
Canonical Method Names for Java
Using Implementation Semantics
to Identify Synonymous Verbs

Einar W. Høst1 and Bjarte M. Østvold2

1 Computas AS
eih@computas.com

2 Norwegian Computing Center
bjarte@nr.no

Abstract. Programmers rely on the conventional meanings of method
names when writing programs. However, these conventional meanings are
implicit and vague, leading to various forms of ambiguity. This is prob-
lematic since it hurts the readability and maintainability of programs.
Java programmers would benefit greatly from a more well-defined vocab-
ulary. Identifying synonyms in the vocabulary of verbs used in method
names is a step towards this goal. By rooting the meaning of verbs
in the semantics of a large number of methods taken from real-world
Java applications, we find that such synonyms can readily be identified.
To support our claims, we demonstrate automatic identification of syn-
onym candidates. This could be used as a starting point for a manual
canonicalisation process, where redundant verbs are eliminated from the
vocabulary.

1 Introduction

Abelson and Sussman [1] contend that “programs must be written for people to
read, and only incidentally for machines to execute”. This is sound advice backed
by the hard reality of economics: maintainability drives the cost of software sys-
tems [2], and readability drives the cost of maintenance [3,4]. Studies indicate
some factors that influence readability, such as the presence or absence of abbre-
viations in identifiers [5]. Voices in the industry would have programmers using
“good names” [6,7], typically meaning very explicit names. A different approach
with the same goal is spartan programming1. “Geared at achieving the program-
ming equivalent of laconic speech”, spartan programming suggests conventions
and practical techniques to reduce the complexity of program texts.

We contend that both approaches attempt to fight ambiguity. The natural
language dimension of program texts, that is, the expressions encoded in the
identifiers of the program, is inherently ambiguous. There are no enforced rules
regarding the meaning of the identifiers, and hence we get ambiguity in the
form of synonyms (several words are used for a single meaning) and polysemes
1 http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan_programming

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 226–245, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan_programming

Canonical Method Names for Java 227

(a single word has multiple meanings). This ambiguity could be reduced if we
managed to establish a more well-defined vocabulary for programmers to use.

We restrict our attention to the first lexical token found in method names.
For simplicity, we refer to all these tokens as “verbs”, though they need not
actually be verbs in English: to and size are two examples of this. We focus on
verbs because they form a central, stable part of the vocabulary of programmers;
whereas nouns tend to vary greatly by the domain of the program, the core set
of verbs stays more or less intact.

We have shown before [8,9,10] that the meaning of verbs in method names can
be modelled by abstracting over the bytecode of the method implementations.
This allows us to 1) identify what is typical of implementations that share the
same verb, and 2) compare the set of implementations for different verbs. In this
paper, we aim at improving the core vocabulary of verbs for Java programmers
by identifying potential synonyms that could be unified.

The contributions of this paper are:

– The introduction of nominal entropy as a way to measure how “nameable”
a method is (Section 3.1).

– A technique to identify methods with “unnameable semantics” based on nom-
inal entropy (Section 4.3).

– A technique to mechanically identify likely instances of code generation in a
corpus of methods (Section 4.1).

– A formula to guide the identification of synonymous verbs in method names
(Section 3.3).

– A mechanically generated graph showing synonym candidates for the most
commonly used verbs in Java (Section 5.1).

– A mechanically generated list of suggestions for canonicalisation of verbs
through unsupervised synonym elimination (Section 5.2).

2 Problem Description

To help the readability and learnability of the scripting language PowerShell,
Microsoft has defined a standardised set of verbs to use. The verbs and their
definitions can be found online2, and PowerShell programmers are strongly en-
couraged to follow the conventions. The benefits to readability and learnability
are obvious.

By contrast, the set of verbs used in method names in Java has emerged
organically, as a mixture of verbs inherited from similar preceding languages,
emulation of verbs used in the Java API, and so forth. A similar organic pro-
cess occurs in natural languages. Steels argues that language “can be viewed
as a complex adaptive system that adapts to exploit the available physiologi-
cal and cognitive resources of its community of users in order to handle their
communicative challenges” [11].

2 http://msdn.microsoft.com/en-us/library/ms714428%28VS.85%29.aspx

http://msdn.microsoft.com/en-us/library/ms714428%28VS.85%29.aspx

228 E.W. Høst and B.M. Østvold

We have seen before that Java programmers have a fairly homogenous, shared
understanding of many of the most prevalent verbs used in Java programs [8]. Yet
the organic evolution of conventional verb meaning has some obvious limitations:

– Redundancy. There are concepts that evolution has not selected a sin-
gle verb to represent. This leads to superfluous synonymous verbs for the
programmer to learn. Even worse, some programmers may use what are
conventional synonyms in subtly different meanings.

– Coarseness. It is hard to organically grow verbs with precise meanings. To
make sure that a verb is understood, it may be tempting to default to a very
general and coarse verb. This results in “bagging” of different meanings into
a small set of polysemous verbs.

– Vagueness. Evolution in Java has produced some common verbs that are
almost devoid of meaning (such as process or handle), yet are lent a sense of
legitimacy simply because they are common and shared among programmers.

Redundancy is the problem of synonyms, and can be addressed by identifying
verbs with near-identical uses, and choosing a single, canonical verb among them.
Coarseness is the problem of polysemes, and could be addressed by using data
mining to identify common polysemous uses of a verb, and coming up with more
precise names for these uses. Vagueness is hard to combat directly, as it is a result
of the combination of a lack of a well-defined vocabulary with the programmer’s
lacking ability or will to create a clear, unambiguous and nameable abstraction.
In this paper, we primarily address the problem of redundancy.

