the block size of the tar-
geted cache. This provides the best performance, as we now track conflicts at
the exact same granularity that they occur in the cache.

4.3 Object and Edge Filtering

Profiling a typical SPEC2000 benchmark, even for a few millions of committed
instructions, involves tens of thousands of objects, and generates hundreds of mil-
lions of temporal relationship edges between objects. To make this analysis man-
ageable, we must reduce both the number of nodes (the number of objects) as well
as the number of edges (temporal relationships between objects) in the TRGSelect
graph. This is possible because finding a suitable placement for all the identifiable
objects is not necessary. Most of these objects are rarely accessed and/or have a
very short life-time – hence their relative placement with respect to other objects
has little effect on L1 miss rates. We classify objects as unimportant if their refer-
ence count is zero, or the sum of the weights of incident edges in TRGSelect graph
lies below a certain threshold. In our experiment, that threshold was set to be ei-
ther first percentile or fifth percentile – depending on the total number of objects
enumerated for a particular workload. Object filtering follows Algorithm 1.

If a HeapTag assigned to a heap object is non-unique, we mark all but the
most frequently accessed object having that HeapTag as unimportant. Multiple
objects usually have the same HeapTag when dynamic memory is being allocated
in a loop and they usually have similar temporal relationship with other objects.
Since heap objects with the same HeapTag would be indistinguishable from one
another to the customized memory allocator, making a placement decision based
on the most prominent member of the group seems to be a logical choice.

A similar problem exists for building the TRGSelect graph. Profiling creates
a TRGSelect graph with a very large number of edges. Since it is desirable to
store the entire TRGSelect graph in memory, keeping all these edges would not
be practical. Fortunately, we have noted that in a typical profile more than 90%
of all the edges are light-weight, having an edge weight less than one tenth of
the heavier edges. We use the following epoch-based heuristic to periodically
trim off the potentially light-weight edges, limiting the total number of edges to
a preset maximum value. In a given epoch, edges with weight below a particular
threshold are marked as potentially light-weight. In the next epoch, if the weight
of an edge marked as potentially light-weight does not increase significantly from
the previous epoch, it is deleted from the TRGSelect graph. The threshold is
liberal when the total number of edges is low, but made more aggressive when
the number of edges nears our preset limit on the number of edges. Algorithm 2
describes the edge trimming more precisely. In practice, we have noticed that a
TRGSelect graph with an upper threshold of 10 million edges can capture all
the important temporal relationships between the object-chunk pairs.

In this algorithm, then, we prune the edges dynamically during profiling,
and prune the objects after profiling, but before the placement phase. We find
pruning has little impact on the quality of our results.
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1: mark all objects as important
2: if an object has a reference count of zero then
3: mark the object is unimportant
4: end if
5: for all object o with nonzero reference count do
6: TRGSum[o] ← sum of TRG edge weights incident on this object
7: end for
8: if total number of objects is less than 4096 then
9: find the objects below 1 percentile (based on TRGSum)

10: mark these objects as unimportant
11: else
12: find the objects below 5 percentile (based on TRGSum)
13: mark these objects as unimportant
14: end if
15: for all non-unique HeapTag do
16: add all objects having that HeapTag to a list L
17: find the object p in L having maximum reference count
18: delete p from L
19: mark all objects in L as unimportant
20: end for

Algorithm 1. Object Filtering

The various parameters that we have determined via experiment for Algo-
rithm 2 are given in Table 3.

4.4 Building the TRGSelect Graph

To build the TRGSelect graph, memory references in the profiling window are
scanned sequentially and each of these memory references is attributed to some
profiled object. Then, the access patterns with respect to other objects in the
window are used to add appropriate edges (or increase edge-weights) in the
TRGSelect graph, with the help of the following data structures:

1. set OTRG: objects of a given executable, which is also the set of vertices of
TRGSelect graph

2. set ETRG: edges of the TRGSelect graph
3. queue TRGQueue: A FIFO queue which records a finite history of object access

patterns in the profile

Ideally, TRGQueue (the reference history window) should be able to grow without
any bound so that all interleavings are accurately reflected in TRGSelect. How-
ever, maintaining such an accurate history is space and time-prohibitive, and
also quite unnecessary for the following reason. An object, after being brought
into the cache, does not stay there indefinitely – it typically gets evicted after
a while due to a conflict or capacity miss. Thus, if consecutive accesses to an
object are so far apart as to not appear in a large window, the particular in-
terleavings not recorded are less important (that is, it would be very difficult
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1: if number of edges is TRGSelect > trigger value then
2: low cutoff ← Λ percentile of all edge weights
3: high cutoff ← Υ percentile of all edge weights
4: for all edges E in TRGSelect graph do
5: if E is marked as ‘spurious’ and its weight < high cutoff then
6: delete E
7: end if
8: end for
9: for all edges E in TRGSelect graph do

10: if weight of E < low cutoff then
11: mark E as ‘spurious’
12: else
13: mark E as ‘important’
14: end if
15: end for
16: end if
17: if number of edges is TRGSelect > max trg size then
18: aggressive cutoff ← Θ percentile of all edge weights
19: for all edges E in TRGSelect graph do
20: if weight of E < aggressive cutoff then
21: delete E
22: end if
23: end for
24: end if
25: trigger value ← number of edges in TRGSelect + trigger delta

Algorithm 2. Edge Filtering for a Particular Epoch

Table 3. Parameters for Edge Filtering

Parameter Value
initial trigger value 5 × 106

trigger delta 106

max trg size 12 × 106

Λ 30
Υ 40
Θ 30

to remove all interleavings and keep the object in the cache over a long time
period, anyway). We have observed that we can trim TRGQueue after its size
exceeds twice the targeted cache size without affecting the quality of placement.
Algorithm 3 sketches the steps involved in building the TRGSelect graph.

4.5 Placement Algorithm

For independent data placement, the cache blocks are partitioned into native
and foreign sets. If we know the application is going to be executed on an SMT
processor with k contexts, the top 1

k cache blocks are marked as native, and
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1: OTRG ← Φ
2: ETRG ← Φ
3: add the stack object to OTRG

4: add the constant and global objects to OTRG by scanning symbol-table
5: add the heap objects to OTRG by scanning the memory-allocation calls
6: repeat
7: scan the next memory reference mr

8: find object o such that mr accesses o and o ∈ OTRG

9: if o is not the tail of TRGQueue then
10: enqueue o to TRGQueue

11: object p ← second-last object in TRGQueue

12: while p �= NULL or p �= o do
13: if edge(o, p) ∈ ETRG then
14: edge-weight[edge(o, p)] ← edge-weight[edge(o, p)] +1
15: else
16: ETRG ← ETRG∪ edge(o, p)
17: edge-weight[edge(o, p)] ← 1
18: end if
19: p ← predecessor of p in TRGQueue

20: end while
21: if size of all objects in TRGQueue exceeds threshold STRGQ then
22: prune TRGQueue

23: end if
24: if size of ETRG exceeds threshold SETRG then
25: prune ETRG {see Algorithm 2}
26: end if
27: end if
28: until there are no more memory references to scan
29:
30: prune OTRG {see Algorithm 1}

Algorithm 3. Building the TRGSelect Graph

other cache blocks are marked as foreign. For any valid placement of an object
in a native block, we define an associated cost, which is the sum of the costs
for each chunk placed in the contiguous cache blocks. The cost of a chunk is
the edge weight (interleaving factor) between that chunk and all chunks of other
objects already placed in that cache block (see algorithm 4).

If the cache block is marked as foreign, a bias is added to the overall cost to
force the algorithm to only place an object or part of an object in the foreign
section if there is no good placement in the native. The bias for an object is set to
be λ times the maximum edge weight between a chunk belonging to this object
and any other chunk in the TRGSelect graph. If an object faces high resistance
(thus signifying a high probability of conflict) with the objects already placed in
the native cache block, it might be (fully or partially) placed in the foreign cache
blocks. Varying this bias allows a tradeoff between combined cache performance,
and uncompromised cache performance when running alone.
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1: cost ← 0
2: for all cache block C that is going to be occupied by this object do
3: let p be the chunk of this object to be placed in C
4: for all object-chunk pair q already placed in C do
5: cost ← cost + edge weight between p and q in TRGSelect graph
6: end for
7: end for
8: return cost

Algorithm 4. Finding Cost of a Placement

Our basic placement heuristic is to order the objects and then place them
each, in that order, into the cache where they incur minimal cost. Since some
objects are fundamentally different in nature and size from others, we came up
with a set of specialized placement strategies, each targeting one particular type
of object. Specifically, we will separately consider constant objects, small global
objects, important global objects, and heap objects.

An object which resides in the code segment is defined as a constant object.
Constant objects are placed in their default location (altering the text segment
might have adverse effects on the instruction cache). However, when other ob-
jects are placed in cache, their temporal relationship with the constant objects
is taken into consideration.

Small global objects are handled differently than larger objects, allowing us
to transform potential conflicts into cache prefetch opportunities. A statically
allocated object which resides in the data segment is defined as a global object.
Furthermore, a global object is classified as small if its size is less than three-
fourths of the block size. As in [1], we try to cluster the small global objects
that have heavily-weighted edges in the TRGSelect graph and place them in the
same cache block. Accessing any of the objects in the cluster will prefetch the
others, avoiding costly cache misses in the near future. Small global objects are
clustered greedily, starting with the pair of objects with the highest edge weight
between them.

After a cluster has been formed, nodes representing individual objects in the
cluster are coalesced into a single node (in the TRGSelect graph). The cluster
will be assigned a starting location along with other non-small objects in the
next phase of the placement algorithm.

Next, we place the global objects. Our greedy placement algorithm is sensitive
to the order in which the objects are placed. By experimentation, we have found
the following approach to be effective. We build a TRGPlace graph from the
TRGSelect graph, where chunks of individual objects are merged together into
a single node (edge weights are adjusted accordingly). Next, the most heavily
weighted edge is taken from the TRGPlace graph. The two objects connected by
that edge are placed in the cache, and marked as placed; however, recall that
the actual placement still uses the TRGSelect graph, which tracks accesses to
the individual chunks. Thus, two objects with a heavy edge between them may
still overlap in the cache, if only some chunks of those objects have interleaving
access pattern.
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In each subsequent iteration of the algorithm, an unplaced object is chosen
which maximizes the sum of TRGPlace edge-weights between itself and the ob-
jects that have been already placed. In case of a tie, the object with a higher
reference count is given preference.

Unimportant global objects are placed so as to fill holes in the address space
created by the allocation of the important global objects. Placement of important
global objects usually creates large holes (a contiguous section in the address
space where no object has been placed) in the data segment. When placing an
unimportant object, we scan the data segment and place the object in the first
available free region big enough to accommodate it.

Heap objects also reside in the data segment, however they are dynamically
created and destroyed at runtime using malloc and free calls. Specifying a
placement for heap objects is more difficult because a profiled heap object might
not be created, or might have different memory requirements in a later execution
of the same application with different input. Thus, we determine the placement
assuming the object is the same size, but only indicate to our custom malloc
the location of the first block of the desired mapping. The object gets placed
there, even if the size differs from the profiled run.

Our customized memory allocation/deallocation routines are closely based on
the FastFit algorithm [28]. Every memory request of less than 4 KB in size is
rounded to the next power of two. For every power of two from 16 to 4096,
there is a corresponding linked list of memory blocks. When malloc receives an
allocation request, it tries to satisfy it from the corresponding linked list. If no
free block is available in the corresponding linked list, or the request is for more
than 4 KB of memory, then memory is allocated from a wilderness chunk using
the traditional FirstFit algorithm [29].

During execution, our customized malloc first computes the HeapTag for the
requested heap object. If the HeapTag matches any of the recorded HeapTags for
which a customized allocation should be performed, malloc returns a suitably
aligned address. When the newly created heap object is brought in the cache, it
occupies the blocks specified by the placement algorithm.

4.6 Independent Placement Results

The effects of data placement by IND on miss rate and weighted speedup are
shown in Figure 3 and Figure 4, respectively. The Baseline series shows data
cache miss rate without any type of placement optimization. CCDP shows the
miss rate if traditional CCDP is performed on each of the applications. Since
CCDP ignores inter-thread conflicts, for four workloads CCDP actually increases
the miss rate over Baseline. LG2ACC shows the miss rate if L1 data cache is
implemented as a Double access local-global split cache [19]. Split caches are
designed to reduce conflicts in a multithreaded workload, though in our exper-
iments the split cache was not overly effective. The final three series (IND-30,
IND-40, IND-50) show the effect of co-ordinated data placement with λ (the
placement bias) set to 0.30, 0.40 and 0.50 respectively. The figure shows that
no single value of λ is universally better than others, though all of them yield
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improvement over traditional CCDP. For future work, it may be that setting
λ individually for each application, based on number and size of objects, for
example, will yield even better results.

A careful comparison of Figure 3 and Figure 1 shows that the effectiveness
of co-ordinated data placement is heavily correlated with the fraction of cache
misses that are caused by conflicts. On workloads like {crafty eon} (workload 6)
or {gzip mesa} (11), more than half of the cache misses are caused by conflicts,
and IND-30 reduces the miss rate by 54.0% and 46.8%, respectively. On the
other hand, only 6% of the cache misses in workload {wupwise ammp} (20) are
caused by conflicts, and IND-30 achieves only a 1% gain.
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IND reduced overall miss rate by 19% on average, reduced total conflict misses
by more than a factor of two, and achieved a 6.6% speedup. We also ran exper-
iments with limited bandwidth to the L2 cache (where at most one pending
L1 miss can be serviced in every two cycles), and in that case the performance
tracked the miss rate gains more closely, achieving an average weighted speedup
gain of 13.5%.

IND slightly increases intra-thread cache conflict (we still are applying cache-
conscious layout, but the bias allows for some inefficiency from a single-thread
standpoint). For example, the average miss rate of the applications, when run
alone with no co-scheduled jobs increases from 12.9% to 14.3%, with λ set to 0.4.
However, this result is heavily impacted by one application, ammp for which this
mapping technique was largely ineffective due to the large number of heavily-
accessed objects. If the algorithm was smart enough to just leave ammp alone,
the average single-thread miss rate would be 13.8%. Unless we expect single-
thread execution to be the common case, the much more significant impact on
multithreaded miss rates makes this a good tradeoff.

5 Co-ordinated Data Placement

In many embedded or application-specific environments, programs that are going
to be co-scheduled are known in advance. In such a scenario, it might be more
beneficial to co-compile those applications and lay out their data objects in
unison. This approach provides more accurate information about the temporal
interleavings of objects to the layout engine.

Our coordinated placement algorithm (henceforth referred to as CORD) is
similar in many ways to IND. However, in CORD the cache is not split into
native and foreign blocks, and thus there is no concept of biasing. In CORD, the
TRGSelect graph from all the applications are merged together and important
objects from all the applications are assigned a placement in a single pass.

5.1 Merging of TRGSelect Graphs

The TRGSelect graph generated by executing the instrumented binary of an
application captures the temporal relationships between the objects of that ap-
plication. However, when two applications are co-scheduled on an SMT proces-
sor, objects from different execution contexts will vie for the same cache blocks
in the shared cache. We have modeled inter-thread conflicts by merging the
TRGSelect graphs of the individual applications. It is important to note that
we profile each application separately to generate two graphs, which are then
merged probabilistically. While we may have the ability to profile the two threads
running together and their interactions, there is typically little reason to believe
the same interactions would occur in another run. The exception would be if the
two threads communicate at a very fine granularity, in which case it would be
better to consider them a single parallel application.

Assigning temporal relationship weights between two objects from different
applications requires modeling interactions that are much less deterministic than
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interactions between objects in the same thread. We thus use a probabilistic
model to quantify expected interactions between objects in different threads.

Two simplifying assumptions have been made for estimating the inter-thread
temporal edge weights, which make it easier to quantify the expected interactions
between objects in separate threads. (1) The relative execution speeds of the
two threads is known a priori. Relative execution speed of co-scheduled threads
typically remains fairly constant unless one of the threads undergoes a phase
change – which can be discovered via profiling. (2) Within its lifetime, an object
is accessed in a regular pattern, i.e. if the lifetime of an object o is k cycles, and
the total reference count of o is n, then o is accessed once every k

n cycles. Few
objects have very skewed access pattern so this assumption gives a reasonable
estimate of the number of references made to an object in a particular interval.

We use these assumptions to estimate the interleavings between two objects
(in different threads). From the first assumption, along with the known lifetimes
of objects, we can calculate the likelihood that two objects have overlapping
lifetimes (and the expected duration). From the second assumption, we can
estimate the number of references made to those objects during the overlap.
The number of interleavings cannot be more than twice the lesser of the two
(estimated) reference counts. We apply a scaling factor to translate this worst-
case estimate of the interleavings during an interval, into an expected number of
interleavings. This scaling factor is determined experimentally. To understand
the point of the scaling factor, if the two objects are being accessed at an equal
rate by the two threads, but we always observe a run of two accesses from one
thread before the other thread issues an access, the scaling factor would be 0.50.
The steps required to merge two TRGSelect graphs into a single, unified graph
is outlined in Algorithm 5.

In our experiments we have found it sufficient to only put temporal edges
between important objects (i.e., objects not marked as unimportant) of each
application, which eliminates edge explosion.

5.2 Coordinated Placement Results

The miss-rate impact and weighted speedup achieved by CORD is shown in
Figures 5 and 6. The three series CORD-60, CORD-70 and CORD-80 represents
the result of independent data placement with scaling factor set to 0.6, 0.7 and
0.8 respectively. The scaling factor represents the degree of interleaving we expect
between memory accesses from different threads accessing the same cache set.

In most of the workloads, the speedup is somewhat more than that obtained
from independent placement, thus confirming our hypothesis that being able to
exploit more specific information about conflicting objects leads to better place-
ment decisions. On the average CORD reduced miss rate by 26% and achieved
8.8% speedup. However, if one of these optimized applications is run alone (i.e.
without its counterpart application) we do sacrifice single-thread performance
slightly, but the effect is much less than the gain when co-scheduled. The amount
of the single-thread loss depends somewhat on the scaling factor. The average
Baseline miss rate was 12.9%. With coordinated placement, and a scaling factor
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1: OTRG,0 ← set of vertices in TRGSelect graph of application 0
2: OTRG,1 ← set of vertices in TRGSelect graph of application 1
3: ETRG,0 ← set of edges in TRGSelect graph of application 0
4: ETRG,1 ← set of edges in TRGSelect graph of application 0
5:
6: {OTRG and ETRG are respectively the vertex and edge sets of the merged

TRGSelect graph}
7: OTRG ← OTRG,0 ∪ OTRG,1

8: ETRG ← ETRG,0 ∪ ETRG,1

9:
10: for all object o ∈ OTRG,0 do
11: for all object p ∈ OTRG,1 do
12: LTo ← life-time of o
13: Ro ← number of memory references to o
14: LTp ← life-time of p
15: Rp ← number of memory references to p
16: LTo,p ← overlapping life-time of o and p {computed from LTo, LTp and

relative rate of executions of two applications}
17: if LTo,p > 0 then

18: Rn
o ← Ro × LTo,p

LTo

19: Rn
p ← Rp × LTo,p

LTp

20: ETRG ← ETRG∪ edge(o, p)
21: edge-weight[edge(o, p)] ← 2×min(Rn

o , Rn
p )× s {s being the scaling factor}

22: end if
23: end for
24: end for

Algorithm 5. Merging TRGSelect graphs
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of 0.7, the average single-thread miss rate goes up to 13.1%, but when the scaling
factor is 0.8, the miss rate actually becomes 12.7%.

We see in these figures, however, that overall the results are fairly insensitive
to the scaling factor, which is closely tied to our estimates of relative execution
speed of the two programs and the lifetimes of the objects. Thus, inexact esti-
mates of any of these factors (expected rate of interleaving, relative execution
rate, object lifetimes) should not have significant impact on the effectiveness of
the technique.

6 Exploring Other Processor and Cache Configurations

Up to this point, we have demonstrated the effectiveness of our placement tech-
niques for a single hardware configuration. We did extensive sensitivity analysis
to understand how these techniques work as aspects of the architecture – such as
cache sizes and organizations, cache latencies, and number of execution contexts
in the processors – are modified. In this section we present and interpret the
results of some of those experiments.

6.1 Effects of Cache Size and Associativity

Cache associativity is the most interesting alternative, in large part because pro-
posed CCDP algorithms do not accommodate associative caches. The näıve ap-
proach would model a set-associative cache as a direct-mapped cache with the
same number of sets. This has the benefit of retaining the correct model of line
mapping – that is, two addresses that conflict in a 32 KB 2-way cache will also map
to the same set in a 16 KB direct-mapped cache. However, this simplistic approach
does not take into consideration false positives while enumerating conflicts, (i.e.
this technique does not take into consideration the fact that k objects can share a
single set in a k-way associative cache without causing any conflicts) and generally
leads to sub-optimal object placement. The reason for the suboptimal placement
is that the cost function is incorrect, and begins penalizing placements before they
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Fig. 7. Näıve Coordinated Data Placement with a Set-Associative Cache (32 KB,
2-way)

actually cause any misses. This can be particularly harmful for our independent
placement (IND) algorithm, because a set-associative cache actually increases our
ability to create unbalanced mappings – but only if the cost model allows us to.

But even in the case of coordinated placement, the incorrect cost function
results in poor placement. This is shown in Figure 7, where we have modeled a
2-way 32 KB cache as a direct-mapped 16 KB cache, and the quality of the co-
ordinated placement is actually consistently worse than the baseline placement.

For associative caches, any mapping function that used our TRGSelect graph
would be an approximation, because we only capture 2-way conflicts. On the
other hand, profiling and creating a hypergraph to capture more complex con-
flicts would be computationally prohibitive. However, we found the following
heuristic to work well when using our existing TRGSelect graph. We have ad-
justed our default placement algorithm such that for a k-way set-associative
cache, an object incurs placement cost only if is placed in a set where at least
k objects have already been placed. This new policy tends to fill up every set
in the associative cache to its maximum capacity before potentially conflicting
objects are put in the set that already contains more than k objects.

Average miss-rate reductions and weighted speedups for the variety of bench-
mark pairs is given in Figures 8 and 9 for different cache configurations. The
split cache results (LG2ACC) are only shown for direct-mapped caches, because
that technique is not applicable for set-associative caches. The results for set-
associative caches, in particular, are indicative of the low incidence of conflict
misses for these workloads. However, we do see that our techniques are effective
– we eliminate the vast majority of remaining conflict misses. For a 16 KB, 2-way
cache, we reduce total miss rate from 15.8% to 13.8%.

Although in some cases the performance gains are not high, they all still follow
the trends we have seen so far. This is encouraging, since the low performance
results are primarily the result of cache performance being good overall for those
workloads. But because the trends remain the same, and we effectively reduce or
nearly eliminate conflict misses in all cases, we have confidence that workloads
that exhibit higher miss rates will be able to make good use of these techniques.
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6.2 Increasing the Number of Execution Contexts

Our placement techniques were designed to adapt easily to processors having
more than two execution contexts. For co-ordinated data placement of k appli-
cations, k TRGSelect graphs must be merged together before placement. Inde-
pendent data placement requires the cache be partitioned into k regions, where
each region contains the hot objects from one of the applications. Figure 10 and
11 shows the result of our placement techniques being applied to a four-threaded
SMT processor.

For a 4-thread processor, IND-30 and CORD-60 reduced miss rates by 14%
and 22% on the average; however, the actual weighted speedups were smaller
(2.0% and 3.1% respectively), due to the SMT processors’ ability to tolerate
cache misses in a latency-limited configuration like the one we simulate. How-
ever, the more threads running on a core, the more likely we are to saturate
memory bandwidth (both instruction execution rate and misses per instruction
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go up significantly with more threads) – and in those scenarios the substantial
reduction in miss rate would likely be translated directly into performance, as
was demonstrated in the two-thread case. Moreover, there are other important
advantages of reducing L1 miss rate, such as lowering net power dissipation.

6.3 Effects of Cache Miss Penalty

Up to this point we have assumed the L1 miss penalty (to the L2 cache) to be 15
cycles, which is a reasonable figure for current microprocessors. However, in fu-
ture multi-core processors, pressure on L2 bandwidth and the overhead of cache-
coherence protocols will result in higher L1 miss penalty. In figure 12, we plot
the weighted speedup of co-ordinated and independent placement techniques for
a range of L1 miss penalties. Not surprisingly, weighted speedup resulting from
our placement algorithms increase monotonically with miss penalty. Thus, as we
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increasingly pack more contexts (cores and thread contexts) onto the die, while
communication latencies across the die continue to increase, the importance of
these techniques will only increase.

7 Conclusion

As we seek higher performance embedded and other processors, we will increas-
ingly see architectures that feature caches and multiple thread contexts (either
through multithreading or multiple cores), and thus we shall see greater incidence
of threads competing for cache space. The more effectively each application is
tuned to use the caches, the more interference we see between competing threads.

This paper demonstrates that it is possible to compile threads to share the
data cache, to each thread’s advantage. We specifically address two scenarios.
Our first technique does not assume any prior knowledge of the threads which
might be co-scheduled together, and hence is applicable to all general-purpose
computing environments. Our second technique shows that when we do have
more specific knowledge about which applications will run together, that knowl-
edge can be exploited to enhance the quality of object placement even further.
Our techniques demonstrated 26% improvement in miss rate and 9% improve-
ment in performance, for a variety of workloads constructed from the SPEC2000
suite.

It is also shown that our placement techniques scale effectively across different
hardware configurations, including various cache sizes, cache latencies, numbers
of threads, and even set-associative caches.
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Abstract. This work investigates the potential of direction-correlations
to improve branch prediction. There are two types of direction-correlation:
affectors and affectees. This work considers for the first time their im-
plications at a basic level. These correlations are determined based on
dataflow graph information and are used to select the subset of global
branch history bits used for prediction. If this subset is small then affec-
tors and affectees can be useful to cut down learning time, and reduce
aliasing in prediction tables. This paper extends previous work explaining
why and how correlation-based predictors work by analyzing the proper-
ties of direction-correlations. It also shows that branch history selected
based on direction-correlations improves the accuracy of the limit and re-
alistic conditional branch predictors, that won at the recent branch pre-
diction contest, by up to 30% and 17% respectively. The findings in this
paper call for the investigation of predictors that can efficiently learn cor-
relations that may be non-consecutive (i.e. with holes between them) from
long branch history.

1 Introduction

The ever growing demand for higher performance and technological constraints
drive for many years the computer industry toward processors with higher clock
rates and more recently to multiple cores per chip. Both of these approaches
can improve performance but at the same time can increase the cycle latency
to resolve an instruction, the former due to deeper pipelines and the latter due
to inter-core contention for shared on-chip resources. Longer resolution latency
renders highly accurate conditional branch prediction a necessity because branch
instructions are very frequent in programs and need to be resolved as soon as
they are fetched in a processor to ensure continuous instruction supply.

Today, after many years of branch prediction research and the two recent
branch prediction championship contests [1,2], the accuracies of the state of
the art predictors are high but far from perfect. For many benchmarks the O-
GEHL and L-TAGE predictors1 [3,4] have more than five misses per thousand
� The author contributed to this work while at the University of Cyprus.
1 O-GEHL won the best practice award in the 2004 branch prediction contest and

L-TAGE won the realistic track of the 2006 contest.
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instructions. Such a rate of misprediction, depending on the average branch
resolution latency and other execution overheads, can correspond to a substantial
part of the total execution time of a program. A recent study shows that the
misprediction overhead for an 8-way out-of-order processor using an 8KB O-
GEHL predictor, for SPECINT CPU2000 benchmarks, can be up to 50% and
on the average 17% of the execution time [5]. Consequently, we believe there is
still a need to further improve prediction accuracy. The challenge is to determine
how to achieve such an improvement.

In the seminal work by Evers et al. [6] it is shown that choosing more selec-
tively the correlation information can be conducive for improving branch pre-
diction. In particular, using an exhaustive search is determined for a gshare [7]
predictor that only a few, not necessarily consecutive, of the most recent branches
are sufficient to achieve best prediction accuracy. Furthermore, is demonstrated
that a correlation may exist between branches that are far apart. The same
work, introduces two reasons for why global history correlation exists between
branches: direction and in-path correlation, and divides direction-correlations
into affectors and affectees.2 These various types of correlations can mainly be
derived by considering the data and control flow properties of branches. These
causes of correlation are only discussed qualitatively in [6] to explain what makes
two-level branch predictors work, no measurements of their frequency or quan-
tification of their importance are given.

The work by [6] motivated subsequent prediction research with goal the selec-
tive correlation from longer global history. One of the most notable is perceptron
based prediction [9] that identifies, through training, the important history bits
that a branch correlates on. The success of perceptron based prediction pro-
vides a partial justification for the claims by [6] for the importance of selective
correlation. However, it was never established that the dominant perceptron
correlations correspond to direction or in-path correlation and therefore remains
uncertain if indeed such correlations are important or whether predictors exploit
them efficiently.

One other interesting work by [8] investigated the usefulness of affectors
branches, one of the types of direction-correlation introduced by [6] . In [8] the
affector branches are selected dynamically from the global history using data de-
pendence information and are used to train an overriding tagged predictor when
a baseline predictor performs poorly. The experimental analysis, for specific mi-
croarchitectural configurations and baseline predictors, show that this idea can
potentially improve both prediction accuracy and performance. This work also
provides the first concrete evidence that the direction-correlation is an impor-
tant information for prediction. However, [8] did not examine the importance of
affectees.

In this paper we investigate the significance for improving branch prediction
accuracy using the two types of direction-correlation: affectors and affectees.

2 In [6] the two types of direction-correlations are defined but not named. In [8] they
referred to them as affectors and forerunners. In this work, for symmetry we decided
to name the forerunners as affectees.
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Our analysis is done at a basic level because it does not consider implementation
issues for detecting affectors and affectees correlations. The primary objectives of
this paper is to establish the extent that state of the art predictors learn direction-
correlations, and determine how precise the detection of direction-correlations
needs to be for best accuracy. Our evaluation uses the two winning predictors
of the limit and realistic track of the recent championship prediction [2] and
considers their accuracy when they use the global history as is versus the global
history packed [8] to “ignore” the positions with no direction-correlation.

Contributions
The key contributions and findings of this paper are:

– A framework that explains why some branches are more important than
others to correlate on. The framework can be used to precisely determine
these branches based on architectural properties without regard to imple-
mentation.

– An experimental analysis of the potential of direction-correlations to improve
branch prediction accuracy.

– An investigation of the position and the number of direction-correlations
reveals that their behavior varies across programs. Also, is very typical for
programs to have branches with the number of correlations ranging from few
branches to several hundreds. The correlations can be clustered together but
also be very far apart, i.e. correlations may not be consecutive and can have
holes between them. Affectees are found to be more frequent than affectors.

– Demonstrate that for best accuracy both affectors and affectees correlations
are needed. Their use can provide accuracy improvements of up to 30% for
the limit predictor, and 17% for the realistic predictor

– Show that it is crucial to include in branch history direction-correlations that
are detectable by tracking dependences through memory.

– Establish a need to further study predictors that can learn correlation
patterns with and without holes from long branch history.

The remaining of the paper is organized as follows. Section 2 defines what af-
fectors and affectees correlations are and discusses parameters that influences
the classification of a branch as correlating. Section 3 presents the experimental
framework. Section 4 discusses the experimental results of this study and estab-
lishes the significance of affectors and affectees. Section 5 discusses related work.
Finally, Section 6 concludes the paper and provides directions for future work.

2 Affectors and Affectees

This section defines what affector and affectee branches are and provides intu-
ition as to why these are important branches to select for correlation. It also
discusses how the treatment of memory dependences influence the classification
of a branch as an affector or affectee of another branch. Finally, a discussion is
presented on how this correlation information can be used for prediction. Part
of this discussion is based on earlier work [6,8].
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Fig. 1. (a) Example control flow graph, (b) affector graph, (c) affectee graph and (d)
affector plus affectee graph

2.1 Definitions and Intuition

Affectors: A dynamic branch, A, is an affector for a subsequent dynamic branch,
B, if the outcome of A affects information (data) used by the subsequent branch
B. Affectors are illustrated using the example control flow graph in Fig. 1.a.
Assume that the (predicted) program order follows the shaded basic-blocks and
we need to predict the branch in the basic-block 7. The affector branches are
all those branches that steer the control flow to the basic-blocks that contain
instructions that the branch, in basic-block 7, has direct or indirect data depen-
dence. In our example, these correspond to the branches in basic-blocks BB0,
BB2 and BB4. Effectively, the selected affector branches can be thought of as
an encoding of the data flow graph leading to the branch to be predicted (this
affector data flow graph is shown in Fig. 1.b). Predictors may benefit by learn-
ing affector correlations because when branches repeat with the same data flow
graph they will likely go the same direction. Furthermore, affector correlations
use a more concise branch history to capture the data flow graph leading to a
branch and thus reduce learning time and table pressure for training a predictor.

Affectees: A dynamic branch, A, is affectee of a subsequent dynamic branch, B,
if A is testing the outcome of an instruction C that can trace a data dependence
to an instruction D in the data flow graph leading to B.3 The direction of an
affectee branch encodes, in a precise or imprecise manner, the values produced
3 C and D can be the same instruction.
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or yet to be produced by D and of other instructions in the data dependence
graph from branch B to instruction D.

In the example in Fig. 1.a the branch in BB7 has two affectees, the branches in
BB4 and BB6. More specifically, the branch R2==1 in BB4 is an affectee because
it tests the outcome of the load instruction LW R2,(R1), on which the branch
R3==R4 in BB7 has an indirect data dependence (through the instructions R3
= R1 + R2 in BB3 and R1 = R2 + 4 in BB2). Since the direction of R2==1 is
taken it implies that the test condition is true and consequently the value loaded
from the load instruction LW R2,(R1) is 1, the value produced by R1 = R2 +
4 is 5 and the result of R3 = R1 + R2 is 6. Therefore, in this case the direction
of branch R2==1 in BB4 provides a precise encoding for the operand R3 of the
branch R3==R4 in BB7. On the other hand, the false condition of the affectee
branch R4>10 in BB6 is less precise and provides a range of possible values for
the second operand R4 of the branch.

Essentially, affectees provide an encoding for values consumed or produced in
the dataflow graph leading to the branch to be predicted. The affectee value en-
codings for the example in Fig. 1.a are shown in Fig. 1.c. Note that a branch can
be both affector and affectee of another branch depending on its dependences.
An example of such branch is R2==1 in BB4 in Fig. 1.a.

Combo: It is evident that the combination of affectors and affectees can be
more powerful than either correlation alone since affectees can help differentiate
between branches with the same data affector data flow graphs but different in-
put values. Similarly, affectors can help distinguish between same affectee graphs
that correspond to different affector graphs. The combined affector and affectee
data flow graph of our running example is shown in Fig. 1.d.

Section 4 investigates how the above types of correlations affect branch pre-
diction accuracy. We believe that existing predictor schemes are able to learn
data flow graphs, as those shown in Fig. 1, but they do this inefficiently using
more history bits than needed. Therefore, they may suffer from cold effects and
more table pressure/aliasing. Our analysis will establish how much room is there
to improve them.

2.2 Memory Dependences

For accurate detection of the direction-correlations data dependences need to
be tracked through memory. That way a branch that has a dependence to a
load instruction can detect correlation to other branches through the memory
dependence. Although, tracking dependences through memory may be important
for developing a better understanding for the potential and properties of affectors
and affectees correlations, it may be useful to know the extent that such precise
knowledge is necessary. Thus may be interesting to determine how well predictors
will work if direction-correlations detected through memory dependences are
approximated or completely ignored.

We consider two approximations of memory dependences. The one tracks the
dependence of address operands of a load instruction ignoring the dependence
for the data. And the other does not consider any dependences past a load
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instruction, i.e. limiting a branch to correlations emanating from the most recent
load instructions leading to the branch. These two approximations of memory
dependences need to track register dependences whereas the precise scheme re-
quires maintaining dependences between stores and load through memory. We
will refer to the precise scheme of tracking dependences as Memory, and to the
two approximations as Address, and NoMemory. In Section 4 we will compare
the prediction accuracy of the various schemes to determine the importance of
tracking accurately correlations through memory.

For the Memory scheme we found that is better to not include the address
dependences of a load when a data dependence to a store is found (analysis
not presented due to limited space). This is reasonable because the correlations
of the data encode directly the information affecting the branch whereas the
address correlations are indirect and possibly superfluous.

Recall that our algorithm for detecting direction-correlations does not con-
sider implementation constraints. It is based on analysis of the dynamic data
dependence graph of a program. The intention of this work is to establish if
there is potential from using more selective correlation.

2.3 How to Use Affectors and Affectees for Prediction

Based on the findings of this paper one can attempt to design a predictor
grounds-up that exploits the properties exhibited by affectors and affectees cor-
relations. That is also our ultimate goal and hopefully this paper will serve as a
stepping stone in that direction. This, however, may be a non-trivial effort and
before engaging in such a task may be useful to know its potential.

Therefore, in this paper we decided to determine the potential of affectors and
affectees using unmodified existing predictors. We simply feed these predictors
with the complete global history and with the history selected using affectors and
affectees and compare their prediction accuracy. If this analysis reveals that the
selective correlations have consistently and substantially better accuracy then
may be worthwhile to design a new predictor.

The only predictor design space option we have is how to represent the selected
bits in the global history register. In [8] they were confronted with a similar
problem and proposed the use of zeroing and packing. Zeroing means set a history
bit to zero if it is not selected while branches retain their original position in the
history register. Packing moves all the selected bits to the least significant part of
the history register while other bits are set to zero. Therefore, in packing selected
branches lose their original position but retain their order. Our experimental
data (not shown due to space constraints) revealed that packing had on average
the best accuracy and is the representation we used for the results reported
in Section 4.

Our methodology for finding the potential of affectors and affectees may be sub-
optimal because it uses an existing predictor without considering the properties
exhibited in the global history patterns after selection. Another possible limitation
of our study has to do with our definition of affectors and affectees. Alternative
definitions may lead to even more selective and accurate correlations. For instance
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by considering only affectees that trace dependences to load instructions. These
and other limitations to be found may lead to increased potential and thus the
findings of this study should be viewed as the potential under the assumptions
and constraints used in the paper.

3 Experimental Framework

To determine the potential of affectors and affectees to increase branch prediction
accuracy we used a functional simulation methodology using a simplescalar [10]
derived simulator. A subset of SPEC2000 and three SPEC95 benchmarks, listed
in Table 1, are used for our analysis. For the SPEC2000 benchmarks the early
regions, of 10-100 million instructions, identified by sim-point [11] are used,
whereas for SPEC95 complete runs of modified reference inputs are executed.
Some SPEC2000 benchmarks are not included because they required large mem-
ory and/or long simulation time to track dependences, affectors and affectees.
The selected SPEC95 benchmarks exhibit the higher misprediction rates with a
32KB L-Tage predictor among integer SPEC95 benchmarks.

Table 1. Benchmarks

SPECINT CPU2000 bzip200, crafty00, eon00, gap00, gcc00, gzip00,
mcf00, perlbmk00, twolf00, vortex00, vpr00

SPECFP CPU2000 ammp00, equake00, fma3d00, galgel00, mesa00
mgrid00 sixtrack00, wupwise00

SPECINT CPU95 gcc95, go95, ijpeg95

Two predictors are used in the experimentation: a 32KB L-TAGE [12] pre-
dictor with maximum history length of 400 bits, and the GTL [4] predictor with
400 maximum history length for the GEHL component and 100000 maximum
history length for the TAGE component.

For the experiments where selective correlation is used, the selection is applied
to the 400 bit global history of the L-TAGE predictor and to the 400 bit history
used to access the GEHL component of the GTL predictor. Selection was not
used for the TAGE component of GTL because the memory required to track
affectors and affectees for a 100000 global history were extremely large and
beyond the memory capacities of todays servers.

The detection of affectors and affectees is done on-line using the dynamic data
flow graph of a program. Unless stated otherwise, the default policy is to track
correlations through memory dependences.4

4 In the conference version of the paper [13] the term oracle was used to signify the
precise tracking of memory dependences assumed for obtaining some of the results.
The same assumption is used for this paper but the term is omitted to avoid confusion
with an oracle off-line analysis for detecting affectors and affectees.
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The algorithm used to determine affectors is the simple approximation pro-
posed in [8]. A dynamic branch is an affector, of a branch to be predicted, if
it is the last, in the dynamic program order, branch that executed before an
instruction in the dataflow graph of the branch to be predicted.

The algorithm that detects affectees tracks the sources for each unique state,
register or memory location, updated during a program’s execution. Sources are
the roots in the dynamic data dependence graph of each dynamic instruction.
Sources are either dynamic instances of instructions with no inputs, like a move
immediate, or locations with program data input, i.e. locations read but not
updated by a program instruction. Each unique source contains a bit vector
with n bits. Every time an instruction executes it computes the union of its input
operand sources to produce the set of sources to be written in its destination.
Every time a conditional branch executes all sources shift their bit vector by
one.5 Also, the sources of the branch set their least significant bit to indicate
that this branch can trace a dependence to this source. The above imply that
when bit i of a source is set then the ith most recent branch has a dependence
to this source. To determine the affectees of a branch we determine the union of
its operands sources and bitwise-or these sources bit vectors. All the positions
that are set in the resultant bit vector correspond to the global branch history
positions with a correlation.

4 Results

We present three sets of results, the first analyzes the properties of affectors and
affectees, the second discusses the accuracy of the GTL predictor, and the third
shows the accuracy of the L-TAGE predictor.

4.1 Characterization of Affectors and Affectees

Fig. 2 and 3 show the cumulative distribution of dynamic branches according
to the number of affector and affectee correlations they have. The number of
correlations can not exceed 400 since we consider only correlations from the
400 most recent branches. We decided to analyze the behavior for the 400 most
recent branches since the two predictors used in the study use a 400 entry global
branch history register.

The results reveal that branches usually have much fewer affectors than af-
fectees. For most benchmarks 80% of the branches have at most 30 affectors.
According to the definition of affectors, this means that the computation that
determines the outcome of a branch can be found in less than 30 out of the most
recent 400 basic blocks preceded by a conditional branch. The outlier is gcc00
where many branches have large number of affectors. The data about affectees
5 A key optimization is to not shift all sources every time a branch executes but only

the sources of the branch. The shift amount is determined based on the distance in
branches between the current branch instruction and the last branch that updated
the particular source.
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Fig. 2. Affectors distribution
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Fig. 4. Combined Affectors and Affectees distribution

correlations show clearly that for most programs 50% of the branches have 30
or more affectees. This means that a branch frequently checks information that
directly or indirectly has been tested by at least 30 other out of the 400 most
recent branches. The data also show few benchmarks, bzip00, galgel00, gcc00,
and mgrid00, to have 300 or more affectee correlations.

The above observations suggest that the dynamic dataflow graphs of branch
instructions are usually small and shallow (implied by the small number of af-
fectors), and branches often share part of their dynamic data flow graphs with
other branches (indicated by the large number of affectees).

The graph in Fig. 4 shows the distribution of the branches when we consider
both affectors and affectees correlations. Overall, the data show that there are
more correlations when we consider affectors and affectees in combination (com-
pare Fig. 4 against Fig. 2 and 3). Nonetheless, the results for ALL benchmarks
reveal that there are many branches that have much less than maximum number
correlations. Therefore, if: (a) affectors and affectees are the dominant types of
correlation that predictors need to learn, and (b) existing predictors are unable
to use only the relevant part of history, then these data suggest that there may
be room for improving prediction.

In Fig. 5 we attempt to give more insight by presenting the dominant patterns
of correlation when we consider the combination of affectors and affectees. The
figure shows for six benchmarks, twolf00, bzip00, ammp00, crafty00, perlbmk00
and equake00 what are the most frequent 1000 patterns of correlations. To help
the reader we present these top patterns sorted from top to bottom according to
the oldest position with a correlation (i.e. the most recent correlation position is
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Fig. 5. Most frequent correlation patterns for (a) twolf00, (b) bzip00, (c) ammp00, (d)
crafty00, (e) perlbmk00, and (f) equake00



80 Y. Sazeides et al.

Table 2. Representative Benchmarks for Correlation Patterns

Benchmark Representative of Benchmarks
twolf00 vpr00, gcc95 and go95
bzip00 gcc00, gzip00, mcf00 and ijpeg95
ammp00 galgel00, mgrid00 and sixtrack00
crafty00 mesa00
perlbmk00 eon00, fma3d00, gap00, vortex00 and wupwise00
equake00 -

to the right). The curve that cut-across each graph represents from top to bottom
the cumulative branch distribution of the patterns. This line is not reaching 100%
since we only display the top 1000 patterns. A given pattern has a gray and white
part representing the bit positions with and without correlations. To help the
reader we present patterns with 100 positions where each position corresponds to
4 bits (a position is set to one if any of its corresponding four bits is set). These
six graphs are representative of the remaining benchmarks we considered in this
paper as shown in Table 2. Benchmark equake00 has a unique behavior with
very few dominant correlations patterns. For the following discussion we define
the length of a correlation pattern to be the oldest position with a correlation.

One of the main observation from these data is that branch correlations are
not always consecutive, there are holes between correlated branches. These holes
can be of any size and a given correlation pattern can have one or more holes.
The hole behavior varies across benchmarks, for twolf00 and crafty00 like bench-
marks is dominant whereas for bzip00 like benchmarks they occur less frequently.
Within a benchmark there can be both sparse and dense patterns.

More specifically, the results indicate that virtually always correlation patterns
include at least few of the most recent branches (for each benchmark almost all
patterns have at the right end - most recent branches - few positions set). Also,
it is observed across almost all benchmarks that for a given correlation length
the pattern with all positions set is very frequent. However, for twolf00 like
benchmarks many patterns have correlations that occur at the beginning and at
the end of the pattern with all the branches in the middle being uncorrelated.
Benchmark crafty00 exhibits similar behavior with twolf00 except that some
correlations may exist in the middle. Another remark for bzip00, ammp00 and
equake00 like benchmarks, is that they have many branches with correlations
distributed over all 100 positions (bottom pattern in Fig. 5 for bzip00, ammp00
and equake00 accounts for over 40% of the patterns). Finally, perlbmk00 like
benchmarks are distinct because of few but often long correlation patterns.

Provided it is important to predict by learning precisely the above corre-
lations, the results suggest that there is a need for predictors that can learn
efficiently patterns with holes.

Another key observation from Fig. 5 is that correlation patterns occur usually
across all history lengths. These underlines the need for predictors to be capable
of predicting with variable history length. The distribution of patterns according
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Fig. 6. GTL accuracy with selective correlation

to length is similar to the distribution in Fig. 4. Assuming is important to learn
precisely the correlation patterns, the exponential like cumulative distributions
of correlation lengths, for most benchmarks, suggests that most prediction re-
sources should be devoted to capture correlations with short history length and
incrementally use less resources for longer correlations. This observation clearly
supports the use of geometric history length predictors [14].

The above observations may represent a call for predictors that can handle
both geometric history length and holes. As far as we know no such predictor
exists today. In the next section we attempt to establish the potential of such
a predictor using two existing geometric history length predictors that are ac-
cessed with selected history, with holes, using affectors and affectees correlations.
In the remaining paper we only present data for the benchmarks that exhibited
at least 0.25 misses per one thousand instructions. The other benchmarks dis-
played minimal sensitivity to the predictor used and for the sake of graph clarity
are omitted.

4.2 GTL Results

Fig. 6 shows the accuracy of the GTL predictor when accessed with full global
history, only with affectors correlations, only with affectees, and with the combi-
nation of affectors and affectees. The data show that the combination of affectors
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and affectees provides the best performance. It is always the same or better than
GTL and almost always better than each correlation separately. The exception
are gzip00 and vpr00 where the combination does slightly worse than using only
affectees and affectors respectively. This can happen when the one type of cor-
relation is sufficient to capture the program behavior and the use of additional
information is detrimental. The improvement provided by combining affectors
and affectees is substantial for several benchmarks. In particular, for crafty00,
gcc95, go95, ijpeg95, twolf00, and vpr00 it ranges from 15% to 30%. The data
clearly support the claim by [6] that direction-correlation is one of the basic types
of correlations in programs that predictors need to capture. For the remaining
paper we present results for experiments that combine affectors and affectees
since they provide the best overall accuracy.

Fig. 7 shows the normalized cumulative improvement in prediction accuracy
when using affectors and affectees over GTL as a function of the number of
correlations. This is shown only for the benchmarks that experienced the largest
accuracy improvement when using affectors and affectees. To illustrate how to
interpret the graph consider crafty00. The Combo configuration in Fig. 6 reduces
mispredictions of crafty by 20%. The data in Fig. 7 indicate that 90% of this
improvement is due to correlations patterns that include less than 75 affectors
and affectees. In general, the data in Fig. 7 reveal that most of the improvement
from selective correlation is due to better prediction accuracy for the branches
that have fewer than 100 branch correlations. This may indicate that the GTL
predictor may be slow to learn or using more table resources than necessary
for such branches. For all benchmarks there is little improvement for branches
with over 300 correlations. This may suggest that the more bits in a correlation
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pattern the closer the resemblance to the global history register and thus little
room for improvement from selective correlation.

Fig. 8 shows the prediction accuracy when we combine affectors and affectees
but with no correlations through memory. For each benchmark we present three
results, the GTL predictor with full history, the affectors and affectees with
no correlations past load instructions (NoMemory), and with correlations past
load instructions using their address dependences (Address). The data show
that there is very little improvement to gain when we do not consider correla-
tions through memory dependences. The data indicate that an approximation
of memory dependences using addresses dependences offers very little improve-
ment. This underlines that important correlations from the data predecessors of
load instructions are needed for improved accuracy.

The data show that selective correlation using the combination of affectors
and affectees can provide substantial improvement in prediction accuracy. The
results also show that correlations past memory instructions are important and
that address dependences provide a poor approximations of the data dependence
correlations. Overall, we believe the data suggest that may be worthwhile inves-
tigating the development of a predictor that is capable of learning correlations
from long history with holes. These conclusions are true for GTL an unreal-
istically large predictor that demonstrate that the improvements are not mere
accident but due to basic enhancements in the prediction process. However, we
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Fig. 9. L-TAGE accuracy with selective correlation

are interested to know if these observations hold for a realistic predictor. Next
we consider selective correlation for a 32KB L-TAGE predictor.

4.3 L-TAGE Results

Fig. 9 shows the prediction accuracy for a 32KB L-TAGE when accessed us-
ing the complete global history (L-TAGE) and with selective history using the
combination of affectors and affectees (Combo). The results show that selective
correlation with affectors and affectees can also improve the accuracy of the
L-TAGE predictor at a realistic size. The amount of improvement is significant
for several benchmarks. In particular, for gcc95, ijpeg95, and vpr00 is above
15% (for vpr 17%). We believe that these improvements call for the design of a
predictor that can exploit direction-correlations.

The amount of improvements for L-TAGE are smaller as compared to GTL.
However, one should recall that GTL is a completely different predictor not
simply a bigger L-TAGE predictor. We also performed analysis of the importance
of correlations through memory and the data suggest, similarly to GTL, that it
is necessary to include such correlations for better accuracy.

