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Preface

We are pleased to present the proceedings of the third international conference
on Software Language Engineering (SLE 2010). The conference was held in Eind-
hoven, the Netherlands during October 12–13, 2010. It was co-located with the
ninth international conference on Generative Programming and Component En-
gineering (GPCE) and the workshop on Feature-Oriented Software Development
(FOSD). An important goal of SLE is to integrate the different sub-communities
of the software-language-engineering community to foster cross-fertilisation and
strengthen research overall. The doctoral symposium at SLE 2010 contributed
towards this goal by providing a forum for both early and late-stage PhD stu-
dents, who presented their research and got detailed feedback and advice from
other researchers.

The SLE conference series is devoted to a wide range of topics related to
artificial languages in software engineering. SLE is an international research fo-
rum that brings together researchers and practitioners from both industry and
academia to expand the frontiers of software language engineering. SLE’s fore-
most mission is to encourage and organize communication between communities
that have traditionally looked at software languages from different, more spe-
cialized, and yet complementary perspectives. SLE emphasizes the fundamental
notion of languages as opposed to any realization in specific technical spaces. In
this context, the term ”software language” comprises all sorts of artificial lan-
guages used in software development including general-purpose programming
languages, domain-specific languages, modeling and meta-modeling languages,
data models, and ontologies. Software language engineering is the application
of a systematic, disciplined, quantifiable approach to the development, use, and
maintenance of these languages. The SLE conference is concerned with all phases
of the lifecycle of software languages; these include the design, implementation,
documentation, testing, deployment, evolution, recovery, and retirement of lan-
guages. Of special interest are tools, techniques, methods, and formalisms that
support these activities. In particular, tools are often based on, or automatically
generated from, a formal description of the language. Hence, the treatment of
language descriptions as software artefacts, akin to programs, is of particular in-
terest – while noting the special status of language descriptions, and the tailored
engineering principles and methods for modularization, refactoring, refinement,
composition, versioning, co-evolution, and analysis that can be applied to them.

The response to the call for papers for SLE 2010 was very enthusiastic. We
received 79 full submissions from 108 initial abstract submissions. From these
submissions, the Program Committee (PC) selected 24 papers: 17 full papers,
five short papers, and two tool demonstration papers, resulting in an acceptance
rate of 32%. To ensure the quality of the accepted papers, each submitted paper
was reviewed by at least three PC members. Each paper was discussed in detail
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during the electronic PC meeting. A summary of this discussion was prepared
by members of the PC and provided to the authors along with the reviews.

SLE 2010 would not have been possible without the significant contributions
of many individuals and organizations. We are grateful to the organizers of GPCE
2010 and FOSD 2010 for their close collaboration and management of many of
the logistics. This will allow us to offer SLE participants the opportunity to take
part in three high-quality research events in the domain of software engineering.
We also wish to thank our supporters, ACM, ASML, Jacquard, IBM, and NWO.

The SLE 2010 Organizing Committee, the Local Chairs, and the SLE Steering
Committee provided invaluable assistance and guidance. We are also grateful to
the PC members and the additional reviewers for their dedication in reviewing
the large number of submissions. We also thank the authors for their efforts in
writing and then revising their papers, and we thank Springer for publishing the
papers and the proceedings.

December 2010 Brian Malloy
Steffen Staab

Mark van den Brand
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A Language for Software Variation Research�

Martin Erwig

School of EECS
Oregon State University

Variation occurs in many places in software engineering and takes quite different forms.
Software can have different versions, and it can come in different configurations. Soft-
ware can offer different sets of features, and it can appear in different stages of refactor-
ing without any visible effect in functionality. Traditionally, all these forms of variation
have used different representations. While this specialization might have some benefits
by facilitating the tailoring to the specific needs of one form of variation, it has also
some serious drawbacks. First, different representations prevent or complicate a poten-
tial integration of different forms of variation. For example, variation in functionality
is currently only poorly supported in most versioning tools by branching. Second, it
can be difficult to transfer research results achieved within one representation to other
representations. Finally, different representations can lead to duplicated work and a
balkanization of variation research efforts.

In this talk I describe the choice calculus, a formal representation for software varia-
tion that can serve as a common, underlying representation for variation research, play-
ing a similar role that lambda calculus plays in programming language research. I will
sketch the syntax and semantics of the choice calculus and present several applications.

At the core of the choice calculus are choices, which represent different alternatives
that can be selected. Choices are annotated by names, which group choices into dimen-
sions. Dimensions provide a structuring and scoping mechanism for choices. Moreover,
each dimension introduces the number of alternatives each choice in it must have and
tags for selecting those alternatives. The semantics of the choice calculus is defined via
repeated elimination of dimensions and their associated choices through the selection
of a tag defined by that dimension. The choice calculus obeys a rich set of laws that
give rise to a number of normal forms and allow the flexible restructuring of variation
representations to adjust to the needs of different applications.

Among the potential applications of the choice calculus are feature modeling, change
pattern detection, property preservation, and the development of change IDEs. These
are described in the long version of this abstract [1]; more technical details about the
choice calculus can found in [2].

References

1. Erwig, M.: A Language for Software Variation. In: ACM SIGPLAN Conf. on Generative
Programming and Component Engineering, pp. 3–12 (2010)

2. Erwig, M., Walkingshaw, E.: The Choice Calculus: A Representation for Software Variation.
ACM Transactions on Software Engineering and Methodology (to appear, 2011)

� This work is supported by the Air Force Office of Scientific Research under the grant FA9550-
09-1-0229 and by the National Science Foundation under the grant CCF-0917092.

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Automated Selective Caching
for Reference Attribute Grammars

Emma Söderberg and Görel Hedin

Department of Computer Science, Lund University, Sweden
{emma.soderberg,gorel.hedin}@cs.lth.se

Abstract. Reference attribute grammars (RAGs) can be used to express seman-
tics as super-imposed graphs on top of abstract syntax trees (ASTs). A
RAG-based AST can be used as the in-memory model providing semantic in-
formation for software language tools such as compilers, refactoring tools, and
meta-modeling tools. RAG performance is based on dynamic attribute evaluation
with caching. Caching all attributes gives optimal performance in the sense that
each attribute is evaluated at most once. However, performance can be further im-
proved by a selective caching strategy, avoiding caching overhead where it does
not pay off. In this paper we present a profiling-based technique for automatically
finding a good cache configuration. The technique has been evaluated on a gener-
ated Java compiler, compiling programs from the Jacks test suite and the DaCapo
benchmark suite.

1 Introduction

Reference attribute grammars (RAGs) [11] provide a means for describing semantics as
super-imposed graphs on top of an abstract syntax tree (AST) using reference attributes.
Reference attributes are defined by functions and may have values referring to distant
nodes in the AST. RAGs have been shown useful for the generation of many different
software language tools, including Java compilers [31,9], Java extensions [13,14,22],
domain-specific language tools [16,2], refactoring tools [24], and meta-modeling tools
[7]. Furthermore, they are being used in an increasing number of meta-compilation
systems [12,30,25,18].

RAG evaluation is based on a dynamic algorithm where attributes are evaluated on
demand, and their values are cached (memoized) for obtaining optimal performance
[15]. Caching all attributes gives optimal performance in the sense that each attribute
is evaluated at most once. However, caching has a cost in both compilation time and
memory consumption, and caching does not pay off in practice for all attributes. Per-
formance can therefore be improved by selective caching, caching only a subset of all
attributes, using a cache configuration. But determining a good cache configuration is
not easy to do manually. It requires a good understanding of how the underlying at-
tribute evaluator works, and a lot of experience is needed to understand how different
input programs can affect the caching inside the generated language tool. Ideally, the
language engineer should not need to worry about this, but let the system compute the
configuration automatically.

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 2–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Automated Selective Caching for Reference Attribute Grammars 3

In this paper we present a profiling-based approach for automatically computing a
cache configuration. The approach has been evaluated experimentally on a generated
compiler for Java [9], implemented using JastAdd [12], a meta-compilation system
based on RAGs. We have profiled this compiler using programs from Jacks (a compiler
test suite for Java) [28] and DaCapo (a benchmark suite for Java) [4]. Our evaluation
shows that it is possible to obtain an average compilation speed-up of 20% while only
using the profiling results from one application with a fairly low attribute coverage of
67%. The contributions of this paper include the following:

– A profiling-based approach for automatic selective caching of RAGs.
– An implementation of the approach integrated with the JastAdd meta-compilation

system.
– An evaluation of the approach, comparing it both to full caching (caching all at-

tributes) and to an expert cache configuration (produced manually).

The rest of this paper is structured as follows. Section 2 gives background on refer-
ence attribute grammars and their evaluation, explaining the JastAdd caching scheme
in particular. Section 3 introduces the concept of an AIG, an attribute instance graph
with call information, used as the basis for the caching analysis. Section 4 introduces
our technique for computing a cache configuration. Section 5 presents an experimen-
tal evaluation of the approach. Section 6 discusses related work, and Section 7 gives a
conclusion along with future work.

2 Reference Attribute Grammars

Reference Attribute Grammars (RAGs) [11], extend Knuth-style attribute grammars
[19] by allowing attributes to be references to nodes in the abstract syntax tree (AST).
This is a powerful notion because it allows the nodes in an AST to be connected into
the graphs needed for compilation. For example, reference attributes can be used to
build a type graph connecting subclasses to superclasses [8], or a control-flow graph
between statements in a method [20]. Similar extensions to attribute grammars include
Poetzsch-Heffter’s occurrence algebras [21] and Boyland’s remote attribute grammars
[6].

In attribute grammars, attributes are defined by equations in such a way that for any
attribute instance in any possible AST, there is exactly one equation defining its value.
The equations can be viewed as side-effect-free functions which make use of constants
and of other attribute values.

In RAGs, it is allowed for an equation to define an attribute by following a reference
attribute and accessing its attributes. For example, suppose node n1 has attributes a and
b, where b is a reference to a node n2, and that n2 has an attribute c. Then a can be
defined by an equation as follows:

a = b.c

For Knuth-style attribute grammars, dependencies are restricted to attributes in parents
or children. But the use of references gives rise to non-local dependencies, i.e., depen-
dencies that are independent of the AST hierarchy: a will be dependent on b and c,
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where the dependency on b is local, but the dependency on c is non-local: the node
n2 referred to by b could be anywhere in the AST. The resulting attribute dependency
graph cannot be computed without actually evaluating the reference attributes, and it
is therefore difficult to statically precompute evaluation orders based on the grammar
alone. Instead, evaluation of RAGs is done using a simple but general dynamic evalua-
tion approach, originally developed for Knuth-style attribute grammars, see [15]. In this
approach, attribute access is replaced by a recursive call which evaluates the equation
defining the attribute. To speed up the evaluation, the evaluation results can be cached
(memoized) in order to avoid evaluating the equation for a given attribute instance more
than once. Caching all attributes results in optimal evaluation in that each attribute in-
stance is evaluated at most once. Because this evaluation scheme does not require any
pre-computed analysis of the attribute dependencies, it works also in the presence of
reference attributes.

Caching is necessary to get practical compiler performance for other than the tini-
est input programs. But caching also implies an overhead. Compared to caching all at-
tributes, selective caching may improve performance, both concerning time and
memory.

2.1 The JastAdd Caching Scheme

In JastAdd, the dynamic evaluation scheme is implemented in Java, making use of an
object-oriented class hierarchy to represent the abstract grammar. Attributes are imple-
mented by method declarations, equations by method implementations, and attribute
accesses by method calls. Caching is decided per attribute declaration, and cached at-
tribute values are stored in the AST nodes using two Java fields: one field is a flag
keeping track of if the value has been cached yet, and another field holds the value.
Figure 1 shows the implementation of the equation a = b.c, both in a non-cached and
a cached version. It is assumed that a is of type A. The example shows the implemen-
tation of a so called synthesized attribute, i.e., an attribute defined by an equation in
the node itself. The implementation of a so called inherited attribute, defined by an
equation in an ancestor node, is slightly more involved, but uses the same technique for
caching. The implementation in Figure 1 is also simplified as compared to the actual
implementation in JastAdd which takes into account, for example, circularity checking.
These differences are, however, irrelevant to the caching problem.

This caching scheme gives a low overhead for attribute accesses: a simple test on a
flag. On the other hand, the caching pays off only after at least one attribute instance
has been accessed at least twice. Depending on the cost of the value computation, more
accesses than that might be needed for the scheme to pay off.

JastAdd allows attributes to have parameters. A parameterized attribute has an un-
bounded number of values, one for each possible combination of parameter values. To
cache accessed values, the flag and value fields are replaced by a map where the actual
parameter combination is looked up, and the cached values are stored. This is a sub-
stantially more costly caching scheme, both for accessing attributes and for updating
the cache, and more accesses per parameter combination will be needed to make it pay
off.
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Non-cached version:

class Node {
A a() {

return b().c();
}

}

Cached version:

class Node {
boolean a_cached = false;
A a_value;
A a() {

if (! a_cached) {
a_value = b().c();
a_cached = true;

}
return a_value;

}
}

Fig. 1. Caching scheme for non-parameterized attributes

3 Attribute Instance Graphs

In order to decide which attributes that may pay off to cache, we build a graph that
captures the attribute dependencies in an AST. This graph can be built by instrument-
ing the compiler to record all attribute accesses during a compilation. By analyzing
such graphs for representative input programs, we would like to identify a number of
attributes that are likely to improve the compilation performance if left uncached. We
define the attribute instance graph (AIG) to be a directed graph with one vertex per
attribute instance in the AST. The AIG has an edge (a1, a2) if, during the evaluation of
a1, there is a direct call to a2, i.e., indirect calls via other attributes do not give rise to
edges. Each edge is labeled with a call count that represents the number of calls. This
count will usually be 1, but in an equation like c = d + d, the count on the edge (c, d)
will be 2, since d is called twice to compute c.

The main program of the compiler is modeled by an artificial vertex main, with
edges to all the attribute instances it calls. This may be many or few calls, depending
on how the main program is written.

To handle parameterized attributes, we represent each accessed combination of pa-
rameter values for an attribute instance by a vertex. For example, the evaluation of the
equation d = e(3) + e(4) + e(4) will give rise to two vertices for e, one for e(3) and
one for e(4). The edges are, as before, labeled by the call counts, so the edge (d, e(3))
is labeled by 1, and the edge (d, e(4)) by 2, since it is called twice. Figure 2 shows an
example AIG for the following equations:

a = b.c
c = d + d
d = e(3) + e(4) + e(4)

and where it is assumed that a is called once from the main program.
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main a

b

c d

e(3)

e(4)

1

1

1

2
1

2

x

LEGEND:

x

instance of attribute x

y when evaluating x, y is called n timesn

Fig. 2. Example AIG

3.1 An Example Grammar

Figure 3 shows parts of a typical JastAdd grammar for name and type analysis. The
abstract grammar rules correspond to a class hierarchy. For example, Use (representing
a use of an identifier) is a subclass of Expr. The first attribution rule:

syn Type Expr.type();

declares a synthesized attribute of type Type, declared in Expr and of the name type.
All nodes of class Expr and its subclasses will have an instance of this attribute.

abstract Expr;
Use : Expr ::= ...;
Literal : Expr ::= ...;
AddExpr : Expr ::=

e1:Expr e2:Expr;

Decl ::= Type ... ;

abstract Type;
Integer : Type;
Unknown : Type;

...

syn Type Expr.type();
syn Type Decl.type() = ...;

eq Literal.type() =
stdTypes().integer();

eq Use.type() = decl().type();
eq AddExpr.type() =

(left.type().sameAs(right.type()) ?
left.type() : stdTypes.unknown();

syn Decl Use.decl() = lookup(...);
inh Decl Use.lookup(String name);
inh Type Expr.stdTypes();

syn boolean Type.sameAs(Type t) = ...;
...

Fig. 3. Example JastAdd attribute grammar
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Decl

A
"int a"

Integer

I
"int"

Decl

B
"int b"

Integer

J
"int"

AddExpr

C

"a + b"

Use

D
"a" Use

E
"b"

AddExpr

F

"a + 5"

Use

G
"a"

Literal

H
"5"

type

sameAs

type

sameAs
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Fig. 4. An example attributed AST

Expr.typea1:
C D E F G H

Use.decla2:
D E G

Decl.typea4:
A B

Use.lookupa3:
D

"a"
E

"b"
G

"a"

Type.sameAsa5:
I
J

I
K

LEGEND:
a Attribute

Attribute dependency

I Instance of attribute
"p" Parameter value

Fig. 5. Parts of the AIG for the example

Different equations are given for it in the different subclasses of Expr. For example,
the equation

eq Use.type() = decl().type();

says that for a Use node, the value of type is defined to be decl().type(). The
attribute decl() is another attribute in the Use node, referring to the appropriate dec-
laration node, possibly far away from the Use node in the AST. The decl() attribute
is in turn defined using a parameterized attribute lookup, also in the Use node. The
lookup attribute is an inherited attribute, and the equation for it is in an ancestor node
of the Use node (not shown in the grammar). For more information on name and type
analysis in RAGs, see [8].

Figure 4 shows parts of an attributed AST for the grammar in Figure 3. The example
program contains two declarations:"int a" and "int b", and two add expressions:
"a + b" and "a + 5". For the decl attributes of Use nodes, the reference values
are shown as arrows pointing to the appropriate Decl node. Similarly, the type at-
tributes of Decl nodes have arrows pointing to the appropriate Type node. The nodes
have been labeled A, B, and so on, for future reference.
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Figure 5 shows parts of the AIG for this example. In the AIG we have grouped
together all instances of a particular attribute declaration, and labeled each attribute in-
stance with the node to which it belongs. For instance, since the node D has the three
attributes (type, decl, and lookup), there are three vertices labeled D in the AIG.
For parameterized attribute instances, there is one vertex per actual parameter combi-
nation, and their values are shown under the vertex. For instance, the sameAs attribute
for I is called with two different parameters: J and K, giving rise to two vertices. (K is
a node representing integer literal types and is not shown in Figure 4.) All call counts
in the AIG are 1 and have therefore been omitted.

4 Computing a Cache Configuration

Our goal is to automatically compute a good cache configuration for a RAG specifi-
cation. A cache configuration is simply the set of attributes configured to be cached.
Among the different attribute kinds, there are some that will always be cached, due
to properties of the kind. For example, circular attributes [10], which may depend on
themselves, and non-terminal attributes (NTAs) [29], which may have ASTs as values.
There is no cache decision to make for these attributes, i.e., they are unconfigurable.
We let PRE denote the set of unconfigurable attributes. Since the attributes in the PRE

set are always cached, we exclude them from remaining definitions in this paper. We
let ALL denote the remaining set of configurable attributes. This ALL set can further
be divided into two disjoint sets PARAM and NONPARAM, for parameterized and non-
parameterized attributes respectively. For the rest of this paper we will refer to config-
urable attributes when we write attributes.

As a basis for our computation, we do profiling runs of the compiler on a set of test
programs, producing the AIG for each program. These runs are done with all attributes
cached, allowing us to use reasonably large test programs, and making it easy to compute
the AIG which reflects the theoretically optimal evaluation with each attribute instance
evaluated at most once. We will refer to these test programs as the profiling input denoted
by the set P. Further, a certain profiling input (p ∈ P) will, depending on its structure,
require that a certain number of attributes are evaluated. We call this set of attributes the
USEDp set. However, it cannot be assumed that a single profiling input uses all attributes.
We define the set of unused attributes for a profiling input p as follows:

UNUSEDp = ALL \ USEDp (1)

4.1 The ONE Set

The calls label on the edges in the AIG reflects the number of attribute calls in a fully
cached configuration. To find out if a certain attribute is worth uncaching, we define
extra_evals(ai), i.e., the number of extra evaluations of the attribute instance ai that
will be done if the attribute a is not cached:

extra_evals(ai) =

{
calls(ai) − 1, if a ∈ NONPARAM∑

c∈params(ai)(calls(c) − 1), if a ∈ PARAM
(2)
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where params(ai) is the set of vertices in the AIG representing different parameter
combinations for the parameterized attribute instance ai. The number of extra evalu-
ations is a measure of what is lost by not caching an attribute. The total number of
extra evaluations for an attribute a is simply the sum of the extra evaluations of all its
instances:

extra_evals(a) =
∑

ai∈Icalled(a)

extra_evals(ai); (3)

where Icalled(a) is the set of attribute instances of a that are called at least once. Of
particular interest is the set of attributes for which all instances are called at most once.
These should be good candidates to leave uncached since they do not incur any extra
evaluations for a certain profiling input (p). We call this set the ONEp set, and for a
profiling input p it is constructed as follows:

ONEp = {a ∈ USEDp|extra_evals(a) = 0} (4)

The USEDp \ ONEp set contains the remaining attributes in the AIG, i.e., the attributes
which may gain from being cached, depending on the cost of their evaluation.

4.2 Selecting a Good Profiling Input

To obtain a good cache configuration, it is desirable to use profiling input that is realistic
in its attribute usage, and that has a high attribute coverage, i.e., as large a USEDp set
as possible. We define the attribute coverage (in percent) for a profiling input, p ∈ P, as
follows:

coverage(p) = (|USEDp|/|ALL|) ∗ 100 (5)

Furthermore, for tools used in an interactive setting with continuous compilation of po-
tentially erroneous input, it is important to also take incorrect programs into account.
To help fulfill these demands, different profiling inputs can be combined. In particular,
a compilation test suite may give high attribute coverage and test both correct and er-
roneous programs. But test suites might contain many small programs that do not use
the attributes in a realistic way. In particular, attributes which most likely should be in
the USEDp − ONEp set for an average application may end up in the ONEp sets of the
test suite programs because these are small. By combining the test suite with a large
real program, better results may be obtained. Still, even with many applications and a
full test suite, it may be hard to get full coverage. For example, there may be semantic
checks connected to uncommon language constructs and, hence, attributes rarely used.

4.3 Choosing a Cache Configuration

In constructing a good cache configuration we want to consider the USEDp, UNUSEDp,
ONEp and ALL sets. From these sets we can experiment with two interesting configura-
tions:

ALLONEp = ALL \ ONEp (6)

USEDONEp = USEDp \ ONEp (7)
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Presumably, the first configuration, which includes the UNUSEDp set, will provide ro-
bustness for cases where the profiling input is insufficient, i.e., the USEDp set is too
small. In contrast, the second configuration may provide better performance in that it
uses less memory for cases where the profiling input is sufficient.

4.4 Combining Cache Configurations

In order to combine the results of several profiling inputs, for example, A, B and C in
P, we need to consider each of the resulting sets USEDp and ONEp. One attribute might
be used in the compilation of program A but not in the compilation of program B. If an
attribute is used in both B and C, it might belong to ONEB , but not to ONEC , and so on.
We want to know which attributes that end up in a total ONEP set for all profiling inputs
(p ∈ P), i.e., the attributes that are used by at least one profiling input, but that, if they
are used by a particular profiling input, they are in its ONEp set. More precisely:

ONEP =
⋃
p∈P

USEDp \
⋃
p∈P

(USEDp \ ONEp) (8)

These attributes should be good candidates to be left uncached. By including or exclud-
ing the UNUSEDP set, we can now construct the following combined cache configura-
tion, for a profiling input set P, in analogy to Definition 6 and Definition 7:

ALLONEP = ALL \ ONEP (9)

USEDONEP = USEDP \ ONEP (10)

5 Evaluation

To evaluate our approach we have applied it to the frontend of the Java compiler Jas-
tAddJ [9]. This compiler is specified with RAGs using the JastAdd system. We have
profiled the compilation with one or several Java programs as profiling input, and used
the resulting AIGs to compute different cache configurations. We have divided our eval-
uation into the following experiments:

Experiment A: The effects of no caching
Experiment B: The effects of profiling using a compiler test suite
Experiment C: The effects of profiling using a benchmark application
Experiment D: The effects of combining B and C

Throughout our experiments we use the results of caching all attributes and the results
of using a manual configuration, composed by an an expert, for comparison.

5.1 Experimental Setup

All measurements were run on a high-performing computer with two Intel Xeon Quad
Core @ 3.2 GHz processors, a bus speed of 1.6 GHz and 32 GB of primary mem-
ory. The operating system used was Mac OS X 10.6.2 and the Java version was Java
1.6.0._15.

The JastAddJ compiler. The frontend of the JastAddJ compiler (for Java version 1.4 and
1.5) has an ALL set containing 740 attributes and a PRE set containing 47 unconfigurable
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attributes (14 are circular and 33 are non-terminal attributes). The compiler comes with
a configuration MANUAL, with 281 attributes manually selected for caching by the com-
piler implementor, an expert on RAGs, making an effort to obtain as good compilation
speed as possible. The compiler performs within a factor of three as compared to the
standard javac compiler, which is good considering that it is generated from a specifica-
tion. MANUAL is clearly an expert configuration, and it cannot be expected that a better
one can be obtained manually.

Measuring of performance. The JastAddJ compiler is implemented in Java (generated
from the RAG specification), so measuring its compilation speed comes down to mea-
suring the speed of a Java program. This is notoriously difficult, due to dynamic class
loading, just-in-time compilation and optimization, and automatic memory manage-
ment [4]. To eliminate as many of these factors as possible, we use the multi-iteration
approach suggested in [5]. We start by warming up the compiler with a number of
non-measured compilations (5), thereby allowing class loading and optimization of all
relevant compiler code to take place, in order to reach a steady state. Then we turn off
the just-in-time compilation and run a couple of extra unmeasured compilations (2) to
drain any JIT work queues. After that we run several (20) measured compilation runs
for which we compute 95% confidence intervals. In addition to this, we start each mea-
sured run with a forced garbage collection (GC) in order to obtain as similar conditions
as possible for each run. Memory usage is measured by checking of available memory
in the Java heap after each forced GC call and after each compilation. The memory
measurements are also given with a 95% confidence interval. We present a summary of
these results in Figure 7, Figure 8, Figure 9 and Figure 10. All results have a confidence
interval of less than ±0.03%. These intervals have not been included in the figures
since they would be barely visible with the resolution we need to use. A complete list
of results are available on the web [27].

Profiling and test input. As a basis for profiling input, we use the Jacks test suite [28],
the DaCapo benchmark suite [4,26] and a small hello world program. We use 4170 tests
from the Jacks suite, checking frontend semantics, and the following applications from
the DaCapo suite (lines of code (LOC)):

ANTLR: an LL(k) parser generator (ca 35 000 LOC).
Bloat: a program for optimization and analysis of Java bytecode (ca 41 000 LOC).
Chart: a program for plotting of graphs and rendering of PDF files (ca 12 000 LOC).
FOP: parses XSL-FO files and generates PDF files (ca 136 000 LOC).
HsqlDb: a database application (ca 138 000 LOC).
Jython: a Python interpreter (ca 76 000 LOC).
Lucene: a program for indexing and searching of large text corpuses (ca 87 000 LOC).
PMD: a Java bytecode analyzer for a range of source code problems (ca 55 000 LOC).
Xalan: a program for transformation of XML documents into HTML (ca 172 000 LOC).

In our experiments, we use different combinations of these applications and tests as
profiling input. We will denote these profiling input sets as follows:
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J: The Jacks test suite profiling input set
D: The DaCapo benchmarks profiling input set
"APP": The benchmark APP of the DaCapo benchmarks.

For example, ANTLR means the ANTLR benchmark.
HELLO: The hello world program

We combine these profiling input sets in various ways, for example, the profiling input
set J+ANTLR means we combine the Jacks suite with the benchmark ANTLR. Finally,
as test input for performance testing we use the benchmarks from the DaCapo suite and
the hello world program.

Cache configurations. We want to compare the results of using the cache configurations
defined in Section 4. In addition, the JastAddJ specification comes with a manual cache
configuration (MANUAL) which we want to compare to. We also have the option to
cache all attributes (ALL), or to cache no attributes (NONE):

MANUAL: This expert configuration is interesting to compare to, as it would be nice if
we could obtain similar results with our automated methods.

ALL: The ALL configuration is interesting as it is easily obtainable and robust with
respect to performance: there is no risk that a particular attribute will be evaluated
very many times for a particular input program, and thereby degrade performance.

NONE: The least possible configuration is interesting as it provides a lower bound on
the memory needed during evaluation. However, this configuration will in general
be useless in practice, leading to compilation times that increase exponentially with
program size.

From each profiling input set P, we compute USEDP, and ONEP, and construct the con-
figurations USEDONEP and ALLONEP (according to Definition 9 and 10):

USEDONEP: This is an interesting cache configuration as it should give good perfor-
mance by avoiding caching of unused attributes and attributes used only once by
P. The obvious risk with this configuration is that other programs might use at-
tributes unused by P, causing performance degradation. There is also a risk that
the attributes in the ONEP set may belong to another program’s USED \ ONE set,
also causing a performance degradation. However, if attributes in ONEP are only
used once in a typical application, they are likely to be used only once in most
applications.

ALLONEP: This configuration is more robust than the USEDONEP configuration in
that also unused attributes are cached, which prevents severe performance degrada-
tion for those attributes.

Attribute coverage. Figure 6 gives an overview of the USEDP \ ONEP, ONEP and
UNUSEDP sets for the profiling inputs from the DaCapo suite. The figure also includes
the combined sets for DaCapo (D) and Jacks (J). Not surprisingly, Hello World has the
lowest attribute coverage. Still, it covers as much as 29%. The high coverage is due to
analysis of standard library classes needed to compile the program. The combined re-
sults for the DaCapo suite and two of its applications have better or the same coverage
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Fig. 6. Attribute coverage for the benchmarks in the DaCapo suite, the combined coverage for
all the DaCapo applications (D), the combined coverage for the programs in the Jacks suite
(J) and for a hello world program. The attribute coverages are given next to the names of the
application/combination.

as the Jacks suite, i.e., the USEDJ set of Jacks does not enclose the USEDD set of Da-
Capo neither does it have an empty UNUSEDJ. These observations are interesting since
they might indicate that additional tests could be added to Jacks. We can also note that
the attribute coverage is not directly proportional to the size of an application, as shown
by PMD and Lucene which both are smaller than Xalan and FOP in regard to LOC.
This may not be surprising since the actual attribute coverage is related to the diversity
of language constructs in an application rather than to the application size.

5.2 Experiment A: The Effects of No Caching

To compare the behavior of no caching with various other configurations, we profiled
a simple Hello World program (HELLO) and then tested performance by compiling
the same program using the configurations ALL, NONE, MANUAL, USEDONEHELLO and
ALLONEHELLO . The results are shown in Figure 7. It is clear from these results that

Hello World

0
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200

Compilation Time (% of ALL)

Hello World

0

50

100

Used Memory (% of ALL)

MANUAL
NONE

USEDONEHELLO

ALLONEHELLO

Fig. 7. Results from Experiment A: Compilation of Hello World using static configurations
along with configurations obtained using Hello World (HELLO) as profiling input. The average
compilation time / memory usage when compilating with the ALL configuration were 50.0 ms /
14.7 kb. The corresponding values for the NONE configuration were 95.9 ms / 8.4 kb.
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Fig. 8. Results from Experiment B: Compilation of DaCapo benchmarks using configurations
from the Jacks suite. All results are given in relation to the compilation time and memory usage
of the ALL configuration and results for MANUAL are included for comparison.

the minimal NONE configuration is not a good configuration, not even on this small
test program. Even though it provides excellent memory usage, the compilation time is
more than twice as slow as any of the other configurations. For a larger application the
NONE configuration would be useless.

5.3 Experiment B: The Effects of Profiling Using a Compiler Test Suite

To show the effects of using a compiler test suite we profiled the compilation of the
Jacks suite and obtained the two configurations USEDONEJ and ALLONEJ. We then
measured performance when compiling the DaCapo benchmarks using these configu-
rations. The results are shown in Figure 8 and are given as percent in relation to the com-
pilation time and memory usage of the ALL configuration1. The results for the MANUAL

configuration are included for comparison.
Clearly, the MANUAL configuration performs better with regard to both compilation

time and memory usage, with an average compilation time / memory usage of 75% /
47% in relation to the ALL configuration. The average results for USEDONEJ is 83% /
67%. The ALLONEJ configuration has the same average compilation time 83% / 72%,
but higher average memory usage. It is interesting to note that USEDONEJ is robust
enough to handle the compilation of all the DaCapo benchmarks. So it seems that the

1 The absolute average results for ALL are the following: Antlr (1.462s/0.270Gb),
Bloat (1.995s/0.339Gb), Chart (0.928s/0.177Gb), FOP (8.328s/1.362Gb), HsqlDb
(6.054s/1.160Gb), Jython (3.257s/0.611Gb), Lucene (4.893s/0.930Gb), PMD
(3.921s/0.691Gb), Xalan (6.606s/1.141Gb).
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Jacks test suite has a sufficiently large coverage, i.e., we can use the USEDONEJ con-
figuration rather than the ALLONEJ configuration. In doing so, we can use less memory
with the same performance and robustness.

5.4 Experiment C: The Effects of Profiling Using a Benchmark Program

To show the effects of using benchmarks we profiled using each of the DaCapo bench-
marks obtaining the USEDONE and ALLONE configurations for each benchmark. We
also combined the profiling results for all the benchmarks to create the combined con-
figurations USEDONED and ALLONED. We then measured performance when compil-
ing the DaCapo benchmarks using these configurations. A selected set of the results
are shown in Figure 9, including the combined results and the best USEDONE and
ALLONE configurations from the individual benchmarks. All results are given as per-
cent in relation to the compilation time and memory usage of the ALL configuration.
The results for the MANUAL set are also included for comparison. Note that not all re-
sults are shown in Figure 9. Two of the excluded configurations USEDONEANTLR and
USEDONECHART performed worse than full caching (ALL). These results validate the
concern that the USEDONEp configuration would have robustness problems for insuffi-
cient profiling input. In this case, neither ANTLR nor Chart were sufficient as profiling
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Fig. 9. Results from Experiment C: Compilation of DaCapo benchmarks using configurations
from the DaCapo benchmarks. All results are shown as compilation time and memory usage
as percent of the results for the ALL configuration and results for MANUAL are included for
comparison.
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inputs on their own. We can note that these two applications have the least coverage
among the applications from the DaCapo suite (67% for ANTLR and 61% for Chart).

The USEDONE configurations. The USEDONE configurations for ANTLR and Chart
perform worse than the ALL configuration for several of the applications in the DaCapo
benchmarks: FOP, Lucene and PMD. The remaining USEDONE configurations can be
sorted with regard to percent of compilation time, calculated as the geometric mean of
the DaCapo benchmark program compilation times (each in relation to the ALL config-
uration), as follows:

80%: USEDONEBLOAT (mem. 62%)
82%: USEDONEFOP (mem. 63%), USEDONEXALAN (mem.66%)
83%: USEDONEHSQLDB (mem. 68%), USEDONEJYTHON (mem. 65%),

USEDONELUCENE (mem. 68%), USEDONEPMD (mem. 66%)
84%: USEDONED (mem. 70%)

These results indicate that a certain coverage is needed in order to obtain a robust
USEDONE configuration. It is also interesting to note that the combined USEDONED

configuration for DaCapo performs the worst (except for the non-robust configurations).
One possible explanation to this performance might be that some attributes ending up
in the USEDONED set might be used rarely or not at all in several compilations. Still,
these attributes are cached which leads to more memory usage.