3 Analysis of Methods

The meaning of verbs in method names stems from the implementations they
represent. That is, the meaning of a verb is simply the collection of observed uses
of that verb (Section 3.1). Further, we hold that the verbs become more mean-
ingful when they are consistently used to represent similar implementations. To
make it easier to compare method implementations, we employ a coarse-grained
semantic model for methods, based on predicates defined on Java bytecode (Sec-
tion 3.2). We apply entropy considerations to measure both how consistently
methods with the same verb are implemented, and how consistently the same
implementation is named. We refer to this as semantic and nominal entropy, re-
spectively. These two metrics are combined in a formula that we use to identify
synonymous verbs (Section 3.3). Figure 1 presents an overview of the approach.

3.1 Definitions

We define a method m as a tuple consisting of three components : a unique fin-
gerprint u, a name n, and a semantics s. Intuitively m is an idealised method,
a model of a real method in Java bytecode. The unique fingerprints are a tech-
nicality that prevents set elements from collapsing into one; hence, a set made

Canonical Method Names for Java 229

CodeName

SemanticsVerb

Filter Prepare

semantic
abstraction

nominal
abstraction

Input

Output

Identify

s#1v#1

Software
Corpus

Purified
Corpus

Method
Corpus

Synonym
Candidates

codegen

synthetic

unnameable

esoteric

s#2v#2

merge

for each pair of verbs:

synonym?

s'v'

measure

Fig. 1. Overview of the approach

from arbitrary methods {m1, . . . , mk} will always have k elements.3 Often, we
elide u from method tuples, writing just m = (n, s).

We need two kinds of languages to reason about methods and their semantics.
First, a concrete language where the semantics of a method is simply the string of
Java bytecodes in m’s implementation. Thus, bytecode is the canonical concrete
language, denoted as LJava. For convenience, we define a labelling function fMD5

that maps from the bytecode to the MD5 digest of the opcodes in the bytecode.
This allows us to easily apply uniform labels to the various implementations.

Second, we need an abstract language consisting of bit-vectors [b1, . . . , bk]
where each bi represents the result of evaluating a logical predicate qi on a
method’s implementation. In the context of a concrete method m and its im-
plementation, we refer to the vector [b1, . . . , bk] as profile of m. Different choices
of predicates q1, . . . , qk, leads to different abstract languages. Note that with the
concrete language there is no limit on the size of a method’s semantics; hence
there is in principle an unlimited number of semantic objects. With an abstract
language there is a fixed number of semantic objects, since s is a k-bit vector for
some fixed number k, regardless of the choice of predicates.

A corpus C is a finite set of methods. We use the notation C/n to denote the
set of methods in C that have name n, but where the semantics generally differs;
and similarly C/s denotes the subcorpus of C where all methods have semantics
s irrespective of their name. C/n is called a nominal corpus, C/s a semantic
corpus.

Let x denote either a name component n or a semantics component s of some
method. If x1, . . . , xk are all values occurring in C for a component, then we can
view C as factored into disjoint subcorpora based on these values,

C = C/x1 ∪ · · · ∪ C/xk. (1)

3 The fingerprints models the mechanisms that the run-time system has for identifying
distinct callable methods.

230 E.W. Høst and B.M. Østvold

Corpus semantics and entropy. We repeat some information-theoretical con-
cepts [12]. A probability mass function p(x) is such that a) for all i = 1, . . . , k

it holds that 0 ≤ p(xi) ≤ 1; and b)
∑k

i=1 p(xi) = 1. Then p(x1), . . . , p(xk) is a
probability distribution. From Equation (1) we observe that the following defines
a probability mass function:

p(C/x) def=
|C/x|
|C|

We write pN for the nominal probability mass function based on name factoring
C/n and Equation (1), and pS for the semantic version.

We define the semantics �C� of a corpus C in terms of the distribution defined
by pS :

�C�
def= p(C/s1) . . . pn(C/sk)

where we assume that s1, . . . , sk are all possible semantic objects in C as in
Equation (1). Of particular interest is the semantics of a nominal corpus; we
therefore write �n� as a shorthand for �C/n� when C is obvious from the context.
This is what we intuitively refer to as “the meaning of n”.

Using the probability mass function, we introduce a notion of entropy for
corpora—similar to Shannon entropy [12].

H(C) def= −
∑

x∈χ

p(C/x) log2 p(C/x)

where we assume 0 log2 0 = 0. We write HN (C) for the nominal entropy of C,
in which case χ denotes the set of all names in C; and HS(C) for semantic
entropy of C, where χ denotes the set of all semantics. The entropy HS(C) is a
measure of the semantic diversity of C: High entropy means high diversity, low
entropy means few different method implementations. Entropy HN(C) has the
dual interpretation.

Entropy is particularly interesting on subcorpora of C. The nominal entropy of
a semantic subcorpus, HN(C/s), measures the consistency in the naming meth-
ods with profile s in C. The semantic entropy of a nominal subcorpus, HS(C/n)
measures the consistency in the implementation of name n. The nominal entropy
of a nominal subcorpus is not interesting as it is always 0. The same holds for
the dual concept. When there can be no confusion about C, we speak of the
nominal entropy of a profile s,

HN (s) def= HN(C/s)

and similarly for the dual concept HS(n).
Nominal entropy can be used to compare profiles. A profile with comparatively

low nominal entropy indicates an implementation that tends to be consistently
named. A profile with comparatively high nominal entropy indicates an ambigu-
ous implementation. An obvious example of the latter is the empty method.

Canonical Method Names for Java 231

We can also compare the semantic entropy of names. A name with compar-
atively low semantic entropy implies that methods with that name tend to be
implemented using a few, well-understood “cliches”. A name with comparatively
high semantic entropy implies that programmers cannot agree on what to call
such method implementations (or that the semantics are particularly ill-suited
at capturing the nature of the name).

We define aggregated entropy of corpus C as follows.