5 Related Work

Since Smith [15] proposed the first dynamic table based branch predictor, inno-
vation in the field of prediction has been sporadic but steady. Some of the key



Improving Branch Prediction by Considering Affectors 85

milestones are: correlation-based prediction [16] that exploits the global and or
local correlation between branches, hybrid prediction [7] that combines different
predictors to capture distinct branch behavior, variable history length [17] that
adjusts the amount of global history used depending on program behavior, the
use of perceptrons [9] to learn correlations from long history, geometric history
length prediction [14] that employs different history lengths that follow a geo-
metric series to index the various tables of a predictor, and partial tagging [18]
of predictor table entries to better manage their allocation and deallocation. The
above innovations have one main theme in common: the correlation information
used to predict a branch is becoming increasingly more selective. This facilitates
both faster predictor training time and less destructive aliasing. Our paper ex-
tends this line of work and shows that there is room for further improvement if
we could select correlations with holes out of long history.

The importance for selective correlation is first established in the work by
Evers et al. [6]. In that paper it is shown that a predictor that selectively cor-
relates on few bits from the global history register can outperform a predictor
that correlates on the entire global history register. The paper argues that the
improvement is due to a reduction in the number of correlation patterns that
need to learned which leads to faster training and less aliasing. However, the
findings in [6] are based on an off-line oracle analysis. Fern et al. [19] proposed
a possibly implementable on-line predictor based on the principles of dynamic
decision trees capable of learning and correlating on a subset of history bits.
An initial evaluation of this predictor revealed comparable performance to equal
sized Gap [16] and Pap [16] predictors.

A return-history-stack [20] is a method that can introduce holes in the branch
history. In broad terms, a return history stack pushes in a stack the branch
history register on a call and recovers it on a return, thus introducing holes in the
history. A return history stack is shown to be useful for a trace predictor [20] and
offers modest improvements for a direction branch predictor [21]. This suggests
that there are many cases where branches executed in a function are often no
significant to correlate on for the branches that execute after the function return.

In two recently organized branch prediction championships [1,2] researchers
established the state of the art in branch prediction. In 2006, the L-TAGE global
history predictor [12] was the winner for a 32KB budget. L-TAGE is a multi-table
predictor with partial tagging and geometric history lengths that also includes
a loop predictor. In the 2006 championship limit contest the GTL predictor [4]
provided the best accuracy. GTL combines GEHL [14] and L-TAGE predictors
using a meta-predictor. The GEHL global history predictor [14] employs multiple
components indexed with geometric history length. Our paper uses the L-TAGE
and GTL predictors to examine our ideas to ensure that observations made are
not accidental but based on basic principles. The use of longer history is central
to these two predictors and the analysis in this paper confirmed the need and
usefulness for learning geometrically longer history correlations.

Several previous paper explored the idea of improving prediction by encoding
the data flow graphs leading to instructions to be predicted. They use information
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from instructions in the data flow graph [22,23,24,25,26], such as opcodes, imme-
diate values, and register names, to train a predictor. Effectively these papers are
implementing variations of predictors that correlate on affector branches. In [26],
they consider using the live in values of the dataflow graphs when they become
available and in [23] they examined the possibility of predicting such values. The
inclusion of actual or predicted live-in values is analogous to the correlation on
affectee branches of such values, since the predicted or actual outcome of affectee
branches represents an encoding of the live-in values.

Mahlke and Natarajan [27] performed profiling analysis to determine simple
correlation functions between register values and branch outcomes. Instructions
are inserted in the code by the compiler to dynamically compute the branch di-
rection according to the derived functions. In our view, this work also attempts
to implement a variation of affectees correlation since the functions supply anal-
ogous information to what can be provided by affectee branches.

6 Conclusions and Future Work

In this paper we investigate the potential of selective correlation using affectors
and affectees branches to improve branch prediction. Experimental analysis of
affectors and affectees revealed that many branches have few correlations and
often the correlations have holes between them. Prediction using selective corre-
lation, based on affectors and affectees, is shown to have significant potential to
improve accuracy for a both a limit and a realistic predictor. The analysis also
shows that correlations past memory instruction are needed for best accuracy.
Overall, our study suggests that may be worthwhile to consider the design of
a realistic predictor that can exploit the properties exhibited by affectors and
affectees correlation patterns by learning correlations with and without holes
from long history.

A possible venue for future work is to train the tables of TAGE like predictors,
that contain multiple prediction tables, with branch history with holes. The
challenge is to decide what are going to be the holes in the branch history
since different benchmarks have different hole patterns. To design efficiently such
scheme it may be useful to first investigate and determine what is the relation
between dynamic program properties and holes.

One other direction of work is to focus on difficult to predict branches and
investigate their correlation patterns with increasingly longer history. Such an
analysis will reveal the importance of selective correlation to distant correlations.

Another possible direction of future work, is to investigate which affectors
and affectees are more important. A decision-tree based approach [5,19] can be
used to establish such classification. Such an analysis can be useful for better
understanding and hopefully further reduce the correlations required for best
prediction.

Finally, the approach proposed in this paper can be applied to static branch
prediction, and to other types of predictors, such as value and dependence
predictors.
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It is our pleasure to welcome you to this special section of Transactions on High-
Performance Embedded Architectures and Compilers (HiPEAC), presenting selected 
papers from the 2007 edition of Medea Workshop. This workshop, held in conjunc-
tion with the PACT conference since 2000, has moved its topics of interest from  
decoupled architectures to memory hierarchy arguments, with emphasis on embedded 
and application-specific CMP systems.  

In these years, due to the growth of wire delay and power consumption issues, the 
focus of research in high performance systems has shifted towards CMP architectures. 
As a consequence, also memory hierarchy research need to cope with open issues 
related to CMP systems design: homogeneous vs heterogeneous architectures, exploi-
tation of parallelism to improve performance and hide memory latency, acting at 
hardware and/or software levels, techniques to reduce power consumption and coher-
ence-related traffic. Furthermore, the memory wall problem must be reconsidered in 
the new scenario, adapting old solutions or developing new ones. The papers in this 
section demonstrate some of the hot topics in CMP systems design, with authors com-
ing from both industry and academia. We hope that you find these papers interesting 
in their insights, and informative in the details provided. 

The first paper in this issue, “Exploring the Architecture of a Stream Register-
Based Snoop Filter” by Blumrich et al., aims at reducing the negative effects of  
coherence-related traffic on performance and power in homogeneous CMP systems. 
This is achieved by proposing a combination of snoop filters and a small number of 
ad-hoc stream registers. The authors evaluate different filtering approaches, analyzing 
the effects of their parameters, and figure-out the most suitable filter combination. 
The proposed scheme demonstrates to eliminate 94%-99% of the unnecessary snoop 
requests (addresses that are not in cache) in case of Splash-2 benchmarks.  

Clustered architectures represent one of the solutions to face out wire delay limits 
in conventional super-scalar architectures. To improve ILP, big reorder buffers are 
requested, but such big structures increase power consumption and are detrimental for 
performance due to wire delay. In “CROB: Implementing a Large Instruction Win-
dow though Compression”, Latorre et al. propose a novel reorder buffer architecture, 
CROB (compressed ROB), that compresses ROB entries giving the illusion of having 
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a larger ROB, without paying the associated implementation costs. Results show an 
average speed-up of 20% for a 128-entry ROB. 

CMP cores usually adopt large last level caches to hide memory latency. Such 
caches may be private or shared among cores, but both solutions may be not adequate 
due to the different “memory pressures” exercised by the different cores. Besides, 
large caches can waste energy when execution phases of the running applications do 
not have a big working-set to accommodate. Mechanisms for dynamic management 
of cache allocation to cores and dynamic activation of cache portions can help solving 
both problems. The paper “Power-Aware Dynamic Cache Partitioning for CMPs” by 
Kotera et al. propose a power-aware cache management algorithm which employs 
power-gating and cache partitioning. It can be tuned to favor maximum power reduc-
tion, sacrificing some performance, or to reduce power while maintaining the  
same performance output. Dynamic tracking of cache locality is used both for alloca-
tion of cache ways to cores and for power control with negligible hardware imple-
mentation overhead. The proposed mechanism reduces energy consumption by 20%, 
while maintaining the same performance level, and up to 54% sacrificing 13% of  
performance. 

Heterogeneous architectures are an interesting alternative to homogeneous CMP 
systems, but require significant programming effort to optimize the available compu-
tational power to the behavior of the application, and to hide memory latency. The 
paper “Parallelization Schemes for Memory Optimization on the Cell Processor: A 
Case Study on the Harris Corner Detector” by Saidani et al. evaluates various  
parallelization schemes driven by the application domain and by the underlying Cell 
architecture, in the case of Harris algorithm for detecting interesting points of an  
image. The authors highlight the impact of DMA transfers, SPE synchronizations and 
the effect of chaining techniques. The achieved performance are compared to conven-
tional cache-based CMP systems. 

Taken as a whole, the articles in this special issue illustrate some of the active top-
ics in the domain of memory hierarchy research for CMP systems. We hope you  
enjoy reading them, and that you learn something from each, as we did. Big thanks go 
to Per Stenström, the editor-in-chief of these transactions, and to the people who made 
this special issue possible: the peer-reviewers and Roberto Giorgi, co-organizer of 
Medea workshop with us and our friend and collaborator in many research activities. 

 



Exploring the Architecture of a Stream Register-Based
Snoop Filter

Matthias Blumrich, Valentina Salapura, and Alan Gara

IBM Thomas J. Watson Research Center
Yorktown Heights, NY, USA

Abstract. Multi-core processors have become mainstream; they provide paral-
lelism with relatively low complexity. As true on-chip symmetric multiprocessors
evolve, coherence traffic between cores is becoming problematic, both in terms
of performance and power. The negative effects of coherence (snoop) traffic can
be significantly mitigated through the use of snoop filtering. The idea is to shield
each cache with a device that can eliminate snoop requests for addresses that are
known not to be in the cache. This improves performance significantly for caches
that cannot perform normal load and snoop lookups simultaneously. In addition,
the reduction of snoop lookups yields power savings. This paper describes Stream
Register snoop filtering, which captures the spatial locality of multiple memory
reference streams in a small number of registers. We propose a snoop filter that
combines Stream Registers with ”snoop caching”, a mechanism that captures the
temporal locality of frequently-accessed addresses. Simulations of SPLASH-2
benchmarks on a 4-core multiprocessor illustrate tradeoffs and strengths of these
two techniques. We show that their combination is most effective, eliminating
94% - 99% of all snoop requests using only a small number of stream registers
and snoop cache lines.

1 Introduction

As single-core performance becomes increasingly hard to improve, and marginal costs
are growing, both in terms of complexity and power/performance inefficiency [1], the
use of multi-core solutions to improve throughput in multi-threaded workloads has be-
come increasingly attractive [2].

Unlike designs which target single-thread solutions with degrading power/perfor-
mance efficiency, suitably scalable parallel workloads show little or no degradation in
efficiency while delivering significant increases in performance through the use of mul-
tithreaded workloads. Using parallelism at the processor level also aligns with the limits
of future technologies. Although performance growth has been driven by technologi-
cally-enabled increases in processor operating frequency for the past 20 years, it is in-
creasingly hard to obtain with new technologies. One of the main reasons is the impact
of wire delays as feature sizes are shrunk [3], requiring increasingly more sophisticated
microarchitectures.

While faster transistors and wires are increasingly hard to obtain, the application of
Dennard’s CMOS scaling theory [4] is continuing to deliver improvements in density.
Thus, multi-core solutions are based on a commercially viable exploitation of modern
CMOS fabrication processes.
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Several multi-core solutions have been introduced over the past few years, such as
the IBM POWER4 and POWER5 servers, the IBM Blue Gene/P system [5], the Intel
Quad Core processors [6], and the Cell Broadband Architecture [7]. Indeed, multi-core
is now a well-established trend. A major challenge in the implementation of chip multi-
processors is providing a suitable memory subsystem and on-chip interconnect that
combines low average access latency with high bandwidth.

As the number of processors per chip rises, the coherence traffic per processor con-
sequently increases. One solution to reducing the cost of coherence is to manage it
in software; a solution adopted by both the Blue Gene/L [8] and Cell system archi-
tectures. In Blue Gene/L, software managed coherence is achieved by using one of
two software abstraction models: virtual node mode, wherein each processor is a sep-
arate node in the Blue Gene/L-optimized MPI implementation, or coprocessor mode,
where one processor is a dedicated computational node and a second processor provides
I/O and system management functions. In the Cell Broadband Architecture, coherent
DMA and the SPU-local store provide the necessary memory abstractions for building
high-performance systems. Although software-managed coherence offers an attractive
solution to achieving low-complexity memory architectures, it requires advanced
compilation technologies and careful application tuning. While this is acceptable for
high-end application-specific systems, providing low-complexity, coherent memory is
an attractive solution for a wider range of systems.

To reduce the complexity of implementing coherence in chip multiprocessors, two
component costs must be addressed:

– The bottleneck of a bus-based snoop implementation, which must be arbitrated
between a high number of nodes.

– The cost of providing snoop ports to each processor’s cache, or the cost of main-
taining a central directory.

In this paper we have investigated the use of coherence request filtering (or snoop filter-
ing) in a point-to-point coherence network to address these costs. The basic idea is to
provide a mechanism which will significantly reduce the interference of coherence re-
quests with processor operations without incurring costs of chip area, memory latency,
or complexity inherent in existing hardware coherency support.

The contributions of this work include (1) a novel, highly efficient, point-to-point
snoop filter architecture filtering in excess of 98% of all snoop requests, (2) significant
reduction of area over a solution that duplicates cache directories to provide separate
snoop directories, (3) an architecture to exploit the cache replacement policy to peri-
odically re-train the snoop filters, increasing filtering effectiveness from an average of
30% to an average of 90% for the workloads studied, and (4) evaluation of the proposed
architecture, including variations of several key parameters.

This paper is organized as follows. We begin with related work in Section 2. Then
Section 3 describes the snoop filter architecture, and Section 4 gives a detailed descrip-
tion of stream registers. The simulation environment and methodology are presented in
Section 5, followed by experimental results and analysis in Section 6. Finally, Section 7
concludes.
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2 Related Work

In prior art, JETTY [9] is a snoop filter that combines two complementary filtering
methods. The JETTY paper defines a characterization of filters as “include” or “ex-
clude”. An include filter tracks what is contained in a cache (or caches) while an
exclude filter tracks what is not. The exclude filter consists of a cache of recently inval-
idated lines. A snoop that hits in the exclude filter is guaranteed not to be in the cache,
so it can be filtered. The JETTY include filter captures a superset of a cache’s contents.
A snoop that hits in the include filter may be in the cache and should not be filtered.
The include filter is like a simple bloom filter with direct-map hash functions applied to
sub-fields of the address.

The JETTY paper makes an argument for snoop filtering as a means for power sav-
ings. However, our work was primarily motivated by the need to filter useless snoops
that reduce performance. We also considered chip area and power consumption as sig-
nificant constraints, causing us to look beyond the simple and accurate method of du-
plicating the cache tags as a filter. Because our simulation methodology and system
organization differ considerably from the JETTY study, it is difficult to compare per-
formance results. However, we simulated many of the same applications using the same
problem sizes.

Several coherent network switches contain snoop filters that block unnecessary co-
herence requests from ever leaving a node. One such example is the Scalability Port
Switch of the Intel E8870 chipset [10]. In this case, the snoop filter tracks the state
of all cache lines within a 4-processor node for a system with up to four such nodes.
Kant [11] modeled a similar system architecture with such a snoop filter. This archi-
tecture is also described in the Azusa system [12], which is based on Intel Itanium
processors and may use an Intel chipset.

In [13], a HyperTransport network switch for use with AMD Opteron processors
is described. The snoop filtering technique is basically the same as that of the E8870,
including the fact that 4-processor nodes are supported.

A similar but more tightly-coupled architecture is evaluated in [14], where a sin-
gle memory controller switch connects multiple multi-processor nodes and contains
a snoop filter. The filter prevents unnecessary snoop requests between the nodes, and
several variants are studied.

Snoop filters in tightly-coupled multiprocessors, such as chip multiprocessors
(CMPs), can be located at each processor in order to squash unnecessary snoops without
changing the overall coherence scheme. Ekman et. al. [15] describe a CMP architecture
with Page Sharing Tables, which are exclude filters at the granularity of memory pages
rather than cache lines. This architecture is a bit more involved in that the Page Sharing
Tables coordinate to track page sharing rather than just presence.

The idea of preventing remote snoop requests from being broadcast can also be ap-
plied at the chip level as described in [16]. In this work, snoop filters keep track of
memory regions, which can be quite large, and block remote snoops for memory that is
known not to be shared.
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3 Snoop Filter Architecture

In symmetric multiprocessor (SMP) architectures, coherency snoop requests represent a
significant fraction of all cache accesses, but only a small fraction of snoop requests are
actually found in any of the remote caches [9,17]. This is particularly true of
supercomputing applications where data partitioning and data blocking have been per-
formed to increase locality of reference and optimize overall compute performance. As
a result, embedded cores with single-ported caches suffer significant performance loss
due to unnecessary snooping because their caches are unavailable during snooping.

While data reference locality may make a coherence implementation seem unneces-
sary, there is a fine line between being able to prove that there is no data sharing at all,
and the statistical observation that almost all data references are local. The former is a
program correctness statement, the latter is a performance statement. Thus, providing
an efficient snoop filtering implementation that can filter the vast majority of non-shared
data traffic without burdening the cache bandwidth of every processor in the system pro-
vides a significant performance improvement over traditional cache-coherent systems.
Snoop filtering and cache coherence also offer advantages over programs operating on
fully disjoint data sets without hardware coherence by simplifying application porting
and tuning – it no longer becomes necessary to eliminate all remote references under
all circumstances, but most remote references for most situations, leading to increased
programmer productivity by letting programmers focus on the common case.

This motivated us to introduce a simple hardware device that filters out incoming
snoop requests, reducing the number of actual snoop requests presented to the cache,
thus increasing performance and reducing power consumption. A snoop filter is asso-
ciated with each of the four processors and is located outside the L1 cache. To make a
snoop filter a viable implementation choice, it has to meet several requirements:

– Functional correctness – the filter cannot filter requests for data which are locally
cached.

– Effectiveness – the filter should filter out a large fraction of received snoop requests.
– Design efficiency – the filter should be small and power-efficient.

In theory, a perfect snoop filter can be created by duplicating the cache tag direc-
tory and using it to determine exactly which snoops should be forwarded to the cache.
However, this approach generally does not meet the design efficiency requirement be-
cause of practical limitations. In particular, the cache tag store is a highly optimized and
integrated component that cannot easily be extracted, and a custom-designed equiva-
lent with the same performance requires a large investment of time and expertise to
complete. Furthermore, this paper will show that a highly-effective filter can be imple-
mented in a fraction of the area needed for duplicate cache tags.

Ideally, a snoop filter will operate at the (typically lower) memory nest frequency to
reduce power dissipation and design complexity. Lower frequency and reduced latch
count reduces the number of state transitions and load on clock nets, which are the
major contributors to power dissipation. Operating the snoop filter at a lower frequency
simplifies the design, as transactions have to be less heavily pipelined, eliminating a
variety of bypass conditions which have to be validated and tested. It also simplifies
timing closure.
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In some sense, a snoop filter trades off power consumed by cache lookups with power
consumed by the filter. However, there is an additional overall energy reduction because
the processor performance benefit resulting from reduced snoop interference causes
applications to complete sooner. Therefore, energy, measured as power consumed in
time, is reduced.

In this work, we only consider a write-through L1 cache, where data integrity be-
tween the processors is maintained with a cache coherence protocol based on snoop
invalidates. Thus, every time a processor issues a store, snoop invalidate messages are
generated at all other processors, and no other coherence messages are required. This
approach could be extended to write-back coherence protocols, where both read and
write snoops generally require responses from remote caches. At each remote cache,
the snoop filter would quickly determine whether the snooped address was not present,
and if so, immediately send the response without the need to snoop the cache.

3.1 Point-to-Point Snoop Filter Interconnection

Previous work on snoop filters has only considered bus based systems. In such systems,
all cache controllers snoop a shared bus to determine whether they have a copy of ev-
ery requested data block. A simple and common-place coherence protocol that utilizes
snooping is “write-invalidate”.

In a write-invalidate protocol, each write causes all copies of the written line to be
invalidated in all other caches. If two or more processors attempt to write the same data
simultaneously, only one of them wins the race, causing the other processors’ copies to
be invalidated. The use of the shared bus enforces write serialization.

For every write bus transaction, all cache controllers have to check their cache ad-
dress tags (a.k.a. snoop) independently to see if they are caching the written line. With
the increasing number of processors on a bus, snooping activity increases as well. Un-
necessary coherency requests degrade performance of the system, especially impacting
the supercomputing applications where only a small fraction of snoop requests are ac-
tually found in any of the remote caches.

In [9], several proposals for reducing snoop requests using snoop filters are de-
scribed. While reducing the number of snoop requests presented to a cache up to about
70%, the performance of the systems are still limited because of the interconnect ar-
chitecture and lack of support for multi-porting. The architecture described is based on
a shared system bus, which establishes a common event ordering across the system.
While such global time ordering is desirable to simplify the filter architecture, it limits
the possible system configurations to those with a single, shared bus. Alas, such systems
are known to be limited in scalability due to contention for the single global resource.
In addition, global buses tend to be slow, due to the high load of multiple components
attached to them, and inefficient to place in CMPs.

Thus, in a highly-optimized, high-bandwidth system, it is desirable to provide alter-
nate interconnect architectures, such as star or point-to-point. These are advantageous,
as they only have a single sender and transmitter, thereby reducing the load, allowing the
use of high speed protocols, and simplifying floor planning in CMPs. Using point-to-
point interconnects also allows several transmissions to be in-progress simultaneously,
thereby increasing the data transfer parallelism and overall data throughput.
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Another limitation of the bus-based architecture is the inability to perform snoop
filtering on several requests simultaneously, because simultaneous snoop requests from
several processors have to be serialized by the bus. Allowing the processing of several
snoop requests concurrently provides a significant increase in the number of requests
that can be handled at any one time, and thus increases overall system performance.
However, this increased data throughput means that snoop filters for such interconnects
must be designed to accommodate multiple requests simultaneously.

In this paper, we opt for a system incorporating snoop filters to increase overall per-
formance and power efficiency without limiting the system design options to a common
bus. We have designed a snoop filter architecture supporting systems using point-to-
point connections that allows each processor’s snoop filter to filter requests from multi-
ple memory writers concurrently. Our high-performance snoop filter is implemented
in a pipelined fashion to enable high system clock speeds. Figure 1 illustrates our
approach.

Write
Bcast

Processor 0

Snoop
Unit

Processor 1 Processor 2 Processor 3

Write
Bcast

Snoop
Unit

Write
Bcast

Snoop
Unit

Write
Bcast

Snoop
Unit

L1 snoop L1 snoop L1 snoop L1 snoop

Fig. 1. Chip multiprocessor using snoop filters and a point-to-point interconnection architecture.
All writes are broadcast by each processor to all remote caches for invalidation.

To take advantage of the point-to-point architecture and allow for concurrent filter-
ing of multiple snoop requests, we implement a separate snoop filter block, or “port
filter”, for each interconnect port. Thus, coherency requests of all ports are processed
concurrently, and a small fraction of all requests are forwarded to the processor. For
example, each snoop filter in Figure 1 would have three separate port filters, each of
which handles requests from one remote processor.

As the number of processors in a CMP scales up, the interconnect naturally transi-
tions from point-to-point to a network-on-chip (NoC). At those scales, coherence pro-
tocols are likely to be based on directories, where filtering effectively takes place at
the source. Therefore, our system architecture is most obviously applicable to CMPs of
modest scale [18].

It should be noted that the snoop filters are basically transparent with respect to
the behavior of the point-to-point interconnect. This interconnect poses particular de-
sign challenges, such as ordering between snoop invalidates, that exist regardless of the
presence of snoop filters. In this study, we assumed a consistency protocol that is not
sensitive to the order of invalidations coming from different processors. When neces-
sary, a global synchronization would be used to enforce completion of all snoops.
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3.2 Snoop Filter Variants

Early on, we decided to include multiple filter units which implement various filtering
algorithms in each port filter block. The motivation for this decision was to capture
various characteristics of the memory references because some filtering units best cap-
ture time locality of memory references, whereas others capture reference streams. We
will show in this paper that the combination of filtering algorithms achieves the highest
snoop filtering rate, reducing the number of snoop requests up to 99%.

We have explored a number of snoop filter variants, but have selected the combina-
tion of a stream register based filter and a snoop cache. The snoop cache is essentially
a Vector-Exclusive-JETTY [9]. It filters snoops using an algorithm which is based on
the temporal locality property of snoop requests, meaning that if a single snoop request
for a particular location was made, it is probable that another request to the same loca-
tion will be made soon. This filter unit records a subset of memory blocks that are not
cached.

The stream registers use an orthogonal filtering technique, exploiting the regularity
of memory accesses. They record a superset of blocks that are cached. Results of both
filter units are considered in a combined filtering decision. If either one of the filtering
units decides that a snoop request should be discarded, then it is discarded.

The snoop cache filter unit keeps a record of memory references which are guaran-
teed not to be in the cache. These blocks have been snooped recently (thus invalidated
in the cache) and are still not cached (i.e. they were not loaded into the cache since
invalidation). The snoop cache filter unit contains a small array of address tags. An en-
try is created for each snoop request. A subsequent request for the same block will hit
in the snoop cache, and be filtered. If the block is loaded in the processor cache, the
corresponding entry is removed from the snoop cache, and any new coherency request
to the same block will miss in the snoop cache and be forwarded to the processor cache.
There is one dedicated snoop cache filter unit for each remote memory writer (proces-
sor, DMA, etc.) to allow for concurrent filtering of multiple coherency requests, thus
increasing system performance.

A single snoop cache contains M snoop cache lines, each consisting of an address
tag field, and a valid line vector. The address tag field is typically not the same as the
address tag of the L1 data cache, but is reduced by the number of bits used for encoding
a valid line vector. The valid line vector is a bit-vector that records the presence of
individual, consecutive lines within an aligned block. Thus, N least significant bits
from the address are decoded to a valid line vector with 2N bits, where each bit of the
vector effectively utilizes the remainder of the stored address, significantly increasing
the snoop cache capacity efficiently. In the extreme case when N is zero, the whole
entry in the snoop cache represents only one L1 data cache line, and the valid line
vector has only one bit, corresponding to a “valid” bit.

4 Stream Registers

The stream register filter unit was introduced in [19]. Unlike the snoop cache that keeps
track of what is not in the cache, the stream register filter keeps track of what is in the
cache (i.e. it is an include filter). More precisely, the stream registers keep track of at
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Fig. 2. Architecture of a snoop filter using stream registers. There are three port filters in order to
handle snoop requests from all remote processors simultaneously.

least the lines that are in the cache, but may assume that some lines are cached which are
not actually there. However, forwarding some unnecessary snoop requests to the cache
does not affect correctness. The stream registers capture address streams, so they are
advantageous for applications where too many spatially-distributed references overflow
the snoop cache filter units.

The stream register filter unit consists of two sets of stream registers and masks
(active and history sets), port filter logic, cache wrap detection logic, and stream register
update logic, as illustrated in Figure 2. The stream registers and masks keep track of data
which were recently loaded into the cache of the processor. One active stream register
is updated every time the cache loads a new line, which is presented to the Stream
Register Update Logic with appropriate control signals. A particular register is chosen
for update based upon the current stream register state and the address of the new line
being loaded into the cache.

Every remote snoop (snoop requests 0-2) is checked against the stream registers to
see if it might be in the cache or not. This check can be performed in parallel because
stream register lookups never change the state of the registers. Therefore, our archi-
tecture includes a port filter for each remote processor (or other snoop source such as
DMA). Figure 2 shows three Port Filters. Snoop requests coming from one of the re-
mote processors are checked in one of the Port Filters. Each arriving snoop requests
address is compared with the state of the stream registers to determine if the snoop re-
quest could possibly be in the cache. In parallel, it is checked against a snoop cache, one
of which exists in each Port Filter. If either the stream register or snoop cache lookup
determine that the address is not in the L1 cache, then it is filtered out. Otherwise the
request is forwarded to the Arbitration and Multiplexing interface and on to the cache.
The Arbitrate and Multiplex logic shares the snoop interface of the cache between the
Port Filters and queues unfiltered snoop requests, allowing for the maximum snoop
request rate.
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A stream register actually consists of a pair of registers (the base and the mask) and
a valid bit. The base register keeps track of address bits that are common to all of the
cache lines represented by the stream register, while the corresponding mask register
keeps track of which bits these are. For example, if considering an address space of 232

bytes with a cache line size of 32 bytes, a cache line load address is 27 bits in length,
and the base and mask registers of the stream registers are also 27 bits in length.

Initially, the valid bit is set to zero, indicating that the stream register is not in use,
and the contents of the base and mask registers are irrelevant. When the first cache line
load address is added to this stream register, the valid bit is set to one, the base register
is set to the line address, and all the bits of the mask register are set to one, indicating
that all of the bits in the base register are significant. That is, an address that matches
the address stored in the base register exactly is considered to be in the cache, while an
address differing in any bit or bits is not.

At some point, another cache line load address will be added to this stream register.
The new address is compared to the base register AND-ed with the mask register to
determine which significant bits are different, and the mask register is then updated so
that the differing bit positions become zeros in the mask. These zeros indicate that the
corresponding bits of the base register are “don’t-care”, or can be assumed to take any
value (zero or one). Therefore, these bits are no longer significant during comparisons
to the stream register.

As an example, suppose the first two cache line load addresses are 0x1708fb1 and
0x1708fb2 (hexadecimal values). Then the contents of the stream register after these
loads is:

Step 0: Base = 0x1708fb1, Mask = 0x7ffffff
Step 1: Base = 0x1708fb2, Mask = 0x7fffffc

As the second address and the base register differed in the two least significant bits,
those bits are cleared in the mask register. At this point, the stream register indicates
that the addresses 0x1708fb0, 0x1708fb1, 0x1708fb2, and 0x1708fb3 can
all be in the cache because it can no longer distinguish the two least significant bits.

Every cache line load address is added to exactly one of the multiple stream registers.
Therefore, the collection of stream registers represents the complete cache state. The
decision of which active register to update is made by the register update logic. In order
to capture streams, we want addresses separated by the same stride to be added to the
same stream register. We say that such addresses have an affinity for one another. We
considered two policies for determining affinity and selecting which stream register to
update:

– choose the stream register with minimal Hamming distance from the line load ad-
dress (i.e. the stream register which will result in the minimum number of mask
register bits changing to zero).

– choose the stream register where the most upper bits of the base register match
those of the line load address.

Either mechanism guarantees that all addresses presented to the stream registers will be
included within them.
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Another issue is when to choose a new register instead of one that already contains
a stream. We do this by assigning an “empty affinity” to unused registers and then
including them in the update selection process. So when using the Hamming distance
policy, for example, an empty register is chosen if the empty affinity is less than the
affinity calculated for all used registers.

Over time, as cache line load addresses are added to the stream registers, they become
less and less accurate in terms of their knowledge of what is actually in the cache. Every
mask bit that becomes zero increases the number of cache lines that the corresponding
stream register specifies as being in the cache, reducing the effectiveness of the stream
register filtering. In the limit, the mask register becomes all zeros and every possible
address is included in the register and considered to be in the cache.

Loss of accuracy is a disadvantage common to every snoop filtering technique that
uses much less storage than the cache tag array. Snoop registers are specifically in-
tended to remain accurate for strided streams, but they will not fare well with random
addresses. To overcome the progressive loss of accuracy, the stream register snoop fil-
ter includes a mechanism for resetting the registers back to their initial condition. As
there is no efficient way to remove an address from the stream registers and guarantee
correctness, the filter clears the registers whenever the cache has been completely re-
placed, and they begin accumulating addresses anew. We call this complete replacement
(relative to some initial state) a “cache wrap”. The cache wrap detection logic monitors
cache updates and determines when all of the cache lines present in the initial state have
been overwritten. To do this, information must be provided by the L1 cache, either in
the form of individual replacement notifications, or as a single event indicating that a
wrap has occurred.

At that point, all of the stream registers are copied to a second “history” set of reg-
isters and masks and the “active” stream registers are all cleared to begin accumulating
cache line load addresses anew. In addition, the state of the cache at the time of the
wrap becomes the new initial state for the purpose of detecting the next cache wrap.
The stream registers in the history set are never updated. However, they are treated the
same as the active set by the Port Filters when deciding whether a snoop address could
be in the cache. Their purpose is to make up for the fact that individual cache sets wrap
at different times, but never survive two cache wraps.

The stream registers exploit periodic cache wrapping in order to refresh, and they
rely upon knowing when the wraps occur. The second requirement is not difficult to
implement, but does require a modified cache that either indicates all replacements, or
tracks them from some point in time and indicates when all lines have been replaced.

Periodic cache wrapping is not guaranteed, but occurs frequently in practice. Caches
with a round-robin replacement policy, such as those of the IBM PowerPC cores used
in the Blue Gene/L and Blue Gene/P supercomputers, wrap relatively frequently. Spe-
cific wrapping behavior is a function of replacement policy and workload behavior. In
either case, it is statistically possible that wrapping occurs infrequently, or never (i.e.
a particular cache set is seldom or never used), but this pathological situation is not a
threat to correctness. If this is a serious concern, then the stream register architecture
could be extended to include a full cache invalidation and stream register reset when no
wrap occurs for a long period of time.
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5 Experimental Methodology

The experiments in this paper represent our top-down approach of validating the stream
register ideas and showing that stream registers are effective for a broad range of appli-
cations. Our methodology trades detail for the ability to process huge traces of several
applications. We feel that this is the best approach because the order of memory ac-
cesses is the critical factor in determining snoop filter effectiveness. That is, the order
of a snoop request for some address relative to a snoop filter acquiring that address
is what determines whether the filter rejects the address or not. Other papers (such as
JETTY [9]) relate filter effectiveness to performance gain and power reduction. For ex-
ample, the JETTY paper estimates that L2 cache snooping alone accounts for 33% of
the total power of a typical 4-way SMP.

For our experiments, we used several applications from the publicly-available
SPLASH-2 [20] benchmark suite. These are well known benchmarks containing shared-
memory applications that have driven much research on memory system architectures
and cache-coherence protocols. We have chosen to use these publicly-available codes
because they are good representatives for a wide range of scientific applications, which
is where we expect to see the most significant impact of CMPs. We have run the ker-
nels (LU, FFT, Cholesky, and Radix), and some of the applications (Barnes, Ocean,
Raytrace, and Fmm).

For each of the benchmarks chosen, we have simulated a full, four-processor appli-
cation run and collected the entire L1 data cache miss sequence to determine coherence
snoop requests. Table 1 shows the benchmarks used, the total number of accesses to
memory, and the average percentage of misses in the L1 caches. Whereas the hit rate in
the local cache of a processor is high, the percentage of hits in the caches of all other
processors (we refer to such processors as “remote”) is very low.

Table 1 shows that across all benchmarks virtually all coherency snoop requests will
miss in the remote caches, this representing the total coherency snoop filter opportunity.
Such small hit rates are due to the relatively small (32KB) first-level caches and high-
light the importance of snoop filtering for CMP cache coherence, particularly when
maintained between L1 caches. Although few snoops hit, the ones that do are essen-
tial and the ones that do not should be filtered. We also list the total number of snoop
requests generated by all four processors collectively (i.e. the total number of writes).

We used a custom simulator written with Augmint [21] to collect the memory ac-
cess traces. Augmint is a public-domain, execution-driven, multiprocessor simulation
environment for Intel x86 architectures, running UNIX or Windows. Augmint does not
include a memory backend, thus requiring users to develop one from scratch. We mod-
eled the L1 data caches of four PowerPC 440 processors [22] and an ideal memory
system below that (since we were only concerned with the order of accesses and their
effect on snoop filtering rates). Then we collected a trace of all memory references,
including the source processor and address.

We developed a custom back-end simulator to process the traces and produce the
results in this paper. Because we wanted to measure the relative effectiveness of snoop
filters over very long traces, we were not concerned with cycle accuracy. We were only
concerned with the order of accesses and their effect upon the snoop filters and caches.
Therefore, the trace entries are processed in order, and they have an instant, atomic



104 M. Blumrich, V. Salapura, and A. Gara

Table 1. SPLASH-2 benchmark characteristics. The low remote cache hit rate shows that almost
all invalidation snoops are useless and can be eliminated.

Benchmark Input Accesses Local cache Remote cache Total coherency
parameters to memory hit rate hit rate accesses

Barnes 16K particles 1,602,120,476 99.73% 0.00047% 1,968,916,971
FFT 256K points 58,481,113 97.12% 0.0000057% 52,627,671
LU 512 matrix 202,643,933 99.24% 0.0000088% 204,434,958
Ocean 258 x 258 ocean 310,234,016 93.36% 0.03% 143,647,839
Cholesky tk15.O 678,266,460 99.43% 0.00043% 614,572,560
FMM 16K particles 2,084,764,684 99.76% 0.00016% 2,976,937,884
Radix 10M keys 2,716,061,135 99.48% 0.00068% 3,491,931,132
Raytrace car 404,977,091 98.43% 0.018% 358,731,051

effect upon the simulated caches and snoop filters. This simplification allowed us to
compare many different alternative architectures, while exposing the significant trends.
As a result, however, we could not measure execution times.

The back-end simulator models the private L1 data caches and snoop filters of four
processors. We model the cache of the PowerPC 440 embedded processor, which is the
building block for the Blue Gene/L supercomputer [8]. Each cache is 32KB in size and
has a line size of 32 bytes. The caches are organized as 16 sets, each of which has 64
ways and utilizes a round-robin replacement policy.

While such high associativity may seem extreme, it is important to note that asso-
ciativity is a characteristic that improves cache accuracy at the potential cost of cycle
time. Overall, the gain in accuracy from high associativity can compensate for ever-
increasing memory latencies, especially in a CMP where the overall performance is not
as closely coupled to the cycle time as it is in a uniprocessor. Round-robin replacement
is a viable, perhaps necessary, choice for a highly-associative cache because of its im-
plementation simplicity (compared to LRU). Because we were only concerned with the
order of accesses and their effect on snoop filtering rates, we did not model the memory
system below the L1 caches.

The back-end simulator responds to loads and stores as follows:

– LOAD: Update the local cache. Then update the stream registers (insert the load
address) and the snoop caches (delete the load address) of the local snoop filter.

– STORE: Update the local cache. Then update the three remote snoop filters, which
includes a lookup to see if the snoop resulting from the store should be filtered,
and a snoop cache update if it is not. Finally, propagate snoop invalidations to all
remote caches for which the snoop request was not filtered.

6 Experiments and Simulation Results

We are interested in exploring the snoop filter design space to find the best compromise
that yields a good filtering rate. We studied the impact of several design parameters. For
stream registers, we considered their number, the replacement policy, and the empty
affinity. For the snoop cache, we considered the number of entries and the size of the
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valid line vector. The goal is to eliminate as many unnecessary coherence requests as
possible, thus improving performance and reducing power dissipation. We also analyze
the impact of using both snoop filter units together to exploit their combined strength,
and explore several configurations to identify the optimal design point.

6.1 Stream Register Size

In order to determine the optimal number of stream registers, we have varied their num-
ber exponentially from 4 to 32, as shown in Figure 3. Not surprisingly, our experiments
show that more stream registers filter a higher percentage of coherence snoop requests.
But even when using only eight stream registers, we filter more than 90% of all snoop
requests for three benchmark applications.

We observed that the effect of increasing the number of stream registers is not linear
with respect to the snoop filter rate. Choosing only four stream registers is clearly a bad
policy. For the SPLASH-2 benchmarks, selecting 8 or 16 stream registers seems to be
the best compromise, whereas 32 stream registers (which doubles the area compared to
16 stream registers) only increases the snoop filter rate significantly for one benchmark.
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Fig. 3. Stream register filter behavior. Percentage of snoops filtered as the number of stream reg-
isters is increased.

6.2 Stream Register Update Policy

As previously described, every cache line load address is added to exactly one stream
register. The register selected for update depends on the stream register update policy
and the empty affinity value. We have evaluated two different selection policies:

– minimal Hamming distance, and
– most matching upper bits (MMUB).

For the minimal Hamming distance selection policy, we calculate the Hamming dis-
tance between each new load address and all stored values in the stream registers com-
bined with their paired masks so that only relevant bits (i.e. bits that are 1 in the mask)
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(c) Cholesky benchmark
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(d) FMM benchmark
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(e) Radix benchmark
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(f) Raytrace benchmark

Fig. 4. Percentage of snoops filtered as the empty affinity and number of stream registers is varied
using the MMUB update policy

are considered. The affinity is the number of mask register bits that will be changed to 0,
and the stream register with the minimum affinity is selected for update. In the MMUB
update policy, we choose the stream register where the largest number of relevant upper
bits match those of the line load address.

In our evaluation of stream register update policies, we have also varied the empty
affinity value. As discussed in Section 4, empty affinity is the default threshold value
assigned to an empty register. Figures 4(a) to 4(f) show the effect of varying the empty
affinity for various stream register sizes using the MMUB update policy. If the empty
affinity is set too low, empty stream registers are used to establish new streams even
for memory accesses belonging to the same stream. As a result, the filter rate of the
stream registers will be very low because few streams are captured. Similarly, setting
the empty affinity value too high causes streams to share registers and obliterate each
others mask bits, resulting in a low filter rate. When the empty affinity is increased
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to more than 13, it starts to play a role in the filter rate, depending on the number of
stream registers. For filters having a higher number of stream registers, a higher affinity
value is advantageous because it allows for more sensitive stream determination. For
configurations with a smaller number of stream registers, a lower affinity allows for the
most effective stream discrimination. Overall, the optimal empty affinity value is about
19 for eight stream registers, and about 23 for 32 stream registers.
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Fig. 5. Percentage of snoops filtered as the empty affinity and number of stream registers is varied
using the minimum Hamming distance update policy

Figure 5 shows the effect of varying the empty affinity for various stream register
sizes using the minimum Hamming distance update policy. Similar to the MMUB up-
date policy, setting the empty affinity too low or too high causes the filter rate of the
stream registers to be low. The optimal empty affinity number is between 19 and 25,
depending on the number of stream registers in the filter and the application’s memory
access pattern.



108 M. Blumrich, V. Salapura, and A. Gara

Across all applications, the sensitivity of the filter rate to the empty affinity value
seem to be less for the MMUB update policy when compared with the minimum Ham-
ming distance policy. In addition, for some applications - like Raytrace and FMM - the
MMUB update policy significantly outperforms the Hamming distance policy. While
MMUB achieves almost 100% filtering for these applications, the Hamming distance
policy reaches less than 40%, even for the largest configurations.

The MMUB policy has the advantage of ignoring low-order address bits when es-
tablishing streams. The minimum Hamming distance policy results in well-correlated
addresses that differ in their low-order address bits being mapped to different stream
registers, thereby causing a kind of pollution which limits effectiveness.

0

20

40

60

80

100

120

10 30 50 70 90 110 130 150 170 190
Cache wraps

%
 f

ilt
er

ed

With Periodic Reset

Without Periodic Reset

Fig. 6. Effectiveness of stream registers when implementing cache wrap for the FFT benchmark

6.3 Stream Register Clearing

As described in Section 4, the stream registers need to be cleared periodically in order
to track changes in programs’ L1 cache contents. The need for this is illustrated in
Figure 6, which shows average, cumulative stream register effectiveness for a portion
of the FFT benchmark running on a 4-processor CMP. During the course of the run, the
caches wrapped 200 times.

Initially, the L1 working set is captured effectively by the stream registers and re-
setting provides no benefit. At around the 100th wrap, the working set changes, and
the stream registers with reset can track the change. The stream registers without re-
set, however, forward many unnecessary snoops, causing their effectiveness to plum-
met. Although the stream registers without reset only become less accurate over time,
the modest recovery in their effectiveness only indicates that the cache contents has
changed in their favor.

6.4 Snoop Cache Size

In order to determine the optimal sizing for a snoop cache-based filter, we have varied
two parameters: the number of lines, ranging from 4 to 64, and the number of bits
used in the valid line vector, ranging from 1 to 64 (encoding 0 to 6 consecutive lines
respectively). The results are illustrated in Figure 7 for several SPLASH-2 benchmarks.
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(b) FFT benchmark
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(c) Cholesky benchmark
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(d) FMM benchmark
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(e) Radix benchmark
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Fig. 7. Snoop cache filter behavior. Percentage of snoops filtered as the number of entries and the
number of lines per entry is varied.

Our experiments show that using filters with a greater number of snoop cache lines
and/or a longer valid line vector are more effective at filtering snoop requests. But even
for relatively small snoop caches having only 4 cache lines each, and with valid line
vectors of 32 bits, we reach the snoop cache filter limit across the benchmark applica-
tions. The filter limit varies for various applications from 82% for Ocean to 99% for
FMM.
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We observe that for each application, depending of its memory access pattern, the
shape of the cache size/valid vector line length surface differs. By increasing only the
number of cache lines or only the length of the valid line vector, the maximum filter-
ing possibility for a particular application can be reached. For example, Ocean (Fig-
ure 7(a)) reaches its maximum filtering rate of 83% for snoop cache filter units with
almost minimal sizing, having only 4 cache lines and as little as 2-bit-long valid line
vectors. Similarly, FMM (Figure 7(d)) reaches its filtering maximum of 99% with a
small configurations of only 8 cache lines and 8-bit long valid line vectors.

On the contrary, the FFT benchmark reaches maximum filtering only for bigger con-
figurations. As illustrated in Figure 7(b), at least 8 cache lines and 64-bit long valid line
vectors are needed to reach the maximum filtering rate of 93%. The memory access
pattern of FFT requires a higher number of cache lines because it has a high number of
streams, and a higher number of bits in the valid line vector because these streams are
longer.

The optimal snoop filter configuration achieves near maximum filtering across all
benchmarks, requiring a minimal number of latches for its implementation. This trans-
lates directly to a minimal number of aggregated bits. The dependency on the number
of bits required by each of the snoop cache sizes explored is illustrated in Figure 8.

We observe that the effect of increasing the number of cache lines and valid line
vector length is not linear with respect to the area requirements. Whereas the snoop
filtering rate varied symmetrically with the number of cache lines and the valid line
vector length, the area requirement increases significantly when increasing the number
of cache lines. Thus, snoop cache configurations with lower numbers of cache lines
and longer valid line vectors are better design points. For the SPLASH-2 benchmarks,
selecting 8 cache lines with 32- or 16-bit valid line vectors seems to be the best com-
promise.
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Fig. 8. Approximate number of latches required to implement a snoop filter unit with snoop
caches, depending on the number of entries and the lines per entry

6.5 The Most Effective Combination

We have discussed and analyzed two snoop filters separately. As both filters cover dif-
ferent memory access patterns, the most effective filtering is achieved when putting the
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(b) FFT benchmark
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(c) Cholesky benchmark
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Fig. 9. Combined filter behavior. Percentage of snoops filtered for several stream register and
snoop cache configurations as the empty affinity is varied in its most effective range.
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two filters together. We will show that using the combination of two filters, we can
achieve high filtering rates even though each filter unit is quite small.

In order to determine the optimal sizing for our snoop filter, we have varied three
parameters: the number of stream registers (4, 8, or 16), the number of snoop cache
lines (4 or 8), and the empty affinity (in the most effective range from 19 to 25). We keep
the snoop cache valid line vector at 32 bits in length. The results for several SPLASH-2
benchmarks are illustrated in Figures 9(a) to 9(f). Clearly, combining the two filtering
techniques results in a highly effective combination across all of the benchmarks we
studied.

Once again, we must consider the size of the combined filter in terms of latch count
in order to determine the optimal configuration. Figure 10 shows how latch count varies
with the number of stream registers and snoop cache lines for a valid line vector of 32
bits. The stream registers grow faster than the snoop caches, so the optimal configura-
tion prefers larger snoop caches over more stream registers. The knee in the latch count
and performance curves appears to be at 8 stream registers and 8 entries per snoop
cache. By way of comparison, the L1 cache tags of the PowerPC 440 processor require
more than an order of magnitude more latches.

7 Conclusion

With the emergence of commodity CMPs, we have entered the era of the SMP-on-
a-chip. These high-performance systems will generate an enormous amount of shared
memory traffic, so it will be important to eliminate as much of the useless inter-processor
snooping as possible. In addition, power dissipation has become a major factor in chip
density, so mechanisms to eliminate useless coherence actions will be important.

In this paper, we have described and evaluated a snoop filtering architecture
that is appropriate for high-performance CMPs. Our architecture uses multiple,
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complementary filtering techniques and parallelizes the filters so that they can handle
snoop requests from all remote processors simultaneously.

We have described stream register snoop filtering, which uses a small number of
registers to capture strided access streams. We explored the stream register and snoop
cache design spaces using the SPLASH-2 benchmarks together with a custom trace
generator and simulator.

Finally, we developed a highly-effective snoop filter that combines stream registers
with snoop caches, and experimentally evaluated this design. We show that the com-
bined filter can be very small in size, yet effective over all of the benchmarks we studied.
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Abstract. Current processors require a large number of  in-flight instructions in 
order to look for further parallelism and hide the increasing gap between mem-
ory latency and processor cycle time. These in-flight instructions are typically 
stored in centralized structures called reorder buffer (ROB), which is a center-
piece to handle precise exceptions and recover a safe state in the event of a 
branch misprediction. However, this structure is becoming so big that it is diffi-
cult to fit it in the power budget of future processors designs. In this paper we 
propose a novel ROB microarchitecture named CROB (Compressed ROB) that 
can compress ROB entries and therefore give the illusion of having a larger vir-
tual ROB than the number of ROB entries. The performance study of CROB 
shows a tremendous benefit, with an average speedup of 20% and 12% for a 
128-entry and 256-entry ROB respectively. For some benchmark categories 
such as SpecFP2000, speedup raise up to 30%. 

1   Introduction 

Modern out-of-order processors typically employ a reorder buffer (ROB) to retire 
instructions in program order [1]. In-order retirement enables precise bookkeeping of 
the architectural state, while making out-of-order execution transparent to the user. 
However, retiring instructions in program order increases the demand of some proces-
sor resources such as physical registers or the ROB entries themselves. The size of the 
ROB increases with every new processor generation. The reason is the continuously 
increasing difference between processor and memory speeds. Long-latency operations 
delay the instruction retirement and therefore the number of required in-flight instruc-
tions is augmented in order to keep the functional units busy. Besides, larger ROBs 
increase performance by exposing more instruction level parallelism. 

Figure 1 shows the performance improvements obtained by increasing the ROB 
from 128 entries up to 1024 entries in a clustered microarchitecture. These numbers 
have been obtained by assuming an unbounded issue queue and physical register file 
to see the potential benefits of enlarging the ROB. As it can be seen, allowing just 128 
in-flight instructions is an important limiting factor for performance. Nevertheless, it 
is not straightforward for the designers to implement larger ROBs because of power, 
area and cycle time constraints. As an example of the ROB size for a current proces-
sor, the Intel®Pentium® 4 supports up to 126 in-flight instructions [2].  
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There are a number of proposals to overcome the limitation that the ROB imposes 
over the number of in-flight instructions [3][4][5].These techniques periodically 
checkpoint the processor state in order to support precise exceptions allowing ROB 
entries to be released out of program order, or even getting rid of the ROB. The au-
thors have demonstrated great potential by using these checkpoint mechanisms as an 
alternative to the conventional ROBs. However, whenever either a misprediction or 
an exception arises a previous checkpoint must be restored and the instructions be-
tween the checkpoint and the offending instruction must be re-executed.  This task 
and the periodic checkpoints that must be done increase the processor activity as well 
as the power dissipation of the processor.  