The ALLONE configurations. The ALLONE configurations generally perform worse
than the USEDONE configurations. This result might be due to the fact that these config-
urations include unused attributes for robustness. However, this strategy for robustness
pays off in that all ALLONE configurations become robust, i.e., they compile all the
DaCapo benchmarks faster than the ALL configuration. The ALLONE configurations
can be sorted as follows, with regard to percent of compilation time:

80%: ALLONEANTLR (mem. 69%)
82%: ALLONEBLOAT (mem. 69%), ALLONEFOP (mem. 69%)
83%: ALLONECHART (mem. 71%)
84%: ALLONEHSQLDB (mem. 73%), ALLONEJYTHON (mem. 70%),

ALLONEXALAN (mem. 70%)
85%: ALLONELUCENE (mem. 73%), ALLONEPMD (mem. 71%)
86%: ALLONED (mem. 73%)

These results indicate that a profiled application does not necessarily need to be large,
or have the best coverage, for the resulting configuration to provide good performance.
The best individual ALLONE configuration is obtained from profiling ANTLR which
is remarkable since ANTLR has the next lowest attribute coverage, while the combined
ALLONED configuration for DaCapo performs the worst on average. This result might
be due to the fact that the combined configuration caches attributes that might be in
the ONE set of an individual application. This fact is also true for several of the indi-
vidual configurations but apparently the complete combination takes the edge off the
configuration.
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5.5 Experiment D: The Effects of Combining B and C

To show the effects of profiling using a compiler test suite (B) together with profil-
ing a benchmark program (C) we combine the cache configurations from experiment
B and C. We then measured performance when compiling the DaCapo benchmarks
using these configurations. A selected set of the results are shown in Figure 10, in-
cluding the fully combined results and the best USEDONE and ALLONE configura-
tions, obtained from combining configurations from ANTLR and Jacks. We can sort
the USEDONE configurations, with regard to their percent of compilation time, as
follows:

81%: USEDONEJ+ANTLR (mem. 64%), USEDONEJ+BLOAT (mem. 67%),
USEDONEJ+CHART (mem. 65%)

82%: USEDONEJ+FOP (mem. 68%), USEDONEJ+XALAN (mem. 69%)
83%: USEDONEJ+JYTHON (mem. 69%)
84%: USEDONEJ+HSQLDB (mem. 70%),

USEDONEJ+LUCENE (mem. 70%), USEDONEJ+PMD (mem. 70%)
85%: USEDONEJ+D (mem. 71%)
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Fig. 10. Results from Experiment D: Compilation of DaCapo benchmarks using combined con-
figurations from the Jacks and DaCapo suites. All results are shown as compilation time and
memory usage as percent of the results for the ALL configuration and results for MANUAL are
included for comparison.
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We can sort the ALLONE configurations in the same fashion:

82%: ALLONEJ+ANTLR (mem. 66%), ALLONEJ+BLOAT (mem. 68%)
84%: ALLONEJ+CHART (mem. 66%)
85%: ALLONEJ+D (mem. 72%)
88%: ALLONEJ+FOP (mem. 69%), ALLONEJ+JYTHON (mem. 69%),

ALLONEJ+XALAN (mem. 70%)
89%: ALLONEJ+LUCENE (mem. 71%), ALLONEJ+PMD (mem. 71%)

We note that the influence of the benchmarks improve the average performance of the
Jacks configurations (83%) with one or two percent. It is interesting to note that the
benchmarks providing the best performance on average for Jacks, independent of con-
figuration, are those with small coverage and few lines of code. These results indicate
that it is worth combining a compiler test suite with a normal program, but that the
program should not be too large or complicated. This way, we will end up with a con-
figuration that caches attributes that end up in the USEDONE set of any small intricate
program, as well as in the USEDONE set of larger programs, but without caching at-
tributes that seem to be less commonly used many times. Further, it should be noted that
the memory usage results for the combined ALLONEJ+D and USEDONEJ+D present
unexpected results when compiling Jython. Presumably, the first configuration should
use more memory than the second configuration, but the results show the reverse. The
difference is slight but still statistically significant. At this point we have no explanation
for this unexpected result.

6 Related Work

There has been a substantial amount of research on optimizing the performance of
attribute evaluators and to avoid storing all attribute instances in the AST. Much of
this effort is directed towards optimizing static visit-oriented evaluators, where attribute
evaluation sequences are computed statically from the dependencies in an attribute
grammar. For RAGs, such static analysis is, in general, not possible due to the refer-
ence attributes. As an example, Saarinen introduces the notion of temporary attributes
that are not needed outside a single visit, and shows how these can be stored on a stack
rather than in the AST [23]. The attributes we have classified as ONE correspond to such
temporary attributes: they are accessed only once, and can be seen as stored in the stack
of recursive attribute calls. Other static analyses of attribute grammars are aimed at de-
tecting attribute lifetimes, i.e., the time between the computation of an attribute instance
until its last use. Attributes whose instances have non-overlapping lifetimes can share
a global variable, see, e.g., [17]. Again, such analysis cannot be directly transfered to
RAGs due to the use of reference attributes.

Memoization is a technique for storing function results for future use, and is used,
for example, in dynamic programming [3]. Our use of cached attributes is a kind of
memoization. Acar et al. present a framework for selective memoization in a function-
oriented language [1]. However, their approach is in a different direction than ours,
intended to help the programmer to use memoized functions more easily and with more
control, rather than to find out which functions to cache. There are also other differences
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between memoization in function-oriented programming, and in our object-oriented
evaluator. In function-oriented programming, the functions will often have many and
complex arguments that can be difficult or costly to compare, introducing substantial
overhead for memoization. In contrast, our implementation is object-oriented, reducing
most attribute calls to parameterless functions which are cheap to cache. And for pa-
rameterized attributes, the arguments are often references which are cheap to compare.

7 Conclusions and Future Work

We have presented a profiling technique for automatically finding a good caching
configuration for compilers generated from RAG specifications. Since the attribute de-
pendencies in RAGs cannot be computed statically, but depend on the evaluation of ref-
erence attributes, we have based the technique on profiling of test programs. We have
introduced the notion of an attribute dependency graph with call counts, extracted from
an actual compilation. Experimental evaluation on a generated Java compiler shows
that by profiling on only a single program with an attribute coverage of only 67%, we
reach a mean compilation speed-up of 20% and an average decrease in memory usage
of 38%, as compared to caching all configurable attributes. This is close to the average
compilation speed-up obtained for a manually composed expert configuration (25%).
The corresponding average decrease in memory usage for the manual configuration
(53%) is still significantly better. Our evaluation shows that we get similar performance
improvements for both tested cache configuration approaches. Given these results, we
would recommend the ALLONE configuration due to its higher robustness.

We find these results very encouraging and intend to continue this work with more
experimental evaluations. In particular, we would like to study the effects of caching,
or not caching, parameterized attributes, and to apply the technique to compilers for
other languages. Further, we would like to study the effects of analyzing the content
of the attribute equations. Most likely there are attributes which only return a constant
or similar and, hence, should not benefit from caching independent of the number of
calls. Finally, it would be interesting to further study the differences between the cache
configurations from the profiler and the manual configuration.
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Abstract. While current metamodelling languages are well-suited for the struc-
tural definition of abstract syntax and metamodelling platforms like the Eclipse
Modelling Framework (EMF) provide various means for the specification of a
textual or graphical concrete syntax, techniques for the specification of model se-
mantics are not as matured. Therefore, we propose the application of reference
attribute grammars (RAGs) to alleviate the lack of support for formal seman-
tics specification in metamodelling. We contribute the conceptual foundations to
integrate metamodelling languages and RAGs, and present JastEMF — a tool
for the specification of EMF metamodel semantics using JastAdd RAGs. The
presented approach is exemplified by an integrated metamodelling example. Its
advantages, disadvantages and limitations are discussed and related to metamod-
elling, attribute grammars (AGs) and other approaches for metamodel semantics.

1 Introduction

Metamodelling is a vital activity for Model-Driven Software Development (MDSD).
It covers the definition of structures to represent abstract syntax models, the specifica-
tion of a concrete syntax, and the specification of the meaning of models [1]. While
infrastructures like the Eclipse Modelling Framework (EMF) [2] provide means for the
specification of abstract syntax and various associated tools for the specification of a
textual or graphical concrete syntax, techniques for the specification of model seman-
tics are not as matured [1].

In this paper we propose the application of RAGs [3] — a well-investigated exten-
sion of Knuth’s classic AGs [4] — to alleviate the lack of support for formal semantics
specification in metamodelling. They enable (1) the specification of semantics on tree
and graph-based abstract syntax structures with unique spanning trees, (2) complete-
ness and consistency checks of semantic specifications, and (3) the generation of an
implementation of semantics specifications.

The contributions of this paper are as follows: The next section discusses common
concerns in the specification of metamodels, identifies key capabilities we target with
semantics-integrated metamodelling and introduces a motivating example. In Section 3
we sketch general foundations for the application of RAGs for metamodel semantics
— our semantics-integrated metamodelling approach. In Section 4 we demonstrate the

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 22–41, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Transformations in Metamodelling

feasibility of this idea by presenting JastEMF, a tool that integrates the Ecore meta-
modelling language and the JastAdd [5] attribute grammar system. In Section 5 we
describe the application of our semantics-integrated metamodelling approach to im-
plement the SiPLE-Statemachines language introduced in Section 2. In Section 6 we
evaluate JastEMF against the key capabilities identified for semantics-integrated meta-
modelling based on our experiences with the SiPLE-Statemachines case study. Finally,
we discuss related work in Section 7 and conclude our contribution in Section 8.

2 Motivation for Semantics-Integrated Metamodelling

This section motivates our idea of semantics-integrating metamodelling with RAGs by
identifying methodical gaps to achieve common objectives in metamodelling. After-
wards, we introduce a set of key capabilities we target with semantics-integrated meta-
modelling and introduce SiPLE-Statemachines, an exemplary metamodel project that
serves as a continuous example throughout this paper.

2.1 Metamodelling: Objectives, Transformations, Specifications

Metamodelling has the objective to specify the implementation of a modelling
language. Such implementation should provide means to transform programs (i.e., mod-
els) starting from (1) their textual representation to (2) their abstract syntax represen-
tation and finally (3) representations of their static and execution semantics [1]. In the
metamodelling world, all these representations and transformations are related to the
language’s metamodel, which typically declares the data structures that are used for
representing language constructs in abstract syntax models and is the interface for the
specification of concrete syntax and semantics. As depicted in Figure 1, each trans-
formation’s input and output model is built using specific kinds of constructs of the
language metamodel. A first transformation — typically specified using regular ex-
pressions and context-free grammars — derives an abstract syntax tree (AST) from
textual symbols. The data structure required to represent the AST is solely declared
by the Metaclasses, Attributes and Containment References in the
metamodel. In a second transformation, the structures that are declared as Non-Con-
tainment References (e.g., connecting variable usage with variable declarations)
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need to be derived, resulting in a reference-attributed model — i.e., the abstract syntax
tree with a superimposed reference graph. Graphical editors often directly operate on
such reference-attributed models (cf. Figure 1) and rely on a direct manipulation of
non-containment references. A last transformation performs semantics evaluations to
derive values for Derived Attributes and executes Operations declared in
the metamodel. Note that the reference-attributed model and the full-attributed model
still contain the abstract syntax tree as their spanning tree.

All the above mentioned transformations are important artefacts of a language and,
thus, motivate a formal definition. However, formal approaches for the specification of
static or execution semantics are not yet established in the metamodelling world. As
depicted in Figure 1 we aim at closing this gap by the application of RAGs for the
specification of metamodel semantics.

2.2 Capabilities of Semantics-Integrated Metamodelling

By applying RAGs to achieve semantics-integrated metamodelling we expect to com-
bine the benefits of metamodelling frameworks and attribute grammars. However, to
our experience, integration means not only combination of benefits but often also a
compromise of the technical and methodical capabilities of the individual approaches.
We therefore collected a number of technical key capabilities to be contributed by each
individual approach that afterwards will be used to evaluate our integrated solution.

Metamodelling frameworks (e.g., the EMF) are built around a metamodelling lan-
guage (e.g., Ecore) and typically provide tools for the specification and implementation
of modelling languages and their tooling. In particular they provide:

MM 1: Metamodelling Abstraction: Metamodelling language that provides a dedi-
cated abstraction to specify language metamodels.

MM 2: Metamodelling Consistency: Tools to check the structural completeness and
consistency of metamodel specifications.

MM 3: Metamodel Implementation Generators: Generators to derive implementa-
tions from metamodel specifications.

MM 4: Metamodel/Model Compatibility: A common repository and representation
that enables integration of modelling languages and models.

MM 5: Tooling Compatibility: Common platform for tool integration/application:

MM 5.1: Model-to-Model Transformation Tools: E.g., ATL [6] or XTend [7].
MM 5.2: Model-to-Text Transformation Tools: Code generators and model-dri-

ven template languages like Mofscript [8] or XPand [7].
MM 5.3: Text-to-Model Transformation Tools: Parser generators for models as

EMFText [9], Monticore [10] or XText [11].
MM 5.4: Generic Model Editors: Generic tools to access and edit models as the

Generic EMF editor [2] or Exeed [12].
MM 5.5: Tooling Generators: Tooling to specify and generate textual (EMFText,

Monticore, XText) or graphical (GMF [2], EuGENia1) model editors.

1 http://www.eclipse.org/gmt/epsilon/doc/articles/
eugenia-gmf-tutorial/
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Attribute grammar systems typically provide means for the specification of lan-
guages’ abstract syntax and semantics and tools to derive an implementation from such
specifications. In particular they provide:

AG 1: Semantics Abstraction: Well-investigated, declarative abstraction for formal
semantics specifications.

AG 2: Semantics Consistency: Tooling to check the structural completeness and con-
sistency of semantics specifications.

AG 3: Semantics Generators: Generators to derive an implementation (i.e., evalua-
tor) from semantics specifications.

AG 4: Semantics Modularity: Modular, extensible semantics specifications [13].

2.3 SiPLE-Statemachines: A Typical Modelling Language

To exemplify and evaluate semantics-integrated metamodelling we will use a typi-
cal modelling scenario. It is built upon a Simple imperative Programming Language
Example (SiPLE) and a statemachine language which are combined to support the mod-
elling of executable statemachines.

SiPLE’s main features are boolean, integer, and real arithmetics, nested scopes, nested
procedure declarations, recursion, while loops and conditionals. All these features of
SiPLE have the intuitive semantics familiar from imperative programming languages.
Listing 1.1 shows a basic SiPLE program that asks the user for a number, computes its
Fibonacci value and prints it.

Listing 1.1. Fibonacci Numbers in SiPLE

Procedure main ( ) Begin
Procedure f i b o n a c c i ( Var n : I n t e g e r ) : I n t e g e r Begin

I f n = 0 Or n = 1 Then Return 1 ; Fi ;
Return f i b o n a c c i ( n−2) + f i b o n a c c i ( n−1);

End ;

Var n : I n t e g e r ;
Read n ;
Write f i b o n a c c i ( n ) ;

End ;

Statemachines describe the behaviour of systems using a state-based abstraction [14].
In contrast to the textual syntax of SiPLE, they are typically modelled using a graphi-
cal notation. The exemplary statemachine depicted in Fig. 2 describes the behaviour of
a phone. It uses concepts like states (e.g., Dialing), transitions (e.g., incoming
call), guard conditions and actions. With transitions the phone reacts on particu-
lar events from the environment by changing states, e.g., incoming call where
the phone changes from Waiting to Ringing. Guards and actions enable a more
fine-grained specification of boolean conditions and imperative behaviour, respectively.
Therefore, we want to combine the statemachine language and SiPLE to SiPLE-State-
machine. Consider for instance the state Dialing where an entry action is used to
read a number from the user (Read number;). SiPLE action statements and boolean
guard expressions can also be associated to transitions. For instance, when the phone is
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Fig. 2. Phone example modelled in a generated GMF editor for SiPLE-Statemachine

in the Dialing state and receives a call event, it checks the entered number using
a boolean SiPLE expression and changes its state in accordance. While walking the ac-
cording transition it writes the dialed or rejected number to the standard output (Write
number; Write true; or Write number; Write false;).

In this paper we will demonstrate and evaluate the integration of metamodelling and
RAGs by implementing SiPLE-Statemachines. Relying on the key capabilities identi-
fied in Section 2.2 we plan to provide:

– A metamodel (MM 1, MM 2, MM 3), textual concrete syntax (MM 5.3, MM 5.5)
and attribute-grammar semantics (AG 1, AG 2, AG 3) for SiPLE.

– An interpreter that implements an execution semantics for SiPLE (MM 5).
– The SiPLE-Statemachine metamodel (MM 1, MM 2, MM 3) composed from the

two metamodels of SiPLE and Statemachine (MM 4).
– A generated graphical editor for SiPLE-Statemachine (MM 5.5).
– An attribute-grammar semantics for SiPLE-Statemachine (AG 1, AG 2, AG 3, AG

4), e.g., for mapping transition labels to states and to reason about state reachability.
– An execution semantics for SiPLE-Statemachine by implementing a model-to-text

transformation (MM 5.2) for statemachines to plain SiPLE code.

3 Foundations of Attribute Grammars for Metamodel Semantics

Because RAGs rely on a specific representation of abstract syntax, their application in
metamodelling requires an integration with metamodel constructs. In this section we
prepare such integration by investigating RAGs’ specific syntax requirements, clarify-
ing what kind of semantics they can specify and which kind of model information these
semantics represent, and finally showing that most metamodelling languages indeed
satisfy RAGs’ syntax requirements.

3.1 Reference Attribute Grammars and Metamodel Semantics

RAGs are used to specify semantics for tree structures that are usually specified us-
ing a context-free grammar (CFG). Given a tree the RAG annotates it with values and
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imposes a graph on it representing the language’s semantics. Because we like to use
RAGs for metamodel semantics, we must identify metamodel constructs that induce
such tree-structure in model instances. We like to use our approach not only for certain
metamodels, but rather for any metamodel developed in a metamodelling language.
Thus, the separation of metamodel constructs into tree- and graph-inducing structures
— into syntax and semantics — should be metamodelling language inherent, i.e. be
implied by the meta-metamodel2. For this purpose, we investigate common metamod-
elling languages’ concepts and distinguish them into syntactic (tree structure defining)
and semantic (graph structure declaring) ones. Both sets will be disjunct. Given this
separation RAGs are indeed appropriate to specify metamodel semantics in the sense
that they can be used to specify the transformation of abstract syntax trees to refer-
ence attributed graphs and full-attributed graphs (cf. Figure 1). RAGs can be used for
any kind of static model semantics like model checking and analysis. Definition 3.1
summarises the foundations of integrating RAGs and metamodels:

Definition 3.1 (Metamodel Semantics): Let Ω be a metamodel and EΩ the finite set of
its elements. Let EsynΩ and EsemΩ be disjunct subsets of EΩ , whereas EΩ = EsynΩ ∪
EsemΩ . Let Eω be the set of entities of a model instance ω ∈ Ω. Since ω ∈ Ω, all
entities e ∈ Eω have a type te ∈ EΩ . Let SΩ be a function that defines for all ω ∈ Ω for
each entity e ∈ Eω with te ∈ EsemΩ the value of e. We call SΩ a metamodel semantic
for Ω. Iff EsynΩ specifies a spanning tree for each ω ∈ Ω, SΩ can be specified with a
RAG.

The metamodel semantics SΩ can depend on any metamodel element me ∈ EΩ . They
even can depend on themselves, in which case they are only well-defined if there exists
a fix-point. Thus, different model instances can only have different semantics, if the se-
mantics depend on syntactic elements me ∈ EsynΩ . Colloquially explained, a model’s
semantics (i.e., all entities {e|e ∈ Eω ∧ te ∈ EsemΩ}) depend on its structure (i.e., all
entities {e|e ∈ Eω ∧ te ∈ EsynΩ}).

What remains to show is, which metamodelling concepts belong to EsynΩ and EsemΩ

and that indeed EsynΩ specifies a tree structure.

3.2 Common Metamodelling Languages and Abstract Syntax Trees

Most metamodelling languages support (1) metaclasses consisting of (2) non-derived
and (3) derived attributes and (4) operations. Metaclasses can be related to each other
by (5) containment and (6) non-containment relationships. Non-derived attribute val-
ues represent AST terminals in models and, thus, are in EsynΩ . Containment refer-
ences model that instances of a metaclass C1 consist of instances of a metaclass C2.
The contained C2 instances are an inextricable, structural part of the C1 instances.
The relationship between C1 and C2 is a composite and iff an instance e2 ∈ C2 is
a composite of an instance e1 ∈ C1, e1 cannot be a composite of e2. Thus, contain-
ment relationships specify tree structures. They are in EsynΩ . Derived attributes and
side-effect free operations model the values that can be calculated from other values
of a given model. Non-containment relationships model arbitrary references between

2 Most metamodelling languages are specified in themselves, such that it is appropriate just to
talk about metamodels in the following.
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metaclasses. Thus, derived attributes, side-effect free operations, and non-containment
relationships are in EsemΩ . Operations with side-effects can model either, extensions of
models derived from existing model information or arbitrary model manipulations. De-
rived model extensions are in EsemΩ , because they can be considered to be part of the
graph imposed by semantics (w.r.t. AGs such derived model extensions are higher-order
attributes [15]). Operations that represent arbitrary model manipulations (e.g., to delete
model elements or imperatively add new elements) cannot be handled by our definition
of metamodel semantics.

3.3 Graphs and (Partial) Reference-Attributed Models

In the domain of modelling, often reference-attributed models (cf. Section 2.1 and Fig. 1)
are the starting point for semantic evaluations. A typical scenario are models developed
in graphical editors. Of course, it is no problem for a RAG-based metamodel semantic
SΩ if elements of EsemΩ of a model instance have a predefined value — i.e., if instead
of a tree the semantic evaluation starts from a graph with a unique spanning tree.

Throughout semantic evaluation, a RAG evaluator can use such predefined values
and simply ignore their specified semantics. If all occurrences of a non-containment
reference, for every possible model instance, have a predefined value, the specification
of its semantics can even be omitted. Thus, (partial) reference-attributed models do not
influence the applicability of our RAG approach for metamodel semantics.

4 JastEMF: An Exemplary Attribute Grammar and
Metamodelling Language Integration

In this section, we discuss the integration of an exemplary metamodelling framework
(EMF [2]) and RAG system (JastAdd [5]). We shortly introduce both approaches and
then discuss the details of their integration in JastEMF.

4.1 The Eclipse Modelling Framework

The EMF is a common metamodelling infrastructure for the Eclipse platform providing
metamodel development and implementation tools based on the metamodelling lan-
guage Ecore [2]. EMF contributes tools to edit Ecore metamodel specifications, check
their consistency and generate a Java-based implementation of the metamodel spec-
ifications. The framework is used for the implementation of a plethora of modelling
languages3, and is an important integration platform for various modelling tools.

For the definition of concrete syntax the EMF is complemented by various tools to
specify a concrete syntax in relation to a metamodel. Editor generators that are tightly
integrated with EMF like EMFText [9] or XText [11] enable the declarative specifica-
tion of context-free grammars to define parsers, printers, and advanced textual editors
for models. There are also tools to realise a graphical (diagrammatic) model syntax,
e.g., the Graphical Modelling Framework (GMF) [2].

3 http://www.emn.fr/z-info/atlanmod/index.php/Ecore
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For the specification of semantics, the EMF mainly relies on Java source code that
evaluates derived attributes or implements operations declared in the metamodel. Be-
sides the application of the Object Constraint Language (OCL) [16] or model-transfor-
mations, we are not aware of formal, mature techniques to specify static and execution
semantics in EMF. For a further discussion of approaches for metamodel semantics we
refer to Section 7.

4.2 The JastAdd Metacompiler

JastAdd [5,13] is an object-oriented compiler generation system. It allows to generate a
Java implementation of a demand-driven semantics evaluator from a given AG. Besides
the basic attribute grammar concepts [4], JastAdd supports advanced AG extensions
such as reference [3] (RAGs) and circular attributes [17].

JastAdd has two specification languages. One to specify abstract syntax and another
to specify an attribution (i.e. semantics). Abstract syntax specifications consist of node
type declarations (non-terminals) and their child nodes (arbitrary list of terminals and
non-terminals). Language semantics is usually specified within several modules con-
taining attribute definitions and attribute equations that are associated with node types
of the abstract syntax.

Given a set of AST and attribute specifications the JastAdd compiler generates a
Java class for each node type, accessors for the node’s children nodes, and methods for
each attribute defined for the node type. The code required for attributes’ evaluation
is generated into their method bodies. Consequently, evaluation of semantics can be
triggered by accessing the corresponding methods.

4.3 Integrating EMF and JastAdd

Because both EMF and JastAdd provide code generation for Java, they are well-suited
to explore semantics-integrated metamodelling. For their practical integration it is re-
quired (1) to merge the Java classes that represent a language’s abstract syntax in EMF
and in JastAdd and (2) to apply the generated attribute evaluator to compute EMF mod-
els’ semantics.

Based on the integration foundations presented in Section 3 we derived a mapping
of elements in the Ecore metamodel and specification concepts used by JastAdd. The
concrete mappings depicted in Figure 3 are grouped in two sets. The first set contains
elements related only to model syntax (EsynΩ ). The second set contains the elements
related to model semantics (EsemΩ ). In the second set constructs of the Ecore meta-
model are typically used to declare the semantics interface of specific elements while
the corresponding JastAdd construct specifies the element’s semantics. Depending on
its actual syntax and semantics, multiple mappings are possible.

In general, derived properties, non-containment references and operations that are
side-effect free are considered to be static semantics, whereas their semantics can be
specified using synthesized or inherited attributes (reference attributes in the case of a
non-containment reference). If the cardinality of a derived property or non-containment
reference is greater than one, often collection attributes [18,19] are much more conve-
nient than ordinary attributes, since they permit to collect remotely located AST nodes
w.r.t. conditions and reference attributes. However, since JastAdd attributes can have any
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EsemΩ

EsynΩ

Fig. 3. Integrating Ecore and JastAdd

valid Java type, it is also possible to specify ordinary attributes that represent collections.
Operations with side-effects should not be realized by attributes, but rather by ordinary
Java methods specified within JastAdd attribute specifications. Such intertype declara-
tions are woven by JastAdd as known from aspect weaving tools like AspectJ [20].

JastEMF’s Integration Process. To realise the integration of EMF and JastAdd, we
implemented JastEMF 4. Given an Ecore metamodel with in JastAdd specified seman-
tics — a so called JastEMF integration project — JastEMF can be executed to generate
an integrated language implementation, i.e. an EMF metamodel implementation with
integrated JastAdd semantics. Integration projects must provide the following artefacts:

– An Ecore metamodel declaring the language’s abstract syntax.
– An Ecore generator model configurating EMF and JastEMF code generation.
– A set of JastAdd attribute specifications defining the language’s semantics that sat-

isfy the mappings defined for concepts in EsemΩ (cf. Fig. 3).

Based on these artefacts, JastEMF’s generation process (cf. Figure 4) reuses the gener-
ators for JastAdd and EMF and merges the generated Java classes in accordance to the
introduced mapping. First, the process uses the EMF Generator Model, which is fed to
the (1) EMF Code Generator to generate an EMF Metamodel Implementation
and the (2) JastEMF JastAdd Adaptation Specification Genera-
tor to derive a JastAdd AST Specification and a JastAdd Repository Adaptation Spec-
ification. The Repository Adaptation Specification contributes attribute specifications
that adapt the JastAdd Evaluator Implementation to use the EMF repository instead
of its own internal repository. As a second input the process requires the JastAdd Se-
mantics Specifications. The JastAdd AST Specification, the JastAdd Repository Adap-
tation Specification and the JastAdd Semantics Specifications are used by the (3)
JastAdd Compiler to generate a JastAdd Evaluator Implementation. To integrate
this Evaluator with the Metamodel Implementation it has to be refactored to incorporate
metamodel naming conventions and package structures. Therefore, the (4) JastEMF
Refactoring Generator derives a JDT5 refactoring script from the metamodel
and applies it (5). For an overview of the refactorings applied we refer to [21]. Fi-
nally, the Refactored Evaluator Implementation is merged with the EMF Metamodel

4 www.jastemf.org
5 http://www.eclipse.org/jdt/
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Implementation using (6) EMF JMerge. This last step results in a metamodel im-
plementation with tightly integrated semantics, where semantic declarations from the
EMF metamodel are combined with their attribute-based specifications defined in the
JastAdd semantics.

With JastEMF the complexity of this integration process is completely hidden for
developers. Also, developers can work with EMF and JastAdd as usual.

5 SiPLE-Statemachines Case Study

In the following, we present the application of semantics-integrated metamodelling for
implementing SiPLE-Statemachine.

Therefore, we discuss: (1) the application of EMF Ecore for specifying and inte-
grating SiPLE and SiPLE-Statemachine abstract syntax, (2) the application of JastAdd
for the specification of SiPLE and SiPLE-Statemachine static and execution seman-
tics, and (3) the application of JastEMF to generate an integrated SiPLE-Statemachine
implementation.

5.1 Modelling Abstract Syntax with EMF

SiPLE Abstract Syntax. The SiPLE metamodel is presented in Figure 5. ACompila-
tionUnit consists of Declarations, which can be VariableDeclarations
declaring a variable’s name and type or ProcedureDeclarations declaring a pro-
cedure. Each procedure has a name, a return type, a list of parameters and a body that
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Fig. 5. SiPLE Metamodel

is a Block. Each Block consists of a Statement sequence. In SiPLE, nearly ev-
erything is a Statement, such as While loops, If conditionals, Expressions,
Declarations and VariableAssignments. Expressions can be BinaryEx-
pressions or UnaryExpressions, whose concrete sub-classes, e.g., Addition
and Not, are not presented in the figure. Furthermore, there are primitive expressions
such as Constants, References and ProcedureCalls.

The metamodel specifies a spanning tree (containment references, non-derived at-
tributes) enriched with semantics interfaces (non-containment references, derived at-
tributes, operations). For a better understanding, we assigned numbers to different parts
of the semantics interfaces declared in the metamodel. Parts that are to be computed
by name analysis are marked with 1 , e.g., each VariableAssignment and each
ProcedureCall in a well-formed program has a reference pointing to their respec-
tive declaration. Parts depending on type analysis are labeled by 2 , e.g., the derived

attribute Type represents the actual type of an Expression. 3 marked parts belong
to the constraint checking realization, which currently consists of the IsCorrect and
IsCorrectLocal attributes. Parts labeled with 4 (e.g., Interpret()) declare
the execution semantics interface for both runtime evaluation and constant folding.

SiPLE-Statemachine Abstract Syntax. The SiPLE-Statemachine metamodel is pre-
sented in Figure 6. A StateMachine consists of a set of State and Transition
Declarations. Each Transition has a label representing an event that trig-
gers the Transition. Furthermore, guard Expressions allow to specify boolean
SiPLE expressions as additional conditions for transition triggering and SiPLE Sta-
tements allow to annotate actions to states and transitions that are executed when a
state is entered or a transition is triggered respectively. Each Transition refers to a
source and a target State.
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Fig. 6. SiPLE-Statemachine Metamodel

The metamodel’s semantics are an extension of the semantics used for the JastAdd
statemachine tutorial in [22]. Again, we assigned numbers to parts of the semantics in-
terface. As above, 1 marks parts belonging to name analysis. In SiPLE-Statemachine
name analysis is used to compute the actual source and target states from the corre-
sponding labels of a Transition object. Further semantics analysis that computes
additional information such as the successor relation and transitive closure of all states
reachable from a given state are labeled by 5 . Parts that are used to parse textual action

and guard labels to appropriate SiPLE fragments are marked with 6 .

5.2 Specifying Semantics with JastAdd

SiPLE Semantics. There are four semantic concerns that completely specify SiPLE’s
static and execution semantics. With JastAdd, each concern can be specified as an as-
pect. A core specification is used to declare each concern’s semantics, i.e., to declare
all attributes (cf. Listing 1.2). The actual attribute definitions (the equations) reside in
separate JastAdd specifications6.

Listing 1.2. Excerpt from the SiPLE Core Specification

a s p e c t NameAnalysis { / / [ 1 ] i n F i g u r e 5
/ / P r o c e d u r e name s p a c e :
inh C o l l e c t i o n<P r o c e d u r e D e c l a r a t i o n> ASTNode . LookUpPDecl ( S t r i n g name ) ;
syn P r o c e d u r e D e c l a r a t i o n P r o c e d u r e C a l l . D e c l a r a t i o n ( ) ;
syn P r o c e d u r e D e c l a r a t i o n C o m p i l a t i o n U n i t . MainProcedure ( ) ;

/ / V a r i a b l e name s p a c e :
inh C o l l e c t i o n<V a r i a b l e D e c l a r a t i o n> ASTNode . LookUpVDecl ( S t r i n g name ) ;
syn V a r i a b l e D e c l a r a t i o n R e f e r e n c e . D e c l a r a t i o n ( ) ;
syn V a r i a b l e D e c l a r a t i o n V a r i a b l e A s s i g n m e n t . D e c l a r a t i o n ( ) ;

}
a s p e c t T y p e A n a l y s i s { / / [ 2 ] i n F i g u r e 5

syn Type V a r i a b l e D e c l a r a t i o n . Type ( ) ;
syn Type V a r i a b l e A s s i g n m e n t . Type ( ) ;
syn Type P r o c e d u r e R e t u r n . Type ( ) ;
syn Type E x p r e s s i o n . Type ( ) ;

}

6 All specifications can be found at www.jastemf.org.

www.jastemf.org
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a s p e c t C o n s t r a i n t C h e c k i n g { / / [ 3 ] i n F i g u r e 5
syn boolean ASTNode . I s C o r r e c t ( ) ;
syn boolean ASTNode . I s C o r r e c t L o c a l ( ) ;

}
a s p e c t I n t e r p r e t a t i o n { / / [ 4 ] i n F i g u r e 5

p u b l i c a b s t r a c t O b j e c t E x p r e s s i o n . Value ( S t a t e vm) throws I n t e r p r e t a t i o n E x c e p t i o n ;
p u b l i c a b s t r a c t vo id S t a t e m e n t . I n t e r p r e t ( S t a t e vm) throws I n t e r p r e t a t i o n E x c e p t i o n ;
syn S t a t e C o m p i l a t i o n U n i t . I n t e r p r e t ( ) ;

}

NameAnalysis. SiPLE uses separate block-structured namespaces for variable and pro-
cedure declarations. Although there is a single global scope in each Compilation-
Unit, each block introduces a new private scope, shadowing declarations in the outside
scope. No explicit symbol tables are required to resolve visible declarations — the AST
is the symbol table.