Hagg(C) def=

∑
x∈χ |C/x|H(C/x)

|C|
again leading to nominal and semantic notions of aggregated entropy, HN

agg(C)
and HS

agg(C). These notions lets us quantify the overall entropy of subcorpora
in C, weighing the entropy of each subcorpus by its size.

Semantic cliches. When a method semantics is frequent in a corpus we call the
semantics a semantic cliche, or simply a cliche, for that corpus. When a cliche
has many different names we call it an unnameable cliche. Formally, a method
semantics s is a semantic cliche for a corpus C if the prevalence of s in C is above
some threshold value φcl ,

|C/s|
|C| > φcl . (2)

Furthermore, s is an unnameable semantic cliche if it satisfies the above, and in
addition the nominal entropy of corpus C/s is above some threshold value HN

cl ,
HN (C/s) > HN

cl .

3.2 Semantic Model

There are many ways of modelling the semantics of Java methods. For the pur-
pose of comparing method names to implementations, we note one desirable
property in particular. While the set of possible method implementations is
practically unlimited, the set of different semantics in the model should both
be finite and treat implementations that are essentially the same as having the
same semantics. This is important, since each C/s should be large enough so that
it is meaningful to speak of consistent or inconsistent naming of the methods in
C/s. This ensures that we can judge whether or not methods with semantics s
are consistently named.

Some candidates for modelling method semantics are opcode sequences, ab-
stract syntax trees and execution trace sets. However, we find these to be ill
suited for our analysis: they do not provide a radical enough abstraction over
the implementation. Therefore, we choose to model method semantics using an
abstract language of bit vectors, as defined in Section 3.1.

Attributes. The abstract language relies on a set of predicates defined on Java
bytecode. We refer to such predicates as attributes of the method implementa-
tion. Here we select and discuss the attributes we use, which yield a particular
abstract language.

232 E.W. Høst and B.M. Østvold

Individual attributes cannot distinguish perfectly between verbs. Rather, we
expect to see trends when considering the probability that methods in each
nominal corpus C/n satisfy each attribute. Furthermore, we note that 1) there
might be names that are practically indistinguishable using bytecode predicates
alone, and 2) some names are synonyms, and so should be indistinguishable.

Useful attributes. Intuitively, an attribute is useful if it helps distinguish between
verbs. In Section 3.1, we noted that a verb might influence the probability that
the predicate of an attribute is satisfied. Useful attributes have the property that
this influence is significant. Attributes can be broad or narrow in scope. A broad
attribute lets us identify larger groups of verbs that are aligned according to the
attribute. A narrow attribute lets us identify smaller groups of verbs (sometimes
consisting of a single verb). Both can be useful. The goal is to find a collection
of attributes that together provides a good distinction between verbs.

Chosen attributes. We hand-craft a list of attributes for the abstract method
semantics. An alternative would be to generate all possible simple predicates on
bytecode instructions, and provide a selection mechanism to choose the “best”
attributes according to some criterion. However, we find it useful to define pred-
icates that involve a combination of bytecodes, for instance to describe control
flow or subtleties in object creation. We deem it impractical to attempt a brute
force search to find such combinations, and therefore resort to subjective judge-
ment in defining attributes. To ensure a reasonable span of attributes, we pick
attributes from the following categories: method signature, object creation, data
flow, control flow, exception handling and method calls. The resulting attributes
are listed in Table 1.

Probability distribution. The probability distribution for an attribute indicates if
and how an attribute distinguishes between verbs. To illustrate, Figure 2 shows
the probability distribution for two attributes: Returns void and Writes pa-
rameter value to field. Each dot represents the pv for a given verb v, where
v is a “common verb”, as defined in Section 4.2. Returns void is a broad at-
tribute, that distinguishes well between larger groups of verbs. However, there

Table 1. Attributes

Returns void Returns field value
Returns boolean Returns created object
Returns string Runtime type check
No parameters Creates custom objectsa

Reads field Contains loop
Writes field Method call
Writes parameter value to field Returns call result
Throws exceptions Same verb call
Parameter value passed to method call on field value

a A custom object is an instance of a type not in the
java.* or javax.* namespaces.

Canonical Method Names for Java 233

are also verbs that are ambiguous with respect to the attribute. By contrast,
Writes parameter value to field is a narrow attribute. Most verbs have a
very low probability for this attribute, but there is a single verb which stands
out with a fairly high probability: this verb is set, which is rather unsurprising.

(a) Broad attribute:
Returns void.

(b) Narrow attribute:
Writes parameter value
to field.

Fig. 2. Probability distribution for some attributes

Critique. We have chosen a set of attributes for the semantic model based on
our knowledge of commonly used method verbs in Java and how they are im-
plemented. While all the attributes in the set are useful in the sense outlined
above, we have no evidence that our set is “optimal” for the task at hand. There
are two main problems with this.

First, we might have created an “unbalanced” set of attributes, meaning that
we can have too many attributes capturing some kind of behaviour, such as
object creation, and too few attributes capturing some other behaviour, such
as exception handling. There might even be relevant behaviours that we have
omitted altogether.

Second, we can construct many other attributes that could be used to dis-
tinguish between names; Inverted method call4 and Recursive call are two
candidates that we considered but rejected. The former is a narrow attribute
that would help characterise visit methods, for instance. However, it turns out
that visit is not ubiquitous enough to be included in our analysis (see Sec-
tion 4.2); hence the attribute does not help in practise. The latter is simply too
rarely satisfied to be very helpful.

The underlying problem is that there is no obvious metric by which to measure
the quality of our attribute set. Arguably, the quality — or lack thereof — reveals
itself in the results of our analysis.