In this paper we present a different approach to designing a reorder buffer that  
enables the processor to have many more instructions in-flight than the number of 
reorder buffer entries. This is achieved by introducing a level of indirection similar to 
the way that virtual memory pages are mapped to physical memory pages in modern 
operating systems. We propose that the Physical Reorder Buffer (PROB) of the proc-
essor (the traditional ROB) be divided into equally sized physical segments that are 
dynamically mapped to logical segments by a mapping table called the Logical Reor-
der Buffer (LROB). A physical segment is released (and allowed to be re-mapped) 
when all instructions kept in that segment are guaranteed to either atomically commit 
or atomically be squashed. Overall, the objective is to achieve high performance with 
a small reorder buffer with minimal extra activity. We refer to this novel design as 
Compressed Reorder Buffer (CROB). 
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Fig. 1. Impact of the ROB size in a 2-clustered processor configuration with unbounded issue 
queue, unbounded registers and unbounded memory order buffer 

2   Related Work 

Some hardware resources such as issue queues, physical registers, memory order 
buffer and reorder buffer are cumbersome to enlarge [10].  On the other hand, it has 
been demonstrated that the processor performance is very dependent on the size of 
these components. Hence, many researchers have proposed alternative designs to 
better utilize these components. For instance, some previous work [6][7][8][9][10] 
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propose splitting the back-end engine into multiple processing units called clusters. 
Moreover, decreasing the power consumption and the complexity of the issue queue 
[12][13][16][11][15][14][24] and the register file [17][18][20][19] has been widely 
addressed in the literature. 

In [3], the authors propose a novel architecture named Cherry where ROB entries 
and physical registers are recycled as soon as the instructions are considered safe (all 
previous branches have been computed and all the previous loads have been issued), 
instead of waiting until the instruction commits. The main important difference be-
tween the proposal of this paper and Cherry, is that CROB does not require extra 
checkpointing. Another advantage of CROB is that ROB entries can be released ear-
lier because it is not constrained by memory replay traps or branch mispredictions as 
opposed to Cherry. By contrast, the early register release scheme detailed in [3] is 
likely to be more effective than the one implemented on top of CROB. The proposals 
in [4] and [5] also rely on checkpointing. 

Checkpointing has important overheads as described in [24] so that the number of 
instructions between checkpoints has to be quite large to reduce the cost of creating 
them. However, in the event of a branch misprediction, exception or memory replay, 
the instructions between the latest checkpoint and the offending instruction must  
be re-executed, which incurs in extra power dissipation. CROB does not require  
re-executions at all. 

In summary, we propose a scheme that increases the number of in-flight instruc-
tions and does not require re-execution of instructions nor checkpointing. On the other 
hand, CROB could take advantage of some orthogonal techniques proposed in [3][4] 
such as the management of the memory order buffer or the early register release as 
well as the instruction group formation in [23]. These enhancements however are not 
considered in this paper. 

3   Description of the Architecture 

The evaluation of the CROB has been done on top of a state-of-the-art clustered proc-
essor. Nevertheless, the CROB can be used in any architecture as long as it has a ROB 
that does not store speculative register results. We believe clustered architectures are a 
good design for future processors because it allows building wide machines while 
controlling complexity. But, in order to keep wide machines busy we need to have a lot 
of instructions in flight, which means that bigger reorder buffers are required.  

The baseline architecture is similar to the one proposed in [6]. A block diagram is 
shown in Figure 1. It consists of a monolithic front-end in charge of fetching, decod-
ing and renaming instructions and a clustered back-end. This front-end fetches x86 
macro-instructions and translates them into micro-operations that are stored in the 
trace cache. The main components in the front-end are the trace cache (TC) where 
micro-operations are stored, the instruction TLB (not shown in the figure), the branch 
predictor (BP), and the Macro Instruction Translation Engine (MITE) that translates 
macro-instructions into micro-operations before storing them into the TC. It also 
implements the instruction decoding, steering and renaming logic. The MROM is in 
charge of decoding complex macro-operations like string moves. A detailed descrip-
tion of these components can be found in [2].  
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Decoded instructions are steered to one of the two clusters for execution following 
the dependence- and workload-based algorithm described in [6]. Inter-cluster com-
munication is performed via copy instructions that are generated on-demand by the 
rename logic. Every cluster includes an issue queue and three register files (integer, 
floating point and SSE). Once an instruction leaves the issue queue, it reads its source 
operands either from the register files or the bypass logic and executes in one of the 
functional units of the cluster. Finally, a shared memory order buffer and memory 
hierarchy is used to process store and load operations. 

 

Fig. 2. Baseline architecture 

4   ROB Implementation 

Conventional ROB implementations are managed like FIFO queues where the entries 
are allocated at renaming and released at commit. However, from the time where an 
instruction finishes execution until the time it either commits or is squashed, the cor-
responding ROB entry is not used at all. 

The proposed ROB is based on the observation that it is quite common to find se-
quences of consecutive instructions that have been executed but cannot be committed 
(because of an older instruction that has not finished yet). Figure 3 shows the larger 
pool of consecutive executed instructions found in the event of ROB full for the dif-
ferent categories. As it can be seen in Figure 3, almost 90% of the cycles that the 
ROB is full there are chunks of more than 8 consecutive completed instructions on 
average. Furthermore, scenarios where chunks of more than 16 or even 32 completed 
instructions are found represent 80% and 73% of the cycles respectively. Besides, the 
probability of finding chunks of consecutive completed instructions is very dependent 
on the application. For instance, whereas there are chunks of more than 32 executed 
instructions in 90% of the cycles for FP workloads, chunks of this size (or larger) are 
only found in 65% of the cycles for server applications.  

Consecutive executed instructions can be managed as an atomic block if all of 
them are free of exceptions because all the branches in between have been computed 
(and the prediction validated to be correct). Hence, all these instructions are either in 
the correct path and therefore they will eventually be committed or in a wrong path 
and will all be squashed. A key observation is that the information required to either 
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Fig. 3. Percentage of cycles that we can find at least one sequence of consecutive completed 
instructions larger than 1, 8, 16, 32, 64 and 128 (shown by the different bars) when a ROB with 
256 entries is full 

AX = LD(@AX)10

InstructionPdest

BX = CX+AX20
CX=CX+AX30
DX = DX-CX35

SI = LD(@AX)40
DI=CX+AX41

AX = LD(@AX)10 AX = LD(@AX)10

InstructionPdest

BX = CX+AX20 BX = CX+AX20
CX=CX+AX30 CX=CX+AX30
DX = DX-CX35 DX = DX-CX35

SI = LD(@AX)40 SI = LD(@AX)40
DI=CX+AX41 DI=CX+AX41

AX = BX-CX42

InstructionPdest

BX = LD(@AX)44
CX=CX+AX47
AX = BX-CX80

BX = LD(@AX)85
CX=CX+AX90

AX = BX-CX42 AX = BX-CX42

InstructionPdest

BX = LD(@AX)44 BX = LD(@AX)44
CX=CX+AX47 CX=CX+AX47
AX = BX-CX80 AX = BX-CX80

BX = LD(@AX)85 BX = LD(@AX)85
CX=CX+AX90 CX=CX+AX90

BX = BX-CX95

InstructionPdest

DX = LD(@BX)1
SI=SI+DI5

AX = BX-CX9
BX = LD(@AX)11

DX=CX+AX14

BX = BX-CX95 BX = BX-CX95

InstructionPdest

DX = LD(@BX)1 DX = LD(@BX)1
SI=SI+DI5 SI=SI+DI5

AX = BX-CX9 AX = BX-CX9
BX = LD(@AX)11 BX = LD(@AX)11

DX=CX+AX14 DX=CX+AX14

Sequence 1 Sequence 2 Sequence 3  

Fig. 4. Example of physical registers that can be early released using a CROB. Pdest field 
shows the physical register allocated by the instruction. Instruction field shows the instruction 
that uses the entry. 

commit or squash a whole chunk of instructions can be stored in a compressed man-
ner using a small number of bits outside the ROB. Hence, the entries where these 
instructions reside can be released. 

Besides, it is possible to take advantage of the atomicity of these sequences of exe-
cuted instructions to implement a simple early register release mechanism. Assume  
a logical register (rX) that is mapped to two physical registers by two different in-
structions (pA and pB, in this program order) inside a given sequence of executed 
instructions. In this case, the first physical register (pA) is guaranteed not to be needed 
by any other instruction and can be released without waiting until the second instruc-
tion commits. In other words, all physical mappings created and re-defined inside a 
sequence can be released once all the instructions are completed. Therefore, con-
versely to other previous work, this early register release is non speculative [22][5]. 
Figure 4 shows an example where some physical registers can be released earlier. 
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Assuming sequence 1 is older than sequence 2 and sequence 3, instructions from 
sequences 2 and 3 will not release any register until instructions from segment 1 have 
committed in a processor with a traditional ROB. However, if all the instructions in 
sequence 2 have finished and they are free of exceptions then registers shaded in the 
figure could be released because it is guaranteed that they won’t be used any more. 
The same applies to sequence 3. 

5   Compressed ROB (CROB) 

In this section we describe the main hardware components involved in the implemen-
tation of this technique as well as the way these structures behave in typical situa-
tions: instruction allocation, retirement, exceptions and branch mispredictions.  

5.1   Hardware Components 

The implementation of the compressed reorder buffer is described below and a block 
diagram is shown in Figure 5.  

Physical Reorder Buffer (PROB)  
This structure is an extension of a typical Reorder Buffer (ROB)–a FIFO structure 
implemented as a circular buffer with a head and a tail pointer. The PROB is divided 
into N equal segments (N > 1), each one having W entries. Moreover, the PROB has  
a head and tail pointer that point to the oldest and youngest instruction in-flight  
respectively. 

Conversely to what happen with other processor out-of-order designs like the proc-
essors based on the Alpha ISA, the x86 architectures like the Intel processors deal 
with complex CISC operations (macro-operations) that are difficult to manipulate by 
an out-of-order engine. Therefore, as commented in section 3, the front-end cracks 
these macro-operations into as many micro-operations as needed in order to keep the 
semantics of the original CISC operation. These micro-operations (aka uops) may 
comprise one destination operand and two sources as conventional RISC instruction 
set architectures. This translation of macro-operations into uops has significant impli-
cations in the design of common ROBs and therefore in the design of the PROB. As 
an example, PROB entries are allocated per uop so that a macro-operation may com-
prise multiple PROB entries. Moreover, since the processor must provide precise 
exceptions at the macro-operation level it is not possible to commit any ROB entry 
belonging to a macro-operation until all uops comprising the x86 instruction have 
executed and they are free of exceptions. Once all uops of the macro-operation have 
correctly completed execution the PROB entries of the macro-operation can be retired 
in order in as many cycles as needed. Since we cannot reclaim any PROB entry until 
the whole macro-operation has completed we could only execute macro-operations 
with a number of uops lower or equal than the number of PROB entries. However, the 
definition of the x86 instruction set architecture solves this problem by allowing very 
complex macro-operations like string moves that may imply hundreds of uops to be 
partially committed. Therefore, interruptions that occur while these macro-operations 
are executed could be served by using and architectural state as if the macro-operation 
would have been half executed. 
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Fig. 5. CROB structure: Logical Reorder Buffer, Physical Reorder Buffer and Segment Free 
List 

Every uop stores a PROB entry at the renaming stage including the following 
fields:  

• Physical source register names (PSRC1, PSRC2) are the identifiers of the 
physical registers where the two source operands reside. 

• Physical destination-register name (PDST) is the identifier of the physical 
register where the value produced by the uop (if any) will be stored. 

• Logical destination-register name (LDST). 
• Previous mapping of logical destination-register (LASTMAP) shows the 

physical register identifier where the previous instance of the same logical 
destination register in program order resides. 

• Exception and control information. This information involves among 
other control bits: a bitmask describing the exception that the instruction 
should fire at commit time if any; bits to identify the beginning and the 
end of the macro-operation in order to perform the commit as commented 
above; and the outcome of the branch predictor in case of branches. 

Logical Reorder Buffer (LROB)  
The LROB must have a number of entries greater than the number of PROB segments. 
The goal of this structure is to keep the order in which the PROB segments were  
allocated. Thus, a new LROB entry is allocated every time a new PROB segment is 
allocated or reused. Note that the number of entries in this structure defines the 
maximum number of instructions the processor can have in-flight. This maximum 
number of in-flight instructions is equal to the number of LROB entries multiplied by 
the PROB segment size.  

The LROB is a FIFO structure managed as a circular buffer. Apart from the LROB 
head and tail pointers (LROB_head and LROB_tail), the LROB manages the PROB 
head and tail pointers (PROB_head and PROB_tail), as will be described later. Each 
LROB entry requires the following fields:  

• Valid bit (V) is set when the entry is in use.  
• Compressed bit (C) indicates if the segment pointed by the LROB entry 

has been compressed. 
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• PROB segment identifier (SID) points to a PROB segment in the PROB. 
This field binds each LROB entry to a PROB segment.  

• Physical register free mask (PRFM). The PRFM is a list of physical regis-
ter identifiers and logical register identifiers. It indicates which registers 
should be de-allocated when the PROB segment pointed to by SID is 
committed. For those register identifiers that were not allocated by in-
structions in the segment the logical register they were mapping is also 
stored. This information is needed to rollback in the event of an exception 
as explained in the exception handling subsection. 

Segment Free List (SFL) 
The SFL indicates which PROB segments are currently unused. It is used every time 
the processor needs to allocate a new PROB segment and every time a PROB segment 
is released (de-allocated). It is implemented as a bit mask with as many bits as PROB 
segments (the i-th bit is set when the i-th PROB segment is available). 

5.2   Hardware Behavior 

The CROB is based on a segmented ROB structure as commented before where seg-
ments are allocated and released on demand. In this section we present the main  
actions that take place in the CROB during the execution of an application. It works 
very similar to a conventional ROB. 

Segment Allocation 
When new instructions are allocated1 new entries in the PROB are needed. If the cur-
rent PROB segment holding the youngest instructions (pointed by LROB_tail) has 
room for the new instructions, the allocation procedure involves simply incrementing 
the PROB_tail pointer. If the current PROB segment is full, a free PROB segment is 
obtained from the SFL. If there are no PROB segments available the allocation stalls; 
otherwise a LROB entry is allocated by increasing LROB_tail. The SID field of the 
new LROB entry points to the new PROB segment returned by SFL and the PRFM 
field is reset. The PROB segment is then removed from the SFL. When the PROB_tail 
reaches the end of a segment, the LROB is checked to find the next PROB segment in 
logical sequence and PROB_tail is updated to point to the first entry of that segment. 

Every time a new instruction is allocated, the physical register free mask (PRFM) 
of the associated LROB entry is updated with the new instruction’s LASTMAP PROB 
field. Moreover, if LASTMAP was not previously allocated by an instruction in the 
segment, the logical register is also written in the PRFM.  

Segment Release 
When a PROB segment is full and all the instructions of the PROB segment have 
finished execution without any exception the segment is released and the C bit is set 
to true. Segment release implies adding the PROB segment identifier to the SFL so 
that it becomes available for re-use. 

                                                           
1 We use the term instruction allocation to refer to the action of dispatching a decoded 

and renamed instruction to the ROB and the issue queue. 



 CROB: Implementing a Large Instruction Window through Compression 123 

 

Segment Retirement 
Instructions from the “head” PROB segment (pointed to by LROB_head) are commit-
ted in the conventional way if the segment has not been released: each instruction 
frees the register designated by LASTMAP and PROB_head is incremented. When 
PROB_head reaches the end of the current PROB segment the following actions take 
place: (a) the LROB_head is updated to point to the next PROB segment in logical 
sequence (i.e. the PROB segment holding the oldest instructions), and the LROB entry 
is freed, (b) the PROB_head is updated to point to the first entry of the new PROB 
segment “head”, and (c) the released PROB segment is added to the SFL. If the whole 
PROB segment can be committed, the following actions must be taken: (a) the PRFM 
is walked in order to de-allocate the physical registers released by the instructions in 
the segment, (b) the LROB_head is updated as above, (c) the PROB_head is updated 
as above, (d) the PROB segment is added to the SFL. 

Branch Misprediction Recovery 
During allocation of a conditional branch instruction, a copy of the PRFM entry of the 
current segment is saved along with a copy of the processor’s Free List. If the branch 
is mispredicted the Free List and the PRFM are copied back in order to restore the 
correct logical to physical register mappings. 

Exceptions handling 
Exceptions rarely occur so slow mechanisms can be implemented with no impact on 
performance. Hence, CROB relies on traversing the ROB to handle exceptions. ROB 
can be traversed either backwards (rollback) or forward (having an architectural RAT). 
We chose rollback because an architectural RAT would have to be updated by every 
committed instruction; on the other hand, rollback only requires updating the specula-
tive RAT at the event of an exception. When an exception occurs, rollback is per-
formed as in a conventional ROB for those segments that have not been compressed. 
For the rest of segments LROB is accessed. LROB stores the previous mappings of the 
logical registers overwritten in the segment (PRFM). Note that the compression algo-
rithm guarantees that exceptions never occur inside a compressed segment. Therefore, 
when a compressed segment is reached by the rollback mechanism, this segment is 
atomically traversed. Thus, LROB must only store the mappings that registers over-
written in the segment had before entering the segment. Thus, the number of entries in 
that structure is the minimum between the number of logical registers and the size of 
the PROB segments. In our case we need between 4 and 16 entries. 

ROB wrapping 
Traditional reorder buffers are implemented using a circular buffer structure. How-
ever, in the face of segment compression it is impossible to maintain correct segment 
order using the LROB structure if we allow each segment to be used as a circular 
buffer. The reason is that in such a case we could have two uncompressed logical 
segments mapped to the same physical segment. Therefore, in our proposed imple-
mentation a PROB segment cannot be used as a circular buffer. Assume entries in a 
PROB segment are numbered from 0 to W-1. Our design requires that PROB_head ≥ 
PROB_tail if they both point inside the same PROB segment. This means that in some  
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cases we may not be able to allocate instructions although there are free entries in the 
CROB. Assume the case where all N PROB segments are in use (with logical order of 
segments same as physical). If PROB_head is in the last entry (W-1) of last segment 
(N-1), it cannot wrap around to PROB segment 0, even if it has free entries in it (since 
PROB_tail points to this segment). Nevertheless, the number of entries unused by this 
reason is minimal. 

6   Early Register Release 

Early register release can be easily included into the segment release mechanism. It is 
an optional feature that enhances performance but it is not necessary for the correct 
operation of the Compressed Reorder Buffer. Note that our early register release pro-
posal only releases registers that are guaranteed not to be needed any more. Therefore, 
neither an extra recovery mechanism is required nor costly (in terms of power and 
complexity) extra speculation is incurred. We present two different alternatives to 
implement the early register release mechanism. 

Option A. Early Release via the PROB 

In this implementation the PROB has an extra one-bit field (EARLY) for each entry 
that indicates whether the physical register identified by LASTMAP should be released 
when the PROB segment is released (i.e., early) or should wait until the segment 
commits. Moreover, all renaming table entries are augmented with a single-bit field 
(WRITTEN) that indicates whether the current mapping has been established by an 
instruction in the current segment (the WRITTEN fields of all renaming table entries 
are set to zero whenever we allocate a new segment). When a new instruction re-
defines a logical register, the corresponding WRITTEN bit (before processing the 
instruction) is copied to the EARLY bit of the PROB entry of this instruction. At seg-
ment release time, the PROB segment is scanned and all entries with the EARLY bit 
set will update the processor’s Free List to release the corresponding registers. 

Option B. Early Release via the LROB 

This implementation uses the same structure of renaming table as the above scheme 
but the early release information is kept in the LROB instead. Each LROB entry is 
extended with an Early Release Mask (ERM) field (with as many entries as number of 
slots in the segment). The ERM works similarly to the PRFM, but specifying which 
physical registers are to be released early (at segment release as opposed to segment 
commit time). As above, an instruction gets the early release information from the 
renaming table. If the register can be released early (WRITTEN is set), then the corre-
sponding bit in ERM is set. If the register cannot be released early, then the corre-
sponding bit in PRFM is set. At segment release time (a) the ERM is walked and all 
indicated registers are released, and (b) the ERM is reset. At commit time the Free 
List is updated by walking the PRFM and the ERM. 



 CROB: Implementing a Large Instruction Window through Compression 125 

 

7   Experimental Results 

This section first describes our simulation methodology and then presents the evalua-
tion of the CROB and the early register release. Since CROB can be implemented 
with or without the early register release proposal we evaluate both separately. We 
present results for both an ideal configuration to show the potential and a realistic 
configuration. 

Table 1. Benchmarks 

7.1   Simulation Methodology 

The experiments have been conducted by using an in-house simulator that models the 
microarchitecture described in Section 3. The simulator is trace-driven but traces hold 
enough information to faithfully simulate wrong path execution. In a nutshell, the 
trace contains the state of the memory and the registers before the captured sequence 
of code started. It also includes a dictionary with the static instructions needed to 
execute the trace and the number of dynamic instructions retired before we found an 
interrupt (DMA, etc) in the captured trace. Then, the simulator uses the memory state 
to execute the instruction pointed by the IP pointer, executes it and updates the mem-
ory and register state accordingly.  Instructions in wrong path are executed as any 
other instruction but the register and memory state are eventually recovered. Finally, 
interrupts are triggered as soon as the number of retired instructions matches with the 
one specified in the trace file. Our pool of benchmarks comprises 72 traces classified 
in 9 main categories (8 traces per category) based on their characteristics as shown in 
Table 1. The processor baseline configuration is described in Table 2. 

7.2   Potential Benefit of CROB 

The size of a segment is a trade-off between performance improvement and hardware 
overhead. Enlarging the segment size reduces the CROB cost because the number of 

Category Description/Examples 

DH Digital Home algorithms 

FSPEC00 Floating Point benchmarks from SPEC2K 

ISPEC00 Integer benchmarks from SPEC2K 

Multimedia Mpeg, speech recognition 

Office Power Point, Excel 

Productivity Sysmarks2K 

Server TPC traces 

Workstation CAD, rendering 

Miscellanea Games and matrix algorithms 
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ROB slices is smaller. By contrast, implementing small ROB segments increases the 
chances of compressing a segment and therefore, achieves higher performance. 

In this section, the potential of compressing the ROB is first studied. The goal is to 
evaluate the impact of the ROB compression for different number of segments and 
ROB sizes. For this initial potential study, an unbounded register file, issue queue and 
memory order buffer are assumed, to isolate the effect of ROB compression. Figure 6 
shows the potential performance benefits in an architecture limited by the ROB size. 
Configurations with 128, 256, 512 and 1024 ROB entries are considered. No CROB  
 

Table 2. Baseline processor configuration 

Parameter Value Parameter Value 

Fetch width 6 Commit width 6 

Misprediction 

pipeline length 

14 ROB size 128-1024 

Indirect branch 

predictor entries 

4096 Gshare entries 32K 

ITLB entries 1024 ITLB assoc. 8 

Trace Cache size 32K micro-ops Issue rate per 

cluster 

4 + 2 for ld/st 

Issue queue size 

per cluster 

32 MOB 128 

Int. registers per 

cluster 

64-256 FP registers per 

cluster 

64-256 

SSE registers per 

cluster 

64-256 DTLB entries 1024 

DTLB assoc 8 L1 ports 1 read/ 1 write 

L1 assoc 2 L1 size 32KBytes 

L1 hit latency 1 cycle L2 assoc 8 

L2 size 4MB L2 hit latency 12 cycles 

Point to Point 

Links 

2 Point to Point 

latency 

1 cycle 

Data buses  

(between L1 and 

L2) 

2 Memory Latency 275 cycles 
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shows the speedup obtained by just enlarging a traditional ROB. CROB 4 entries, 8 
entries and 16 entries show the speedups of a CROB with segments of 4, 8 and 16 
entries respectively. All speedups are relative to a conventional ROB with 128 entries. 
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Fig. 6. CROB speedups for 4, 8 and 16 entries per segment and ROB size from 128 to 
1024.Note that the Y-scale differs among charts. 

All the workloads benefit from enlarging the ROB as it can be seen in Figure 6. 
However, two main groups of categories can be differentiated. The first group com-
prises DH, ISPEC00, multimedia, office, productivity and server. The performance 
curve for these groups flattens out at around 1024 ROB entries. There are two main 
reasons why these applications do not benefit from larger ROBs: on the one hand, 
some programs such as ISPEC contain a significant number of branch mispredictions; 
on the other hand, some benchmarks such as server are extremely memory bounded. 
These applications have many chains of dependent instructions that consume values 
from loads that miss in cache. CROB performance is always better than the traditional 
ROB for all the configurations and categories as shown in Figure 6. CROB with 4 
entries per segment typically performs about the same as a conventional ROB with 
twice its size. CROB improves performance by 20% on average for 128 ROB entries, 
12% for 256 entries and 9% for 512 entries. For FSPEC00, the average speedup is 
30% for 128 ROB entries, and 23% for 256 ROB entries. Nevertheless, implementing 
4-entry segments is challenging because it may require allocating instructions in more 
than one segment for those cycles where more than 4 instructions are renamed. For 
the remainder of this paper, we assume that instructions renamed and dispatched in a 
given cycle must be in the same segment; otherwise an additional cycle is needed. We 
have experimentally observed that the effect of this constraint on performance is neg-
ligible for 8-entry and 16-entry segments.  

It can be seen that the larger the segments the more difficult to find candidates to 
be compressed, and the lower the benefit. This is explained by several reasons. On the 
one hand, by enlarging the segments, their number is reduced, as well as the probabil-
ity of having a segment with all its instructions executed. Moreover, free entries of the 
oldest segment (the one pointed by LROB_head) cannot be reused until the whole 
segment is free. In spite of this, the benefits obtained by CROB with larger segment 
sizes are still very important. The average speedup for 8- and 16-entry segments is 
10% and 5% respectively for a ROB with 128 entries. The average speedup is 8.5% 
and 6.5% respectively for a 256-entry ROB. Categories such as miscellanea get very 
high speedups even with large segments. These benchmarks achieve 20% and 10% 
average speedup for 8 entries and 16 entries per segment respectively and a ROB of 
128 entries (18% and 14% respectively for 256 ROB size).  

Finally, it can be seen that the potential of the CROB is very limited for configura-
tions with ROB size greater than 1024 in all the categories but workstation because 
the ROB is not a bottleneck any more.  

7.3   Early Register Release 

Another advantage of the CROB implementation is that it enables techniques to per-
form non-speculative early register release, as described in Section 4. 

In this section the potential performance improvements of early register release 
based on CROB is evaluated. For this potential study, a processor with unbounded 
issue queue, memory order buffer and ROB is assumed to isolate the impact of this 
register release by using different segment sizes. Note that for the experiments of this 
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section, only registers are released early, as opposed to the whole ROB segment. 
Figure 7 shows the average performance for the different categories normalized to the 
performance obtained without early register release for a processor with 128 registers. 
 

speedup normalized to base with 128 registers (64 per cluster)
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Fig. 7. Potential study of early register release based on CROB 

No CROB stands for the baseline processor whereas CROB 8, 16 and 32 entries refer 
to the early register release with segments of 8, 16 and 32 entries respectively. Con-
figurations with 128, 256 and 512 registers are considered. 

We can observe in Figure 7 that the configurations with either 8 or 16 entries per 
segment have the highest potential. For 128 registers, early register release improves 
performance by around 5% for all categories but miscellanea, for which the average 
speedup is 20%. On average, the performance benefits are 5% for 128 registers, 4% 
for 256 and 2% for 512 registers. 

The moderate benefits of early register release are due to the fact that it needs large 
segments in order to increase the number of physical registers that can be early re-
leased. However, the larger the segment size, the lower the probability of finding a 
segment with all its instructions executed. Therefore, the segment size is a trade-off 
between the probability of finding a fully executed segment and the probability of 
finding registers eligible to be released inside the segment.  

Finally, the number of available physical registers is an important factor in the ef-
fectiveness of this technique. As it can be seen in Figure 7, the average performance 
improvement for 128 registers in Workstation with 16 entries is 5% whereas for 256 it 
grows up to 7%, and goes down to 1% for 512 registers. The reason is that limiting 
the number of physical registers limits the number of in-flight instructions which in 
turn reduces the number of segments full of executed instructions. On the other hand, 
when the number of physical registers is very large, the register file is not a limiting 
factor any more and the performance benefits are very small. Intermediate design 
points where registers are neither scarce nor abundant are the scenario where this 
technique performs the best. 
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7.4   Putting It All Together 

The previous section showed an analysis of the potential performance of CROB. The 
study assumed that physical registers, issue queues and memory order buffer were 
large enough to satisfy the applications requirements. In this section, we evaluate the 
behavior of CROB under a realistic processor configuration where memory order 
buffer, physical registers and issue queues are also constraining performance. We 
assume a clustered processor with the configuration shown in Table 2 with 256 regis-
ters (128 per cluster). 

Figure 8 shows the performance improvement for a realistic configuration with 
128, 256 and 512 ROB entries (both compressed and non-compressed). Each bar 
shows the speedup with respect to a baseline with a non-compressed ROB of 128 
entries. For each configuration, results are presented for the baseline, non-compressed 
ROB (no CROB) and for the proposed compressed ROB with different segments sizes 
(CROB.16, CROB.8 and CROB.4 stand for CROB with 16, 8 and 4 entries per seg-
ment respectively). 

We can first observe that increasing the ROB size from 256 to 512 entries results 
in very small performance improvement on average (2.5%). However, there are some 
applications whose performance is more sensitive to the ROB size, such FSPEC00. 
For these applications, increasing the ROB size from 256 to 512 entries provides a 
performance increase of 7%. 

When CROB is enabled, the performance of a 256-entry CROB with 8 entries per 
segment is the same as that of a 512-entry non-compressed ROB for all the categories 
(including FSPEC00). For 128-entry ROB, CROB clearly outperforms the conven-
tional one, providing a speedup of 15% and 10% with 4 entries and 8 entries per seg-
ment respectively. Besides, we can see average performance improvements of up to 
28% and 16% in categories with high ROB demand such as FSPEC00. Benefits are 
reduced to 5% improvement with 16 entries per segment, although for some bench-
marks such as workstation they are still significant (12% average speedup).  

We have also evaluated the benefits of the proposed early register release scheme 
when implemented on top of ROB compression. We found that the gain across all 
benchmarks was negligible for a 256 ROB size, and it achieved a 1.5% average 
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Fig. 8. Speedup of CROB with 16, 8 and 4 entries per segment 

improvement for FSPEC00 benchmark suite, where a very high register pressure is 
observed. The reason is that 256 registers are usually enough to allocate the destina-
tion registers of all in-flight instructions (up to 256). Note that the maximum number 
of registers required at any point in time would be given by the ROB size, plus the 
number of architectural registers, plus some extra registers due to replicated values 
in clusters.  

The number of LROB entries required to reach similar performance to an un-
bounded LROB has also been explored. For this evaluation we have chosen a configu-
ration with 128 ROB entries and another with 256 ROB entries. Both configurations 
have been evaluated assuming 16 segments (8 entries per segment for the configura-
tion of 128 and 16 entries per segment for the one with 256). 

Figure 9 shows the performance obtained when using 32, 48 and 64 LROB entries 
normalized to the performance when the LROB is unbounded. As it can be seen,  
ISPEC is the most affected category when the LROB size is limited. However, this 
category is only affected when the ROB has 128 entries. In general, 48 LROB entries 
are enough to obtain the maximum benefit from the CROB in both configurations. 
However, this LROB size may be lowered to 32 entries without getting important 
performance drops (less than 0.5% on average).  

Finally, the ROB structure represents a significant part of the area and power for 
microprocessors with large instructions windows. Parts of the ROB required multi-
ported random access – not FIFO (e.g. completion flag, exception flags, target address 
of branches, instruction IP, etc.). As an example of the benefits of the CROB compared 
to a conventional ROB, we compare in Table 3 the area, access latency and energy per 
access of a 512-entry ROB and a CROB with 256 entries in the PROB and 48 entries 
in the LROB. Both configurations have about the same performance and are especially 
useful for applications that require large ROBs like the FSPEC00 category. The esti-
mates have been computed using CACTI v3.0 [21] with some modifications to allow 
the modeling of such structures As it can be seen, CROB has a faster access time 
(which may not be useful if the ROB access is not in the critical path). However, an 
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area reduction of 27% constitutes a very significant decrease in the area devoted to the 
ROB. Furthermore, the energy per ROB access is decreased by 19%. 
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Fig. 9. Impact of the LROB size in the processor performance. Both ROB configurations (128 
and 256 ROB size) implement 16 segments. 

Table 3. CROB (PROB + LROB) vs banked conventional ROB 

Latency 30% faster 

Area 27% less area 

Energy per access 16% energy reduction 

8   Conclusions 

Enlarging the ROB enables the exploitation of further ILP by allowing a larger num-
ber of in-flight instructions. However, this structure does not scale with ease and, 
increasing its size may negatively affect the processor power dissipation, area and 
cycle time. In this paper, we propose a new ROB design named CROB where each 
ROB segment is released as soon as all the instructions stored in it behave as an 
atomic unit. The proposed scheme does not need any type of speculation nor replay 
mechanism. Conversely to other previous proposals, CROB does not increase the 
number of instructions to be re-executed in the event of either branch mispredictions 
or exceptions, and thus it does not incur in this extra energy cost. 

The potential study of CROB has shown an important speedup of 20% on average 
for a ROB of 128 entries and 12% for a ROB size of 256. For some benchmark cate-
gories such as FSPEC00, the speedup reaches up to 30% and 23% respectively. These 
statistics show what could be achieved by using smart techniques to implement very 
large register files, memory order buffers and issue queues, as can be found elsewhere 
in the literature. For a realistic configuration with a conventional register file, memory 
order buffer and issue queue, the benefits are somewhat lower but still very signifi-
cant (15% on average and 28% for FSPEC00). Finally, the early register release has 
shown an average potential speedup of 5% and up to 20% for miscellanea workloads.  
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Abstract. Cache partitioning and power-gating schemes are major re-
search topics to achieve a high-performance and low-power shared cache
for next generation chip multiprocessors(CMPs). We propose a power-
aware cache partitioning mechanism, which is a scheme to realize both
low power and high performance using power-gating and cache partition-
ing at the same time. The proposed cache mechanism is composed of a
way-allocation function and power control function; each function works
based on the cache locality assessment. The performance evaluation
results show that the proposed cache mechanism with a performance-
oriented parameter setting can reduce energy consumption by 20% while
keeping the performance, and the mechanism with an energy-oriented pa-
rameter setting can reduce 54% energy consumption with a performance
degradation of 13%. The hardware implementation results indicate that
the delay and area overheads to control the proposed mechanism are
negligible, and therefore hardly affect both the entire chip design and
performance.

1 Introduction

Recently, as CMOS technology advances, the number of available on-chip tran-
sistors for microprocessors has been exponentially increasing. So far, this has
been the driving force for improving performance of microprocessors. However,
it is difficult to keep the exponential performance improvement by technology
scaling, due to an increase in the power dissipation, the limitation of increasing
the clock frequency and the limitation of instruction-level parallelism[1]. A Chip
Multiprocessor(CMP) is a promising architecture to effectively utilize a large
amount of hardware budget on a chip and to enhance the performance by using
thread-level parallelism[2].

To realize high performance CMP, on-chip shared cache mechanisms play
the key role. However, a large shared cache faces two severe problems. One is
that resource sharing among cores degrades the CMP performance. The other
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problem is that its large area leads to high power dissipation. The performance
degradation problem is caused by conflicts on shared resources among cores.
Cores generally share an L2 cache in a CMP. Cores can virtually use a large size
cache by cache sharing, and threads in an application can share data via the
shared cache. However, such a shared cache causes performance degradation if
there are many cache access conflicts among cores. One solution to this problem
is to increase the cache size. However, this approach leads to an increase in power
consumption and an inefficient use of a large cache for most applications.

Suh et al. have first investigated the dynamic partitioning of a shared cache[3]
to solve the performance degradation problem. They described a marginal gain-
based cache partitioning algorithm and a low-overhead control scheme. Chandra
et al. have also studied the performance impact of L2 cache sharing by threads
on a CMP architecture, and proposed three models in order to accurately pre-
dict the performance using the stack distance and circular sequence profile of each
thread[4,5]. The utility-based cache partitioning[6] proposed by Qureshi et al.
achieves a high performance benefit with a low-overhead hardware configuration.
In addition, they described that their partitioning algorithm has a higher scala-
bility. However, these studies have not discussed the power consumption well.

On the other hand, the power dissipation due to driving a vast amount of
hardware on a chip is becoming a critical problem in high-performance micro-
processor design. Especially, static power consumption due to leakage current
will become more dominant in the total power dissipation, as the gate width
becomes smaller[7,8]. According to the International Technology Roadmap for
Semiconductors[9], leakage power is expected to dominate more than 80% of the
total power[10]. Therefore, computer architects have to consider static power
consumption to realize power-aware computing[11].

Several approaches to reductions in static power consumption of a cache have
been proposed. The mechanism of selective cache ways[12] provides functionality
to turn off power supply to cache ways for reducing dynamic energy and is
controlled by a performance metric given by users. The control is based on the
result of application profiling. Powell et al. have proposed the DRI i-cache[13,14],
which is an integrated architectural approach that turns off power supply to a
part of cache sets for reduction of cache leakage. In addition, they provided the
gated-Vdd transistor for circuit-level supply-voltage gating. However, the DRI
i-cache can be applied only to an L1 instruction cache, which is based on a
direct-mapped or low-associative cache with a small area. In order to reduce
static power consumption, we have to consider not only an L1 instruction cache
but also L1 data and a lower-level (L2, L3) caches, which occupy a larger fraction
of the chip area. Furthermore, the DRI i-cache employed a coarse-grain resizing
mechanism by changing the number of index bits. Therefore, it is difficult to
finely adapt its size to the program requirement. To reduce leakage current, the
cache decay mechanism[15] shuts off the power supply to invalidate cache lines
in a way. It causes the performance degradation, since sleeping lines do not hold
data. The drowsy cache[16] has been proposed to cover the drawback of the cache
decay. It keeps supplying minimum power necessary to hold data to each line in
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the sleep mode, even though it has a large overhead due to the high complexity of
its power-gating circuits. Those three approaches considered only the cache of a
single-core processor, and hence a novel mechanism with power-aware control as
well as effective partitioning for shared caches is highly desired for CMP design.

In this paper, we propose a power-aware cache partitioning mechanism for the
shared cache in order to solve the problems of the performance degradation and
the power dissipation in CMPs, focusing on the CMP architecture organized by
two cores and a high-associativity shared cache. The proposed cache mechanism,
which is an extension of the way-adaptable cache[17], has two functions: a way-
allocation function for cache partitioning and a power control function for power-
aware computing. The way-allocation function allocates ways of a set-associative
cache to each core based on their contributions to the effective performance;
each core can use the allocated ways as its private memory space as with the L1
cache. Ways are allocated to each core in proportion to the degree of locality.
As a result, the L2 cache is shared among cores without conflicts, and hence
the mechanism allows each core to exclusively use an appropriately-sized cache
area. The function also helps to find out less needed cache ways, which hardly
contribute to the performance. The power control function is applied to the
way-adaptable cache to conserve the power dissipation by disabling these less
needed ways. We evaluate the performance of the proposed mechanism in terms
of three metrics. First, we use the weighted speedup to assess the performance
improvement by the proposed way-allocation function. Then, the cache energy
consumption is evaluated to show the power saving capability of the proposed
power-aware cache partitioning mechanism. Finally, the hardware overhead to
implement the control unit of the proposed mechanism is evaluated.

The rest of this paper is organized as follows. We first discuss the locality as-
sessment in program execution in Section 2. In Section 3, we describe details on
our proposed cache-partitioning and power-aware cache mechanism under some
assumptions. In particular, we discuss our way-allocation and power control func-
tions. Section 4 shows the performance evaluation of the proposed mechanism.
Section 5 concludes the paper with some future work.

2 Locality Assessment

We discuss the locality assessment of memory reference for way-allocation and
power control functions of the L2 shared cache for CMPs. We first review the
stack distance profiling[4] that can assess the temporal locality of reference. Let
C1, C2, ..., CA, and C>A be A + 1 counters for an A-way set-associative cache
with the LRU replacement policy. Here, Ci counts the number of accesses to
the i-th line in the LRU stack. Therefore, the counters C1 and CA are used
to count the numbers of accessed MRU (Most Recently Used) and LRU lines,
respectively. C>A is used to count the number of cache misses.

Figure 1 shows examples of the stack distance profiling. The histogram of Ci

obtained by the stack distance profiling can be used to distinguish two kinds
of characteristic cache reference behaviors. In the case of a smaller working set
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Fig. 1. Stack Distance Profiling

size, the cache accesses tend to concentrate on C1 as shown in Figure 1(a). In
the case of a larger working set, a distribution of cache accesses becomes flatter
as shown in Figure 1(b). The locality can be represented by the ratio of an LRU
count to an MRU count, using the stack distance profiling.

We define the following metric D to approximately assess the locality of a
program[17].

D =
LRUcount

MRUcount
. (1)

Here, LRUcount and MRUcount mean the numbers of LRU and MRU lines
referenced in a certain period of cache accesses, respectively. Thus, if a program
executed on a core has low-locality, D of the program becomes large. On the
other hand, if it has high-locality, D becomes small.

3 Cache Control Mechanism

3.1 Assumptions

We propose a power-aware cache partitioning mechanism under the following
assumptions.

– Two cores sharing an L2 unified cache on a chip configure a building block
for CMPs. Each core has L1 private data/instruction caches.

– The L2 shared cache is a large, highly-associative on-chip cache, in which the
supply voltage to each way can be shut off independently for power control
using the power-gating circuits. Each core can access each way exclusively;
the cache includes a mechanism that permits a core to access a way. In
addition, we introduce an access monitoring unit to the L2 cache. This unit
can count the numbers of misses and accesses to MRU and LRU lines.
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– Our cache counts the number of accesses to LRU lines for data replacement
based on the true-LRU policy.

– Co-scheduled threads on different cores are spawned from different applica-
tions. Therefore, they do not share any memory space. So, each core executes
a different application in our evaluations. However, our cache can work as
a conventional shared cache to access the shred data on the cache among
co-scheduled threads spawned from the same application. Our mechanism
assumes that the operating system, which manages the thread scheduling, is
responsible for switching the partitioning mode and the conventional sharing
mode. Both context switch and thread migration between cores are also not
considered in this paper.

3.2 Mechanism Overview

We propose a power-aware cache partitioning mechanism under the above as-
sumptions. Figure 2 shows the basic concept of the proposed cache mechanism.
Each way is allocated to one of two cores. A virtual partition defined as the
boundary between two areas, each allocated to one core, dynamically moves
over the L2 cache during execution. Some ways are activated according to lo-
cality of memory reference in each area, and the other ways are inactivated for
power saving. Each core can access allocated and activated ways only.

Figure 3 shows a control flow graph for an L2 cache shared with two cores.
The first step is cache access sampling to obtain statistics used in calculation
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Fig. 2. Basic concept of way-allocation and power control (in the case of 2 cores with
an L2 shared 8-way cache)
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of D. This step is carried out at fixed intervals, e.g., every 100,000 L2 accesses.
Our mechanism has a way-allocation function and a power control function. The
former function decides which ways each core can use, and the latter decides
how many ways are inactivated for power saving. In the case where both of the
two cores have one or more inactivated ways, the way-allocation function is not
performed, because way-allocation in such a situation does not decrease conflicts
at all but causes a certain overhead.

The cache can randomly select a cache way to be reallocated or inactivated.
Before inactivation, the data on the selected way are written back to the main
memory for data coherency.

3.3 Way-Allocation Function

The way-allocation function allocates each way of a set-associative cache to a
core; each core can use the allocated ways as its private memory space like the
L1 cache.

We propose an allocation method that considers the cache reference locality
using D. Here, we assume that the number of ways required by a program is
proportional to the degree of the locality. After calculating Di from the number
of cache accesses of core i(i = 0, 1), the following inequality is used to determine
whether the number of ways allocated to core i should be increased or decreased.
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If Dj > Dk

{
Allocj + = 1
Allock − = 1.

(2)

Here, Alloci is the number of ways that are allocated to core i, and satisfies the
following conditions.

Allocall =
∑

Alloci, (3)

where Allocall denotes the cache associativity. If D0 = D1, way-allocation is not
performed.

3.4 Power Control Function

The power control function used in the proposed cache mechanism is based on
the way-adaptable cache control[17]. The number of activated ways increases
so as to keep Di between two thresholds to prevent unacceptable performance
degradation.

To avoid iterating activation and inactivation of a way, we have to both locally
and globally observe the behavior in memory accesses. For locally observing the
behavior, D defined by Equation (1) is again employed. On the other hand, for
globally observing its local behavior, we adopt an n-bit state machine.

Observation of Local Behavior. To quantify the absolute magnitude of local
demands for cache resources, D is compared with two thresholds, t1 and t2
(t1 < t2). If D, which is obtained in execution of a program on a core, is larger
than t2, the program can be considered to have low locality and hence to need
many ways. In this situation, our mechanism outputs a signal inc (up-sizing
request) to increase the number of activated ways. On the other hand, it gives a
signal dec (down-sizing request) to decrease the number of activated ways if D is
smaller than t1. If D is between t1 and t2, our mechanism outputs a signal keep
to keep the current configuration. Our mechanism tends to output dec if both
t1 and t2 are relatively large. On the contrary, it tends to output inc if both
t1 and t2 are relatively small. Thus smaller thresholds make our mechanism
performance-oriented, and larger ones make it energy-oriented. As a result, we
can adjust the control policy from a performance-oriented configuration to an
energy-oriented one.

Observation of Global Behavior. Comparison of D with the two thresholds
gives the cache resizing requests: inc, dec, or keep. Activation and inactivation
of a ways are basically controlled based on cache resizing demands obtained by
local behavior observation. However, in the case of highly-irregular and unstable
cache accesses, observation of only local behavior leads to iterations of activation
and inactivation in a short period. This causes an increase in cache control over-
heads and cache misses. Thus, the power control should be done conservatively
during highly-irregular and unstable situations. To this end, we incorporate an
n-bit state machine into the power control function, in order to reflect a global
behavior in the cache access, resulting in stable power control. The state machine
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judges that the requests are strong if the same resizing demands continue for a
certain period. Only if the request is considered strong, the mechanism resizes
the activated area. In addition, we have to be conservative about decreasing the
cache size, because it may cause severe performance degradation. Therefore, we
use an asymmetric n-bit state machine.

Figure 4 shows a state transition diagram of an asymmetric 3-bit state ma-
chine. When inc is given to the state machine, it outputs the cache up-sizing
control signal INC and then always transits to State 000 from any state. How-
ever, in the case of dec given, the machine works conservatively to generate the
down-sizing signal DEC. Before moving into State 111 for generating the DEC
signal, the machine transits to intermediate states form 001 to 110 to judge the
continuity of the down-sizing requests. During these states, it outputs KEEP to
keep the current cache configuration. After continuing dec requests, the machine
outputs the DEC signal for down-sizing and then transits to State 111.

This state machine can prevent responding to temporary disturbances, and
further make inactivation conservative to minimize the performance degradation
induced by shortage of activated ways. Because the asymmetric machine realizes
the cache resizing control so as to react quickly to up-sizing requests and slowly
to down-sizing requests, it can minimize performance degradation.

4 Performance Evaluation

4.1 Methodology

We developed a cycle accurate simulator based on the M5 microprocessor archi-
tectural simulator tools[18] and the CACTI version 4.2 cache access time, cycle
time, area, leakage, and dynamic power models[19] for the architectural function
simulation. For the experiments, we examine a CMP of two Alpha-based cores
with an L2 shared cache. The parameters used in the simulation are listed in
Table 1. We simulate the first 500 million instructions using the reference input
set. The sampling span of the proposed cache is 100,000 L2 cache accesses.

We use 15 workloads that consist of combinations of six benchmarks. Ta-
ble 2 shows the benchmarks selected from the SPEC CPU2006 suite[20] for
performance evaluation. Each core runs one independent benchmark program.
In order to evaluate our proposal fairly, we select various benchmarks based on
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Table 1. Simulation parameters

Parameter Value
fetch width 8 insts
decode width 8 insts
issue width 8 insts
commit width 8 insts
Inst. queue 64 insts
LSQ size 32 entries
L1 Icache 32kB, 2-way, 32B-line, 1 cycle latency
L1 Dcache 32kB, 2-way, 32B-line, 1 cycle latency
L2 shared cache 1024kB, 32-way, 64B-line, 14 cycle latency
main memory 100 cycle latency
Frequency 1GHz
Technology 70nm
Vdd 0.9V

Table 2. Benchmark programs

Name Function Utility
gcc C Compiler High
bzip2 Compression High
dealII Finite Element Analysis Sat
sjeng Artificial Intelligence: chess Sat
mcf Combinatorial Optimization Low
cactusADM(cactus) General Relativity Low

their cache resource utility graphs[6]. The utility graphs of the benchmark pro-
grams are shown in Figure 5. These graphs indicate their performance in IPC
as a function of the number of activated ways. Based on the resource utility
graphs, we classify the benchmarks into three groups: high-utility (High), satu-
rating utility(Sat) and low-utility (Low). The applications that have high-utility
benefit from an increase in activated ways (e.g. gcc, bzip2). These applica-
tions have a lower access locality as shown in Figure 1(b). The applications
with saturating utility have a smaller working set than the applications with
high-utility; giving more than eight ways dose not significantly improve their
performance (e.g. dealII, sjeng). The applications that have low-utility do not
benefit significantly from an increase in activated ways (e.g. mcf, cactusADM).
These applications have a higher access locality as shown in Figure 1(a). We
select two applications from each group. Table 2 shows the selected benchmarks
and their utilities.

We evaluate our cache with the weighted speedup and its energy consumption.
The weighted speedup is used as a metric for quantifying the performance of
parallel processing, in which multiple applications execute in parallel on different
cores. Let SingleIPCi be the IPC of the i-th application when it is executed
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on a single core and can exclusively use the entire resource of the CMP, and
IPCi be the IPC of an application when running with another application on
the CMP. The weighted speedup is given by:

Weighted Speedup =
∑

(
IPCi

SingleIPCi
). (4)

With the information from M5 and CACTI, the cache energy consumption is
calculated as follows:

Etotal = Ed + Es, (5)

Ed =
∫

(Ed data array × Wactive

Wtotal
× AL2)dt + Ed data other + Ed tag, (6)

Es =
∫

(Ps data array × Wactive

Wtotal
)dt + Es data other + Es tag, (7)

where,

Ed data array = dynamic energy consumed at bit lines in a data array
when all ways are activated,

Ps data array = static power consumed at word lines when all ways
are activated,

Wactive = the number of activated ways,
Wtotal = the total number of ways in the L2 cache,

AL2 = the number of L2 cache accesses,
Ed data other = the dynamic energy consumption at the other ele-

ments in a data array,
Ed tag = the dynamic energy consumption at the others,

Es data other = the static energy consumption at the other elements
in a data array, and

Es tag = the static energy consumption at the others.

The total cache energy consumption, Etotal, is the sum of Ed and Es that are
the dynamic energy consumption for transistor switching and the static energy
consumption due to leakage current, respectively. We also estimate Ed and Es

from the product of the array energy consumption and the proportion of the
activated area.