TypeAnalysis. SiPLE is a statically, strongly typed language. For each kind of expres-
sion its type is computed from the types of its arguments, e.g., if an addition has a
Real number argument and an Integer argument the computed type will be Real.
Types are statically computed for arithmetic operations, assignments, conditionals (If,
While), procedure calls and procedure returns.

ConstraintChecking. Each language construct of a SiPLE program can be statically
checked for local correctness, i.e., whether the node representing the construct satisfies
all its context-sensitive language constraints or not. Of course, these checks are usually
just simple constraints specified based on SiPLE’s name and type analysis like “an If
condition’s type must be boolean” or “each reference must be declared”. If all nodes of
a (sub)tree — i.e., a program (fragment) — are local correct, the (sub)tree is correct.

Interpretation. SiPLE’s execution semantics is also specified using JastAdd. We ap-
plied JastAdd’s ability to use Java method bodies for attribute specifications. This al-
lows for a seamless integration of a Java implementation of the operational semantics
and the declarative, RAG-based static semantics analysis. The interpretation is triggered
with a call to a CompilationUnit’sInterpret() operation that initialises a state
object representing a stack for procedure frames and traverses the program’s statements
by calling their Interpret(State) operation.

SiPLE-Statemachine Semantics. The SiPLE-Statemachine semantics is mainly speci-
fied in three JastAdd aspects which are shown in Listing 1.3. The original source comes
from [22]. To integrate SiPLE, we additionally introduced a SiPLEComposition
aspect.

Listing 1.3. Excerpt from the SiPLE-Statemachine Core Specification

a s p e c t NameAnalys is { / / [ 1 ] i n F i g u r e 6
syn l a z y S t a t e T r a n s i t i o n . s o u r c e ( ) ;
syn l a z y S t a t e T r a n s i t i o n . t a r g e t ( ) ;
inh S t a t e D e c l a r a t i o n . lookup ( S t r i n g l a b e l ) ;
syn S t a t e D e c l a r a t i o n . loca lL ookup ( S t r i n g l a b e l ) ;

}

a s p e c t R e a c h a b i l i t y{ / / [ 5 ] i n F i g u r e 6
syn E L i s t S t a t e . s u c c e s s o r s ( ) c i r c u l a r [ . . . ] ;

syn E L i s t S t a t e . r e a c h a b l e ( ) c i r c u l a r [ . . . ] ;
}
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a s p e c t SiPLEComposi t ion { / / [ 6 ] i n F i g u r e 6
p u b l i c S t a t e m e n t Ac t ion . g e t A c t i o n S t a t e m e n t ( ) ;
p u b l i c E x p r e s s i o n T r a n s i t i o n . g e t G u a r d E x p r e s s i o n ( ) ;
p u b l i c S t a t e m e n t T r a n s i t i o n . g e t A c t i o n S t a t e m e n t ( ) ;

}

NameAnalysis. In SiPLE-Statemachine, name analysis maps textual labels in transi-
tions to states. Since states are not block-structured, all declarations of the statemachine
are traversed and each state label is compared to the looked up label. Note that a graph-
ical editor may set a transition’s source and target state directly.

Reachability. The synthesized successor attribute computes a state’s direct succes-
sor relation from the set of declared transitions. In contrast to the original example, we
declared the attribute to be an EList to achieve better graphical editor support and
as circular because of editor notifications issues. Based on the successor relation, the
reachable attribute computes a state’s transitive closure, which can be displayed on
demand in a graphical editor we generated for SiPLE-Statemachines.

SipleComposition. This helper aspect uses the SiPLE parser to parse and embed SiPLE
Expressions and SiPLE Statements for guard and action labels. Actually, these
parts belong to SiPLE and are integrated into SiPLE-Statemachine (cf. 6). However,
since JastAdd does not support packages and always generates AST classes for the
given AST specifications instead of reusing classes from existing packages as supported
by the EMF, we had to model them as attributes.

5.3 Integration with Further Metamodelling Tools

To prepare the evaluation of JastEMF’s integration approach we applied several meta-
modelling tools for further implementation tasks. As our focus is about the specification
of semantics for metamodels using RAGs, we shortly describe their purpose but refer
to respective publications for details:

– To generate a parser and an advanced text editor for SiPLE we use EMFText [9].
Amongst others, the generated editor supports syntax highlighting, code comple-
tion, outline and a properties view.

– To provide a graphical syntax for SiPLE-Statemachine we used EuGENia7, a tool
that processes specific metaclass annotations to generate based on their informa-
tion (node or transition, shape, style, color, etc.) an according set of GMF [2] spec-
ifications. From such specifications the GMF framework then generates a well-
integrated, powerful graphical editor for the SiPLE-Statemachine language (cf.
Figure 2).

– To make SiPLE-Statemachine executable, we use an XPand [7] template to gener-
ate plain SiPLE code, which can be executed by a call to its CompilationUnit’s
Interpret operation.

7 http://www.eclipse.org/gmt/epsilon/doc/articles/
eugenia-gmf-tutorial/



36 C. Bürger et al.

6 Evaluation

In this section we evaluate JastEMF based on our experience with the SiPLE-Statema-
chines case study and w.r.t. the semantics-integrated metamodelling capabilities pre-
sented in section 2.2. Afterwards, we discuss limitations of our approach and further
experiences in applying JastEMF that motivate deeper investigation and future work.

6.1 Evaluating the Capabilities of Integrated Metamodelling.

The JastEMF integration process (cf. Section 4.3 Figure 4) is completely steered by a
standard Ecore generator model, the according Ecore metamodel and a set of standard
JastAdd specifications. For constructing, manipulating, validating and reasoning about
the input metamodel and semantic specifications all the tools available for the respective
artefact can be reused. Furthermore, the process reuses the EMF and JastAdd tooling
for code generation and all applied refactorings and code merges retain the metamodel
implementation’s API.

Consequently, the key capabilities metamodelling abstraction (MM 1), metamodel
implementation generators (MM 3), semantics abstraction (AG 1) and semantics gen-
erators (AG 3) are provided by JastEMF.

JastEMF also provides metamodelling tooling compatibility (MM 5). This is well
demonstrated in the SiPLE-Statemachines case study by:

– Using the model-driven template language XPand to generate SiPLE code for sta-
temachines (MM 5.2). In general, model-driven template languages heavily bene-
fit from semantics-integrated metamodelling, because computed semantics can be
reused within templates.

– Using EMFText to generate a text-to-model parser (MM 5.3).
– Using the generic, tree-based EMF model editor shipped with EMF that seamlessly

integrates semantics in its properties view (MM 5.4). Thus, models can be inter-
actively edited, their semantics browsed and semantic values manually changed,
whereas dependend semantics are automatically updated.

– Using EMFText and EuGENia/GMF to generate advanced SiPLE and SiPLE-Sta-
temachine editors with integrated semantics (MM 5.5).

Regarding metamodelling and semantics consistency (MM 2, AG 2) JastEMF’s inte-
gration approach has to be evaluated from two perspectives: First, the individual consis-
tency of the Ecore metamodel and the JastAdd specifications should and can be checked
reusing their respective tooling. Second, in semantics integrated metamodelling the con-
sistency of the mapping between syntax and semantics specifications (cf. Figure 3) has
to be considered. As the JastEMF integration process (cf. Figure 4 2 ) automatically
derives a JastAdd AST specification from the Ecore metamodel, JastEMF provides such
consistency for concepts in EsynΩ . However, JastEMF does not yet check the correct-
ness of the semantics mapping (EsemΩ ), which we like to improve in the future by an
additional analysis step integrated in JastEMF.

Metamodel and model compatibility (MM 4) and semantics modularity (AG 4) both
relate to extensibility, reuse and modularisation. In the EMF, metamodel and model
compatibility helps to integrate existing languages, their tooling and models — i.e., to
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reuse existing metamodel implementations. Therefore, Ecore supports importing and
referencing metaclasses and their implementation from other metamodels. For such
reuse scenarios JastAdd has no appropriate mechanism. AST specifications can be com-
bined from several specifications, but JastAdd always generates a new evaluator imple-
mentation and does not support the reuse of existing AST classes and their semantics.
Consequently, reuse can only be achieved on the specification, but not implementation
level. This limitation could be addressed by extending the JastAdd AST specification
language with a packaging and package import concept that conforms to Ecore’s meta-
model imports8.

On the other hand, JastAdd’s aspect mechanism and weaving capabilities permit
semantic extensions of languages by contributing new attributes (and node types) to
an existing abstract syntax. As the EMF does not support the external contribution of
structural features to existing metaclasses, the original metamodel needs to be changed
to incorporate semantic extensions. This is a severe drawback considering incremental
metamodel evolution that motivates further research on advancing modularity in future
metamodelling approaches.

6.2 Limitations and Further Issues

JastAdd Rewrite Issues. JastAdd is not only a RAG system, but also supports local,
constrained rewrites that are executed as soon as a node with an applicable rewrite is
accessed. Within rewrites new nodes can be constructed and existing ones rearranged.
We observed that in EMF such AST rearrangements in the combination with tree copies
can lead to broken ASTs. Therefore, JastEMF does not support JastAdd rewrites.

Semantics of Incomplete Models. In dynamic environments such as the EMF, syntac-
tically incomplete models are common throughout editor sessions. However, semantics
of syntactically erroneous models are not defined and typically their evaluation fails
with an exception. To our experience, most interactive modelling tools do not shield
editor users before such exceptions. There is a need for more sensitive consideration of
semantics in metamodelling frameworks and associated tooling, such that users are not
disturbed by semantic exceptions caused by syntactically erroneous structures.

For future work, we consider the investigation of incremental AGs [23,24], which
trace attribute dependencies to reduce the recomputation overhead in the presence of
frequent context information changes, to address these issues. Metamodelling tools
could use their attribute dependency knowledge to decide whether an attribute is de-
fined or not. If an attribute is not defined — i.e., depends on missing model parts — its
evaluation could be delayed to prevent it from throwing an exception.

In summary, we think, that JastEMF’s benefits clearly outweigh the remaining tech-
nical problems. It demonstrates, that RAGs contribute declarativeness, well-foundness,
generativeness and ease of specification for semantics-integrated metamodelling. On
the other hand, metamodels and their accompanying frameworks provide convenient

8 To by-pass the problem, we introduced simple helper properties and attributes in the SiPLE-
Statemachines case study. The properties hold specified entry actions, guard expressions and
transition actions as ordinary Java strings whereas the attributes initialise SiPLE’s parser to
transform these strings into appropriate SiPLE ASTs.
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means to specify the API of AG generated tools and prepare their integration into soft-
ware development platforms.

7 Related Work

There are a number of approaches related to and dealing with metamodel semantics.
In particular we distinguish related work that (1) can benefit from our approach, like
concrete syntax mapping tools and (2) propose alternative solutions, like constraint
languages, integrated metamodelling environments, graph-grammars or abstract state
machines. In the following we investigate each of them.

Textual concrete syntax mapping tools like EMFText [9] and MontiCore [10] com-
bine existing parser generator technology with metamodelling technology to realize
text-to-model parser generators [25]. They enable users to generate powerful text edi-
tors including features such as code completion and pretty printing. However, semantics
analysis is often neglected or involves proprietary meachanims for implementing a sub-
set of static semantics like name analysis manually. Such tools could immediately profit
from our integration of formal semantics in metamodelling.

Constraint languages. like the OCL [16] or XCheck [7] enable the specification
of well-formedness constraints on metamodels. The rationale behind OCL is to de-
fine invariants that check for context-sensitive well-formedness of models and to com-
pute simple derived values. However we are not aware of any application of OCL for
the specification of complete static semantics. In comparison AGs do not focus on
constraint definitions, but are widely applied for semantics specification and provide
advanced means to efficiently derive the context-sensitive information language con-
straints usually depend on9.

Integrated metamodelling environments. provide dedicated languages to specify ab-
stract syntax and semantics but often lack a formal background. Usually semantics have
to be specified using a special constraint language and a special operational (i.e. imper-
ative) programming language, both tightly integrated with a metamodelling language
and its framework.

A typical representative is Kermeta [27]. A language in Kermeta is developed by
specifying its abstract syntax with an Essential MOF (EMOF) metamodel and static se-
mantics with OCL constraints. Execution semantics can be implemented using a third
imperative programming language. Abstract syntax, static semantics and execution se-
mantics are developed in modules that can be combined using Kermeta’s aspect lan-
guage. The modularization concept supported by Kermeta’s aspect language seems very
similar to the aspect concept of JastAdd: They both support the separation of cross-
cutting semantic concerns. Additionally, Kermeta and JastEMF projects immediately
benefit from EMF tooling in Eclipse.

Our main concern about such integrated metamodelling environments is the over-
head for developers to learn and apply all their different proprietary languages. We
believe that JastAdd’s seamless integration with Java has two main benefits: (1) one

9 E.g., consider the specification of a data-flow analysis as presented in [26].
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can rely on Java’s standardised and well-known semantics and (2) the smooth learning
curve from Java to declarative semantics specification reduces the initial effort for using
JastAdd.

Graph-grammars are a convenient approach not only to specify structures — i.e.
metamodels’ abstract syntax — but also operations on these structures — i.e. meta-
model semantics. Given such specifications, graph rewrite systems can be used to de-
rive appropriate repository implementations and semantics [28]. The main advantages
of the graph-grammar approach are its well-founded theoretical background and its uni-
form character where syntax and semantics can be specified within a single formalism.

PROGRESS. An important research project, that exploited graph-grammars for tool
development and integration, has been the IPSEN project [28]. Its programming
language PROGRESS (PROgramming with Graph REwriting Systems) supports
the specification of graph schemas (i.e. metamodels), graph queries and graph trans-
formations (i.e. semantics). PROGRESS graph schemas rely on attributed graph
grammars to specify node attributes and their derived values. Though, attributed
graph-grammars should not be confused with AGs. Attributed graph-grammars
have no distinction between inherited and synthesized attributes and consequently
lack many convenient AG concepts like broadcasting. In summary, the IPSEN
project demonstrated, that graph-grammars are a convenient formalism to specify
a broad range of tools and automatically integrate their repositories and semantics.

FUJABA. A more recent graph rewriting tool is FUJABA [29], which integrates Uni-
fied Modelling Language (UML) class diagrams and graph rewriting to specify
semantics of class operations. It provides story driven modelling as a visual lan-
guage to define rewrite rules, which can be compared to UML activity diagrams.
MOFLON [30] adapts FUJABA to support the Meta Object Faclility (MOF) as a
modelling language.

In general we think, that graph-rewriting systems are harder to understand than AGs.
Given a set of rewrite rules, it is complicated to foresee all possible consequences of
their application on start graphs. Rewrite results usually depend on the order of rule
applications. To solve this problem, it is necessary to ensure that the rewrite system
is confluent, which implies a lot of additional effort, not only for the proof of conflu-
ence, but also for the design of appropriate stratification rules. On the other hand, AGs
require a basic context-free structure or a spanning tree they are defined on whereas
graph rewriting does not rely on such assumptions. Furthermore, RAGs can only add
information to an AST but not remove them or even change its structure. However,
there are AG concepts such as higher order attributes [15] (non-terminal attributes in
JastAdd) or JastAdd’s local rewrite capabilities which improve in that direction.

Abstract State Machines (ASMs) are a theoretically backed approach to specify exe-
cution semantics [14]. For the specification of metamodel semantics they were recently
applied in [31] to define sets of minimal modelling languages with well defined ASM
semantics — so called semantic units. The semantics of an arbitrary modelling language
L can now be defined by a mapping of L to such semantic units (semantic anchoring).
Of course, the transformation to semantic units and context-sensitive well-formedness
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constraints (i.e., static semantics) still have to be defined using other approaches. Thus,
ASMs and our RAG approach complement each other for the purpose to specify meta-
models’ execution and static semantics.

8 Conclusion

In this paper we presented the application of RAGs for metamodel semantics. We
sketched necessary foundations — essentially that most metamodelling languages can
be decomposed into context-free and context-sensitive language constructs — and pre-
sented JastEMF, an example integration of the EMF metamodelling framework and
the JastAdd RAG system. Finally, we demonstrated and evaluated the advantages and
limitations of our approach by a case study, which is exemplary for both compiler con-
struction (SiPLE) and metamodelling (statemachines). This shows, that for MDSD the
well-investigated formalism of RAGs is a valuable approach for specifying metamodel
semantics and on the other hand, MDSD introduces interesting application areas and
new challenges for RAG tools.
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Abstract. We describe the development of space-efficient implementa-
tions of GLL parsers, and the process by which we refine a set-theoretic
model of the algorithm into a practical parser generator that creates prac-
tical parsers. GLL parsers are recursive descent-like, in that the structure
of the parser’s code closely mirrors the grammar rules, and so grammars
(and their parsers) may be debugged by tracing the running parser in
a debugger. While GLL recognisers are straightforward to describe, full
GLL parsers present technical traps and challenges for the unwary. In
particular, näıve implementations based closely on the theoretical de-
scription of GLL can result in data structures that are not practical for
grammars for real programming language grammars such as ANSI-C.
We develop an equivalent formulation of the algorithm as a high-level
set-theoretic model supported by table-based indices, in order to then
explore a set of alternative implementations which trade space for time
in ways which preserve the cubic bound.

Keywords: GLL parsing, general context-free parsing, implementation
spaces, time-space tradeoffs.

1 The Interaction between Theory and Engineering

In Computer Science, the theoretician is mostly concerned with the correct-
ness and asymptotic performance of algorithms whereas the software engineer
demands ‘adequate’ time complexity on typical data coupled to memory re-
quirements that do not cause excessive swapping. The theoretician’s concerns
are independent of implementation but the engineer’s concerns are dominated
by it and so the two communities do not always communicate well. As a result,
our discipline has not yet achieved the comfortable symbiosis displayed by, for
example, theoretical and experimental physicists.

The dominant characteristic of theoretically-oriented presentations of algo-
rithms is under specification. It is fundamental practice for a theoretician to
specify only as much as is required to prove the correctness of the results because
this gives those results the widest possible generality, and thus applicability.

For the software engineer, under specification can be daunting: they must
choose data structures that preserve the asymptotic performance demonstrated
by the theoretical algorithm, and sometimes the performance expectations are
only implicit in the theoretician’s presentation. For instance, theoretical algo-
rithms will often use sets as a fundamental data type. To achieve the lowest
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asymptotic bounds on performance the algorithm may need sets that have con-
stant lookup time (which suggests an array based implementation) or sets whose
contents may be iterated over in time proportional to their cardinality (which
suggests a linked list style of organisation). The engineer may in fact be less
concerned by the asymptotic performance than the average case performance on
typical cases, and so a hash-table based approach might be appropriate. These
implementation issues may critically determine the take up of a new technique
because in reworking the algorithm to accommodate different data representa-
tions, the implementer may introduce effects that make the algorithm incorrect,
slow or impractically memory intensive in subtle cases.

This paper is motivated by our direct experience of the difficulties encountered
when migrating a theoretically attractive algorithm to a practical implementa-
tion even within our own research group, and then the further difficulties of
communicating the results and rationale for that engineering process to collab-
orators and users.

The main focus of this paper is a modelling case study of our GLL generalised
parsing algorithm [6] which yields cubic time parsers for all context free gram-
mars. Elsewhere we have presented proofs of correctness and asymptotic bounds
on performance along with preliminary results that show excellent average case
performance on programming language grammars. It is clear, however, that the
theoretical presentations have proved somewhat difficult for software engineers,
who may find the notation opaque or some of the notions alien, and who may
miss some of the critical assumptions concerning data structures which are re-
quired to have constant lookup time. Direct implementation of these structures
consumes cubic memory and thus more subtle alternatives are required. In this
paper we shall explicitly address the motivation for our choice of high level data
structures, and explain how we migrate a näıve version to a production version
by successive refinement. Our goal is to describe at the meta-level the process
by which we refine algorithm implementations.

We view this as a modelling process. Much of the model-driven engineering
literature is concerned with programming in the large, that is the composition of
complete systems from specifications at a level of abstraction well away from the
implementation platform, potentially allowing significant interworking and reuse
of disparate programming resources. This paper is focused on programming in
the small. We use a specification language that avoids implementation details of
the main data structures, and then use application specific measures to refine
the specification into an implementation with optimal space-time tradeoff. We
do this in a way that lends itself to automation, holding out the prospect of
(semi-)automatic exploration of the implementation space. It is worth investing
this effort because we are optimising a meta-program: our GLL parser generator
generates GLL parsers, and every parser user will benefit from optimisations
that we identify.

Our models are written in LC, a small object-oriented language with an
extremely simple type system based on enumerations and tables. Our goal is to
develop a notation that is comfortable for theoretical work from which
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implementations may be directly generated, and which also allows tight speci-
fication of memory idioms so that the generated implementations can be tuned
using the same techniques that we presently implement manually, but with much
reduced clerical overhead.

We begin with a discursive overview of GLL and then describe some aspects
of the LC language. We give an example GLL parser written in LC and explain
its operation. We then show how memory consumption may be significantly
reduced without incurring heavy performance penalties. We finish by discussing
the potential to semi-automatically explore the space of refined implementations
in search of a good time-space trade off for particular kinds of inputs.

2 General Context Free Parsing and the GLL Algorithm

Parsing is possibly one of the most well studied problems in computer science
because of the very broad applicability of parsers, and because formal language
theory offers deep insights onto the nature of the computational process. Trans-
lators such as compilers take a program written in a source (high level) language
and output a program with the same meaning written in a target (machine) lan-
guage. The syntax of the source language is typically specified using a context
free grammar and the meaning, or semantic specification, of a language is typi-
cally built on the syntax. Thus the first stage of compilation is, given an input
program, to establish its syntactic structure. This process is well understood and
there exist linear algorithms for large classes of grammars and cubic algorithms
that are applicable to all context free grammars.

Formally, a context free grammar (CFG) consists of a set N of non-terminal
symbols, a set T of terminal symbols, an element S ∈ N called the start symbol,
and a set of grammar rules of the form A ::= α where A ∈ N and α is a string in
(T ∪ N)∗. The symbol ε denotes the empty string, and in our implementations
we will use # to denote ε. We often compose rules with the same left hand sides
into a single rule using the alternation symbol, A ::= α1 | . . . | αt. We refer to
the strings αj as the alternates of A.

We use a grammar Γ to define a language which is a set of strings of ter-
minals. We do this by starting with the start symbol and repeatedly replacing
a nonterminal with one of its alternates until a string containing no nonter-
minals is obtained. A derivation step is an expansion γAβ⇒γαβ where γ, β ∈
(T∪N)∗ and A ::= α is a grammar rule. A derivation of τ from σ is a sequence
σ⇒β1⇒β2⇒ . . .⇒βn−1⇒τ , also written σ

∗⇒τ or, if n > 0, σ
+⇒τ . The language

defined by a CFG Γ is the set of all strings u of terminals which can be derived
from the start symbol, S, of Γ . Parsing is the process of determining, given a
string u, some or all of the derivations S

∗⇒u.
Of the linear parsing techniques perhaps the most widely used is the LR-table

driven stack based parser [3]. For the class of grammars which admit LR-parsers
the technique is straightforward to implement. However, the class of grammars
does not include any grammars for ‘real’ programming languages and as a result
implementations ‘modify’ the technique to extend its applicability. It can be
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hard to reason about the correctness or the subtle behaviour of the resulting
implementation.

An alternative is to use a general technique such as Earley[2], CYK[10] or
GLR[8], [5]. In worst case Earley algorithms are cubic, CYK requires the gram-
mar to be rewritten in 2-form and standard GLR algorithms are unbounded poly-
nomial order, although the typical performance of GLR algorithms approaches
linear and a cubic version has been developed [7]. These general algorithms are
used in the natural language community but have had relatively limited take up
within mainstream computer science. This is, at least to some extent, because
they are hard for many implementers to understand and their implementation
needs to be done with a great deal of care to get acceptable space and runtime
performance. For example, ASF+SDF [9] uses Farshi’s version of GLR [4] which
achieves correctness in a rather brute force way and hence acquires a perfor-
mance cost, and Bison includes a GLR mode [1] which does not employ the full
details of the GLR approach and hence cannot parse an input of length 20 for
some highly ambiguous grammars.

Recently we have introduced the general GLL parsing technique [6], which
is based on the linear recursive descent paradigm. Recursive descent (RD) is
an attractive technique because the parser’s source program bears a close rela-
tionship to the grammar of the language and hence is easy to reason about, for
instance by tracing the code in a debugger. However, the class of grammars to
which RD can be applied is very limited and many extensions have been im-
plemented which use either full or limited backtracking. Full backtracking can
result in exponential runtime and space requirements on some grammars and
limited backtracking will fail to parse some grammars correctly. GLL models
full backtracking by maintaining multiple process threads. The worst-case cubic
complexity is achieved by using a Tomita-style graph structured stack (GSS) to
handle the function call stacks and left recursion (a fundamental problem for RD
parsers) is handled with loops in this graph. (A non-terminal A is left recursive
if there is a string μ such that A

+⇒Aμ, and a grammar is left recursive if it has
a left recursive nonterminal.)

The GLL technique is based on the idea of traversing the grammar, Γ , using
an input string, u, and we have two pointers one into Γ and one into u. We
define a grammar slot to be a position immediately before or after any symbol
in any alternate. These slots closely resemble LR(0) items and we use similar
notation, X ::= x1 . . . xi · xi+1 . . . xq denotes the slot before the symbol xi+1.
The grammar pointer points to a grammar slot. The input pointer points to a
position immediately before a symbol in the input string. For u = x1 . . . xp, i is
the position immediately before xi+1 and p is the position immediately before
the end-of-string symbol, which we denote by $.

A grammar is traversed by moving the grammar pointer through the grammar.
At each stage the grammar pointer will be a slot of the form X ::= α · xβ or
X ::= α· and the input pointer will be an input position, i. There are then
four possible cases: (i) If x = ai+1 the grammar pointer is moved to the slot
X ::= αx · β and the input pointer is moved to i + 1. (ii) If x is a nonterminal
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A then the ‘return’ slot, X ::= αx · β is pushed onto a stack, the grammar
pointer is moved to some slot of the form A ::= ·γ and the input pointer is
unchanged. (iii) If the grammar pointer is X ::= α· and the stack is nonempty,
the slot Y ::= δX · μ which will be on the top of the stack is popped and this
becomes the grammar pointer. (iv) Otherwise if grammar pointer is of the form
S ::= τ · and the input pointer is at the end of the input a successful traversal
is recorded, else the traversal is terminated in failure. Initially the grammar
pointer is positioned at a slot S ::= ·α, where S is the start symbol, and the
input pointer is 0.

Of course we have not said how the slot A ::= ·γ in case (ii) is selected.
In the most general case this choice is fully nondeterministic and there can be
infinitely many different traversals for a given input string. We can reduce the
nondeterminism significantly using what we call selector sets. For a string α and
start symbol S we define firstT(α) = {t|α ∗⇒tα′}, and first(α) = firstT(α)∪
{ε} if α

∗⇒ε and first(α) = firstT(α) otherwise. We also define follow(α) =
{t|S ∗⇒ταtμ} if α �= S and follow(S) = {t|S ∗⇒τStμ} ∪ {$}.

Then for any slot X ::= α · β we define select(X ::= α · β) to be the union of
the sets first(βx), for each x ∈ follow(X), and we can modify the traversal
case (ii) above to say (ii) If x is a nonterminal A and there is a grammar slot
A ::= ·γ where ai ∈ select(γ) then the ‘return’ slot, X ::= αx · β is pushed onto
a stack, the grammar pointer is moved to the slot A ::= ·γ and the input pointer
is unchanged. The initial grammar pointer is also set to a slot S ::= ·α where
a0 ∈ select(A ::= ·α).

Whilst the use of selector sets can significantly reduce the number of possible
choices at step (ii), in general there will still be more than one qualifying slot
A ::= ·γ and, in some cases, infinitely many traversals. GLL is a technique
designed to cope with this in worst-case cubic time and space.

At step (ii), instead of continuing the traversal each possible continuation path
is recorded in a context descriptor and ultimately pursued. We would expect a
descriptor to contain a slot, an input position and a stack. Then, at step (ii), for
each slot A ::= ·γ such that ai ∈ select(A ::= ·γ) a descriptor is created with that
slot, the current stack onto which the return slot is pushed and input position i.
A descriptor (L, s, i) is ‘processed’ by restarting the traversal with the grammar
pointer at the slot L, s as the stack and input pointer at i. There are potentially
infinitely many descriptors for a given input string because there are potentially
infinitely many stacks. The solution, introduced by Tomita for his initial version
of the GLR technique, is to combine all the stacks into a single graph structure,
merging the lower portions of stacks where they are identical and recombining
stack tops when possible. At the heart of the GLL technique are functions for
building this graph of merged stacks, which we call the GSS. Instead of a full
stack, descriptors then contain a node of the GSS which corresponds to the top
of its associated stack(s), thus one descriptor can record several partial traversals
provided they restart at the same grammar and input positions.

So far we have addressed only the recognition of a string; we want to capture
the syntactic structure to pass on to later stages in the translation process. A
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common method for displaying syntactic structure is to use a derivation tree: an
ordered tree whose root is labelled with the start symbol, leaf nodes are labelled
with a terminal or ε and interior nodes are labelled with a non-terminal, A say,
and have a sequence of children corresponding to the symbols in an alternate of
A. This is a derivation tree for a1 . . . an if the leaf nodes are labelled, from left to
right, with the symbols a1, . . . , an or ε. The problem is that for ambiguous gram-
mars one string may have very many different syntactic structures and so any
efficient parsing technique must use an efficient method for representing these.
The method used by GLR parsers is to build a shared packed parse forest (SPPF)
from the set of derivation trees. In an SPPF, nodes from different derivation trees
which have the same tree below them are shared and nodes which correspond
to different derivations of the same substring from the same non-terminal are
combined by creating a packed node for each family of children. The size of such
an SPPF is worst-case unbounded polynomial, thus any parsing technique which
produces this type of output will have at least unbounded polynomial space and
time requirements. The GLL technique uses SPPF building functions that con-
struct a binarised form of SPPF which contains additional intermediate nodes.
These nodes group the children of packed nodes in pairs from the left so that
the out degree of a packed node is at most two. This is sufficient to guarantee
the SPPF is worst-case cubic size. In detail, a binarised SPPF has three types
of nodes: symbol nodes, with labels of the form (x, j, i) where x is a terminal,
nonterminal or ε and 0 ≤ j ≤ i ≤ n; intermediate nodes, with labels of the form
(t, j, i); and packed nodes, with labels for the form (t, k), where 0 ≤ k ≤ n and
t is a grammar slot. We shall call (j, i) the extent (j, i are the left and right
extents respectively) of the SPPF symbol or intermediate node and k the pivot
of the packed node.

3 The LC Specification Language

LC is a small object oriented language which provides only a single primitive data
type (the enumeration) and a single data structuring mechanism (the table). LC
is designed to allow high-level descriptions of set-theory based algorithms whilst
also allowing quite fine grained specification of the implementation in terms of
the way the algorithm’s objects are to be represented in memory. In this respect,
LC is an unusual language with elements of both high level specification lan-
guages and very low level assembler-like languages. At present, LC is a (mostly)
paper notation which we use here to describe data structure refinements. Our
intention is that an LC processor will be constructed which can generate exe-
cutable programs written in C++, Java and so on as well as LATEX renderings
of our algorithms in the style of [6]. (We note in passing that LC’s syntax is
hard to parse with traditional deterministic parsers, so in fact LC itself needs a
GLL or other general parser). In this section we describe the type system of LC
along with a few examples of sugared operations and control flow sufficient to
understand the description of the GLL parser below.
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Lexical conventions. An LC program is a sequence of tags and reserved symbols,
notionally separated by white space. A tag is analogous to an identifier in a
conventional programming language except that any printable character other
than the nine reserved characters ( ) [ ] , | : " and comments delimited
by (* *) may appear in a tag. Hence adrian , 10 and -3.5 are all valid
tags. Where no ambiguity results, the whitespace between tags may be omitted.
Character strings are delimited by " and may include most of the ANSI-C escape
sequences.

Primitive types. The LC primitive data type generator is the enumeration which
maps a sequence of symbols onto the natural numbers and thus into internal ma-
chine integers. The enumeration is a |-delimited list with a prepended tag which
is the type name. A boolean type might be defined as Bool ( false | true ).
Literals of this type are written Bool::false and Bool::true. Where no ambi-
guity results, the tag may be written simply as the tag true or false. Methods
may be defined by enumerating the appropriate finite map from the set of input
parameters to the output values, so to define a boolean type that contains a
logical and operation we write:

Bool ( false | true
Bool &(Bool, Bool) := ( (false, false),

(false, true) ) )

Where no ambiguity results, methods may be invoked using infix notation.
Every primitive type has an extra value () read as empty. Newly declared

variables are initialised to () and variables may be ‘emptied’ by assigning () to
them.

We can declare some integer types as

Int3 ( -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 )
Unsigned3 ( 0 | 1 | 2 | 3 | 5 | 6 | 7 )

We shall assume the existence of a type Int which has been defined in this
way and which contains sufficient values to allow our computations to proceed
without overflow and the usual arithmetic operations.

For each enumeration, the first element maps to 0, the second to 1 and so
on. We use |x| to denote the cardinality of set x and ||x|| to represent the
memory space required to represent an element of x. If |T | is the number of
explicitly declared enumeration elements then there are |T | + 1 elements in the
type (allowing for the extra value () ) and so a value of type T occupies at
least ||t|| = �log2(|T | + 1)	 binary digits in memory.

Enumerations may be composed: BothBoolAndUnsigned3 (Bool |
Unsigned3) is a shorthand for

BothBoolAndUnsigned3 ( false | true | 0 | 1 | 2 | 3 | 5 | 6 | 7 )

It is an error to compose enumerations which share tag values.
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Tables. Each variable in LC is a table with zero or more dimensions each of
which has an index set defined by an LC enumeration. So, Bool x(Int3)(Bool)
declares a two dimensional array of 16 boolean variables, called x(-3)(false),
x(-3)(true), x(-2)(false), . . . , x(3)(true). We may write Bool x(Int3,
Bool) as a shorthand declaration.

Representing types with LC tables. Since LC’s type system is so simple, it is
reasonable to wonder whether it is sufficient. It clearly is complete in funda-
mental engineering terms because nearly all modern computers use a single
virtual address space of binary memory locations corresponding to a one dimen-
sional LC table. All data structures ultimately are mapped to this representation.
Hoare’s classic survey of datastructuring techniques listed five mechanisms by
which primitive types are combined: Cartesian product, discriminated union,
map, powerset and recursive data type. LC provides each of these: a comma-
delimited list of type and field names, for example CartProd (Int3 i, Bool
b), denotes a Cartesian product and corresponds to a record structure in Pascal
or a struct in C named CartProd with two fields named i and b; a |-delimited
list of type and field names, for example DiscUnion (Int3 i | Bool b), de-
notes a discriminated union and plays a similar role to a C union; maps are
directly represented by tables of functions; powersets are represented by tables
indexed by the type of the powerset whose cells are either empty or contain
the element of the unusual enumeration type Set (isMember); and recursive
types by (impractically) large tables: for instance the edges of a graph of nodes
containing a CartProd field is specified as Set g(CartProd, CartProd). The
process by which such extensive tables is implemented is described in a later
section.