4 By “inverted method call”, we mean that the calling object is passed as a parameter
to the method call.

234 E.W. Høst and B.M. Østvold

3.3 Identifying Synonyms

Intuitively, a verb n1 is redundant if there exists another, more prevalent verb n2

with the same meaning. It is somewhat fuzzy what “the same meaning” means. We
define the meaning �n� of a verb n as the distribution of profiles in C/n (see Sec-
tion 3.1). It is unlikely that the distributions for two verbs will be identical; how-
ever, some will be more similar than others. Hence we say that n1 and n2 have the
same meaning if they are associated with sufficiently similar profile distributions.

We identify synonyms by investigating what happens when we merge the
nominal corpora of two verbs. In other words, we attempt to eliminate one of
the verbs, and investigate the effects on nominal and semantic entropy. If the
effects are beneficial, we have identified a possible synonym.

The effects of synonym elimination. Elimination has two observable effects.
First, there is a likely reduction in the aggregated nominal entropy HN

agg of
semantic corpora. The reason is that the nominal entropy of an individual se-
mantic corpus is either unaffected by the elimination (if the eliminated verb is
not used for any of the methods in the corpus), or it is lowered. Second, there
is a likely increase in the aggregated semantic entropy HS

agg of the nominal cor-
pora — except for the unlikely event that the distribution of profiles is identical
for the original corpora C/n1 and C/n2. How much HS

agg increases depends on
how semantically similar or different the eliminated verb is from the replacement
verb. The increase in semantic entropy for the combined nominal corpus will be
much lower for synonyms than for non-synonyms.

Optimisation strategy. When identifying synonyms, we must balance the positive
effect on nominal entropy with the negative effect on semantic entropy. If we were
to ignore the effect on semantic entropy, we would not be considering synonyms
at all: simply to combine the two largest nominal corpora would yield the best
effect. If we were to ignore the effect on nominal entropy, we would lose sight
of the number of methods that are renamed. To combine a very large nominal
corpus with a very small one would yield the best effect.

With this in mind, we devise a formula to guide us when identifying synonyms.
A naive approach would be to demand that the positive effect on nominal en-
tropy should simply be larger than the negative effect on semantic entropy. From
practical experiments, we have found it necessary to emphasise semantic entropy
over nominal entropy. That way, we avoid falsely identifying verbs with very large
nominal corpora as synonyms. We therefore employ the following optimisation
formula, which emphasises balance and avoids extremes, yet is particularly sen-
sitive to increases in semantic entropy:

opt(C) def=
√

4HS
agg(C)2 + HN

agg(C)2

4 Software Corpus

We have gathered a corpus of Java programs of all sizes, from a wide variety
of domains. We assume that the corpus is large and varied enough for the code

Canonical Method Names for Java 235

Table 2. The corpus of Java applications and libraries

Desktop applications
ArgoUML 0.24 Azureus 2.5.0 BlueJ 2.1.3 Eclipse 3.2.1
JEdit 4.3 LimeWire 4.12.11 NetBeans 5.5 Poseidon CE 5.0.1

Programmer tools
Ant 1.7.0 Cactus 1.7.2 Checkstyle 4.3 Cobertura 1.8
CruiseControl 2.6 Emma 2.0.5312 FitNesse JUnit 4.2
Javassist 3.4 Maven 2.0.4 Velocity 1.4

Languages and language tools
ANTLR 2.7.6 ASM 2.2.3 AspectJ 1.5.3 BSF 2.4.0
BeanShell 2.0b Groovy 1.0 JRuby 0.9.2 JavaCC 4.0
Jython 2.2b1 Kawa 1.9.1 MJC 1.3.2 Polyglot 2.1.0
Rhino 1.6r5

Middleware, frameworks and toolkits
AXIS 1.4 Avalon 4.1.5 Google Web Toolkit 1.3.3 JXTA 2.4.1
JacORB 2.3.0 Java 5 EE SDK Java 6 SDK Jini 2.1
Mule 1.3.3 OpenJMS 0.7.7a PicoContainer 1.3 Spring 2.0.2
Sun WTK 2.5 Struts 2.0.1 Tapestry 4.0.2 WSDL4J 1.6.2

Servers and databases
DB Derby 10.2.2.0 Geronimo 1.1.1 HSQLDB JBoss 4.0.5
JOnAS 4.8.4 James 2.3.0 Jetty 6.1.1 Tomcat 6.0.7b

XML tools
Castor 1.1 Dom4J 1.6.1 JDOM 1.0 Piccolo 1.04
Saxon 8.8 XBean 2.0.0 XOM 1.1 XPP 1.1.3.4
XStream 1.2.1 Xalan-J 2.7.0 Xerces-J 2.9.0

Utilities and libraries
Batik 1.6 BluePrints UI 1.4 c3p0 0.9.1 CGLib 2.1.03
Ganymed ssh b209 Genericra HOWL 1.0.2 Hibernate 3.2.1
JGroups 2.2.8 JarJar Links 0.7 Log4J 1.2.14 MOF
MX4J 3.0.2 OGNL 2.6.9 OpenSAML 1.0.1 Shale Remoting
TranQL 1.3 Trove XML Security 1.3.0

Jakarta commons utilities
Codec 1.3 Collections 3.2 DBCP 1.2.1 Digester 1.8
Discovery 0.4 EL 1.0 FileUpload 1.2 HttpClient 3.0.1
IO 1.3.1 Lang 2.3 Modeler 2.0 Net 1.4.1
Pool 1.3 Validator 1.3.1

to be representative of Java programming in general. Table 2 lists the 100 Java
applications, frameworks and libraries that constitute our corpus.

We filter the corpus in various ways to “purify” it:

– Omit compiler-generated methods (marked as synthetic in the bytecode).
– Omit methods that appear to have been code-generated.
– Omit methods without a common verb-name.
– Omit methods with unnameable semantics.

