
Subjective-C
Bringing Context to Mobile Platform Programming

Sebastián González, Nicolás Cardozo, Kim Mens,
Alfredo Cádiz, Jean-Christophe Libbrecht, and Julien Goffaux

Computing Science Engineering Pole, ICTEAM, UCLouvain
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium

Abstract. Thanks to steady advances in hardware, mobile computing
platforms are nowadays much more connected to their physical and logi-
cal environment than ever before. To ease the construction of adaptable
applications that are smarter with respect to their execution environ-
ment, the context-oriented programming paradigm has emerged. How-
ever, up until now there has been no proof that this emerging paradigm
can be implemented and used effectively on mobile devices, probably the
kind of platform which is most subject to dynamically changing contexts.
In this paper we study how to effectively realise core context-oriented
abstractions on top of Objective-C, a mainstream language for mobile
device programming. The result is Subjective-C, a language which goes
beyond existing context-oriented languages by providing a rich encoding
of context interdependencies. Our initial validation cases and efficiency
benchmarks make us confident that context-oriented programming can
become mainstream in mobile application development.

1 Introduction

New computing platforms are interrelated to their physical execution environ-
ment through all kinds of sensors that are able to measure location, orientation,
movement, light, sound, temperature, network signal strength, battery charge
level, and so forth. At the logical level, even traditional desktop and server plat-
forms are getting exposed to richer environments in which they can find network
services of all sorts. Both at the physical and logical levels, the live environment
in which applications execute is acquiring a central role. If equipped with higher
levels of context-driven adaptability, software systems can become smarter with
respect to their environment and to user needs, exhibit emergent properties, be
resilient in the face of perturbations, and generally fit better in the technical
ecosystem in which they are used.

Unfortunately, most software systems do not meet the high adaptability ex-
pectations that stem naturally from their connectedness to their environment.
Most applications exhibit fixed functionality and are seldom aware of changing
contexts to adapt their behaviour accordingly. Many chances of delivering im-
proved services to users and network peers are thus missed. We hypothesise that
a major reason for this lack of adaptability is the unavailability of appropriate

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 246–265, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

context-aware programming languages and related tool sets. Current program-
ming technology does not put programmers in the right state of mind, nor does
it provide adequate abstractions, to program context-aware applications.

Starting from this observation, Context-Oriented Programming (COP) has
been introduced as a novel programming paradigm which eases the development
of adaptable behaviour according to changing contexts [4,9]. COP offers an al-
ternative to hard-coded conditional statements and special design patterns to
encode context-dependent behaviour. COP thereby renders code more reusable
and maintainable. Unfortunately, current COP languages do not run on mobile
platforms —probably the kind of platform for which context is most relevant,
thus offering the most promising possibilities for development of context-aware
applications. Furthermore, COP languages still lack dedicated facilities to model
the knowledge of the situation in which applications execute.

With the aim of having a COP language that runs on a mobile platform, we
set out to develop an extension of Objective-C, one of the most widespread pro-
gramming languages for mobile systems. The result is Subjective-C, a new COP
language extension aimed at easing the construction of context-aware mobile ap-
plications. In Subjective-C, object behaviour depends on the context in which it
executes. Hence, observed behaviour is not absolute or objective, but rather of a
more relative or subjective nature [17]. A minimum amount of computational re-
flection available in Objective-C suffices to add the necessary abstractions which
allow the straightforward expression of context-specific behaviour.

Subjective-C is not a mere reimplementation of the concepts behind main
COP languages like Ambience [8] and ContextL [4]. Subjective-C goes beyond
the simple inheritance relationships that are possible between context objects in
Ambience, and between layer classes in ContextL, by providing explicit means
to encode more advanced interdependencies between contexts. Not only does
Subjective-C allow for more kinds of dependencies, but also they can be ex-
pressed in a domain-specific language developed especially for this purpose, mak-
ing the declaration of such dependencies more readable.

To validate Subjective-C, we implemented three proof-of-concept applica-
tions that run on actual smartphones. These case studies showed the feasibility of
programming context-aware applications using subjective programming abstrac-
tions, with a noticeable increase in software understandability, maintainability
and extensibility. Furthermore, efficiency benchmarks show that the performance
impact of COP abstractions in Subjective-C is negligible, to the point that in
some cases it can even improve performance.

The remainder of this paper is organised as follows. Section 2 introduces the
basics of context-oriented programming in Subjective-C. Section 3 goes on to
explain context relations in detail. Section 4 presents the reflective implementa-
tion technique we used to add a subjective layer on top of Objective-C. Section 5
briefly presents three validation cases we conducted to assess the advantages and
disadvantages of Subjective-C. Section 6 reports on the efficiency benchmarks we
carried out. Section 7 discusses limitations and future work. We present related
work in Section 8, and draw the paper to a close in Section 9.

Subjective-C 247

2 Context-Oriented Programming in Subjective-C

Context-Oriented Programming (COP) is an emerging programming paradigm
in which contextual information plays a central role in the definition of appli-
cation behaviour [4,8,18]. The essence of COP is the ability to overlay adapted
behaviour on top of existing default behaviour, according to the circumstances in
which the software is being used. Such adaptations are meant to gracefully adjust
the service level of the application, following detected changes in the execution
environment. COP languages provide dedicated programming abstractions to
enable this behavioural adaptability to changing contexts. This section presents
the COP core on which Subjective-C is based. The fundamental language con-
structs are introduced progressively, as core mechanisms are explained.