Assignments. In LC, assignment is central. Simple assignment is written x :=
2. Structurally type compatible assignments may be done is a single statement
as in (Int3 x, Bool y, Unsigned3 z) := (3, true, 3). We provide some
higher level assignment operations which are used as hints by the datastructure
refinement stage:

x addTo s is shorthand for s(x) := isMember
x deleteFrom s is shorthand for s(x) := ()
y selectDelete s is shorthand for: nondeterministically select an index i
of an occupied cell in s then execute y := s(i) s(i) := ().
y selectNewestDelete s is like selectDelete except that the most re-
cently assigned cell is guaranteed to be selected (leading to stack-like be-
haviour)
y selectOldestDelete s is like selectDelete except that the occupied
cell whose contents has been unchanged the longest is guaranteed to be
selected, leading to queue-like behaviour.

Control flow. An LC label may appear before expressions or statements, labels
are denoted by a tag followed by a colon. Labels may be assigned to variables and
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passed as parameters; their type is CodeLabel and there is an implicit definition
of an enumeration comprising all of the labels in a program in the order in which
they are declared. Control may be transferred to a literal label or the contents
of a CodeLabel variable with the goto statement. LC also includes the usual if
and while statements. LC provides some syntactically sugared predicates such
as x in s which is shorthand for s(x) != (), i.e. that the cell in s indexed by
x is non-empty.

The for statement provides a variety of higher level iteration idioms.

for x in T and for x in Y each execute once for each member of the
enumeration in type T or non-empty member of table Y respectively; on
each iteration x will have a different element but there is no guarantee of the
order in which elements are used.
for x over T and for x over Y each execute once for each member of
the enumeration in type T or non-empty member of table Y respectively,
with the elements being used in the order in which they are declared in T
or, respectively, Y. In the case of a table, where the index is a tuple, the
rightmost element varies most rapidly.

Text strings and output. LC strings are delimited by " and accept most ANSI-
C escape sequences. An LC program can produce textual output via a method
write() which, by analogy with ANSI-C’s printf() function takes a string with
embedded place holders %. No type need be supplied, since LC values carry their
class with them, but most ANSI-C formatting conventions are supported.

4 An Example GLL Parser

In this section we discuss an LC GLL parser for the grammar

S ::= A S b | ε A ::= a

In the listing below, data types are declared in lines 1–19 and variables in lines
20–30. The GLL parser body is in lines 42–71 and the support routines (which
are grammar independent) are appended in lines 73–111. The dispatcher, which
dictates the order in which contexts are computed is at lines 35–40.

There are primitive types GSSLabel, SPPFLabel and ContextLabel whose el-
ements are certain grammar slots together with, in the case of SPPFLabel, the
grammar terminals and nonterminals, and # (epsilon). There are explicit maps
contextLabel, codeLabel, and sppfLabel from GSSLabel to contextLabel
and from contextLabel to CodeLabel and sppfLabel. We also define the se-
lector sets for each grammar slot, and abort sets which are the complements of
the selector sets. The maps isSlot1NotEnd and isSlotEnd take a ContexLabel
and return a Boolean. The former returns true if the corresponding slot is of
the form X ::= x · α where x is a terminal or nonterminal and α �= ε, and the
latter returns true if the corresponding slot is of the form X ::= γ·. The map
lhsSlot takes a ContextLabel and returns the left hand side nonterminal of
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the corresponding slot. For readability we have left the explicit definitions of all
these types out of the listing.

The methods findSPPFSymbolNode, findSPPFPackNode and findGGSNode re-
turn a node with the specified input attributes, making one if it does not already
exist. Their definitions have also been omitted so as not to pre-empt the data
structure implementation discussion presented in the later sections of this paper.

1 Set (isMember)
2 N ( A | S )
3 T ( a | b )
4 Lexeme (T | EndOfString)
5 GSSLabel (...)
6 SPPFLabel (...)
7 ContextLabel (...)
8 CodeLabel codeLabel(ContextLabel) := (...)
9 ContextLabel contextLabel(GSSLabel) := (...)

10 SPPFLabel sppfLabel(ContextLabel) := (...)
11 Set abortSet... := (...)
12 Set selectorSet... := (...)
13 GSSNode (GSSLabel s, Int i)
14 GSS (Set GSSEdge (GSSNode src, SPPFSymbolNode w, GSSNode dst))
15 SPPFSymbolNode (SPPFLabel s, Int leftExtent, Int rightExtent)
16 SPPFPackNode (SPPFLabel s, Int pivot)
17 SPPF (SPPFSymbolNode symbolNode, SPPFPackNode packNode,
18 SPPFSymbolNode left, SPPFSymbolNode right)
19 Context (Int i, ContextLabel s, GSSNode u, SPPFSymbolNode w)
20 GSS gss
21 SPPF sppf
22 Context c_C (* Current context *)
23 Int c_I (* Current input pointer *)
24 GSSNode c_U (* Current GSS node *)
25 SPPFSymbolNode c_N (* Current SPPF node *)
26 SPPFSymbolNode c_R (* Current right sibling SPPF node*)
27 GSSnode u_0 (* GSS base node *)
28 Set U(Context) (* Set of contexts encountered so far *)
29 Set R(Context) (* Set of contexts awaiting execution *)
30 Set P(GSSNode g SPPFSymbolNode p) (* Set of potentially unfinished pops *)
31 gll_S(
32 SPPF parse(Lexeme I(Int))(
33 goto L_S
34

35 L_Dispatch:
36 c_C selectDelete R
37 if c_C = () return sppf
38 c_I := c_C(i)
39 c_N := c_C(w)
40 goto codeLabel(c_C(s))
41

42 L_A:
43 if I(i) in selectorSet_A_1 addContext(A_1, c_U, c_I, ())
44 goto L_Dispatch
45

46 L_A_1:
47 c_R := (a, c_I, c_I + 1) c_N := getSPPFNodeP(A_1_1, c_N, c_R) c_I := c_I + 1
48 pop
49 goto L_Dispatch
50

51 L_S:
52 if I(i) in selectorSet_S_1 addContext(S_1, c_U, c_I, ())
53 if I(i) in selectorSet_S_2 addContext(S_2, c_U, c_I, ())
54 goto L_Dispatch
55

56 L_S_1:
57 c_U := updateGSS(S_1_1) goto L_A
58 L_S_1_1:
59 if I(c_I) in abortSetS_1_2 goto L_Dispatch
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60 c_U := updateGSS(S_1_2) goto L_S
61 L_S_1_2:
62 if I(c_I) in abortSetS_1_3 goto L_Dispatch
63 c_R := (b, c_I, c_I + 1) c_N := getSPPFNodeP(S_1_3, c_N, c_R) c_I := c_I + 1
64 pop
65 goto L_Dispatch
66

67 L_S_2:
68 c_R := (#, c_I, c_I) c_N := getSPPFNodeP(S_2_1, c_N, c_R)
69 pop
70 goto L_Dispatch
71 )
72

73 Void addContext(ContextLabel s, GSSNode u, Int i, SPPFSymbolNode w)
74 if (s, u, w) not in U(i) (
75 (s, u, w) addto U(i)
76 (s, u, w) addto R(i)
77 )
78

79 Void pop() (
80 if c_U = u_0 return
81 (c_U, c_N) addto P
82 for (w, u) in gss(c_U)
83 addContext(contextLabel(c_U(s)), u, c_I,
84 getSPPFNodeP(contextLabel(c_U(s)), w, c_N))
85 )
86

87 GSSNode updateGSS(ContextLabel s) (
88 w := c_N
89 v := findGSSNode(s, c_I)
90 if (v, w, c_U) not in gss (
91 (v , w, c_U) addto gss
92 for z in P(v) addContext(s, c_U, z(rightExtent), getSPPFNodeP(s, w, z))
93 )
94 return v
95 )
96

97 SPPFSymbolNode getSPPFNodeP(ContextLabel s, SPPFSymbolNode z, SPPFSymbolNode w) (
98 if isSlot1NotEnd(s) return w
99 SPPFLabel t

100 if isEndSlot(s) t := lhsSlot(s) else t := sppfLabel(s)
101 ( , k, i) := w
102 if z != SPPFSymbolNode::() (
103 y := findSPPFSymbolNode(t, z(leftExtent), i)
104 findSPPFPackNode(y, s, k, z, w)
105 )
106 else (
107 y := findSPPFSymbolNode(t, k, i)
108 findSPPFPackNode(y, s, k, (), w)
109 )
110 return y
111 )
112 )

5 The Impact of Language Size

Programming languages can vary by factor of seven or more in the cardinality
of key enumerations for GLL parsers. Table 1 shows the size of the GSSLabel,
SPPFLabel and ContextLabel enumerations for a range of languages. In each
case we have used the most authoritative available grammar: language stan-
dards for ANSI-C, Pascal and C++; the original report for Oberon and the VS
COBOL II grammar recovered from IBM documentation by Ralf Lämmel and
Chris Verhoef.
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Table 1. GLL measures for programming languages

Grammar Enumeration extents Ring Sets
GSS SPPF context length Defined Unique Saving

Oberon 1990 240 645 481 3 442 204 54%
C ANSI X3.159-1989 277 665 505 5 507 176 65%
Pascal: ISO/IEC 7185:1990 393 918 755 3 626 234 63%
Java JLS1.0 1996 384 949 755 4 668 227 66%
C++ ISO/IEC 14882:1998 722 1619 1287 4 1351 294 78%
COBOL (SDF) 1767 4530 3702 5 3502 863 75%

We also show the grammar’s ring length. This is the longest sequence of ter-
minals present in any alternate in the grammar. It turns out that the dimensions
of some tables in a GLL parser may be reduced in size from O(the length of the
input string) to O(ring length).

Finally, we show the effect of set merging. The number of defined sets is the
number of unique sets referenced by a GLL parser: that is the selector sets and
the abort sets. It turns out that many of these sets have the same contents, so
we can alias names together and only store one table of isMember for two or
more set names.

6 Process Management in GLL

The description of the GLL technique in Section 2 is essentially declarative. Here
we focus on possible implementations of the control-flow in GLL parsing. The
heart of GLL parsing from an operational point of view is the task scheduler. GLL
contexts (line 11) comprise a CodeLabel L, at which to resume execution, and
the input pointer, GSS and SPPF nodes that were current at the time the context
is created. Each of these specifies an instance of the parser process. Whenever a
GLL parser encounters potential multiple control flow paths it creates a process
context for each path and then terminates the current process. This happens in
two places: (i) whilst processing a nonterminal when the selected productions
are added as new processes and (ii) when rules which called a nonterminal are
restarted after a pop action (in either the pop or updateGSS functions).

Now, what is to stop the number of processes growing without limit? The
key observation is that our parsing process is context free, and this means that
all instances of a nonterminal matching a particular substring are equivalent, or
to put it another way, if a nonterminal A has already been matched against a
particular substring α then we do not have to rerun the parse function. Instead,
we merely need to locate the relevant piece of SPPF and connect the SPPF node
currently under construction to it. As result, each GLL context created within
a run of the parser need execute only once. To ensure this, we maintain a set of
contexts that have been seen on a parse U along with a set R which holds the
subset of U which currently awaits processing.
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Whenever a process terminates, either because it reached the end of a produc-
tion or because the current input lexeme is invalid, control returns to L_Dispatch
where a new process is scheduled for execution. In our example, processes are
removed non-deterministically (line 36). If we force stack removal by changing
the selectDelete operator to selectNewestDelete then we can simulate the
behaviour of a traditional depth-first RD parser except that GLL accepts left
recursive grammars. This can be very useful for debugging grammars. It turns
out that if we force queue removal using selectOldestDelete then we can make
significant memory savings, and reduce the maximum size of R.

7 Modelling GLL Data Structure Refinement

So far, our LC programs have been based on the notion of a flexible tables
which can change their size and even their dimensionality as required. From the
theoretician’s point of view, we assume that the tables are ‘large enough’. Table
elements may be accessed in unit time, and on the occasions that we need to
iterate over the contents of a table in time proportional to the number of used
elements, we assume that a parallel linked list has been constructed in tandem
with the table. This model (which we call Big-Fast-Simple or BFS) is sufficient
to reason about the asymptotic space and time performance of an algorithm,
but is likely to be over-simplistic for real problems, and indeed that is the case
for GLL. It turns out that directly implementing GLL data structures such as
the SPPF and GSS as arrays is practical for small examples, and is in fact very
useful for experimenting with pathological highly ambiguous grammars because
we get maximum speed that way, but for realistic inputs to parsers for even small
languages such as ANSI-C the direct implementation requires huge memory.

We shall now describe the procedure we use to optimise the space required
by our data structures with compromising asymptotic behaviour.

7.1 Address Calculation and Pointer Hopping

We might attempt to implement an LC table as a straightforward multi-
dimensional array, or as a sparse array made up of a tree of lists, or as some
sort of hybrid. An LC table, like any other kind of data structure, is a container
for other data structures and primitive data types; any instance of a type is
ultimately just a collection of filled cells along with access paths to each cell,
expressed in LC’s case as tuples of indexing expressions.

There are essentially only two mechanisms from which to construct access
paths: pointer hopping (i.e. linked data structures based on cells which contain
the names of other cells) and direct address calculation in which the access path is
a computation over the index expressions and some constants. The distinguishing
feature, then, is that with address calculation, a data cell’s address is a function
of its index expression only, but with linking a data cell’s address is a function of
its index expression and the contents of at least one other cell in the data type.
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Multi-dimensional arrays are the most common example of data structures
accessed solely by address calculation, but we include hash tables in this category
too. Space precludes consideration of hash tables in this paper although we shall
introduce our notation for refining LC tables to hash table implementations.

We can characterise the two styles of implementation in terms of their impact
on (i) space, (ii) access time for a particular index value, and (iii) iteration time,
i.e. the time taken to access all elements.

Consider a one dimensional table x of type Y indexed by type T in which
d ≤ |T | elements are utilised, the others being set to (). So, for example, this
LC declaration Y x(T) := ( (), u1, u1 ) creates a table in which d is 2 since
only the second and third elements are in use.

– For a linked implementation, the space required is O(d), the time to access
a particular element indexed by t ∈ T is O(d) and the time taken to iterate
over all elements is also O(d).

– For an implementation based on address calculation, the space required is
O(|T |), a particular element indexed by t ∈ T can be accessed in constant
time and the time taken to iterate over all elements is O(|T |).

We refine an LC table definition by annotating the dimensions to specify either
linking (indicated by parentheses) or address calculation indicated by square
brackets. We call these possibilities the dimension modes.

For a two dimensional table U x(T,S) indexed by types T (1|2|3|4) and
S(a|b|c|d) we might choose

1. U x( (T), (S) ) a fully linked representation (using a list of lists),
2. U x( [T, S] ) a two dimensional address calculation,
3. U x( [T], [S] ) two one-dimensional (vector) address calculations
4. U x( [T], (S) ) a vector of linked lists, or
5. U x( (T), [S] ) a linked lists of vectors.
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Fig. 1. Table refinement for 2-D structures
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These cases are illustrated in Figure 1 for the case of an 2D array indexed by un-
signed two-bit integers containing the following ordered pairs: (1, a),(1, b),(1, c),
(1, d), (2, b), (4, a) and (4, d).

For multi-dimensional tables implemented as anything other than a full array,
the dimension modes of a table are not the only things that affect performance
since both the size of a table and its access time for particular elements can be
dependent on the ordering of the dimensions. We should emphasise that this is
purely an implementation matter: the semantics of a table do not change if one
permutes the indices in its declaration as long as the indices in accesses to that
table are changed to match. This means that we have an opportunity to improve
performance through refinement without affecting the analysis of the algorithm
as specified in its original, unrefined, form.

Consider the set of ordered pairs (1, a), (3, a), (4, a) and (4, b). The leftmost
dimension uses three distinct values, but the rightmost dimension uses only two.
If we use the list-of-lists organisation, indexing as ((T), (S)) we can have two
structures, one listing the leftmost dimension first and the other the rightmost:
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The leftmost-first table requires more space than the rightmost. The driver for
this is the utilisation count for a dimension of a table. If we can order a table so
that, on average, the dimensions with the lowest utilisation counts are used first,
then we will on average reduce the size of the table. This effect, in which using
the dimension with the highest utilisation count first increases the overall size of
the structure can have a very significant effect on memory consumption. Consider
the case of a table x([Unsigned16], [Unsigned16]). This will comprise vectors
of length 216 elements. Let us imagine an extreme case in which only one row of
this table is in use, i.e. that we are using cells x(0,0), x(1,0), . . . x(65535, 0).
If we use the leftmost dimension as the first (column) index, then we need 65
536 row vectors within which only one element is in use. If, on the other hand,
we use the rightmost dimension for the column vector then we need only one
row vector, all elements of which are in use. We can see that the space allocation
for a table indexed as ([T], [T]) can vary between 2|T | and |T |2.

Access time can be affected too: if we use a ([Int], (Int)) indexing style
then the arrangement with the shortest average row list is fastest. This militates
in favour of placing the dimension with the highest utilisation rate first. These
two effects are occasionally in tension with each other, but for sparse tables it
turns out that the best organisation is to move all of the [] dimensions to the
left, and then sort the [] left-to-right by reducing utilisation counts and then to
sort the () dimensions left-to-right by reducing utilisation count.
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8 The Modelling Process

Having looked at notation for, and effects of, different organisations we shall now
look at a real example drawn from the GLL algorithm.

Consider the declaration of the GSS:

GSSNode (GSSLabel s, Int i)

SPPFSymbolNode (SPPFLabel s, Int leftExtent, Int rightExtent)

GSS (Set GSSEdge (GSSNode src, SPPFSymbolNode w, GSSNode dst))

GSS gss

We begin by flattening the declarations into a signature for table gss by
substitution:

Set gss ((*src*) GSSLabel, Int,

(*w*) SPPFLabel, Int, Int,

(*dst*) GSSLabel, Int

)

This is discouraging: on the face of it the signature for gss demands a seven
dimensional table, of which four dimensions are indexed by Int. We can reduce
the extent of those dimensions to Natural(n) (a natural number in the range 1
to n) since we know that extents and indices are bounded by the length of the
parser’s input string. Extents for the other dimensions may be found in Table 1:
for ANSI-C there are 277 elements in the GSSLabel enumeration and 665 in
the SPPFLabel enumeration. It is not unreasonable to expect a C compiler to
process a string of 10,000 (104) tokens: our GSS table would then require at least
1016 × 2772 × 665 ≈ 5.1 × 1022 bits, which is clearly absurd.

Now, the signature for a data structure may contain dependent indices. For
instance, in the GSS we can show that the left extent of a GSS edge label
w(leftExtent) is the same as the index of the destination GSS node, and the
rightExtent is the same as the index of the source node. These repeated dimen-
sions can be removed, at which point our signature is reduced to

Set gss ((*src*) GSSLabel, Int,

(*w*) SPPFLabel,

(*dst*) GSSLabel, Int

)

We must now identify dimensions that are candidates for implementation with
address calculation. If we have sufficient runtime profile information, we may
choose to ignore asymptotic behaviour and use hash tables tuned to the be-
haviour of our parser on real examples. In this paper, we restrict ourselves to
array-style address mapping only.

For dimensions that require constant time lookup we must use address map-
ping. For other dimensions, we may use address mapping if the improvement in
performance merits the extra space required.
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To find out if an indexing operation must be done in constant time, we must
analyse the behaviour of our gll() function. The outer loop is governed by the
removal of contexts from R at line 36. From our analysis in [6], we know that
there are quadratically many unique contexts in worst case so the outer loop is
O(n2). We also know that there are O(n) GSS nodes, and thus each node has
O(n) out-edges (since the number of edge labels is the number of SPPF labels
which is constant).

The parser function itself has no further loops: after each context is
extracted from R we execute linear code and then jump back to L_Dispatch.
Only the pop() and updateGSS() functions have inner loops: in pop() we
iterate over the O(n) out-edges of a GSS node performing calls to addContext()
and getSPPFNode() and in updateGSS() we iterate over the O(n) edges in
the unfinished pop set, P, again performing calls to addContext() and
getSPPFNode().

Clearly, addContext() and getSPPFNode() are executed O(n3) times, and so
must themselves execute in constant time. addContext() involves only set tests
and insertions which will execute in constant time if we use address calculation.
getSPPFNode() looks up an SPPF symbol node, and then examines its child
pack nodes: these operations must execute in constant time and they turn out
to be the most space demanding parts of the implementation.

We are presently concerned only with the GSS implementation so we return to
function updateGSS(). Lines 81-91 implement the updating of the GSS structure:
at line 89 we look for a particular GSS node which will be the source node for
an edge, and in lines 90 and 91 we conditionally add an edge to the destination
node. This operation is done O(n2) times, so the whole update can take linear
time without undermining the asymptotic performance. We choose to implement
the initial lookup (line 89) in constant time and allow linear time for the edge
update. By this reasoning, we reach a GSS implementation of

Set gss ((*src*) (GSSLabel), [Int],

(*w*) (SPPFLabel),

(*dst*) (GSSLabel), (Int)

)

Finally, we consider ordering of dimensions. We need an estimate of the utili-
sation counts for each dimension. For long strings, utilisation counts of the Int
dimensions will be greater than the others, because the extent of the GSSLabel
and SPPFLabel enumerations is constant and quite small (277 and 665 for ANSI-
C). It is hard to reason about the utilisation rates for the GSS and SPPF labels:
experimentation is required (and some initial results are given below). We note,
though, that there are more SPPF labels than GSS labels.

We also need to take account of the two-stage access to the GSS table. We
first need to find a particular source node, and then subsequently we use the
other indices to check for an edge to the destination node. This means that the
indices used in the first-stage query must be grouped together at the left.
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On this basis, a good candidate for implementation is

Set gss ((*src(i)*) [Int], (*src(s)*) (GSSLabel),

(*dst(i)*) (Int),

(*w(s)*) (SPPFLabel),

(*dst(s)*) (GSSLabel)

)

This refinement process has given us a compact representation where we have
done a lot to save space without destroying the asymptotic behaviour implied by
the original unrefined specification. Depending on the results of experimentation,
we may wish to relax the constraints a little so as to increase performance at the
expense of space. For instance, what would be the impact of changing to this
implementation?

Set gss ((*src(i)*) [Int], (*src(s)*) [GSSLabel],

(*dst(i)*) (Int),

(*w(s)*) (SPPFLabel),

(*dst(s)*) (GSSLabel)

)

This proposes an array of arrays to access the source GSS node label rather than
an array of lists. We can only investigate these kinds of engineering tradeoff in
the context of particular grammars, and particular sets of input strings. By
profiling the behaviour of our parser on typical applications we can extract real
utilisation counts.

We ran a GLL parser for ANSI-C on the source code for bool, a Quine-
McCluskey minimiser for Boolean equations, and measured the number of GSS
labels used at each input index. The first 50 indices yielded these utilisation
factors:

11, 18, 13, 10, 0, 1, 61, 11, 47, 0, 0, 19, 23, 0, 10, 3, 18, 0, 10, 18, 0, 44, 0, 0,
4, 7, 0, 45, 0, 10, 0, 44, 0, 0, 10, 0, 44, 0, 0, 46, 0, 14, 2, 0, 6, 16, 3, 45, 0, 10

so, there are 11 GSS nodes with labels of the form (0, lg ∈ GSSLabel), 18 of the
form (1, lg) and so on. The total number of GSS nodes here is 623. The mean
number of GSS labels used per index position is 12.46, but 38% of the indices
have no GSS nodes at all. This might seem initially surprising, but recall that
a GSS node is only created when an input position has an associated grammar
slot which is immediately before a nonterminal.

Now, linked list table nodes require three integer words of memory (one for
the index, and two for the pointers). If these statistics are typical, for every
100 index positions we would expect 38 to be unpopulated, which means that
there would be 62 second level vectors of length 277 (the GSSLabel extent for
ANSI-C), to a total of 17 174 words. In the linked version, we would expect 1246
nodes altogether, and that would require 3738 words, so the ([], [], ...)
representation requires 4.6 times as much memory as the ( (), (), ...) ver-
sion, which may not be too onerous. The performance advantages are clear: the
mean list length would be 12.46, leading to an expected lookup time 6–10 times
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slower than directly indexing the vectors even without taking into account cache
effects. There are also several lists which would be greater than 40 elements long,
leading to substantial loss of performance.

9 Conclusion: Prospects for Automatic Refinement

In this paper we have given some details of our implementation of the GLL
technique using an approach that separates high level reasoning about algo-
rithm complexity from details of implementation, and a modelling process that
allows us to produce compact implementations which achieve the theoretically
predicted performance. We summarise our procedure as follows.

1. Flatten declarations to signatures by substitution.
2. Establish upper bounds on dimensions.
3. Remove dimensions that may be mapped from other dimensions and create

maps.
4. Remove repeated dimensions.
5. Identify dimensions that govern the time asymptote— these are the critical

dimensions.
6. For each dimension, compute, measure or guess the average number of ele-

ments of the index type T that are used in typical applications: this is the
dimension’s Likely Utilisation Count (LUC). The ratio (|T |/LUC) is called
the dimension’s load factor (LF).

7. Implement critical dimensions as one dimensional tables.
8. Implement dimensions whose LF is greater than 33% as one dimensional

tables.
9. Group dimensions by query level, with outer queries to the left of inner

queries.
10. Within query groups, arrange dimensions so that [] indices are always to

the left of () indices.
11. Within query groups and index modes, sort dimensions from left to right so

that load factors increase from left to right.

For a given data structure, the available index modes and orderings define a
space of potential implementations. As we have shown, the basic procedure min-
imises space, but nearby points in the implementation space may have better
performance, and as long as the application fits into available memory, most
users would like to have the faster version.

In the future we propose that semi-automatic systems be constructed to au-
tomatically explore these spaces in much the same way that hardware-software
co-design systems have successfully attacked the exploration of implementation
spaces for hardware oriented specifications. We have in mind the annotation of
critical dimensions by the theoretician, allied to a profiling system which will col-
lect statistics from sets of test inputs so as to measure or estimate load factors.
We believe that a notation similar to LC’s will be suitable for such an optimiser.
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Abstract. Modeling languages raise the abstraction level at which soft-
ware is built by providing a set of constructs tailored to the needs of
their users. Metamodels define their constructs and thereby reflect the
expectations of the language developers about the use of the language.
In practice, language users often do not use the constructs provided by
a metamodel as expected by language developers. In this paper, we ad-
vocate that insights about how constructs are used can offer language
developers useful information for improving the metamodel. We define
a set of usage and improvement patterns to characterize the use of the
metamodel by the built models. We present our experience with the ana-
lysis of the usage of seven metamodels (EMF, GMF, UNICASE) and a
large corpus of models. Our empirical investigation shows that we iden-
tify mismatches between the expected and actual use of a language that
are useful for metamodel improvements.

1 Introduction

Modeling languages promise to increase productivity of software development by
offering their users a restricted set of language constructs that directly address
their needs. Many times, modeling languages address a well-defined category of
users, since these languages are domain-specific, represent technology niches, or
are built in-house. Thereby, the needs of the users are the most important driving
force for the existence and evolution of the modeling language. Usable languages
have a small set of intuitive constructs, are easy to use, hard to misuse, and
easy to learn by novices [8]. The constructs of modeling languages are typically
defined by metamodels which reflect the expectations of the language developers
about the future use of the language.

The question whether these expectations are fulfilled and whether the lan-
guage users use the language in the same manner as expected has a central
importance for language developers [9,15]. Too general modeling languages that
have a too wide scope hamper the productivity of their users, are more difficult to
learn, and are prone to errors. To answer this question, we need direct feedback
from the language users. Without feedback about the actual use, the developers
can only guess whether the language meets the expectation of its users. The
traditional means by which developers get feedback about their languages (e. g.

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 62–81, 2011.
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community forums), are limited to certain kinds of information like e. g. mostly
bug reports and usage questions.

In the case when the language developers have access to a relevant set of
models built with the language, they can take advantage of this information
and learn about how the language is used by investigating its utterances. Once
the information about the actual use of the language is available, the language
can be improved along two main directions: firstly, restricting the language and
eliminating unnecessary constructs, and secondly, by adding new language con-
structs that language users need. In this paper, we advocate that the analysis
of built models can reflect essential information about the use of the language
that is otherwise inaccessible. By using our method, we aim to close the loop
between language developers and users, since the information about the actual
use can serve for language enhancements or even for the elimination of defects.

This paper contains three main contributions to the state of the art:

1. We present a general method by which language developers can obtain feed-
back about how the modeling language is actually used by analyzing the
models conforming to its metamodel.

2. We describe a set of patterns that characterize the usage of the metamodel
and which can be used to improve the language by eliminating obsolete or
superfluous constructs, adding missing metamodel constraints that were not
set by language developers, or by adding new language constructs that better
reflect the needs of the users.

3. We present our experience with applying these analyses to seven metamodels,
and we show that even in the case of well-known metamodels like EMF we
can identify different defects that give rise to metamodel improvements.

Outline. Sec. 2 describes the metamodeling formalism that we considered for
defining our analyses. In Sec. 3, we introduce our method as well as a set of
usage analyses to identify metamodel improvements. Sec. 4 presents the results
of applying the analyses on a corpus of well-known metamodels and their models.
In Sec. 5, we discuss related work, before we conclude the paper in Sec. 6.

2 Metamodeling Formalism

Metamodel. To describe metamodels, we use the simplified E-MOF [14] forma-
lism illustrated in Fig. 1 as a class diagram. A metamodel defines a set of Types
which can be either primitive (PrimitiveType) or complex (Class). Primitive
types are either DataTypes—like Boolean, Integer and String—or Enumerations
of Literals. Classes consist of a set of features. They can have super types to in-
herit features and might be abstract. The name of a feature needs to be unique
among all features of a class including the inherited ones. A Feature has a mul-
tiplicity (lower bound and upper bound) and maybe derived—i. e. its value is
derived from the values of other features. A feature is either an Attribute or a
Reference: an attribute is a feature with a primitive type, whereas a reference is a
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Fig. 1. Metamodeling formalism

feature with a complex type. An attribute might also define a default value that
serves as an initial value for instances. A reference might be composite, meaning
that an instance can only have one parent via a composite reference.

The classes in Fig. 1 can be interpreted as sets—e. g. Class denotes the
set of classes defined by a metamodel, and the references can be interpreted
as navigation functions on the metamodel—e. g. c.subTypes returns the sub
types of c ∈ Class. Additionally, ∗ denotes the transitive closure on navigation
functions—e. g. c.subTypes∗ returns all sub types of c ∈ Class including c itself,
and PV (t) denotes the possible values of a primitive type t ∈ PrimitiveType.

Model. A model consists of a set of Instances each of which have a class from
the metamodel as type. To define our analyses in Sec. 3.2, we require an instance
to provide two methods. First, the method i.get(f) returns the value of a feature
f ∈ Feature for a certain instance i ∈ Instance. The value is returned as a list
even in the case of single-valued features to simplify the formulas. Second, the
method i.isSet(f) returns true if the value of a feature f ∈ Feature is set for
a certain instance i ∈ Instance. A feature is set if and only if the value of the
feature is different from the empty list and different from the default value, in
case the feature is an attribute.

3 Metamodel Usage Analysis

In this section, we present our approach to identify metamodel improvements by
analyzing how the metamodel is used by the built models. Sec. 3.1 introduces
templates to define usage analyses. Sec. 3.2 lists a number of analyses defined
using these templates. Sec. 3.3 presents the implementation of the approach.
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3.1 Templates for Defining Usage Analyses

Our ultimate goal is to recommend metamodel changes to improve the usabil-
ity of the language. The metamodel can be changed by applying refactorings,
constructors, or destructors [20]. Refactorings restructure the metamodel, but
do not change the expressiveness of the language defined by the metamodel. By
contrast, destructors and constructors decrease or increase the expressiveness
of the language, respectively. By analyzing only the metamodel, we can recom-
mend only refactorings of the metamodel. If we also take the models built with a
metamodel into account, we can also recommend destructors and constructors.
Destructors can be identified by finding metamodel constructs that are not used
in models, and that can thereby be safely removed without affecting the existing
models. Constructors can be identified by finding metamodel constructs that are
used to encode constructs currently not available in the language. By enriching
the metamodel with the needed constructs, we support the users to employ the
language in a more direct manner.

Collecting usage data. Before we can identify metamodel improvements, we
need to collect usage data from the models built with the metamodel. This usage
data collection has to fulfill three requirements: (1) We need to collect data from
a significant number of models built with the metamodel. In the best case, we
should collect usage data from every built model. If this is not possible, we should
analyze a significant number of models to be sure that the results of our analyses
are relevant and can be generalized for the actual use of the language. Generally,
the higher the ratio of the existing models that are analyzed, the more relevant
our analyses. (2) We need to collect the appropriate amount of data necessary
for identifying metamodel improvements. If we collect too much data, we might
violate the intellectual property of the owners of the analyzed models. If we
collect too few data, we might not be able to extract meaningful information
from the usage data. (3) The usage data from individual models needs to be
collected in a way that it can be composed without losing information.

To specify the collection of usage data, we employ the following template:

Context: the kind of metamodel element for which the usage data is collected.
The context can be used as a pattern to apply the usage data collection to
metamodel elements of the kind.

Confidence: the number of model elements from which the usage data is col-
lected. The higher this number, the more confidence we can have in the
collected data. In the following, we say that we are not confident if this
number is zero, i. e. we do not have usage data that can be analyzed.

Specification: a function to specify how the usage data is collected. There may
be different result types for the data that is collected. In the following, we
use numbers and functions that map elements to numbers.

Analyzing usage data. To identify metamodel improvements, we need to
analyze the usage data collected from the models. The analysis is based on
an expectation that we have for the usage data. If the expectation about the
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usage of a metamodel construct is not fulfilled, the construct is a candidate
for improvement. To specify expectations and the identification of metamodel
improvements from these expectations, we employ the following template:

Expectation: a boolean formula to specify the expectation that the usage data
needs to fulfill. If the formula evaluates to true, then the expectation is
fulfilled, otherwise we can propose an improvement. Certain expectations
can be automatically derived from the metamodel, e. g. we expect that a
non-abstract class is used in models. Other expectations can only be defined
manually by the developer of the metamodel, e. g. that certain classes are
more often used than other classes. In the following, we focus mostly on
expectations that can be automatically derived from the metamodel, as they
can be applied to any metamodel without additional information.

Improvement: the metamodel changes that can be recommended if the expec-
tation is not fulfilled. The improvement is specified as operations that can
be applied to the metamodel. As described above, the improvements can re-
strict the language by removing existing constructs, or enlarge the language
by adding new constructs. If we have collected data from all models built
with a metamodel, then we can also be sure that the restrictions can be
safely applied, i. e. without breaking the existing models.