236 E.W. Høst and B.M. Østvold

Table 3. The effects of corpus filtering

Total methods 1.226.611
Non-synthetic 1.090.982
Hand-written 1.050.707
Common-verb name 818.503
Nameable semantics 778.715

The purpose of the filtering is to reduce the amount of noise affecting our anal-
ysis. Table 3 presents some numbers indicating the size of the corpus and the
impact of each filtering step.

4.1 Source Code Generation

Generation of source code represents a challenge for our analysis, since it can lead
to a skewed impression of the semantics of a verb. In our context, the problem is
this: a single application may contain a large number of near-identical methods,
with identical verb and identical profile. The result is that the nominal corpus
corresponding to the verb in question is “flooded” by methods with a specific
profile, skewing the semantics of that corpus. Conversely, the semantic corpus
corresponding to the profile in question is also “flooded” by methods with a
specific verb, giving us a wrong impression of how methods with that profile are
named.

To diminish the influence of code generation, we impose limits on the num-
ber of method instances contributed by a single application. By comparing the
contribution from individual applications to that of all others, we can calculate
an expected contribution for the application. We compare this with the actual
contribution, and truncate the contribution if the ratio between the two numbers
is unreasonable.

If the actual contribution is above some threshold T , then we truncate it to:

max(T, min(
|Ca/v|
|C/v| , L

|C/v| − |Ca/v|
|C| − |Ca|))

where L acts as a constraint on how much the contribution may exceed expec-
tations.

Determining T and L is a subjective judgement, since we have no way of
identifying false positives or false negatives among the method instances we
eliminate. Our goal is to diminish the influence of code generation on our analysis
rather than eliminate it. Therefore, we opt to be fairly lax, erring more on the
side of false negatives than false positives. In our analysis, T = 50 and L = 25;
that is, if some application contains more than 50 identical methods (n, s), we
check that the number of identical methods does not exceed 25 times that of the
average application. This nevertheless captures quite a few instances of evident
code generation.

Canonical Method Names for Java 237

Table 4. Vocabularies

Vocabulary % Apps Verbs Methods Example verbs
essential 〈 90, 100] 7 50.73% get, set, create
core 〈 75, 90] 21 13.26% find, equals, parse
extended 〈 50, 75] 74 13.92% handle, match, save
specific 〈 25, 50] 220 11.72% sort, visit, refresh
narrow 〈 10, 25] 555 5.95% render, shift, purge
marginal 〈 0, 10] 5722 4.43% squeeze, unhook, animate

4.2 Common Verbs

Some verbs are common, such as get and set, whereas others are esoteric, such
as unproxy and scavenge. In this paper, we focus on the former and ignore the
latter. There are several possible interpretations of common; two obvious candi-
dates are ubiquity (percentage of applications) and volume (number of methods).

We choose ubiquity as our interpretation of common. Rudimentary grouping
of verbs according to ubiquity is shown in Table 4. Since we are interested in
the shared vocabulary of programmers, we restrict our analysis to the top three
groups: essential, core and extended. The 102 verbs in these three groups cover
nearly 77% of all methods (after filtering of generated code). Figure 3 shows a
“word cloud” visualisation5 of the common verbs.

Fig. 3. The 102 most common verbs

4.3 Unnameable Cliches

Unnameable cliches, that is, method implementations that are common, yet
inherently ambiguous, constitute noise for our analysis. We aim to reduce the
5 Generated by Wordle.net.

238 E.W. Høst and B.M. Østvold

impact of this noise by omitting methods whose implementations are unnameable
cliches. The rationale is that the semantics of each verb will be more distinct
without the noise, making it easier to compare and contrast the verbs.

In some cases, an implementation cliche may appear to be unnameable with-
out being inherently ambiguous: rather, no generally accepted name for it has
emerged. By applying canonicalisation through synonym elimination, the nam-
ing ambiguity can be reduced to normal levels. We must therefore distinguish
between cliches that are seemingly and genuinely unnameable.

To identify implementation cliches, we use the concrete language LJava (see
Section 3.1). Table 5 shows unnameable cliches identified using Equation (2),
with φcl = 500 and HN

cl = 1.75. We also include a reverse engineered example
in a stylized Java source code-like syntax for each cliche.

To label the method implementations we apply fMD5, which yields the MD5
digest of the opcodes for each implementation. Note that we include only the
opcodes in the digest. We omit the operands to avoid distinguishing between im-
plementations based on constants, text strings, the names of types and methods,
and so forth. Hence fMD5 does abstract over the implementation somewhat. As
a consequence, we cannot distinguish between, say, this.m(p) and p.m(this):
these are considered instances of the same cliche. Also, some cliches may yield
the same example, since there are opcode sequences that cannot be distinguished
when written as stylized source code.

Most of the cliches in Table 5 seem genuinely unnameable. Unsurprisingly,
variations over delegation to other methods dominate. We cannot reasonably