2.1 General System Architecture

Subjective-C has been conceived for a fairly straightforward system architecture,
illustrated in Fig. 1. Context information is received mainly from two sources.
Firstly, there is a context discovery module which collects sensor data to make
sense of the physical world in which the system is running, and also monitors net-
work services to make sense of the logical environment. Logical context changes
can also be signalled internally by the running application, for instance when
switching to secure or logging mode. Having all context changes at hand, the
context management module analyses the current situation and might chose to
prioritise some of the context changes, defer others for later application, drop
context changes that have become outdated, and solve possible conflicts stem-
ming from contradictory information and adaptation policies (for instance, in-
creasing fan speed due to overheating, versus reducing fan speed due to low
battery charge). It then commits a coherent set of changes to the active context
representation, which directly affects application behaviour.

Sensors Actuators

context
information arbitrated

context changes

context
effect

external internal

Active
Context

Context
Management

Context
Discovery

Application
Behaviour

World

Fig. 1: General architecture for context-aware systems

248 S. González et al.

Context* landscape = [[Context alloc] initWithName: @"Landscape"];
[CONTEXT addContext: landscape];

Snippet 1: Subjective-C context definition.

The global architecture proposed here is compatible with more detailed ones
such as Rainbow [6], meaning that the more refined subsystems of those architec-
tures can be accommodated within ours. However, the presented level of detail
suffices as frame of reference for the explanations that follow.

2.2 Contexts

We define context as an abstraction of the particular state of affairs or set of
circumstances for which specialised application behaviour can be defined. The
context discovery module shown in Fig. 1 is in charge of making sense of perceived
data and assigning it a higher-level meaning as contexts. Table 1 shows a few
examples. This mapping of data into meaningful contexts is not explored further
in this paper.

Sensed data Contexts

Coordinates = 50◦50’N 4◦21’E In Brussels
Battery charge = 220 mAh Low battery charge

Idle cycles = 11 MHz High CPU load
Z axis = 0.03 Landscape orientation

Table 1: Environmental data vs. contexts as semantically-rich situations

The notion of context put forward by Subjective-C is in line with dictionary
definitions such as “the situation within which something exists or happens, and
that can help explain it”1 and “the interrelated conditions in which something
exists or occurs”.2 This is in contrast to the more general definition of context by
Hirschfeld et al. [10] as “any information which is computationally accessible”.

In Subjective-C, contexts are reified as first-class objects. A typical context
definition is shown in Snippet 1. The landscape context is allocated and given a
name. Contexts are declared to the system’s context manager by means of the
addContext: call. As exemplified in Sections 2.3 and 2.4, the Landscape context
can be used by a smartphone application whose behaviour depends on the spatial
orientation of the device.

At any given time, contexts can be either active or inactive. Active contexts
represent the currently perceived circumstances in which the system is running,
and only these active contexts have an effect on system behaviour. Snippet 2
shows the way a context can be activated and deactivated. We call such changes
from one state to the other context switches. Context switches are carried out
by the context manager in response to incoming context changes.
1 http://dictionary.cambridge.org/dictionary/british/context_1
2 http://merriam-webster.com/dictionary/context

Subjective-C 249

[CONTEXT activateContextWithName: @"Landscape"];
[CONTEXT deactivateContextWithName: @"Landscape"];

Snippet 2: Context activation and deactivation.

#context Landscape
- (NSString*)getText() {
return [NSString stringWithString:@"Landscape view"];

}

Snippet 3: Context-specific method definition.

2.3 Contextual Behaviour

Subjective-C concentrates on algorithmic adaptation, allowing the definition
of behaviour that is specific to certain execution contexts. Programmers can
thereby define behaviour that is more appropriate to those particular contexts
than the application’s default behaviour.

In Subjective-C, defining context-dependent behaviour is straightforward.
Adapted behaviour can be defined at a very fine granularity level, namely on
a per-method basis. To define methods that are specific to a context, a simple
annotation suffices. Snippet 3 illustrates a typical context-specific method defini-
tion. The #context annotation lets Subjective-C know that the getText method
definition is specific to the given named context. This version of getText should
be invoked only when the device is in Landscape position. The method is not
to be applied under any other circumstances. The general EBNF syntax for
context-specific method definitions is as follows:

#context ([!]contextName)+
methodDefiniton

This is one of the two syntactic extensions Subjective-C lays over Objective-C;
the other one is explained in Section 2.4. As can be observed in this general
form, it is possible to specialise a method on more than one context. It suffices
to provide multiple context names after the #context keyword that precedes
the method definition. The method is applicable only when all its corresponding
contexts are active simultaneously.

As a convenience, Subjective-C introduces method specialisation on the com-
plement of a context by means of the negation symbol (!). Such complementary
method specialisations mean that the method is applicable only when the given
context is inactive. Complementary specialisations serve as a shortcut to ex-
plicitly defining a complementary context object and associated management
policies.