3.2 Towards a Catalog of Usage Analyses

In this section, we present a catalog of analyses of the usage of metamodels.
Each subsection presents a category of analyses, each analysis being essentially
a question about how the metamodel is actually used. We use the templates
defined in the previous section to define the analyses in a uniform manner. This
catalog of analyses is by no means complete, but rather represents a set of basic
analyses. We only define analyses that are used in Sec. 4 as part of the study.

Class Usage Analysis. If metamodels are seen as basis for the definition of the
syntax of languages, a non-abstract class represents a construct of the language.
Thereby, the measure in which a language construct is used can be investigated
by analyzing the number of instances CU(c) of the non-abstract class c defined
by the metamodel:

Context: c ∈ Class, ¬c.abstract
Confidence: ‖Instance‖
Specification: CU(c) := ‖{i ∈ Instance|i.type = c}‖

Q1) Which classes are not used? We expect that the number of instances for
a non-abstract class is greater than zero. Classes with no instance represent
language constructs that are not needed in practice, or the fact that language
users did not know or understand how to use these constructs:

Expectation: CU(c) > 0
Improvement: delete the class, make the class abstract
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Classes with no instances that have subclasses can be made abstract, otherwise,
classes without subclasses might be superfluous and thereby are candidates to
be deleted from the metamodel. Both metamodel changes reduce the number of
constructs available to the user, making the language easier to use and learn.
Furthermore, deleting a class results in a smaller metamodel implementation
which is easier to maintain by the language developers. Non-abstract classes
that the developers forgot to make abstract can be seen as metamodel bugs.

Q2) What are the most widely used classes? We expect that the more central
a class of the metamodel is, the higher the number of its instances. If a class is
more widely used than we expect, this might hint at a misuse of the class by the
users or the need for additional constructs:

Expectation: the more central the construct, the higher its use frequency
Improvement: the classes that are used more frequently than expected are

potential sources for language extensions

This analysis can only be performed manually, since the expectation cannot be
derived automatically from the metamodel in a straightforward manner.

Feature Usage Analysis. If metamodels are seen as basis for the definition
of a language, features are typically used to define how the constructs of a
modeling language can be combined (references) and parameterized (attributes).
As derived features cannot be set by users, we investigate only the use of non-
derived features:

Context: f ∈ Feature,¬f.derived
Confidence: ‖FI(f)‖, FI(f) := {i ∈ Instance|i.type ∈ f.class.subTypes∗}
Specification: FU(f) := ‖{i ∈ FI(f)|i.isSet(f)}‖

We can only be confident for the cases when there exist instances FI(f) of classes
in which the feature f could possibly be set, i. e. in all sub classes of the class in
which the feature is defined.

Q3) Which features are not used? We expect that the number of times a non-
derived feature is set is greater than zero. Otherwise, we can make it derived or
even delete it from the metamodel:

Expectation: FU(f) > 0
Improvement: delete the feature, make the feature derived

If we delete a feature from the metamodel or make it derived, it can no longer be
set by the users, thus simplifying the usage of the modeling language. Features
that are not derived but need to be made derived can be seen as a bug in the
metamodel, since the value set by the language user is ignored by the language
interpreters.
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Feature Multiplicity Analysis. Multiplicities are typically used to define how
many constructs can be referred to from another construct. Again, we are only
interested in non-derived features, and we can only be confident for a feature, in
case there are instances in which the feature could possibly be set:

Context: f ∈ Feature,¬f.derived
Confidence: ‖FU(f)‖
Specification: FM(f) : N → N, FM(f, n) := ‖{i ∈ FU(f)|‖i.get(f)‖ = n}‖

Q4) Which features are not used to their full multiplicity? We would expect
that the distribution of used multiplicities covers the possible multiplicities of a
feature. More specifically, we are interested in the following two cases: First, if
the lower bound of the feature is 0, there should be instances with no value for
the feature—otherwise, we might be able to increase the lower bound:

Expectation: f.lowerBound = 0 ⇒ FM(f, 0) > 0
Improvement: increase the lower bound

A lower bound greater than 0 explicitly states that the feature should be set,
thus avoiding possible errors when using the metamodel. Second, if the upper
bound of the feature is greater 1, there should be instances with more than one
value for the feature – otherwise, we might be able to decrease the upper bound:

Expectation: f.upperBound > 1 ⇒ maxn∈N FM(f, n) > 1
Improvement: decrease the upper bound

Decreasing the upper bound reduces the number of possible combinations of
constructs and thereby simplifies the usage of the language.

Attribute Value Analysis. The type of an attribute defines the values that
an instance can use. The measure in which the possible values are covered can
be investigated by determining how often a certain value is used. Again, we are
only interested in non-derived attributes, and we can only be confident for an
attribute, if there are instances in which the attribute could possibly be set:

Context: a ∈ Attribute, ¬a.derived
Confidence: ‖FI(a)‖
Specification: AV U(a) : PV (a.type) → N,

AV U(a, v) := ‖{i ∈ FI(a)|v ∈ i.get(a)}‖

Q5) Which attributes are not used in terms of their values? We expect that all
the possible values of an attribute are used. In case of attributes that have a finite
number of possible values (e. g. Boolean, Enumeration), we require them to be
all used. In case of attributes with a (practically) infinite domain (e. g. Integer,
String), we require that more than 10 different values are used. Otherwise, we
might be able to specialize the type of the attribute:
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Expectation: (‖PV (a.type)‖ < ∞ ⇒ ‖PV (a.type)‖ = ‖V U(a)‖) ∧
(‖PV (a.type)‖ = ∞ ⇒ ‖V U(a)‖ > 10),
where V U(a) = {v ∈ PV (a.type)|AV U(a, v) > 0}

Improvement: specialize the attribute type

More restricted attributes can give users better guidance about how to fill its val-
ues in models, thus increasing usability. Additionally, such attributes are easier
to implement for developers, since the implementation has to cover less cases.

Q6) Which attributes do not have the most used value as default value? In many
cases, the language developers set as default value of attributes the values that
they think are most often used. In these cases, the value that is actually most
widely used should be set as default value of the attribute:

Expectation: a.upperBound = 1 ⇒ a.defaultValue = [mvu ∈ PV (a.type) :
maxv∈PV (a.type) AV U(a, v) = AV U(a, mvu)]

Improvement: change the default value

If this is not the case, and users use other values, the new ones can be set as
default.

Q7) Which attributes have often used values? We expect that no attribute value
is used too often. Otherwise, we might be able to make the value a first-class
construct of the metamodel, e. g. create a subclass for the value. A value is used
too often if its usage share is at least 10%:

Expectation: ‖PV (a.type)‖ = ∞ ⇒ ∀v ∈ PV (a.type) : AV U(a, v) < 10% ·
FU(a)

Improvement: lift the value to a first-class construct

Lifting the value to an explicit construct, makes the construct easier to use for
users as well as easier to implement for developers.

3.3 Prototypical Implementation

We have implemented the approach based on the Eclipse Modeling Framework
(EMF) [18] which is one of the most widely used modeling frameworks. The
collecting of usage data is implemented as a batch tool that traverses all the
model elements. The results are stored in a model that conforms to a simple
metamodel for usage data. The batch tool could be easily integrated into the
modeling tool itself and automatically send the data to a server where it can
be accessed by the language developers. Since the usage data is required to be
composeable, it can be easily aggregated.

The usage data can be loaded into the metamodel editor which proposes
improvements based on the usage data. The expectations are implemented as
constraints that can access the usage data. Fig. 2 shows how violations of these
expectations are presented to the user in the metamodel editor. Overlay icons in-
dicate the metamodel elements to which the violations apply, and a view provides



70 M. Herrmannsdoerfer, D. Ratiu, and M. Koegel

Fig. 2. Proposing metamodel improvements

a list of all usage problems. The constraints have been extended to be able to pro-
pose operations for metamodel improvements. The operations are implemented
using our tool COPE [7] whose purpose is to automate the model migration
in response to metamodel evolution. The proposed operations are shown in the
context menu and can be executed via COPE’s operation browser.

4 Empirical Study

We have performed an empirical study to validate whether the identified meta-
model improvements would really lead to changes of the metamodel. Sec. 4.1
presents the method that we have applied, and Sec. 4.2 the metamodels and
models that we have analyzed. The results of the empirical study are explained
in Sec. 4.3 and discussed in Sec. 4.4.

4.1 Study Method

To perform our analyses, we performed the following steps:

1. Mine models: We obtained as many models as possible that conform to
a certain metamodel. In the case of an in-house metamodel, we asked the
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metamodel developers to provide us with the models known to them. For the
published metamodels, we iterated through several open repositories (CVS
and SVN) and downloaded all models conforming to these metamodels. As
far as possible, we removed duplicated models.

2. Perform usage analysis : We applied the approach presented in Sec. 3 on the
mined models. For each of the analyzed metamodels, this results in a set of
usage problems.

3. Interpret usage problems : To determine whether the usage problems really
help us to identify possible metamodel improvements, we tried to find expla-
nations for the problems. In order to do so, we investigated the documenta-
tion of the metamodels as well as the interpreters of the modeling languages,
and, if possible, we interviewed the metamodel developers.

4.2 Study Objects

Metamodels. To perform our experiments, we have chosen 7 metamodels
whose usage we have analyzed. Table 1 shows the number of elements of these
metamodels. Two metamodels are part of the Eclipse Modeling Framework
(EMF)1 which is used to develop the abstract syntax of a modeling language:
The ecore metamodel defines the abstract syntax from which an API for model
access and a structural editor can be generated; and the genmodel allows to cus-
tomize the code generation. Four metamodels are part of the Graphical Modeling
Framework (GMF)2 which can be used to develop the diagrammatic, concrete
syntax of a modeling language: the graphdef model defines the graphical elements
like nodes and edges in the diagram; the tooldef model defines the tools avail-
able to author a diagram; the mappings model maps the nodes and edges from
the graphdef model and the tools from the tooldef model onto the metamodel
elements from the ecore model; and the mappings model is transformed into a
gmfgen model which can be altered to customize the generation of a diagram
editor. Finally, the last metamodel (unicase) is part of the tool UNICASE3 which
can be used for UML modeling, project planning and change management.

Table 1. A quantitative overview over the analyzed metamodels

# ecore genmodel graphdef tooldef mappings gmfgen unicase

Class 20 14 72 26 36 137 77
Attribute 33 110 78 16 22 302 88
Reference 48 34 57 12 68 160 161

Models. For each metamodel, we have mined models from different repositories.
Table 2 shows the repositories as well as the number of files and elements which

1 See EMF web site: http://www.eclipse.org/emf
2 See GMF web site: http://www.eclipse.org/gmf
3 See UNICASE web site: http://unicase.org

http://www.eclipse.org/emf
http://www.eclipse.org/gmf
http://unicase.org
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Table 2. A quantitative overview over the analyzed models

ecore genmodel graphdef tooldef mappings gmfgen
repository files elem.s files elem.s files elem.s files elem.s files elem.s files elem.s

AUTOSAR 18 384,685 18 16,189 11 1,835 11 436 11 538 13 2,373
Eclipse 1,834 250,107 818 69,361 105 6,026 58 1,769 72 5,040 52 11,043
GForge 106 26,736 94 41,997 12 806 10 241 11 480 11 1,680
Google 50 9,266 59 3,786 69 7,627 74 2,421 76 4,028 78 18,710
Atlantic Zoo 278 68,116 – – – – – – – – – –

altogether 2,286 738,910 989 131,333 197 16,294 153 4,867 170 10,086 154 33,806

have been obtained from them. Models that conform to the first 6 metamodels
have been obtained from the AUTOSAR development partnership4, from the
Eclipse5 and GForge6 open source repositories, by querying the Google Code
Search7 and from the Atlantic Zoo8. The Atlantic Zoo only contains ecore models,
while the other repositories contain models for all EMF and GMF metamodels.
For the unicase metamodel, its developers provided us with 3 files consisting of
8,213 model elements.

4.3 Study Results

In this section, we present the study results separately for each question men-
tioned in Sec. 3.2. To facilitate understanding the explanations for the identified
usage problems, we clustered them according to high-level explanations.

Q1) Which classes are not used? Table 3 quantitatively illustrates for each
metamodel the number of used and not used classes in the overall number of non-
abstract classes. The second last row shows the number of classes that are used,
whereas the other rows classify the unused classes according to the explanations
why they are not used. As presented in Sec. 4.1, we derived these explanations by
manually analyzing the documentation and implementation of the metamodels
or interviewing the developers.

Classes that are obsolete, not implemented, or that logically belong to another
metamodel can be removed. A class is obsolete if it is not intended to be used in
the future. For example, in unicase, the 4 classes to define UML stereotypes are
no longer required. A class is not implemented if it is not used by the interpreters
of the modeling language. For example, the tooldef metamodel defines 7 classes
to specify menus and toolbars from which, according to [4], currently no code
can be generated. A class should be moved to another metamodel if it logically
belongs to the other metamodel. For example, in tooldef, the class GenericStyle-
Selector should be moved to mappings which contains also a composite reference
4 See AUTOSAR web site: http://www.autosar.org
5 See Eclipse Repository web site: http://dev.eclipse.org/viewcvs/index.cgi
6 See GForge web site: http://gforge.enseeiht.fr
7 See Google Code Search web site: http://www.google.com/codesearch
8 See Atlantic Zoo web site: http://www.emn.fr/z-info/atlanmod/index.php/Ecore

http://www.autosar.org
http://dev.eclipse.org/viewcvs/index.cgi
http://gforge.enseeiht.fr
http://www.google.com/codesearch
http://www.emn.fr/z-info/atlanmod/index.php/Ecore
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Table 3. Usage of classes
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is obsolete 4

is not implemented 7 1

should be moved 1 2

should be abstract 1

should be transient 1 2 1

is too new 3 6 5

should be used 1 1 6 9

is used 13 11 51 11 24 83 42

altogether 15 11 55 19 25 97 64

Table 4. Usage of ecore classes

# Class Number Share

1 EStringToStringMapEntry 328,920 44.51%
2 EGenericType 141,043 19.09%
3 EAnnotation 102,863 13.92%
4 EReference 53,177 7.20%
5 EClass 41,506 5.62%
6 EAttribute 36,357 4.92%
7 EEnumLiteral 10,643 1.44%
8 EOperation 7,158 0.97%
9 EParameter 7,060 0.96%

10 EPackage 4,530 0.61%
11 EDataType 2,747 0.37%
12 EEnum 2,513 0.34%
13 ETypeParameter 226 0.03%
14 EObject 0 0.00%
15 EFactory 0 0.00%

targeting this class. Another example is unicase where 2 classes should be moved
to a different metamodel of another organization that also uses the framework
underlying UNICASE.

Our manual investigations revealed that other classes that are not used should
be abstract or transient. A class should be abstract if it is not intended to be
instantiated, and is used only to define common features inherited by its sub-
classes. For instance, in ecore, EObject—the implicit common superclass of all
classes—should be made abstract. A class should be transient if its instances are
not expected to be made persistent—such a class does not represent a language
construct. However, the employed metamodeling formalism currently does not
support to specify that a class is transient. For instance, in ecore, EFactory—a
helper class to create instances of the specified metamodel—should be transient.

Finally, there are non-used classes which do not require any change, since
they are either too new or should be used—i. e. we could not find any plausible
explanation why they are not used. A class is too new if it was recently added
and thus is not yet instantiated in models. For the GMF metamodels graphdef
and gmfgen, we identified 9 new classes, while for the unicase metamodel, we
found 5 classes that are too new to be used.

Q2) What are the most widely used classes in ecore? Due to space con-
straints, we focus on the ecore metamodel to answer this question. Table 4 shows
its classes and their corresponding number of instances. Interestingly, the number
of instances of the ecore classes has an exponential distribution, a phaenomenon
observed also in case of the other metamodels. Hence, each metamodel contains
a few constructs which are very central to its users. In the case of ecore, we
expect that classes, references and attributes are the central constructs. How-
ever, the most widely used ecore class is—with more than 44,5% of the analyzed
instances—EStringToStringMapEntry which defines key-value-pairs for EAnnota-
tions making up 13,9% of the instances. The fact that the annotation mechanism
which is used to extend the ecore metamodel is more widely used than the first-
class constructs, suggests the need for increasing ecore’s expressiveness. As we
show in Q7, some often encountered annotations could be lifted to first-class
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Table 5. Usage of features
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is obsolete 9 11

is not implemented 3 2 2 5

should be moved 11

should be derived 2

is too new 6 16 6

should be used 1 7 2 55 13

is not confident 6 6 1 23 35

is used 51 125 118 20 84 333 163

altogether 52 135 132 28 87 441 241

Table 6. Usage of multiplicity by features
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should increase ←↩ 2 1 2 1 21 5
the lower bound
is not implemented 3 1
should have a ←↩ 5 1 48 3
derived default
is too new 5 2
should be used 5 4 4 12 3
is not confident 6 6 1 23 35
is used 52 123 115 17 80 337 193

altogether 52 135 132 28 87 441 241

constructs. Another ecore class that is used very often is EGenericType. This
is surprising, since we would expect that generic types are very rarely used in
metamodels. The investigation of how this class is exactly used, revealed the fact
that only 1,8% (2,476) of EGenericType’s instances do not define default values
for their features and thereby these instances really represent generic types. In
the other 98%, the EGenericType is only used as an indirection to the non-generic
type, i. e. in a degenerated manner.

Q3) Which features are not used? Table 5 shows for each metamodel the
number of used and unused features in the overall number of non-derived fea-
tures. In the table, we observe a correlation between the number of unused
features and the overall number of features. In most cases, the more features
a metamodel defines, the less features are actually used. The only exception to
this conjecture is the usage of the tooldef metamodel, in which most features
are however not implemented as explained below. The table also classifies the
unused features according to explanations why they are not used.

Features that are obsolete, not implemented, or logically belong to another
metamodel can be removed from the metamodel. A feature is obsolete if it is not
intended to be used in the future. If none of the analyzed models uses that fea-
ture, it is a good candidate to be removed. We identified the 9 obsolete features
of gmfgen by investigating the available migrator. Surprisingly, the migrator re-
moves their values, but the developers forgot to remove the features from gmfgen.
In the case of the unicase metamodel, 11 unused features are actually obsolete. A
feature is classified as not implemented if it is not used by the interpreters of the
modeling language. We have identified 12 not implemented features of the EMF
metamodel genmodel and the GMF metamodels tooldef, mappings and gmfgen
by checking whether they are accessed by the code generators. A feature should
be moved to another metamodel if it logically belongs to the other metamodel.
The features of the unicase metamodel that have to be moved target the classes
that should be moved to another metamodel as found by question Q1 in Sec. 3.2.

Another set of non-used features can be changed into derived features, since
their values are calculated based on other features. As they are anyway over-
written in the metamodel implementation, setting them explicitly is a mistake,
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making the language easy to misuse. For example, for the unicase metamodel,
we identified 2 features that should be derived.

Finally, there are non-used features which do not require changes at all, since
they are either too new or our investigation could not identify why the feature is
not used. Again, a feature is too new to be instantiated, if it was recently added.
Like for classes, the 28 too new features were identified by investigating the
metamodel histories. The only feature of the ecore metamodel which is not set in
any model but should be used allows to define generic exceptions for operations.
Apparently, exceptions rarely need to have type parameters defined or assigned.
For both genmodel and gmfgen, more than 5% of the features should be used but
are not used. The manual investigation revealed that these are customizations
of the code generation that are not used at all. We are not confident about the
usage of a feature if there are no instances in which the feature could be set. This
category thus indicates how many features cannot be used, because the classes
in which they are defined are not instantiated.

Q4) Which features are not used to their full multiplicity? Table 6 shows
as is used the number of used features fulfilling these expectations. Again, the
violations are classified according to different explanations that we derived after
manual investigation of the metamodel documentation and implementation.

A not completely used feature which can be restricted either should increase
the lower bound or is not implemented yet. Even though we found features whose
usage did not completely use the upper bound, we could not find an explana-
tion for any of them. However, we found that some features should increase
lower bound from 0 to 1. For the EMF and GMF metamodels, we found such
features by analyzing whether the code generator does not check whether the
feature is set, thereby producing an error if the feature is not set. For the uni-
case metamodel, the too low lower bounds date back from the days when its
developers used an object-to-relational mapping to store data. When doing so, a
lower bound of 1 was transformed into a database constraint which required to
set the feature already when creating a model element. To avoid this restriction,
the lower bounds were decreased to 0, when in effect, they should have been 1.
As they no longer store the models in a database, the lower bounds could easily
be increased. Again, a feature is not implemented if the interpreter does not use
the feature. In the tooldef metamodel, we found 3 such features which are not
interpreted by the code generator, making them also superfluous.

A not completely used feature which requires to extend the metamodeling
formalism should have a derived default. A feature should have a derived default
if it has lower bound 0, but in case it is not set, a default value is derived.
This technique is mostly used by the code generation metamodels genmodel and
gmfgen to be able to customize a value which is otherwise derived from other
features. It is implemented by overwriting the API to access the models which
is generated from the metamodel. However, the used metamodeling formalism
does not provide a means to specify that a feature has a derived default.

A not completely used feature which does not require changes either is too
new or should be used.
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Table 7. Usage of complete values by at-
tributes
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should be specialized 1 3 3

is too new 1 3

should be used 1 14 14 3 18 4

is not confident 12 44 7 4 164 37

is used 25 82 19 8 14 102 39

altogether 26 109 77 16 21 290 83

Table 8. Usage of default values of at-
tributes

Explanation e
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should be changed 2 5 3
should be set 4 13 1 6
should not be changed 2 1 1 1 2
should have no default 6 16 7 1 3 38 9
is too new 2
is not confident 10 19 7 4 93 37
is used 18 76 32 5 13 150 35

altogether 26 109 77 16 21 290 83

Q5) Which attributes are not used in terms of their values? Table 7
illustrates for each metamodel the number of attributes whose values are com-
pletely used or not. The table also classifies the not completely used attributes
according to different explanations.

A not completely used attribute that can be changed should be specialized
by restricting its type. In the unicase metamodel, three attributes which use
String as domain for UML association multiplicities and UML attribute types
can be specialized. We found 4 more such attributes in the genmodel and gmfgen
metamodels.

Finally, there are not completely used attributes which do not require changes
at all, since they are either too new, should be used, or we do not have enough
models to be confident about the result. We are only confident if the attribute
is set sufficiently often to cover all its values (finite) or 10 values (infinite). In all
metamodels, most of the findings fall into one of these categories.

Q6) Which attributes do not have the most used value as default
value? Table 8 illustrates for each metamodel the number of attributes whose
value is the same as the default value (is used) and those that have different
values. Note that in many cases the language developers successfully anticipated
the most often used values of attributes by setting the appropriate default value.
The table also classifies the deviations according to different explanations.

In case the default value is intended to represent the most widely used value
of an attribute, and we found that the users use other default values, the default
value should be changed. In this way, the new value better anticipates the actual
use, and thereby the effort of language users to change the attribute value is
necessary in less cases. We found 8 attributes whose default value needs to
be updated in the metamodels genmodel, graphdef and gmfgen. An attribute
has a default value that should be set if it does not currently have a default
value, but the usage analysis identifies a recurrent use of certain values. By
setting a meaningful default value, the language users are helped. In nearly each
metamodel, we found attributes whose default value needs to be set.
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Table 9. Usage of values often used by
attributes
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should be lifted 3 1 3 3 2
should be reused 1 4
should not be changed 6 18 22 1 3 41 3
is not implemented 1
is too new 1
is not confident 11 19 7 93 37
is used 17 77 33 7 18 153 37

altogether 26 109 77 16 21 290 83

Table 10. Most widely used annotations
in ecore

# Source Number Share

1 http://www.eclipse.org/emf/←↩ 33,056 32.15%

2002/GenModel

2 http:///org/eclipse/emf/←↩ 26,039 25.32%

ecore/util/ExtendedMetaData

3 TaggedValues 16,304 15.86%

4 MetaData 10,169 9.89%

5 Stereotype 4,628 4.50%

6 subsets 1,724 1.68%

...

The unexpected default value of an attribute which does not require change
either should have no default, should not be changed, is too new or is not confi-
dent. An attribute should have no default value if we cannot define a constant
default value for the attribute. In each metamodel, we are able to find such at-
tributes which are usually of type String or Integer. A default value should not be
changed if we could not find a plausible explanation for setting or changing the
default value. Two attributes from the unicase metamodel whose default value
should not be changed denote whether a job is done. Most of the attribute values
are true—denoting a completed job, but in the beginning the job should not be
done. We are not confident about an attribute if it is not set at least 10 times.

Q7) Which attributes have often used values? Table 9 shows the number
of attributes which have often used values or not. The table also classifies the
attribute with recurring values according to explanations.

A recurring value which requires metamodel changes either should be lifted or
should be reused. A value should be lifted if the value should be represented by a
new class in the metamodel. In ecore, we find often used values for the source of
an annotation as well as for the key of an annotation entry. Table 10 illustrates
the 6 most widely used values of the annotation source. The GenModel annota-
tions customize the code generation, even though there is a separate generator
model. Thereby, some of these annotations can be lifted to first-class constructs
of the genmodel metamodel. The ExtendedMetaData extends ecore to accommo-
date additional constructs of XML Schemas which can be imported. This shows
the lack of expressiveness of ecore in comparison to XML Schema. The next
three sources represent stereotypes and result from the import of metamodels
from UML class diagrams. The high number of these cases are evidence that
many ecore models originate from UML class diagrams. The last source extends
ecore which is an implementation of E-MOF with a subset relation between fea-
tures which is only available in C-MOF. This shows that for many use cases the
expressiveness of E-MOF is not enough. Furthermore, the key of an annotation
entry is used in 10% of the cases to specify the documentation of a metamodel
element. However, it would be better to make the documentation an explicit at-
tribute of EModelElement—the base class for each metamodel element in ecore.
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A value should be reused if—instead of recurrently using the value—we refer to
a single definition of the value as instance of a new class. In unicase, instead of
defining types of UML attributes as Strings, it would be better to group them
into separate instances of reusable data types.

An attribute with recurring values which does not require change either should
not be changed, is not implemented, is too new or we are not confident. For a lot
of attributes, we have not found a plausible explanation, and thus conservatively
assumed that they should not be changed.

4.4 Discussion

Lessons learned. Based on the results of our analyses, we learned a number
of lessons about the usage of metamodels by existing models.

Metamodels can be more restrictive. In all investigated cases, the set of models
covers only a subset of the set of all possible models that can be built with
a metamodel. We discovered that not all classes are instantiated (Q1), not all
features are used (Q3), and the range of the cardinality of many features does
not reflect their definition from the metamodel (Q4). In all these cases, the
metamodels can be improved by restricting the number of admissible models.

Metamodels can contain latent defects. During our experiments, we discovered
in several cases defects of the metamodels—e. g. classes that should not be in-
stantiated and are not declared abstract (Q1), classes and features that are not
implemented or that are overwritten by the generator (Q1, Q3, Q4, Q6). More-
over, in other cases (Q2), we discovered misuses of metamodel constructs.

Metamodels can be extended. Each of the analyzed metamodels offers their users
the possibility to add new information (e. g. as annotations, or sets of key-value
pairs). The analysis of the manners in which the metamodels are actually ex-
tended reveal that the users recurrently used several annotation patterns. These
patterns reveal the need to extend the metamodel with new explicit constructs
that capture their intended use (Q2, Q7). Moreover, the specification of some
attributes can be extended with the definition of default values (Q6).

Metamodeling formalism can be improved. Our metamodeling formalism is very
similar to ecore. The results indicate that in certain cases the metamodeling
formalism is not expressive enough to capture certain constraints. For instance,
we would have required to mark a class as transient (Q1) and to state that a
feature has a default value derived from other features (Q4). Consequently, we
have also identified improvements concerning the metamodeling formalism.

Limitations. We are aware of the following limitations concerning our results.

Validity of explanations. We presented a set of explanations for the deviations
between expectation and usage. In the case of UNICASE, we had direct access to
the language developers and hence could ask them directly about their explana-
tions for the usage problems. In the case of the other metamodels, we interpreted
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the analysis results based only on the documentation and implementation. Con-
sequently, some of our explanations can be mistaken.

Relevance and number of analyzed models. We analyzed only a subset of the
entire number of existing models. This fact can make our results rather ques-
tionable. In the case of UNICASE, we asked the developers to provide us with a
representative sample of existing models. In the case of the other metamodels,
we mined as many models as possible from both public and private (AUTOSAR)
repositories to obtain a representative sample of existing models.

5 Related Work

Investigating language utterances. In the case of general-purpose languages,
investigating their use is especially demanding, as a huge number of programs ex-
ist. There are some landmark works that investigate the use of general-purpose
languages [3,17,11]. Gil et al. present a catalog of Java micro patterns which
capture common programming practice on the class-level [3]. By automatically
searching these patterns in a number of projects, they show that 75% of the
classes are modeled after these patterns. Singer et al. present a catalog of Java
nano patterns which capture common programming practice on the method-
level [17]. There is also work on investigating the usage of domain-specific lan-
guages. Lämmel et al. analyze the usage of XML schemas by applying a number
of metrics to a large corpus [10]. Lämmel and Pek present their experience with
analyzing the usage of the W3C’s P3P language [11]. Our empirical results—that
many language constructs are more often used than others—are consistent with
all these results. We use a similar method for investigating the language utter-
ances, but our work is focused more on identifying improvements for languages.
Tolvanen proposes a similar approach for the metamodeling formalism provided
by MetaCase [19]. However, even if the sets of analyses are overlapping, our set
contains analyses not addressed by Tolvanen’s approach (Q2, Q5 and Q7), and
provides a validation through a large-scale empirical study that usage analyses
do help to identify metamodel improvements.

Language improvements. Once the information about the language use is
available, it can serve for language improvements. Atkinson and Kuehne present
techniques for language improvements like restricting the language to the used
subset or adding new constructs that reflect directly the needs of the language
users [1]. Sen et al. present an algorithm that prunes a metamodel [16]: it takes
a metamodel as input as well as a subset of its classes and features, and out-
puts a restricted metamodel that contains only the desired classes and features.
By doing this, we obtain a restricted metamodel that contains only necessary
constructs. Our work on mining the metamodel usage can serve as input for
the pruning algorithm that would generate a language more appropriate to the
expectations of its users. Once recurrent patterns are identified, they can serve
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as source for new language constructs [2]. The results in this paper demon-
strate that the analysis of built programs is a feasible way to identify language
improvements. Lange et al. show—by performing an experiment—that mod-
eling conventions have a positive impact on the quality of UML models [12].
Henderson-Sellers and Gonzalez-Perez report on different uses and misuses of
the stereotype mechanism provided by UML [6]. By analyzing the built models,
we might be able to identify certain types of conventions as well as misuses of
language extension mechanisms.

Tool usage. There is work on analyzing the language use by recording and
analyzing the interactions with the language interpreter. Li et al. [13] present a
study on the usage of the Alloy analyzer tool. From the way how the analyzer
tool was used, they identified a number of techniques to improve analysis per-
formance. Hage and Keeken [5] present the framework Neon to analyze usage of
a programming environment. Neon records data about every compile performed
by a programmer and provides a query to analyze the data. To evaluate Neon,
the authors executed analyses showing how student programmers improve over
time in using the language. The purpose of our approach is not to improve the
tools for using the language, but to improve the language itself.

6 Conclusions and Future Work

This paper is part of a more general research direction that we investigate,
namely how to analyze the use of modeling languages in order to assess their
quality. The focus of this paper is to derive possible improvements of the meta-
model by analyzing the language use. We are convinced that the analysis of
models built with a modeling language is interesting for any language developer.
We showed that—even in the case of mature languages—the analysis of models
can reveal issues with the modeling language. Due to the promising results, we
plan to further improve the approach presented in this paper. First, we intend to
refine the presented analyses by fine-tuning them according to the results from
the empirical study. Second, we plan to add new analyses which are currently
missing in the catalog. Third, we intend to apply the presented approach as part
of a method for the evolutionary development of modeling languages.

For languages used by different organizations, the analysis of models is often
impossible due to the intellectual property that the models carry. We envision
as a future direction of research the definition of techniques that anonymize the
content of the model and send the language developers only a limited information
needed for analyzing the language use.
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Abstract. Domain-specific modelling langugages (DSMLs), which are
tailored to the requirements of their users, can significantly increase the
acceptance of formal (or at least semi-formal) modelling in scenarios
where informal drawings and natural language descriptions are predomi-
nant today. We show in this paper how the Resource Description Frame-
work (RDF), which is a standard for the fundamental data structures of
the Semantic Web, and algebraic graph transformations on these data
structures can be used to realise the abstract syntax of such DSMLs.
We examine a small DSML for IT infrastructures as an application sce-
nario. From this scenario, we derive distributed modelling, evolution of
language definitions, migration of legacy models and integration of mod-
elling languages as key requirements for a DSML framework. RDF and
transformation rules are then used to provide a solution, which meets
these requirements, where all kinds of modifications—from simple edit-
ing steps via model migration to language integration—are realised by
the single, uniform formalism of algebraic graph transformation.

1 Introduction

Our motivation for the work presented in this paper is to obtain a framework
for the definition and management of families of domain-specific modelling lan-
guages (DSMLs). We use the term DSMLs to denote small, flexible, visual and
textual languages that are tailored to the needs of their users in a certain ap-
plication domain. Such languages typically cannot be defined once and for all,
but they are in a constant state of flux, since requirements of the stakehold-
ers may become apparent or new requirements may emerge during the life-time
of the language. Moreover, the framework should allow families of integrated
DSMLs, i. e., several DSMLs—each created for a specific task or a specific group
of users—are synchronised on their common overlapping aspects.

In Sect. 2, we present an application scenario for DSMLs, from which we
derive seven guiding problems for our framework, where key requirements are
evolution and integration of DSMLs.

We use the Resource Decription Framework (RDF), defined in [1], for rep-
resenting the abstract syntax of DSMLs. This representation is introduced in
Sect. 3. RDF is used as the fundamental, generic data structure for the Seman-
tic Web. It is, therefore, well-suited for the distributed management of models
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in large organisations. With this choice, we expect to reduce the effort that is
required for the creation of large integrated models from the knowledge of local
users, while also allowing decentralised workflows.

In Sect. 4, we introduce algebraic graph transformations on RDF graphs.
Algebraic graph transformations for RDF were proposed and developed in [2,3].
They are used in this paper to provide a single, uniform formalism for all kinds
of modifications on models—editing, migration and integration. One of its key
advantages is that it can be fully implemented.

In Sect. 5, we show how DSMLs can evolve in our framework and how graph
transformations can be used to achieve the migration of models according to
such a evolution. In Sect. 6, we present the integration of the languages from the
application scenario, again using graph transformations.

Finally, we give comparisons to related work in Sect. 7 and some concluding
remarks in Sect. 8.