4.2 Evaluation of Way-Allocation Function

To evaluate just our way-allocation function, we compare the performance of
the way-allocation function with three caches: the utility-based partitioning[6]
(Utility-Based) which is representative of current partitioning schemes, Half-
and-Half which is a static equal partitioning between two cores, and the non-
partitioning cache (CONV ).
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Fig. 5. Activated Ways vs. IPC

Figure 6 shows the evaluation results of the proposed way-allocation function.
The horizontal axis in Figure 6 shows the combination of the benchmarks. The
vertical axis shows the weighted speedups of CMPs. The bars labeled AVERAGE
indicate the geometric means of weighed-speedups of each cache mechanism for
individual benchmarks.

The weighted speedup of the proposed way-allocation always exceeds one;
it outperforms the conventional cache for every combination listed in Figure
6. It improves by 2% on average. Therefore, it is obvious that the proposed
cache mechanism can reduce cache conflicts, compared to the conventional one.
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Fig. 6. Performance of Way-Allocation

As a result, the way-allocation based on locality assessment can prevent the
performance degradation.

The weighted speedups of our cache and Utility-Based are the same as or more
than that of Half and Half in almost all workloads. The static and equal partition-
ing cannot achieve the performance improvement. Therefore, the results indicate
that the cache partitioning with the adaptive mechanism is beneficial. Moreover,
the results also indicate that our way-allocation has a performance comparable
to the utility-based cache partitioning scheme. In addition, our scheme can save
the power consumption, while keeping a certain level performance by adding the
power control function.

The weighted speedup obtained by the proposed cache mechanism outperforms
the conventional cache for almost all combinations without bzip2. Especially, the
speedup improves in every combinations with sjeng. Therefore, it is obvious that
the way-allocation function of our cache is adequate for execution of the appli-
cations including the higher cache access locality: saturating or low utility. The
validity of our locality assessment model are confirmed by these results.

Every benchmark pair including bzip2 leads to either significant performance
improvement or degradation. As the utility of bzip2 does not saturate, its per-
formance improves in proportion to the number of activated ways as shown in
Figure 5(b). Therefore, it is difficult to define the appropriate position of the
virtual partition. A solution to this problem remains as our future work.

4.3 Evaluation of Way-Allocation with Power Control

Performance and Power Consumption. The proposed cache mechanism is
evaluated in terms of the average number of activated ways and the weighted
speedup of CMP. Three different (t1, t2)-threshold settings for power control,
(0.1, 0.5), (0.01, 0.05) and (0.001, 0.005) are examined. We use an asymmetric
3-bit state machine to observe the global behavior in memory accesses. We con-
sider a write-back overhead that is needed to keep data coherency when ways
are inactivated, but do not consider a overhead in power-gating for cache ways.
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Fig. 7. Effects of t1 and t2 on Weighted Speedup
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Fig. 8. Effects of t1 and t2 on Energy Consumption

Figures 7 and 8 show the weighted speedup and the energy consumption in all
the benchmark combinations, respectively. The values of Figures 7 and 8 are
normalized by the conventional cache. Figures 7 and 8 indicate that both of the
weighted speedup and the energy consumption become their maximum values
when the thresholds are (0.001, 0.005) on almost all benchmark combinations.
In contrast, when the thresholds are (0.1, 0.5), both of them are their minimum
values. When both benchmarks in the combinations have saturating or low util-
ity (e.g. sjeng-cactus), the weighted speedup and the energy consumption are
not sensitive to the configurations, and achieve high performance and low en-
ergy consumption. For example, in the case of a smaller threshold configuration
(0.001, 0.005) and the sjeng-cactus benchmarks, it can reduce 48% of the en-
ergy consumption while keeping the weighted speedup.

On average, the proposed cache can reduce energy consumption by 20% while
keeping the performance, when the thresholds are smaller such as (0.001, 0.005).
On the other hand, in the case of larger thresholds such as (0.1, 0.5), it can reduce
a 55% energy consumption with a performance degradation of 13%. We have
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Fig. 9. Elapsed time vs. Allocated ways (gcc-sjeng)

confirmed that the values of the thresholds can decide the degree of the control
policy between the performance-oriented and the energy-oriented configurations.

Figure 9 shows the dynamic behavior of the number of allocated and activated
ways across time, when gcc and sjeng are executed in parallel. Most of the time,
the allocation function is skipped, because most ways are inactivated for the
energy-oriented configuration (0.1, 0.5) as shown in Figure 9(a). The numbers of
activated ways are not a significant difference between the cores. On the other
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Fig. 10. Activated Ways vs. Energy Consumption

hand, with the performance-oriented configuration (0.001, 0.005) as shown in
Figure 9(b), almost all of ways are activated, and the way-allocation function
effectively works. Especially, the activated ways of gcc increases significantly,
because gcc have the lower access locality than sjeng. Therefore, our mechanism
appropriately allocates cache ways, and controls the activated cache area based
on the access locality.

In the cases of dealII-sjeng, the energy consumption is not minimum when
thresholds are energy-oriented. This is because the execution time increases
rapidly when the number of activated ways decreases. In fact, Figure 10 shows
the energy consumptions of each benchmark with the number of activated ways.
All but dealII show monotonic increase with the number of activated ways.
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Fig. 11. Effects of Interval Length

However, in the case of combinations including dealII, the minimum energy
consumption is achieved when three ways are activated. Therefore, our cache
may not decrease the energy consumption on the energy-oriented configuration
when the benchmarks like dealII are executed.

In the case of the combinations including bzip2 (e.g. gcc-bzip2), the max-
imum weighted speedup is achieved at medium thresholds (0.01, 0.05). This is
attributed to the fact that the benchmark has the high access utility and the
large working set as shown in Figure 5. The behavior analysis of combinations
including high utility applications will be discussed in our future work.

Effects of Sampling Intervals. The parameter N , which is the bit width
of the sampling counter, defines the maximum sampling interval. Our control
mechanism works after 2N L2 cache accesses. When N is too small, the way-
allocation and the power control are performed too often, resulting in an increase
in the write-back overheads. On the other hand, the mechanism cannot control
the number of ways on demand, when it is too large.

Figure 11 compares the weighted speedups of four interval configurations
(N=8, 12, 16, 20; each sampling interval is 28, 212, 216, or 220 L2 cache ac-
cesses.) and the conventional shared cache. We use the performance-oriented
configuration (t1, t2) = (0.001, 0.005). The results indicate that decrease in the
number of bits of the counter leads to a performance degradation. The results of
the 8-bit configuration fall below the conventional cache in all workloads. More-
over, each workload has its own optimal control interval. A majority of workloads
reach their perk performances in the cases of 12-bit or 16-bit intervals. Hence,
the control interval is an important parameter that decides the performance of
our cache control mechanism.

4.4 Evaluation of Hardware Overhead

To evaluate hardware overheads of the proposed cache control mechanism, we
design a circuit as shown in Figure 12. The designed circuit consists of two
dividers (DIV), three comparators (D COMP and T COMP), and two state
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machines (STATE). Four configurations (N = 8, 12, 16, 20) were designed by
Rohm 0.18 μm CMOS Technology, using Synopsys EDA tools.

Table 3 shows the design results of the four configurations. The delay time
is enough small compared with the sampling interval; therefore, the delay of
our mechanism hardly affects our way-allocation and power saving capability.
Moreover, the circuit areas are extremely small compared with cache area. For
comparison, we estimate the area of a 1MB 32-way cache by 0.18 μm CMOS
Technology using CACTI [19]. Our proposed mechanism consumes only 0.1% of
the cache memory area. The hardware overheads of our cache control mechanism,
therefore, have an extremely small effect on the chip design.
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Fig. 12. Cache Control Block Diagram

Table 3. Hardware Overhead

8-bit 12-bit 16-bit 20-bit
Delay (ns) 21.16 35.38 52.61 84.96
Area(μm2) 27221 56314 92100 149831

5 Conclusions

This paper has proposed a power-aware cache partitioning mechanism for CMPs.
We have defined a metric of cache reference locality based on the stack distance
profiling. The mechanism has a way-allocation function and a power control func-
tion. The way-allocation function can decide the percentage of cache resources
allocated to each core. The power control function decides the cache resources
necessary for keeping the current performance. That is, the former is for a rela-
tive evaluation by comparing cores’ demands for cache resources, and the latter
is for an absolute evaluation by estimating the magnitude of the demand by
each core.

The evaluation results show that although our cache mechanism and the
utility-based scheme are comparable in the cache partitioning performance,
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our mechanism can save the power consumption. The evaluation results also
show that the power control policy of our mechanism can be adjusted from a
performance-oriented configuration to an energy-oriented one. The way-allocation
cache with a performance-oriented parameter setting can reduce an energy con-
sumption by 20%, while keeping the performance in comparison with a con-
ventional one. On the other hand, the cache with a energy-oriented parameter
setting can reduce 55% energy consumption with a performance degradation of
13%. Moreover, we have designed a control mechanism to evaluate hardware
overheads. We have shown that our cache control hardware has an extremely
small overhead and small effect on the chip design.

The experimental results also indicated that our mechanism does not work
in some cases; there was a harmful effect on the performance for lower locality
applications. In addition, our cache mechanism can only handle a unit of two
cores and an L2 shared cache as a building block for CMPs. Addressing these
limitations is the focus of our future work.
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Abstract. We describe a multicore system targeting media processing
applications where the cores are multithreaded. The multithreaded cores
use a new type of multithreading that we call Subset Static
Interleaved (SSI) multithreading. SSI multithreading combines the ad-
vantages of blocked multithreading and a simple form of interleaved mul-
tithreading called static interleaved multithreading. SSI multithreading
divides threads into foreground and background threads and performs
static interleaving among the foreground threads. A foreground thread
is swapped with a runnable background thread whenever the foreground
thread is stalled. SSI multithreading achieves reduced operation laten-
cies, memory latency tolerance, fast context switching, and compared to
traditional dynamic interleaving, a relatively low design complexity of
the register file.

We use a task scheduling unit (TSU) to dispatch tasks to the cores.
The TSU is aware of the fact that the cores are multithreaded. This
makes a more efficient mapping of tasks to cores possible by scheduling
tasks on the least loaded cores.

We evaluate the system on an optimized Super HD H.264 decoder
where the macroblock decoding and deblocking has been parallelized.
The complexity of the H.264 standard and the high resolution makes
this a challenging and performance demanding application. We achieve
speedups of up to 17.7 times for 16 cores with four threads per core
relative to a single-threaded single core. Furthermore, the proposed SSI
multithreading achieves a speedup of 1.52 times relative to no multi-
threading, while blocked multithreading achieves only 1.38 times and a
restricted form of interleaved multithreading achieves only 1.37 times
speedup.

1 Introduction

Until recently multiprocessor systems where used for supercomputing and server
applications, but with the introduction of single chip multiprocessors, called
multicore, they are entering the personal computing market as well. Soon we
will also see many examples of embedded computing where multicores are used
to execute a single application. Note that although many embedded systems
on chips contain several processor cores, an application (e.g. video decoding or
channel decoding) typically runs only on one core.

P. Stenström (Ed.): Transactions on HiPEAC III, LNCS 6590, pp. 154–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This paper describes a cache coherent multicore system targeting media pro-
cessing in embedded applications. We evaluate the system with a parallelized
H.264 video decoder on Super HD input streams (3840x2160 at 30 frames per sec-
ond). The complexity of the H.264 standard and the high resolution makes this
a challenging and performance demanding application. One of the novelties of
the system is the multithreading of the cores. We apply a type of multithreading
that we call Subset Static Interleaved (SSI) multithreading that tolerates mem-
ory latency, improves instruction level parallelism, and enables a cost-effective
implementation of the register file. Another contribution of this paper is the task
scheduling unit which knows about the utilization of each core. This makes it
possible to make better scheduling decisions by trying to balance the load over
the cores equally.

Our experimental multicore system is composed of TriMedia TM3270 VLIW
[1] cores modified to support cache coherence and multithreading. TM3270 is de-
signed for media processing (e.g. video decoding, audio decoding, graphics, and
content analysis) and H.264 is one of the key applications for it. One TM3270
is capable to decode SD resolution H.264 in real-time. By instantiating multi-
ple TM3270 cores and modifying them for multithreading we obtain a system
which is capable to decode SHD resolution at a comparable clock frequency
(+/- 400MHz). Notice that the resolution of SHD is 24 times higher than SD
resolution.

The remainder of the paper is organized as follows. Section 2 categorizes
multithreading and introduces the subset static interleaved multithreading. Sec-
tion 3 describes the task scheduling unit (TSU) that balances the processing
load over the multithreaded cores. Section 4 discusses the parallelization of the
H.264 decoder which we will use for benchmarking purposes. Section 5 evaluates
the performance of SSI multithreading compared to existing multithreading tech-
niques. Furthermore we evaluate the effectiveness of the load balancing technique
of the task scheduling unit. Section 6 discusses related work. Finally, Section 7
concludes the paper.

2 Multithreading

In a multithreaded core the execution data path is shared by multiple threads
of control so that when a thread is not able to utilize the data path because of a
stall or data dependences, the data path can be utilized by other threads. Each
thread owns its own execution context consisting of a program counter and a
register file. As memory latencies become longer and the data path provides more
parallelism, it becomes harder to keep the wide issue data path utilized with one
instruction stream, and therefore multithreading becomes more attractive.

2.1 Classification

Multithreaded cores can be classified based on whether the hardware is able to
detect independent threads or the programmer is responsible for identifying inde-
pendent threads [2]. The first class is called implicit multithreaded architectures
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which are still in an experimental stage. Explicit multithreaded architectures are
much more mature and can be classified in three classes: blocked multithreading
interleaved multithreading, and simultaneous multithreading [2].

– Blocked multithreading, also known as coarse-grain multithreading, exe-
cutes instructions from a thread until it encounters a stall which takes more
than a few cycles (see Figure 2a). A typical example is a cache miss where
a processor stalls until data is fetched from memory. On such a stall the
pipeline is flushed and restarted with instructions from another thread that
is able to execute. This new thread is then executed until it also encounters
a long stall.

– Interleaved multithreading, also known as fine-grain multithreading, dy-
namically selects every cycle another thread to enter the pipeline (see Fig-
ure 2b). Successive pipeline stages are therefore typically holding instructions
from different threads. When a thread stalls on, for example, a cache miss,
that thread is flushed from the pipeline and not selected anymore until the
cache miss has been handled. A thread is flushed by canceling the instruc-
tions from it that come after the instruction that caused the stall.

– In the case of simultaneous multithreading (SMT), instructions from
different threads might be present in the same pipeline stage simultaneously.
This type of multithreading is typically applied for scalar ISAs in superscalar
designs where multiple instructions streams are fed into an out-of-order ex-
ecution pipeline [3]. However, it has also been attempted to apply this to
VLIW ISAs where VLIW operations from different instructions are merged
during execution [4,5].

In the sequel of the paper we refer to software threads as tasks or software
threads, whereas hardware contexts in a multi-threaded core are termed threads
or hardware threads.

2.2 Selection

When selecting a type of multithreading for an embedded VLIW mediaprocessor,
interleaved multithreading seems to be most suitable candidate. Simultaneous
multithreading is not attractive because of its high complexity that is necessary
to merge the VLIW instructions. It is also the question how effectively VLIW
instructions can be merged when the merging algorithm has to be kept simple.
For example, if it is not allowed to issue the operations of one VLIW instruction
into multiple cycles.

When comparing interleaved and blocked multithreading, the most attrac-
tive technique is interleaved multithreading. Because instructions from different
threads are executed in an interleaved fashion, the operation latencies become
shorter in terms of executed instructions from the same thread (not in terms of
cycles). Shorter operation latencies make it easier to fill issue-slots of the VLIW
instructions so that more instruction-level parallelism (ILP) can be exploited [6].

The register file complexity for interleaved multithreading is high. First we dis-
cuss a simplified version of dynamic interleaving, called static interleaving (SI),
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Fig. 1. Relations between described types of multithreading

in Subsection 2.3 We can combine this with blocked multithreading resulting in
a technique we term Subset Static Interleaving (SSI), which we will introduce
in Subsection 2.4. Subsection 2.5 describes a register file for SSI multithreading.
Subsection 2.6 compares SI and blocked multithreading and motivates SSI mul-
tithreading as an interesting combination. Figure 1 shows how we arrive at SSI
multithreading starting from existing techniques.

2.3 Static Interleaved Multithreading

The interleaving technique described so far is dynamic. The order in which the
threads are selected to feed an instruction into the pipeline depends on their
availability and is therefore dynamic. A less complex variant would be static in-
terleaved (SI) multithreading, opposite to dynamic interleaved (DI) multithread-
ing, where the order in which the threads are executed is fixed. In an N -way
SI multithreaded core (a core with N threads), an instruction from thread i is
executed in cycle i mod N (see Figure 2c). A bubble is inserted into the pipeline
when a thread is stalled. SI multithreading becomes even less complex relative to
DI multithreading if all operation latencies in an N -way core are a multiple of N
cycles. This can be achieved by inserting empty stages to increase the operation
latency of a functional unit up to the next multiple of N cycles. The result is that
all writes to the register file of a particular thread are happening in the same
cycle modulo N . This means that write backs can be statically scheduled and
we can use a simplified register file design as described in Section 2.5. Instead of
inserting empty stages, one can also use the additional cycles to relax the timing
of the operations or reduce the power consumption of an operation. An example
of the latter is to replace a data cache with parallel tag and data access by a
sequential design where only one way in the data array has to be accessed.

SI multithreading achieves the operation latency reduction that made (DI)
interleaved multithreading attractive. If normally an operation takes C cycles
to execute on a single threaded design, it will take �C/N� cycles on an N -way
SI multithreaded design. On the other hand, with respect to handling stalls due
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to cache misses it performs worse than DI multithreading. In DI multithreading
the data path stays utilized on a stalling thread as long as there are other
threads available for execution. However, with SI multithreading each stalling
thread reduces the utilization by 1/N because bubbles are fed into the pipeline.
Effectively, this means that N -way SI multithreading reduces both the operation
latency as well as the memory latency1 to serve a cache miss by a factor of N .

2.4 Subset Static Interleaved Multithreading

While blocked, simultaneous and DI multithreading potentially can reduce the
effect of long stalls (e.g. cache misses) to zero memory latency cycles, SI mul-
tithreading is only able to reduce it by a factor of N . Subset static interleaved
(SSI) multithreading improves this by having M foreground threads and N −M
background threads. SSI multithreading executes instructions from the M fore-
ground threads in a cyclic fashion similar to what SI multithreading does for all
N threads. In this case the operation latency reduction for SSI multithreading is
a factor of M . Furthermore, for low complexity register file design, all operation
latencies are assumed to be a multiple of M cycles. When a foreground thread
stalls and a background thread is ready for execution, we exchange them so that
the foreground thread becomes a background thread and vise versa. What we
achieve is an operation latency reduction of M and full memory latency reduc-
tion as long as there are not more than N − M threads stalled on cache misses.
After that 1/Nth of the core becomes idle on the next stalled thread. Figure 2d
illustrates the execution of SSI multithreading.

Fig. 2. Time lines for four types of multithreading with 4-way multithreading. Thread
stalls are indicated by underlining the cycle. Pipeline bubbles are indicated by a blank
box. For simplicity, bubbles due to context switches are not shown.

The number of foreground threads M is a parameter that we can chose be-
tween one and N . In the case of M = 1 it corresponds to blocked multithreading,
while in the case of M = N it corresponds to SI multithreading. Both blocked
and SI multithreading has distinct advantages. Blocked multithreading better
tolerates memory latency while SI multithreading reduces memory latency as
1 With operation latency we mean the number of cycles it takes before the result of

an operation becomes available for usage. The compiler uses these values to schedule
the code. With memory latency we mean the number of cycles that the core stalls
to handle a cache miss. This value is not used by the compiler.
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well as operation latency. By choosing M between one and N we obtain a solu-
tion that performs better than the two extremes as shown by our experiments.

2.5 Register File Design

The register file is one of the most complex parts of wide-issue VLIW cores,
which require a large number of ports and registers to feed multiple FUs with
data. Processor cores for embedded systems often employ a RF (Register File)
constructed of standard cells in contrast to many non-embedded processors with
custom-layout RFs. Figure 3a shows the structure of a standard cell RF com-
posed of write multiplexers, registers in flip-flops, and read multiplexers. Each
register has a multiplexer tree at the input to select a value from one of the write
ports. Furthermore, register’s outputs are connected to multiplexers that select
a register for each of the read ports.

Table 1. Maximum number of accessed contexts for the multithreading schemes

SMT Blocked Dynamic Interleaved Static Interleaved SSI

reading all one one one one
writing all one all one one

An N -way multithreading core needs N times more registers. Let us consider
access requirements of different multithreading schemes in Table 1. The reading
row shows how many hardware threads can read source operands from their
respective RFs each cycle. The writing row specifies how many hardware threads
can write to their respective RFs each cycle. With N total threads in the cases of
blocked and SI multithreading, as well as with N foreground threads in the case
of SSI multithreading with all operation latencies being a multiple of N cycles,
all reads from the same thread as well as all writes from the same cycle are
happening in the same cycle modulo N . Thus, the Blocked and (Subset) Static
Interleaved schemes each cycle read from only one register file and write to only
one register file. This suggests that the read and write port multiplexer trees from
Figure 3a can be shared by all the threads. Note, that the shared read and write
multiplexers for multi-ported RFs often dominate implementation complexity. In
fact, one can simply replace the register cell with multiple registers for different
hardware contexts as shown in Figure 3b. The new multithreaded register cell
consists of N regular registers and multiplexers around it that are controlled by
the thread IDs of the reading and writing threads. Note, that the read (write)
multiplexers in the multithreaded register cell are shared by all read (write)
ports. This way, register file complexity for multithreaded schemes Blocked and
(Subset) Static Interleaved can be limited. Our experimental layout exercises in
CMOS 65nm technology indicate that the 4-way multithreaded RF designed as
shown in Figure 3, is only 2.35 times larger than the single-threaded RF.
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(a) Multiported register file (b) Replacement for register cell

Fig. 3. Adapting the register file for multithreading. (a) Multi-ported register file for
single threaded core. (b) Replacement for register cell to create a register file for a
4-way multithreaded core.

2.6 Multithreading Comparison

In order to understand the benefit of a combination between blocked and SI
multithreading we should understand the advantages and disadvantages of both
techniques.

1. The single thread performance of an N -way SI multithreaded core can be
up to N times lower than the single threaded core, because an instruction
from a thread is issued once every N cycles. Single thread performance is
important when TLP is low.

2. N -way SI multithreading reduces operation latency by a factor of N which
improves the ILP that can be exploited.

3. N -way SI multithreading reduces memory latency by a factor of N whereas
blocked multithreading is able to reduce it to zero provided that at least one
thread stays runnable.

4. N -way SI multithreading needs N threads to keep the core utilized, while
blocked multithreading needs only one in the absence of stalls.

5. For blocked multithreading the switch penalty is determined by the pipeline
stage where the switch is triggered. This stage and all earlier stages have to be
flushed. For N -way SI multithreading only the stages holding instructions
of the same thread have to be flushed, which is a factor of N lower, and
therefore the switch penalty is also N times lower.
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So both techniques have their merits and by selecting a proper value for the
number of foreground threads for SSI multithreading we hope to maximize
performance.

3 Task Scheduling

Our programming model relies on the programmer to extract parallelism from
the application and define concurrent tasks. Besides the well-known Pthread
API, the system can be programmed by short-running tasks that can be sub-
mitted and dispatched with low overhead. This makes fine-grain TLP possible.
Submission of a task involves its registration in a shared pool of ready-to-execute
tasks whereas dispatching allocates a task to a core and starts it up. The low
overhead (+/- 15 cycles for submit and dispatch) is enabled by a hardware de-
vice, called the task scheduling unit (TSU), that is shared by the cores.

3.1 Task Scheduling Unit

Our task scheduling unit is based on the Carbon design [7]. It is basically a pool of
tasks in a hardware structure to which task can be submitted and retrieved with
special operations. This makes it an order of magnitude faster than an optimized
software implementation would be. A task is typically a function pointer of the
function that performs the task and arguments for it.

The TSU implements distributed task stealing, which also is used for software
task pool implementations [8]. The TSU maintains a double-ended queue of tasks
for every core in the system. Task submissions and retrievals are done on one side
of the queue so that the order is first-in-last-out. Choosing the newest instead of
the oldest is typically better for cache locality because the newest task often has
data in common with the latest executed task. When a core wants to retrieve a
task from its queue and finds it empty, it steals a task from a randomly chosen
queue at the opposite side from which task are submitted, i.e., the oldest task
in the queue.

Because the TSU has a finite capacity, it generates an interrupt when a queue
gets nearly full. An interrupt handler will then spill tasks to an overflow area in
memory. When later the queue gets nearly empty, again an interrupt is generated
to copy back tasks from the overflow area.

3.2 Improvement for Multithreading

Whenever a software thread running on a core requests the TSU for a task and
there is no task in any of the queues, the TSU blocks the requesting thread
until a task becomes available. Then typically the longest blocked thread or a
randomly selected blocked thread gets the task. In a multithreaded multi-core
system this can easily lead to imbalance where, for example, some cores have only
one runnable thread while others have all threads runnable. We can reduce such
imbalance by making the TSU aware of the multithreaded cores. The heuristic,
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Fig. 4. Task scheduling unit. There is a queue in the TSU for every core. The cores
have four threads shown as overlayed squares. Blocked threads are shown in dark color.
Let us assume that core 1 submits a task to the TSU. In the case of the most-blocked
heuristic, the task stealing module will sent this task to the queue for core 4 because
this core has most threads blocked (3 threads).

which we call most-blocked-first, is to assign a task to a blocked hardware thread
on a core which has the most threads blocked on the TSU, i.e., the least loaded
core. This avoids much of the load imbalance problem.

Figure 4 shows a multicore system with a TSU. It illustrates that a submitted
task will be allocated to core 4 because this core has the most threads blocked.

The improvement is relevant at the moments when there is insufficient task-
level parallelism to keep all threads utilized. Handling of these moments effi-
ciently is very important to obtain close to linear speedups.

4 Parallel H.264 Decoding

The H.264 / MPEG-4 Advanced Video Coding (AVC, part 10 of MPEG-4) stan-
dard for video compression can been seen as an improved successor of MPEG-2
and other parts of MPEG-4 [9,10]. It achieves a higher compression performance
by more advanced coding techniques that are also much more compute inten-
sive, and in particular, more control intensive. An example is sub-pixel motion
compensation, which has 1/2 pixel resolution in MPEG2 and 1/4 pixel in H.264.
The higher resolution makes motion compensation more expensive for H.264.

The high computational requirements make programmable implementations
of H.264 decoding very challenging. While SD resolution (Standard Definition,
720×480) is possible on DSPs, HD (High Definition, 1920×1080) is only possible
on high clock frequency cores or configurable cores [11], and SHD (Super HD,
3840×2160) is out of reach for single core programmable designs. Therefore, the
only programmable solution appears to be a multicore one.

A H.264 decoding consists of three steps: entropy decoding, macroblock de-
coding, and deblocking. Entropy decoding translates the input bitstream into a
sequence of encoded macroblocks. Macroblock decoding is the heart of the de-
coding process. It translates encoded macroblocks into pixel blocks of 16 times
16. Deblocking is a post pass filter that tries to remove artifacts in the output
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that are introduced due to block based compression. The decoded frames that
are coming out of deblocking step are stored in memory and are used as reference
in future frames.

4.1 Parallelization

Parallelization of H.264 decoding could be done by running the three decoding
steps in parallel in a pipelined fashion. However, there is a feedback of reference
frames from deblocking to macroblock decoding which limits parallelism. There-
fore, we parallelized the three steps individually. Unfortunately, parallelization
of entropy decoding for H.264 does not appear to be possible. Therefore, we
still have to rely on dedicated hardware to do this in real-time for H.264 at
SHD resolution. Fortunately, solutions for this exist. For example [12] describes
a hardwired solution that needs 45MHz for HD resolution.

Parallelization of macroblock decoding and deblocking is very well possible
and can be done in a similar manner [13]. We parallelized these two steps at the
macroblock level by decoding macroblocks in parallel. Which macroblocks can
be decoded in parallel is determined by dependences between macroblock that
are described by the standard. Figure 5 shows these dependences. Macroblock
decoding of block current in Figure 5 depends on blocks A, B, C, and D. Effec-
tively, it depends on only two blocks C and D because these dependences cover
the dependence on A and B as well. For deblocking, block current depends on
B and D. We can decode/deblock macroblocks in parallel as long as we respect
the dependences.

The parallelization is implemented by associating a reference counter with
each macroblock. The value of the reference counter associated with macroblock
M corresponds to the number of macroblocks on which M depends that have not
been processed yet. This is a value between zero and two, where zero indicates
that the macroblock is ready for processing. When a macroblock becomes ready
for processing, a task is submitted to the TSU that performs the processing. Such
a task does the actual processing, i.e. decoding or deblocking, and decrements
reference counters to blocks on which the block depends afterward. Whenever
a reference counter becomes zero, a task is submitted to the TSU to do the

Fig. 5. Dependences between macroblocks
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processing of the macroblock corresponding to it. The resulting parallel execution
is a wave-front of macroblock processing from the top-left of the frame to the
bottom-right. Parallelism ramps up in the beginning and ramps down at the end
of a frame. In between the parallelism depends on the number of macroblocks
on the wave-front, which is 120 at the peak for SHD for macroblock decoding
and 135 for deblocking.

Note, that the scheduling of the decoding and deblocking tasks is dynamic. A
static schedule would not be efficient as the execution time for each macroblock
varies a lot.

4.2 Tail Submits

A task with task submits at the end of the task resembles a tail recursive function.
Similar to recursive functions, we can replace a recursive task submit at the
end of a task by a jump back to the beginning of the task. Figure 6 shows
this optimization for macroblock processing in simplified pseudo code. In the
original code, shown in Figure 6a, we see the actual decoding work followed by
decrements of reference counters of macroblocks that depend on the just decoded
macroblock. This has to be performed atomically to prevent inconsistencies.
Depending on the outcome, up to two macroblocks become ready for processing,
which are submitted to the task pool.

The optimized version of the code where tail submits have been replaced by
jumps (goto’s) to the beginning of the task is shown in Figure 6b. After decre-
menting the reference counters we determine how many macroblocks become

decode_mb(int x, int y) decode_mb(int x, int y)

{ {

... decoding (x, y) ... L: ... decoding (x, y) ...

ready1 = atomic_decrement(...); ready1 = atomic_decrement(...);

ready2 = atomic_decrement(...); ready2 = atomic_decrement(...);

if(ready1) if(ready1 && ready2) {

submit(decode_mb, x+1, y); submit(decode_mb, x-1, y+1);

if(ready2) x += 1;

submit(decode_mb, x-1, y+1); goto L;

} } else if(ready1) {

x += 1;

goto L;

} else if(ready2) {

x -= 1; y += 1;

goto L;

}

}

(a) Original code (b) After optimization

Fig. 6. Tail submits
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ready for processing. If this is one macroblock, then we adjust the (x, y) position
and jump back to the beginning of the task. If there are two ready macroblocks,
we submit one and process the other one directly after that by jumping back to
the beginning.

This optimization gives us two benefits. First, there is overhead involved in
task submission and dispatching, which occurs less frequently after this opti-
mization has been applied because one task performs the work for multiple
macroblocks. Furthermore, there is task invariant code that can be moved out of
the loop that is created by this optimization. The second benefit is more subtle.
Because we have more control over the order in which the macroblocks are ex-
ecuted, we can obtain better data cache locality. This is achieved by executing
macroblock (x+1, y) directly after (x, y) when possible and (x+1, y) instead of
(x-1, y+1) when both are possible. Because the pixel lines of macroblocks (x, y)
and (x+1, y) are adjacent in memory, many data that is needed for (x+1, y) is
already in the data cache because it was necessary for (x, y). Therefore, more
data will be reused.

5 Evaluation

5.1 Experimental Setup

Figure 7 shows the simulated architecture composed of multithreaded TriMedia
cores, hardwired H.264 entropy decoder, TSU, synchronization unit, and shared
memory. We used the following L1 data cache parameters values: 64KB size, 64B
line size, 4 way set associative, fixed 40 cycles reload penalty, write back, MESI
cache coherence, and allocate-on-write-miss policy [14]. The latencies, functional
units, and issue-width (5 issue) are the same as the TM3270. We chose a fixed 40
cycle miss penalty reflecting a 40 cycle average miss latency. We do not model the
shared L2 cache, L1 instruction caches and contention on interconnect and off-
chip SDRAM memory. However, we believe that the high average miss latency
represents the unmodelled parts in modern embedded systems on a chip.

For synchronization we modeled a synchronization unit that provides locks to
implemented atomic operations. Among other purposes, they are necessary to
perform atomic decrements on reference counters (see Section 4).

Our multithreading implements a priority scheme similar to the one of the
IBM RS64 IV [15]. This scheme exchanges a foreground and background thread
also when the former has a lower priority than the latter. One of the purposes
of priorities is to reduce priority during the idle loop of the Pthread scheduler
so that it does not consume resources when there are other threads that are
executing useful code.

The H.264 decoder that we have parallelized and use for our experiments
is optimized including extensive usage of intrinsics, and ILP exposing
transformations.

We compiled the decoder with the TriMedia production compiler. For the
runs with more than one foreground thread we compiled the application and the
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Fig. 7. Architecture of the simulated system

supporting libraries with reduced operation latencies and branch delay slots as
described in Sectionsec-ssi.

5.2 Performance of SSI Multithreading

For evaluation of the described system and parallelized decoder, we use a video
stream from the SVT High Definition Multi Format Test Set called ’CrowdRun’.
We encoded this into a main profile H.264 bitstream. It resolution is 2160 ×
3840, which is the closed to SHD (1920 × 3840) that we could find. Due to long
simulation times, execution is restricted to 14 frames.

We vary the number of cores from 1 to 16 in powers of two. Furthermore,
we experiment with 1 to 4 threads per core, and vary the number of foreground
threads from one (blocked) to the number of threads (SI).

We evaluated two versions of the decoder, with and without the tail submit
optimization (see Section 4.2), benchmarking different levels of manual optimiza-
tion. As discussed in Section 4.2, the two versions differ in cache locality where
the optimized version has a better locality.

Figures 8 to 11 show the outcome of our measurements where Figures 8 and
9 are for the tail submit optimized version and Figures 10 and 11 for the version
without the optimization. Figures 8 and 10 show speedup relative to one single
threaded core, while Figures 9 and 11 show the speedup relative to a single
threaded system with the same number of cores, illustrating the performance
advantage of multithreading.

It is important to note that the two versions of the H.264 decoder differ in
execution time even on one single threaded core. The optimized version runs
1.31 times faster on one single threaded core. Hence, the baselines for Figures 8
and 10 are different. Results show speedups of up to 14.4 and 17.7 times for
the optimized and non-optimized versions of the code, respectively. These num-
bers demonstrate the effectiveness of the H.264 decoder parallelization on our
architecture.
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Fig. 8. Speedup for 1, 2, 4, 8, 16 cores relative to single threaded, single core. The bars
are grouped in five groups; each group for a certain number of cores. The groups are
further grouped in subgroups; each subgroup for a number of threads. The bars within
a subgroup vary in the number of foreground threads. The bars are labeled F T , where
F is the number of foreground threads and T the total number of threads per core.
Hence, blocked multithreading is at the left (1 N) and SI (N N) multithreading at the
right. Tail submits have been optimized.
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Fig. 9. The same as Figure 8 but speedup relative to single threaded multi-cores
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Fig. 10. The same as Figure 8 but without tail submit optimization. Note that Figure 8
has a different vertical scale. Also notice that although the speedup relative to one single
threaded core is better than the version with the tail submit optimization, the absolute
running times are longer.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1 2 4 8 16

Number of Cores

Sp
ee

du
p 

re
l. 

to
 s

in
gl

e 
th

re
ad

ed
 (1

_1
), 

m
ul

tip
le

 c
or

es

1_1 1_2 2_2 1_3 2_3 3_3 1_4 2_4 3_4 4_4

Fig. 11. The same as Figure 9 but without tail submit optimization. Note that Figure 9
has a different vertical scale.
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Results also show that multithreading becomes less effective as the number of
cores increases (see Figures 9 and 11). This is because the application does not
provide sufficient parallelism for the hardware, which provides a TLP of 64 (for
16 cores and 4 threads per core).

The bars in Figures 8 to 11 are gathered in groups with the same number of
cores and threads where the number of foreground threads vary from one (left,
blocked) and all threads (right, SI). This shows that SSI multithreading (bar(s)
in the middle) performs in all cases better than SI and blocked multithreading.
The configuration with two foreground threads provides the best results. Av-
eraged over 1 to 16 cores and the two versions of the code, the speedup of SSI
multithreading relative to no multithreading is 1.52 times. SI multithreading and
blocked multithreading achieve speedups of 1.37 and 1.38 times, respectively.

Comparing the two versions of the code, we see that multithreading is more
effective on the version without the tail submit optimization than the version
with. The speedups due to SSI multithreading for the first version are in the
range of 1.36 to 1.81 while for the latter version it is 1.19 to 1.47. As dis-
cussed in Section 4.2, this can be explained by the data locality improvements
of the tail submit optimization. This demonstrates the importance of employ-
ing optimized benchmarks, because non-optimized benchmarks exaggerate the
performance benefit from multithreading.

It is also interesting to see that SI multithreading performs better than blocked
multithreading with a low number of cores and becomes worse with a higher
number of cores. As discussed in Section 2.6, SI needs more application TLP to
keep hardware threads utilized. With more than eight cores the application is
not able to provide sufficient TLP for SI multithreading. When the number of
cores is low, though, the SI multithreading outperforms blocked multithreading
due to reduced operation latencies.

5.3 Multithreading Aware Task Scheduling

In Section 3.2 we described how to make the TSU aware of the fact that the
cores are multithreaded by means of the most-blocked-first heuristic. We argued
that this is most important when the application utilizes less parallelism than
the system provides. To evaluate this, we run the decoder on systems with 8 and
16 cores, 4 threads, and 1 to 4 foreground threads. We evaluate it on a SHD and
HD streams. The latter has two times lower macroblock-level parallelism.

Table 2 shows the improvement of the most-blocked-first heuristic relative to
selecting the longest blocked thread for a new task. It shows that the importance
rises as the parallelism of the system increases (8 → 16 cores) or the parallelism
of the application decreases (SHD → HD). Results also show that multithreading
aware task scheduling is more effective with fewer foreground threads. This is
because threads get more cycles assigned to them on a partially loaded core if
there are fewer foreground threads. The reason that there is still a slight speedup
for SI multithreading is likely due to reduction in data cache sharing. Without
caching effects, multithreading aware task scheduling should not be effective on
SI multithreading.
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Table 2. Speedups of the most-blocked-first heuristic

Speedup (%)
Cores Stream number of foreground threads

1 (blocked) 2 (SSI) 3 (SSI) 4 (SI)

8 HD 4.92 2.86 1.18 0.03
8 SHD 1.97 0.41 -0.23 0.14
16 HD 17.61 8.68 2.50 0.36
16 SDH 6.48 3.23 1.36 0.27

5.4 Discussion

The optimal number of foreground threads is application dependent. It depends
on the importance of the items listed in Section 2.6 for a particular application.
For the optimized H.264 decoder we found that two foreground threads is opti-
mal for three and four threads. However we also experimented with SPLASH-2
benchmarks [16] that are not optimized for TM3270. For most of the SPLASH-
2 benchmarks, the ILP on a single threaded core is low because floating point
operation latencies are long and there are many memory references that the
compiler can not disambiguate. Therefore, for most SPLASH-2 benchmarks the
optimal number of foreground threads equals the number of threads, i.e., SI
multithreading.

We can design cores such that the number of foreground threads is a run-time
parameter. For example, we can construct a core with four threads where the
number of foreground threads can be two or four. At run-time, the application
can switch between the modes whenever it switches between parts of the appli-
cation with different characteristics. These parts should be compiled (scheduled)
with different operation latencies.

Real-time performance is typically very important for media processing appli-
cations. Although we did not experiment with it, multithreading might improve
real-time performance because variation in the input data that translate in vari-
ation of memory access locality can be suppressed by the latency tolerance that
multithreading provides.

6 Related Work

SSI multithreading is a combination of blocked multithreading and SI multi-
threading. With one foreground thread it corresponds to blocked multithreading
and if all threads are foregrounds threads it is equivalent to SI multithreading.

Zuberek describes enhanced interleaved multithreading which is also a com-
bination of blocked multithreading and SI multithreading [17]. He bases his
performance analysis on Petri net models instead of executing application code.
Moreover, Zuberek does not address implementation issues such as register file
design.



A Multithreaded Multicore System for Embedded Media Processing 171

Balanced multithreading, as proposed by Tune and et al., combines simultane-
ous multithreading and blocked multithreading in firmware so that long stalling
threads are removed from the pipeline to free resources [18].

Examples of interleaved multithreaded machines are Horizon, MIT M-machine,
Tera/Cray MTA, Denelcor HEP, Sun Niagara, Sandbridge Sandblaster [19], and
MicroUnity MediaProcessor [20]. From what we know it appears that the Medi-
aProcessor and the Sandblaster apply SI multithreading.

Van der Tol et al. pioneered parallel H.264 decoding [13]. They motivated
parallelization at the macroblock level and described the dependences between
macroblocks as well as the wave-front parallelism that results from it. In compar-
ison with this work, van der Tol et al. do not report performance measurements,
apply their work on HD streams, and do not use highly optimized code.

Ramadurai et al. describe a parallelized H.264 decoder for the Sandblaster
multithreaded DSP [21]. They use intra macroblock parallelism for macroblock
decoding, and, like [13] and our work, inter macroblock parallelism for deblock-
ing. A disadvantage of intra macroblock parallelism is that it does not scale with
the frame resolution. Ramadurai et al. do not report performance figures.

Parallelization of MPEG-2 decoding is easier to realize in comparison to H.264.
An example of this is the work of Bilas et al. [22]. MPEG-2 has slices that can be
decoded independently of at most one row of macroblocks. Furthermore, slices
are easy to recognize in the bitstream by means of start codes. H.264 has the
concept of independent slices as well but in the case of H.264 the slices could
cover a whole frame, which would mean no parallelism.

7 Conclusions

We demonstrated the applicability of a multithreaded multicore for parallel
H.264 decoding. The main contribution of this paper is the novel type of multi-
threading combining blocked multithreading and a restricted form of interleaved
multithreading. This type, that we call subset static interleaved (SSI) multi-
threading, achieves reduced operation latencies, memory latency tolerance, fast
context switching, and a relatively low design complexity of the register file.
Results show a speedups of up to 17.7 times for 16 cores with four threads rel-
ative to a single core, single threaded system on a manually parallelized H.264
on a SHD bitstream. Furthermore, the proposed technique, SSI multithreading,
achieves a speedup of 1.52 times relative to no multithreading, while blocked
multithreading achieves 1.38 times and a restricted form of interleaved multi-
threading achieves 1.37 times speedup.

Furthermore, we use a task scheduling unit that is able to balance the load
over the multithreaded cores. This improves performance in parts of the applica-
tion where there is insufficient work for all threads. We observed the performance
increase of 6.84% from the improvement of the task scheduling unit for multi-
threading. On an HD stream we measured speedups of up to 17.61%.
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Future work includes optimization and benchmarking of other media appli-
cations (e.g., 2D to 3D conversion and frame-rate conversion), more accurate
modeling, and RTL implementation to obtain accurate latency, area, and clock
frequency figures. Furthermore, we would like to benchmark SSI multithreading
against DI multithreading.
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Abstract. The Cell processor is a typical example of a heterogeneous
multiprocessor on-chip architecture that uses several levels of parallelism
to deliver high performance. Reducing the gap between peak performance
and effective performance is the challenge for software tool developers
and the application developers. Image processing and media applications
are typical “main stream” applications. We use the Harris algorithm for
the detection of interest points in an image as a benchmark to compare
the performance of several parallel schemes on a Cell processor. The
impact of the DMA controlled data transfers and the synchronizations
between SPEs explains the differences between the performance of the
different parallelization schemes. The scalability of the architecture is
modeled and evaluated.

1 Introduction

Image processing applications are generally composed of a set of basic operators.
These components can be point to point operators or convolution kernels. Due to
both computation and memory complexity, real-time execution of image process-
ing algorithms has historically not been easily done efficiently. Multi-core pro-
cessors family appeared to respond to an increasing demand of processing power
that single-task scalar systems, which raised computing and energy efficiency
problems, could not satisfy. Furthermore, computing and transfer workloads can
be distributed on the multiple processing units to reduce the processing time, in
particular for media processing application which are well suited for the multiple
levels of parallelism provided by parallel architectures.

The Cell processor [16] is a good example of a heterogeneous multi-processor
(Fig. 1). Composed of a 64-bit power processor element (PPE), eight specialized
units called synergistic processors (SPE) and a high bandwidth bus called Ele-
ment Interconnect Bus (EIB), that allows communications between the different
components [9], The Cell is a heterogeneous, multi-core chip containing several
levels of parallelism that can be exploited to reach high peak performances.

P. Stenström (Ed.): Transactions on HiPEAC III, LNCS 6590, pp. 177–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Detailed view of the Cell Broadband Engine Architecture

Assuming a clock speed of 3.2 Ghz, the Cell processor has a theoretical peak
performance of 204.8 GFlops/s in single precision. The EIB is composed of four
128-bit rings, each ring can handle up to three concurrent transfers. The theo-
retical peak bandwidth of the bus is 204.8 GBytes/s for internal transfers, when
performing 8 simultaneous non-colliding 25.6 GB/s transfers (the Cell network
topology allows only 8 transfers to be done in parallel without collision). The
PPE unit is a traditional 64-bit PowerPC Processor with a vector multimedia
extension (VMX aka Altivec). This Cell’s main processor is in charge of running
the OS, and coordinating the SPEs. Each SPE consists in a synergistic proces-
sor unit (SPU) and a Memory Flow Controller (MFC). The SPE holds a local
storage (LS) of 256 KB, and a 128-bit SWAR (very close to Altivec) unit ded-
icated to high-performance data-intensive computation. The MFC holds a 1D
DMA controller, that is in charge of transferring data from external devices to
the local store, or writing back computation results to main memory. One of the
main characteristics of the Cell processor is its distributed memory hierarchy.
The main drawback of this kind of memory, is that the software must handle
the limited size of the LS of each SPE, by issuing DMA transfers from or toward
main storage (MS).

However, some specific programming aspects – namely Direct Memory Access
(DMA) controlled transfers – makes it hard for developers to code and debug
their applications quickly on the Cell processor. Therefore, it is necessary to
develop software tools that can make the programming process less painful and
the most suitable with the target architecture. Since the release of the first pro-
totypes and simulator, there were several examples of application porting on the
Cell BE, with various application domains like bio-informatics [19,18], graphics
rendering [3] and other scientific computing kernels [20,7,15]. In [19] the au-
thors adopted a progressive optimization strategy where a PPU version of the
”Clustal W” applications was tuned so that the code matches the capabilities of
the SPU cores. Various implementation strategies (MPI, OpenMP, SIMD) were
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tested and compared in [18] for a protein docking application, the influence of
DMA transfers on performance was also discussed. On the other hand, various
programming models was mapped on the Cell processor in the form of tools,
programming languages and compilers [6,12,5,14]. In [5] the Cell BE is viewed
as a shared memory SMP (Symetric Multi-Processor) where the compiler per-
forms the task of distributing work over the SPEs via OpenMP parallelization
directives and where data transfers to the local stores are handled implicitly
using software caches. The CellSs[2] programming model is somewhat similar to
OpenMP as it relies on code annotation to offload a part of the work to the SPEs
except that it relies on a source to source C compiler and a locality-aware task
scheduler optimizes data transfers at runtime. Message passing programming
model is treated in [14]: applications are partitioned into MPI micro-tasks and a
static scheduler performs the task of optimizing their execution on the parallel
cores. Finally, the RapidMind [12] tool relies on a model where data transfers
and computation kernels are completely decoupled so that optimizations like
inter-kernel data access elimination and transfer/computation overlapping can
be performed.

The goal of this paper is to evaluate the performance of some computation
models relying on various communication and mapping strategies on the Cell
BE processor for a representative image processing algorithm.

– The implementation and evaluation of several parallelization schemes for the
Harris interest point detection algorithm are performed.

– The influence of DMA transfer size on the performance of each model is
demonstrated.

– The impact of chaining technique to boost the performance on the Cell is
exposed.

– A comparison between the Cell SPU unit and other cache-based SIMD
extensions is provided.

– The scalability of the Cell processors is modeled and measured via efficiency
and speedup metrics.

The paper is organized as follows. In Section 2, we describe our image processing
algorithm: the Harris and Stephen corner detector. Section 3 describes the im-
plementation models and their comparative performances. In Section 4 we model
and evaluate the Cell scalability. Finally, we sum up our main contributions and
discuss future work in Section 5.

2 The Harris Interest Point Detection Algorithm

Harris and Stephen [8] interest point detection algorithm is used in computer
vision systems for feature extraction like motion detection, image matching,
tracking, 3D reconstruction and object recognition. This algorithm was proposed
to address the limitations of the Moravec corner detector [13] which was sensitive
to noise and not rotationally invariant. A corner can be defined as the intersection
of two edges when an interest point can be defined as a point which has a well



180 T. Saidani et al.

defined position and can be robustly detected. Hence, the interest point can be
a corner but also an isolated point of local intensity maximum or minimum, a
line ending, or a point on a curve where the curvature is locally maximal.

2.1 Algorithm Description

Assuming image patches of dimensions u × v (in our case 3 × 3) in a grayscale
2-dimensional image I and shifting it by (x, y), the Harris operator is based on
the estimation of local autocorrelation S for which the expression is:

S(x, y) =
∑

u

∑
v

w(u, v) (I(u, v) − I(u − x, v − y))2 (1)

By approximating S with a second order Taylor series expansion the Harris
matrix M is given by:

M =
∑

u

∑
v

w(u, v)
[

I2
x IxIy

IxIy I2
y

]
(2)

An interest point is characterized by a large variation of S in all directions of the
vector (x, y). By analyzing the eigenvalues of M , this characterization can be
expressed in the following way. Let λ1, λ2 be the eigenvalues on the matrix M :

1. If λ1 ≈ 0 and λ2 ≈ 0 then there are no features of interest at this pixel (x, y).
2. If λ1 ≈ 0 and λ2 is some large positive value, then an edge is found.
3. If λ1 and λ2 are both large, distinct positive values, then a corner is found.

Harris and Stephens note that eigenvalues computation is expensive, since it
requires the computation of a square root, and instead suggest the following
algorithm:

1. For each pixel (x, y) in the image compute the autocorrelation matrix M :

M =
[
Sxx Sxy

Sxy Syy

]
; where:Sxx =

(
∂I

∂x

)2

⊗w, Syy =
(

∂I

∂y

)2

⊗w,Sxy =
(

∂I

∂x

∂I

∂y

)
⊗w

(3)

Where ⊗ is the convolution operator and w a Gaussian kernel.