2.4 Behaviour Reuse

For most cases it is of little use to provide a means to define context-specific
behaviour but no means to invoke at some point the original default behaviour

250 S. González et al.

1 @implementation UILabel (color)
2 #context Landscape
3 - (void)drawTextInRect:(CGRect)rect{
4 self.textColor = [UIColor greenColor];
5 [superContext drawTextInRect:rect];
6 }
7 @end

Snippet 4: Sample use of superContext construct.

as part of the adaptation. The absence of such a mechanism would lead to the
reimplementation of default behaviour in overriding context-specific methods,
resulting in code duplication. Subjective-C therefore permits the invocation of
overridden behaviour through the superContext construct, which has two general
forms:

[superContext selector];
[superContext keyword: argument ...];

Next to the #context construct explained in Section 2.3, superContext is the
second syntactic extension of Subjective-C over Objective-C.

Snippet 4 shows an example in which the colour of a label widget changes
to green when the orientation of the host device is horizontal (i.e., when the
context Landscape is active). This example shows in passing that it is possible to
modify the behaviour of stock library objects such as UILabel, which have been
developed independently, and for which adaptations such as the one in Snippet 4
were not foreseen. It is possible to layer adaptations on top of any existing object,
without access to its source code. This is made possible by Objective-C’s open
classes and categories.

3 Context Relations

Subjective-C allows the explicit encoding of context relationships. These rela-
tionships impose constraints among contexts, which either impede activation or
cause cascaded activations and deactivations of related contexts. A failure to
respect the natural relationships between contexts could lead to unexpected,
undesired, or erroneous application behaviour. All behaviour described in this
section is part of the context management subsystem illustrated in Fig. 1.

When a context is switched, the system has to inspect all relations involv-
ing the context, checking if the change is consistent with imposed constraints,
and performing other switches triggered by the requested one. This section con-
cisely specifies the different relation types and their effect on context switching
through four main methods that any context must implement: canActivate,
canDeactivate, activate and deactivate.

To deal with multiple activations, every context has an activation counter,
which the activate method increases, and deactivate decreases (if positive).
Only when the counter falls down to zero is the context actually removed from
the active context representation.

Subjective-C 251

3.1 Weak Inclusion Relation

Sometimes the activation of a context implies the activation of a related one.
For example, if domain analysis yields that cafeterias are usually noisy, then the
activation of the Cafeteria context should induce the activation of the Noisy
context. We say that the former context includes the latter one. However, the
inclusion is a weak one in the sense that the contrapositive does not necessarily
hold. Even though there might be no noise, the device might still be located
in a cafeteria. The key here is that cafeterias are usually, though not always,
noisy. Fig. 2 shows the definition of weak inclusion relations. Activating (resp.
deactivating) the source context Cafeteria implies activating (resp. deactivat-
ing) the target context Noisy. The source context can always be activated and
deactivated. Conversely, because it is a weak inclusion relation, the target con-
text Noisy is not constrained at all by the source context Cafeteria. The target
context can be activated and deactivated anytime, without consequences on the
activation status of the source context.

Cafetaria Noisy

message source behaviour target behaviour
canActivate YES YES

canDeactivate YES YES
activate target activate —

deactivate target deactivate —

Fig. 2: Weak inclusion relation specification

3.2 Strong Inclusion Relation

In a strong inclusion relation, the activation of the source context implies the
activation of the target context, as in weak inclusions. Additionally, the contra-
positive holds: deactivation of the target implies automatically a deactivation of
the source. For example, if the current location is Brussels, then necessarily the
device is also located in Belgium. If the current location is not Belgium, then it is
certainly also not Brussels. Fig. 3 shows the definition of such strong inclusion
relations. As illustrated by the example, this kind of relation can be used to
signal that a specific context is a particular case of a more general one.

Brussels Belgium

message source behaviour target behaviour
canActivate target canActivate YES

canDeactivate YES source canDeactivate
activate target activate —

deactivate target deactivate source deactivate

Fig. 3: Strong inclusion relation specification

252 S. González et al.

3.3 Exclusion Relation

Some contexts are mutually exclusive. For instance, a network connection sta-
tus cannot be Online and Offline simultaneously, and the battery charge level
cannot be high and low at the same time (note however that it makes sense for
two exclusive contexts such as LowBattery and HighBattery to be simultane-
ously inactive). This motivates the introduction of exclusion relations between
contexts, specified in Fig. 4. Note that the exclusion relation is symmetrical.

LowBattery HighBattery

message source behaviour target behaviour
canActivate target isInactive source isInactive

canDeactivate YES YES
activate — —

deactivate — —

Fig. 4: Exclusion relation specification

3.4 Requirement Relation

Sometimes certain contexts require other contexts to function properly. For in-
stance, a high-definition video decoding context HDVideo might work only when
HighBattery is active. If HighBattery is inactive, then HDVideo cannot be acti-
vated either. Fig. 5 specifies this requirement relation between contexts.

HDVideo HighBattery

message source behaviour target behaviour
canActivate target isActive YES

canDeactivate YES source canDeactivate
activate — —

deactivate — source deactivate

Fig. 5: Requirement relation specification

3.5 Context Declaration Language

For non-trivial scenarios, the programmatic definition of contexts and their rela-
tions in Subjective-C can become verbose. As an example, consider the relatively
complex code to create just two contexts and an exclusion relation between them,
shown in Snippet 5 (left).

Observing that it is cumbersome to describe context settings programmati-
cally, we developed a small Domain-Specific Language (DSL) for this purpose.

Subjective-C 253

Context* on = [[Context alloc] initWithName:@"Online"];
Context* off = [[Context alloc] initWithName:@"Offline"];
[CONTEXT addContext:on];
[CONTEXT addContext:off];
[on addExclusionLinkWith:off];

Contexts:
Online
Offline
Links:
Online >< Offline

Snippet 5: Manual creation of contexts and their relations in Subjective-C (left)
versus equivalent code using the context declaration language (right).