2 Application Scenario: IT Infrastructure DSML

In this section, we present an application scenario for our proposed DSML frame-
work. It is concerned with a DSML for IT infrastructures, as it may be used by
the experts in the field. The language is rather small and simple, but a similar
language for the real world would in principle work on the same level of abstrac-
tion, tailored to the needs of the users and resembling the informal languages
they use today.

In Fig. 1, we see a model of an IT landscape and some editing steps modifying
this model. The model shows some local area networks (LANs), the Internet as
a wide area network (WAN) and the connections between them, where some of
them are protected by firewalls. The local network LAN 1 is connected to the
Internet only through a demilitarised zone (DMZ), where both connections are
protected. During the editing steps a local network for backup systems is intro-
duced, which is supposed to be reachable through two unprotected connections,
which are also added.

Our first problem arises from the requirement that we want to replace the
models that are today created by single stakeholders or small teams with inte-
grated models that are created by all relevant stakeholders together in order to
provide a common ground for communication.

Problem 1 (Distributed Management of Models). We want to be able to manage
the models in a distributed system, such that all stakeholders can work on (parts
of) the same model in parallel.

The next two problems are motivated by the requirement that, instead of just
using informal drawings, we want to provide techniques for modelling languages
with an abstract syntax that is precisely and formally defined.

Problem 2 (Definition of DSMLs). We need a technique to define the language,
i. e., which types of language element exist and which configurations of these
elements constitute legal models.
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DMZ

LAN 2

Internet

Backup

Fig. 1. DSML for IT landscapes—syntax-directed editing

Problem 3 (Syntax-Directed Editing). We want to have a technique to edit mod-
els in a syntax-directed manner, i. e., each editing step should be guaranteed to
preserve the property of being a legal model according to the language definitions
from Problem 2.

The final model of Fig. 1 has the problems that the unprotected connection
from LAN 1 to the Internet bypasses the security measures of the DMZ and the
Backup network is totally unprotected. In Fig. 2, we eliminate these problems
by protecting these connections with a firewall.

LAN 1

DMZ

LAN 2

Internet

Backup LAN 1

DMZ

LAN 2

Internet

Backup

Fig. 2. Protection of connections by firewalls—complex modifications

We want to be able to define such refactorings and other complex modifica-
tions of models on an abstract level and allow users to execute them as single
editing steps. Such complex modification definitions could also be useful to ag-
gregate best practices, design patterns and knowledge about the construction of
models in general.
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Problem 4 (Complex Modifications of Models). It should be possible to abstract-
ly define complex modifications and easily instantiate and execute them in
concrete situations. The modifications should guarantee to respect the language
definitions from Problem 2.

DSMLs change frequently. For example, we could introduce a distinction between
public and restricted LANs to our example DSML. This allows to document and
visualise the reason why the networks LAN 1 and Backup are protected, but
LAN 2 is allowed to have an unprotected connection to the Internet. This is
done in Fig. 3, where restricted LANs are visualised by double borders, while
the public LAN 2 is shown with a dashed double border.

LAN 1

DMZ

LAN 2

Internet

Backup LAN 1

DMZ

LAN 2

Internet

Backup

Fig. 3. Public LANs and restricted LANs—language evolution and model migration

The requirement of allowing language evolution leads to two problems—the
evolution to a new language definition itself and the migration of legacy models
according to the old definition.

Problem 5 (Evolution of DSMLs). It should be possible with minimal effort to
adapt a language according to needs of users.

Problem 6 (Migration of Models). We need a technique to migrate legacy models
from a previous language defintion to the evolved definition.

If we have several DSMLs that overlap in certain aspects then we want to be
able to integrate them. In Fig. 4, we see an example in our application scenario,
where the landscape is enhanced with a notation for the protocols allowed by
the firewalls and a second (textual) DSML for the configurations of firewalls is
introduced. The integration consists of identifying which configuration snippets
belong to which firewall in the landscape and removing and adding configura-
tion lines and protocols in the landscape diagram, such that they match each
other.

Problem 7 (Integration of DSMLs). We want to have a technique to integrate
multiple DSMLs that overlap in certain aspects.
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fw1.example.com
FROM if1 TO if2

PORT 5432 ALLOW;
FROM if2 TO if1

PORT 80 ALLOW;

fw2.example.com
FROM if1 TO if2

PORT 80 ALLOW;

fw3.example.com
FROM if2 TO if1

PORT 22 ALLOW;
FROM if2 TO if1

PORT 53 ALLOW;

fw4.example.com
FROM if1 TO if2

PORT 22 ALLOW;
FROM if2 TO if1

PORT 22 ALLOW;
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FROM if1 TO if2

PORT 5432 ALLOW;
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LAN 1

DMZ

LAN 2

Internet

Backup

if2

if1

if2
if1

if2

if1

if2

if1

httpdb

http

http

ssh, dns

ssh

fw3.example.com
FROM if2 TO if1

PORT 22 ALLOW;
FROM if2 TO if1

PORT 53 ALLOW;

fw4.example.com
FROM if1 TO if2

PORT 22 ALLOW;

Fig. 4. IT landscape and firewall configurations—language integration

3 RDF Graphs: Abstract Syntax for DSMLs

The Resource Description Framework (RDF), defined in [1], provides the funda-
mental data structures for the Semantic Web. It is used to state facts about re-
sources that are either identified by Uniform Resource Identifiers (URIs) or given
directly as literal values. The facts are given by subject–predicate–object triples,
where the predicate is also given by a URI. A set of facts is an RDF graph, where
the subjects and objects are the nodes and the facts the edges of the graph, la-
belled with the corresponding predicate (which may also appear as a node). The
idea is that everyone can publish such graphs to assert certain facts and these
graphs can easily be joined to collect information from heterogeneous sources.

In Fig. 5, we show how such a graph is used to represent part of an IT land-
scape model. The local net LAN 1 and the Internet are represented by URIs
“mod:LAN1” and “mod:INet”, respectively, where “mod:” is a suitable names-
pace, e. g., “http://models.example.com/”. The names of the networks, which
are shown as inscriptions in the concrete visual representation, are given by
literal values. The predicate “rdf:type” (abbreviated as “a”) is used to connect
nodes with their types. The types as well as the predicates are defined in another
namespace “itml:”, which, e. g., might be “http://schema.example.com/”. Tech-
nically, it would be possible to use the same namespace for both, the language
elements and the model instances, but seperation of namespaces eases the dis-
tributed handling of schemas and (multiple) models by different groups of users.
The connection between LAN 1 and the Internet is represented by a blank node
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Concrete
Syntax LAN 1 Internet

Abstract
Syntax

itml:LAN itml:Connect itml:WAN

mod:LAN1 1 mod:INet

“LAN 1” “Internet”a =̂ rdf:type

a a a
itml:conn itml:conn

itml:name itml:name

Fig. 5. RDF graph representing the abstract syntax of a DSML model

“1”. Blank nodes do not have a global identity and, hence, other graphs cannot
state additional facts about entities identified by blank nodes.

The following formal definition of an RDF graph closely corresponds to the
one given in [1]. The main difference is that we incorporate a set of blank nodes
into the graph, since they are supposed to be local to the corresponding graph.
On the other hand, the sets of possible URIs and literals are globally given
and occurrences in different graphs are meant to identify the same entity. An
implementation should resemble this formal definition and allow arbitrary URIs
and literals, while it may internally manage a cache of URIs and literals that are
currently used.

Definition 1 (RDF Graph). An RDF graph G = (GBl, GTr) consists of a set
GBl of blank nodes and a set GTr ⊆ GNd × URI × GNd of triples (also called
statements or edges), where GNd := URI+Lit+GBl is the derived set of nodes
of the graph and URI and Lit are globally given sets of all possible Uniform
Resource Identifiers (URIs) and literals.1 The constituents s ∈ GNd, p ∈ URI
and o ∈ GNd of a triple (s, p, o) ∈ GTr are called subject, predicate and object,
respectively.

Solution 1 (Distribution of RDF Graphs). The use of RDF provides a solution
of Problem 1 of Sect. 2, since RDF is designed for the Semantic Web and, hence,
provides excellent features for managing and relating distributed models. More
specifically, the use of URIs as nodes enables us to distribute the creation of
language definitions and the maintenance of models, where the use of URIs and
namespaces facilitates seperation of concerns, while still allowing to relate the
models and language definitions through the use of URI references.

In RDF, vocabularies are used to define types that are supposed to be used as
objects of rdf:type triples. The vocabulary for our IT landscape language is given
in Fig. 6, where we also include visualisation hints in the vis: namespace in order
1 The operations × and + denote the cartesian product and the disjoint union of sets,

respectively, where the disjointness ensures that we can determine if an element of
GNd is a URI, a literal or a blank node.
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to allow the creation of generic visual clients. Vocabularies may also be called
schemas or ontologies, where we choose the term vocabulary, since it is the most
neutral one. In contrast to a meta model, a vocabulary has no possibilities to
constrain the structure of instances.

In [4], RDFS is introduced – a vocabulary for describing vocabularies. We use
some of the terms from RDFS, namely rdfs:subClassOf to define type hierarchies
and rdfs:domain and rdfs:range to define the domain and range of properties.
RDFS is supposed to be used together with tools that can draw inferences from
these information, e. g., adding additional super-types to an element or the do-
main of a property to an element that is the subject of a corresponding triple, but
we do not rely on this in this paper and just use the RDFS terms descriptively.

The Web Ontology Language (OWL 2), defined in [5], introduces possibilities
for constraints, similar to the ones used in meta modelling. With these, structures
can not only be inferred, but also forbidden in order to meet the requirements
of a schema. In our approach, we will, however, not use OWL 2, but grammars
based on graph transformation rules, which are introduced in the next section.

itml:Connectable itml:conn itml:Connect

vis:Glue vis:Line

itml:Appliance itml:Net itml:name

vis:RngInsideDomitml:FW itml:LAN itml:WAN

http://. . . /fw.png vis:Ellipse vis:Cloud
sc =̂ rdfs:subClassOf

sc sc

sc sc sc

rdfs:range rdfs:domain

rdfs:domain

vis:byPlace vis:byFig

vis:byPlace

vis:byIcon vis:byFig vis:byFig

Fig. 6. Vocabulary for IT landscapes with visualisation hints

Compared to the definition of languages by meta modelling, e. g., using the
Meta Object Facility (MOF), defined in [6], the approach chosen here is very lean
and light-weight. RDF graphs are supposed to be defined in a distributed manner
on the Semantic Web with the help of heterogeneous vocabularies. In contrast to
that, MOF enforces that every model strictly conforms to a meta model, which,
therefore, has to anticipate all needs of the users. Thus, the features of RDF
ideally reflect the flexibility requirements of DSMLs.

In [7], proposals for a mapping from MOF to RDF are requested. Such a
mapping would allow the representation of MOF meta models and corresponding
models as RDF graphs and, hence, facilitate the application of the methods
introduced in the present paper to MOF meta models and models.



DSMLs with Algebraic Graph Transformations on RDF 89

4 RDF Graph Transformation: Grammars and Editing

We use rule-based, algebraic graph transformations to describe all kinds of
changes on RDF graphs. A comprehensive overview over the theory of alge-
braic graph transformation can be found in [8]. The adaption of this theory to
RDF was proposed in [2] and continued in [3].

We choose algebraic graph transformation, since it allows to treat all kinds
of transformations from language definition by grammars via model migration
to language integration with a single, uniform formalism. Being a formal tech-
nique, it also allows to reason formally about the effects of transformations to
show, e. g., that certain derived transformation rules respect a given grammar or
that transformations are independent of each other and can, hence, be swapped
without affecting the result of the combined transformation.

Transformations are defined by transformation rules. An example of such a
rule is shown in Fig. 7. This rule removes a connection between two networks,
represented by variables x and y and adds a new connection from network x to
network z, where z is not allowed to be of type itml:WAN and it is not allowed
to introduce a self connection, i. e., to assign x and z to the same net.
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Fig. 7. Example transformation rule retargetConnection

The rule consists of several RDF patterns, which are graphs with additional
variables, and RDF pattern homomorphisms, which are structure preserving
maps connecting the patterns, where the homomorphisms l and r are injective,
i. e., one-to-one (visualised by the hook at the tail of the arrows). The difference
between the left-hand side L and the interface I are the elements of the pattern
that are supposed to be deleted and the difference between I and the right-hand
side R are the elements that are supposed to be added by the rule. Moreover,
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there is a set of negative application conditions (NACs), which are extensions of
L and specify situations in which the rule is not applicable, where the NACs are
in an implicit conjunction, i. e., all have to be satisfied and none of the situations
is allowed. In the lower right, we show a compact notation for the rule, where
irrelevant parts of the NACs are omitted and L, I and R are shown in a single
diagram with the additional elements of L marked by “{del}” and the additional
elements of R by “{add}”.

We now give the formal definition for RDF patterns and RDF pattern homo-
morphisms. Observe that there are two different kinds of variables, one that can
be assigned to URIs, literals and blank nodes and one that can only be assigned
to URIs, where only the latter kind can be used as predicates of triples. This is
necessary, because otherwise we would have to deal with inconsistencies due to
variables being on the one hand assigned to literals or blanks and on the other
hand used as predicates.

Definition 2 (RDF Pattern and RDF Pattern Homomorphism). An
RDF pattern P = (PBl, PV, PU, PTr) consists of a set PBl of blank nodes, a set
PV of variables, a set PU ⊆ PV of URI variables and a set PTr ⊆ PNd × (URI+
PU) × PNd of triples, where PNd := URI + Lit + PBl + PV is the derived set of
nodes.

An RDF pattern homomorphism h: P → Q between RDF patterns P and
Q consists of a blank node function hBl: PBl → QBl and a variable assignment
hV: PV → QNd, such that hV(PU) ⊆ URI + QU and hTr(PTr) ⊆ QTr, where
hTr is the derived translation of triples given by the composed functions hTr :=
hNd × (idURI + hV) × hNd and hNd := idURI + idLit + hBl + hV.2

We can now formally define transformation rules. The difference between blank
nodes and variables is that blank nodes can be deleted and added by the rule,
while the variable sets are required to stay the same during the whole transforma-
tion. This is required for theoretical reasons, since variables may be instantiated
to URIs and literals, which are globally given and, hence, cannot be deleted or
added.

Definition 3 (Transformation Rule). A transformation rule tr = (L, I, R,
l, r,NAC ) consists of RDF patterns L, I and R, called left-hand side, interface
and right-hand side, respectively, RDF pattern homomorphisms l: I → L and
r: I → R, where the blank node functions lBl and rBl are injective (one-to-one)
and the variable assignments lV and rV are injective with lV(IV) = LV, rV(IV) =
RV, lV(IU) = LU and rV(IU) = RU, i. e., the variable sets remain essentially the
same, and a set NAC of negative application conditions (NACs) (N, c) ∈ NAC ,
where N is an RDF pattern and c: L → N is an RDF pattern homomorphism.

In Fig. 8, we show the application of the transformation rule from Fig. 7 to an
example graph. The application is determined by a match homomorphism m
from the left-hand side L to the graph G.
2 We use the symbols × and + also for functions, where they denote the obvious

generalisations from operations on sets to operations on functions between corre-
spondingly created sets. Moreover, idS denotes the identity function on a set S.
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Fig. 8. Application of transformation rule retargetConnection

Formally, a rule is applicable via a match if different deleted elements are not
identified, i. e., assigned to the same element, by the match, deleted elements
are not connected to additional structure, which would “dangle” if the deletion
would be executed and all the NACs are satisfied, i. e., none of the structures
forbidden by a NAC are present.

Definition 4 (Applicability of Transformation Rule). Given a transfor-
mation rule tr = (L, I, R, l, r,NAC) and an RDF pattern homomorphism m: L →
G, called match, tr is applicable via m if the dangling condition (1), the iden-
tification condition (2) and all NACs (3) are satisfied by l and m.

(1) The dangling condition is satisfied by l and m if there is no deleted blank
node b ∈ LBl \ lBl(IBl) and non-deleted triple (s, p, o) ∈ GTr \ mTr(LTr) with
mBl(b) = s or mBl(b) = o.
(2) The identification condition is satisfied by l and m if there is no deleted
blank node b ∈ LBl \ lBl(IBl), such that there is another blank node b′ ∈ LBl with
mBl(b) = mBl(b′) or a variable v ∈ LV with mBl(b) = mV(v).
(3) A NAC (N, c: L → N) ∈ NAC is satisfied by m if there is no occurrence
homomorphism o: N → G with o ◦ c = m.

The application of a transformation rule is formally defined in terms of pushouts
and pushout complements. Pushout (PO) is an abstract notion of category the-
ory that intuitively corresponds to a disjoint union over a common interface.
This is used to glue the new elements of the right-hand side R to the con-
text graph D over the interface I. Pushout complements are then those ob-
jects that extend a given situation to become a pushout. This is used to obtain
the context object D from I, L and G, where there may be several pushout
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Fig. 9. Grammar for IT landscape DSML

complements and we choose the smallest of them, the minimal pushout comple-
ment (MPOC).

Definition 5 (Application of Transformation Rule). Given a transforma-
tion rule tr = (L, I, R, l, r,NAC) that is applicable via the match m: L → G,
the application G

tr ,m
=⇒ H is determined by first constructing a minimal pushout

complement (MPOC) (D, f, i) of l and m and then a pushout (PO) (H, g, n) of
r and i.

Solution 2 (Grammars for Language Definition). Problem 2 of Sect. 2 is solved
by using a set of RDF graph transformation rules as a grammar for a DSML.
Legitimate models of the language are then all graphs that can be created by
rules from this grammar starting from a graph that only contains the vocabulary.
For example, the language from our application scenario is specified by the rules
in Fig. 9. The variables x and z are used to represent networks, where there
concrete types are represented by the variables tx and tz, whose assignments
have to be subclasses of itml:Net. This facilitates the use of the same rules for
all combinations of itml:LAN and itml:WAN instances. The NACs of the rule
addNet, which introduces a new network, ensure that the URI that is used to
identify the new network is not already used in any triples. The NACs of the
rules addConnection and addFirewall, which introduce direct connections and
protected connectios, respectively, ensure that no loops from a network to itself
are created and the URI that is used for a new firewall is not already connected.
The connections are represented by blank nodes, which are freshly created by
the rules.
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Fig. 10. Deletion rules for IT landscape DSML

Solution 3 (Grammars and Deletion Rules for Syntax-Directed Editing). In or-
der to solve Problem 3 of Sect. 2, we also define deletion rules, such that a user
can freely remove and add elements from and to a model. The deletion are in
a one-to-one correspondence with the rules of the grammar, but the NACs are
different. In order to obtain the NAC for a deletion of rule, we have to consider
in which other grammar rules the structure is needed, since the application of
these other rules may be invalidated by the deletion. There is hope to derive
these deletion rules automatically, but this process is non-trivial.
A set of deletion rules corresponding to the grammar from Fig. 9 is given in
Fig. 10. While connections and firewalls can be deleted in all circumstances, the
NAC of the rule delNet ensures that the deleted network is not connected to
another network or a firewall. This is necessary, because otherwise the deletion
could lead to an illegal model, since the grammar only allows to create connec-
tions to nodes which have a network type.

Solution 4 (Composition for Sound Modification Rules). In order to solve Prob-
lem 4 of Sect. 2, we use composition of transformation rules to obtain more
complex transformation rules. The composition ensures that each application of
the composed rule corresponds exactly to sequential applications of the compo-
nent rules. Hence, the language is not changed by additionally allowing rules
that are compositions of grammar rules.

For example, the rules delConnection and addFirewall can be composed to ob-
tain the rule protect in Fig. 11, which facilitates the protection of an unprotected
connection in one transformation step.
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Fig. 11. Refactoring rule protecting a connection with a firewall

The use of rule-based graph transformations for modifying RDF graphs has
several advantages. An implementation of a transformation engine may be reused
for a multitude of purposes, where the search for matches and the transformation
only have to be implemented once and for all. Modifications are specified on an
adequate level of abstraction and automatically respect a given grammar if they
are composed from it, which is also the main advantage of using grammars for
language definition instead of meta modelling or OWL 2 constraints. Moreover,
a single, uniform formalism can be used for language definition, syntax-directed
editing and complex modifications. In the following sections, we also show how
they can be used to allow model migration and language integration.

5 Evolution of Languages and Migration of Models

Solution 5 (Vocabulary Extension and Grammar Modification for Language Evo-
lution). We solve Problem 5 of Sect. 2 by adding the new types and visualisation
hints shown in Fig. 12 to the vocabulary of our DSML and the NACs shown
in Fig. 13 to the corresponding rules of the grammar. In general, the modifica-
tions to the grammar could be more profound—adding completely new rules or
removing them completely, but in this case this is not necessary, since the rule
addNet is already designed to cover all subclasses of itml:Net. We just have to
ensure that the deprecated type itml:LAN is not used anymore and that the
intended meaning of the new type itml:Restr for restricted LANs—no direct,
unprotected connection to WANs is allowed—is respected when connections are
added to the model.

Solution 6 (Rules for Model Migration). In order to solve Problem 6 of Sect. 2,
we define the rules in Fig. 14, which migrate legacy models that still contain the
now forbidden type itml:LAN. The rules replace this typing either by itml:Public
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Fig. 14. Model migration rules

if there already is a connection to a WAN or by itml:Restr if there is no connec-
tion to a WAN. This is a design decision, since we could also retype all LANs to
itml:Public, which has no further restrictions in the new grammar.

These rules can be applied on demand or automatically allowing us to migrate
legacy models according to the practical needs of the organisation. Specifically,
it is possible to execute the migration rules automatically on (parts of) the whole
model repository or on demand only if and when legacy elements are encoun-
tered. This choice solely depends on the size of the repository and organisational
requirements like availability of the model. The migration rules are equally well-
suited for both approaches.
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6 Integration of Languages

In Fig. 15, we show how the additional notation for protocols in the IT landscape
language and the textual firewall configuration language are represented in RDF.

Since, the landscape language uses the names of protocols and the configura-
tion language uses port numbers, we need a mapping between them, before we
can start our integration effort. This mapping is given in Fig. 16, where blank
nodes with corresponding int:prot and int:port predicates are used to represent
this relation.
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Solution 7 (Rules for Language Integration). For the solution of Problem 7 of
Sect. 2, we define some sets of RDF graph transformation rules.

First, the rules in Fig. 17 are used to manually establish the connection be-
tween the firewalls in the landscape model and the corresponding configuration
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Fig. 17. Manual integration rules
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Fig. 19. Semi-automatic integration rules

language snippets and the connections in the landscape and the corresponding
interfaces in the configurations. This has to be done manually, since there is not
enough information in the models to deduce these correspondences automati-
cally. It is a constructive choice.
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The rule in Fig. 18 can be used to automatically add lines to the firewall
configurations, where there is an additional protocol that is allowed according
to the landscape model. This rule can be applied as long as possible, since we
decide to consider the landscape model as superior in these situations.

If there is a line in the firewall configurations that has no corresponding pro-
tocol in the landscape model then the rules in Fig. 19 are used. These rules are
supposed to be applied semi-automatically. The matches can be found automat-
ically, but in each case two of the rules are applicable and the user has to decide
which should be applied. Either the protocol is added to the landscape model
by one of the first two rules—intRuleToExFlow if there is already another pro-
tocol in the same direction, intRuleToNonexFlow if the arrow also needs to be
created—or the line is deleted from the firewall configuration by the third rule
intDelRule.

We now compare this rule-based model integration with the process of manu-
ally integrating models or documents. In any case, the search for inconsistencies
is replaced by the automatic match-finding for the integration rules. For the
automatic integration rules from Fig. 18, the integration can be completely ex-
ecuted without user intervention, while for the semi-automatic integration rules
from Fig. 19, the user still has to decide which of the two possibilities should
be executed. When trying to manually integrate models, the much more error-
prone task of constructing inconsistency eliminations is required, while these
eliminations are given once and for all in the rule-based approach. Thus, the
integration by rule-based graph transformation leads not only to less effort for
the integration but also to quality gains by reducing missed inconsistencies and
inappropriate eliminations.

7 Related Work

We like to focus on the main differences between the presented approach of how
domain-specific modelling languages can be administrated by formal techniques
of algebraic graph transformation and already available solutions in the area of
the related work. In detail, priority is put here on the evolution and mitigation
of models and meta-models, the realisation of complex editing operations, akin
re-factoring operations, as well as the underlying tools. This focus was chosen
because we believe that the RDF approach shows good potential to support the
issues discussed in the following in an ideal way.

From a general point of view our approach builds on top of a generic imple-
mentation that realises operations for RDF graph transformation and is able
to run different vocabularies and grammars that are used to create models. In
contrast to that today’s solutions often take a specific meta-model of a domain-
specific modelling language which is used to build language specific tools that
help to create and administrate models of such a meta-model. Therefore, today’s
solutions are in general not generic.

In [9], MetaEdit+ primarily focusses on meta-modelling and code generation.
By doing this it increases the productivity by more than 750% and produces
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high quality code. Meta-modelling is of a similar expressiveness as the grammar-
based approach we presented. However, complex operations that result from rule
compositions cannot be realised by the approach of MetaEdit+. In addition to
that, code generation can be realised by transformation rules, too, even though,
it has not yet been defined for the RDF transformation approach.

In [10], some common pitfalls regarding the development of domain-specific
modelling languages are mentioned. Probably, the key insight here is that the
grammar based approach we presented helps to avoid some of these problems.
Because of the extensibility and changeability of grammar rules as well as vocab-
ularies, the resulting models as well as the language definition can be evolved
interactively starting from a small core language. So, the risk of developing
over-engineered domain-specific modelling languages can be reduced. Secondly,
because of the common representation of the abstract syntax of models by RDF
graphs the coupling of models is strongly facilitated.

In [11], problems like the example-driven development of domain-specific mod-
elling languages as well as the induced need for tool updates are mentioned. Our
RDF approach is able to address these issues smoothly because it does not as-
sume any meta model, just a grammar rule set and a vocabulary. It can therefore
support an example-driven language development much better. Further, a tool
that can handle models represented by the help of RDF graphs does not need
to be updated because the definition of RDF will remain stable even when defi-
nitions of domain-specific modelling languages or their artifacts are evolving.

In [12], a detailed study regarding the evolution of languages and models
is presented by looking at the GMF framework. The key insight here is that
the identified need for an operator driven evolution of models can be ideally
supported by the formal techniques of algebraic graph transformation whereas
this requires quite some work in the GMF framework.

In [13], the authors discuss the idea of language extensions without changing
the tool environment. This can be ideally supported by our RDF approach by
extending the grammar rule set or the vocabulary. A generic modelling tool that
is able to process RDF graphs would not need to be updated in case of such
changes.

In [14], the need for modularisation of language definitions of domain-specific
modelling languages is stressed to support extension and reuse. Our RDF based
approach can smoothly do this by providing the concept of sub-grammars as well
as a lego-like system of already defined specifications of parts of a domain-specific
modelling language.

In [15], the need for the handling of language families is discussed. It is further
mentioned that by configuration domain-specific modelling languages should be
instantiated out of a language family. Our approach shows good potential to be
able to handle these requirements which is, however, left for future work.

8 Summary and Future Work

In this paper, we have presented a framework for domain-specific modelling
languages (DSMLs). The requirements were derived from a small application
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scenario for DSML families and we have shown how to meet these requirements
using RDF and algebraic graph transformation.

Since our proposal is a whole new framework for domain-specific modelling as
an alternative to existing MOF-based and other frameworks, we are currently
implementing tool support for this framework, where the models are stored and
transformed in an RDF triple store that functions as a model repository. This
repository will then be accessed by small, generic clients, which also have the
task of visualising the models according to the visualisation hints show in the
present paper.

With the help of a MOF to RDF mapping, refactoring and migration rules
could be given directly for MOF models. On the other hand, they could be trans-
lated to grammar-based models by translation rules or integrated with native
grammar-based models in a way that is very similar to the one in Section 6. A
detailed treatment of this is, however, left for future work.

Another interesting line of research are the relations between graph transfor-
mations and the semantics of RDFS and OWL 2, where graph transformation
rules can be used to implement the inferences themselves, but transformations
on top of inference engines should also be considered.
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Abstract. We present Clafer, a meta-modeling language with first-class
support for feature modeling. We designed Clafer as a concise notation
for meta-models, feature models, mixtures of meta- and feature mod-
els (such as components with options), and models that couple feature
models and meta-models via constraints (such as mapping feature con-
figurations to component configurations or model templates). Clafer also
allows arranging models into multiple specialization and extension layers
via constraints and inheritance. We identify four key mechanisms allow-
ing a meta-modeling language to express feature models concisely and
show that Clafer meets its design objectives using a sample product line.
We evaluated Clafer and how it lends itself to analysis on sample feature
models, meta-models, and model templates of an E-Commerce platform.

1 Introduction

Both feature and meta-modeling have been used in software product line en-
gineering to model variability. Feature models are tree-like menus of mostly
Boolean—but sometimes also integer and string—configuration options, aug-
mented with cross-tree constraints [22]. These models are typically used to show
the variation of user-relevant characteristics of products within a product line.
In contrast, meta-models, as supported by the Meta Object Facility (MOF) [28],
represent concepts of—possibly domain-specific—modeling languages, used to
represent more detailed aspects such as behavioral or architectural specification.
For example, meta-models are often used to represent the components and con-
nectors of product line architectures and the valid ways to connect them. The
nature of variability expressed by each type of models is different: feature models
capture simple selections from predefined (mostly Boolean) choices within a fixed
(tree) structure; and meta-models support making new structures by creating
multiple instances of classes and connecting them via object references.

Over the last eight years, the distinction between feature models and meta-
models (represented as class models) has been blurred somewhat in the literature
due to 1) feature modeling extensions, such as cardinality-based feature model-
ing [15, 4], or 2) attempts to express feature models as class models in Unified
Modeling Language (UML) [11, 16]; note that MOF is essentially the class mod-
eling subset of UML. A key driver behind these developments has been the
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desire to express components and configuration options in a single notation [14].
Cardinality-based feature modeling achieves this by extending feature models
with multiple instantiation and references. Class modeling, which natively sup-
ports multiple instantiation and references, enables feature modeling by a styl-
ized use of composition and the profiling mechanisms of MOF or UML.

Both developments have notable drawbacks, however. An important advan-
tage of feature modeling as originally defined by Kang et al. [22] is its simplicity;
several respondents to a recent survey confirmed this view [23]. Extending feature
modeling with multiple instantiation and references diminishes this advantage
by introducing additional complexity. Further, models that contain significant
amounts of multiply-instantiatable features and references can be hardly called
feature models in the original sense; they are more of class models. On the other
hand, whereas the model parts requiring multiple instantiation and references
are naturally expressed as class models, the parts that have feature-modeling na-
ture cannot be expressed elegantly in class models, but only clumsily simulated
using composition hierarchy and certain modeling patterns.

We present Clafer (class, feature, reference), a meta-modeling language with
first-class support for feature modeling. The language was designed to natu-
rally express meta-models, feature models, mixtures of meta- and feature mod-
els (such as components with options), and models that couple feature models
with meta-models and their instances via constraints (such as mapping feature
configurations to component configurations or to model templates [13]). Clafer
also allows arranging models into multiple specialization and extension layers
via constraints and inheritance, which we illustrate using a sample product line.

We developed a translator from Clafer to Alloy [19], a class modeling lan-
guage with a modern constraint notation. The translator gives Clafer precise
translational semantics and enables model analyses using Alloy Analyzer. Dif-
ferent strategies are applied for distinct model classes. They all preserve meaning
of the models, but speed up analysis by exploiting the Alloy constructions.

We evaluate Clafer analytically and experimentally. The analytic evaluation
argues that Clafer meets its design objectives. It identifies four key mechanisms
allowing a meta-modeling language to express feature models concisely. The ex-
perimental evaluation shows that a wide range of realistic feature models, meta-
models, and model templates can be expressed in Clafer and that useful analyses
can be run on them within seconds. Many useful analyses such as consistency
checks, element liveness, configuration completion, and reasoning on model edits
can be reduced to instance finding by combinatorial solvers [7, 9, 12]; thus, we use
instance finding and element liveness as representatives of such analyses.

The paper is organized as follows. We introduce our running example in
Sect. 2. We discuss the challenges of representing the example using either only
class modeling or only feature modeling and define a set of design objectives for
Clafer in Sect. 3. We then present Clafer in Sect. 4 and demonstrate that it sat-
isfies these objectives. We evaluate the language analytically and experimentally
in Sect. 5. We conclude in Sect. 7, after having compared Clafer with related
work in Sect. 6.
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Fig. 1. Telematics product line

2 Running Example: A Telematics Product Line

Vehicle telematics systems integrate multiple telecommunication and informa-
tion processing functions in an automobile, such as navigation, driving assistance,
emergency and warning systems, hands-free phone, and entertainment functions,
and present them to the driver and passengers via multimedia displays. Figure 1
presents a variability model of a sample telematics product line, which we will
use as a running example. The features offered are summarized in the problem-
space feature model (Fig. 1a). A concrete telematics system can support either
a single or two channels; two channels afford independent programming for the
driver and the passengers. The choice is represented as the xor-group channel,
marked by the arch between edges. By default, each channel has one associated
display; however, we can add one extra display per channel, as indicated by
the optional feature extraDisplay. Finally, we can choose large or small displays
(displaySize).

Figure 1b shows a meta-model of components making up a telematics system.
There are two types of components: ECUs (electronic control units) and displays.
Each display has exactly one ECU as its server. All components have a version.

Components themselves may have options, like the display size or cache
(Fig. 1c). We can also specify the cache size and decide whether it is fixed or
can be updated dynamically. Thus, the solution space model consists of a class
model of component types and a feature model of component options.

Finally, the variability model maps the problem-space feature configurations
to the solution-space component and option configurations. A big arrow in Fig. 1
represents this mapping; we will specify it completely and precisely in Sect. 4.3.

3 Feature vs. Meta-modeling

The solution space in Fig. 1 contains a meta- and a feature model. To capture
our intention, the models are connected via UML composition. Since the precise
semantics of such notational mixture are not clear, this connection should be
understood only informally for now.
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Fig. 2. Feature model as meta-model and vice versa

We have at least two choices to represent components and options in a single
notation. The first is to show the entire solution space model using cardinality-
based feature modeling [15]. Figure 2a shows the component part of the model
(the subfeatures of options are elided). The model introduces a synthetic root
feature; display and ECU can be multiply instantiated; and display has server sub-
feature representing a reference to instances of ECU. Versions could be added to
both display and ECU to match the meta-model in Fig. 1b or we could extend the
notation with inheritance. The latter would bring the cardinality-based feature
modeling notation very close to meta-modeling based on class modeling, posing
the question whether class modeling should not be used for the entire solution
space model instead.

We explore the class modeling alternative in Fig. 2b. The figure shows only
the options model, as the component model remains unchanged (as in Fig. 1b).
Subfeature relationships are represented as UML composition and feature cardi-
nalities correspond to composition cardinalities at the part end. The xor-group
is represented by inheritance and cache size and fixed as attributes of cache.