2. Construct the coarsity map by calculating the coarsity measure C(x, y) for
each pixel (x, y), with k being a empirically determined constant:

C(x, y) = det(M) − k(trace(M))2

det(M) = Sxx · Syy − S2
xy

trace(M) = Sxx + Syy
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Fig. 2. Illustration of the interest point detection on a grayscale 512×512 image

An illustration of an input 512×512 grayscale image and a interest point de-
tection on it are given in Fig. 2. To obtain this result, two additional steps are
performed in order to extract visually appealing information from the dense
coarsity matrix1. Those steps are:

1. Threshold the interest map by setting all C(x, y) below a given threshold T
to zero.

2. Local maxima are then extracted by filtering points which are greater than
all the points in a 3 × 3 neighborhood.

2.2 Implementation Details

Grayscale 2-dimensional image pixels are typically 8-bit unsigned integers and
the Harris algorithm output is in this case a 32-bit signed integer. However, be-
cause of the limitations of the Cell SPU ISA, and in order to guarantee a fair
comparison between Altivec, SSE and Cell SPU, we chose the single precision
floating point format for both input pixels and the output of the Harris operator.
In our implementation of the Harris operator we divided the algorithm into four
computation kernels: a Sobel operator representing the derivative in the hori-
zontal and vertical directions, a multiplication operator, a Gaussian smoothing
operator (w in Eq. 2) followed by a coarsity computation. In our implementation
the k constant in Eq. 4 is fixed to 0 as it does not change the qualitative re-
sults. This leads to the data flow graph given in Fig. 3 which is representative of
typical image processing algorithms as it includes convolution kernels and point
to point operators and in which the Sobel operator convolution kernels (one for

1 As those steps are merely cosmetic, we will not consider them as part of the algo-
rithmic chain.
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horizontal gradient (GradX) and one for the vertical gradient (GradY )) and
the Gauss smoothing kernel Gauss are defined by :

GradX =
1
8

⎡
⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎦ ; GradY =

1
8

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ ; Gauss =

1
16

⎡
⎣1 2 1
2 4 2
1 2 1

⎤
⎦

The convolution kernels computation consist in centering the kernel on a pixel
and computing the cumulated sum of the point to point product of the kernel
elements with the image patch surrounding the central pixel. Hence, the Harris
algorithm can be considered as a memory bounded problem since this kind of
operators are great bandwidth consumers as they consume more elements than
they produce. For this reason we chose to perform memory access optimizations
at several levels of the Cell processor memory hierarchy.

I S

Iy

Ix

M

M

M

Sxx

Sxy

Syy

H K

Ixx

Ixy

Iyy

G

G

G

Fig. 3. Harris algorithm dataflow graph

3 Optimizations and Parallelization Strategies

Implementing a given image processing application on the Cell is not a triv-
ial task as various level of optimization are available. We focus on two kind of
optimizations : optimizations driven by the application domain and optimiza-
tions driven by the underlying architecture. We detail how those optimization
techniques can be applied to the Harris algorithm and how they drive the par-
allelization strategy.

3.1 Signal Processing Optimization

The first optimizations to be applied are Domain Specific. Those optimizations
include kernel separability, kernel overlapping and computation factorization.

Kernel Separability. In our case, we will take advantages of the fact that 2D
convolution kernels used by the Gauss and Sobel operators are separable. A 2D
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convolution kernel is said to be separable if it can be expressed as the outer
product of two vectors Eq. 4, 5 and 6).

Gauss =
1
16

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦ =

1
16

⎡
⎣1

2
1

⎤
⎦ ∗

[
1 2 1

]
(4)

GradX =
1
8

⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦ =

1
8

⎡
⎣1

2
1

⎤
⎦ ∗

[
−1 0 +1

]
(5)

GradY =
1
8

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ =

1
8

⎡
⎣−1

0
+1

⎤
⎦ ∗

[
1 2 1

]
(6)

This reformulation reduces both the number of memory accesses and arithmetic
complexity (see Table 1).

Convolution kernel overlapping. The second step is to take into account how
kernels are applied. Due to overlapping (Fig. 4), there is only one new column of
pixels to load from the memory at each iteration. Thanks to kernels separability,
they are first applied column-wise by computing the vertical filtering. Tempo-
rary results are saved into registers and convolved with the horizontal filter. The
typical loops transformation are Register Rotation and Loop Unrolling (an ex-
ample is given in the next section). The Register Rotation is preferred because
it does not increase the loop body and because no prolog neither epilogue are
required.

jj-1 j+1 j+2 j+3

i

i-1

i+1

jj-1 j+1 j+2 j+3 jj-1 j+1 j+2 j+3

output pixel neigborhood new column

Fig. 4. Convolution kernel overlaping

Reduction and computation factorization. Once the 2D convolution ker-
nels are split into two 1D convolution kernels and the kernel overlapping has
been taken into account, reduction by column is applied to take advantage of
the column reuse. Let us consider the convolution of the Gauss kernel2 with a
3 × 4 pixels matrix (Eq. 7)3.

2 The same technique is also applied to the Sobel operator.
3 Fractions have been removed to simplify the notation.
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[
r0 r1

]
=

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦ ∗

⎡
⎣a0 b0 c0 d0

a1 b1 c1 d1
a2 b2 c2 d2

⎤
⎦ (7)

We have:

r0 =
[
1 2 1

]
∗

⎛
⎝

⎡
⎣1

2
1

⎤
⎦ ∗

⎡
⎣a0

a1
a2

⎤
⎦ ,

⎡
⎣1

2
1

⎤
⎦ ∗

⎡
⎣ b0

b1
b2

⎤
⎦ ,

⎡
⎣1

2
1

⎤
⎦ ∗

⎡
⎣ c0

c1
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Let ra, rb and rc be the reduced registers by column:

ra =

⎡
⎣1

2
1

⎤
⎦ ∗

⎡
⎣a0

a1
a2

⎤
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⎡
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⎤
⎦ , rc

⎡
⎣1

2
1

⎤
⎦ ∗

⎡
⎣ c0

c1
c2

⎤
⎦ (9)

The output r0 can be expressed as:

r0 =
[
1 2 1

]
∗

[
ra rb rc

]
= ra + 2rb + rc (10)

In order to compute r1, the first column is recycled by loading three data (column
d: d0, d1, d2 ), and applying the 1D kernel to get a new reduced register ra (Eq.
11). Thus r1 can benefit of the previous computations (Eq. 12).

ra =

⎡
⎣1

2
1

⎤
⎦ ∗

⎡
⎣d0

d1
d2

⎤
⎦ , (11)

r1 =
[
1 2 1

]
∗

[
rb rc ra

]
= rb + 2rc + ra (12)

Each reduced register is used thrice, thus saving memory accesses and
computations.

The arithmetic complexity of the Harris operators are given in table 1, where
Number indicates the number of calls to each operator when no optimizations
are performed and when kernel separability and overlapping are exploited. We
notice that those simple optimizations reduce the global complexity by 46%.

Temporal Pipelining. In a producer-consumer point of view, there are actually
two kind of operators in the Harris operator, each having a specific memory
access pattern:

– point to point operators, like the Multiplication and the Coarsity operators,
that consume a 1 × 1 data to produce a 1 × 1 data.

– 3 × 3 convolution kernels, like the Sobel gradients (GradX and GradY ) and
the Gauss smoother that consumes 3 × 3 data and produces a 1 × 1 data
(Fig. 5).
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Table 1. Arithmetic operator complexity with/without optmizations

Operator Number MUL ADD Total

Complexity without optimization

Sobel 2 3 5 16
Mul 3 1 0 3

Gauss 3 6 8 42
Coarsity 1 2 1 3

Total - 29 35 64

Complexity with optimizations

Sobel 2 0 5 10
Mul 3 1 0 3

Gauss 3 0 6 18
Coarsity 1 2 1 3

Total - 4 30 34

A B

(1x1) (1x1)

(3x3)

(1x1)
: data

: operator

point to point operator convolution kernel

Fig. 5. Producer-consumer model: memory access pattern for point operator and con-
volution kernel

The Temporal pipelining optimization consists in chaining operators together
by adapting their memory access patterns in order to remove the intermediate
LOAD/STORE instructions.

Figure 6 sums up the various pipelining rules. In rule 1, the output pattern
of the first operator already fit the input pattern. No pattern adaptation is
required before removing the intermediate memory access. For rule 2 : there is
nothing to do for pipelining a 3 × 3 convolution kernel with a point operator.
But permuting point operator and convolution kernel (rule 3) requires unrolling
the first operator in order to adapt the pattern. In that case the first operator
should be unrolled thrice in both dimensions. The last rule is the pipelining of
two 3 × 3 convolution kernels (rule 4). As for the third rule, the first operator
should be unrolled 3 × 3 times. The big difference in that case is that the new
input pattern is 5 × 5, that requires 25 registers just to hold the loaded data.
One possible drawback of this pipelining is spill code if the compiler runs out of
register. The last point about pipelining is to see the Sobel gradient operator as
one operator instead of two: 3×3 points are loaded only one time but consumed
twice to produce two points, one for GradX and one for GradY .

Benefits of Domain Specific Optimizations. The leading idea of all those
optimizations is to reduce complexity. This can be done by both the reduction of
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A o B = A B

= A+B

A o B = BA

= A+B

BoA = 9A Bo

= 9A B

= 9A+B

BoA = 9A Bo

= 9A B

= 9A+B

rule #1: point operator chained with point operator

rule #2: convolution kernel chained with point operator

rule #3: point operator chained with convolution kernel

rule #4: convolution kernel chained with convolution kernel

Fig. 6. Pattern fitting pipelining rules

the number of computations per point (arithmetic transformation like reduction)
and the amount of memory accesses (temporal pipelining).

By combining these two kind of optimizations, there are four versions of the
Harris operator: the basic implementation of Harris with or without arithmetic
optimizations, and the HalfPipe implementation of Harris with or without arith-
metic optimizations. The HalfPipe optimization consists in applying rule #2 to
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Table 2. Complexity of memory accesses pattern, with/without optimizations

Operator Number Input Pattern Number Output Pattern Total

NoPipe version

Sobel 2 3 × 3 2 1 × 1 20
Mul 3 1 × 1 3 1 × 1 6

Gauss 3 3 × 3 3 1 × 1 30
Coarsity 3 1 × 1 1 1 × 1 4

Total 51 9 60

NoPipe with Register Rotation and Reduction

Sobel 1 3 × 1 2 1 × 1 5
Mul 2 1 × 1 3 1 × 1 5

Gauss 3 3 × 1 3 1 × 1 12
Coarsity 3 1 × 1 1 1 × 1 4

Total 17 9 26

HalfPipe version

Sobel+Mul 1 3 × 3 3 1 × 1 12
Gauss+Coarsity 3 3 × 3 1 1 × 1 28

Total 36 4 40

HalfPipe version with Register Rotation and Reduction

Sobel+Mul 1 3 × 1 3 1 × 1 6
Gauss+Coarsity 3 3 × 1 1 1 × 1 10

total 12 4 16

FullPipe version

Sobel+Mul+Gauss+Coarsity 1 5 × 5 1 1 × 1 26
total 25 1 26

FullPipe version with Register Rotation and Reduction

Sobel+Mul+Gauss+Coarsity 1 5 × 1 1 1 × 1 6
total 5 1 6

Harris: pipelining a convolution kernel with a point to point operator: Sobel is
pipelined with Mul and Gauss is pipelined with Coarsity. Finally, one can remove
too the normalization coefficients of Gauss and Sobel 1/16 and 1/8 that are usu-
ally used in image processing to normalize the output of these kernels to get the
same magnitude as the input, but that is, in our case, useless as the threshold
performed is relative to the maximum extracted value. The memory complexity
of the operator is given in table 2 where Number indicates the number of Input
Pattern and of Output Pattern of each operator.

3.2 DMA Related Optimizations

DMA transfers are the main issue when developing image processing applications
on the Cell processor. The developer must care about certain considerations when
performing data transfers from main storage to local stores, or betweens local
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stores. The first parameter to consider when transferring data to the SPE is the
size of the transfers. We measured the bandwidth of data transfer size varying
from 8 to 16384 bytes which is the maximum size that can be issued by a single
DMA request for the Cell MFC. The data must be transferred by 16 KB chunks
to have a full bandwidth on the EIB, smaller transfers are done with a reduced
bandwidth (Tab. 3). The internal bus bandwidth is also related to the number
of concurrent transfers, as that the EIB can handle up to 12 parallel transfers
(3 per ring but only 8 without potential collision (as explained in section 3).
The second parameter to consider is the physical proximity (aka SPE affinity),
between SPEs when performing an inter-SPE transfers. This parameter can not
be controlled by the user as the task of scheduling tasks on SPEs is done by the
kernel scheduler. Finally, data being transfered must be contiguous in memory4.
Those limitations have a big impact on the tiling strategy. As local store has
only 256 KB to hold both code and data, large amounts of data being processed
have to be split into tiles which size is compatible with the memory available on
the SPEs and compatible with the maximal size of a DMA transfer.

Table 3. Aggregate bandwidth for inter-SPE DMA transfers with 8 SPE transferring
concurrently on a QS20 Blade

Size (B) Agg BW (GB/s) Size (B) Agg BW (GB/s)

8 0.92 512 47.92
16 1.86 1024 72.57
32 3.72 2048 86.48
64 7.42 4096 94.09

128 14.87 8192 97.72
256 27.37 16384 104.10

3.3 Parallel Implementations

In all the following figures, S refers to the Sobel operator, M to the multiplication,
G to Gauss and H to Harris. The gray rectangles represents an SPE unit. The
source image is divided into p regions of processing (RoPs), p being the number
of available SPEs. Each Rop is then split into tiles. The operators consumes
input tiles and produces output tiles. We assume that tile width equals RoP and
image widths in order to avoid transfers of non contiguous memory regions.

Conventional SPMD. The conventional SPMD programming model (Fig. 7)
equally divides the image into 8 RoPs, mapped on the SPEs (in the figure, only 4
SPEs are drawn to get a smaller figure, but 8 SPEs are actually used). All SPUs
execute the same program/code.The PPU lets the SPUs run one operator on the
whole image before proceeding with the next operator. For example, it will not
issue the command for Multiplication operator until all the SPEs have finished

4 Such DMA transfer are said to be mono-dimensional or 1D.
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Fig. 7. Conventional SPMD model
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Fig. 8. Conventional pipeline model

performing the Sobel operator and the whole of the image has been transfered
back into the MS.

Conventional Pipeline. This implementation of the algorithm (Fig. 8) con-
sists in mapping the graph in pipeline fashion, where the RoP consists in the
entire image. This way, we considerably serialize the algorithm, and maximize
the amount of transfers between SPEs. Assuming that most of the transfers are
performed serially, the contention rate on the bus is minimized. The transfers in
this version are characterized by top and bottom borders, added for the convo-
lution kernels (neighborhood pixels). Left and right borders where removed by
performing registers rotation.
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MS HG

MS HG

MS HG

MS HG

Fig. 9. Half chaining model on 2 SPEs

Half Chaining: 2 SPEs. In this version (Fig. 9), we merge two successive
operators in pairs, the Sobel with the Multiplication, and Gauss with Harris.
Thus, we divide the graph into two threads, that can be duplicated four times to
fill in the entire set of SPEs. Unlike the previous version, and considering that
there are four threads running concurrently in each step, the EIB bandwidth
can be considerably affected because of the important amount of concurrent
transfers.

Half Chaining + Half Pipeline. The difference that we can note here is that
in opposition to the previous model, the Sobel and Mul operators are chained in
order to avoid the time loss in LOAD and in STORE instructions residing between
these two steps. Therefore, the number of cycles per pixel can be considerably
improved since we know that the memory instruction latency equals 6 in the
SPU [9].

Full Chaining + Half Pipeline: 1 SPE. By chaining all the operators
into the same SPE, this implementation not only allows removing LOAD/STORE
instructions between operators, but also improves the parallelism rate of the
algorithm, since we can split the input image into 8 slices and use one SPU to
perform all the operations.
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MS HG

MS HG

MS HG

MS HG

Fig. 10. Half chaining + half pipeline on 2 SPEs

3.4 Models Comparison

Fig. 12 gives the comparison between the different implementation models of the
Harris algorithm on the Cell processor. The first observation that can be made is
that the conventional pipeline version gives the worst performances, which was
expected: this version is deliberately serialized and does not fully exploit the
TLP (Thread Level Parallelism) offered by the target architecture. The other
observations match our expectations:

– Our memory optimization techniques improve global performances as the
fastest implementation is the Half pipeline+Full chaining version where op-
erators are pipelined and chained inside an SPE.

– The versions where inter-SPE transfers are used, have good performances as
the No pipeline+Half chaining model runs faster than the SPMD model
where data transits only on the external memory bus. In addition Half
pipeline+Half chaining is almost as fast as the best version, which proves
that inter-SPE bandwidth is comparable to local LOAD/STORE bandwidth.

3.5 Tile Size Influence

As stated in [11,10] the size of transfered data blocks has an influence on the
bandwidth on the EIB. In our application domain bandwidth performance is
critical for the overall performance of an algorithm since they are characterized
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Fig. 11. Half chaining + half pipeline model on 1 SPE
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Fig. 12. Comparison benchmark for implementation models: The left figure shows
results obtained in [17]

by a large transfer/computation ratio. Fig. 13 states that the best cpp is reached
when transferring 16 KB tiles which can be explained as follows:

– 16 KB is the transfer size that guarantees a maximum bandwidth on the EIB.
– Big tile size reduces the amount of reloaded data when performing convolu-

tion kernels.
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Fig. 13. Influence of transfer size on the performance, full pipeline model 1 SPU : The
left figure shows results obtained in [17]

3.6 Performance Analysis

The comparison of global performance of the different implementation models is
not sufficient to prove that memory optimizations are the main factor for per-
formance improvement. In order to give a more accurate analysis, we performed
time measurements at the SPU level where we evaluated the gain provided by
merging computation kernels and performing inter-SPE communication. One
can note that the Conventional Pipeline and SPMD models are not considered
because their were implemented just to serve as a reference and can not be com-
pared with the other models as it does not benefit of most of the optimizations
techniques that we cited above.

Table 4 shows on the one hand the clock cycle count for the Halfchain version
where two kernels are decoupled and an intermediate LOAD/STORE operations are
required between them and on the other hand the Halfchain+Halfpipe version
where the two kernels are merged (the o operator denotes the function composi-
tion (merging) operator) and the intermediate LOAD/STORE are removed. As we
see in Tab. 4 the speedup provided by this code transformation reaches ×7.2.

The other optimization that we performed which consists in replacing inter-
SPE DMA by local LOAD/STORE instructions aims to demonstrate the benefit of
keeping data inside the local store as the maximum theoretical bandwidth is 51.6
GB/s for a LOAD/STORE in the LS and 25.6 GB/s for an inter-SPE GET/PUT
DMA operation. One can note the the maximum bandwidth for LOAD/STORE in
Tab. 5 computed assuming that there is 1 instruction issued each cycle (pipelined
execution) for a clock frequency of 3.2 Ghz. The same assumption was made
in [10] for the LS bandwidth measurement. On the other hand, we used the

Table 4. Operator fusion comparison

Model Operator Cycles Count Speedup

Halfchain Sobel+Mul+LOAD/STORE 119346 x
Halfchain Gauss+Coarsity+LOAD/STORE 188630 x

Halfchain+Halfpipe (Sobel o Mul)+LOAD/STORE 16539 7.2
Halfchain+Halfpipe (Gauss o Coarsity)+LOAD/STORE 504309 3.5
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Table 5. Average bandwidth comparison between models

Model Communication Type Average Bandwidth GB/s

Halfchain inter-SPE DMA 6.95
Halfchain+Halfpipe LOAD/STORE 51.6

IBM Performance Debugging Tool (PDT) to measure the average effective DMA
bandwidth the result is given in Tab. 5. We observe that there is an order of
magnitude between the two transfer rates which explains the difference in global
performance between Halfchain and Fullchain versions. The measurements that
we performed give a more precise view of the factors that influence the global
performance of the different implementations. Merging computation kernels, re-
duces the memory complexity by maximizing the reuse of register to perform
intermediate computations. However, this optimization should be used with care
as there is a limited amount of available register to store intermediate results
(128 for the SPU). On the other hand, keeping data in the local store whenever
it is possible is a good practice as the LOAD/STORE bandwidth is higher than
inter-SPE DMA bandwidth. This last optimization increases data locality and
thus global performance but is limited by the available memory space (256 KB
for the SPE local store).
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Fig. 14. Performance comparison between SPU, Intel Xeon and PowerPC 970

3.7 Comparison between the SPU and General Purpose Processors
(GPP) with SIMD Extensions

Comparing Cell performance with GPP implementation is interesting as the
main difference is the memory management DMA versus cache. Fig. 14 provides
the cpp of Harris half-pipe version running on 1 thread on 1 core on a PowerPC
970 running at 2.5 Ghz and a Core2Duo Xeon 2.5 Ghz at , with Altivec or SSE
SIMD instructions. We can note that GPPs become inefficient when data can
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not fit in the cache for large image size due to cache replacement policy. Besides,
this phenomenon does not occur with DMA controlled transfers : the image size
has no impact on performance. This last characteristic is very interesting for
computer vision systems as the execution time can be predicted accurately and
therefore the system can satisfy a real-time constraint.

3.8 Discussion on Benchmarking Methodology

There are several reasons that justify the difference in performance results ob-
tained above and those in [17]:

1. Since we adopted a separated source compilation (one source for the PPU
and one for the SPU), we were forced to change the compiler from IBM
XLC (ppu-xlc, spu-xlc) to GCC (ppu-gcc, spu-gcc) as in the last release of
the Cell SDK (3.0), the XLC compiler became exclusively single-source. This
first point can explain the difference in global performance as some compiler
optimizations can be performed by XLC and not by GCC and vice versa.

2. The second reason concerns measurement methodology. In the [17] we mea-
sured the cycles count in the PPE using the time base counter, with two
versions of the code: the first one including computation and the overhead
related to thread creation and synchronization and the other one without
computation. Then we subtracted the second from the first to get the compu-
tation duration. These measures were performed over several runs, and the
mean value was taken. However, data presented a great sensitivity to image
size. In this paper we took a more representative case were we consider the
input data coming from a continuous stream and we make the measure on
the PPE with an additional outer loop in the SPEs to process more than one
image. This leads to a thread overhead becoming negligible when compared
to the pure processing time. As this time was subject to big variation in the
[17] we chose this method to attenuate its effect.

3. The last reason is about the computation tiles. In [17], the tile size is fixed
to 16K and its width w always equals the image width W but its height
h varies with W , typically h = 16K

w . As stated in [1] h has an influence
on the amount of reloaded data for a tile (when h increases this amount
decreases), we decided to adopt a new measurement methodology where we
consider a 16K tile with h and and w being constants (in our case h = 16
and w = 256) in order to eliminate this perturbation. Hence, the cpp is less
sensitive to image size, which is more coherent as the tile size is a constant
whatever the image size is. Table 6 gives the percentages of reloaded data
with different couples of (h, w). From these values, we conclude that the
amount of reloaded data explains the great sensitivity to image size for the
left histograms in Fig. 12 and Fig. 13.

4 Scalability Measure on the Cell Processor

In this section, we evaluate the scalability of the Cell processor by both measur-
ing and modeling Speedup and Efficiency metrics. The measurements provide
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Table 6. Illustration of the difference of the amount of reloaded data depending on
the tile height for the Halfpipe+Halfchain model

Image Size H × W Tile Size h × w Total Reload Ratio %

256 × 256 16 × 256 11
512 × 512 8 × 512 20

1024 × 1024 4 × 1024 33

informations on how the Cell architecture scales to the Harris algorithms when
varying the number of used SPUs. Modeling those metrics allows the prediction
of scalability when considering future Cell generations with more accelerator
units (SPUs).

Amdahl’s Law. In the basic formulation of the Amdahl’s law the execution
time of any algorithm on a sequential machine is divided into two parts: the time
to execute the pure sequential part of the code Seq0 and the time to execute
the part of the code that is parallelizable Par0. For a machine containing p
processors the execution time will have the following expression:

T (p) = Seq0 +
Par0

p
(13)

Driscoll and Daasch Reformulation. The last formulation is not appropri-
ate to predict performance on the Cell processor. The sequential portion of the
code consisting in the cost of the thread creation, communications and synchro-
nization of the threads. These parameters depend on the number of processors,
namely they increase when the number of processors increases. The parallel por-
tion of the code is also a function of p. These assumptions was made in [4] by
Driscoll et al. We concluded after measurements that :

Seq(p) = asp + bs (14)

and
Par(p) = app + bp (15)

Where as, bs, ap, bp are constants that we measured in our experiments. This
leads to the following expression of the execution time:

T (p) = asp + bs +
app + bp

p
= asp + bs + ap +

bp

p
(16)

One of the main characteristics of parallel architectures that reflect there per-
formance is their scalability. Scalability metrics show how the system adapt to
a certain workload when increasing the number of processing units. Efficiency
and Speedup are one of the basic metrics of scalability, they are defined by the
following expressions:

E =
Ts

pTp
(17)



Parallelization Schemes for Memory Optimization on the Cell Processor 197

S =
Ts

Tp
(18)

Where Ts is the execution time on one processor , p the number of processors
and Tp is the execution time on p processors. If we replace Tp and Ts by the
expression in Eq. 16 we find the following expression of the efficiency:

E =
as + bs + ap + bp

asp2 + (as + ap)p + bp
(19)

This leads to an efficiency decreasing when p increases. The expression of the
speedup is of the form :

S =
(as + bs + ap + bp)p

asp2 + (as + ap)p + bp
(20)

Which is also a decreasing function of p. One must know that that the expressions
above was evaluated when considering one input image for the algorithm.

When processing an image stream which is typically captured by a video
camera, we can consider the cost of thread creation and synchronization (Seq(p)
in the formulas) negligible comparing to the parallel time (computation). We
derive equations 21, 22 and 23 assuming that Seq(p) = 0

T (p) =
Par(p)

p
= ap +

bp

p
(21)

E =
ap + bp

app + bp
(22)

S =
(ap + bp)p
app + bp

(23)

These expressions gives a speedup increasing with p until a saturation value of
(1 + bp

ap
) and an efficiency decreasing with p but slower than in the previous

case. As we observe in Fig. 15 and Fig. 16 the measured scalability metrics
matches our model as speedup increases with p and efficiency decreases with p.
The measurements were performed with varying the number of used SPUs and
the execution time one SPU served as the sequential time Ts (T (p = 1)).

From the experiments above we can conclude on how the Cell processor scales
to our application which is a data-parallel/memory-bounded problem by making
this two assertions:

– The current Cell processor with eight SPUs has a good scalability as the
Speedup is close to the number of the working SPUs and Efficiency is close
to 1.

– In the future releases of the Cell where there would be more SPUs, scalability
will not be as good as we measured because an increasing number of cores
leads to the decrease of Efficiency and thus to a saturating Speedup.
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Fig. 15. Speedup measure for a stream of 1000 images of size1024 × 1024

Fig. 16. Efficiency measure for a stream of 1000 images of size1024 × 1024

5 Conclusion and Future Work

In this paper, we investigated how a sample image processing algorithm - the
Harris corner detector - can be efficiently implemented while taking into account
the various architectural particularities of this processor. We explore, contrary
to previous works, other models than the simple SPMD parallelization tech-
nique. We explored a variety of parallelization schemes that took advantage of
the main architectural features of the Cell: a DMA based, distributed mem-
ory. The different optimization techniques, Domain Specific or those related to
the Cell architectures were analyzed. By combining each step of our algorithm
in various manners, we demonstrated that chaining and pipelining operators
had a large impact on global performance of the application. Our schemes were
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benchmarked on the Harris corner detector because it features both point-to-
point and convolution operations, making it a realistic sample of more complex
image processing library. We also proposed a model of efficiency and scalabil-
ity for the Cell processor in order to be able to predict performance of future
releases of the machine with a greater number of SPEs. Future works includes:
a deeper analysis of the relation between tiles shape and size and the overall
algorithm performance. Other optimization techniques such as multi-buffering
will be explored in the future.
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Abstract. The high performance potential of an FPGA is not fully
exploited if a design suffers a memory bottleneck. Therefore, a mem-
ory hierarchy is needed to reuse data in on-chip buffer memories and
minimize the number of accesses to off-chip memory. Buffer memories
not only hide the external memory latency, but can also be used to
remap data and augment the on-chip bandwidth through parallel access
of multiple buffers. This paper discusses the differences and similarities
of memory hierarchies on processor- and on FPGA-based systems and
presents a step-by-step methodology to construct a memory hierarchy
on an FPGA.

1 Introduction

FPGAs (Field Programmable Gate Arrays) offer a high computational power
thanks to the massive parallelism available and the huge on-chip bandwidth.
However, the total on-chip memory size is fairly small. Usually an off-chip mem-
ory is needed. The bandwidth to this external memory may become a bottleneck,
especially for data-intensive applications, such as video coding and image pro-
cessing. Typically, this memory is made in a technology, e.g., SDRAM, with an
indeterministic latency and with a low bandwidth if transfers are not done in
burst mode. This indeterministic latency may also be caused by the fact that the
main memory is shared with other cores on the FPGA. To reduce the bandwidth
requirements a memory hierarchy is needed. If frequently used data is stored in
on-chip buffers, the off-chip memory accesses can be reduced and grouped into
bursts.

Using multiple parallel accessible memory banks (Fig. 1(a)) increases the
available off-chip memory bandwidth. On the other hand, using multiple on-
chip buffers increases the on-chip memory bandwidth (Fig. 1(b)). If the reuse
of buffered data is high enough, i.e. the transfers between external memory and
on-chip buffers are within the bandwidth constraints, the latter solution is bet-
ter since the accesses to on-chip memory are faster and more power efficient. If
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Fig. 1. Multiple memory banks (a). Single memory bank with multiple on-chip buffer
memories (b).

the use of multiple external memory banks is unavoidable, a memory hierarchy
for each bank should be considered and the memory access patterns should be
optimized to use these hierarchies.

In processor-based systems a memory hierarchy consists of caches or scratch-
pad memories [1]. This is a fixed memory hierarchy and the application code has
to be optimized to optimally use this given memory structure, e.g., by doing loop
transformations to increase the data locality, i.e. to bring accesses to the same or
neighboring data elements closer together in time [2,3]. On an FPGA the designer
has to construct the memory hierarchy using the available memory blocks. This
offers the freedom to build an application-specific memory hierarchy, i.e. to also
adjust the memory system to the application and not only the application to
the memory hierarchy. An in-depth comparison between memory systems on
processors and on FPGAs is presented in Sect. 2.

This paper does not focus on ways to improve the locality of data accesses or
map data to memories. Instead, we focus on hardware implementation aspects of
building a memory hierarchy and the impact of choices made by the way data is
mapped onto buffers. The influence of address expressions on circuit complexity
is studied in Sect. 3, which offers many optimization opportunities.

A step-by-step methodology is given to insert a memory hierarchy into a
system (Sect. 4). As a case study an implementation of an Inverse Discrete
Wavelet Transform (IDWT) will be extended with a memory hierarchy and
integrated in a video decoder on an FPGA (Sect. 5).

2 Comparison of Memory Systems on Processors and on
FPGAs

The target of using memory hierarchies is the same for processors and for ar-
chitectures built on FPGAs: storing frequently used data in buffer memories
close to the functional units to minimize the data access times. In both cases
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the application should be adjusted to benefit from such a memory system using
techniques such as register promotion [4] or loop transformations [2,3] to improve
the temporal and spatial locality. However, there are many differences caused by
implementation aspects.

Processors have a fixed memory hierarchy consisting of a main memory, caches
at several levels and one or more register files (Fig. 2). The sizes of all the mem-
ories are fixed and applications need to be adjusted to fit these sizes. Caches
typically have a replacement policy so programmers should not care about ex-
plicit control of transfers between main memory and caches. A disadvantage is
that the choice of data that is overwritten by newly fetched data is not always
optimal for the given application. Scratch-pad memories may offer a better so-
lution when the data accesses are known at compile time [1,5]. Prefetching [6] of
data may hide external access times by overlapping them with computations. In
cache-based systems a hash function is typically applied to the addresses which
may cause irregular problem size / performance characteristics caused by (e.g.
64K) aliasing [7].

FPGAs have no standard memory hierarchy. They contain lots of memory
blocks which have to be combined to build a custom memory system (e.g.
Fig. 3). There are many similarities with scratch-pad memory based systems:
user-defined explicit data transfers, burst transfers (cf. prefetch) between (ex-
ternal and internal) memories in parallel with computations, . . . .
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However, there are also lots of differences: processors typically have a vertical
memory hierarchy while on an FPGA the memory system can be made more
horizontally, i.e. placing several memories next to each other on a certain level
such that they can be accessed in parallel by the functional units. FIFOs and
local memories may be used, next to registers, to store intermediate results of
functional units and pass data between them. As such there is a tremendous on-
chip bandwidth. If the intermediate data sets are too large, part of it has to be
stored off-chip, passing through I/O buffers which aid in grouping the memory
transfers into bursts.

Due to the limited size of memory blocks on FPGAs, larger buffer memo-
ries are constructed by combining multiple memory blocks (Fig. 4(a)). These
memory blocks can also be accessed independently. This allows parallel accesses
to the buffers which may reduce the execution time (number of clock cycles)
(Fig. 4(b)). The usage of dual-port memories allows to transfer data between
the main memory and the buffers in parallel with the operation of the func-
tional unit, and to use different clock domains for both tasks. Also the fact
that dual-port memories can have different word sizes at both ports can be
exploited.

Memory blocks Memory blocks

(a) (b)

Fig. 4. Multiple memory blocks combined with (de)multiplexers to form larger buffers
(a) can be accessed in parallel (b)

We can conclude that because of the similarities with scratch-pad based sys-
tems many of the optimizing transformations developed for processor-based sys-
tems also have to be applied for FPGA-based systems. For example, in the work
of Hu et al. [3] the data sets used in each loop of a loop nest are determined
and a data reuse analysis leads to the construction of a data reuse tree. Nodes
of this tree representing data subsets (copy candidates) are then mapped to the
scratch-pad memory according to the size constraints. This method could be ex-
tended to application-specific memory systems where different copy candidates
may, e.g., be mapped to different memories with sizes fit to the size of the copy
candidate (of course within resource constraints).

The additional benefits of custom-built memory systems need additional op-
timization techniques. Next to this, automation of the construction of a memory
system is needed. A methodology for the construction of a memory hierarchy
will be presented in Sect. 4.
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Table 1. Influence of address expressions on circuit complexity for the Sobel Edge
Detection on an Altera Stratix EP1S25F1020C5. LE = number of Logic elements,
DSP = number of DSP blocks (9-bit equivalent), Mem bits = size of on-chip memory.
Cycles and execution time (T ) for an image of 320×320 pixels. A one cycle access time
to external memory is assumed.

Design Address LE DSP Mem bits f(MHz) Cycles T (ms)

1 C = port 766 7 0 76.52 915873 11.97
2 C′ = 512 675 0 0 112.45 915873 8.14

BAc
3 C = port 733 0 0 114.27 916193 8.02
4 C′ = 512 668 0 0 112.64 916193 8.13

FIFOs
5 C = port 737 6 8192 87.46 714261 8.17
6 C′ = 512 636 0 8192 124.08 714261 5.76

FIFOs 7 C = port 701 0 8192 116.62 714580 6.13
BAc 8 C′ = 512 622 0 8192 113.66 714580 6.29

3 Influence of Address Complexity on Circuit Complexity

The way memory addresses are computed has an influence on the circuit com-
plexity of an implementation. Consider for example an image processing system
that reads a 2-dimensional array A. The typical way to store this array leads to
address expressions with a multiplication:

Address (A(i, j)) = BA + i × C + j ,

with BA the base address and C the number of columns. If C is not a power
of 2 or C is a parameter, which only receives a value during execution, this is
an expensive operation. Without loss of generality we will further assume that
BA = 0 (Fig. 5(a)).

A straight-forward simplification is to align all lines to a multiple of a power
of 2. This is shown in Fig. 5(b), where C′ is the smallest power of 2 for which
C′ ≥ C, if C is known, or C′ ≥ Cmax if C is a parameter with Cmax as the
maximal possible value. This leads to an increase of the memory size with a factor

A(0,0) A(0,C−1) A(1,0)
A(2,0)A(1,C−1)

A(2,C−1)

C

C’

... ...

...

...

...

A(0,0)
A(1,0)
A(2,0) A(2,C−1)

A(1,C−1)
A(0,C−1)

C

C’

...

...

...

...

(a) Address (A(i, j)) = i × C + j (b) Address (A(i, j)) = i × C′ + j

Fig. 5. By inserting empty space into the memory, address expressions can be simplified



206 H. Devos et al.

C′/C but simplifies the address calculation complexity.1 Quantitative figures
for an implementation of the Sobel Edge Detection algorithm can be found in
Table 1. Since here the goal of the experiments is to study the influence of address
expressions, no buffer memories are inserted yet and a one cycle access time to
memory is assumed (as if the memory was on-chip). In design 1, DSP blocks
are utilized to implement the multiplication which is eliminated by using C′ in
design 2.

If an image is processed row by row (with some reuses of the lines above and
below) the expensive multiplication can also be eliminated by incrementing the
row base address with the number of columns at each row iteration:

Address (A(i, j)) = Address (A(ic + ios, j)) = BAc + ios × C + j ,

where ic is the iterator pointing to the current row, and BAc is the address of
the first element of this row (BAc = ic × C). Since BAc is augmented with C
every row iteration, no multiplication is needed. ios is a small constant used to
access the surrounding rows. In the example of the Sobel Edge Detection ios ∈
{−1, 0, 1} which does also not need a multiplier. As in the previous paragraph C
may be replaced with C′. The corresponding designs are found in Table 1, designs
3 and 4. Note that the designs using incremental address calculation (3 and 4)
are faster than those not using it (1 and 2). However, this is not always the case.
The designs 5–8 are similar to 1–4, but use two FIFO buffers to store the two
previously accessed image rows. This reduces the number of external memory
accesses with a factor 3 and changes the influence of the address computations.
Now, the fastest design (6) does not use incremental address calculation.

Accesses to on-chip memory have to be fast since they limit the speed of
the functional unit. Therefore, the address expressions for these accesses have
to be kept simple. Address calculations for off-chip memory accesses can be
spread over several clock cycles, since only one evaluation is needed for an entire
burst transfer. The methods discussed above to simplify addresses for off-chip
memory are also applicable for on-chip memory. Since until now we assumed a
one-cycle access time as if on-chip memory was used, we expect similar perfor-
mance improvements for on-chip address calculation. A difference is that multiple
addresses off-chip will be mapped to the same buffer memory location.

Only a few lines can be stored in a buffer. If this number of lines R’ is also
set to a power of 2 and the mapping of lines of the image to lines of the buffer
is done in a circular way the address becomes

Address (A(i, j)) = (i mod R′) × C′ + j

= i(r − 1 downto 0) & j , with R′ = 2r . (1)

As a result, only the least significant bits of i have to be generated. Note that
the addition is in fact only a concatenation, denoted with “&”.

Using C′ instead of C now sacrifices on-chip memory. In the introduction,
the limited amount of on-chip memory was mentioned as the motivation for
1 Note that when C is only known at execution time and Cmax is a power of two (as

is often the case) no extra memory is needed.
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using buffer memories, At first sight sacrificing memory does not seem a good
option. However, the scale differs with an order of magnitude. For a typical image
processing application an entire image does not fit into the memory. The largest
subset of an image that is worth storing on-chip is in the order of a few lines
(e.g., corresponding to the data reuses of a sliding window operation), which can
be stored easily in the FPGA RAM blocks. This leaves room to sacrifice some
memory space as long as the reuse set (these few lines) can be stored. Saving
memory to store more lines has little advantage2 since the larger reuse set, i.e.
one image, will never fit on chip.

These methods differ from the address optimization techniques used when tar-
geting processor-based systems (cf. Sect. 6). For processors, modulo operations
have to be avoided to save instruction cycles. On FPGAs modulo operations
by powers of two reduce the area and increase the maximal clock speed, which
cannot be altered on processors.

4 Step-by-Step Construction of a Memory Hierarchy

Many high-level synthesis tools generate one memory for each array in the input
code. Also when building a design manually, it is easier to start the design process
with multiple memories and only construct a memory hierarchy with one main
memory later on. Therefore, we present a step-by-step design flow to transform
a system with multiple memory banks, similar to the systems in Fig. 1(a) and
7(a), to a system with one external memory and on-chip buffers, similar to the
systems in Fig. 1(b) and 7(c). Here, an overview of the flow is given. A detailed
elaboration is found in the case study in Sect. 5.

1. On-chip memories are added to contain intermediate data sets that are small
enough to fit in them. This includes techniques such as register promotion.
If results produced by one operation are consumed by another operation in
the same order, FIFO buffers can be used.

2. The address expressions are optimized as described in Sect. 3. At this point
synthesis is faster than after the entire memory system is constructed. Now,
all addresses point to external memory but later on most of them will access
on-chip buffers.

3. Buffers are inserted between each external memory and the functional unit.
The size is kept as large as the external memory itself so that no remapping
of data and changes in address expressions are needed. In a later step the
buffers will be reduced to actually fit on chip. A single copy transaction (for
each memory/buffer pair) of all data to the buffer at the start of execution
and a single transfer to the external memory at the end suffices for correct
behavior. Separate I/O modules take care of these copy transactions. In the
next step the transfers will be partitioned into smaller steps.

2 Having the capacity to buffer more lines may be used, e.g., to enlarge the burst
transfers or tolerate greater variance in the transactions to the external memory.
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4. The two large copy operations are split into smaller prefetch and store oper-
ations, such that at each moment only a small amount of data in the buffers
is alive (= transferred and still needed). Synchronization between the data
transfers and the operation of the functional unit ensures correct behavior.
For this the technique of Hu et al. [3] to extract copy candidates can be used.

5. The data in the buffers is remapped such that the buffers can be resized and
fit in on-chip memories. A hash function (cf. caches) translates the indices
of the arrays into the new address expressions. The I/O modules take care
of translations between on- and off-chip addresses, similar to the direct and
strided mapping supported by the Impulse memory controller [8].

6. If desired, buffer memories may be split into smaller memories to allow par-
allel access (Fig. 4) and reduce the clock cycle count.

7. The external memories are merged to form one main memory. Base addresses
are added to the addresses used in the prefetch and store transfers. The I/O
modules are all connected to the same memory. Arbitration between the
transfers is needed to avoid conflicts.

By doing the transformations in small steps, errors can be detected more easily
and faster, since simulation is possible at any time. To increase the reusability, a
modular architecture is used. When transferring the design to another platform
only the I/O modules have to be adapted. By using hash functions instead of
simply adapting the address expressions, the data mappings can be changed in
an easier way, e.g., when a device upgrade offers the option to use more on-chip
memory. This does not result in an area overhead since bits not used by the hash
function will be optimized away by the synthesis tools (cf. (1)).

5 Case Study: System Integration of an IDWT

The 2-D Discrete Wavelet Transform (DWT) and its inverse (IDWT) are com-
monly used in image processing and compression applications, e.g., JPEG-2000.
They contain operations commonly used in many other image processing applica-
tions, such as sliding window operations (2-D FIR filter), up- and downsampling,

HWSW

schedule
optimizations

CLooGVHDL

Steps2processVIM−scripts

loop control
loop control
entity

statements control
+ data path

execution
steps

statement
definitions

Loop Xforms

Fig. 6. Tool flow used to generate the IDWT implementation
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mirroring at the borders, . . . . Therefore, results similar to those reported in this
section are expected for many other image processing applications.

We will start from a design without memory hierarchy, but with a data locality
optimized by loop transformations. It has been semi-automatically generated
using the design flow shown in Fig. 6 as described in [9] and summarized in this
paragraph. A software implementation in C is split into statement definitions and
the loop control structure. Loop transformations are applied on the latter using
the URUK/WRaP-IT tool suite [10] to improve the spatial locality, resulting
in a so-called line-based variant. With CLooGVHDL a loop control entity is
generated. The statement definitions are translated to a VHDL syntax using
VIM-scripts [11].3 The scripts translate array accesses into memory accesses with
a one-cycle access time. The result is a list of execution steps for each statement.
On this, schedule optimizations are done (also integrated into the scripts). The
Steps2process tool generates a finite state machine to execute the statements
based on the schedule specifications. The architecture of the generated design is
shown in Fig. 7(a) and synthesis results are found in Table 2.

The fact that software code equivalent to the hardware is available can be
exploited for the construction of a memory hierarchy as shown below.

5.1 Adding New Hardware Structures

The design tools mentioned above will be reused for the extension of the archi-
tecture with a memory system. New hardware constructs are inserted one after
another, iterating over the following steps:

First, C preprocessor macros that simulate the behavior of the new construct
are written. For example, a push and a pop macro to write to and read from
a FIFO buffer. In C this is simulated by accessing an array and incrementing
a counter. A VHDL block that corresponds with the new type of construct
is written. Procedures or functions that correspond to the functionality of the
C macros are written. For a FIFO this is the instantiation of FIFO entities
and writing the VHDL procedures push fifo and pop fifo that access such a
structure. Next, the VIM-scripts are extended to replace the C macros with the
corresponding VHDL procedure or function calls. This work only has to be done
for the first FIFO (or other new kind of block). Additional FIFOs reuse these
constructs.

After the equivalence of the C and VHDL constructs and the mapping from
the first to the second are tested, the new C macro can be used in all C code,
where desired. Finally, the generated VHDL is tested and the impact of the new
hardware structure may be examined after synthesis. Where possible optimiza-
tions are done. For example, removing unused data structures or doing schedule
optimizations. After the introduction of the FIFOs more data elements can be
accessed in parallel, which allows to shorten the schedules. These optimizations
can be included in the scripts.

3 This is only a temporary solution. Plans are to integrate a C parser. This is only an
implementation issue and does not influence the methodology.
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This approach is similar to the way many high-level synthesis tools work.
They extend C with macros that correspond to predefined hardware structures.
Here, the difference is that new macros, not predefined by such tools, such as
queues for prefetch requests, can be added and used with little effort.

5.2 Inserting Buffers

The extension of the design from Fig. 7(a) to (b) is done step-by-step following
steps 1 through 6 listed in Sect. 4. For each new type of construct a flow as
described in Sect. 5.1 is used.

1. Four FIFO buffers are inserted to transfer data from the vertical to the hori-
zontal wavelet transformation. This halves the accesses to the main memories
Mem 0 and Mem 1. Since the FIFO buffers can be accessed in parallel with
the external memories the execution time is decreased (Table 2).

2. Since the dimensions of the input image are run-time parameters and Cmax =
512 we align al image lines to a multiple of 512. By using a function call
for the address calculation the address expression can easily be modified
afterwards.

3. Mem 0 is only used for input values so applying step 3 of our methodology
is straight-forward, i.e., one copy transaction at the start of execution to a
buffer as large as Mem 0. Mem 1 is used for intermediate results. It passes
the result of one level of the wavelet transform to the next. Therefore, copy
operations are needed at the beginning and end of the execution of each
wavelet transformation level.

4. The copy operations are split into transactions of one line of an image or
wavelet sub-band. A block transfer system copies data from the main mem-
ories to and from the buffers. A queue of prefetch and store requests is kept
in the Prefetch(/Store) Requests entities. A new fetch request is added a few
row iterations before the data is needed. Synchronization points are used to
ensure that when a line in one of the buffers is accessed, all transfers between
that line and the main memory are finished. Therefore, if the system is not
bandwidth limited, only in the beginning time is spent waiting for data. A
block transfer is specified by the source and target address and the amount
of data to be copied.

5. The buffers with sizes equal to the original memories are reduced to the line
buffers B1(16 lines), B2(8 lines) and B3(8 lines). The address expressions
referring to the buffer memories are extended with modulo expressions.

6. The line buffers B1 and B2 are split into parallel accessible buffers of one
line to increase the on-chip bandwidth (cf. Fig. 4). This results in a large
reduction in the number of clock cycles as shown in Table 2. The design in
Fig. 7(b) is reached.

For the Stratix S60 the clock speed is increased after adding the memory hierar-
chy, thanks to the simplification of the address expressions. The clock speed on
the S25 is lowered due to congestion in the FPGA routing (area usage of almost
70%) but would be even worse without the address simplifications.
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Table 2. Synthesis results of the IDWT with and without memory hierarchy. CIF
resolution = 352 × 288 pixels. LE = Logic Elements. Results obtained with Altera
QuartusII v6.1 for the Altera Stratix EP1S25F1020C5 (S25C5) and EP1S60F1020C6
(S60C6, lower speed grade). The number of cycles and frame rate assume a one cycle
(1/fmax) access time to the main memories. With an SDRAM, this would be the
performance when a cache running at fmax is used and no misses occur (i.e. the latency
to the SDRAM is hidden, e.g., by prefetching). As a result this gives no measure of
the performance improvement created by hiding the memory latency or reducing the
number of off-chip accesses, but only of the improvement caused by the parallelism
introduced by the memory system.

Archi- LE Buf Mem DSP bl. Cycles fmax (MHz) Frames/s (CIF)
tecture (bit) (#Mul) (88 × 72) S25C5 S60C6 S25C5 S60C6

Fig. 7(a) 10836 0 18 (9) 161037 50.12 43.40 19.71 17.07
”+FIFOs 10881 18432 18 (9) 148941 51.81 46.68 22.03 19.85
Fig. 7(b) 17350 297504 18 (9) 59240 47.22 45.60 50.50 48.77

5.3 Further Integration

Further integration work is needed to put the design on an Altera PCI Devel-
opment Board with a Stratix EP1S60F1020C6 FPGA and 256 MiB of DDR
SDRAM memory (from Fig. 7(b) to (c)).

The content of the two main memories is mapped onto the single DDR
SDRAM memory (step 7). An Avalon switch fabric [12] connects the DDR core
(memory controller) with the I/O blocks. These blocks take care of the conver-
sion of local addresses, used within the IDWT, to addresses in the global memory
space. Since the 18 bit word width, used until now, does not correspond to the
128 bit data ports of the DDR controller, the word size at the left side of the
line buffers is set to 4 × 18 = 72 bit and converted to and from 4 × 32 = 128 bit
using sign extension and truncation.

The Avalon fabric only supports burst transfers that are a multiple of 16 B
(128 bit) long and start at an address that is a multiple of 16 B. Therefore, the
lines in all wavelet sub-bands are aligned to a multiple of 128 bit in the main
memory by letting each row start at a multiple of 512 pixels (1 pixel = 4B).
This inserts more unused space than strictly needed, but memory space was not
a problem in the DDR-memory and it simplifies address calculations, similar to
the example in Fig. 5. A DMA controller (Direct Memory Access) drives the
burst transfers [12].

To allow the memory controller and the wavelet transform to run at their
maximal frequency, different clock domains are introduced. The dual-port mem-
ories offer a safe clock domain crossing for the data. For the control signals extra
registers are inserted (brute-force synchronization).

Finally, other blocks are connected to the switch fabric to build the RE-
SUME scalable wavelet-based video decoder described in [13]. It can decode
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26.15 frames/s (clocking the DDR at 65 MHz, limited by the FPGA synthesis
process). The IDWT on its own, clocked at 54 MHz (reached with other tool
settings than for Table 2), can transform 53 frames/s.

Power and energy dissipation figures of the IDWT implementation described
above and a fully manual design without locality optimizations are found in [14].
The reduction of off-chip memory accesses leads to a large reduction of the
dissipated energy which compensates the increased on-chip dissipation due to
the larger amount of logic (total energy saving of a factor 2.2).