In this DSL, contexts are declared simply by naming them, and their relations
established by means of the following textual notation:

– Weak Inclusion: A -> B
– Strong Inclusion: A => B
– Exclusion: A >< B
– Requirement: A =< B

The right side of Snippet 5 shows how the context set-up on the left side
is obtained using the context declaration language. This language permits the
edition of contexts and their relations with all the advantages brought by a
DSL: it has a more intuitive notation that can be understood even by non-
programmers, it results in more succinct code, and eases rapid prototyping.3

In its current version, Subjective-C does not check inconsistencies among
context relationships at the moment they are created (for example if A => B
on the one hand but A >< B on the other); as mentioned earlier, it checks for
inconsistencies when contexts are switched, preventing any contradictory change.
Support for earlier checks is part of our future work.

4 Implementation

Most existing COP implementations exploit meta-programming facilities such as
syntactic macros and computational reflection provided by the host object model
to modify method dispatch semantics, thereby achieving dynamic behaviour se-
lection. It is no surprise that these implementations have been laid on top of
dynamic languages that permit such level of flexibility.

For approaches based on more static languages such as ContextJ for Java [1],
existing implementations use a dedicated compiler. This is also the case of
Subjective-C, in which the compiler is just a small language transformer to plain
Objective-C. However, Subjective-C does not intercept method dispatch as other
approaches do. Rather, it precomputes the most specific methods that become
active right after every context switch. This original implementation technique,
explained in this section, is possible thanks to some of the dynamic features
offered by Objective-C. Section 6 presents an efficiency comparison of the two
approaches (method precomputation versus method lookup modification).
3 A script integrated in the build process of the IDE parses the context declaration
files written in the DSL and translates them into equivalent Objective-C code. The
result is compiled together with regular source code files.

254 S. González et al.

@implementation UILabel (color)
- (void)Context_Landscape_drawTextInRect:(CGRect)rect {
self.textColor = [UIColor greenColor];
SUPERCONTEXT(@selector(drawTextInRect:), [self drawTextInRect:rect]);

}
@end

Snippet 6: Context-specific version of UILabel’s drawTextInRect: method
translated to plain Objective-C.

[MANAGER
addMethod:@selector(Context_Landscape_drawTextInRect:)
forClass:[UILabel class]
forContextNames: [NSSet setWithObjects: @"Landscape", nil]
withDefautSelector:@selector(drawTextInRect:)
withPriority:0];

Snippet 7: Registration of a context-specific method.

4.1 Method Translation

Context-specific methods, explained in Section 2.3, have the same signature as
the original method containing the default implementation. For instance, the
drawTextInRect: method from Snippet 4 has the same signature as the stan-
dard method furnished by Apple’s UIKit framework.4 The intention of adapted
methods is precisely to match the same messages the original method matches,
but then exhibit different behaviour in response to the message.

To disambiguate method identifiers that have been overloaded for multiple
contexts, and thus distinguish between the different context-dependent imple-
mentations sharing a same signature, Subjective-C uses name mangling. Name
mangling is a well-known technique in which identifiers are decorated with addi-
tional information from the method’s signature, class, namespace, and possibly
others pieces of information to render the decorated name unique. In Subjective-
C, the selector of any context-specific method is mangled by prefixing the Con-
text keyword, followed by the name of all contexts on which the method has
been specialised. The name of complementary contexts (explained in Section 2.3)
is prefixed with NOT. The different name parts are separated by underscores. As
an example, Snippet 6 shows how the name of the drawTextInRect: method
from Snippet 4 is mangled. The snippet also shows the translation of the super-
Context construct, discussed further in Section 4.3.

The different method versions are registered to the context manager by auto-
matically generated code, shown in Snippet 7. The priority index lets the context
manager order method implementations to avoid ambiguities. This ordering is
discussed further in Section 7.

4 UIKit provides the classes needed to manage an application’s user interface in iOS.

Subjective-C 255

Method current_method =
class_getInstanceMethod(affectedClass, defaultMethodName);
Method selected_method =
class_getInstanceMethod(affectedClass, mangledMethodName);
method_setImplementation
(current_method, method_getImplementation(selected_method));

Snippet 8: Reflective method replacement to achieve predispatching.

4.2 Method Predispatch

Contrary to existing COP implementations, Subjective-C does not modify the
method lookup process of its host language. Rather, it determines the method
implementations that should be invoked according to the currently active context
at context-switching time. The chosen methods become the active methods in
the system. The set of active methods is recalculated for every change of the
active context. We call this process method predispatch.

Method predispatch is made possible by the ability to dynamically replace
method implementations in Objective-C. As sketched in Snippet 8, the predis-
patcher uses the reflective layer of Objective-C to exchange method implementa-
tions.5 The currently active implementation is replaced by a version that is most
specific for the active context. It can very well be that the old and new versions
are the same, in which case the method switching operation has no effect.

This implementation technique would be less easy to achieve in other mem-
bers of the C language family such as C++, due to the lack of a standard reflec-
tive API that enables the manipulation of virtual method tables. A non-reflective
implementation would probably involve compiler– and platform-specific pointer
manipulations to patch such tables manually.