Table 5. Semantic cliches with unstable naming

Cliche # Methods HN Retain Top names
{ super.m(); } 539 3.50 remove [10.6%], set [8.7%], insert [6.5%]
{ } 14566 3.40 set [18.1%], initialize [8.4%], end [7.8%]
{ this.m(); } 794 3.22 set [18.5%], close [7.2%], do [6.2%]
{ this.f .m(); } 2007 2.94 clear [20.7%], close [13.2%], run [11.7%]
{ return p; } 532 2.94 get [34.4%], convert [7.1%], create [4.7%]
{ super.m(p); } 742 2.69 set [32.2%], end [12.0%], add [9.4%]
{ throw new E(); } 3511 2.68 get [25.4%], remove [17.2%], set [14.8%]
{ this.f .m(); } 900 2.65 clear [28.2%], remove [16.1%], close [9.9%]
{ throw new E(s); } 5666 2.59 get [25.9%], set [22.3%], create [10.7%]
{ this.f .m(p); } 1062 2.48 set [39.2%], add [14.8%], remove [12.0%]
{ this.m(p); } 1476 2.45 set [24.4%], end [21.7%], add [14.2%]
{ return this.f .m(p); } 954 2.38 contains [25.9%], is [20.8%], equals [11.1%]
{ this.f .m(p1, p2); } 522 2.34 set [33.0%], add [17.2%], remove [13.0%]
{ return this.f .m(p); } 929 2.14 contains [28.3%], is [25.0%], get [11.1%]
{ return this.m(p); } 618 2.14 get [52.8%], post [8.4%], create [6.3%]
{ this.f = true; } 631 2.08 � set [48.5%], mark [12.8%], start [6.7%]
{ C.m(this.f); } 544 1.96 run [46.9%], handle [14.3%], insert [9.9%]
{ this.f .m(p); } 3906 1.92 set [36.8%], add [29.7%], remove [16.8%]
{ return new C(this); } 1540 1.87 � create [34.6%], get [25.7%], new [11.9%]
{ return this.m(); } 520 1.83 get [45.0%], is [20.0%], has [12.5%]
{ return false; } 6322 1.83 � is [52.8%], get [20.1%], has [7.3%]

Canonical Method Names for Java 239

provide a name for such methods without considering the names of the methods
being delegated to. There are also some examples of “unimplemented” methods;
for instance { throw new E(); } or the empty method { }. We believe that in
many cases, the presence of these methods will be required by the compiler (for
instance to satisfy some interface), but in practice, they will never be invoked.

Table 5 also contains three cliches that we deem only seemingly unnameable.
This is based on a subjective judgement that they could be relatively consistently
named, given a more well-defined vocabulary. These have been marked as being
retained, meaning they are included in the analysis. The others are omitted.

5 Addressing Synonyms

To address the problem of synonyms, we employ the formula opt from
Section 3.3. We use opt to mechanically identify likely synonyms in the cor-
pus described in Section 4, and then to attempt unsupervised elimination of
synonyms.

5.1 Identifying Synonyms

Compared to each of the common verbs in the corpus, the other verbs will range
from synonyms or “semantic siblings” to the opposite or unrelated. To find the
verbs that are semantically most similar to each verb, we calculate the value
for opt when merging the nominal corpus of each verb with the nominal corpus
of each of the other verbs. The verbs that yield the lowest value for opt are
considered synonym candidates.

It is more likely that two verbs are genuine synonyms if they reciprocally hold
each other to be synonym candidates. When we identify such pairs of synonym
candidates, we find that clusters emerge among the verbs, as shown in Figure 4.

Several of the clusters could be labelled, for instance as questions, initialisers,
factories, runners, checkers and terminators. This suggests that these clusters
have a “topic”. It does not imply that all the verbs in each cluster could be
replaced by a single verb, however. For instance, note that in the factory cluster,
create and make are indicated as synonym candidates, as are create and new,
but new and make are not. An explanation could be that create has a broader
use than new and make.

We also see that there are two large clusters that appear to have more than one
topic. We offer two possible explanations. First, polysemous verbs will tie together
otherwise unrelated topics (see Section 2). In the largest cluster, for instance, we
find a mix of verbs associated with I/O and verbs that handle collections. In this
case, append is an example of a polysemous verb used in both contexts. Second,
we may lack attributes to distinguish appropriately between the verbs.

5.2 Eliminating Synonyms

To eliminate synonyms, we iterate over the collection of verbs. We greedily select
the elimination that yields the best immediate benefit for opt in each iteration.

240 E.W. Høst and B.M. Østvold

contains

has

iscan

matches

test

run

verify

check

size

hash

release close

clear

stopflush

reset

make

create

new

setup

initialize

init

start

begin process

handle

notify

saveupdate

post

store

end

add

append put

warning fataldebug

log

write

print

fill

send push

remove

register

Factories Initialisers Questions

Terminators

Runners Checkers

Fig. 4. Clusters of synonym candidates. Clusters with a single topic are labelled.

Table 6. Mechanical elimination of synonyms

Run Canonical verb (cv) Old verbs |C/cv| Sum ΔHS
agg ΔHN

agg Δopt

1 is has+is 49041 6820+42221 0.00269 -0.02270 -0.01152
2 is can+is 51649 2608+49041 0.00178 -0.01148 -0.00409
3 add remove+add 43241 16172+27069 0.00667 -0.03004 -0.00237
4 init initialize+init 11026 3568+7458 0.00149 -0.00743 -0.00126
5 close stop+close 5025 1810+3215 0.00074 -0.00348 -0.00040
6 create make+create 38140 4940+33200 0.00363 -0.01525 -0.00021
7 close flush+close 5936 911+5025 0.00061 -0.00266 -0.00014
8 reset clear+reset 5849 2901+2948 0.00100 -0.00421 -0.00007
9 write log+write 13659 1775+11884 0.00131 -0.00547 -0.00004

Canonical Method Names for Java 241

Table 7. Manual elimination of synonyms

Canonical verb (cv) Old verbs |C/cv| Sum ΔHS
agg ΔHN

agg Δopt

clone clone+copy 4732 2595+2137 0.00271 -0.00147 0.00979
execute execute+invoke 4947 2997+1950 0.00197 -0.00229 0.00589
verify check+verify 8550 7440+1110 0.00126 -0.00298 0.00223
stop stop+end 4814 1810+3004 0.00126 -0.00283 0.00242
write write+log+dump 15987 11884+1775+2328 0.00420 -0.01109 0.00635
start start+begin 5485 4735+750 0.00081 -0.00200 0.00135
init init+initialize 11026 7458+3568 0.00149 -0.00743 -0.00126
error error+fatal 1531 1116+415 0.00027 -0.00088 0.00023
create create+new+make 45565 33200+7425+4940 0.00901 -0.03588 0.00152

We assume that beneficial eliminations will occur eventually, and that the order
of eliminations is not important. We only label a synonym candidate as “gen-
uine” if the value for opt decreases; the iteration stops when no more genuine
candidates can be found. For comparison, we also perform manual elimination
of synonyms, based on a hand-crafted list of synonym candidates.