The final circuit has become much larger than the original one (Table 2). A
large part of this circuitry is used for multiplexers connecting the parallel buffers
of one line with the parallel computational units. In fact these lines are accessed
in a circular way and this could in principle be implemented using FIFOs, as was
done for the Sobel Edge Detection (Table 1, designs 5–8). This would remove
the multiplexers and many address calculations. In fact these FIFOs should have
been introduced in step 1. The reason that this has not been done is because
of the fact that there is an irregular behavior at the borders of each image
or wavelet sub-band. There, mirroring is used to virtually extend the domain
outside the borders which introduces an irregular memory access pattern. This
hinders the use of FIFOs. The original program can be adapted to allow the use
of FIFOs at these locations but this falls outside the scope of this paper and is
left as future work.

6 Related Work

6.1 Address Expressions

A good data locality is needed to reuse data stored on-chip as much as possible.
As mentioned above, loop transformations can improve this locality [15,2,3].

A side effect of loop transformations is that address expressions may become
complex. Therefore, address optimization techniques have been developed. Many
exploit the repetitive evaluation of these expressions in a loop and use differences
of the terms of an expression to calculate the next value, similar to the usage
of BAc in Sect. 3 (Method of Difference). Sheldon et al. [16] present techniques
to eliminate division and modulo operations, by inserting conditionals and us-
ing algebraic axioms and loop transformations. Most techniques optimize the
evaluation of a given set of address expressions, possibly sharing logic among
different address expressions [17]. Only a few remap data to simplify the address
expressions [18,8]. Most methods are useful for both software and hardware im-
plementations. A difference is that multiplications or modulo reductions with
powers of 2 require shift operations on a processor but have no cost on an
FPGA. Zissulescu et al. [19] focus on the generation of fast address calculation
circuitry for FPGAs. They use number theory axioms and the method of differ-
ence to reduce the strength of the expressions but do not remap data to simplify
them.
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6.2 High-Level Synthesis Tools

In recent years many high-level synthesis (HLS) tools have been developed. Many
of them extend a software programming language such as C with pragmas and
macros to describe parallelism and the use of library constructs such as FIFOs.

Synfora PICO [20] does register promotion and tiling, but in order to further
optimize the memory system the user has to insert FIFO constructs and pragmas
to declare local memory.

NEC CyberWorkBench [21] has a user directive to specify if a 2-D array will
be implemented with minimal size or with rows aligned to a power of two (cf.
Sect. 3). The choice between the two is not made automatically.

Since sliding window operations are often used in image processing applica-
tions, several HLS tools focus on extracting such operations and mapping them
on predefined architecture templates, e.g, SA-C [22] and ROCCC [23].

The Compaan/LAURA system converts an application into a Kahn-process
network by automatically inserting FIFO buffers [24]. This could be used in the
first step of our methodology. When a data set is not consumed in the order
it is produced, reorder buffers are introduced. In the worst case these buffers
may become too large to fit on chip. Loop transformations may be needed to
avoid this.

A more extensive comparison of high-level synthesis tools with a focus on
memory systems is found in Chapter 2 of [25].

We conclude that current HLS tools leave the design of the memory system to
the designer but ease the construction of it by providing constructs to describe
them at a higher level, or use predefined solutions for specific frequently used
structures.

A common problem with HLS tools is the integration with user-built struc-
tures. This is done through communication by predefined (bus-)protocols which
do not allow a tight integration or else the interaction should be described at a
low level which removes the advantage of using HLS languages. An ideal high-
level synthesis tool should offer tight integration with user-built blocks by al-
lowing to extend the set of macros or pragmas such that references to custom
blocks can be recognized and dealt with on a footing of equality with the library
blocks provided by the tools. This was the reason of using VIM-scripts. They
allow to extend the set of macros to tightly integrate new blocks, such as the
prefetch queue. The disadvantage was that some extra work is needed which we
will try to eliminate by extending our tool suite.

7 Conclusions and Future Work

Application-specific memory hierarchies offer advantages that general purpose
cache systems or scratch-pad memories do not offer, such as simplification of
address calculation hardware and the increase of parallelism through buffer
partitioning.

This paper presented a methodology to transform a system using multiple
memories step-by-step into a system with a memory hierarchy connected to
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an external memory with unpredictable access times. Using a modular design
description increases the reusability. With a good choice of data mapping in the
buffers, addresses can be simplified to optimize the performance, possibly at the
cost of a higher memory usage.

For many of the code transformation steps that were done partially manually,
techniques to fully automate them are already available. Future work consists of
integrating them and extend them where needed in the context of FPGA-based
design. Better synthesis results are expected if the original code is transformed
towards the targeted memory system, e.g., to increase the number of FIFO
buffers.
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Abstract. In this paper we present a framework for automatic detection
and application of the best binding between threads of a running paral-
lel application and processor cores in a shared memory system, by mak-
ing use of hardware performance counters. This is especially important
within the scope of multicore architectures with shared cache levels. We
demonstrate that many applications from the SPEC OMP benchmark
show quite sensitive runtime behavior depending on the thread/core
binding used. In our tests, the proposed framework is able to find the
best binding in nearly all cases. The proposed framework is intended to
supplement job scheduling systems for better automatic exploitation of
systems with multicore processors, as well as making programmers aware
of this issue by providing measurement logs.

Keywords: Multicore, CMP, automatic performance optimization,
hardware performance counters, CPU binding, thread placement.

1 Introduction

During recent years, a clear paradigm shift from increasing clock rates towards
multicore chip-architectures (CMP) has taken place. Considering chip manufac-
turers’ long-term objective of integrating 128 and more cores onto one die, there
are several open issues with respect to programmability and scalability that have
to be examined. In the past, a serial program could benefit from a new processor
model simply because processors’ clock frequencies were increased from current
models to successors. Consequently, even standard applications ran faster with-
out any need to modify a single line of source code. With energy efficiency as
a new optimization goal, clock frequencies have to stay more or less stable, and
additional performance gains are only obtainable by parallelism on the core level.
In order to take advantage of existing and future multicore processor architec-
tures, it is essential to develop parallel applications and to adapt existing serial
applications accordingly. Otherwise, all but one core remain idle, and no per-
formance gain can be achieved at all. Parallel programming is leaving the high
performance computing (HPC) niche and establishing itself as a mainstream
programming technique.
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Asymmetric particularities of the memory subsystem are a big obstacle for
runtime performance on shared memory machines, as they need to be taken
care of explicitly. Non Uniform Memory Access (NUMA) architectures are a
familiar example. A new type of asymmetric property comes with shared caches
in multicore processors: The access history of one or multiple nearside cores can
significantly influence the speed of memory accesses. While overlapping working
sets in threads running on cores sharing a cache can reduce runtime, the non-
existence of any overlapping usually degrades performance by cutting available
cache space into half. Without sophisticated tools and detailed analysis, the
programmer can only roughly assess the reason for acceleration or slowdown
in the parallel code, let alone come up with optimization strategies for badly
running code. This problem is expected to increase with the number of cores
available on one chip1, as in this case the need for complex on-chip interconnect
and cache buffer hierarchies is evident.
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Fig. 1. Comparison of unpinned runs vs. runs under control of autopin. Four threads
on the Caneland platform.

To overcome the issue with non-uniform memory subsystems, including the
shared cache problem, we propose an automatic approach in this paper: While
the application is running, the autopin tool checks a given set of fixed thread-to-
core bindings (called pinnings) in order to find the pinning with optimal perfor-
mance. In this study, we used autopin to find optimal pinnings for applications

1 In the remainder of this work, the term chip will refer to a single physical processor
chip which may consist of multiple processor cores plus cache. Hence, the term core
will refer to a single x86 based physical processor unit.
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in the SPEC OMP benchmark2 on various multicore systems. We check pinnings
where all cores are active as well as pinnings with a smaller number of threads
than cores available on a given system. This is due to the fact that one core on
a multicore processor can already fully exploit the available connection to main
memory, thus slowing down any work on other cores on the same chip. In this
case, it might be recommended to not use these cores for the parallel application.
In addition, there exist applications that run with thread counts which do not
match available core counts: Examples are parallel tree traversals or load bal-
ancing schemes generating/killing threads on the fly. The proposed framework is
intended to supplement job scheduling systems for better automatic exploitation
of systems with multicore processors, as well as making programmers aware of
the given issue by providing measurement logs.

To illustrate this with an example, figure 1 shows runtimes for the SPEC
OMP’s 314.mgrid benchmark with four threads for 50 sample runs. The
314.mgrid benchmark will be explained in further detail in section 4. Without
any control of the pinning, the operating system’s scheduler decides on which
cores the threads will run. As can be seen in figure 1, runtimes can vary signifi-
cantly and are hard to predict. However, with the use of the autopin tool, op-
timal thread pinning ensures optimal performance as well as equally distributed
runtimes over all sample runs.

2 Related Work

With the large amount of different computer systems available today, regarding
available resources, from internode connection and memory subsystem param-
eters (e.g. cache sizes) to CPU features like superscalarity and vector units, it
has always been difficult to come up with an algorithm implementation that
optimally exploits these resources. A common approach is to use performance
analysis tools such as GProf [1] or Intel VTune [2], and to adapt the code to a
specific system. However, this approach is not always feasible: When software
is run by a user on a site other than the development site, there usually will
be an executable binary for a class of systems (as e.g. for commercial software).
Often, the user can not even check if the application runs at optimal perfor-
mance on his (expensive) system. To still allow for good exploitation, different
approaches exist: Foremost, the best code optimization approaches are architec-
ture independent, e.g. using algorithms with lower complexity. For caches, cache
oblivious algorithms [3] use recursive splitting of data structures for blocking op-
timization, independent on cache size. Another approach is to check for hardware
features at runtime (as in math libraries from vendors [4]) or at install time with
an automated search for best parameters and according recompilation. This also
includes a feedback compilation step as supported by most compilers (e.g. In-
tel Compiler Suite, PGI Compilers, GNU Compiler Collection), which can even
adapt to a user’s typical input data. A well known example for this strategy,

2 http://www.spec.org/OMP

http://www.spec.org/OMP
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searching for best parameters for cache optimization, is the Atlas library [5].
Our automated search for best thread-to-core pinning takes a similar approach.

Documented hardware performance counters are built into every processor
on the market today. Similar counters have always been present in processors
to allow for internal correctness checks after production. The good news is that
since quite some time these performance counters have been documented and
can be used by various tools. Unfortunately, the amount of different events that
can be measured varies from processor type to processor type (for example, see
the manuals for Intel [6] or AMD [7] processors). This means that there is no
standard (yet) that determines which performance counters have to be present
in a processor. Recently, Intel has added a simple counter interface and a few
specific events to its x86 architecture (for processors based on the Core microar-
chitecture). Typically, there are 2 or 4 counters available for a huge number of
event types related to the processor pipeline, the cache subsystem, and the bus
interface, thus allowing to check the utilization of resources. However, the seman-
tics of events can be difficult to interpret, and often, detailed documentation is
rare. Hardware Performance Counters are either used to read exact counts, or
to derive statistical measurements. The most common commercial tool is VTune
[2]. A library for multiple platforms and operating systems to read counters is
PAPI [8]. For Linux, there is a statistical measurement tool called OProfile [9],
available as part of the standard kernel. However, to get read access to counters,
it is required to install a kernel patch (Perfctr), complicating the use significantly.
Additionally, HP has started to work on another kernel patch called perfmon2
[10]. This patch initially existed for the Linux Itanium architecture only but now
also provides support for latest Intel and AMD processors. Its user level parts
(libpfm, pfmon) form the basis for autopin.

So far, the de facto standard shared memory API OpenMP [11] was mostly used
on large shared memory architectures. With the new memory and cache hierar-
chies being introduced by multicore architectures, threadpinning becomes increas-
ingly important for OpenMP programs with regard to scalability issues. [12] and
[13] discuss operating system and compiler dependent calls to control pinning as
well as page allocation on ccNUMA, CMP (chip multiprocessing), and CMT/SMT
(chip multithreading/simultaneous multithreading) architectures running Linux
or SOLARIS. Carrying out several OpenMP benchmarks, the authors conclude
that affinity is especially important for OpenMP performance on ccNUMA ma-
chines, with OpenMP nesting still being difficult on those architectures. From the
operating systems’ point of view, SOLARIS and SunStudio provide better tools
to deal with the problem, however, Linux is catching up. The authors also observe
performance benefits through shared caches in multicore architectures.

In [14], the author argues that using multicore platforms effectively will be a
key challenge for programmers in the future. The article discusses the challenges
posed by multicore technology, reviews recent work on programming languages
potentially interesting for multicore platforms, and gives an overview on on-going
activities to extend compiler technology with regard to multicore programming,
which also affects thread pinning.
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3 The autopin Tool

As a proof-of-concept implementation of our framework for automated CPU
pinning, we extended the pfmon utility from the perfmon2 package (see [10])
with the required functionality.

The cores to be used and the order in which the cores are assigned to the
threads is specified by the user via an environment variable called SCHEDULE.
Each position of this string-variable defines a mapping of a thread ID to a CPU
core ID. For example, SCHEDULE=2367 would result in the first thread being
pinned to core #2, the second thread to core #3, and so on. The user may
pass several, comma-separated sets of scheduling mappings via this environment
variable.

Upon creation, each new thread is enumerated and pinned to one specific CPU
core using the sched setaffinity() system call according to the first entry of
the SCHEDULE variable. Pinning of the additional management thread created by
Intel’s OpenMP implementation is omitted. Hence, this thread is scheduled by
the operating system.

If the user provided more than one scheduling mapping, the tool will probe
each of these mappings for a certain time interval t. Probing is performed using
the following algorithm:

1. Let the program initialize for i seconds.
2. Read the current timestamp ts1 and value pc1 of the performance counter

for each thread.
3. Run the program for t seconds.
4. Read the current timestamp ts2 and value pc2 of the performance counter

for each thread.
5. Calculate the performance rate rj = (pc2 − pc1)/(ts2 − ts1) for each thread

j and the average performance rate ravg over all threads.
6. If further mappings are left for probing, re-pin the threads according to the

next pinning in the list, let the program ”warm up” for w seconds, and return
to 2.

The initialization step in 1. is required to avoid measuring potential sequential
phases in the initial stage of the program [15].

The ”warm up” time after each re-pinning is needed for the actual rescheduling
of the threads and to refill the cache.

All parameters t, i, and w can be specified in the command line. Otherwise,
the following default values (obtained by previous experiments) will be used:
t = 30, w = t/2, and i = w.

The specific average performance rate ravg of each scheduling mapping is
written to the console. After all mappings have been probed, autopin displays
the mapping which achieved the highest performance rate and re-pins the threads
accordingly. The program then continues execution with this optimal pinning
which will not be changed until the program terminates. Additionally, every t
seconds the current performance rate is calculated and written to the console.
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As non-optimal pinnings might be used in the beginning, a slight overhead
is imposed during this phase. However, in most cases this overhead can be ne-
glected, especially if t and w are small compared to total application runtime,
see section 5 for detailed analysis.

The performance counter event which is used for the calculation of the perfor-
mance rate can be specified by the user with the -e parameter. A list of events
which are supported by libpfm for the used architecture can be retrieved by
calling autopin -L.

As outlined in [16], thread migration on NUMA systems poses additional
challenges: As accesses to non-local memory can decrease performance, not only
the thread itself has to be migrated, but also its referenced memory pages. On
operating systems which support next touch memory policy, pages are migrated
automatically after thread repinning. The current stable Linux kernel only allows
for manual page migration. However, there is a patch for the development branch
which provides the required functionality [17]. autopin triggers automatic page
migration as provided by this kernel patch.

4 Experimental Setup

This chapter describes the experimental setup that has been chosen in order to
assess the performance of the autopin framework. First, the deployed benchmark
suite SPEC OMP is described. After this, the hardware platforms that were used
to perform the benchmark applications under control of autopin are specified.
The last section deals with different CPU pinnings that were selected to be
evaluated by autopin during the benchmark run.

4.1 Benchmark

SPEC OMP was used as a benchmark basis for autopin. It is an OpenMP
benchmark suite for measuring performance of shared memory parallel systems
consisting of eleven applications (see table 1), most of which are taken from the
scientific area [18].

There are two different levels of workload for SPEC OMP: Medium and Large.
All benchmark runs were executed with medium size, as the maximum number
of cores used was 16, whereas runs with workload size large are intended to be
used for large scale systems of 128 and more cores. In SPEC OMP all benchmark
applications are provided in form of source code and have to be compiled with an
appropriate compiler. For all hardware platforms described below, Intel Compiler
Suite 9.1 was utilized.

4.2 Hardware Environment

Our testbed consists of several machines:

– One node with two Intel Clovertown processors. The Clovertown processor
consists of four cores, while two cores have a shared Level 2 cache (4 MB),
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Table 1. SPEC OMP benchmark applications

application name description

310.wupwise quantum chromodynamics
312.swim shallow water modeling
314.mgrid multi-grid solver in 3D potential field
316.applu parabolic/elliptic partial differential equations
318.galgel fluid dynamics analysis of oscillatory instability
320.equake finite element simulation of earthquake modeling
324.apsi weather prediction
326.gafort genetic algorithm code
328.fma3d finite-element crash simulation
330.art neural network simulation of adaptive resonance theory
332.ammp computational chemistry

respectively. Our system has 16 MB of cache in total, runs at a clock rate
of 2.66 GHz and has 8 GB RAM, DDR2 667 MHz. The frontside bus has a
clock rate of 1333 MHz.

Figure 2 demonstrates a schematical diagram of this machine, which will
be referred to as Clovertown. The core numbers in the figure are correspond-
ing to the logical processor id assigned by the Linux kernel. The drawing also
illustrates which cores are sharing a cache (for instance core #0 and core #2).
Whether two cores share a cache or not can be detected with the authors’
false sharing benchmark [19].

Fig. 2. Intel Clovertown System
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– A system with four Intel Tigerton processors. The Tigerton processor con-
sists of four cores, while two cores have a shared Level 2 cache (4 MB), re-
spectively. There are four independent frontside buses (1066 MHz), so each
CPU has a dedicated FSB. Each FSB is connected to the Chipset (Clarks-
boro) which has a 64 MB snoop filter. The memory controller can manage
four fully buffered DIMM channels (see figure 3). Our system has 32 MB of
cache in total, runs at a clock rate of 2.93 GHz and has 16 GB RAM (DDR2
667 MHz). This machine will be referred to as Caneland.

Fig. 3. Intel Caneland Platform

– A two socket machine, equipped with two AMD Opteron 2352. Each CPU
has four cores, each of which has a L2 cache size of 512 KB. All cores on a
chip are sharing a 2 MB L3 Cache. The four cores are running at a clock
rate of 2.1 GHz. The system has 16 GB main memory, DDR2 667 MHz. In
contrast to the two hardware platforms described above, this system repre-
sents a NUMA-Architecture. Each CPU has an integrated memory controller
and can access local memory faster than remote memory. Access to remote
memory takes place via HyperTransport (see figure 4). This machine will be
referred to as Barcelona in the following sections.

4.3 Thread-to-Core Pinning

All benchmark applications were started with autopin monitoring the hard-
ware counters INSTRUCTIONS RETIRED on Intel architecture and accordingly
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Fig. 4. AMD Barcelona System

RETIRED INSTRUCTIONS on AMD architecture. As the deltas of the performance
counters are divided by the measurement time interval, the measured metric
represents the MIPS rate. For floating point intensive programs it might also
be interesting to count the retired floating point instructions and calculate the
FLOPS rate.

Table 2. Investigated CPU Pinnings for Different CPU Architectures. The first column
shows the number of threads used, the second to fourth columns stand for the different
thread-to-core pinnings.

#Threads Caneland Clovertown Barcelona

1 1 4 1
2 1,2 2,6 4,5

1,7 4,5 2,6
1,8 4,6 4,6

4 1,7,8,9 4,5,6,7 2,6,3,7
1,8,2,11 2,3,6,7 4,6,5,7
5,8,11,14 1,3,5,7 1,3,5,7
8,9,11,12

8 1,7,8,9,2,10,11,12 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7
4,6,7,9,10,12,13,15
5,6,8,9,11,12,14,15

We did not probe all possible pinnings, as most of them are redundant due
to symmetries of the architectures:

– For the 1-thread runs we chose a core which is located on a different chip
than core #0 as this one often is used for operating systems tasks and thus
could disturb the benchmark.

– For runs with 2 threads we chose configurations on two different chips, on
one chip with the 2 cores sharing the L2 cache (Intel only), and on one chip
with both cores not sharing the cache.

– The measurements with 4 threads were carried out on 1 chip with all cores
utilized, on 2 chips once with 2 cores not sharing the L2 cache and – where
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applicable – once with 2 cores sharing the L2 cache. On the Caneland plat-
form we additionally made a run on 4 chips, using one core per chip.

– On Clovertown and Barcelona 8 threads were pinned to the core IDs in the
same order as they were forked (e.g. the 1st thread on core #0, the 2nd on
core #1, and so on). On the Caneland platform we probed configurations
exploiting all 4 cores on 2 chips, and 4 chips utilizing 2 cores each – once
with shared cache once without.

– The 16-core runs on Caneland were conducted analogously to the 8-core runs
on the Clovertown platform.

The detailed list of probed CPU pinnings can be found in table 2. In order to find
the best and worst pinning, we made additional runs with autopin being called
with one SCHEDULE-parameter only, so the CPU pinning stayed unchanged from
start to finish. Such runs were performed for every pinning listed in table 2. So
for example, on the Caneland platform for two threads there are the following
CPU pinnings to investigate: (1,2), (1,7) and (1,8). Accordingly autopin was
called with SCHEDULE=12,17,18. Additionally, autopin was called three times
one after another with parameter SCHEDULE=12 for the first run, SCHEDULE=17
for the second run and SCHEDULE=18 for the last run. This way it is possible to
double-check if autopin really found the perfect CPU pinning.

5 Results

5.1 Verification of the autopin Approach

As described in chapter 4, we used the SPEC OMP benchmark suite to evaluate
the effectiveness of our approach. As this suite consists of 11 individual bench-
mark applications, presenting the runtimes for all benchmarks, architectures, and
configurations (# of cores used, pinning to cores) would go beyond the scope of
this paper. Therefore, we only discuss three of the benchmark applications in
detail: 314.mgrid, 316.applu, and 332.ammp. For the remaining benchmarks we
will only sum up our observations shortly.

In comparison with the measurements presented in [16], the slightly modified
algorithm (extended by the initialization phase), in combination with page mi-
gration on NUMA architectures as described in section 3, is able to find optimal
pinnings for almost all benchmarks on all three platforms: In nearly all cases
a pinning with a total runtime not exceeding the perfect pinning’s runtime by
one per cent was found. Only on the Caneland platform, in two cases (312.swim
and 332.ammp) a pinning with a total runtime of less than 5% above the per-
fect pinning’s runtime was found. The experiments have been carried out using
autopin’s default parameters (t = 30, w = t/2, and i = w).

On all platforms, different CPU pinnings had only little effect on the total
runtime of the benchmarks if only one core or all available cores were utilized.
Note that this does not mean that one can neglect CPU pinning in these cases.
Pinning is still important to prevent threads from moving from one core to
another.
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On the Clovertown platform, CPU pinning is most important for configura-
tions with 2 cores. For 8 benchmarks, the difference in total runtime between
the optimal and the worst configurations was over 20% (over 50% for 314 and
316). For the remaining three (324, 328, 332) it is in the range of 3-10%. For
configurations with 4 utilized cores, pinning improved the total runtime between
1 and 7% and in one case (314) by 17%.

The Caneland platform is very sensitive to CPU pinning. Pinnings on two
cores showed runtime differences in the range of 25-65% for 8 benchmarks out of
11. 324, 328, and 332 were in the range of 4-15%. The gap between the optimal
and the worst pinning even increases for setups with 4 cores: only for 3 bench-
marks (324, 328, 332) the difference was below 50%, 312 and 314 even showed
differences over 100%. For 8 cores the runtime differences were widely distributed
between 7 and 78%. Furthermore, for all benchmarks besides the usual suspects
324, 328, and 332, the best 4-core pinning showed better runtimes than the
worst 8-core pinning. Utilizing all 16 cores improves runtime only slightly for
most benchmarks. In fact, for 314 and 320, the optimal 4-core pinnings achieve
better runtimes.

In general, the Barcelona platform seems to be more tolerant on wrong CPU
pinnings. At least on 2-thread runs: runtime differences for the best and worst
pinning were between 0.1 and 6.5%, except for 312 where the gap was 32%. On
4-thread configurations the pinning has a higher impact, though not as high as
on the Caneland platform: for most benchmarks the runtimes differed between
1.5 and 28%, with 312 making an exception again by showing a gap of 58%.

For all data sets, the 2-core configurations which pinned the threads to cores
on different chips showed the best runtimes. With 4 threads, it is best to pin
them on cores which don’t share a common cache on Intel Platforms. This is
simply due to the fact, that with two cores sharing a common L2 cache, one core
can utilize the whole 4MB L2 cache for one thread if the other one is idle. The
same is true for 8-core configurations on Caneland. On the Barcelona it is best
to distribute the threads equally to both chips. Being a NUMA architecture, this
gives the highest aggregated memory bandwidth to all threads. Furthermore, as
the L3 cache is shared between all cores on one chip, the available cache per
thread is higher, if half of the cores are idling.

Figures 5, 7 and 9 show the total runtimes (in seconds) of the 314.mgrid
benchmark on the Clovertown, Caneland and Barcelona platform utilizing 1, 2,
4, 8, and 16 (Caneland only) cores. For 1 core and 8 cores (16 on Caneland)
we only show the runtime for one CPU pinning as different pinnings had only
little effect on the total runtime in these cases. For the other core counts we
show runtimes of the worst (”max”) and the best (”optimal”) pinning, as well
as for the configuration autopin has proposed (”autopin”) - which in all cases is
identical to the optimal pinning. Note that on the Intel systems, utilizing more
than 4 cores does not improve runtimes any further - even with perfect pinning.
If the wrong pinning is chosen, the runtime can be worse than the runtime with
perfect pinning on half the number of cores. This effect significantly influences
performance on the Caneland platform: The worst 2- and 4-core setups are less
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Fig. 5. 314.mgrid on Clovertown
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Fig. 6. 316.applu on Clovertown
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Fig. 7. 314.mgrid on Caneland
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Fig. 8. 316.applu on Caneland
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Fig. 9. 314.mgrid on Barcelona
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Fig. 10. 316.applu on Barcelona
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Fig. 11. 332.ammp on Clovertown
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Fig. 12. 332.ammp on Caneland
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Fig. 13. 332.ammp on Barcelona

than 9% faster than the single-core setup. On Barcelona, wrong pinning does not
show problems for 2 threads: the runtimes for both cases are within metering
precision. For 4 cores the difference is approximately 20%. Furthermore, the
scaling behavior on Barcelona is better than on Intel platforms: while the latter
one can not benefit from more than 4 cores, the AMD system scales fine up
to 8 cores. This leads to the fact that the total runtime for 8 Opteron cores is
shorter than the runtime for 16 Tigerton cores. Given the fact that the single
core runtime on the Opteron was 40% higher than on the Intel processors, this
is remarkable.

Similar effects can be observed on the 316.applu benchmark (see figures 6,
8 and 10), especially on Caneland: Doubling the number of utilized CPU cores
can slow down the computation if the wrong pinning is used. While this effect
is weaker for the Clovertown, it still shows poor scaling performance. Again,
using more than 4 cores does not improve performance at all. The Barcelona
only shows runtime differences for the 4 core setup (44%). For optimal pinning,
runtimes and scaling behavior is very similar to the Intel processors.
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The 332.ammp benchmark draws a whole different picture as one can see on
figures 11-13: Pinning of threads has almost no impact on the runtime and even
on the Intel platforms we can see almost linear speedups up to 16 cores. We
assume that this benchmark can run almost totally in cache and is therefore not
limited by the memory bandwidth which is shared with the other cores.

5.2 Overhead Examination

As shown above, autopin was able to reliably detect optimal pinnings for nearly
all benchmarks under consideration using the default parameters. However, to
obtain maximum benefit for the user, the overhead imposed by autopin should
be kept at a minimum level. This overhead is caused by the fact that during the
different phases (initialization, warmup, and measurement) the application also
runs with “slow” pinnings.

Hence, in order to find an optimal tradeoff between minimum overhead and
reliable detection of optimal pinning, further experiments were carried out for
different values of i, w, and t on the Barcelona and Clovertown platforms. These
experiments showed that even for i = 30s, w = 3s, and t = 10s, optimal pin-
ning is found for all benchmarks on the Clovertown platform. On the Barcelona

Table 3. autopin overhead on Clovertown: The first column shows the benchmark
under consideration, the second column the number of threads, the third column the
benchmark’s total runtime with the fixed optimal pinning, the fourth column the total
runtime under autopin probing several pinnings, the sixth column shows the difference
between column three and four in per cent, the seventh column the total runtime with
the slowest fixed pinning, and the last column shows the difference between column
four and seven in per cent.

Best autopin Worst
Benchmark #Threads Pinning [s] [s] diff [%] Pinning [s] diff [%]

310 2 655.12 659.27 0.63 785.95 19.22
310 4 484.53 486.94 0.5 656.02 34.72
312 2 932.41 949.13 1.79 1426.97 50.35
312 4 910.28 916.16 0.65 1388.78 51.59
314 2 1227.04 1231.28 0.35 1840.65 49.49
314 4 1058.51 1069.58 1.05 1779.32 66.36
316 2 656.73 667.29 1.61 882.99 32.32
316 4 522.95 528.57 1.07 787.69 49.02
320 2 287.24 295.01 2.71 379.63 28.68
320 4 253.64 258.25 1.82 350.08 35.56
324 2 572.85 574.82 0.34 604.66 5.19
324 4 313.63 314.83 0.38 345.05 9.6
328 2 1085.02 1090.55 0.51 1213.67 11.29
328 4 668.01 670.81 0.42 800.9 19.39
330 2 350.34 358.13 2.22 463.95 29.55
330 4 281.75 286.16 1.57 361.56 26.35
332 2 1755.84 1769.65 0.79 1795.86 1.48
332 4 941.98 941.57 -0.04 971.8 3.21
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Table 4. autopin overhead on Barcelona. See caption of table 3 for an explanation of
the table’s columns.

Best autopin Worst
Benchmark #Threads Pinning [s] [s] diff [%] Pinning [s] diff [%]

310 2 913.14 924.27 1.22 941.49 1.86
310 4 482.99 494.04 2.29 543.41 9.99
312 2 650.17 696.41 7.11 903.09 29.68
312 4 464.64 495.98 6.75 776.7 56.6
314 2 1440.37 1448.52 0.57 1545.21 6.68
314 4 784.52 793.36 1.13 1102.33 38.94
316 2 757.97 713.11 -5.92 779.39 9.29
316 4 445.45 420.22 -5.66 546.74 30.11
320 2 318.86 322.72 1.21 334.81 3.75
320 4 200.23 204.09 1.93 235.12 15.2
324 2 768.28 775.6 0.95 850.34 9.64
324 4 373.72 376.84 0.83 428.73 13.77
328 2 1064.43 1075.35 1.03 1125.79 4.69
328 4 571.38 599.47 4.92 655.09 9.28
330 2 567.76 569.73 0.35 573.98 0.75
330 4 297.51 299.4 0.64 306.17 2.26
332 2 2673.66 2697.62 0.9 2698.7 0.04
332 4 1334.3 1349.42 1.13 1343.9 -0.41

platform a slightly higher value of w = 10s was required, which is necessary for
page migration to take place.

Tables 3 and 4 show the total runtimes of the SPEC OMP benchmarks for the
fixed optimal pinning, under autopin probing several pinnings, and for the fixed
slowest pinning. Column five shows the relative runtime overhead in per cent im-
posed by autopin. On the Clovertown platform this overhead turns out to be
below 3% in all cases. Running the application without autopin may cause run-
times up to 66% higher than those yielded by autopin in case the operating sys-
tem’s scheduler happens to choose the worst pinning as depicted in the last two
columns. Due to the additional cost of memory page migration, the overhead on
the Barcelona platform is slightly higher for memory intensive applications (up to
7.5%). Nevertheless, compared to the worst pinning, significant runtime improve-
ments can be achieved. Interestingly, for the 316.applu benchmark the runtimes
under autopin are even lower than the best fixed pinning. This might be due to
the fact that this application prefers different pinnings in different program exe-
cution phases. See section 6 for a further discussion of this observation.

6 Conclusion and Outlook

In this paper we pinpointed the importance of correct CPU pinnings that account
for both application characteristics as well as hardware properties. It is obvious
that this topic will become even more crucial with future multicore processor
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architectures, which will have much more complicated on-chip interconnects with
strongly varying access speeds. Remarkably, the best and worst pinnings for some
applications yielded a runtime difference of more than 100 per cent.

Additionally, we presented the autopin framework, which allows to automat-
ically determine the thread pinning best suited for a shared memory parallel
program on a selected architecture. This is achieved by evaluating the perfor-
mance of different pinnings by means of hardware performance counters. It has
been shown that autopin reliably proposes optimal pinnings for the SPEC OMP
benchmark on UMA as well as NUMA architectures.

Future versions of autopin can be improved in several ways. At the moment
the user needs profound knowledge on the hardware infrastructure (i.e. how
many cores are available on how many sockets, how many cores are on a chip,
which cores do share caches, etc.) in order to choose a reasonable set of schedule
mappings. To make the tool easier to use for people with no background in
computer architecture, a mechanism could be implemented that automatically
detects the hardware infrastructure and selects appropriate schedule mappings
to be analyzed. A promising idea that goes one step further is to integrate parts
of autopin into the scheduler of the Linux kernel.

In its current version, autopin starts with one pinning and switches to the
next pinning after a specified time frame and so on. When no more pinnings to
be tested are left, autopin re-pins to the best mapping found so far and uses this
pinning until the program terminates. This behavior could be inappropriate for
programs that have strongly varying execution phases. For example, a parallel
program with four active threads might have a first phase in which it is memory
bound. Within this phase, distributing threads over four different chips makes
much more sense than putting all threads together onto one chip. Consider the
next phase to be dominated by very fine grain communication with all relevant
data being held in caches. This time the situation is vice versa, and pinning
all threads onto one chip with four cores sharing a L3 cache would be most
efficient. Taking these considerations into account, the idea is to adapt autopin
to continuously monitor the application and restart the repinning process if the
application’s performance drops under a certain threshold.
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Abstract. Applications using transactional memory may exhibit fluc-
tuating (dynamic) available parallelism, i.e. the maximum number of
transactions that can be committed concurrently may change over time.
Executing large numbers of transactions concurrently in phases with low
available parallelism will waste processor resources in aborted transac-
tions, while executing few transactions concurrently in phases with high
available parallelism will degrade execution time by not fully exploit-
ing the available parallelism. Three questions come to mind: (1) Are
there such transactional applications? (2) How can such behaviour be
exploited? and (3) How can available parallelism be measured or calcu-
lated efficiently? The contributions of this paper constitute the answers
to these questions.

This paper presents a system, called transactional concurrency tun-
ing, that adapts the number of transactions executing concurrently in
response to dynamic available parallelism, in order to improve processor
resource usage and execution time performance. Four algorithms, called
controller models, that vary in response strength were presented in pre-
vious work and shown to maintain execution time similar to the best
case non-tuned execution time, but improve resource usage significantly
in benchmarks that exhibit dynamic available parallelism.

This paper presents an analysis of the four controller models’ response
characteristics to changes in dynamic available parallelism, and identi-
fies weaknesses that reduce their general applicability. These limitations
lead to the design of a fifth controller model, called P-only transactional
concurrency tuning (PoCC). Evaluation of PoCC shows it improves upon
performance and response characteristics of the first four controller mod-
els, making it a robust controller model suitable for general use.

1 Introduction

The future of processor architectures has been confirmed as multi-core [1,2,3],
and mainstream processor manufacturers have all changed their product line-
up. Multi-core processors set a new precedent for software developers: software
will need to be multi-threaded to take advantage of future processor technology
[4]. Furthermore, given that the number of cores is only likely to increase, the
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parallelism in the software should be abundant to ensure it continues to improve
performance on successive generations of multi-core processors.

Transactional Memory (TM) [5,6,7] is a programming abstraction that promises
to simplify parallel programming by offering implicit synchronisation. Program-
mers using TM label as transactions those portions of code that access shared
data, and the underlying TM ensures safe access. The TM implementation mon-
itors the execution of transactions, and for any two transactions that have access
conflicts the TM implementation will abort one, and let the other continue exe-
cuting. A transaction commits if it does not have access conflicts, thus making
its updates to shared data available to the rest of the application.

Figure 1 shows examples of fluctuating available parallelism patterns that
transactional applications may exhibit during execution. We define available
parallelism as the maximum number of transactions that can be committed con-
currently, i.e. none aborting. Executing applications that have dynamic available
parallelism with a fixed number of concurrent transactions can hurt performance
and be resource inefficient. Executing large numbers of transactions concurrently
in phases with low available parallelism a) wastes resources in the execution of
aborted transactions, b) hurts performance by increasing the number of access
conflicts that have to be resolved, and c) hurts performance and wastes resources
when aborted transactions need to be rolled back. Similarly, executing too few
transactions concurrently in phases with high available parallelism hurts execu-
tion time performance.
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Fig. 1. Example patterns of available parallelism, expressed as a percentage of concur-
rently attempted transactions that commit
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This paper studies a technique to take advantage of dynamic available par-
allelism. Transactional concurrency tuning dynamically adjusts the number of
transactions executing concurrently with respect to the available parallelism, in
order to improve execution time performance and resource usage efficiency. We
identify Transaction Commit Rate (TCR), which is the percentage of committed
transactions out of all executed transactions in a sample period, as a suitable
lightweight, application-independent measure of available parallelism.

Four controller models that vary in their response strength to changes in
available parallelism are implemented, and evaluated. Following an investigation
of their response characteristics, a fifth controller model was implemented that
combines the strengths of the four models and improves their response character-
istics. Evaluations are performed using a synthetic benchmark, Lee-TM [8,9], and
STAMP [10] applications Genome, KMeans, and Vacation, which have become
popular [11,12,13,14,15,16] non-trivial benchmarks in TM research. Evaluation
is carried out using DSTM2 [17], a software TM (STM) implementation.

The paper is organised as follows: Section 2 introduces transactional con-
currency tuning and the controller models. Section 3 evaluates the controller
models. Section 4 discusses the applicability and effectiveness of transactional
concurrency tuning. Section 5 concludes the paper.

2 Transactional Concurrency Tuning

Transactional concurrency tuning has its origins in control theory, which is
widely used in industrial processes to maintain system parameters at user-defined
optima. Defining transactional concurrency tuning for TM using control theory
terminology, the control objective is to maintain the process variable TCR at
a setPoint desirable value, in spite of unmeasured disturbance from fluctuating
available parallelism. TCR and setPoint are percentage values in the range 0–
100%. The setPoint determines how conservative a controller model is towards
resource usage efficiency. A high setPoint, e.g. 90%, causes a controller model to
be quick to reduce threads when TCR decreases, but slow to adapt to a sudden
large increase in TCR, and vice versa. Transactional concurrency tuning also
has a parameter called samplePeriod over which the TCR is sampled in order
to make a transactional concurrency tuning decision. The controller models set
this parameter in different ways.

The controller model output is to modify the number of threads executing
transactions in response to changes in TCR. In order to do this, a thread pool
framework is implemented to execute transactions, and the controller model out-
put changes the number of threads active in the thread pool. Each worker thread
has its own work queue, as the traditional single work queue architecture can
quickly become a bottleneck. The worker threads also implement work steal-
ing [18] to reduce load imbalance. Application threads submit jobs to the thread
pool, and submission can be either synchronous, i.e. the application thread waits
until the transaction commits, or asynchronous, i.e. the application thread sub-
mits the job, but does not wait for the transaction to commit. Using only syn-
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1. if currentTime − lastSampleTime < samplePeriod, goto Step 1;
2. TCR ← numCommits / numTransactions × 100;
3. Δthreads ← controller model output
4. newThreads ← numCurrentThreads + Δthreads;
5. Adjust newThreads such that minThreads ≤ newThreads ≤ maxThreads;
6. numCurrentThreads ← newThreads;
7. Set lastSampleTime ← currentTime, go to Step 1;

Fig. 2. Transactional concurrency tuning pseudocode, with modular controller model

chronous submission emulates the existing TM programming model, but asyn-
chronous submission may improve exploitation of high available parallelism; if
the number of worker threads is increased such that it is greater than the number
of application threads, synchronous submission will not deliver enough jobs for
all worker threads. Figure 2 illustrates how the transaction concurrency tuning
system permits modular controller models, i.e. the policy for determining the
controller model output.

2.1 Four Controller Models

This section introduces four controller models from the authors’ previous work
[19] that vary in their response strength to the difference in the measured value of
the process variable and the setPoint. Preliminary experimental analysis found
the controller models described below to have unstable controller model output
using a single value for the setPoint (e.g. 70%) so a setPointRange (e.g. 50–80%)
is selected.

SimpleAdjust is the simplest controller model, and increments the number of
worker threads by one if the sampled TCR is above the upper setPointRange
value, or vice versa. When the TCR is within setPointRange, no change is made.

ExponentialInterval extends SimpleAdjust aiming to improve response time to
TCR changes. If a change to the number of worker threads is made then sam-
plePeriod is halved, i.e. the next change, if necessary, will be made sooner.
Conversely, samplePeriod is doubled if the number of worker threads is left un-
changed. As before, the number of worker threads is only increased or decreased
by one. A samplePeriodRange that restricts the samplePeriod must be defined.

ExponentialAdjust also extends SimpleAdjust aiming to improve response time
to TCR changes. It calculates the adjustment to the number of worker threads
based on the difference in sampled TCR and the setPointRange. The further the
sampled TCR from the setPointRange, the greater the adjustment. The formula
initially chooses to add or subtract one worker thread, and then doubles this
value for every 10% the TCR is outside the setPointRange. For example, using
a setPointRange of 50–60% and a sampled TCR of 82%, ExponentialAdjust
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calculates a TCR difference of 22%, and thus doubles the number of threads
twice (1 → 2 → 4) to add four worker threads.

ExponentialCombined is a combination of ExponentialInterval and Exponential-
Adjust. ExponentialCombined has the sample interval adjustment of Exponen-
tialInterval, and the variable worker thread adjustment of ExponentialAdjust,
resulting in the most responsive controller model.

2.2 P-only Controller Model

This section begins by describing the fifth controller model, called P-only trans-
actional concurrency tuning (PoCC), then goes on to discuss the features
introduced to make it more general purpose than the four controller models
described previously. Specifically, PoCC adds two enhancements: a proportional
gain formula, and minimum transaction count filter. PoCC is based on a P-only
controller model [20] and is presented as pseudocode in Figure 3.

1. If numTransactions < minTransactions, goto Step 1;
2. ΔTCR ← TCR − setPoint ;
3. If (numCurrentThreads= 1) & (TCR > setPoint);

(a) then Δthreads ← 1;
(b) else Δthreads ← ΔTCR × numCurrentThreads / 100

(rounded to the closest integer);

Fig. 3. PoCC controller model pseudocode

In step 1, a new parameter minTransactions is added that acts as a filter
against noisy TCR profiles such as in Figure 12. Such noisy samples may occur
due to the average transaction’s duration being longer than the samplePeriod.
The four previous controller models, lacking PoCC’s filter, absorbed noise by us-
ing a large samplePeriod, which was a trade-off of responsiveness for robustness.
PoCC’s filter allows it to be highly responsive, by using a short samplePeriod,
but still be robust to noisy samples. Thus, in PoCC, samplePeriod is determined
based on the overhead of executing the control system loop, and does not have
to filter noisy samples.

The first four controller models used an absolute gain formula to calculate
Δthreads, which led to a change in numCurrentThreads even if small ΔTCR
values occurred. Such a response was disproportionate at low worker thread
counts, e.g. an increase from 1 thread to 2 threads for a TCR only 1% higher than
the setPoint. This unstable behaviour was controlled by using a setPointRange.
However, over large worker thread counts, a setPointRange range results in poor
responsiveness as it produces coarse-grain control. In step 3(b) PoCC uses a
proportional gain formula (i.e., proportional to the number of current worker
threads) that allows, in response to small ΔTCR, Δthreads to be zero at low
worker thread counts, and fine-grain control at large worker thread counts. Thus,
PoCC improves responsiveness, because its proportional gain formula allows it to
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use a setPoint rather than a setPointRange, and still result in stable behaviour
at low worker thread counts.

3 Evaluation of the Controller Models

The evaluation is split into several sections: execution time, resource usage, trans-
action execution metrics, and finally an investigation of controller model response
characteristics. The controller models are abbreviated to SA, EI, EA, EC, and
PoCC, respectively.

Hereafter, static execution refers to execution with a fixed number of threads,
and dynamic execution refers to execution under any controller model. All exper-
iments use the thread pool to execute transactions. All benchmarks are executed
using 1, 2, 4, and 8 initial threads. We use the term initial threads as dynamic
execution may change the number of threads (between 1 and 8) at runtime. Ex-
periments are executed five times, and the mean results reported. This paper
restricts the number of worker threads in the thread pool to a maximum of 8,
which is equal to the number of cores in the hardware platform used in the eval-
uations, and a minimum of 1. Unless specified, references to changing numbers
of threads imply thread pool worker threads, and not application threads.

3.1 Controller Model Parameters

Through preliminary experimentation with LeeH (explained later in Section 3.3)
the parameters of the first four controller models were set to: samplePeriod of
10 seconds, setPointRange of 50–80%, and samplePeriodRange of 4–60 seconds.
PoCC’s parameters are: setPoint of 70%, minTransactions of 100. Experimental
evaluation found execution of the complete control loop took on average 2ms
with PoCC, thus samplePeriod is set to 1 second for PoCC to make its overhead
negligible.

3.2 Hardware and Software Platform

The platform used for the evaluation is a 4x dual core (8 core) AMD Opteron
2.4GHz system with 16GB RAM, openSUSE 10.1, and Java 1.6 64-bit using the
parameters -Xms1024m -Xmx14000m.

DSTM2 is used with its default configuration of eager validation, visible read-
ers, and shadow atomic factory. DSTM2 has been modified to maintain a thread
pool as described earlier. DSTM2 supports a number of contention managers
(CMs). In DSTM2, a CM is invoked by a transaction when it finds itself in
conflict with another transaction. The CM decides which transaction should be
aborted based on its policy. The CMs used in this paper are described briefly
below, and for further details refer to [21,22,23].

Aggressive always aborts a conflicting enemy transaction.

Backoff gives the enemy transaction exponentially increasing amounts of time
to commit, for a fixed number of iterations, before aborting it.
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Karma assigns dynamic priorities to transactions based on the number of ob-
jects they have opened for reading, and aborts enemy transactions with lower
priorities.

Eruption is similar to Karma, and assigns dynamic priorities to transactions
based on the number of transactional objects they have opened for reading.
Conflicting transactions with lower priorities add their priority to their opponent
to increase the opponent’s priority, and allow the opponent to abort its enemies,
and ‘erupt’ through to commit stage.

Greedy aborts the younger of the conflicting transactions, unless the older one
is suspended or waiting, in which case the older one is aborted.

Kindergarten makes transactions abort themselves when they meet a conflicting
transaction for the first time, but then aborting the enemy transaction if it is
encountered in a conflict a second time.

Polka combines Karma and Backoff by giving the enemy transaction expo-
nentially increasing amounts of time to commit, for a number of iterations
equal to the difference in the transactions’ priorities, before aborting the enemy
transaction.

Priority is a static priority-based manager, where the priority of a transac-
tion is its start time, that immediately aborts lower priority transactions during
conflicts.

3.3 Benchmarks

One synthetic and seven real, non-trivial benchmark configurations are used in
this paper. The synthetic benchmark, StepChange, oscillates the TCR from 80%
to 20% in steps of 20% every 20 seconds, and executes for a fixed 300 seconds.
StepChange needs to be executed with the maximum 8 threads to allow its TCR
oscillation to have impact, as it operates by controlling the number of threads
executing committed or aborted transactions.

The non-trivial benchmarks used are Lee’s routing algorithm [8], and the
STAMP [10] benchmarks Genome, KMeans, and Vacation, from STAMP version
0.9.5, all ported to execute under DSTM2. All benchmarks, with the exception
of Genome, are executed with high and low data contention configurations, as
shown in Table 1. Lee’s routing algorithm uses early release [24] for its low data
contention configuration, which releases unnecessary data from a transaction’s
read set to reduce false conflicts. This requires application-specific knowledge
to determine which data is unnecessary, and manual annotation of the code. In
some other publications, e.g. [8], LeeH is referred to as Lee-TM-t, and LeeL is
referred to as Lee-TM-ter. The input parameters for the benchmarks are those
recommended by their respective providers. The average benchmark execution
times are shown in Table 2, and dynamic available parallelism in Figure 4, both
using the Priority contention manager.
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Table 1. Benchmark configuration parameters used in the evaluation

Configuration Name Application Configuration

StepChange StepChange max tcr:80, min tcr:20, time:300,
step size:20, step period:20,

Genome Genome gene length:16384,
segment length:64,
num segments:4194304

KMeansL KMeans low contention clusters:40, threshold:0.00001,
input file:random10000 12

KMeansH KMeans high contention clusters:20, threshold:0.00001,
input file:random10000 12

VacL Vacation low contention relations:65536,
percent of relations queried:90,
queries per transaction:4,
number of transactions:4194304

VacH Vacation high contention relations:65536,
percent of relations queried:10,
queries per transaction:8,
number of transactions:4194304

LeeL Lee-TM low contention early release:true, file:mainboard
LeeH Lee-TM high contention early release:false, file:mainboard

Table 2. Average benchmark execution times in seconds, including one standard de-
viation, using the Priority contention manager

Genome KMeansH KMeansL LeeH LeeL VacH VacL
1 thread 179±1.9 23.6±6.1 22.2±3.5 418±6.4 394± 4.0 524±9.4 475±3.7
2 threads 117±4.8 23.0±7.0 20.4±6.7 250±3.5 326±20.4 362±3.5 390±9.9
4 threads 88±2.9 21.3±3.4 17.7±3.3 162±2.1 280± 8.2 294±3.1 360±3.1
8 threads 83±9.1 27.6±7.8 16.4±4.5 115±4.1 285±14.2 291±3.0 381±9.7

The benchmarks have been modified to use the thread pool to execute trans-
actions. Only KMeans partially uses synchronous job submission as part of each
thread’s code executes two transactions, the second of which needs a return
value from the first. The remaining benchmarks use asynchronous job submis-
sion. Lee-TM and Vacation create all jobs during benchmark initialisation, which
is excluded from the recorded execution time. Genome and KMeans create jobs
dynamically, and thus include job creation time in the recorded execution time.
Jobs are submitted in a round-robin manner to the multiple work queues.

3.4 Execution Time

Execution time results are presented in two parts. First, LeeH is investigated
using all CMs, but only with the first four controller models. The motivation
is to see if the effect on performance varies with the CM used. Second, the
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Fig. 4. TCR profiles of the benchmarks used, executing with 8 threads
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remaining benchmarks are reported with all controller models, but only the
Priority contention manager, as it is generally one of the better performing
contentions managers. Using one of the better performing CMs will generally
show the minimum benefit of using transactional concurrency tuning.

For each benchmark, dynamic execution should: (a) reduce execution time,
over static execution with an initial number of threads that under-exploits the
available parallelism, (b) reduce execution time, over static execution with an
initial number of threads that over-exploits the available parallelism, and (c)
reduce variance in execution time over different numbers of initial threads, com-
pared to static execution time variance.