Representing a feature model as a UML class model worked reasonably well
for our small example; however, it does have several drawbacks. First, the feature
model showed fixed as a property of size by nesting; this intention is lost in the
class model. A solution would be to create a separate class size, containing the
size value and a class fixed; thus, adding a subfeature to a feature represented
as a class attribute requires refactoring. The name of the new class size would
clash with the class size representing the display size; thus, we would have to
rename one of them, or use nested classes, which further complicates the model.
Moreover, converting an xor-group to an or-group in feature modeling is simple:
the empty arch needs to be replaced by a filled one. For example, displaySize
(Fig. 1a) could be converted to an or-group in a future version of the product
line to allow systems with both large and small displays simultaneously. Such
change is tricky in UML class models: we would have to either allow one to
two objects of type displaySize and write an OCL constraint forbidding two
objects of the same subtype (small or large) or use overlapping inheritance (i.e.,
multiple classification). Thus, the representation of feature models in UML incurs
additional complexity.
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The examples in Fig. 2 lead us to the following two conclusions:
(1) “Cardinality-based feature modeling” is a misnomer. It encompasses multiple
instantiation and references, mechanisms characteristic of class modeling, and
could even be extended further towards class modeling, e.g., with inheritance;
however, the result can hardly be called ‘feature modeling’, as it clearly goes
beyond the original scope of feature modeling [22].
(2) Existing class modeling notations such as UML and Alloy do not offer first-
class support for feature modeling. Feature models can still be represented in
these languages; however, the result carries undesirable notational complexity.
The solution to these two issues is to design a (class-based) meta-modeling lan-
guage with first-class support for feature modeling. We postulate that such a
language should satisfy the following design goals:

1. Provide a concise notation for feature modeling
2. Provide a concise notation for meta-modeling
3. Allow mixing feature models and meta-models
4. Use minimal number of concepts and have uniform semantics

The last goal expresses our desire that the new language should unify the con-
cepts of feature and class modeling as much as possible, both syntactically and
semantically. In other words, we do not want a hybrid language.

4 Clafer: Meta-modeling with First-Class Support for
Feature Modeling

We explain the meaning of Clafer models by relating them to their corresponding
UML class models.1 Figure 3 shows the display options feature model in Clafer
(a) and the the corresponding UML model (c). Figure 4 shows the component
meta-model in Clafer; Fig. 1b has the corresponding UML model.

A Clafer model is a set of type definitions, features, and constraints. A type can
be understood as a class or feature type; the distinction is immaterial. Figure 3a
contains options as single top-level type definition. The definition contains a
hierarchy of features (lines 2-8) and a constraint (lines 10-11); the enclosing
type provides a separate name space for this content. The abstract modifier
prohibits creating an instance of the type, unless extended by a concrete type.

A type definition can contain one or more features ; the type options has two
(direct) features: size (line 2) and cache (line 6). Features are slots that can
contain one or more instances or references to instances. Mathematically, features
are binary relations. They correspond to attributes or role names of association or
composition relationships in UML. For example, in Fig. 4, the feature version (line
2) corresponds to the attribute of the class comp in Fig. 1b; and the feature server
(line 6) corresponds to the association role name next to the class ECU in Fig. 1b.
Features declared using the arrow notation and having no subfeatures, like in
server -> ECU, are reference features, i.e., they hold references to instances. Note
1 For more precise documentation including meta-models see gsd.uwaterloo.ca/sle2010
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abstract options1

xor size2

small3

large4

5

cache?6

size -> int7

fixed?8

9

[ small && cache =>10

fixed ]11

abstract <0-*> options {1

<1-1> size 1..1 {2

<0-*> small 0..1 {}3

<0-*> large 0..1 {}4

}5

<0-*> cache 0..1 {6

<0-*> size -> int 1..1 {7

<0-*> fixed 0..1 {}8

}9

}10

[ some this.size.small &&11

some this.cache =>12

some this.cache.size.fixed ]13

}14

small

1 cache 0..1

0..1 0..1 1

0..1

large

xed

cache

options

size
val :int

size

a) Concise notation b) Full notation c) UML class model

Fig. 3. Feature model in Clafer and corresponding UML class model

that we model integral features, like version (line 2) in Fig. 4, as references. Clafer
has only one object representing a given number, which speeds up automated
analyses.

Features that do not have their type declared using the arrow notation, such
as size (line 2) and cache in Fig. 3a, or have subfeatures, such as size (line 7)
in Fig. 3a, are containment features, i.e., features that contain instances. An
instance can be contained by only one feature, and no cycles in instance con-
tainment are allowed. These features correspond to role names at the part end
of composition relationships in UML. For example, the feature cache in Fig. 3a
corresponds to the role name cache next to the class cache in Fig. 3c. By a UML
convention, the role name at the association or composition end touching a class
is, if not specified, same as the class name.

A containment feature definition creates a feature and, implicitly, a new con-
crete type, both located in the same name space. For example, the feature defi-
nition cache (line 6) in Fig. 3a defines both the feature cache, corresponding to
the role name in Fig. 3c, and, implicitly, the type cache, corresponding to the
class cache in Fig. 3c. The new type is nested in the type options; in UML this
nesting means that the class cache is an inner class of the class options, i.e., its
full name is options::cache. Figure 3c shows UML class nesting relations in light
color. Class nesting permits two classes named size in a single model, because
each enclosing class defines an independent name scope.

abstract comp1

version -> int2

3

abstract ECU extends comp4

abstract display extends comp5

server -> ECU6

‘options7

[ version >= server.version ]8

9

Fig. 4. Class model in Clafer



108 K. Bąk, K. Czarnecki, and A. Wąsowski

The feature size (line 7) in Fig. 3a is a containment feature of general form:
the implicitly defined type is a structure containing a reference, here to int, and
a subfeature, fixed. This type corresponds to the class cache::size in Fig. 2b.

Features have feature cardinalities, which constrain the number of instances or
references that a given feature can contain. Cardinality of a feature is specified
by an interval m..n, where m ∈ N, n ∈ N ∪ {∗}, m ≤ n. Feature cardinality
specification follows the feature name or its reference type, if any.

Conciseness is an important goal for Clafer; therefore, we provide syntactic
sugar for common constructions. Figures 3a and 3b show the same Clafer model;
the first one is written in concise notation, while the second one is completely
desugared code with resolved names in constraints.

Clafer provides syntactic sugar similar to syntax of regular expressions: ? or
lone (optional) denote 0..1; * or any denote 0..∗; and + or some denote 1..∗. For
example, cache (line 6) in Fig. 3 is an optional feature. No feature cardinality
specified denotes 1..1 (mandatory) by default, modulo four exceptions explained
shortly. For example, size (line 7) in Fig. 3a is mandatory.

Features and types have group cardinalities, which constrain the number of
child instances, i.e., the instances contained by subfeatures. Group cardinality
is specified by an interval 〈m–n〉, with the same restrictions on m and n as
for feature cardinalities, or by a keyword: xor denotes 〈1– 1〉; or denotes 〈1– ∗〉;
opt denotes 〈0– ∗〉; and mux denotes 〈0– 1〉; further, each of the three keywords
makes subfeatures optional by default. If any, a group cardinality specification
precedes a feature or type name. For example, xor on size (line 2) in Fig. 3a states
that only one child instance of either small or large is allowed. Because the two
subfeatures small and large have no explicit cardinality attached to them, they
are both optional (cf. Fig. 3b). No explicit group cardinality stands for 〈0– ∗〉,
except when it is inherited as illustrated later.

Constraints are a significant aspect of Clafer. They can express dependencies
among features or restrict string or integer values. Constraints are always sur-
rounded by square brackets and are a conjunction of first-order logic expressions.
We modeled constraints after Alloy; the Alloy constraint notation is elegant,
concise, and expressive enough to restrict both feature and class models. Logical
expressions are composed of terms and logical operators. Terms either relate val-
ues (integers, strings) or are navigational expressions. The value of navigational
expression is always a relation, therefore each expression must be preceded by
a quantifier, such as no, one, lone or some. However, lack of explicit quantifier
(Fig. 3a) stands for some (Fig. 3b), signifying that the relation cannot be empty.

Each feature in Clafer introduces a local namespace, which is rather different
from namespaces in popular programming languages. Name resolution is impor-
tant in two cases: 1) resolving type names used in feature and type definitions
and 2) resolving feature names used in constraints. In both cases, names are path
expressions, used for navigation like in OCL or Alloy, where the dot operator
joins two relations. A name is resolved in a context of a feature in up to four
steps. First, it is checked to be a special name like this. Secondly, the name is
looked up in subfeatures in breadth-first search manner. If it is still not found,
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the algorithm searches in the top-level definition that contains the feature in
its hierarchy. Otherwise, it searches in other top-level definitions. If the name
cannot be resolved or is ambiguous within a single step, an error is reported.

Clafer supports single inheritance. In Fig. 4, the type ECU inherits features
and group cardinality of its supertype. The type display extends comp by adding
two features and a constraint. The reference feature server points to an existing
ECU instance. The meaning of ‘options notation is explained in Sect. 4.1.

The constraint defined in the context of display states that display’s version
cannot be lower than server’s version. To dereference the server feature, we use
dot, which then returns version.

4.1 Mixing via Quotes and References

Mixing class and feature models in Clafer is achieved via quotation (see line
7 in Fig. 4) or references. Syntactically, quotation is just a name of abstract
type preceded by left quote (‘), which in the example is expanded as options
extends options. The first name indicates a new feature, and the second refers
to the abstract type. Semantically, this notation creates a containment feature
options with a new concrete type display.options, which extends the top-level
abstract type options from Fig. 3a. The concrete type inherits group cardinality
and features of its supertype. By using quotation only the quoted type is shared,
but no instances. References, on the other hand, are used for sharing instances.

The following example highlights the difference:

abstract options
-- content as in options in Fig. 3a

displayOwningOptions *
‘options -- shorthand for options extends options

options

displayOwningOptions

options
1

In the above snippet, each instance of displayOwningOptions will have its own
instance of type options, as depicted in the corresponding UML diagram. Other
types could also quote options to reuse it. Note that Clafer assumes the existence
of an implicit root object ; thus, a feature definition, such as displayOwningOptions
above, defines both a subfeature of the root object and a new top-level concrete
type.

Now consider the following code with corresponding UML diagram:

options *
-- content as in options in Fig. 3a

displaySharingOptions *
sharedOptions -> options displaySharingOptions

options
1
*
sharedOptions

Each instance of displaySharingOptions has a reference named sharedOptions point-
ing to an instance of options. Although there can be many references, they might
all point to the same instance living somewhere outside displaySharingOptions.
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abstract plaECU extends ECU1

‘display 1..22

[ ~cache3

server = parent ]4

ECU1 extends plaECU5

ECU2 extends plaECU ?6

master -> ECU17

master

ECU2ECU1

display2
small
large

display1
small
large

display2
small
large

display1
small
large

Legend:
radio button
(alternative)

check box
(optional)

a) Clafer model b) A possible graphical rendering

Fig. 5. Architectural template

4.2 Specializing via Inheritance and Constraints

Let us go back to our telematics product line example. The architectural meta-
model as presented in Fig. 4 is very generic: the meta-model describes infinitely
many different products, each corresponding to its particular instance. We would
like to specialize and extend the meta-model to create a particular template.
A template makes most of the architectural structure fixed, but leaves some
points of variability. In previous work, we introduced feature-based model tem-
plates (FBMT in short) as models (instances of meta-models) with optional
elements annotated with Boolean expressions over features known as presence
conditions [13]. Below, we show how such templates can be expressed in Clafer.

Figure 5a shows such a template for our example. We achieve specialization
via inheritance and constraints. In particular, we represent instances of meta-
model classes as singleton classes. In our example, a concrete product must
have at least one ECU and thus we create ECU1 to represent the mandatory
instance. Then, optional instances are represented using classes with cardinality
0..1. Our product line can optionally have another ECU, represented by ECU2.
Similarly, each ECU has either one display or two displays, but none of the
displays has cache. Besides, we need to constrain the server reference in each
display in plaECU, so that it points to its associated ECU. The constraint in line
3 in Fig. 5a is nested under display. The reference parent points to the current
instance of plaECU, which is either ECU1 or ECU2. Also, ECU2 extends the base
type with master, pointing to ECU1 as the main control unit.

Figure 5b visualizes the template in a domain-specific notation, showing both
the fixed parts, e.g., mandatory ECU1 and display1, and the variable parts, e.g.,
alternative display sizes (radio buttons) and optional ECU2 and display2 (check-
boxes). Note that model templates such as UML models annotated with presence
conditions (e.g., [13]) can be translated into Clafer automatically by 1) repre-
senting each model element e by a class with cardinality 0..1 that extends the
element’s meta-class and 2) a constraint of the form p && c <=> e, with p being
e’s parent and c being e’s presence condition. In our example, we keep these
constraints separate from the template (see Sect. 4.3). Further, in contrast to
annotating models with presence conditions, we can use subclassing and con-
straints to specialize and extend the meta-model in multiple layers.
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telematicsSystem1

xor channel2

single3

dual4

extraDisplay?5

xor displaySize6

small7

large8

[ dual <=> ECU29

extraDisplay <=> #ECU1.display = 210

extraDisplay <=>11

(ECU2 <=> #ECU2.display = 2)12

small <=> ~plaECU.display.options.size.large13

large <=> ~plaECU.display.options.size.small14

]15

Fig. 6. Feature model with mapping constraints

-- concrete product1

[ dual && extraDisplay && telematicsSystem.size.large && comp.version == 1 ]2

Fig. 7. Constraint specifying a single product

4.3 Coupling via Constraints

Having defined the architectural template, we are ready to expose the remaining
variability points as a product-line feature model. Figure 6 shows this model (cf.
Fig. 1a) along with a set of constraints coupling its features to the variability
points of the template. Note that the template allowed the number of displays
(ECU1.display and ECU2.display) and the size of every display to vary indepen-
dently; however, we further restrict the variability in the feature model, requiring
either all present ECUs to have two displays or all to have no extra display and
either all present displays to be small or all to be large. Also note that we opted
to explain the meaning of each feature in terms of the model elements to be
selected rather than defining the presence condition of each element in terms of
the features. Both approaches are available in Clafer, however.

Constraints allow us restricting a model to a single instance. Figure 7 shows
a top-level constraint specifying a single product, with two ECUs, two large
displays per ECU, and all components in version 1. Based on this constraint,
we can automatically instantiate the product line using the Alloy analyzer, as
described in Sect. 5.2.

5 Evaluation

5.1 Analytical Evaluation

We now discuss to what extent Clafer meets its design goals from Sect. 3.
(1) Clafer provides a concise notation for feature modeling. This can be seen
by comparing Clafer to TVL, a state-of-the-art textual feature modeling lan-
guage [8]. Feature models in Clafer look very similar to feature models in TVL,
except that TVL uses explicit keywords (e.g., to declare groups) and braces for
nesting. Figure 8a shows the TVL encoding of the feature model from Fig. 3.
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Options group allof {1

Size group oneof { Small, Large },2

opt Cache group allof {3

CacheSize group allof {4

SizeVal { int val; },5

opt Fixed6

}7

},8

Constraint { (Small && Cache) -> Fixed; }9

}10

class Comp {1

reference version : Integer2

}3

4

class ECU extends Comp{ }5

6

class Display extends Comp {7

reference server : ECU8

attribute options : Options9

}10

a) Options feature model in TVL b) Component meta-model in KM3

Fig. 8. Our running example in TVL and KM3

Clafer’s language design reveals four key ingredients allowing a class modeling
language to provide a concise notation for feature modeling:

– Containment features : A containment feature definition creates both a fea-
ture (a slot) and a type (the type of the slot); for example, all features in Figs.
3 and 6 are of this kind. Neither UML nor Alloy provide this mechanism; in
there, a slot and the class used as its type are declared separately.

– Feature nesting: Feature nesting accomplishes instance composition and type
nesting in a single construct. UML provides composition, but type nesting
is specified separately (cf. Fig. 3c). Alloy has no built-in support for com-
position and thus requires explicit parent-child constraints. It also has no
signature nesting, so name clashes need to be avoided using prefixes or alike.

– Group constraints : Clafer’s group constraints are expressed concisely as inter-
vals. In UML groups can be specified in OCL, but using a lengthy encoding,
explicitly listing features belonging to the group. Same applies to Alloy.

– Constraints with default quantifiers: Default quantifiers on relations, such as
some in Fig. 3, allow writing constraints that look like propositional logic,
even though their underlying semantics is first-order predicate logic.

(2) Clafer provides a concise notation for meta-modeling. Figure 8b shows the
meta-model of Fig. 4 encoded in KM3 [21], a state-of-the-art textual meta-model-
ing language. The most visible syntactic difference between KM3 and Clafer is
the use of explicit keywords introducing elements and mandatory braces estab-
lishing hierarchy. KM3 cannot express additional constraints in the model. They
are specified separately, e.g. as OCL invariants.

It is instructive to compare the size of the Clafer and Alloy models of the
running example. With similar code formatting (no comments and blank lines),
Clafer representation has 43 LOC and the automatically generated Alloy code is
over two times longer. Since the Alloy model contains many long lines, let us also
compare source file sizes: 1kb for Clafer and over 4kb for Alloy. The code gener-
ator favors conciseness of the translation over uniformity of the generated code.
Still, in the worst case, the lack of the previously listed constructs makes Alloy
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models necessarily larger. Other language differences tip the balance further in
favor of Clafer. For example, an abstract type definition in Clafer guarantees
that the type will not be automatically instantiated; however, unextended ab-
stract sets can be still instantiated by Alloy Analyzer. Therefore, each abstract
signature in Alloy needs to be extended by an additional signature.
(3) Clafer allows mixing feature and meta-models. Quotations allow reusing fea-
ture or class types in multiple locations; references allow reusing both types and
instances. Feature and class models can be related via constraints (Fig. 6).
(4) Clafer tries to use a minimal number of concepts and has uniform seman-
tics. While integrating feature modeling into meta-modeling, our goal was to
avoid creating a hybrid language with duplicate concepts. In Clafer, there is no
distinction between class and feature types. Features are relations and, besides
their obvious role in feature modeling, they also play the role of attributes in
meta-modeling. We also contribute a simplification to feature modeling: Clafer
has no explicit feature group construct; instead, every feature can use a group
cardinality to constrain the number of children. This is a significant simplifica-
tion, as we no longer need to distinguish between “grouping features” (features
used purely for grouping, such as menus) and feature groups. The grouping in-
tention and grouping cardinalities are orthogonal: any feature can be annotated
as a grouping feature and any feature may chose to impose grouping constraints
on children. Finally, both feature and class modeling have a uniform semantics:
a Clafer model instance, just like Alloy’s, is a set of relations.

5.2 Experimental Evaluation

Our experiment aims to show that Clafer can express a variety of realistic feature
models, meta-models and model templates and that useful analyses can be per-
formed on these encodings in reasonable time. Then it follows that the richness
of Clafer’s applications, does not come at a cost of lost analysis potential with
respect to models in more specialized languages.

The experiment methodology is summarized in the following steps:

1. Identify a set of models representative for the three main use cases of Clafer:
feature modeling, meta-modeling, and mixed feature and meta-modeling.

2. Select representative analyses. We studied the analyses in published litera-
ture and decided to focus on a popular class of analyses, which reduce to
model instance finding. These include inconsistency detection, element live-
ness analysis, offline and interactive configuration, guided editing, etc. Since
all these have similar performance characteristics, we decided to use model
instance finding, consistency and element liveness analysis as representative.

3. Translate models into Clafer and record observations. We created automatic
translators for converting models to Clafer if it was enough to apply simple
rewriting rules. In other cases, translation was done manually.

4. Run the analyses and reporting performance results. The analyses are imple-
mented by using our Clafer-to-Alloy translator, and then employing Alloy
Analyzer (which is an instance finder) to perform the analysis.
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The Clafer-to-Alloy translator is written in Haskell and comprises several chained
modules: lexer, layout resolver, parser, desugarer, semantic analyzer, and code
generator. Layout resolver makes braces grouping subfeatures optional. Clafer is
composed of two languages: the core and the full language. The first one is a min-
imal language with well-defined semantics. The latter is built on top of the core
language and provides large amount of syntactic sugar (cf. Fig. 3). Semantic an-
alyzer resolves names and deals with inheritance. The code generator translates
the core language into Alloy. The generator has benefited from the knowledge
about the class of models it is working with to optimize the translation, in the
same way as analyzers for specialized languages have this knowledge.

The experiment was executed on a laptop with a Core Duo 2 @2.4GHz pro-
cessor and 2.5GB of RAM, running Linux. Alloy Analyzer was configured to
use Minisat as a solver. All Clafer and generated Alloy models are available at
gsd.uwaterloo.ca/sle2010. In the subsequent paragraphs we present and discuss
the results for the three subclasses of models.

Feature Models. In order to find representative models we have consulted SPLOT
[27] — a popular repository of feature models. We have succeeded in automat-
ically translating all 58 models from SPLOT to Clafer (non-generated, human-
made models; available as of July 4th, 2010). These include models with and
without cross-tree constraints, ranging from a dozen to hundreds of features.

Results for all models are available online at the above link. Here, we report
the most interesting cases together with further four, which have been randomly
generated; all listed in Table 1. Digital Video Systems is a small example with few
cross-tree constraints. Dell Laptops models a set of laptops offered by Dell in 2009.
This is one of few models that contains more constraints than features. Arcade
Game describes a product line of computer games; it contains tens of features
and constraints. EShop [25] is the largest realistic model that we have found
on SPLOT. It is a domain model of online stores. The remaining models are
randomly generated using SPLOT, with a fixed 10% constraint/variable ratio.

We checked consistency of each model by instance finding. Table 1 presents
summary of results. The analysis time was less then a second for up to several
hundred features and less than a minute for up to several thousand features. In-
terestingly, the biggest bottleneck was the Alloy Analyzer itself (which translates
Alloy into a CNF formula)—reasoning about the CNF formula in a SAT-solver
takes no more than hundreds of milliseconds.

Meta-Models. In order to identify representative meta-models, we have turned
to the Ecore Meta-model Zoo (www.emn.fr/z-info/atlanmod/index.php/Ecore), from
where we have selected the following meta-models: AWK Programs, ATL, ANT, Bib-
Tex, UML2, ranging from tens to hundreds of elements. We translated all these
into Clafer automatically. One interesting mapping is the translation of ERef-
erence elements with eOpposite attribute (symmetric reference), as there is no
first-class support for symmetric references in Clafer. We modeled them as con-
straints relating references with their symmetric counterparts. Moreover we have
not handled multiple inheritance in our translation.
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Since none of these meta-models contained OCL constraints, we extracted
OCL constraints from the UML specification [29] and manually added them
to the Clafer encoding of UML2. We did observe certain patterns during that
translation and believe that this task can be automated for a large class of
constraints. Table 2 presents sample OCL constraints translated into Clafer.
Each constraint, but last, is written in a context of some class. Their intuitive
meanings are as follows: 1) ownedReception is empty if there is no isActive; 2)
endType aggregates all types of memberEnds; 3) if memberEnd’s aggregation is
different from none then there are two instances of memberEnd; 4) there are
no two types of the same names. All Clafer encodings of the meta-models are
available at the above link.

There are several reasons why Clafer constraints are more concise and uni-
form compared with OCL invariants. Similarly to Alloy, every Clafer definition
is a relation. This approach, eliminates extra constructions such as OCL’s collect,
allInstances. Finally, assuming the default some quantifier before relational op-
erations (e.g. memberEnd.aggregation - none), we can treat result of an operation
as if it was a propositional formula, thus eliminating extra exists quantifiers.

We applied automated analyses to slices of the UML2 meta-model: Class Di-
agram from [10], State Machines, and Behaviors (Table 3). Each slice has tens
of classes and our goal was to include a wide range of OCL constraints. We

Table 1. Results of consistency analysis for feature models expressed in Clafer

model name nature size [# features] [# constraints] running time [s]

Digital Video System Realistic 26 3 0.012
Dell Laptops Realistic 46 110 0.025
Arcade Game Realistic 61 34 0.040
eShop Realistic 287 21 0.15
FM-500-50-1 Generated 500 50 0.45
FM-1000-100-2 Generated 1000 100 1.5
FM-2000-200-3 Generated 2000 200 4.5
FM-5000-500-4 Generated 5000 500 28.0

Table 2. Constraints in OCL and Clafer

Context OCL Clafer

Class (not self.isActive) implies ∼isActive => no ownedReception
self.ownedReception->isEmpty()

Association self.endType = self.memberEnd-> endType = memberEnd.type
collect(e | e.type)

Association self.memberEnd->exists(aggregation memberEnd.aggregation - none =>
<> Aggregation::none) implies #memberEnd = 2
self.memberEnd->size() = 2

– Type.allInstances() -> forAll (t1, t2 | all disj t1, t2 : Type | t1.name != t2.name
t1 <> t2 implies t1.name <> t2.name)
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checked the strong consistency property [9] for these meta-models. To verify
this property, we instantiated meta-models’ elements that were at the bottom
of inheritance hierarchy, by restricting their cardinality to be at least one. The
same constraints were imposed on containment references within all meta-model
elements. The analysis confirmed that none of the meta-models had dead ele-
ments. Our results show that liveness analysis can be done efficiently for realistic
meta-models of moderate size.

Feature-Based Model Templates. The last class of models are feature-based
model templates akin to our telematics example. A FBMT consists of a fea-
ture model (cf. Fig. 6, left), a meta-model (cf. Fig. 4), a template (cf. Fig. 5a),
and a set of mapping constraints (cf. Fig. 6, right). To the best of our knowledge,
Electronic Shopping [25] is the largest example of a model template found in the
literature. We used its templates, listed in Table 4, for evaluation: FindProduct
and Checkout are activity diagram templates, and TaxRule is a class diagram
template. Each template had substantial variability in it. All templates have be-
tween 10 and 20 features, tens of classes and from tens to hundreds constraints.
For comparison, we also include our telematics example.

We manually encoded the above FBMTs in Clafer. For each of the diagrams in
[25], we took a slice of UML2 meta-model and created a template that conforms
to the meta-model, using mandatory and optional singleton classes as described
in Sect. 4.2. To create useful and simple slices of UML diagrams, we removed
unused attributes and flattened inheritance hierarchy, since many superclasses
were left without any attributes. Thus, the slice preserved the core semantics.
Furthermore, we sliced the full feature model, so that it contains only features
that appear in diagram. Finally, we added mappings to express dependencies
between features and model elements, as described in Sect. 4.3.

Table 3. Results of strong consistency analysis for UML2 meta-model slices in Clafer

meta-model/instance size [#classes] [#constraints] running time [s]

State Machines 11 28 0.08
Class Diagram 19 17 0.15
Behaviors 20 13 0.23

Table 4. Analyses for Feature-Based Model Templates expressed in Clafer. Parentheses
by the model names indicate the number of optional elements in each template.

FBMT #features/#classes/#constraints instantiation [s] element liveness [s]

Telematics (8) 8/7/17 0.04 0.26
FindProduct (16) 13/29/10 0.07 0.18
TaxRules (7) 16/24/62 0.11 0.12
Checkout (41) 18/78/314 1.6 5.8
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We performed two types of analyses on FBMTs. First, we created sample
feature configurations (like in Fig. 7) and instantiated templates in the Alloy
Analyzer. We inspected each instance and verified that it was the expected one.

Second, we performed element liveness analysis for the templates. The analy-
sis is similar to element liveness for meta-models [9], but now applied to template
elements. We performed the analysis by repeated instance finding; in each iter-
ation we required the presence of groups of non-exclusive model elements.

Table 4 presents summary of inspected models and times of analyses. Often
the time of liveness analysis is very close to the time of instantiation multiplied
by the number of element groups. For instance, for FindProduct, liveness analysis
was three times longer than time of instantiation, because elements were ar-
ranged into 3 groups of non-conflicting elements. This rule holds when the Alloy
Analyzer uses the same scope for element instances.

We consider our results promising, since we obtained acceptable timings for
slices of realistic models, without fully exploiting the potential of Alloy. The
results can clearly be further improved by better encoding of slices (for example,
representing activity diagram edges as relations instead of sets in Alloy) and
using more intelligent slicing methods; e.g. some constraints are redundant, such
as setting source and target edges in ActivityNodes, so removing these constraints
would speed up reasoning process. However already now we can see that Clafer
is a suitable vehicle for specifying FBMTs and analyzing them automatically.

Threats to Validity

External Validity. Our evaluation is based on the assumption that we chose
representative models and useful and representative analyses.

All models, except the four randomly generated feature models, were cre-
ated by humans to model real-word artifacts. As all, except UML2, come from
academia, there is no guarantee that they share characteristics with industrial
models. Majority of practical models have less than a thousand features [24], so
reasoning about corresponding Clafer models is feasible and efficient. Perhaps
the biggest real-world feature model up to date is the Linux Kernel model (al-
most 5500 features and thousands of constraints) [31]. It would presently pose a
challenge for our tools. Working with models of this size requires proper engi-
neering of analyses. Our objective here was to demonstrate feasibility of analyses.
We will continue to work on robust tools for Clafer in future.

We believe that the slices of UML2 selected for the experiment are represen-
tative of the entire meta-model because we picked the parts with more complex
constraints. While there are not many existing FBMTs to choose from, the e-
commerce example [25] was reversed engineered from the documentation of an
IBM e-commerce platform, which makes the model quite realistic.

Not all model analyses can be reduced to instance finding performed using
combinatorial solvers (relational model finder in case of Alloy [34]). However
combinatorial analyses belong to most widely recognized and effective [7].
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Instance finding for models has similar uses to testing and debugging for
programs [19]—it helps to uncover flaws in models, assists in evolution and
configuration. For example it helped us discover that our original Clafer code
was missing constraints (lines 9–10 and 14–15 in Fig. 5a and line 14 in Fig. 6).
Some software platforms already provide configuration tools using reasoners; for
example, Eclipse uses a SAT solver to help users select valid sets of plug-ins [26].

Liveness analysis for model elements has been previously exploited, for in-
stance in [33, 9]. Tartler et al. [33] analyze liveness of features in the Linux kernel
code, reporting about 60 previously unreported dead features in the released ker-
nel versions. Linux is not strictly a feature-based model template, but its build
architecture, which relies on (a form of) feature models and presence conditions
on code (conditional compilation) highly resembles our model templates.

Analyzers based on instance finding solve an NP-hard problem. Thus no hard
guarantees can be given for their running times. Although progress in solver
technologies has placed these problems in the range of practically tractable,
there do exist instances of models and meta-models, which will effectively break
the performance of our tools. Our experiments aim at showing that this does
not happen for realistic models.

There exist more sophisticated analyzes (and classes of models) that cannot be
addressed with Clafer infrastructure, and are not reflected in our experiment. For
example instance finding is limited to instances of bounded size. It is possible
to build sophisticated meta-models that only have very large instances. This
problem is irrelevant for feature models and model templates as they allow no
no classes that can be instantiated without bounds.

Moreover special purpose languages may require more sophisticated analy-
ses techniques such as behavioral refinement checking, model checking, model
equivalence checking, etc. These properties typically go beyond static semantics
expressed in meta-models and thus are out of scope for generic Clafer tools.

Internal Validity. Translating models from one language to another can intro-
duce errors and change semantics of the resulting model.

We used our own tools to convert SPLOT and Ecore models to Clafer and
then to translate Clafer to Alloy. We translated FBMTs and OCL constraints
manually. The former is rather straightforward; the latter is more involved. We
publish all the models so that their correctness can be reviewed independently.

Another threat to correctness is the slice extraction for UML2 and e-commerce
models. Meta-model slicing is a common technique used to speed-up model anal-
yses, where reasoner processes only relevant parts of the meta-model. We per-
formed it manually, while making sure that all parts relevant to the selected
constraints were included; however, the technique can be automated [30].

The correctness of the analyses relies on the correctness of the Clafer-to-
Alloy translator and the Alloy analyzer. The Alloy analyzer is a mature piece of
software. We tested Clafer-to-Alloy translator by translating sample models to
Alloy and inspecting the results.
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6 Related Work

We have already mentioned related work on model analysis; here we focus on
work related to our main contribution, Clafer’s novel language design.

Asikainen and Männistö present Forfamel, a unified conceptual foundation for
feature modeling [4]. The basic concepts of Forfamel and Clafer are similar; both
include subfeature, attribute, and subtype relations. The main difference is that
Clafer’s focus is to provide concise concrete syntax, such as being able to define
feature, feature type, and nesting by stating an indented feature name. Also, the
conceptual foundations of Forfamel and Clafer differ; e.g., features in Forfamel
correspond to Clafer’s instances, but features in Clafer are relations. Also, a
feature instance in Forfamel can have several parents; in Clafer, an instance
has at most one parent. These differences likely stem from the difference in
perspective: Forfamel takes a feature modeling perspective and aims at providing
a foundation unifying the many existing extensions to feature modeling; Clafer
limits feature modeling to its original FODA scope [22], but integrates it into
class modeling. Finally, Forfamel considers a constraint language as out of scope,
hinting at OCL. Clafer comes with a concise constraint notation.

TVL is a textual feature modeling language [8]. It favors the use of explicit key-
words, which some software developers may prefer. The language covers Boolean
features and features of other primitive types such as integer. The key difference
is that Clafer is also a class modeling language with multiple instantiation, ref-
erences, and inheritance. It would be interesting to provide a translation from
TVL to Clafer. The opposite translation is only partially possible.

As mentioned earlier, class-based meta-modeling languages, such as KM3 [21]
and MOF [28] cannot express feature models as concisely as Clafer.

Nivel is a meta-modeling language, which was applied to define feature and
class modeling languages [3]. It supports deep instantiation, enabling concise
definitions of languages with class-like instantiation semantics. Clafer’s purpose
is different: to provide a concise notation for combining feature and class models
within a single model. Nivel could be used to define the abstract syntax of Clafer,
but it would not be able to naturally support our concise concrete syntax.

Clafer builds on our several previous works, including encoding feature mod-
els as UML class models with OCL [16]; a Clafer-like graphical profile for Ecore,
having a bidirectional translation between an annotated Ecore model and its
rendering in the graphical syntax [32]; and the Clafer-like notation used to spec-
ify framework-specific modeling languages [2]. None of these works provided
a proper language definition and implementation like Clafer; also, they lacked
Clafer’s concise constraint notation.

Gheyi et al. [17] pioneered translating Boolean feature models into Alloy.
Anastasakis et al. [1] automatically translated UML class diagrams with OCL
constraints to Alloy. Clafer covers both types of models.