The results of mechanical synonym elimination are shown in Table 6. Note
that the input to the elimination algorithm is the output given by the preceding
run of the algorithm. For the first run, the input is the original “purified” corpus
described in Section 4, whereas for the second, the verb has has been eliminated,
and the original nominal corpora for has and is have been merged.

The elimination of has is interesting: it is considered the most beneficial
elimination by opt, yet as Java programmers, we would hesitate to eliminate
it. The subtle differences in meaning between all “boolean queries” (is, has,
can, supports and so forth) are hard to discern at the implementation level.
Indeed, we would often accept method names with different verbs for the same
implementation: hasChildren and isParent could be equally valid names. This
kind of nominal flexibility is arguably beneficial for the readability of code.

It is easier to see that either init or initialize should be eliminated: there is
no reason for the duplication. Eliminating make and using create as a canonical
verb for factory methods also seems reasonable. Similarly, the suggestion to use
write instead of log is understandable — however, one could argue that log is
useful because it is more precise than the generic write.

There seems to be quite a few verbs for “termination code”; some of these verbs
might be redundant. The unsupervised elimination process identifies flush, stop
and close as candidates for synonym elimination. However, we find it unaccept-
able: certainly, flush and close cannot always be used interchangeably. In our
coarse-grained semantic model, we lack the “semantic clues” to distinguish be-
tween these related, yet distinct verbs.

The suggestion to combine add and remove is also problematic, again showing
that the approach has some limitations. Both add and remove typically involve
collections of items, perhaps including iteration (which is captured by the Con-
tains loop attribute). The crucial distinction between the two operations will
often be hidden inside a call to a method in the Java API. Even if we were to

242 E.W. Høst and B.M. Østvold

observe the actual adding or removing of an item, this might involve increment-
ing or decrementing a counter, which is not captured by our model.

Table 7 shows the result of the manual elimination of synonyms. We note
that only the elimination of initialize yields a decreased value for opt —
apparently, we are not very good at manual synonym identification! However, it
may be that the requirement that opt should decrease is too strict. Indeed, we
find that many of our candidates are present in the clusters shown in Figure 4.
This indicates that there is no deep conflict between our suggestions and the
underlying data.

5.3 Canonicalisation

Overall, we note that our approach succeeds in finding relevant candidates for
synonym elimination. However, it is also clear that the elimination must be su-
pervised by a programmer. We therefore suggest using Figure 4 as a starting
point for manual canonicalisation of verbs in method names. Canonicalisation
should entail both eliminating synonyms and providing a precise definition, ra-
tionale and use cases for each verb.

6 Related Work

Gil and Maman [13] introduce the notion of machine-traceable patterns, in order
to identify so-called micro patterns; machine-traceable implementation patterns
at the class level. When we model the semantics of method implementations
using hand-crafted bytecode predicates, we could in principle discern “nano pat-
terns” at the method implementation level. According to Gamma et al. [14],
however, a pattern has four essential elements: name, problem, solution and
consequences. Though we do identify some very commonly used implementation
cliches, we do not attempt to interpret and structure these cliches. Still, Singer
et al. [15] present their own expanded set of bytecode predicates under the label
“fundamental nano patterns”, where the term “pattern” must be understood in
a broader, more colloquial sense.

Collberg et al. [16] present a large set of low-level statistics from a corpus of
Java applications, similar in size to ours. Most interesting to us are the statistics
showing k-grams of opcodes, highlighting the most commonly found opcode
sequences. This is similar to the implementation cliches we find in our work.
Unfortunately, the k-grams are not considered as logical entities, so a common
2-gram will often appear as part of a common 3-gram as well.

Similar in spirit to our work, Singer and Kirkham [17] find a correlation be-
tween certain commonly used type name suffixes and some of Gil and Maman’s
micro patterns. Pollock et al. [18] propose using “natural language program anal-
ysis”, where natural language clues found in comments and identifiers are used to
augment and guide program analyses. Tools for program navigation and aspect
mining have been developed [19,20] based on this idea. Ma et al. [21] exploit the
fact that programmers usually choose appropriate names in their code to guide
searches for software artefacts.

Canonical Method Names for Java 243

The quality of identifiers is widely recognised as important. Deißenböck and
Pizka [22] seek to formalise two quality metrics, conciseness and consistency,
based on a bijective mapping between identifers and concepts. Unfortunately,
the mapping must be constructed by a human expert. Lawrie et al. [23] seek to
overcome this problem by deriving syntactic rules for conciseness and consistency
from the identifiers themselves. This makes the approach much more applicable,
but introduces the potential for false positives and negatives.

7 Conclusion and Further Work

The ambiguous vocabulary of verbs used in method names makes Java programs
less readable than they could be. We have identified redundancy, coarseness and
vagueness as the problems to address. In this paper, we focussed on redundancy,
where more than one verb is used in the same meaning. We looked at the iden-
tification and elimination of synonymous verbs as a means towards this goal.

We found that we were indeed able to identify reasonable synonym candi-
dates for many verbs. To select the genuine synonyms among the candidates
without human supervision is more problematic. The abstract semantics we use
for method implementations is sometimes insufficient to capture important nu-
ances between verbs. A more sophisticated model that takes into account in-
voked methods, either semantically (by interprocedural analysis of bytecode) or
nominally (by noting the names of the invoked methods) might overcome some
of these problems. Realistically, however, the perspective of a programmer will
probably still be needed. A more fruitful way forward may be to use the identified
synonym candidates as a starting point for a manual process where a canonical
set of verbs is given precise definitions, and the rest are discouraged from use.