Figure 5 shows normalised execution time results for LeeH with all CMs. For
static execution Aggressive, Kindergarten, and Priority CMs provide the best
execution times, with a maximum difference of 3.2% between their respective
best cases, and are the only CMs to show improving execution times up to 8
threads. The remaining CMs’ performance degrades from 4 to 8 threads, indi-
cating that either the proportion of time spent executing aborted transactions,
or the time spent in resolving access conflicts, or both, has increased.

Intuitively, the 8 thread execution time improvements with dynamic execu-
tion for some CMs suggest that, at this number of threads, there are phases of
execution where the available parallelism is low. With fewer threads, although
such phases of low available parallelism may have occurred, they were not sig-
nificant enough to cause a noticeable difference in execution time performance
between static and dynamic execution.

Dynamic execution satisfies goal (a) above: execution time is always reduced
when compared to static execution with 1 thread. Goal (b) is satisfied: dynamic
execution improves execution time with 8 threads for five CMs. Goal (c) is also
met: dynamic execution reduces variance in execution time compared to static
execution, although execution time variance is not negligible for any controller
model.

Additionally, for each CM (excluding Backoff), dynamic execution time for
all numbers of initial threads is within 10% of the best static execution time.
For Backoff this rises to 21% with EC. This shows that dynamic execution per-
formance varies insignificantly with the CM used, including the best performing
CMs (Aggressive, Kindergarten, and Priority). The results also show there is
no clear winner amongst the controller models for any CM, but the variance
amongst them is far smaller than amongst the CMs.

Figure 6 shows normalised execution time results for the benchmarks with only
the Priority CM. Amongst these benchmarks only KMeansH and VacL do not
improve execution time all the way up to 8 threads. KMeans experiments run for
less than 20 seconds on average, thus the graphs have noise due to small execution
time differences resulting in large variation in normalised execution time.

Looking at the 1 thread results, dynamic execution improves execution time
results when static execution under-exploits available parallelism. In Genome
and LeeL, EI and EC improve execution time better than SA and EA. Although
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Fig. 5. Execution time for LeeH for each CM, normalised to overall best case static
execution time (Aggressive with 8 threads). Less is better.

EC does not fare well in KMeansH, the difference is not significant once execution
time is taken into account.

Looking at results across all threads and all benchmarks, dynamic execution
reduces variance in execution time results, with EI and EC showing less variance
than SA and EA. Looking at the 8 thread results, dynamic execution only im-
proves execution time when static execution over-exploits available parallelism
in KMeans, because the falling execution times up to 8 threads show most of the
benchmarks don’t suffer from over-exploitation. Furthermore, the significance of
the KMeans results is devalued by its short execution time.

Although the performance of the controller models with respect to best case
static execution time is more variable in these experiments, the best case
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Fig. 6. Execution times for non-trivial benchmarks using the Priority CM, normalised
to the best case static execution time for each benchmark configuration. StepChange
benchmark omitted as it executes for a fixed duration. Less is better.

PoCC
SA
EI
EA
EC

  0

  5

  10

  15

  20

  25

  30

G
en

om
e

K
M

ea
ns

H

K
M

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

A
ve

ra
ge

St
an

da
rd

 D
ev

ia
tio

n

Fig. 7. Execution time std deviation over all initial threads. Less is better.



248 M. Ansari et al.

controller model for each benchmark degrades performance by 6% or less. Fi-
nally, again there is no clear winner amongst SA, EI, EA, and EC.

Generally, there is little difference in performance between PoCC and the
first four controller models, but only PoCC consistently performs well across all
benchmarks, whereas SA, EI, EA, and EC all show poor execution times in some
benchmark configurations. Furthermore, averaging speedup of each controller
model over static execution for each benchmark configuration, PoCC is second-
best with an average speedup of 1.26, and EC is best with a marginally better
speedup of 1.27. Averaging speedup of each controller model over best-case static
execution for each benchmark, PoCC is joint-best with EC with an average
slowdown of 5%, while EI, EA, and SA suffer an average slowdown of 6%, 7%,
and 10%, respectively.

Figure 7 presents the execution time standard deviation for each benchmark
to compare the effectiveness of the controller models at reducing execution time
variance. The results show PoCC is the best on average, reducing standard de-
viation by 31% over the next best, EC.

3.5 Resource Utilisation

Resource usage is calculated by summing, for all TCR samples, the sample dura-
tion multiplied by the number of threads executing during the sample. For each
benchmark, dynamic execution should improve resource usage over static execu-
tion with an initial number of threads that over-exploits the available parallelism.
Resource usage is compared for 8 initial threads, the system maximum, as appli-
cations that scale past 8 threads should show little resource usage improvement,
and applications that do not scale past 8 threads should get maximum resource
usage saving at 8 threads with dynamic execution, and thus allow comparison
between the controller models. Again, the analysis is in two parts: LeeH with all
CMs first, then all benchmarks with the Priority CM.

Figure 8 shows resource savings for all CMs with LeeH. Dynamic execution
shows significant resource usage savings with many results in the 40-50% range.
In particular, even the best performing CMs (Aggressive, Kindergarten, and
Priority) have substantial resource savings, and, as presented earlier, dynamic

SA
EI
EA
EC

  0

  10

  20

  30

  40

  50

  60

  70

  80

A
gg

/s
iv

e

B
ac

ko
ff

E
ru

pt
io

n

G
re

ed
y

K
ar

m
a

K
/te

n

Po
lk

a

Pr
io

ri
ty

Im
pr

ov
em

en
t (

%
)

Fig. 8. Resource efficiency vs. static ex-
ecution: 8 threads, LeeH

PoCC
SA
EI
EA
EC

  0
  10
  20
  30
  40
  50
  60
  70
  80

G
en

om
e

K
m

ea
ns

H

K
m

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

St
ep

C
ha

ng
e

A
ve

ra
ge

Im
pr

ov
em

en
t (

%
)

Fig. 9. Resource efficiency vs. static exe-
cution at 8 initial threads. More is better.



Robust Adaptation to Available Parallelism 249

PoCC
SA
EI
EA
EC

  0

  5

  10

  15

  20

  25

  30

G
en

om
e

K
M

ea
ns

H

K
M

ea
ns

L

L
ee

H

L
ee

L

V
ac

H

V
ac

L

St
an

da
rd

 D
ev

ia
tio

n

Wasted Work Standard Deviations

Fig. 10. Wasted work standard devia-
tions for the benchmarks. Less is better.
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Fig. 11. APC standard deviations for the
benchmarks. Less is better.

execution still results in execution times that are similar to the best case static
execution. The results also show that the relative savings between controller
models is not affected by the CM used: EA always has the best savings, and EI
the worst, for LeeH.

Figure 9 shows resource savings for all benchmarks, all controller models, with
the Priority CM. Genome, Vac, and LeeL have little resource savings because
they do not have low available parallelism at 8 threads. Relative savings are
the same for LeeH and StepChange, but inverted for KMeans: EI offers larger
resource savings amongst the first four controller models. However, PoCC is the
best in every benchmark except KMeansH where EI is 3.7% better. On average,
PoCC improves resource savings by 24% over the next best, EI.

3.6 Transaction Execution Metrics

Two transaction execution metrics are presented: wasted work and aborts per
commit (APC), first presented in TM literature by Perfumo et al. [25]. Wasted
work is the proportion of execution time spent in executing transactions that
eventually aborted, and APC is the ratio of aborted transactions to committed
transactions. Both metrics are a measure of wasted execution, and are thus of
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interest since transactional concurrency tuning attempts to reduce variance in
TCR, which should result in reduced variance in these metrics.

Figure 10 presents wasted work standard deviations. PoCC significantly re-
duces variability in wasted work: on average its standard deviation is 88% lower
than the next best controller model, which is EC. Figure 11 presents APC, and
again PoCC reduces variability: on average its APC standard deviation is 26%
lower than the next best controller model, which is EC. Furthermore, PoCC
reduces average wasted work by 16% over the next best controller model, which
is EC, and reduces average APC by 11% over the next best controller model,
which is also EC.

3.7 Response Characteristics

This section examines how the controller models respond to changes in TCR.
Specifically, this section investigates how fast, how much, and how robustly, con-
troller models respond. The responsiveness analysis is restricted to StepChange
and LeeL. Both exhibit TCR profiles that stress the controller models as shown
sampled at 1 second intervals in Figure 12. StepChange changes TCR by large
amounts at fixed intervals, and LeeL has a wildly oscillating TCR due to the
fast sample rate used to capture the data, but earlier sections have shown it has
high available parallelism up to 8 threads.

Figure 13 shows the how the controller models respond to the changes in TCR.
The first four controller models are robust to the noise in LeeL as the sample rate
of the controller models is 10 seconds, not 1 second, which acts as a noise filter.
The 50–80% setPointRange reduces the chance of unstable behaviour further.

However, these advantages turn into disadvantages for StepChange, where the
first four controller models respond poorly. The samplePeriod gives the controller
models response gradients that are not as steep as StepChange’s changes in
TCR. The setPointRange prevents the controller models from responding to
smaller changes in TCR, despite all steps altering TCR by 15% or more. Finally,
the samplePeriodRange used by EI, and EA, have an upper bound that is too
high (60 seconds), resulting in EC failing to respond to the second trough in
StepChange’s TCR.

PoCC shows good response to both benchmarks: it is robust to noise in LeeL
due to the minTransactions filter, and it responds to StepChange quickly due
to the 1 second samplePeriod. The first four controller models trade robust-
ness to noise for responsiveness by using a larger samplePeriod. PoCC removes
the trade-off with its minTransactions filter, giving high responsiveness without
compromising robustness.

4 Limitations

Transactional concurrency tuning has been shown to improve performance and
reduce resource usage for a number of non-trivial benchmarks; in particular,
PoCC has shown good response characteristics. Transactional concurrency tun-
ing has also been implemented to support existing TM applications with only
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trivial changes. This section discusses two issues in relation to its widespread use:
the practicalities of using transactional concurrency tuning, and the implications
of using a thread pool to execute transactions.

The key to effective transactional concurrency tuning, as the earlier evalua-
tion has shown, is the ability to quickly and adequately respond to changes in
TCR. The system can only respond as fast as the selected samplingPeriod, and
care needs to be taken to set this short enough to respond to the application’s
fluctuating TCR. However, if the TCR fluctuates at a rate near to, or faster
than, the time it takes to execute the transactional concurrency tuning loop,
then it is unlikely the system will be able to offer meaningful improvements
in resource usage and performance. Hardware support for the control loop, for
example maintaining the statistics needed to calculate TCR in hardware regis-
ters, may improve the loop’s execution time, and improve the system’s ability
to support rapid TCR fluctuations.

A short samplingPeriod also adds overhead; the thread that executes the
transactional concurrency loop code uses processor resources. However, with the
increasing number of cores in multi-core processors, we do not foresee this to
be an issue. Indeed, it may even be recommended to have the thread running
continuously on its own core.

The thread pool is a different programming model from that seen in TM
research, although it is not unfamiliar to the world of database transactions, on
which TM is based. The thread pool has been refined to improve its scalability
by implementing multiple work queues, and work stealing, and it is likely that
further research in thread pools will continue to reduce their overhead as existing
thread pool based applications move to multi-cores.

One issue is the increase in the total number of threads: application threads
plus worker threads. Increasing the number of threads adds context switching
overhead. However, it is likely that this overhead will be significantly reduced in
multi-core architectures for two reasons. First, the increasing numbers of cores
makes it natural to increase the total number of threads. Second, many multi-
cores have added support for hardware context switching, which can switch
thread contexts per processor clock cycle.

Other overheads that have not been investigated in this work include cre-
ation of data structures representing transactional jobs, job submission, and
synchronisation when using synchronous job submission. Such overheads may
be significant when executing very small transactions.

5 Conclusion

This paper has presented the first application of transactional concurrency tun-
ing to TM with the aim of improving resource utilisation and execution time
performance by adapting the number transactions executing concurrently to the
available parallelism. A new metric, transaction commit rate (TCR), was in-
troduced as a measure of available parallelism. Four transactional concurrency
tuning algorithms (controller models) that varied in response strength were ini-
tially evaluated against a number of benchmarks and contention managers. The
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results showed transactional concurrency tuning led to execution time within
10% of the best non-transactional concurrency tuned execution time, whilst sig-
nificantly reducing processor resource usage (over 40% in many cases) for those
applications that exhibited phases of low available parallelism. The saved re-
sources could be used by other applications, or powered down to save energy.

However, analysis of the controller models’ response characteristics showed
that they traded off robustness to noise in sampled TCR data, with responsive-
ness. This meant that the controller models’ potentially needed their transac-
tional concurrency tuning parameters re-tuning for every application they used,
limiting their general applicability. A fifth transactional concurrency tuning al-
gorithm, called PoCC, was created to address this problem, and incorporated
a relative gain formula and a minimum transaction count filter. Evaluation of
PoCC showed it maintains average execution time similar to the best controller
model, has the least performance deficit vs. best-case fixed-thread execution, and
improves over the other four controller models by at least 24% average resource
usage, 16% average wasted work, and 11% average APC. PoCC improves over
the other four controller models standard deviation by at least 31% in execution
time, 24% in resource usage, 88% in wasted work, and 26% in APC. Thus PoCC
matches or improves in all benchmark performance metrics analysed. Finally, an
analysis of all the controller models’ response characteristics shows PoCC to be
more responsive to, and more robust to noise in, changes in TCR. This is due to
the new features in PoCC allowing fine-grain response to changes in TCR, and
allowing the sample period to be application-independent.
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Abstract. Transactional memory systems promise to reduce the burden of 
exposing thread-level parallelism in programs by relieving programmers from 
analyzing complex inter-thread dependences in detail. By encapsulating large 
program code blocks and executing them as atomic blocks, dependence 
checking is deferred to run-time. One of many conflicting transactions will then 
be committed whereas the others will have to roll-back and re-execute. In 
current proposals, a checkpoint is taken at the beginning of the atomic block 
and all execution can be wasted even if the conflicting access happens at the 
end of the atomic block. 

In this paper, we propose a novel scheme that (1) predicts when the first 
conflicting access occurs and (2) inserts a checkpoint before it is executed. 
When the prediction is correct, the only execution discarded is the one that has 
to be re-done. When the prediction is incorrect, the whole transaction has to be 
re-executed just as before. Overall, we find that our scheme manages to 
maintain high prediction accuracy and leads to a quite significant reduction in 
the number of lost cycles due to roll-backs; the geometric mean speedup across 
five applications is 16%. 

1   Introduction 

As we embark on the multi-core roadmap, there is a major quest for strategies to 
make parallel programming easier. One of many difficulties faced when designing a 
parallel program is to orchestrate the program in such a way that dependences are 
respected among threads. While lock-based constructs, such as critical sections, have 
been popular, they can introduce serialization bottlenecks if ?the critical sections are 
too long and also deadlocks. Transactional memory (TM) [1,4,5,6,8,12,13,14,15] can 
avoid the serialization imposed by coarse critical sections. This is done by allowing 
threads to execute critical sections in parallel while preserving atomicity and 
isolation. As long as there are no data conflicts, thread-level parallelism is uncovered; 
otherwise, transactional memory forces some transactions to re-execute in a serial 
fashion. 
                                                           
*  This research is sponsored by the SARC project funded by the EU under FET. The authors 

are members of HiPEAC – a Network of Excellence funded by the EU under FP6. 
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Transactional memory system proposals abound in the literature and can be 
classified broadly in hardware (HTM) [1,4,5,8,12] and software (STM) [14] 
transactional memory systems. Whereas the former does data-conflict resolution in 
hardware, the latter emulates data-conflict resolution in software. Recently, some 
researchers are investigating hybrids between the two (HyTM) [6,13,15]. Based on 
the observation that STM imposes significant overhead, we target HTM systems in 
this paper although our contributed concepts can be applied to STM and HyTM 
systems as well. 

In the transactional memory systems proposed so far, data conflicts are detected 
either lazily or eagerly [8]. HTM systems built on lazy data-conflict detection, such as 
TCC [4], typically take a checkpoint when a transaction is launched for execution and 
record the read and the write set for each speculatively executed memory access, i.e., 
the set of locations that are speculatively read or written. Data-conflict resolution 
occurs when a transaction finishes and is about to commit. If the read-set of an 
unfinished transaction intersects with the write-set of the committing transaction, the 
unfinished transaction has to be squashed and rolled back to the beginning. Clearly, if 
the conflicting access happened at a late point, useful execution can get wasted which 
may lead to a significant loss in performance and power. 

In HTM systems built on eager data-conflict resolution, such as in LogTM [8], 
ongoing transactions are notified immediately when a location is modified. As a 
result, the decision of what transaction should be re-executed is not postponed until 
the commit point. On the contrary, the faulting read access is sometimes delayed so 
that the conflicting transaction is not squashed. However, when two transactions 
happen to have a conflicting read access with respect to each other, one of them is 
squashed and has to be rolled back to the beginning. Again, the faulting read access 
may have happened much later and lots of useful execution can get wasted. Of course, 
the longer the transactions are, the more useful execution can get wasted by 
conservatively forcing a transaction to re-execute from its beginning. 

Recent proposals for supporting nested transactions [7,10] insert checkpoints at the 
start of each transaction nested inside another to reduce the amount of useful 
execution to be wasted. Unfortunately, they do not solve the general problem of 
squashing only the execution that depends on the conflicting access. This paper 
provides a solution to this general problem. 

In this paper, we propose a new HTM protocol that records all potentially 
conflicting accesses when a transaction is executed. When a transaction is squashed, 
the set of conflicting addresses that are part of the write set of the committing 
transaction are book-kept. Next time a transaction is executed, a check-point is 
inserted when any of the book-kept conflicting addresses is accessed. If the 
transaction is squashed, it is rolled back to the check-point associated with the first 
conflicting access. We show that this scheme can be supported with fairly limited 
extensions to a TCC-like protocol and that it manages to save a significant part of the 
useful execution done by a squashed transaction. 

We first establish the baseline system and frame the problem in Section 2. Section 
3 presents our scheme for inserting intermediate check-points – our main 
contribution. We then evaluate our concept starting with describing the methodology 
in Section 4 and the experimental results in Section 5. We discuss how our 
contributions position themselves in relation to prior work in Section 6 and finally 
conclude in Section 7. 
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2   Baseline System and Problem Statement 

We first describe the baseline system assumed in the study in Section 2.1. Section 2.2 
then describes the problem investigated in this paper. 

2.1   Baseline Architecture 

Without loss of generality, but to assume a concrete design point, we consider TCC 
[4] as the baseline system. In TCC, all the processors are connected to the main 
memory through a central bus. To support transactions, the private data cache is 
modified to track speculative read and write operations of an ongoing transaction. The 
speculatively read and written locations for a whole transaction form the read and the 
write set, respectively. The read and the write set are kept track of with an R and a W 
bit associated with each block as shown in Fig 1.  

 

Fig. 1. The modified private data cache proposed in TCC. The cache is extended with two 
single-bit metadata: a speculative read (R) and a speculative modification (W).  

When a read or a write operation occurs in a transaction, the respective R or W bit 
is set and reset on a commit or on a miss-peculation. Before a transaction is launched, 
the internal state of the processor is check-pointed. On a commit, all the modified 
values of the write set are propagated to the main memory and all the information 
regarding the read and the write set is reset by resetting the R and W bits. When the 
values associated with the write set are propagated to the main memory through the 
central bus, all other caches snoop the addresses associated with it on the bus. It is 
important that a commit is carried out atomically. As a result, no other memory 
transaction can be in progress during a commit process. 

If any address in the write set of the committing transaction conflicts with an 
address in the read or the write set of another cache, the processor attached to that 
cache squashes its current transaction and restarts it from the beginning. Squashing 
involves invalidating all speculatively modified cache blocks and resetting all the R 
and W bits. While the metadata is allocated at the block level in the original 
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implementation it can be maintained at the word granularity too, to avoid false miss-
speculations. 

Fig 2 shows the execution of two conflicting transactions. Processor P1 finishes 
and commits its first transaction. While P1 broadcasts its write set, which contains 
Wa, P2 detects a conflict with the read set of its ongoing transaction and squashes its 
transaction. The squashed transaction wastes a lot of execution time but nevertheless 
maintains the correctness of the program. 

 

Fig. 2. An execution pattern of transactions running in two processors  

In accordance with the TCC hardware model, and for clarity, we assume that the 
whole program will be decomposed into transactions. Hence, a transaction will start 
followed by a successful commit of the previous transaction. 

2.2   Problem Statement 

In Fig 2, we have seen that an access conflict between a modified location of a 
committing transaction and a read access to the same location by an ongoing 
transaction forces the ongoing transaction to squash and restart from the beginning. 
While the transaction restarts from the beginning, it ignores the position of the 
conflicting access which is ‘Ra’ in this case. To preserve the correctness of the 
program, it is necessary and sufficient to restart from a position before the first 
conflicting access. Therefore, by restarting from the beginning, useful execution is 
wasted which may impede performance and lead to power losses.  

The effect of this waste in execution bandwidth can be huge if the conflicting 
access occurs late in a long-running transaction. To concretely show the losses, let’s 
consider an execution scenario illustrated by the following micro-benchmark. 

The micro-benchmark presented in Fig 3 implements an algorithm that can solve 
many other search problems. In the benchmark, checking each character in the string 
segment by a worker forms a transaction. If the character is a member of a set (e.g. 
vowel), the shared variable, count, is incremented and the next character is examined 
in a new transaction. Note that the only shared variable, count, is accessed as the last 
operation in a transaction if the character is a vowel. If the character is not a vowel, 
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the transaction doesn’t access any shared variable at all. Therefore, in a conflicting 
situation re-executing only the last operation is sufficient for correctness of the 
program. Nevertheless, by re-executing from the beginning, a significant amount of 
useful work is lost. 

 

   

Fig. 3. A micro-benchmark that counts the number of vowels in a string. The string is divided 
into segments and each processor works on one segment. When a vowel is found the processor 
increments the global shared variable count. 

In the next section, we present a mechanism that allows a transaction to re-execute 
from an intermediate place on squash. Thus, by avoiding re-execution from the 
beginning we can save a significant amount of execution time and the experimental 
results in the following section confirms our claim. 

3   The Intermediate Check-Point-Insertion Scheme 

This section presents the scheme we propose to reduce the execution losses due to 
roll-back of transactions. We first provide an overview of the scheme in Section 3.1 
and then present the structures and algorithms needed to implement it in Section 3.2. 

char *str, *vowels; 
int count; 
 
worker(low, high) 
{ 
   for(i=low;i<high;++i){ 
      XTRAN 
 for(j=0;j<n_vowels; ++j){ 
        if(str[i]==vowels[j]){ 
           ++count; 
      break; 
        } 
 } 
   } 
} 
 
main() 
{ 
   for(i=0; i<n_proc; ++i){ 
      x = str_size / n_proc; 
      low = i * x 
 high = low + x; 
 if(high > str_size) 
   high = str_size; 
      

create_thread(worker,low,high); 
   } 
} 
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3.1   Overview of the Scheme 

Our solution is to insert intermediate check-points to enable a transaction to avoid re-
execution from the beginning on a squash. The intention is to insert a checkpoint prior 
to each conflicting access. As this point is not known beforehand, our approach is to 
predict the set of conflicting accesses in a transaction based on the set of conflicting 
accesses recorded in previous transaction executions. The hypothesis is that this set is 
(1) highly predictable and (2) of a manageable size. The intuition behind the first 
hypothesis is that when transactions are launched from a particular piece of code e.g., 
a loop, the set of locations touched are the same in one invocation of the loop as in a 
subsequent invocation. This hypothesis will be tested in the experimental section. As 
we will see, the accuracy of this prediction methodology is surprisingly high. 

With this hypothesis in mind, we track the history of conflicting memory addresses 
during the execution of a program. The set of conflicting addresses is called critical 
addresses (CA). Every time a transaction is squashed, the addresses of the memory 
accesses that cause the conflict are identified and added to the set CA for future 
reference. While a processor performs a read operation, the address is matched 
against the CA in parallel. If the read address is found, the read is considered as a 
potentially conflicting access. If the potentially conflicting access is the first one to 
that location within the transaction, a check-point is taken just before the read 
operation is performed. The goal is that on a squash it is possible to re-execute the 
transaction from this checkpoint if the prediction is correct.  

The code segment starting from a checkpoint to another checkpoint or the end of 
the transaction is called a sub-transaction. Optionally, an intermediate checkpoint is 
avoided if the sub-transaction becomes too small to trade off with the check-pointing 
overhead. 

When a processor ends up in a conflicting situation and decides to rollback, it 
determines the earliest accessed memory location that is involved in the conflict. The 
processor can rollback to any position before that access without violating the 
correctness of the program if it is possible to reconstruct the state in which the related 
part of the system was at that position. In our scheme, a processor restarts from the 
latest checkpoint that maintains the correctness of the program. As a special case, the 
checkpoint at the beginning of a transaction could also be the latest one if no 
intermediate checkpoint serves the purpose. In other words, the transaction restarts 
from the beginning of the sub-transaction to which the earliest conflicting access 
belongs.  

3.2   Implementation 

One key mechanism to support the intermediate checkpoint-insertion scheme is a 
buffer, called critical address buffer (CAB), attached to each processor that stores the 
critical addresses as defined in the previous section. Our hypothesis is that the set of 
critical addresses is small; hence the CAB is implemented as a cache with typically 
few entries. This hypothesis will be tested later in Section 5. The CAB is checked at 
every load and store operation in order to determine whether an intermediate 
checkpoint should be inserted. In order to not have an impact on the cache hit time, 
we assume that the size of the CAB does not exceed the associativity of the first-level 
cache. Hence, in the experiments, we will assume CAB size of 4. Further, we assume 
that the replacement policy of the CAB is LRU. 
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When an intermediate checkpoint is taken, a transaction is divided into sub-
transactions and it is important to be able to roll-back to any of them. Support for 
rolling back to the beginning is already provided by the basic TCC scheme and 
involves installing the architectural state and resetting the R and W bits in the first-
level cache. To be able to roll-back to an intermediate check-point, however, as many 
extra sets of check-pointing registers as the number of intermediate checkpoints are 
needed. This is illustrated in Fig 4. 

What goes beyond the mechanisms assumed by TCC is a capability to restore the 
memory state at the intermediate check-points. There are two mechanisms that 
facilitate this: (1) a separate read and write set is maintained for each sub-transaction 
and (2) a single undo log – the ILog buffer as shown in Fig 4 – is used to store the old 
value of a private cache location that is modified by a sub-transaction so that the 
modifications by the sub-transaction can be undone. The old value is recorded in the 
ILog only if the old value is generated speculatively in some previous sub-transaction. 
Otherwise the old value could be restored from the non-speculative memory. A 
subsequent modification in the same location within the same sub-transaction doesn’t 
need to be recorded in the ILog buffer. This helps keeping the buffer relatively small. 

Each entry in the ILog buffer is associated with the sub-transaction number, STN, in 
which the transaction is executing while the entry is inserted. When a transaction is 
rolled back to an intermediate checkpoint, say N, all modifications recorded in the 
ILog buffer from subsequent sub-transactions (STN>N) are undone by starting from 
the last entry in the buffer. Undoing in reverse-order ensures that a correct value is 
restored in case of multiple entries for the same location. When a value in the ILog is 
restored, the R and W bits corresponding to the squashed sub-transactions are reset. To 
keep track of the sub-transaction that is executing, a log2 n-bit counter (STN) is also 
required where n is the maximum number of sub-transactions. Every time a checkpoint 
is taken the transaction enters into a new sub-transaction and STN is incremented. 

 

Fig. 4. Processor model of our system including the modified private cache structure  

Finally, on a commit, the broadcast write set is matched against the read set of each 
of the ongoing transactions. When an address in the write set matches an address in a 
read set, a conflict is detected and the earliest sub-transaction that accessed the 
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memory block is determined from the status of the individual R bit associated with 
the block. This procedure is repeated for all addresses in the write set to identify the 
earliest sub-transaction that accessed any of the conflicting location. When 
invalidating a cache location all R and W bits associated with the location are reset. 

To summarize, in Fig 4, we show all the mechanisms needed to extend the baseline 
TCC with support for the intermediate check-pointing scheme. Apart from the extra 
set of check-point registers, the CAB, the STN, and the ILog, the first-level cache 
must also be extended with as many instances of read and write sets as the number of 
supported intermediate checkpoints. In our experiment, we assume 1-, 2-, and 4–bits 
in three different configurations. Similar to the baseline system, these fields keep 
track of the speculative read and write associated with a specific sub-transaction. 

4   Experimental Methodology 

In order to evaluate our proposed mechanism, we have implemented a simulation 
model for the baseline system and our proposed extension of it to support the 
intermediate check-pointing scheme. We also model an oracle system, called the ideal 
system, which takes a checkpoint at exactly the position of the first conflicting access. 
Hence, the performance gained in the ideal system reflects what execution can be 
ideally saved from squashes and is used to compare how good our scheme is and 
whether there is room for improvement. 

The system is configured with 16 processors. Each processor runs a single thread 
of the application. A traditional three-level memory hierarchy (two levels of caches 
and the memory) is used in the implemented system. Unlike the private L1 cache, the 
L2 cache is shared by all the processors. The detailed memory configuration is given 
in Table 1. L1 and L2 caches are connected through a bus interconnect. As far as the 
bus capacity, we assume an ideal bus with a FIFO arbitration mechanism. While an 
ideal bus is not realistic we believe that the performance of our scheme is not 
sensitive to this assumption as our scheme will not generate more bus traffic than the 
baseline system.  In our scheme, the decision to insert an intermediate check-point is 
taken locally in a processor to reduce the amount of wasted work. Since it is a local 
decision it does not generate any bus traffic. The traffic generated in a commit, the 
write set, is the same as it would have been in the baseline system. We use a victim 
buffer of 1K entries for storing the evicted cache blocks whose speculative R or W bit 
is set. Since the scheme does not deal with cache overflow we choose a victim cache 
that is large enough not to overflow the private buffer. In case of further overflow, the 
overflowing transaction grabs the bus and executes non-speculatively by holding it 
until the transaction commits. 

Table 1. Memory configuration in the implemented system 

Level-1 data cache 64KB, 32-byte/blocks, 4-way ass. 

Miss penalty to Level-2 15 cycles 

Shared Level-2 cache 8MB, 32-byte/blocks, 64-way ass. 

Miss penalty to main memory 200 cycles 
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A commit overhead of 10-cycles is assumed for each block of data written back. 
15-cycles overhead is considered for checkpointing the architected registers [18]. 
Therefore, we don’t take a checkpoint if the resulting sub-transaction size becomes 
less than 15 instructions. We consider a single-cycle overhead for each reinstalled 
block from the iLog in case of rollback to an intermediate checkpoint. As for the ideal 
system, we assume a perfect (zero-cycle) memory system.  

In our experiment, we use three applications from the SPLASH-2 benchmark suite 
[17] and two applications from the Olden applications [2]. We also evaluate the 
performance of the system with the micro-benchmark presented in Fig 3. In each 
application, the main work is divided into 16 processors by invoking 16 threads and 
one thread is allocated per processor. Each thread is decomposed into transactions. 

Since the representative or common-case transactional behavior is not yet well 
understood, the following method is used to ‘transactify’ the applications. We analyze 
the source code and insert XTRAN manually that has the semantics to end the 
ongoing transaction and start a new one. Furthermore, we start a new transaction at 
every barrier synchronization point while ending the old one. In Health and Raytrace, 
we also start a new transaction after 2k instructions at runtime having the constraint 
that a transaction cannot begin or end inside a critical section. It is important to know 
that our transaction size is not the same as the size of critical sections since we adopt 
to the transaction-all-the-time approach in [4]. The input parameters and related 
information of the applications are given in Table 2. 

Table 2. Input parameters and benchmark-suite of the applications 

Application Benchmark Suit Inputs 

Raytrace SPLASH2 Teapot.env 
Ocean SPLASH2 34x34 grid 
FMM SPLASH2 512 particles 
MST Olden level: 1024 
Health Olden level: 5, time: 30 
Micro-bench  String size: 10000 

Set Size: 10 
 

The experimental system is driven by the application traces gathered by running 
the application in the full-system simulator, Simics [9]. We run the applications on 
Simics by using the original synchronization primitives in the applications. Each such 
synchronization primitive (Lock/Unlock, XTRAN, and Barrier) is associated with a 
magic instruction that will instruct the memory system simulator to either start a 
transaction or commit a transaction. We systematically remove all synchronizing 
instructions, e.g. busy waiting at barrier, from the traces before letting the traces drive 
our implemented system. Nevertheless, all the synchronization and XTRAN 
primitives are still annotated in the trace to assist the emulator. Only the parallel 
sections of the applications are considered in generating traces. 

We model an in-order, single-issue processor model. While this to a large extent 
simplifies how to insert checkpoints, the issues involved in inserting check-points in 
an out-of-order core are well-understood and have been studied in e.g. the context of 
kilo-instruction processors [16]. 



 Efficient Partial Roll-Backing Mechanism for Transactional Memory Systems 265 

 

The metrics used in the following sections are (1) useful cycles, the number of 
cycles needed to execute the actual workload; (2) useless cycles, the number of cycles 
lost in squashed transactions; (3) idle cycles, the number of cycles the processor is 
waiting for synchronization in ordered transactions; and finally (4) overhead cycles, 
the number of cycles spent on checkpointing, committing, and restoring the old values 
of a private cache while roll-backing to the intermediate checkpoint. 

5   Experimental Results 

Section 5.1 first investigates the potential benefits from intermediate checkpointing. 
Then we show the performance gains for the micro-benchmark in Section 5.2 
followed by the performance gains of SPLASH2 and Olden applications in Section 
5.3. The accuracy of the prediction scheme is established in Section 5.4. Finally, in 
Section 5.5, we study how our results depend on the size of the transactions.  

5.1   Potential Gains by Inserting Intermediate Checkpoints 

By inserting a checkpoint at the first conflicting access in a squashed transaction, the 
hope is that some of the execution can be saved. If the first conflicting access happens 
early, the amount of saved execution is low whereas if it happens close to the point 
where the transaction is squashed, the amount of saved execution is high. To get 
intuition into the potential gains, we recorded the fraction of work that can get saved 
for all squashed transactions. This fraction is calculated as the number of instructions 
executed before the first conflicting access divided by the total number of instructions 
executed for the transaction when it was squashed. These numbers are generated by 
running the applications in the ideal system since the exact information regarding the 
first conflicting access is not known in the baseline implementation. The cumulative 
distribution of this ratio is shown in Fig 5. 

 

Fig. 5. The cumulative distribution of the fraction of work that can be saved by ideally 
checkpointing the earliest conflicting access 
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Fig 5 shows that in MicroB (the micro-benchmark), MST, Ocean, and FMM, the 
conflicting accesses happens late in the squashed transactions. For example, in MST 
in about 70% of the squashed transactions, the conflicting access happens after 80% 
of the transaction has been executed. As a result, the intermediate checkpointing 
scheme could save a significant amount of work. By contrast, in a large number of 
squashed transactions in Health and Raytrace, the conflicting accesses occur at the 
beginning of the transaction and intermediate checkpointing might not be of much 
help. Overall, while intermediate checkpointing seems to have a great potential,  
we next study the impact of the gains on the overall performance starting with the  
micro-benchmark. 

5.2   Micro-benchmark Performance 

Fig 6 shows the execution time of each of the 16 threads in the micro-benchmark. We 
consider three systems (from the left to the right bar for each thread): the baseline 
system, our proposed scheme using a single checkpoint, and an ideal intermediate 
checkpointing scheme. The execution time for each thread is normalized to the 
slowest thread of any system because the slowest thread determines the execution 
time of the parallel application. Further, the execution time is broken down into five 
parts: useful, useless and idle cycles, transactional overhead and memory latency. For 
the ideal system, we do not show the memory latency. Therefore, when comparing the 
execution time of a certain scheme with the ideal, one should not consider the 
memory latency part of that scheme. 

  

Fig. 6. Normalized execution of all 16 threads in the micro benchmark running on the three 
systems (from left to right): baseline, single checkpoint, and the ideal system 

Fig 6 shows that a single checkpoint suffices to reap most of the gains of 
intermediate checkpointing. This is expected as the micro benchmark has only one 
shared variable that can cause any conflict. However, the execution time of the single-
checkpoint scheme is higher than that of the ideal scheme because of the single pass 
of training needed to learn about the conflicting address, checkpointing overheads, 
and the dominant memory latency which is absent in the ideal scheme. However, in a 
fair comparison between the schemes (disregarding the memory latency), the single-
checkpoint scheme performs almost as well as the ideal scheme. 
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5.3   Performance Gains for all Applications 

In order for the CAB (critical address buffer) to not impose any cycle-time penalty on 
the micro-architecture, we have assumed that its size is constrained by the 
associativity of the level-1 cache which is four entries. In this section, we study  
the impact of inserting up to four checkpoints. Fig 7 shows the execution time of all 
the applications, dictated by the time when the slowest thread terminates. For each 
application, the five bars (from left to right) correspond to the baseline, one-
checkpoint, two-checkpoint, four-checkpoint and the ideal schemes. The execution 
times of the four systems are normalized to that of the baseline. 

A first interesting observation in Fig 7 is that a single checkpoint is almost as 
effective as a higher number of checkpoints. To quantify the overall performance 
using different checkpointing schemes we use the geometric mean over the speedups 
of all applications. More specifically, we use the following formula considering one 
checkpointing scheme at a time to calculate the speedups: 

n

schemeingcheckpo

baseline
n

i timeExecution

timeExecution
speedup

−−
−∏=

int  

where i is the ith-application  and n=5. We measured 16%, 17% and 17% speedup 
using our proposed scheme with one, two and four checkpoints respectively, over the 
baseline scheme. These numbers suggest again that a single checkpoint is good 
enough to reap significant benefits. 

 

Fig. 7. Normalized execution time of the busiest thread of the applications running on five 
different system configurations 

In case of Raytrace, the higher number of checkpoints seems to increase the useless 
cycles. This is because the self-scheduling effects cause different interleaving of 
transactional commits in the different schemes which provokes different violation 
behaviors. In addition to the execution time, our scheme manages to reduce the 
number of busy cycles (useful + useless) which is very important from an energy 
point of view since the processor can go into sleep mode in an idle state.  
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One concern is that the additional overhead of checkpointing sub-transactions 
could limit the gains. However, the overheads of execution are very low except for 
Ocean. To understand the scenario better we presented some relative runtime statistics 
in Table 3 where application names are specified in the first column. The second 
column indicates the average transaction size in number of executed instructions. The 
third column shows the average write set size which is broadcasted as part of 
transaction commit. The values are counted in terms of number of L1-cache blocks 
which is 32 bytes.  Finally, the fourth, fifth and sixth columns show the average 
number of ILog entries for one, two and four checkpointing schemes, respectively. As 
we described in Section 3.2, ILog is used to restore the memory when roll-backing to 
an intermediate checkpoint. 

Table 3. Application execution statistics 

Avg iLog Size (blocks) Application Avg Transaction 
Size (instructions) 

Avg Write Set 
Size (blocks) C1 C2 C4 

Raytrace 2.6K 25 2 2 3 
FMM 16K 38 4 7 8 
Health 1.6K 55 1 2 3 
Ocean 1.8K 41 1 1 1 
MST 4.7K 13 0 0 0 

 
There are three different sources of overhead: (a) checkpointing the architectural 

registers, (b) broadcasting the write set, and (c) walking through the log table in case 
of an intermediate rollback. From Table 3, it is clear that the numbers of blocks in 
ILog are very small. Compared to the size of the transactions, the write set size is 
significant only for Health and Ocean. And the 15 cycles overhead for each 
checkpoint is also insignificant in relation to the size of the transactions. In general, 
our scheme manages to keep the overhead low as depicted in Fig 7.   

5.4   Accuracy of the Prediction Scheme 

It is interesting to understand whether a checkpoint is inserted before the first 
conflicting access or not. In the former case, some execution is saved and in the latter, 
we have to rollback all the way to the beginning. Considering the first case, we could 
have accurately predicted the conflicting access (called exact prediction) or simply be 
lucky that another non-predicted conflicting access happened after the checkpoint 
(called additional coverage). Fig 8 shows the prediction statistics. 

Fig 8 shows that the prediction scheme works quite efficiently except in FMM. In 
FMM, although the effective prediction accuracy is high, the number of exact 
predictions is low. From the trace of the execution, we have observed that the number 
of shared variables accessed in a transaction is quite high so the CAB is not able to 
keep the correct conflicting addresses. 

When we relate the data in Fig 8 and the data presented in Fig 5 and Fig 7, we find 
a discrepancy that the useless cycles in the proposed scheme for MST is not close to 
that of the ideal scheme while the prediction scheme (Fig 8) shows high accuracy and  
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Fig. 8. Percentage of squashed transaction where the first conflicting access is identified or 
covered by the prediction scheme. Each of the three bars in a cluster represents (from left to 
right) the number for the scheme with 1, 2, and 4 checkpoints. 

Fig 5 shows promising. To analyze this we should keep in mind that in MST, 
transactions are created only at barrier synchronization point. Therefore, the 
corresponding transactions in different threads start at the same time. In Fig 5, we 
observe that most of the violations in MST happen very late and few happen very 
early in the transactions. However, this data is generated from a run on the ideal 
scheme where parallel threads tend to execute at the same regions at a specific time. 
When memory system effects are taken into account, some threads that encounter 
cache misses lag behind others even though all threads start at the same time. In this 
way, a huge number of late conflicts disappear from the scene and the percentage of 
early conflicts dominates. However, to tradeoff with the overhead we didn’t take any 
checkpoint at an early stage in a transaction even though our prediction scheme 
predicted the conflicting access accurately. In addition to that, the small number of 
transactions that conflicted very early weight heavy in terms of the number of 
instructions executed by them. 

Table 4. Statistics of variation’s transaction-size  

 Smaller Initial Larger 
Application Tran-size 

System 
Parameter 

Average 
Tran-size 
Dynamic 

Tran-size 
System 
Parameter 

Average 
Tran-size 
Dynamic 

Tran-size 
System 
parameter 

Average 
Tran-size 
Dynamic  

Raytrace 1K 1.5K 2K 2.8K 4K 4.6K 
FMM 5K 4.2K 50K 13.2K 20K 16.8K 
Health 1K 0.85K 2K 1.6K 4K 2.95K 
Ocean 1K 0.89K 50K 1.9K 4K 1.4K 
MST 2K 1.5K 50K 4.8K 8K 4.8K 

5.5   Variation Analysis 

The results presented in the previous sections were collected using a methodology 
that decomposes the application into transactions essentially when a synchronization 
primitive is encountered (a barrier, a lock or unlock primitive) as described in  
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Fig. 9. Execution time for each application normalized to the baseline system. The left and right 
bars in a cluster represent the execution time under the baseline and the proposed scheme, 
respectively. Each of the three clusters represents execution time with different transaction 
sizes. 
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Section 4. Table 3 represents the average size of transactions that is manifested in the 
runtime system. In this section, we will see how the proposed system performs when 
running the same applications but using different transaction sizes. To capture that, 
we run the applications in three different system configurations in terms of transaction 
sizes (Smaller, Initial, and Larger) where each system terminates and starts a new 
transaction after a certain number of instructions are executed. For the system 
configuration that is termed ‘Initial’, the number of instructions for a transaction size 
is fixed as the average transaction size represented in Table 3. For the Smaller and the 
Larger system configurations, the size is set as half and double, respectively, of  
the transaction size set in the Initial configuration. The detailed information regarding 
the transaction sizes in these different setups is presented in table 4. 

In Table 4, we associate two columns with each application under a specific system 
configuration. The first column, Tran-size System Parameter, represents the given 
system parameter as if the system will terminate the ongoing transaction and start a 
new transaction after executing that number of instructions. The second column, 
Average Tran-size Dynamic, represents the dynamically manifested transaction size 
for each application under the specific system configuration. For each configured 
transaction size, we also run the baseline and our proposed system with 2 checkpoints. 

In Fig 9, we present the execution time of each application in a separate graph. For 
each application, there are three clusters that represent the execution time of the 
application run under Smaller, Initial and Larger configurations from left to right. 
Within the cluster, the left bar represents the execution time under baseline and the 
right bar represents the execution time under our proposed system. 

From Fig 9, we can see that the performance improvements in our system over the 
baseline sustain over various size of transactions. However, the ratio of improvements is 
higher in larger transactions than the smaller transactions. The results are also consistent 
with our hypothesis in Section 2.2 that long-running transactions suffer more. 

One may assume that the execution time that is represented by the third bar of each 
cluster in Fig 7 and the execution time represented by the right bar of the Initial 
configuration in Fig 9 should be same. However, they are different because the 
configured transaction size in the Initial setup is the average manifested transaction 
size of the original setup whereas the transaction size of the original setup was as 
described in Section 4.  

6   Related Work 

In this paper, we have presented a scheme that enables us to have intermediate 
checkpoints while a transaction is running so that we can re-start the transaction from 
an intermediate point rather than from the beginning of the transaction on a squash. 

The work that is most related to our study is [3] by Colohan et al. In that paper, the 
authors proposed sub-threading in the context of TLS where the sub-transactions 
(called sub-threads in their work) are created after executing a fixed number of 
instructions. However, our work extends it by proposing and evaluating a novel 
scheme for when sub-transactions should be created based on the prediction of 
conflicting access. Additionally, our paper also describes the memory state recovery 
mechanism needed to restart from an intermediate checkpoint which is lacking in [3]. 
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Prior to [3], Vallejo et al. proposed the use of implicit transactions [16], as a means to 
allow memory accesses to overlap each other in kilo-instruction multiprocessors. 
They sketch another intermediate checkpointing scheme that shortens the length of 
sub-transactions when conflicts are common. By contrast, we keep track of the source 
of the miss-peculation. 

Moss and Hosking [11] describe closed and open nesting semantics for 
transactional memory systems. McDonald et al. also outline the implication of using 
different types of nesting transactions in [10]: (1) closed nesting that enables 
independent abort and (2) open nesting that enables independent abort and commit 
both. Moravan et al. proposed an infrastructure for supporting nested transaction [7] 
in LogTM.  

In aforementioned work, nested transactions are considered to facilitate software 
composition using different program modules where one module is called inside 
another module. The independent abort of nested transactions enables the system to 
have partial rollback. However, it is a software embedded sub-transactification. In our 
approach, long running flat transactions are sub-transactified to reduce rollback 
overhead. This is a dynamic effort that resembles closed nested semantics. More 
importantly, it can coexist with the nested transactional concept. Furthermore, Most 
of the nested transaction semantics advocate merging the read/write set with the 
parent at commit and after that partial rollback is not possible. In our approach, partial 
abort is possible during the entire execution.  

In transactional memory systems that detect conflicts eagerly, e.g., LogTM, on a 
conflict, a transaction can wait and retry after a back off time and hope that the other 
will commit by the time and avoid unnecessary squashes. But this is not possible in 
all conflicting situations as transactions may be involved in a cross dependency where 
one of the transactions must rollback to the beginning. Our scheme does not suffer 
from that weakness. 

7   Concluding Remarks 

In this paper, we propose to take intermediate checkpoints to reduce wasted work 
from squashed transaction. In this scheme, on a commit, a conflicting transaction does 
not rollback to the beginning but rather to an intermediate checkpoint. One novel 
aspect of the approach is how it predicts conflicting accesses before taking 
checkpoints by just keeping a limited number of conflicting accesses in a cache-like 
structure from previous transaction conflicts. We have shown that this scheme 
performs almost as well as a system in which the conflicting access is known a priori 
and a checkpoint is inserted there. 

We have evaluated this concept in a framework assuming lazy conflict resolution 
such as TCC. We have compared the performance of our scheme with the baseline 
TCC and an ideal system that can yield maximum gain. Experimental results show 
that the performance can be improved significantly and is often close to that of the 
ideal system. The reduction of busy cycles is also very important from the perspective 
of energy consumption. The prediction accuracy of conflicting accesses by our history 
based prediction scheme is also surprisingly high. The system also sustains its 
performance in different sizes of transactions. 
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Abstract. Within-die process variation is increasing in nanometer-scale process 
technologies. We observe that the same SRAM cell leaks differently under 
within-die process variations when storing 0 compared to 1; this difference can 
be up to 3 orders of magnitude at 60mV variation of threshold voltage (Vth). 
Thus, leakage can be reduced if most often the values that dissipate less leakage 
are stored in the cache SRAM cells. We take advantage of this fact to reduce  
instruction-cache leakage by presenting three binary-optimization and software-
level techniques: we (i) reorder instructions within basic-blocks so that their bits 
better match the less-leaky state of their corresponding cache cells, (ii) statically 
change the register operands of the instructions with the same aim, and (iii) at 
boot time, initialize unused cache-lines to their corresponding least-leaky  
values. Experimental results show up to 54%, averaging 35%, leakage energy 
reduction at 60mV variation in Vth, and show that with technology scaling, this 
saving can reach up to 84% at 100mV Vth variation. Since our techniques are 
one-off and do not affect instruction cache hit ratio, this reduction is provided 
with only a negligible penalty, in rare cases, in data cache.  

Keywords: Leakage power, software techniques, compiler optimization, proc-
ess variation, power reduction, cache memory, instruction rescheduling. 

1   Introduction 

Cache memories, as the largest component of today’s processor-based chips (e.g. 70% 
of StrongARM [ 1]) are among the main sources of power dissipation in such chips. In 
nanometer SRAM cells, the trend is that most of the power is dissipated as leakage [ 2] 
due to lower threshold-voltage (Vth) of transistors and higher Vth variation (caused by 
                                                           
* Corresponding author.  
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random dopant fluctuations [ 3] and other sources of variation) when approaching 
atomic sizes. This inherent variation impacts stability, power and speed of the SRAM 
cells. Several techniques exist that reduce cache leakage power at various levels [ 4]-
[ 22], but none of them takes advantage of a new opportunity offered by this increas-
ing variation itself: the subthreshold leakage current (Ioff) of a SRAM cell depends on 
the value stored in it and this difference in leakage increases with technology scaling. 
When transistor channel length approaches atomic sizes, process variation due to 
random placement of dopant atoms increases the variation in Vth of same-sized tran-
sistors even within the same die [ 25]. This is an unavoidable physical effect which is 
even more pronounced in SRAM cells as area-constrained devices that are typically 
designed with minimum transistor sizes. Higher Vth-variation translates to much high-
er Ioff-variation ( )))10ln(//(( svexpI thoff −∝  where s is the subthreshold swing [ 25]) even in 
the transistors of a single SRAM cell. Since some of these transistors leak when stor-
ing a 1 and others when storing a 0, cell leakage differs in the two states. Thus cache 
leakage can be reduced if the values stored in it can be better matched with the char-
acteristics of their corresponding cache cells; i.e., if most of the time a 0 is stored in a 
cache cell that leaks less when storing a 0, and vice versa. To the best of our knowl-
edge, no previous work has observed this saving opportunity. Monte Carlo simula-
tions in Section  3 show that theoretically 70% leakage saving opportunity (comparing 
full match to full mismatch) would be available in a technology node with 60mV 
standard deviation of within-die Vth variation. 