Finally, from Snippet 8 it can be observed that the default method and
its context-dependent adaptations belong to the same class. Since Objective-C
features open classes, methods can be added to any existing class. Open classes
make it possible for Subjective-C to add context-specific methods to any user-
defined, standard or built-in class, without access to its source code. Adaptability
of third-party code is one of the strongest advantages brought by Subjective-C,
and is another area in which other members of the C language family would fall
short in implementing a similar mechanism (because they lack open classes).

4.3 Super-Context Calls

Snippet 6 shows how the superContext construct from Snippet 4 is translated to
plain Objective-C. Snippet 9 shows the definition of the SUPERCONTEXT preproces-
sor macro used by the translated code. This macro replaces the current method
implementation by the next one in the method ordering corresponding to the
given class, default selector and currently active context, invokes the newly set
implementation, and reverts the change to leave the system in its original state.
5 Besides instance methods, it is also possible to manipulate class methods through
class_getClassMethod, but the details are inessential to the discussion.

256 S. González et al.

#define SUPERCONTEXT(_defaultSelector, _message) \
[MANAGER setSuperContextMethod:_defaultSelector forClass:[self class]]; \
_message; \
[MANAGER restoreContextMethod:_defaultSelector forClass:[self class]];

Snippet 9: Macro definition used to translate superContext constructs.

5 Validation

This section summarises three case studies we developed to assess the qualities of
Subjective-C to respectively create a new context-aware application from scratch,
extend an existing application so that it becomes context-aware, and refactor an
existing application by exploiting its internal modes of operation (i.e. logical
contexts, as opposed to making it adaptable to physical changes).

Home Automation System. The goal of this case study is to build a home
automation system using Subjective-C from the ground up. The system permits
the use of a smartphone as remote control to regulate climatic factors such as
temperature, ventilation and lighting, and to command household appliances
such as televisions. The remote control communicates through the local network
with a server system, which simulates these factors and appliances, in a home
with a kitchen, bathroom, bedroom and living room. Each room is equipped
with a different combination of windows (for ventilation regulation), heating, air
conditioning and illumination systems. The remote control application adapts
its user interface and behaviour dynamically according to the simulated context
changes coming from the server.

This case study heavily uses the context declaration language introduced in
Section 3.5. Fig. 6 shows a graphical overview for the home server implemen-
tation. The relatively complex relations for this proof-of-concept system show
that the definition of a dedicated context declaration language is justified. In a
full-fledged home automation system the contexts and their relations could be
even more intricate, and defining all entities programmatically would result in
complex code.

Device Orientation. The goal of this case study is to extend an existing
Objective-C application with context-oriented constructs. The original Device
Orientation application is a proof-of-concept whose basic functionality is to dis-
play a text label which dynamically adjusts its display angle so that it remains
parallel to the ground, regardless of the physical device orientation. The applica-
tion extension consists in changing the text and colour of the label according to
orientation changes in the x and z axes. The guideline is to be able to introduce
said extensions with minimal intervention of the original source code. Several
code snippets from this case study are used throughout this paper.

Regarding efficiency, Device Orientation switches contexts as frequently as
every 100 milliseconds to keep the label constantly parallel to the ground. We
observed no apparent slowdown with respect to the original application: the label
adapts swiftly to orientation changes.

Subjective-C 257

Day Night Rain SunElectricity

TV WindowsTemperature Luminosity

Living roomBedroom Bathroom

Room

Kitchen

Fig. 6: Context and relations in the Home Automation case study

Accelerometer Graph
preserving refactoring of an existing application using contexts, to assess the
impact on source code quality. The chosen application is Accelerometer Graph,
developed by Apple to illustrate the use of filters to smooth the data obtained
from an iPhone’s accelerometer. The application presents a graph of read ac-
celerometer data against time. It can work in standard (default) or adaptive
mode. Independently from these modes, it can work in low-pass or high-pass
mode. Due to these operation modes, the original application presents some
cases of conditional statements related to the operation mode, and code dupli-
cation. The refactored version avoids the conditionals and the duplication by
modelling the different operation modes as contexts.

From the experience gathered in the described case studies, we have ob-
served that extensibility and maintainability are particularly strong points of
Subjective-C. These main strengths come from the separation of concerns be-
tween the base application and its context-specific adaptations. Subjective-C
allows the adaptation of any method of the application, and all such method
adaptations that correspond to a given context can be modularised and furnished
as a single unit. Further details and in-depth discussion of the case studies are
provided by Libbrecht and Goffaux [13].

6 Benchmarks

As mentioned in Section 1, one of the main advantages of COP is that it of-
fers an alternative to hard-coded conditional statements. By helping to avoid
such statements, COP renders code more reusable and maintainable. However,
this advantage would be nullified if the penalty in performance would be pro-
hibitively high. Therefore, to assess the cost of using COP abstractions, we mea-

. The goal of this case study is to perform a behaviour-

sured the difference in execution time between an application that uses contexts

258 S. González et al.

-(void) test:(int) mode {
if (mode == 1)
result = 1;

else if (mode == 2)
result = 2;

...
else if (mode == N)
result = N;

else
result = 0;

}

#context C1
-(void) test {
result = 1;

}
...
#context CN
-(void) test {
result = N;

}
-(void) test {
result = 0;

}

Snippet 10: Dummy test methods in Objective-C (left) and Subjective-C (right)
with N + 1 behavioural variants. The choice of the variant depends on the
application’s current operating mode and the application’s current execution
context, respectively.