Addressing the problem of coarseness is a natural counterpart to the topic
of this paper. Coarseness manifests itself in polysemous verbs, that is, verbs
that have more than a single meaning. Polysemous verbs could be addressed
by investigating the semantics of the methods that constitute a nominal corpus
C/n. The intuition is that polysemous uses of n will reveal itself as clusters
of semantically similar methods. Standard data clustering techniques could be
applied to identify such polysemous clusters. If a nominal corpus were found
to contain polysemous clusters, we could investigate the effect of renaming the
methods in one of the clusters. This would entail splitting the original nominal
corpus C/n in two, C/n and C/n′. The effect of splitting the corpus could be
measured, for instance by applying the formula opt from Section 3.3.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs,
2nd edn. MIT Electrical Engineering and Computer Science. MIT Press, Cam-
bridge (1996)

2. Eierman, M.A., Dishaw, M.T.: The process of software maintenance: a comparison
of object-oriented and third-generation development languages. Journal of Software
Maintenance and Evolution: Research and Practice 19(1), 33–47 (2007)

244 E.W. Høst and B.M. Østvold

3. Collar, E., Valerdi, R.: Role of software readability on software development cost.
In: Proceedings of the 21st Forum on COCOMO and Software Cost Modeling,
Herndon, VA (October 2006)

4. von Mayrhauser, A., Vans, A.M.: Program comprehension during software main-
tenance and evolution. Computer 28(8), 44–55 (1995)

5. Lawrie, D., Morrell, C., Feild, H., Binkley, D.: Effective identifier names for com-
prehension and memory. ISSE 3(4), 303–318 (2007)

6. Martin, R.C.: Clean Code. Prentice-Hall, Englewood Cliffs (2008)
7. Beck, K.: Implementation Patterns. Addison-Wesley Professional, Reading (2007)
8. Høst, E.W., Østvold, B.M.: The programmer’s lexicon, volume I: The verbs. In:

Proceedings of the 7th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2007), pp. 193–202. IEEE Computer Society,
Los Alamitos (2007)

9. Høst, E.W., Østvold, B.M.: The java programmer’s phrase book. In: Gašević, D.,
Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 322–341. Springer,
Heidelberg (2009)

10. Høst, E.W., Østvold, B.M.: Debugging method names. In: Drossopoulou, S. (ed.)
ECOOP 2009. LNCS, vol. 5653, pp. 294–317. Springer, Heidelberg (2009)

11. Steels, L.: The recruitment theory of language origins. In: Lyon, C., Nehaniv, C.L.,
Cangelosi, A. (eds.) Emergence of Language and Communication, pp. 129–151.
Springer, Heidelberg (2007)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley Series
in Telecommunications. Wiley, Chichester (2006)

13. Gil, J., Maman, I.: Micro patterns in Java code. In: Proceedings of the 20th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2005), pp. 97–116. ACM, New York (2005)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston (1995)

15. Singer, J., Brown, G., Lujan, M., Pocock, A., Yiapanis, P.: Fundamental nano-
patterns to characterize and classify Java methods. In: Proceedings of the 9th
Workshop on Language Descriptions, Tools and Applications (LDTA 2009), pp.
204–218 (2009)

16. Collberg, C., Myles, G., Stepp, M.: An empirical study of Java bytecode programs.
Software Practice and Experience 37(6), 581–641 (2007)

17. Singer, J., Kirkham, C.: Exploiting the correspondence between micro patterns and
class names. In: Proceedings of the 8th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2008), pp. 67–76. IEEE Computer
Society, Los Alamitos (2008)

18. Pollock, L.L., Vijay-Shanker, K., Shepherd, D., Hill, E., Fry, Z.P., Maloor, K.:
Introducing natural language program analysis. In: Das, M., Grossman, D. (eds.)
Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE 2007), pp. 15–16. ACM, New York
(2007)

19. Shepherd, D., Pollock, L.L., Vijay-Shanker, K.: Towards supporting on-demand
virtual remodularization using program graphs. In: Filman, R.E. (ed.) Proceedings
of the 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), pp. 3–14. ACM, New York (2006)

20. Shepherd, D., Fry, Z.P., Hill, E., Pollock, L., Vijay-Shanker, K.: Using natural
language program analysis to locate and understand action-oriented concerns. In:
Proceedings of the 6th International Conference on Aspect-Oriented Software De-
velopment (AOSD 2007), pp. 212–224. ACM, New York (2007)

Canonical Method Names for Java 245

21. Ma, H., Amor, R., Tempero, E.D.: Indexing the Java API using source code. In:
Proceedings of the 19th Australian Software Engineering Conference (ASWEC
2008), pp. 451–460. IEEE Computer Society, Los Alamitos (2008)

22. Deißenböck, F., Pizka, M.: Concise and consistent naming. In: Proceedings of the
13th IEEE International Workshop on Program Comprehension (IWPC 2005), pp.
97–106. IEEE Computer Society, Los Alamitos (2005)

23. Lawrie, D., Feild, H., Binkley, D.: Syntactic identifier conciseness and consistency.
In: 6th IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2006), pp. 139–148. IEEE Computer Society, Los Alamitos (2006)

	Canonical Method Names for Java Using Implementation Semantics to Identify Synonymous Verbs
	Introduction
	Problem Description
	Analysis of Methods
	Definitions
	Semantic Model
	Identifying Synonyms

	Software Corpus
	Source Code Generation
	Common Verbs
	Unnameable Cliches

	Addressing Synonyms
	Identifying Synonyms
	Eliminating Synonyms
	Canonicalisation

	Related Work
	Conclusion and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