In this paper we use the above phenomenon to reduce instruction-cache leakage by 
three software-level techniques: we (i) reschedule instructions inside each basic-block 
(BB) of a given application to let them better match their corresponding cache cells, 
(ii) at the same time, we change register operands of the instructions (i.e. static regis-
ter-renaming) to further improve the match between the instructions and their cache 
cells, and (iii) the least-leaky values are stored in the cache-lines that won’t be used 
by the embedded application. In total, these techniques result in up to 54% leakage 
reduction (35% on average) on our set of benchmarks, with only a negligible penalty 
in the data-cache caused by the instruction-reordering since techniques (i) and (ii) are 
applied offline and (iii) is only applied once at the processor boot time. Furthermore, 
it is important to note that these techniques reduce leakage not only in the standby-
mode, but also in the active-mode of system operation (even when the memory cells 
are being accessed in case of techniques (i) and (ii)) and moreover, it is orthogonal to 
current circuit/device-level techniques. 

This paper is an extension of our previous work [ 26]. We have added the following 
further investigations in this paper: 

• To avoid the need to store different binary executables per chip instance, we 
store the same executable in all of them, and then the RTOS modifies the bi-
nary in field upon first execution and stores the modified binary back to the 
programmable ROM to bypass this step in subsequent executions. 

• Further detailed evaluation is presented for the overheads of the approach  
concerning performance and power of instruction and data caches. 

• The proposed techniques and our assumptions on the input are explained in 
more details and are compared to several other related works. 

• Detailed explanation is given for our experiments setup, simulation methodol-
ogy, and power calculation method. 
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In the rest of this paper, Section  2 reviews related previous works. Section  3 moti-
vates our work outlined in Section  4 and describes the new saving opportunity in 
presence of within-die Vth variation. Section  5 formulates the problem and presents 
the algorithm. Experimental results are presented and analyzed in Section  6, and  
finally, Section  7 concludes the paper. 

2   Related Work 

Leakage in CMOS circuits can be reduced by power gating [ 4], source-biasing [ 2], 
reverse- and forward-body-biasing [ 5][ 6] and multiple or dynamic Vth control [ 7]. For 
cache memories, selective turn-off [ 8]-[ 10] and dual-supply drowsy caches [ 11] dis-
able or put into low-power drowsy mode those parts of the cache that are not likely to 
be accessed again. All these techniques, however, need circuit/device-level modifica-
tion of the SRAM design while our proposal is a software technique and uses the 
cache as is. Moreover, none of the above techniques specifically addresses the leak-
age variation issue (neither variation from cell to cell, nor the difference between 
storing 0 and 1) caused by within-die process variation. We do that and we work at 
system-level such that our technique is orthogonal to them. Furthermore, all previous 
works focus on leakage power reduction when the SRAM cell is not in use or not 
likely to be accessed later, but our above (i) and (ii) techniques save power even when 
the cell is actively in use. 

The leakage-variation among various cache-ways in a set-associative cache is used 
in [ 12] to reduce cache leakage by disabling the most-leaky cache ways. Our tech-
niques, in contrast, do not disable any part of the cache and use it at its full capacity, 
and hence, do not incur any performance penalty due to reduced cache size. More-
over, our techniques are applicable to direct-map caches as well. 

There are several compiler techniques to reduce power [ 13]-[ 19] but most of them 
focus on dynamic power and do not target leakage power dissipation. Compiler-
inserted special instructions are used in [ 18] to deactivate (i.e. put into low-leakage 
mode) those cache lines of the data cache whose data are not used by the current 
computation. This approach, however, requires that each cache-line can be individu-
ally put in low-leakage mode, and furthermore, the processor core needs to be  
extended by special instructions to activate/deactivate cache-lines. Our technique 
needs no hardware modification in the processor or cache and can also reduce leakage 
even in the cache lines used by the current computation.  

Special instructions for dynamic voltage scaling and adaptive body biasing are in-
serted by the compiler in [ 19] to reduce total power consumption, including leakage, 
of embedded processors. Our work does not need any extra actions or core-control 
instructions during program execution; our cache-initialization technique is only exe-
cuted once at processor boot time, and our OS-based binary adaptation technique is a 
one-off task for each processor core—see Section  4. 

In logic circuits, value-dependence of leakage power has been identified and used 
in [ 22] to set the input vector to its leakage-minimizing value when entering standby 
mode. We show this value-dependence exists, with increasing significance, in nano-
scale SRAM cells and can benefit power saving even when not in standby time. 
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Asymmetric SRAM cells are proposed in [ 23] and [ 24] to reduce leakage in the 0 
state based on the fact that most stored bits are 0 in data as well as instruction cache 
memories. The SRAM cells that we investigate are designed to be symmetric, but 
they become randomly asymmetric during manufacturing due to process variation. 
Thus, the reasons of asymmetry are fundamentally different, and it is uniform in [ 23] 
and [ 24] vs. random in our case; nevertheless, our techniques can also be used to 
reinforce advantages of asymmetric cells in [ 23] and [ 24]. 

Register-renaming is a well-known technique that is often used in high-
performance computing to eliminate false dependence among instructions that other-
wise could not have been executed in parallel. It is usually applied dynamically at 
runtime, but we apply it statically and obviously for a different aim. To the best of our 
knowledge, register-renaming has not been used in the past for leakage reduction. 

Optimal allocation and binding of registers to minimize power has been investi-
gated in literature [ 20] [ 21]. Assuming that the probability distribution function for 
the values of primary inputs is known, [ 20] defines a mathematical formulation for 
switching activity of a set of registers shared by different data values and assigns 
variables to registers such that total switching power is minimized. [ 20] chooses num-
ber and binding of registers as part of hardware behavioral synthesis process whereas 
our work concerns registers in an embedded processor, and hence, in our register-
renaming technique the set of registers is fixed by the given processor core and only 
the register operands of instructions change. Gebotys uses a network flow technique 
[ 21] to optimally assign a given set of variables in a basic-block to a memory module 
and a set of registers such that total dynamic power consumption of memory and 
registers is minimized for executing that basic-block. Our work is a binary-
optimization and post-compilation technique that does not change the partitioning of 
variables to memory and registers, and also our register-renaming is not restricted to a 
basic-block. Nevertheless, the algorithms and techniques in [ 20] and [ 21] can be 
properly modified to use for a new goal such as the one in our work. 

Cache-initialization, normally done at processor reset, is traditionally limited to  
resetting all valid-bits to indicate emptiness of the entire cache. We extend this ini-
tialization to store the least-leaky values in all those cache-lines that won’t be used by 
the embedded application.  

3   Motivation and the New Saving Opportunity 

Leakage is increasing in nanometer-scale technologies, especially in cache memories 
which comprise the largest part of processor-based embedded systems. Fig. 1 shows 
the breakdown of energy consumption of the 8KB instruction-cache of M32R embed-
ded processor [ 27] when running 1 million instructions of MPEG2 application. We 
used CACTI versions 4 and 5 [ 28] to obtain cache dynamic and static power values in 
various technologies, and obtained the simulation time and number of accesses to the 
cache and to the off-chip memory by simulating M32R instruction cache (an 8KB  
2-way set-associative cache with 16-byte line-size) for the MPEG2 instruction-trace 
obtained from M32R instruction-set simulator. Processor clock frequency is 200MHz 
(corresponding to our M32R implementation on 180nm technology), miss-penalty is 
40 clock cycles, and a cache-line-fill from off-chip memory consumes 40nJ of energy 
(pessimistically constant in all technologies). 
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Fig. 1. Cache energy consumption in various technology nodes. Share of leakage increases with 
technology scaling. 

 

Fig. 2. A 6-transistor SRAM cell storing a logic 1. Arrows show leakage paths. 

The figure clearly shows that although dynamic energy decreases with every tech-
nology node, the static (leakage) energy increases such that, unlike in micrometer 
technologies, total energy of the cache increases with the shrinking feature sizes. Thus 
it is increasingly more important to address leakage reduction in cache memories in 
nanometer technologies. 

We focus on Ioff as the primary contributor to leakage in nanometer caches [ 25]. 
Fig. 2 shows a 6-transistor SRAM cell storing a 1 logic value. Clearly, only M5, M2, 
and M1 transistors can leak in this state while the other three contribute to leakage 
only when the cell stores a 0 (note that bit-lines are precharged to supply voltage, 
VDD). Process variation, especially in such minimum-geometry devices, causes each 
transistor to have a different Vth and consequently different Ioff value, finally resulting 
in different subthreshold leakage currents when storing 1 compared to 0. Since the 
target Vth is in general reduced in finer technologies (in order to keep the circuit per-
formance when scaling dimensions and VDD) the Ioff value is exponentially increased, 
and consequently, the above leakage difference is no longer negligible. 

To quantify this effect, we used Monte Carlo simulation to model several similar 
caches and for each one computed maximum leakage difference once in each cell and 
once more in the entire cache. Notations and formulas are: 
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• leak0 (leak1): leakage power of the cell when storing 0 (1). 
• low = min(leak0, leak1)   
• high = max(leak0, leak1) 
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lowhigh
savingcellper

−=−  (1) 

 

∑

∑∑ −

=−

cellsall

cellsallcellsall

high

lowhigh

savingcacheperofboundUpper
 (2) 

Eq. 1 gives leakage difference between less-leaky and more-leaky states of a single 
cell, while Eq. 2 gives, in the entire cache, the difference between the worst case (all 
cells storing more-leaky values) and the best case (all cells storing less-leaky values). 

Variation in transistors’ Vth results from die-to-die (inter-die) as well as within-die 
(intra-die) variation. We considered both in these experiments. Inter-die variation, 
which results in varying average Vth among different chips, is generally modeled by 
Gaussian distribution [ 29] while for intra-die variation, which results in different Vth 

values for different transistors even within the same chip and the same SRAM cell, 
independent Gaussian variables are used to define Vth of each transistor of the SRAM 
cell [ 30][ 31]. We used the same techniques to simulate inter- and intra-die process 
variation in 1000 16KB caches (direct-map, 512-set, 32-byte lines, 23 bits per tag) to 
obtain average values for Eq. 1 and 2 when σVth-intra (i.e. standard-deviation of intra-
die Vth variations) varying from 10 to 100mV. We assumed each cache is within a 
separate die and used a single σVth-inter=20mV for all dies. The mean value of Vth was 
set to 320mV corresponding to a commercial 90nm process. 

Fig. 3 gives the simulation results showing the maximum theoretical per-cell and 
per-chip leakage savings. Our experiments with Vth mean values other than 320mV 
showed that the diagrams are independent of the Vth mean value; i.e., although the 
absolute value of the saving does certainly change with different Vth averages (and 
indeed increases with lower Vth in finer technologies), but the maximum saving ratio 
(Eq. 1 and 2) remains invariant for a given σVth-intra, but the absolute value of the saved 
power increases with decreasing Vth. This makes sense since this saving opportunity 
is enabled by the Vth variation, not the Vth average value. 

Since WLintraVth ×∝− 1σ  [ 3], where L and W are effective channel length and width of 

the transistor respectively, the Vth variation is only to increase with technology scal-
ing, and as Fig. 3 shows, this increases the significance of value-to-cell matching. In 
0.13µm process, empirical study [ 32] reports σVth-intra=22.1mV for W/L=4 which by 
extrapolation gives σvth-intra>60mV in 90nm for minimum-geometry transistors; ITRS 
roadmap also shows similar prospects [ 33]. (We found no public-domain empirical 
report on 90nm and 65nm processes, apparently due to sensitiveness and confidential-
ity of these data.) Thus we present results at various σvth-intra values, but consider 
60mV as a typical case. Note that even if the extrapolation is not accurate for 90nm 
process, σvth-intra=60 finally happens at a finer technology node due to relation 

WLintraVth ×∝− 1σ . Fig. 3 shows that maximum theoretical saving using this phenome-

non at 60mV variation can be as high as 70%. 
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Fig. 3. Leakage saving opportunity increases with Vth-variation 

4   Our Techniques for Instruction Cache Leakage Reduction 

We propose three techniques applicable to instruction-caches: rescheduling instruc-
tions within basic-blocks, static register-renaming, and initializing unused cache-lines. 
We first illustrate the techniques by examples that are simplified for presentational 
purposes. 

Illustrative Example 1: Intra-BB Instruction Rescheduling. This technique reor-
ders the instructions within a basic-block, subject to instruction dependencies, so as to 
maximize the number of matches between instruction bits and the less-leaky state of 
their corresponding cache cells. Fig. 4 illustrates this technique applied to a small 
basic block (shown at left in Fig. 4) consisting of three 8-bit instructions against a 
512-set direct-mapped cache with 8-bit line size. The arrow at the right of instruction-
memory box represents dependence of instruction 2 to instruction 1. For simplicity, 
we assume (i) all the 3 instructions spend the same amount of time in the cache, and 
(ii) the leakage-saving (i.e., |leak0-leak1|) is the same for all bits of the 3 cache lines. 
A SRAM cell is called 1-friendly (0-friendly) or equivalently prefers 1 (prefers 0), if 
it leaks less power when storing a 1 (a 0). This leakage-preference of the cache lines 
are given in gray in the middle of Fig. 4; for example, the leftmost bit of cache line 
number 490 prefers 0 (is 0-friendly) while its rightmost bit prefers 1 (is 1-friendly). 
The Matching table in Fig. 4 shows the number of matched bits for each (instruction, 
cache-line) pair. Due to instruction dependencies, only three schedules are valid in 
this example: 1-2-3 (i.e., the original one), 1-3-2, and 3-1-2 with respectively 3+1+3, 
3+3+7, and 1+7+7 number of matched bits (see the Matching table in Fig. 4). We 
propose to reschedule basic-blocks, subject to dependencies among the instructions, 
so as to match up the instructions with the leakage-preference of cache lines. Thus, 
the best schedule, shown at right in Fig. 4, is 3-1-2 which improves leakage of this 
basic-block by 47% (from 24-7 mismatches to 24-15 ones). 

Obviously, the two simplifying assumptions in the above example do not hold in 
general. Potential leakage-saving differs from cell to cell, and also the amount of time 
spent in the cache differs from instruction to instruction even in the same BB.  
We consider and analyze these factors in our formulation and experiments. It is  
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mem. addr.

cache index

 

Fig. 4. An example illustrating instruction-rescheduling 

important to note that location and length of basic-blocks do not change; thus, the 
instruction-cache access-pattern remains intact, and hence, no performance or power 
penalty is imposed concerning the instruction-cache. 

Illustrative Example 2: Static Register-Renaming. This technique statically 
changes the register operands of instructions so that less-leaky values are stored in the 
corresponding SRAM cells as far as possible. Assume that the two right-most bits of 
each instruction in Fig. 5 represent a source register and the two left-most bits give 
the other source which is also the destination register. Fig. 5 depicts a simple example 
of static register-renaming on the same cache as previous example; for presentational 
purposes, we ignore instruction rescheduling here and merely apply register-renaming 
although our algorithm applies both at the same time. When applying merely register-
renaming to these instructions, R0 can be renamed to R3 in the first two instructions 
(note that this implies similar renaming in all predecessor, and successor, instructions 
that in various control-flow scenarios produce, or consume, the value in R0; this is not 
shown in the figure). Similarly, original R3 in the same two instructions can be equal-
ly-well renamed to either R1 or R0; it is renamed to R1 in Fig. 5. For the third instruc-
tion, there is no better choice since source and destination registers are the same while 
their corresponding cache cells have opposite preferences (renaming to R1, which 
results in only the same leakage-preference-matching, is inappropriate since the  
instruction would then conflict with the now-renamed first instruction). 

It is noteworthy that some register operands, e.g. stack pointer, cannot be renamed 
due to its special functionality. We took this point into account when implementing 
this technique. 

 

Fig. 5. An example illustrating static register-renaming 
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Illustrative Example 3: Initializing Unused Cache-Lines. Depending on the cache 
size and the application, some parts of the instruction cache may never be used during 
application execution. Fig. 6 shows the histogram of cache-fill operations in the 8KB 
instruction cache of M32R processor [ 27] (a 32-bit RISC processor) when executing 
FFT application. 69 out of the 512 16-byte cache-lines are never used in this case.  
We propose to initialize such unused cache-lines with values that best match the leak-
age-preference of their SRAM cells. Many processors today are equipped with cache-
management instructions (e.g. ARM10 family [ 34] and NEC V830R processor [ 35]) 
that can load arbitrary values to every cache location. Using these instructions, the 
unused cache-lines can be initialized at boot time to effectively reduce their leakage-
power during the entire application execution. For instance, if in Fig. 5 cache-line 
number 490 were not to be used at all by the application, it would be initialized to 
0000_0111 to fully match its leakage-preference. A minimum power-ON duration is 
required to break even the dynamic energy for cache initialization and the leakage 
energy saved. We consider this in our problem formulation and experiments. 
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Fig. 6. Unused cache-lines when running FFT application on 8KB two-way set-associative 
cache with 16-byte cache-lines 

Leakage Reduction Flow. Our proposed techniques imply optimizing each binary 
executable based on the core that it is actually running on. This may not be practical 
in large-scale production. To address this, we propose an alternative that takes advan-
tage of Real-Time Operating Systems (RTOS) which are widely used in today  
embedded systems: in this approach, shown in Fig. 7, the same binary executable is 
stored in all chips and the RTOS applies our rescheduling and register-renaming algo-
rithm; this is done only once per chip and the modified binary is stored back in the 
programmable ROM to avoid future repetitions of the above task. Even if an embed-
ded system does not contain such RTOS, a small initialization routine can do the same 
task instead. 

Fig. 7 shows the RTOS-based leakage reduction flow. At very first execution, an 
offline test procedure (the lower left box in Fig. 7—described below) detects the  
leakage-preference of all cache lines. This information is used by the rescheduling  
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Fig. 7. RTOS-based alternative for leakage-reduction flow 

algorithm, in the dark grey box, to reorder the instructions and rename registers of the 
application binary before putting them in the dynamic memory and executing. The 
modified binary is also written back to the PROM so that subsequent executions of 
the application directly load the program to memory without needing modification 
(right-hand side of Fig. 7). 

 
Leakage-Preference Detection. This can be incorporated in the manufacturing test 
procedure that is applied to each chip after fabrication. Usually several march test 
sequences (such as walking-1 and walking-0) are applied to memory devices [ 36] to 
test them for stuck-at and bridging faults. Leakage current can be measured at each 
step of this test procedure (similar to delta-IDDQ testing [ 37]) to determine the leak-
age-preference of cells. This can even be done in-house since today commodity am-
meters can easily measure down to 0.1fA [ 38] whereas the nominal leakage of a 
minimum geometry transistor is 345pA in a commercial 90nm process available to us. 
For some cells, this difference may be negligible, but one can detect more important 
cells that cause larger leakage differences.  

Test time depends on the speed of current measurements. In the simplest approach, 
two measurements per bit are done: once writing a 0 to the bit-under-test to measure 
leak0, and once more writing a 1 there to measure leak1 while all other bits have an 
arbitrary but invariant value in both measurements; this yields 128K measurements 
for an 8KB cache. Current-measurements can be done by off-chip Automatic Test 
Equipments (ATE) or on-chip circuitry called Built-In Current Sensor (BICS). Off-
chip measurements need no change to the chip design, but impose test-time overhead 
and need additional memory to convey leakage-preference data to the optimizer pro-
gram; such ATE equipment can provide a test rate of 100KHz at a resolution of 
100nA [ 39- 41] resulting in 1.28s of test time which would not be big compared to 
typical test time of processor chips (several seconds [ 42] depending on the complexity 
of the chip), but test results need an additional agreed-upon memory (say an on chip 
PROM) to be delivered to the optimizer program. The other alternative, BICS,  
instruments the cache with on-chip leakage detection circuitry (similar to the one 
presented in [ 43]) to let the optimizer software detect the leakage-preference in field; 
such BICS circuits are a long-known technique in CMOS testing [ 44] and can provide  
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more accurate measurements (e.g. 500pA in a 0.7μm technology [ 45]) and higher 
speeds (e.g. 500MHz in a 2μm technology [ 46] or 100MHz in [ 47]) even in very  
old technologies; newer BICS designs in 0.18μm process [ 48] additionally provide 
tolerance to temperature and process variations at high speeds (230MHz) with a tiny 
footprints (0.0021mm2) [ 48]. Choosing the BICS alternative not only eliminates the 
need to deliver data from testing phase to in-field operation, but also has the  
additional advantage of eliminating burden of any additional test overhead for manu-
facturer, and furthermore, allows running the optimization again from time to time so 
as to adapt to changes in cells leakages due to aging. Noting that recent research on 
memory testing in nanometer era has revealed the necessity of on-chip facilities for 
test-and-repair [ 49] and self-calibration for stability [ 50], adding a BICS for leakage 
sensing in a cache memory would not be unordinary when justified by its power-
saving advantages.  

5   Problem Formulation 

We formulate the problem using the following notation: 

• Ns, Nw: The number of sets and ways of the cache. 
• NBB: The number of basic-blocks in the given application. 
• Ni(bb): The number of instructions in basic-block no. bb. 
• L(i, bb, w): Leakage power dissipated by the corresponding word of the cache line 

at way w of the cache when instruction number i of basic-block number bb is stored 
there. Note that the cache set corresponding to the instruction is fixed, but the cache 
way may differ over time. 

• T(i, bb, w) or cache-residence time: The amount of time that instruction number i of 
basic-block number bb remains in way w of the corresponding cache set. 

• E: Total leakage energy of the instruction cache: 

∑ ∑ ∑
= = =
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BB i wN
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bbN
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N
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wbbiTwbbiLE
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)(

1 1
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Each term in this summation gives the leakage energy dissipated by instruction i of 
basic-block bb at way w of cache.  

• Tviable: The minimum amount of time that the embedded system should remain ON 
so that the cache-initialization technique would be viable (i.e., would actually save 
energy). 

The problem is formally defined as “For a given application and cache organization 
(i.e. for given Ns, Nw, NBB, and Ni(bb) vector), (i) minimize E, and (ii) find Tviable.” 

Algorithm. We use a list-scheduling algorithm for problem (i) above to achieve high 
efficiency; register-renaming is performed at each iteration of the algorithm: 
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Algorithm 1: ListScheduling(G) 

Inputs: (G: control-data-flow Graph of application) 
Output: (S: obtained Schedule for instructions of the application)  
1  S = empty-list;  
2  foreach basic-block do 
3    BA = Base-Address of the basic-block; 
4    L  = Length of the basic-block; 
5    for addr=BA to BA + L do 
6      lowestLeakage = +INFINITY; bestChoice = 0 
7      for each instr in ready-list(G, BA) do 
8        (new_instr, new_src, new_dst) = applyRegRenaming(instr, addr); 
9        leak = get_instruction_leakage(new_instr, addr); 
10       if leak < lowestLeakage then 
11         lowestLeakage = leak;     best_choice = new_instr; 
12         best_regs = (new_src, new_dst); 
13       endif 
14     endfor 
15     propagateRegRenamings( G, instr, best_regs ); 
16     S = S + {best_choice}; 
17     Mark {best_choice} as scheduled in G to update ready-list(G, BA); 
18   endfor 
19 endfor 
20 return S 

 
The algorithm sequentially processes each basic-block in the application binary 

and stores the new schedule with the new register-names in S as output. It needs the 
control-data-flow graph of the application for register-renaming so as to figure out 
live registers and the instructions that produce and consume them. For each basic-
block, all ready instructions (i.e. those with all their predecessors already scheduled), 
represented by ready-list(G, BA) in line 7, are tried and the one with the least 
leakage is chosen (lines 9-13) and appended to the schedule (lines 16, 17); line 9 
computes the leakage corresponding to the instruction by giving the innermost sum-
mation of Eq. 3. Register-renaming is also applied to each ready-instruction (line 8) 
and if chosen as the best, its corresponding new register-names are propagated to all 
predecessor and successor instructions (line 15); these procedures are given below: 

 

Procedure 1: applyRegRenaming(i, addr) 

Inputs: (i: the instruction binary to manipulate), 
        (addr: the address of i in memory) 
Outputs:(new_i: instruction after register-renaming), 
        (new_src, new_dst: new source and destination register operands) 
1  new_src = first-source-register of i; 
2  new_dst = destination-register of i; 
3  if new_src not affixed then 
4     new_src = get_best_src1_choice(i, addr); 
5  if new_dst not affixed then 
6     new_dst = get_best_dest_choice(i, addr);  
7  new_i = i with new_src, and new_dst; 
8  return new_i, new_src, new_dst; 

 
This procedure checks the two source and destination registers (in M32R, the des-

tination register and the second source register are the same) and if each of them is 
not affixed, tries to rename it to the best available choice. A source or destination 
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register is affixed if due to an already-applied register-renaming it is previously de-
termined and should be kept unchanged; the below procedure pseudo-code shows 
this. In some cases, it may be beneficial to reconsider renaming since the leakage 
reduction by the new register-renaming may outweigh the loss in previously renamed 
instructions; we did not consider this for simplicity and efficiency. 

 

Procedure 2: propagateRegRenamings(G, i, new_src, new_dst) 

Inputs: (G: control data flow Graph of application), 
        (i: instruction before register-renaming), 
        (new_src, new_dst: new source and destination registers) 
1 org_src = first-source-register of i; 
2 org_dst = destination-register of i; 
3 if (new_src != org_src) then  
4   rename org_src to new_src, and mark it affixed, in all predecessors 
    and successors of i in G 
5 if (new_dst != org_dst) then 
6   rename org_dst to new_dst, and mark it affixed, in all predecessors 
    and successors of i in G 

 
The algorithm has a time complexity of O(m.n2) and memory usage of O(m.n) 

where m and n respectively represents the number of basic-blocks in the application 
and the number of instructions in the basic-block. Note that the algorithm correctly 
handles set-associative caches since the innermost summation in Eq. 3 considers  
individual leakages of each cache-way. The algorithm does not necessarily give the 
absolute best schedule neither the best register-names, but comparing its experimental 
results to that of exhaustive search in the feasible cases, which is still prohibitively 
time-consuming, shows the results are no more than 12% less optimal than the abso-
lute best schedule. 

6   Experimental Results 

Experiments Setup and Methodology. Fig. 8 shows the setup of the experiments. 
We used benchmarks (Table 1) from MiBench [ 51], MediaBench [ 52], and also Linux 
compress in our experiments. We implemented our techniques on an in-order  
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Fig. 8. Simulation setup of the experiments 
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single-issue 32-bit RISC processor, M32R [ 27]. Benchmarks were compiled once 
with no compiler optimization option and once more with –O3 full optimization  
option (the lower half of Table 1) and were simulated using M32R instruction-set 
simulator (ISS) to obtain execution traces for 1 million instructions (FIR ran up to 
completion). These traces are given to M32R instruction-cache simulator (the middle 
box in Fig. 8) to obtain cache-residence times and cache-line usage statistics.  

To simulate process variation effects, Monte Carlo simulation was used to model 
within-die process variation (lower part of Fig. 8); independent Gaussian random 
values for Vth of each transistor of the cache were generated with 320mV as the mean 
(which corresponds to a commercial 90nm process) and 60mV as the standard devia-
tion for the minimum-geometry transistor. Since WLintraVth ×∝− 1σ  [ 3], Vth variation is 

different for different-sized transistors. Thus, we considered the length (L) and width 
(W) of SRAM transistors (Fig. 9) when generating the above Vth values. To consider 
the randomness of process variations, we simulated 1000 chips. Die-to-die variations 
do not change the saving percentage (see Section  3) and were not modeled in these 
experiments.  

For each benchmark, the execution-trace and cache usage statistics are used by our 
techniques (the gray box in Fig. 8) which are applied to each individual 1000 cache 
instances. This gives 1000 leakage-saving results each corresponding to one of the 
simulated caches. The average and maximum of these savings are reported later in 
this section. Another output of the gray box is the execution trace modified according 
to our rescheduling and register-renaming techniques. The original and modified 
execution traces are simulated by M32R data-cache simulator to obtain impact of the 
techniques on the data cache.  

Reported power consumptions correspond to a commercial 90nm process. To 
compute the power consumption, SPICE transistor models of the 90nm process are 
used to obtain transistor leakage as a function of its Vth. Then for each cache instance, 
the leakage power of each SRAM cell is computed by adding up leakages of the tran-
sistors that leak in each state: 0 and 1. Thus, L(i,bb, w) (see Section  5) values can  
be computed which in turn is used in Eq. 3 to get total leakage power dissipated for 
storing the instructions. 

Table 1. Benchmarks specifications 

Basic-block size (#instr.) 
Benchmark 

No of  
basic-blocks Average   Largest 

MPEG2 encoder ver. 1.2 16000 5.36 596 
FFT 12858 4.83 75 
JPEG encoder ver. 6b 11720 5.68 248 
Compress ver. 4.1 9586 5.11 718 
FIR 450 7.59 57 
DCT 508 4.96 64 
MPEG2 –O3 26483 3.99 547 
FFT –O3 22507 3.80 76 
JPEG –O3 22062 3.78 126 
Compress –O3 18455 3.94 1404 
FIR –O3 706 5.99 37 
DCT –O3 715 4.28 30 
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Fig. 9. Transistor sizes of our SRAM design used in the experiments 

6.1   Evaluation Results 

Fig. 10 shows the average leakage powers before and after applying our leakage-
saving techniques, obtained over 1000 8KB direct-mapped caches with 16-byte 
cache-line size. Each bar is composed of two parts: the leakage power dissipated by 
the cache-lines that were used during application execution, and those that were never 
used. Our rescheduling algorithm reduces the former, while the cache-initialization 
technique decreases the latter. 
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Fig. 10. Average leakage power on 1000 8KB direct-map caches 

Table 2 gives the individual average and maximum savings obtained by each tech-
nique over the above 1000 chips; note that the values in rescheduling and initializing 
columns respectively correspond to the leakage savings only in used and only in  
unused cache-lines. The lower half of the table gives results for benchmarks when 
compiled with “-O3” compiler optimization option. The rescheduling and register-
renaming technique saves up to 31.31% of power for FIR while savings by the  
cache-initialization technique reaches 63.68% for FFT-O3 benchmark. Average sav-
ing obtained by cache-initialization is always around 55% for all benchmarks since 
we assumed that before initialization, SRAM cells in the unused cache-lines randomly 
contain uniformly distributed 0 or 1 value. 
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The “-O3” compiler optimization has reduced effectiveness of the rescheduling and 
register-renaming techniques from 19% to 15% on average over the 6 benchmarks; 
this is due to the tighter pressure on register usage and less freedom in reordering 
instructions. It has also resulted in a reduction of total leakage saving from an average 
of 37% to 32% over these benchmarks. Marginal increases are observed in the case of 
JPEG-O3 and Compress-O3; this is because the unused cache lines (where more leak-
age can be saved) have happened to slightly increase in case of these benchmarks.  
In case of MPEG2 and FFT, the “-O3” optimization has happened to substantially 
reduce number of unused cache lines, and hence, total leakage saving is decreased to 
nearly that achievable by only rescheduling and register-renaming.  

Note that since optimization options enabled by “-O3” option do not specifically 
target better usage of available cache capacity, the above changes in number of  
unused cache lines are not deterministic and cannot be purposefully used.  

Table 2. Average and maximum leakage savings by our techniques 

Average Saving (%) Maximum Saving (%) 

Benchmark 
rescheduling 
(used lines) 

initializing 
(unused lines) 

Together 
rescheduling 
(used lines) 

initializing 
(unused lines) 

Together 

MPEG2 20.10 54.51 26.78 21.67 56.16 28.25 
FFT 20.50 54.51 36.28 22.43 55.7 37.36 
JPEG 16.70 54.51 17.96 17.91 58.36 19.26 
Compress 19.74 54.51 48.15 23.95 55.32 48.92 
FIR 20.04 54.51 53.52 31.31 55.19 54.18 
DCT 19.31 54.51 39.09 21.49 55.61 40.13 
MPEG2-O3 15.19 54.55 17.30 16.59 57.89 18.35 
FFT-O3 15.17 54.46 15.79 16.92 63.68 17.49 
JPEG-O3 15.12 54.49 18.98 16.7 57.16 19.95 
Compress-O3 16.14 54.51 50.20 20.31 55.22 51.50 
FIR-O3 16.59 54.51 53.48 26.77 55.21 54.01 
DCT-O3 13.86 54.51 38.15 16.44 55.48 40.10 

Different cache-sizes result in different number of unused cache-lines, and hence, 
affect saving results. Fig. 11 depicts the savings for 16KB, 8KB, and 4KB direct-map 
caches with 16-byte line-size. As the figure shows, in general, the leakage saving 
reduces in smaller caches proportional to the reduction in the number of unused 
cache-lines. This, however, does not affect the results of the rescheduling and regis-
ter-renaming techniques, and hence, increases their share in total leakage-reduction 
(see Fig. 11). Consequently, when finally all cache-lines are used by the application in 
a small cache (as in MPEG2 and JPEG cases in Fig. 11), the leakage reduction  
reaches its minimum which is equal to the saving achieved by the rescheduling and 
register-renaming techniques alone (compare MPEG2 and JPEG in Fig. 11 to their 
corresponding rows in Table 2 under rescheduling column). 

Table 2 and Fig. 10 and Fig. 11 clarified the effect of compiler optimization op-
tions on the effectiveness of our proposed techniques. In the rest of the paper, experi-
mental results correspond to benchmarks compiled with no compiler optimization 
unless otherwise specified. 
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Fig. 11. Effect of cache-size on average leakage-saving results 

Set-associative caches take better advantage of the available cache-lines and reduce 
the number of unused ones. Fig. 12 shows the leakage savings in an 8KB cache when 
the number of ways changes from 1 (direct-map) to 8. The leakage-saving by cache-
initialization reduces in caches with higher associativity, and finally total saving re-
duces to that obtained by the rescheduling and register-renaming technique as is again 
the case for MPEG2 and JPEG in Fig. 12. 

Furthermore, in set-associative caches, the location of each instruction in the cache 
cannot be precisely determined since there are multiple cache-lines in the cache-set 
that corresponds to the address of the instruction. This uncertainty is expected to  
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Fig. 12. Effect of set-associative caches on total leakage saving 
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decrease the saving results of the rescheduling algorithm, however, our cache simula-
tor gives separate per-way residence-times for each instruction so as to direct the 
matching process toward the cache-ways with higher probability of hosting the in-
struction. Saving results of Algorithm 1 are given in Fig. 13; as in Fig. 12, cache size 
and line-size are respectively fixed at 8KB and 16-bytes while the number of cache-
ways varies from 1 to 8. The figure confirms that the number of cache-ways only 
slightly affects the results due to the above-mentioned technique for directing the 
algorithm towards matching the instruction against the more likely used cache-way. 
Some marginal increases are seen in Fig. 13 for MPEG2, Compress, and FIR at higher 
cache associativity; these are random effects that happen since the algorithm does not 
give the absolute optimal schedule and also the cache-lines that correspond to each 
instruction change when changing the number of cache-ways. 

Execution-times of the rescheduling algorithm for the above caches are given in 
Table 3; values are measured on a Xeon 3.8GHz processor with 3.5GB memory. The 
execution time increases with the number of cache-ways, since more calculations are 
necessary, but it remains reasonably low to be practical. In case of in-field optimiza-
tion illustrated in Fig. 7, the optimizer runs on the embedded processor which could 
be two orders of magnitude slower. Thus, it may take a number of seconds to finish 
but needs to be done only once per product (say at install time), and hence, the execu-
tion-time is acceptable given its power-saving advantages.  

Table 3. Algorithm execution-time (in seconds) 

Cache configuration (sets×ways×line_size) 
Benchmark 512×1×16 256×2×16 128×4×16 64×8×16 
MPEG2 0.15 0.33 0.55 1.04 
FFT 0.08 0.19 0.31 0.60 
JPEG 0.18 0.40 0.70 1.35 
Compress 0.05 0.10 0.15 0.26 
FIR 0.01 0.01 0.02 0.04 
DCT 0.03 0.06 0.12 0.23 
Average 0.08 0.18 0.31 0.59 
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Fig. 13. Effect of set-associative caches on rescheduling algorithm 
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Fig. 3 suggests that the achievable energy saving rises with the increase in Vth vari-
ation caused by technology scaling. We repeated the experiments for 8KB, 512-set 
direct-map cache with σVth-intra of the minimum-sized transistor varying from 20 to 
100mV (with mean-Vth=320mV in all cases). Fig. 14 shows the trend in saving results 
which confirm the increasing significance of the approach in future technologies 
where random within-die Vth variation is expected to increase [ 33] due to random 
dopant fluctuation which is rising when further approaching atomic sizes in nanome-
ter processes. 
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Fig. 14. Saving improvement with technology scaling 

6.2   Analysis and Evaluation of Costs 

Performance Impact of Intra-BB Rescheduling and Register-Renaming. Regis-
ter-renaming imposes absolutely no penalty since there is no difference in perform-
ance among various registers. Intra-BB instruction-rescheduling has no impact  
on instruction-cache but may in rare cases marginally affect data-cache; these are 
explained below:  

Instruction-cache performance is unaffected by our techniques because number, 
size, and memory address of basic-blocks remain the same. The execution time of 
each basic-block after rescheduling changes only due to data-cache misses in case of 
M32R processor (a 5-stage pipelined in-order single-issue RISC processor) since only 
two factors may affect this execution time: (i) data cache misses, and (ii) other pipe-
line stalls; but the latter does not change by instruction rescheduling in case of M32R 
since: 

• M32R implements internal register-forwarding [ 27], and hence, no stall occurs if 
a producer-consumer pair of instructions execute back to back in the pipeline. 

• According to M32R datasheets, the only other sources of pipeline stall in M32R 
are the taken branch instructions and multi-cycle instructions (multiply, divide, 
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and remainder) [ 27] neither of which is affected by our technique because (i) we 
do not change the position of branch instructions and they remain at the end of 
their corresponding basic-block, and hence, their imposed number of stall cycles 
remains the same after rescheduling, (ii) multi-cycle instructions also impose the 
same number of pipeline stalls irrespective of their position in the basic-block. 

In data cache, however, reordering of instructions may change the sequence of  
accesses to data elements, and hence, may slightly change cache behavior. If a miss-
causing instruction is moved, the hit-ratio is the same, but residence-times (and hence 
leakage power) of the evicted and fetched data items change negligibly. In addition, if 
two instructions that access cache-conflicting data elements change their relative 
order of execution, the cache hit-ratio changes if the originally-first one was to be a 
hit. This case may also change the data that finally remains in the cache after basic-
block execution, and hence, potentially affects leakage power of the data cache. These 
cases are, however, very unlikely to happen when noting that due to locality of refer-
ence, two conflicting data accesses are unlikely to follow closely in time (and in a 
single BB). This is confirmed by our experimental results shown in Fig. 15; the total 
dynamic power and data cache hit-ratio varied no more than 1% in our experiments 
on 8KB 2-way data cache of M32R. It is noteworthy that the dynamic power in  
Fig. 15 includes dynamic power consumption of data cache as well as off-chip data 
memory. Since total dynamic power is dominated by off-chip memory accesses which 
correspond to data-cache misses, the bar corresponding to power consumption in  
Fig. 15 also represents the increase in data-cache miss ratio. 

Memory Requirements. For set-associative caches, when using the in-field binary-
modification proposal illustrated in Fig. 7, the rescheduling and register-renaming 
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Fig. 15. The amount of decrease in data-cache hit-ratio and increase in dynamic power con-
sumption of data cache and off-chip data memory after instruction rescheduling 
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algorithm needs to know which cache-way most probably hosts each instruction-
block so as to know the cache location to which each instruction should be matched 
(obviously, no such information needs to be stored in case of a direct-map cache). 
Consequently, for a W-way set-associative cache, log2(W) bits per instruction-block 
should be stored along with each application binary; for example, in a 4-way set-
associative cache with 16-byte line size on a processor with 32-bit instructions, 4 
instructions reside in each cache line and hence 2 (i.e. log2(4) ) bits should be stored 
per every 4 instructions.  

One concern is that if the analyzed execution trace is not a good representative of 
actual execution traces, the above stored information may mislead the optimization 
algorithm and impact leakage savings. This is a general concern for all trace-based 
optimization techniques but an intensive benchmarking and analysis phase in order to 
obtain a representative trace can effectively reduce the chance of such drawbacks. 

The optimizer itself should also be stored in the embedded system in case of  
in-field optimization illustrated in Fig. 7. We recompiled our developed optimizer 
without any change using M32R port of GCC to obtain M32R executable; the code 
size is 102KB which is nine times smaller than a JPEG application compiled for 
M32R. It is worthy of note that an implementation to actually run on an embedded 
system may differ in size since several source-level improvements can be applied and 
also the optimizer must work with binary executables as opposed to text files in these 
experiments. 

Cost of Cache Initialization. As explained in Section  4, the cache-initialization tech-
nique consumes some dynamic power to execute the cache-management instructions 
before it can save leakage power. This introduces a break even point in time beyond 
which the obtained leakage-saving outweighs the consumed dynamic power. Our 
implementation of M32R processor with two separate 8KB instruction and data cach-
es on a 180nm process technology consumes 200mW at 50MHz clock frequency. 
This gives, on average, 4nJ per clock cycle or pessimistically 20nJ per instruction in 
the 5-stage pipelined M32R processor. Assuming all 512 cache-lines of the instruc-
tion cache are to be initialized, 10.24μJ is consumed for cache-initialization. Tviable can 
now be calculated using the power-saving values obtained by cache-initialization 
(Fig. 10). Results are given in Table 4 which confirms that most often a small fraction 
of a second is enough to make the initialization technique viable. Even for the worst 
benchmark, FFT-O3, a number of seconds is enough. Assumptions in the estimations 
were intentionally pessimistic in order not to overestimate benefits: (i) processor im-
plementation in a finer technology (e.g. 90nm) would consume less dynamic power, 
(ii) more than one instruction is often in the processor pipeline, and hence, average  
 

Table 4. Upper bound of Tviable for different applications 

Benchmark MPEG2 FFT JPEG Compress FIR DCT 
Tviable  (s) 0.590 0.238 3.281 0.117 0.093 0.182 

 
MPEG2-O3 FFT-O3 JPEG-O3 Compress-O3 FIR-O3 DCT-O3 

2.419 10.020 1.279 0.104 0.093 0.169 
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power per instruction would be less than 20nJ, (iii) not all cache-lines need to be 
initialized (e.g. for FFT-O3 only 3 and for JPEG, only 14 cache-lines remain unused 
and should be initialized). Thus, values in Table 4 should be considered as upper 
bounds for Tviable. 

7   Conclusion 

Our contributions in this paper are (i) observing value-dependence of SRAM leakage 
and analyzing the corresponding new opportunity for reducing cache leakage in na-
nometer technologies enabled by the reducing Vth and the increasing within-die Vth-
variation in such processes, and (ii) presenting first techniques that take advantage of 
this opportunity and reduce leakage up to 54% (35% on average) with negligible 
impact on system performance. It is important to note that our techniques (i) become 
more effective with technology scaling, (ii) reduce leakage also in the normal mode of 
system operation (in addition to standby mode) even when the cache-lines are actively 
in use, (iii) are orthogonal to other techniques for leakage reduction such as body- and 
source-biasing, and (iv) are software low-cost techniques that need no hardware modi-
fication in the cache or processor design (except for adding an on-chip leakage sensor 
in case of using BICS approach to eliminate test overhead). As future work, we  
are investigating techniques similar to garbage-collection so as to invalidate the 
cache-lines that won’t soon have a hit and to store the least-leaky values in them. In 
addition, more aggressive optimizations such as moving basic-blocks around in the 
address space while considering its effect on instruction-cache access pattern are other 
directions of expanding this work. 
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González, Jose 115
Goudarzi, Maziar 275

Hoogerbrugge, Jan 154

Ishihara, Tohru 275

Jarvis, Kim 236

Kirkham, Chris 236
Kleanthous, Marios 69
Klug, Tobias 219
Kobayashi, Hiroaki 135
Kotera, Isao 135
Kotselidis, Christos 236

Lacassagne, Lionel 177
Latorre, Fernando 115
Lin, Chun-Chieh 24
Luján, Mikel 236

Magklis, Grigorios 115
Moreto, Miquel 3
Moustakas, Andreas 69

Noori, Hamid 275

Ott, Michael 219

Prete, Cosimo Antonia 91

Ramirez, Alex 3

Saidani, Tarik 177
Salapura, Valentina 93
Sarkar, Subhradyuti 43
Sazeides, Yiannakis 69
Stroobandt, Dirk 201

Tadonki, Claude 177
Takizawa, Hiroyuki 135
Terechko, Andrei 154
Trinitis, Carsten 219
Tullsen, Dean M. 43

Valero, Mateo 3
Van Campenhout, Jan 201
Verbauwhede, Ingrid 201

Waliullah, M.M. 256
Watson, Ian 236
Weidendorfer, Josef 219


	Title Page
	Preface
	Editorial Board
	Table of Contents
	Third International Conference on High-Performance and Embedded Architectures and Compilers (HiPEAC)
	Dynamic Cache Partitioning Based on the MLP of Cache Misses
	Introduction
	Prior Work in Dynamic Cache Partitioning
	MLP-Aware Dynamic Cache Partitioning
	Algorithm Overview
	MLP-Aware Stack Distance Histogram
	Obtaining Stack Distance Histograms
	Putting All Together
	Case Study

	Experimental Environment
	Simulator Configuration
	Workload Classification
	Performance Metrics

	Evaluation Results
	Performance Results
	Design Parameters
	Hardware Cost
	Scalable Algorithm to Decide Cache Partitions

	Conclusions
	References

	Cache Sensitive Code Arrangement for Virtual Machine
	Introduction
	Related Works
	Background
	XIP with NAND Flash
	KVM Internals

	Analyzing Control Flow
	Indirect Control Flow Graph
	Tracing the Locality of the Interpreter
	The Mathematical Model

	The Process of Rewriting the Virtual Machine
	Source-Level Rearrangement
	Assembly-Level Rearrangement

	Evaluation
	Evaluation Environment
	Results of Source-Level Rearrangement
	Results of Assembly-Level Rearrangement

	Conclusion
	References

	Data Layout for Cache Performance on a Multithreaded Architecture
	Introduction
	Related Work
	Simulation Environment and Benchmarks
	Independent Data Placement
	Support from Operating System or Hardware
	Analysis of Data Objects
	Object and Edge Filtering
	Building the TRGSelect Graph
	Placement Algorithm
	Independent Placement Results

	Co-ordinated Data Placement
	Merging of TRGSelect Graphs
	Coordinated Placement Results

	Exploring Other Processor and Cache Configurations
	Effects of Cache Size and Associativity
	Increasing the Number of Execution Contexts
	Effects of Cache Miss Penalty

	Conclusion
	References

	Improving Branch Prediction by Considering Affectors and Affectees Correlations
	Introduction
	Affectors and Affectees
	Definitions and Intuition
	Memory Dependences
	How to Use Affectors and Affectees for Prediction

	Experimental Framework
	Results
	Characterization of Affectors and Affectees
	GTL Results
	L-TAGE Results

	Related Work
	Conclusions and Future Work
	References


	Eighth MEDEA Workshop (Selected Papers)
	Eighth MEDEA Workshop
	Exploring the Architecture of a Stream Register-Based Snoop Filter
	Introduction
	Related Work
	Snoop Filter Architecture
	Point-to-Point Snoop Filter Interconnection
	Snoop Filter Variants

	Stream Registers
	Experimental Methodology
	Experiments and Simulation Results
	Stream Register Size
	Stream Register Update Policy
	Stream Register Clearing
	Snoop Cache Size
	The Most Effective Combination

	Conclusion
	References

	CROB: Implementing a Large Instruction Window through Compression
	Introduction
	Related Work
	Description of the Architecture
	ROB Implementation
	Compressed ROB (CROB)
	Hardware Components
	Hardware Behavior

	Early Register Release
	Experimental Results
	Simulation Methodology
	Potential Benefit of CROB
	Early Register Release
	Putting It All Together

	Conclusions
	References

	Power-Aware Dynamic Cache Partitioning for CMPs
	Introduction
	Locality Assessment
	Cache Control Mechanism
	Assumptions
	Mechanism Overview
	Way-Allocation Function
	Power Control Function

	Performance Evaluation
	Methodology
	Evaluation of Way-Allocation Function
	Evaluation of Way-Allocation with Power Control
	Evaluation of Hardware Overhead

	Conclusions
	References

	A Multithreaded Multicore System for Embedded Media Processing
	Introduction
	Multithreading
	Classification
	Selection
	Static Interleaved Multithreading
	Subset Static Interleaved Multithreading
	Register File Design
	Multithreading Comparison

	Task Scheduling
	Task Scheduling Unit
	Improvement for Multithreading

	Parallel H.264 Decoding
	Parallelization
	Tail Submits

	Evaluation
	Experimental Setup
	Performance of SSI Multithreading
	Multithreading Aware Task Scheduling
	Discussion

	Related Work
	Conclusions
	References


	Regular Papers
	Parallelization Schemes for Memory Optimization on the Cell Processor: A Case Study on the Harris Corner Detector
	Introduction
	The Harris Interest Point Detection Algorithm
	Algorithm Description
	Implementation Details

	Optimizations and Parallelization Strategies
	Signal Processing Optimization
	DMA Related Optimizations
	Parallel Implementations
	Models Comparison
	Tile Size Influence
	Performance Analysis
	Comparison between the SPU and General Purpose Processors (GPP) with SIMD Extensions
	Discussion on Benchmarking Methodology

	Scalability Measure on the Cell Processor
	Conclusion and Future Work
	References

	Constructing Application-Specific Memory Hierarchies on FPGAs
	Introduction
	Comparison of Memory Systems on Processors and on FPGAs
	Influence of Address Complexity on Circuit Complexity
	Step-by-Step Construction of a Memory Hierarchy
	Case Study: System Integration of an IDWT
	Adding New Hardware Structures
	Inserting Buffers
	Further Integration

	Related Work
	Address Expressions
	High-Level Synthesis Tools

	Conclusions and Future Work
	References


	First Workshop on Programmability Issues for Multi-core Computers (MULTIPROG)
	autopin – Automated Optimization of Thread-to-Core Pinning on Multicore Systems
	Introduction
	Related Work
	The autopin Tool
	Experimental Setup
	Benchmark
	Hardware Environment
	Thread-to-Core Pinning

	Results
	Verification of the autopin Approach
	Overhead Examination

	Conclusion and Outlook
	References

	Robust Adaptation to Available Parallelism in Transactional Memory Applications
	Introduction
	Transactional Concurrency Tuning
	Four Controller Models
	P-only Controller Model

	Evaluation of the Controller Models
	Controller Model Parameters
	Hardware and Software Platform
	Benchmarks
	Execution Time
	Resource Utilisation
	Transaction Execution Metrics
	Response Characteristics

	Limitations
	Conclusion
	References

	Efficient Partial Roll-Backing Mechanism for Transactional Memory Systems
	Introduction
	Baseline System and Problem Statement
	Baseline Architecture
	Problem Statement

	The Intermediate Check-Point-Insertion Scheme
	Overview of the Scheme
	Implementation

	Experimental Methodology
	Experimental Results
	Potential Gains by Inserting Intermediate Checkpoints
	Micro-benchmark Performance
	Performance Gains for all Applications
	Accuracy of the Prediction Scheme
	Variation Analysis

	Related Work
	Concluding Remarks
	References

	Software-Level Instruction-Cache Leakage Reduction Using Value-Dependence of SRAM Leakage in Nanometer Technologies
	Introduction
	Related Work
	Motivation and the New Saving Opportunity
	Our Techniques for Instruction Cache Leakage Reduction
	Problem Formulation
	Experimental Results
	Evaluation Results
	Analysis and Evaluation of Costs

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