in Subjective-C and an equivalent application that uses conditional statements
in Objective-C. Our benchmark consists of a dummy application that runs in
1+N possible operation modes (the default one plus N variants). In Objective-C
these modes are encoded as integers stored in a global variable, on which ap-
plication behaviour depends. In Subjective-C the alternatives are represented as
contexts. Snippet 10 illustrates the two approaches. For the sake of the bench-
mark, the test method merely produces a side effect by assigning the result
global variable. Since the execution cost of such an assignment is negligible, the
cost of test is dominated by the cost of method invocation. Additionally, the
Objective-C solution incurs the cost of testing the branches in the conditional
statement. For sufficiently high values of N , this cost becomes considerable. In
Subjective-C there is no additional cost associated to the choice of a behavioural
variant during method invocation, because such choice has been precomputed
at context-switching time.

Naturally, the question is how the costs of conditional statement execution
in Objective-C and context switching in Subjective-C compare. To measure the
difference, we invoke the test method M times for every context change, as
shown in Snippet 11. In Objective-C, test execution time depends on the num-
ber of branches K that need to be evaluated in the conditional statement. In
Subjective-C, test execution time is constant, but at context-switching time it
is necessary to iterate over the first K possible methods to find the one that
needs to be activated. The results of the comparison between these two ap-
proaches are shown graphically in Fig. 7a for N = 50 and K = 50. The test
application was run in debugging mode on an iPhone 3GS with iOS 4.0. In the
case illustrated in Fig. 7a, context switching reaches the efficiency of conditional
statement execution at about 1150 method calls per context switch. Beyond this
point, Subjective-C is more efficient than Objective-C; the execution time in

Subjective-C 259

for (int i = 0; i < 1000; i++) {
if (i % 2)
[CONTEXT activateContextWithName:@"CK"]; // mode = K;

else
[CONTEXT deactivateContextWithName:@"CK"]; // mode = 0;

for (int j = 0; j < M; j++)
[self test];

}

Snippet 11: Code to measure the relative cost of context changes with respect
to context-dependent method invocation in Subjective-C; the Objective-C
counterpart is analogous and is therefore just suggested as comments.

both approaches will tend to grow linearly, although Objective-C will have a
considerably higher slope due to conditional statement execution,6 besides the
cost of method invocation which is incurred in both approaches. Fig. 7b sum-
marises the intersection points for various values of N and K, including the case
of Fig. 7a.

(a)

10−1

100

101

102

103

104

105

100 101 102 103 104 105

m
ill
is
ec
on
ds

method calls per context switch (M)

M∗

Subjective-C
Objective-C

(b)

N K M∗

5 1 8230
10 1 4708
50 1 3405
5 5 4521
10 10 2653
50 50 1148

Fig. 7: Performance comparison of Objective-C and Subjective-C; (a) illustration
with logarithmic scale for the case N = 50, K = 50, and (b) summary of
efficiency meeting points M∗ for various values of N and K

The benchmarks just discussed use contexts that are not linked through any
of the relations introduced in Section 3. Though not shown here for space limita-
tions, we have carried out a few benchmarks to assess the impact of relations on
context activation [13]. The presence of exclusion relations increases slightly the
time of activation (i.e. an extra check for every excluded context); in inclusion
6 This difference is not apparent in Fig. 7a because of the logarithmic scale.

260 S. González et al.

relations, the (de)activation must be not only accepted but also propagated on
the chain of included contexts. Processing inclusion relations is about 4 times
more costly than processing exclusion relations.

In another benchmark we assessed the cost of activation according to the
number of methods associated to the switched context. As can be expected, the
activation time increases linearly with the number of methods (e.g. if a context
has twice as many methods, it takes twice as much time to switch).

Yet in one more benchmark we evaluated the activation time according to
number of contexts that specialise a given method. In our implementation, the
execution time grows linearly with the number of contexts that implement the
same method, because finding the most specific method involves a linear search
in a list of available methods.7

The efficiency of Subjective-C depends highly on its usage. Most benefits are
obtained for contexts that are switched infrequently with respect to the rate of
usage of affected methods. Fortunately, this is the case for most common scenar-
ios, because context changes are usually linked to physical phenomena such as
orientation changes, temperature changes, battery charge changes, network con-
nections, and so forth. In particular, in each of the three case studies described in
Section 5, the Subjective-C implementation did not give rise to apparent perfor-
mance penalties. This being said, we can think of a few kinds of contexts which
could be switched very rapidly, for instance software memory transactions imple-
mented as contexts [7], used in tight loops. For these cases the penalty incurred
by Subjective-C could become detrimental to overall performance. However, for
most practical cases we can conclude that COP abstractions do not incur a
performance penalty that would bar them from mobile platform programming.

7 Limitations and Future Work

Even though Subjective-C is usable for application development on mobile de-
vices as suggested in Section 5, it still has rough edges we need to iron out. This
section describes the most salient ones, starting with the more technical and
going over to the more conceptual.

Super-Context Translation. A caveat of the implementation presented in
Section 4.3 is the impossibility to retrieve the return value from a superContext
message. Our current solution consists in having a different syntax when the
return value is needed, which complements the definition of the superContext
construct given in Section 2.4:

[superContext selector] => variable;
[superContext keyword: argument ...] => variable;

This syntax is translated to a variant of the SUPERCONTEXT macro which expands
the message as variable = _message instead of just _message.
7 We have invested no effort yet in improving this straightforward implementation.

Subjective-C 261

The additional syntax shown here is due to a particularity of our current
implementation, but we see no fundamental reason why it could not be avoided
in a more sophisticated version of the compiler.

Context Scope and Concurrency. Context activation in Subjective-C is
global. All threads share the same active context and see the effects of con-
text switching performed by other threads. This can give rise to race conditions
and behavioural inconsistencies if concurrent context switches occur at inappro-
priate execution points [9]. However, note that this issue does not stem from a
conceptual error. As discussed in Section 2.1, any computing device is embedded
in a physical and logical execution environment, which all applications running
on the device share. For instance, it is natural that all applications become aware
of a LowBattery condition, or a reorientation of the device to Landscape position.
Rather than avoiding the problem of shared contexts altogether by limiting the
scope of context effects to individual threads, our open research challenge and
line of future work consists in detecting the execution points at which shared
context changes are safe to perform, whether automatically or with some sort of
assistance such as source code annotations.

Nevertheless, having made a case for global contexts, we do believe that
adding support for local contexts, representing the running conditions of par-
ticular threads, would be a useful addition to Subjective-C. For instance, one
thread could run in Debug or Tracing mode simultaneously with other threads
running in default mode.

Behaviour Disambiguation. Whenever multiple methods are applicable for
a given message and active context configuration, the context manager should
be able to deterministically define which of the methods is to be invoked. For
example, suppose there are two versions of UILabel’s drawTextInRect: method,
respectively specialised on the Landscape and LowBattery contexts. If both con-
texts are active at any given time, it is unclear which of the two versions of
drawTextInRect: should be applied first.

Currently, the choice is based on a priority assigned to every method. De-
fault methods have always less priority than context-dependent methods. For
two context-dependent methods, the priority is given by the order in which the
compiler comes across the method definitions.8 Hence, the later a method is
found, the higher its priority. Clearly this ad hoc mechanism to automatically
determine priorities is insufficient. A better solution is to define a version of the
ambiguous method specialised on the set of conflicting contexts (in the exam-
ple, Landscape and LowBattery), and resolve the ambiguity manually in that
specific method implementation. This solution cannot be used for every possible
combination as this would result in a combinatorial explosion. A line of research
is to help predicting which ambiguities arise in practice by analysing context
relations, and provide declarative rules to resolve remaining ambiguities based
on domain-specific criteria.

8 Note that Objective-C open classes can be defined across multiple files.

262 S. González et al.

8 Related Work

COP-like ideas for object-oriented systems can be traced back as far as 1996.
The Us language, an extension of the Self language with subjective object be-
haviour [17], inspired our work since the early stages. In Us, subjectivity is ob-
tained by allowing multiple perspectives from which different object behaviour
might be observed. These perspectives are reified as layer objects, and hence,
Us layers are akin to Subjective-C contexts.

The contemporary notion of COP has been realised through a few imple-
mentations, in particular ContextL [4] which extends CLOS [2], Ambience [9]
which is based on AmOS [8], and further extensions of Smalltalk [10], Python
[14] and Ruby,9 among others. Most existing approaches, with the exception of
Ambience, seem to be conceptual descendants of ContextL, and therefore share
similar characteristics. None of these COP languages is similar to Subjective-C
in that they affect method dispatch semantics to achieve dynamic behaviour
selection, whereas Subjective-C uses method predispatching, introduced in
Section 4.2.

Subjective-C is inspired on our previous work with Ambience. In particular,
both languages use the notion of contexts as objects representing particular
run-time situations, described in Section 2.2. Further, contexts in Ambience are
also global and shared by all running threads, an issue discussed in Section 7.
Whereas in Ambience it would not be difficult to adapt the underlying AmOS
object model to support thread-local contexts, in Subjective-C we do not control
the underlying object system inherited from Objective-C.

An issue barely tackled by existing COP approaches is the high-level mod-
elling of contexts and their conditions of activation. Subjective-C makes a step
forward in this direction by introducing different types of relations between con-
texts, explained in Section 3. This system of relations bears a strong resemblance
to some of the models found in Software Product Line Engineering (SPLE). Un-
fortunately, thus far SPLE has focused mostly on systems with variability in
static contexts [15]. Variability models such as Feature Diagrams (FDs) [11]
and their extensions have not been geared towards capturing the dynamism of
context-dependent behavior. More recent work on variability models acknowl-
edges the concept of dynamic variability in SPLE [3,5,12].

Also related to COP in general, and Subjective-C in particular, is the family
of dynamic Aspect-Oriented Programming approaches. PROSE [16] for instance
is a Java-based system using dynamic Aspect-Oriented Programming (AOP)
for run-time adaptability. Since dynamic aspects can be woven and unwoven
according to context, dynamic AOP can be a suitable option to obtain dynamic
behaviour adaptation to context. Dynamic AOP buys flexibility (for instance,
the ability to express join points that capture only certain invocations of a given
method, instead of every invocation) at the expense of more conceptual and
technical complexity (e.g. additional join point language and abstractions for
aspect definition).

9 http://contextr.rubyforge.org

Subjective-C 263

9 Conclusions

The field of Context-Oriented Programming (COP) was born in response to a
lack of adequate programming abstractions to develop adaptable applications
that are sensible to their changing execution conditions. Observing that no ex-
isting COP language allowed us to experiment with context-oriented mobile
application programming, we set out to develop an extension of one of the most
widely used languages for mobile devices, namely Objective-C. The result is the
Subjective-C language,which furnishes dedicated language abstractions to deal
with context-specific method definitions and thus permits run-time behavioural
adaptation to context. Subjective-C objects are less “objective” than those of
Objective-C in that their expressed behaviour does not depend entirely on the
messages they receive, but also on the current execution context.

Subjective-C goes beyond existing COP approaches by providing an explicit
means to express complex context interrelations. The different relations have
a corresponding graphical depiction and textual representation, to ease their
description and communication among developers and domain experts. Although
we cannot guarantee that the set of supported relation types is complete enough
to express all relevant context settings, we have found it to be sufficient in
practice for now.

Subjective-C introduces an original implementation technique that trades
context switching efficiency for method execution efficiency. Our experience with
the validation cases shows that this technique results in no noticeable efficiency
penalties, despite the relatively resource-constrained host platforms on which
these applications run. Even more, under some circumstances efficiency is im-
proved as compared to using plain Objective-C. From the same experience we
have observed that Subjective-C seems to achieve its ultimate software engineer-
ing goals, which are improved modularisation, increased readability, reusability,
maintainability and extensibility of context-aware software.

Acknowledgements

This work has been supported by the ICT Impulse Programme of the Institute
for the encouragement of Scientific Research and Innovation of Brussels, and by
the Interuniversity Attraction Poles Programme, Belgian State, Belgian Science
Policy. We thank the anonymous reviewers for their comments on an earlier
version of this paper.

References

1. Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: ContextJ: Context-
oriented programming for Java. Computer Software of The Japan Society for Soft-
ware Science and Technology (June 2010)

2. Bobrow, D., DeMichiel, L., Gabriel, R., Keene, S., Kiczales, G., Moon, D.: Common
Lisp Object System specification. Lisp and Symbolic Computation 1(3/4), 245–394
(1989)

264 S. González et al.

3. Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for vari-
ability transformation at run time. In: Proceedings of the International Software
Product Line Conference, pp. 61–70. Carnegie Mellon University, Pittsburgh (2009)

4. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming: an overview of ContextL. In: Proceedings of the Dynamic Languages Sym-
posium, pp. 1–10. ACM Press, New York (2005); co-located with OOPSLA 2005

5. Desmet, B., Vallejos, J., Costanza, P., Kantarcioglu, M., D’Hondt, T.: Context-
oriented domain analysis. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R.,
Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 178–191. Springer,
Heidelberg (2007)

6. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

7. González, S., Denker, M., Mens, K.: Transactional contexts: Harnessing the power
of context-oriented reflection. In: International Workshop on Context-Oriented Pro-
gramming, July 7, pp. 1–6. ACM Press, New York (2009)

8. González, S., Mens, K., Cádiz, A.: Context-Oriented Programming with the Am-
bient Object System. Journal of Universal Computer Science 14(20), 3307–3332
(2008)

9. González, S., Mens, K., Heymans, P.: Highly dynamic behaviour adaptability
through prototypes with subjective multimethods. In: Proceedings of the Dynamic
Languages Symposium, pp. 77–88. ACM Press, New York (2007)

10. Hirschfeld, R., Costanza, P., Haupt, M.: An introduction to context-oriented pro-
gramming with contextS. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2007. LNCS, vol. 5235, pp. 396–407. Springer, Heidelberg (2008)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Carnegie-
Mellon University Software Engineering Institute (November 1990)

12. Lee, J., Kang, K.C.: A feature-oriented approach to developing dynamically recon-
figurable products in product line engineering. In: Proceedings of the International
Software Product Line Conference, pp. 131–140. IEEE Computer Society Press,
Los Alamitos (2006)

13. Libbrecht, J.C., Goffaux, J.: Subjective-C: Enabling Context-Aware Programming
on iPhones. Master’s thesis, Ecole Polytechnique de Louvain, UCLouvain (June
2010)

14. von Löwis, M., Denker, M., Nierstrasz, O.: Context-oriented programming: Beyond
layers. In: Proceedings of the 2007 International Conference on Dynamic languages,
pp. 143–156. ACM Press, New York (2007)

15. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Heidelberg (2005)

16. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented program-
ming. In: Proceedings of the International Conference on Aspect-Oriented Software
Development, pp. 141–147. ACM Press, New York (2002)

17. Smith, R.B., Ungar, D.: A simple and unifying approach to subjective objects.
Theory and Practice of Object Systems 2(3), 161–178 (1996)

18. Vallejos, J., González, S., Costanza, P., De Meuter, W., D’Hondt, T., Mens, K.:
Predicated generic functions. In: Baudry, B., Wohlstadter, E. (eds.) SC 2010.
LNCS, vol. 6144, pp. 66–81. Springer, Heidelberg (2010)

Subjective-C 265

	Subjective-C Bringing Context to Mobile Platform Programming
	Introduction
	Context-Oriented Programming in Subjective-C
	General System Architecture
	Contexts
	Contextual Behaviour
	Behaviour Reuse

	Context Relations
	Weak Inclusion Relation
	Strong Inclusion Relation
	Exclusion Relation
	Requirement Relation
	Context Declaration Language

	Implementation
	Method Translation
	Method Predispatch
	Super-Context Calls

	Validation
	Benchmarks
	Limitations and Future Work
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