Relating problem-space feature models and solution-space models has a long
tradition. For example, feature models have been used to configure model tem-
plates before [13, 18]. That work considered model templates as superimposed in-
stances of a metamodel and presence conditions attached to individual elements
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of the instances; however, the solution in Sect. 4.2 implements model templates
as specializations of a metamodel. Such a solution allows us treating the fea-
ture model, the metamodel, and the template at the same metalevel, simply as
parts of a single Clafer model. This design allows us to elegantly reuse a single
constraint language at all these levels. As another example, Janota and Botter-
weck show how to relate feature and architectural models using constraints [20].
Again, our work differs from this work in that our goal is to provide such integra-
tion within a single language. Such integration is given in Kumbang [5], which is
a language that supports both feature and architectural models, related via con-
straints. Kumbang models are translated to Weight Constraint Rule Language
(WCRL), which has a reasoner supporting model analysis and instantiation.
Kumbang provides a rich domain-specific vocabulary, including features, com-
ponents, interfaces, and ports; however, Clafer’s goal is a minimal clean language
covering both feature and class modeling, and serving as a platform to derive
such domain specific languages, as needed.

7 Conclusion

The premise for our work are usage scenarios mixing feature and class models
together, such as representing components as classes and their configuration
options as feature hierarchies and relating feature models and component models
using constraints. Representing both types of models in single languages allows
us to use a common infrastructure for model analysis and instantiation.

We set off to integrate feature modeling into class modeling, rather than try-
ing to extend feature modeling as previously done [15]. We propose the concept
of a class modeling language with first-class support for feature modeling and
define a set of design goals for such languages. Clafer is an example of such a
language, and we demonstrate that it satisfies these goals. The design of Clafer
revealed that a class modeling language can provide a concise notation for feature
modeling if it supports containment feature definitions, feature nesting, group
cardinalities, and constraints with default quantifiers. Our design contributes a
precise characterization of the relationship between feature and class modeling
and a uniform framework to reason about both feature and class models.
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Abstract. The choice of requirements for an argument of a generic type
or algorithm is a central design issue in generic programming. In the
context of C++, a specification of requirements for a template argument
or a set of template arguments is called a concept.

In this paper, we present a novel tool, TACE (template analysis
and concept extraction), designed to help programmers understand the
requirements that their code de facto imposes on arguments and help
simplify and generalize those through comparisons with libraries of well-
defined and precisely-specified concepts. TACE automatically extracts
requirements from the body of function templates. These requirements
are expressed using the notation and semantics developed by the ISO
C++ standards committee. TACE converts implied requirements into
concept definitions and compares them against concepts from a repos-
itory. Components of a well-defined library exhibit commonalities that
allow us to detect problems by comparing requirements from many com-
ponents: Design and implementation problems manifest themselves as
minor variations in requirements. TACE points to source code that can-
not be constrained by concepts and to code where small modifications
would allow the use of less constraining concepts. For people who use a
version of C++ with concept support, TACE can serve as a core engine
for automated source code rejuvenation.

1 Introduction

A fundamental idea of generic programming is the application of mathematical
principles to the specification of software abstractions [22]. ISO C++ [15][24]
supports generic programming through the use of templates. Unfortunately, it
does not directly support the specification of requirements for arguments to
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generic types and functions [23]. However, research into language-level support
for specifying such requirements, known as concepts, for C++ has progressed to
the point where their impact on software can be examined [13][7][14]. Our work
is aimed at helping programmers cope with the current lack of direct support
for concepts and ease the future transition to language-supported concepts.

Templates are a compile-time mechanism to parameterize functions and
classes over types and values. When the concrete template argument type be-
comes known to the compiler, it replaces the corresponding type parameter
(template instantiation), and type checks the instantiated template body. This
compilation model is flexible, type safe, and can lead to high performance code
[10]. For over a decade, C++ templates have helped deliver programs that are
expressive, maintainable, efficient, and organized into highly reusable compo-
nents [25]. Many libraries, such as the C++ Standard Template Library (STL) [5],
the BOOST graph library [21], and the parallel computation system, STAPL [4],
for which adaptability and performance are paramount, rest on the template
mechanism.

C++ currently does not allow the requirements for the successful instantia-
tion of a template to be explicitly stated. These requirements must be found
in documentation or inferred from the template body. For attempts to instan-
tiate a template with types that do not meet its requirements, current compil-
ers often fail with hard to understand error messages [13]. Also, C++ provides
only weak support for overloaded templates. While numerous programming tech-
niques [1][3][18][20] offer partial solutions, they tend to raise the complexity.

Concepts [13][7][14] were developed to provide systematic remedies and deliver
better support for the design and development of generic programs. As defined
for C++0x, concepts improve expressiveness, make error messages more precise,
and provide better control of the compile-time resolution of templates. Impor-
tantly, the use of concepts does not incur runtime overhead when compared to
templates not using concepts. Despite many years design efforts, implementa-
tion work, and experimental use, concerns about usability, scalability, and the
time needed to stabilize a design prevented concepts from being included as a
language mechanism in the next revision of C++ [27][26]. However, we are left
with a notation and a set of concepts developed for the STL and other libraries
that can be used to describe and benchmark our use of design-level concepts.

In this paper, we present a novel tool for template analysis and concept ex-
traction, TACE, that addresses some of these concerns. TACE extracts concept
requirements from industrial-strength C++ code and helps apply concepts to
unconstrained templated code. The paper offers the following contributions:

– A strategy for evolving generic code towards greater generality, greater uni-
formity, and more precise specification.

– Type level evaluation of uninstantiated function templates and automatic
extraction of sets of requirements on template arguments.

– Concept analysis that takes called functions into account.

Experience with large amounts of generic C++ code and the development of
C++ generic libraries, such as the generic components of the C++0x standard



Evolution of C++ Generic Functions 125

library [6], shows that the source code a template is not an adequate specification
of its requirements. Such a definition is sufficient for type safe code generation,
but even expert programmers find it hard to provide implementations that do
not accidentally limit the applicability of a template (compared to its informal
documentation). It is also hard to precisely specify template argument require-
ments and to reason about those.

Consequently, there is wide agreement in the C++ community that a formal
statement of template argument requirements in addition to the template body
is required. Using traditional type deduction techniques [8] modified to cope
with C++, TACE generates such requirements directly from code. This helps
programmers see the implications of implementation choices. Furthermore, the
set of concepts generated from an implementation is rarely the most reusable
or the simplest. To help validate a library implementation TACE compares the
generated (implied) concepts to pre-defined library concepts.

Fig. 1. The TACE tool chain

Fig. 1 shows TACE’s tool chain. TACE utilizes the Pivot source-to-source
transformation infrastructure [11] to collect and analyze information about C++
function templates. The Pivot’s internal program representation (IPR) preserves
high-level information present in the source code - it represents uninstantiated
templates and is ready for concepts. TACE analyzes expressions, statements, and
declarations in the body of function templates and extracts the requirements on
template arguments. It merges the requirements with requirements extracted
from functions that the template body potentially invokes. The resulting sets of
requirements can be written out as concept definitions.

However, our goal is to find higher-level concepts that prove useful at the
level of the design of software libraries. In particular, we do not just want to find
the requirements of a particular implementation of an algorithm or the absolute
minimal set of requirements. We want to discover candidates for concepts that
are widely usable in interface specifications for algorithms. To recognize such
concepts we need the “advice” of an experienced human. TACE achieves this by
matching the extracted sets of requirements against concepts stored in a concept
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repository (e.g., containing standard concepts). In addition to reporting matches,
the tool also reports close misses. In some cases, this allows programmers to re-
formulate their code to facilitate types that model a weaker concept. TACE does
not try to discover semantic properties of a concept (“axioms” [12]). In general,
doing so is beyond the scope of static analysis. Test results for STL indicate
that our tool is effective when used in conjunction with a concept repository
that contains predefined concepts.

The rest of the paper is organized as follows: §2 provides an overview of C++
with concepts, §3 presents the extraction of requirements from bodies of tem-
plate functions, §4 describes requirement integration and reduction; §5 discusses
matching the extracted requirements against predefined concepts from a repos-
itory, §7 discusses related work, and §8 presents a conclusion and an outlook on
subsequent work.

2 Concepts for C++

Concepts as designed for C++0x [13][7][14] provide a mechanism to express con-
straints on template arguments as sets of syntactic and semantic requirements.

Syntactic requirements describe requirements such as associated functions,
types, and templates that allow the template instantiation to succeed. Consider
the following template, which determines the distance between two iterators:
template<typename Iterator>
size t distance(Iterator first, Iterator last) {

size t n = 0;
while (first != last) { ++first; ++n; }
return n;

}

The function distance requires types that substitute for the type parameter
Iterator have a copy constructor (to copy the arguments), a destructor (to
destruct the argument at the end of the scope), an inequality (!=) operator, and
an increment (++) operator. A requirement’s argument type can be derived from
the source code. Requirements can be stated using a C++ signature like notation.
concept DistanceRequirements<typename T> {

T::T(const T&); // copy constructor
T::˜T(); // destructor
bool operator!=(T, T);
void operator++(T);

}

In order not to over-constrain templates, function signatures of types that model
the concept need not match the concept signature exactly. Signatures in concepts
allow automatic conversions of argument types. This means that an implemen-
tation of operator!= can accept types that are constructable from T.

The return type of a functional requirement has to be named but can remain
unbound. The following example shows a function with two parameters of type
T, where T is a template argument constrained by the concept TrivialIterator.
The function tests whether the return values of the operator* are equal. The type
of the return values is irrelevant as long as there exists an operator== that can
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compare the two. The result type of the equality comparison must be convertible
to bool.
template <TrivialIterator T>
bool same elements(T lhs, T rhs) {

return (∗lhs == ∗rhs);
}

Concepts introduce associated types to model such types. The following concept
definition of TrvialIterator introduces such an associated type ValueType to
specify the return type of operator*. Associated types can be constrained by
nested requirements (e.g., the requires clause).
concept TrivialIterator<typename T> {

typename ValueType;
// nested requirements
requires EqualityComparable<ValueType>; // operator== of ValueType
ValueType operator∗(T); // deref operator∗
. . .

}

The compiler will use the concept definitions to type check expressions, declara-
tions, and statements of the template body without instantiating it. Any type
(or combination of types) that defines the required operations and types is a
model of the concept. These types can be used for template instantiation.

Semantic requirements describe behavioral properties, such as the equivalence
of operations or runtime complexity. Types that satisfy the semantic require-
ments are guaranteed to work properly with a generic algorithm. Axioms model
some behavioral properties. Axioms can specify the equivalence of operations.
The two operations are separated by an operator <=>. In the following example,
the axiom indirect deref specifies that the operations of the left and right side
of <=> produce the same result. This is the case for pointers or random access
iterators. Compilers are free to use axioms for code optimizations.
concept Pointer<typename T> {

typename data;
data operator∗(T);
T operator+(T, size t);
data operator[](T, size t);

axiom indirect deref(T t, size t n) {
t[n] <=> ∗(t+n);

}
}

Concepts can extend one or more existing concepts and add new requirements.
Any requirement of the “base” concept remains valid for its concept refinements.
Consider a trivial iterator abstraction, which essentially defines an operation to
access its element (operator*). The concept ForwardIterator adds operations to
traverse a sequential data structure in one way.
concept ForwardIterator<typename T> {

requires TrivialIterator<T>;
. . .

}

Concept refinements are useful for the implementation of a family of generic
functions. A base implementation constrains its template arguments with a
general concept, while specialized versions exploit the stronger requirements of
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concept refinements to provide more powerful or more efficient implementations.
Consider, the STL algorithm advance(Iter, Size) for which three different im-
plementations exist. Its basic implementation is defined for input-iterators and
has runtime complexity O(Size). The version for bidirectional-iterators can han-
dle negative distances, and the implementation for random access improves the
runtime complexity to O(1). The compiler selects the implementation according
to the concept a specific type models [16].

Concepts can be used to constrain template arguments of stand-alone func-
tions. In such a scenario, the extracted concept requirements reflect the function
implementation directly. In the context of template libraries, clustering similar
sets of requirements yields reusable concepts, where each concept constrains a
family of types that posses similar qualities. Clustering requirements results in
fewer and easier to comprehend concepts and makes concepts more reusable.
An example of concepts, refinements, and their application is STL’s iterator
hierarchy, which groups iterators by their access capabilities.

Concept requirements are bound to concrete operations and types by the
means of concept maps. Concept maps can be automatically generated. Should
a type’s operations not exactly match the requirement definition (e.g., when a
function is named differently), concept maps allow for an easy adaptation [17].

3 Requirement Extraction

TACE extracts individual concept requirements from the body of function tem-
plates by inferring properties of types from declarations, statements, and expres-
sions. Similar to the usage pattern style of concept specification [10], we derive
the requirements by reading C++’s evaluation rules [9] backwards. We say back-
wards, because type checking usually tests whether expressions, statements, and
declarations together with type (concept) constraints result in a well-typed pro-
gram. In this work, we start with an empty set of constraints and derive the type
(concept) constraints that make type-checking of expressions, statements, and
declarations succeed. The derived constraints (ζ) reflect functional requirements
and associated typenames.

3.1 Evaluation of Expressions

A functional requirement op(arg1, . . . , argn) → res is similar to a C++ signature.
It consists of a list of argument types (arg) and has a result type (res). Since
the concrete type of template dependent expressions is not known, the evaluator
classifies the type of expressions into three groups:

Concrete types: this group comprises all types that are legal in non template
context. It includes built-in types, user defined types, and templates that have
been instantiated with concrete types. We denote types of this class with C.

Named template dependent types: this group comprises named but not yet known
types (i.e., class type template parameters, dependent types, associated types,
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and instantiations that are parametrized on unknown types), and their deriva-
tives. Derivatives are constructed by applying pointers, references, const and
volatile qualifiers on a type. Thus, a template argument T, T*, T**, const T,
T&, typename traits<T>::value type are examples for types grouped into this
category. We denote types of this class with T .

Requirement results: This group comprises fresh type variables. They occur in
the context of evaluating expressions where one or more subexpressions have a
non concrete type. The symbol R denotes types of this class. The types R are
unique for each operation, identified by name and argument types. Only the fact
that multiple occurrences of the same function must have the same return type,
enables the accumulation of constraints on a requirement result. (e.g., the STL
algorithm search contains two calls to find).

In the ensuing description, we use N for non concrete types (T ∪R) and A for
any type (N ∪C). For each expression, the evaluator yields a tuple consisting of
the return type and the extracted requirements. For example, expr : C, ζ denotes
an expression that has a concrete type and where ζ denotes the requirements
extracted for expr and its subexpressions. We use X � Y to denote type X is
convertible to type Y . Table 1 shows TACE’s evaluation rules of expressions in
a template body.

A concrete expression (expr) is an expression that does not depend on any tem-
plate argument (e.g., literals, or expressions where all subexpressions (s) have
concrete type). The result has a concrete type. The subexpressions have con-
crete type, but their subexpressions can be template dependent (e.g., sizeof(T)).
Thus, ζ is the union of subexpression requirements.

Calls to unbound functions (uf) (and unbound overloadable operators, con-
structors, and destructor) have at least one argument that depends on an un-
known type N . Since uf is unknown, its result type is denoted with a fresh type
variable Ruf (s1, ... sn).

Bound functions are functions, where the type of the function can be resolved
at the compile time of the template body. Examples of bound functions include
calls to member functions, where the type of the receiver object is known, and
calls, where argument dependent lookup [15] is suppressed. Calls to bound func-
tions (bf) have the result type of the callee. bf’s specification of parameter and
return types can add conversion requirements to ζ (i.e., when the type of a
subexpression differs from the specified parameter type and when at least one
of these types is not concrete.)

The conditional operator (?:) cannot be overloaded. The ISO standard defini-
tion requires the first subexpression be convertible to bool. TACE’s evaluation
rules require the second and the third subexpression to be the same type. Here
TACE is currently stricter than the ISO C++ evaluation which allows for a con-
version of one of the result types.

The other not overloadable operators (i.e., typeid and sizeof) have a con-
crete result type. The set of extracted requirements is the same as for their
subexpression or type.
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C++ concepts do not support modeling of member variables. A member selec-
tion (i.e, the dot or arrow operator can only refer to a member function name.
The evaluator rejects any dot expression that occurs not in the context of eval-
uating the receiver of a call expression.

For non concrete objects, the evaluator treats the arrow as a unary operator
that yields an object of unknown result type. The object becomes the receiver
of a subsequent call to an unbound member function.

Cast expressions are evaluated according to the rules specified in Table 1. The
target type of a cast expression is also evaluated and can add dependent name
requirements to ζ. A static cast requires the source type be convertible to the
target type. A dynamic cast requires the source type to be a polymorphic class
(PolymorphicClass is part of C++ with concepts).

The evaluation of operations on pointers follows the regular C++ rules, thus
the result of dereferencing T ∗ yields T&, the arrow operator yields a member
function selection of T , taking the address of T ∗ yields T **, and any arithmetic
expression on T ∗ has type T ∗. Variables in expressions are typed as lvalues of
their declared type.

3.2 Evaluation of Declarations and Statements

Table 2 shows the evaluation rules for statements and declarations (of variables
and parameters).

Statements: The condition expressions of if, while, for require the expression
to be convertible to bool. The return statement requires convertibility of the ex-
pression to the function return type. The expression of the switch statement is
either convertible to signed or unsigned integral types. We introduce an artificial

Table 2. Evaluation rules for statements and declarations

statement context Γ
stmt
� τ∈N,s:A,ζ
ε,ζ+A�τ

default ctor
Γ

decl
� o:(Γ,τ∈No)

Γ
decl
� o:τ,{τ ::ctor()}

single argument ctor
Γ

decl
� o:(Γ,τ∈No),s1:A1,ζ1

Γ
decl
� o:τ,ζ1+τ ::ctor(constτ&)+A0�τ

constructor
Γ

decl
� o:(Γ,τ∈No),s1:A1,ζ1, ..., sn:An,ζn

Γ
decl
� o:τ,

⋃
1≤i≤n

ζi+τ ::ctor(A1, ..., An)

parameter
Γ

decl
� p:(Γ,τ∈No)

Γ
decl
� p:τ,{τ ::ctor(A1, ..., An)}
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type Integer that subsumes both types. The type will be resolved later, if more
information becomes available.

Object declarations: Variable declarations of object type require the presence of
a constructor and destructor. Single argument construction (i.e., T t = arg) is
modeled to require Aarg � T and a copy constructor on T .

References: Bindings to lvalue (mutable) references (i.e., declarations, function
calls, and return statements) impose stricter requirements. Instead of convert-
ibility, they require the result type of an expression be an exact type (instead of
a convertible type).

3.3 Evaluation of Class Instantiations

The current implementation focuses on extracting requirements from functions,
and thus treats any instantiation of classes that have data members and where
the template parameter is used as template argument as concrete type (e.g. pair,
reverse iterator); ζ remains unchanged. To allow the analysis of real world C++
function templates, TACE analyzes classes that contain static members (types,
functions, and data). Particularly, trait classes can add dependent type require-
ments to ζ. For example, the instantiation of iterator traits<T>::value type

leads to the type constraint T::value type.
Static member function (templates) of class templates (e.g.: the various vari-

ants of sort) are treated as if they were regular function templates. The template
parameters of the surrounding class extend the template parameters of the mem-
ber function. For example:
template <class T>
struct S { template <class U> static T bar(U u); };

is treated as:
template <class T, class U> T bar(U u);

3.4 Example

We use the beginning of GCC’s (4.1.3) implementation of the STL algorithm
search to illustrate our approach. Fig. 2 shows a portion of the implementation
and the requirements that get extracted from it.

We begin by extracting the requirements from the argument list. Their types
are FwdIter1 and FwdIter2. They are passed by value. According to the evaluation
rule for parameters, their type has to support copy construction and destruction.

The condition of the if statement is evaluated bottom up. The right hand
side of the operator|| is an equality comparison (operator==) of two param-
eters of type FwdIter1&. Since FwdIter1 is an unknown type, the operation
is evaluated according to the unbound function rule. The result type of op-
erator is a fresh type variable (r1). The set of requirements consists of the
equality comparison operator==(FwdIter1&, FwdIter1&) → r1. Similarily, the
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template<typename FwdIter1,
typename FwdIter2>

FwdIter1
search(FwdIter1 first1, FwdIter1 last1,

FwdIter2 first2, FwdIter2 last2) {

if (first1 == last1 || first2 == last2)
return first1;

FwdIter2 tmp(first2);
++tmp;
if (tmp == last2)

return find(first1, last1, ∗first2);

FwdIter2 p1, p;
p1 = first2;
++p1;
FwdIter1 current = first1;
while (first1 != last1) {

first1 = find(first1, last1, ∗first2);
// . . .

concept Search <typename FwdIter1, typename FwdIter2> {
// argument construction
FwdIter1::FwdIter1(const FwdIter1&);
FwdIter1::˜FwdIter1();
FwdIter2::FwdIter2(const FwdIter2&);
FwdIter2::˜FwdIter2();

// if statement and return
typename r1;
r1 operator==(FwdIter1&, FwdIter1&);
typename r2;
r2 operator==(FwdIter2&, FwdIter2&);
typename r3;
r3 operator||(r1, r2);
operator bool(r3);

// second range has length 1
r5 operator++(FwdIter2&);
operator bool(r2);
typename r7;
r7 operator∗(FwdIter2&);
typename r8;
r8 find(FwdIter1&, FwdIter1&, r7);
operator FwdIter1(r8);

// while loop
FwdIter2::FwdIter2(); // default constructor
void operator=(FwdIter2&, FwdIter2&);
typename r12;
r12 operator!=(FwdIter1&, FwdIter1&);
operator bool(r12);
void operator=(FwdIter1&, r8);
// . . .

Fig. 2. Requirement extraction

evaluation of the comparison of first2 and last2 yields r2 and the require-
ment operator==(FwdIter2&, FwdIter2&) → r2 The evaluation proceeds with the
operator||. Both arguments have an undetermined type (r1 and r2). Thus, the
operation is evaluated according to the unbound function rule. The result type
is r3. operator==(r1, r2) → r3 and the requirements extracted for the subexpres-
sions form the set of requirements. r3 is evaluated by an if statement. According
to the rule statement context, r3 has to be convertible to bool. The return state-
ment does not produce any new requirement, because the copy constructor of
FwdIter1 is already part of ζsearch.

The next source line declares a local variable tmp. Its initial value is con-
structed from a single argument of the same type. Thus, this line requires a
copy constructor on FwdIter2 (evaluation rule for constructors). The next line
moves the iterator tmp forward by one. The source line is evaluated according to
the unbound function rule. The return type is r5, the extracted requirement is
operator++(FwdIter2&) → r5. The expression of the following if statement com-
pares two expressions of type FwdIter2&. Unification with the already extracted
requirements in ζsearch yields the result type r2. Evaluating r2 according to the
statement context rule yields an additional conversion requirement r2 � bool.
The next line of code returns the result of a function call. First, the argument
list of the call is processed. The first two arguments are references to parameters
of type FwdIter1; the third argument dereferences a parameter of type FwdIter2.
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According to the unbound function rule, this expression yields to a new result
type r7 and the requirement operator*(FwdIter2&) → r7. Then TACE applies
the unbound function rule to the function call itself. This yields the result type r8
and the requirement find(FwdIter1&, FwdIter1&, r7) → r8. From the statement
context, we infer r8 � FwdIter1.

The declarations of p1 and p require FwdIter2 support default construction
(FwdIter2::FwdIter2()). We skip the remaining code and requirements.

4 From Requirements to Concepts

The requirement extraction generates functional requirements for all calls. This
includes calls to algorithms that potentially resolve to other generic functions.
For example, the requirements that were extracted from search (§3.4) contain
two calls to a function find. We choose to merge the requirements of the callee
into the caller’s set of requirements, if there is a function template with the
same name and where that function’s parameters are at least as general as the
arguments of the call expression.

In the requirements set, any result of an operation is represented by a fresh
type variable (i.e., associated types such as r1 and r2 in §3.4). However, the
evaluation context contributed more information about these types in form of
conversion requirements. TACE defines a function reduce that replaces type
variables with the target type of conversion requirements and propagates the
results in the requirement set.

reduce(ζ) → ζ′

Should a requirement result have more than one conversion targets (for example,
an unbound function was evaluated in the context of bool and int), we apply
the following subsumption rule: assuming n conversion requirements with the
same input type (R) but distinct target types Ai.

R′ =
{

Aj if ∃j∀i such that Aj � Ai

R otherwise

Note, that the Aj � Ai must be part of ζ, or defined for C++ built in types.
If such an Aj exists, all operations that depend on R are updated, and become
dependent on Aj . Any conversion requirement on R is dropped from ζ. When R
is not evaluated by another function it gets the result type void. If R is evaluated
by another expression, but no conversion requirement exists, the result type R′

remains unnamed (i.e. becomes an associated type).
After the return type has been determined, the new type R′ is propagated to

all operations that use it as argument type. By doing so, the set of requirements
can be further reduced (e.g., if all argument types of an operation are in C, the
requirement can be eliminated, or in case the operation does not exist, an error
reported) and more requirement result types become named (if an argument
type becomes T , another operation on T might already exist). Reduction is a
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// search’s requirements
FwdIter1::FwdIter1(const FwdIter1&);
FwdIter1::˜FwdIter1();
FwdIter2::FwdIter2(const FwdIter2&);
FwdIter2::˜FwdIter2();
bool operator==(FwdIter1&, FwdIter1&);
bool operator==(FwdIter2&, FwdIter2&);
typename r4;
r4 operator++(FwdIter2&);
typename r5;
r5 operator∗(FwdIter2&);
FwdIter2::FwdIter2();
void operator=(FwdIter2&, FwdIter2&);
bool operator!=(FwdIter1&, FwdIter1&);
void operator=(FwdIter1&, FwdIter1&);
typename r11;
r11 operator++(FwdIter1&);
bool operator==(r11, FwdIter1&);
typename r13;
r13 operator∗(FwdIter1&);
bool operator==(r13, r5);
bool operator==(r4, FwdIter2&);

typename r529; // from find
r529 operator==(r13, const r5&);
typename r530;
r530 operator!(r529);
bool operator&&(bool, r530);

Fig. 3. Requirements after reduction

// requirements on FwdIter1
FwdIter1::FwdIter1(const FwdIter1&);
FwdIter1::˜FwdIter1();
typename r1652;
r1652 operator==(FwdIter1&, FwdIter1&);
typename r1654;
r1654 operator!=(FwdIter1&, FwdIter1&);
operator bool (r1654);
operator bool (r1652);
void operator=(FwdIter1&, FwdIter1&);
typename r1658;
r1658 operator++(FwdIter1&);
typename r1659;
r1659 operator==(r1658, FwdIter1&);
operator bool (r1659);
typename r1661;
r1661 operator∗(FwdIter1&);

Fig. 4. Kernel of FwdIter1

repetitive process that stops when a fixed point is reached. We show two ex-
amples for the requirement set in Fig. 2. The conversion operator FwdIter1(r8)

allows FwdIter1& substitute for r8 in void operator=(FwdIter1&, r8). Similar r1

and r2 are convertible to bool, thus r3 operator‖(r1, r2) can be dropped. The
number of reductions depends on how much context information is available in
code. Fig. 3 shows the result after merging and reducing the requirements of
search and find.

The result of reduce may constrain the type system more than the original
set of requirements. Thus, reduce has to occur after merging all requirements
from potential callees, when all conversion requirements on types are available.

5 Recovery from Repository

Template libraries utilize concepts to constrain the template arguments of a
group of functions that operate on types with similar capabilities. These con-
cepts provide a design vocabulary for library domain and help provide a degree
of pluggability among algorithms and types. Without those, even the slightest
change to an implementation will cause a recompilation of every user; an imple-
mentation is not a good general specification of an algorithm. To find reusable
components within the extracted requirements, we use a concept repository,
which contains a number of predefined concept definitions (e.g., core concepts or
concepts that users define for specific libraries). The use of a concept repository
offers users the following benefits:
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– reduces the number of concepts and improves their structure
– exposes the refinement relationships of concepts
– replaces requirement results with named types (concrete, template depen-

dent, or associated typenames)

The repository we use to drive the examples in this sections contains the following
concepts: IntegralType<T>, RegularType<T>, TrivialIterator<T>,
ForwardIterator<T>, BidirectionalIterator<T>, RandomaccessIterator<T>, and
EqualityComparable<T>. IntegralType specifies operations that are defined on
type int. RegularType specifies operations that are valid for all built-in types
(i.e., default construction, copy construction, destruction, assignment, equal-
ity comparison, and address of). TrivialIterator specifies the dereference op-
eration and associated iterator types. The other iterators have the operations
defined in the STL. In addition, the repository contains concepts defined over
multiple template arguments (UnaryFunction, UnaryPredicate, BinaryFunction

and BinaryPredicate). The predicates refine the functions and require the re-
turn type be convertible to bool.

5.1 Concept Kernel

In order to match the extracted requirements of each template argument against
concepts in the repository that depend on fewer template arguments, we par-
tition the unreduced set into smaller sets called kernels. We define a concept
kernel over a set of template arguments T̂ to be a subset of the original set ζ.

kernel(ζfunction, T̂ ) → ζkernel

ζkernel is a projection that captures all operations on types that directly or
indirectly originate from the template arguments in T̂ .

ζkernel ⇔ {op|op ∈ ζsrc, φT̂ (op)}

For the sake of brevity, we also say that a type is in ζkernel, if the type refers to
a result R of an operation in ζkernel.

φT̂ (op) =

⎧⎨⎩
1 true for a op(arg1, . . . , argn) → res

if ∀i argi ∈ T̂ ∪ ζkernel ∪ C
0 otherwise

φT̂ (op) is true, if all arguments of op either are in T̂ , are result types from
operations in ζkernel, or are concrete. Fig. 4 shows the concept kernel for the
first template argument of search.

5.2 Concept Matching

For each function, TACE type checks the kernels against the concepts in the
repository. The mappings from a kernel’s template parameters to a concept’s
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template parameters are generated from the arguments of the first operation in
a concept kernel and the parameter declarations of operations with the same
name in the concept.

For any requirement in the kernel, a concept has to contain a single best
matching requirement (multiple best matching signatures indicate an ambigu-
ity). TACE checks the consistency of a concept requirement’s result type with
all conversion requirements in the kernel.

For each kernel and concept pair, TACE partitions the requirements into
satisfiable, unsatisfiable, associated, and available functions. An empty set of
unsatisfiable requirements indicates a match. TACE can report small sets of
unsatisfiable requirements (i.e., near misses), thereby allowing users to mod-
ify the function implementation (or the concept in the repository) to make a
concept-function pair work together. The group of associated requirements con-
tains unmatched requirements on associated types. For example, any iterator
requires the value type to be regular. Besides regularity, some functions such as
lower bound require less than comparability of container elements. Associated re-
quirements are subsequently matched. The group of available functions contains
requirements, where generic implementations exist.

This produces a set of candidate concepts. For example, the three iterator
categories match the template parameters of search. find has two template
arguments. Any iterator concept matches the first argument. Every concept in
the repository matches the second argument.

For functions with more than one template argument, TACE generates the
concept requirements using a Cartesian join from results of individual kernels.

The final step in reducing the candidate concepts is the elimination of super-
fluous refinements. A refinement is superfluous if one of its base concepts is also
a candidate, and if the refinement cannot provide better typing. In the case of
search, this results in ForwardIterator<FwdIter1>, ForwardIterator<FwdIter2>,
and the following unmatched requirement:

bool operator==( iterator traits<FwdIter1>::value type&, iterator traits<FwdIter2>::value type& );

Matching currently does not generate any new conversion requirements. Con-
versions could be generated for simple cases, but in general several alternative
resolutions are possible and the tool has no way of choosing between them. For
example, to match EqualityComparable<T>, the operands of operator== must be
converted to a common type, but knowing only that each operand is Regular,
we cannot know which to convert.

With better typing we mean that a concept’s constraints can be used to type-
check more requirements. Consider STL’s algorithm find if, that iterates over
a range of iterators until it finds an element, where a predicate returns true.

while (first != last && !pred(∗first) // ...

For pred(*first), both UnaryFunction and UnaryPredicate are candidates.
While the latter is able to type-check the operator! based on bool, the former
needs additional requirements for the negation and logical-and operators.
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5.3 Algorithm Families

A generic function can consist of a family of different implementations, where
each implementation exploits concept refinements (e.g., advance in §2). A tem-
plate that calls a generic function needs to incorporate the requirements of the
most general algorithm. Finding the base algorithm is non trivial with real code.
Consider STL’s advance family. TACE extracts the following requirements:
// for Input−Iterators
concept AdvInputIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&);
bool operator−−(Dist&, int);

}
// for Bidirectional−Iterators
concept AdvBidirectIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&);
void operator−−(Iter&);
bool operator++(Dist&, int);
bool operator−−(Dist&, int);

}
// for Randomaccess−Iterators
concept AdvRandomaccessIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator+=(Iter&, Dist&);

}

The sets of extracted requirements for the implementations based on input- and
bidirectional-iterator are in a subset/superset relation, the set of requirements
for the random access iterator based implementation is disjoint with the former
sets. If such calls occur under scenario §4, TACE requires the user mark the least
specific function implementation. A concept repository helps infer the correct
refinement relationship.

6 Validation

We validated the approach by matching the functions defined in GCC’s header
file algorithm. The file contains more than 9000 non-comment (and non empty)
lines of code and defines 115 algorithms plus about 100 helper functions. The
algorithm header exercises some of the most advanced language features and
design techniques used for generic programming in C++.

The success rate of the concept recovery depends on the concepts in the
repository. A repository containing syntactically similar concepts will lead to
ambiguous results. We ran the tests against the repository introduced in §5.

TACE found a number of functions, where the annotations in code overly con-
strain the template arguments, such as unguarded linear insert (STL’s speci-
fications are meaningful though, as the identified functions are helpers of algo-
rithms requiring random access.) Static analysis tools, such as TACE, are limited
to recovering syntactic requirements (such as, operations used and typenames re-
ferred to), but cannot deduce semantic details from code. For example, a forward
iterator differs only semantically from an input iterator (a forward iterator can
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be used in multi-pass algorithms). Also, consider find end for bidirectional iter-
ators, which takes two different iterator types. The second iterator type requires
only forward access and the existence of advance(it, n). n’s possible negativity is
what requires bidirectional access. Over the entire test set, TACE currently rec-
ognizes about 70% of iterator concepts correctly and unambiguously. For about
10% TACE produces a false positive match (e.g., IntegralType) alongside the
correct iterator concept. For the input set, TACE classifies all functions and pred-
icates (including template arguments marked as Compare and StrictWeakOrding)
correctly, but due to the reason stated at the end of §5.2 does not generate the
conversion requirement on result types.

7 Related Work

Sutton and Maletic [28] describe an approach to match requirements against a set
of predefined concepts based on formal concept analysis. Their analysis tool finds
combinations of multiple concepts, if needed, to cover the concept requirements
of function templates. In order to avoid complications from “the reality of C++
programming” [28], the authors validate their approach with a number of re-
implemented STL algorithms, for which they obtain results that closely match
the C++ standard specification. The authors discuss how small changes in the
implementation (e.g., the use of variables to store intermediate results provides
more type information) can cause small variations in the identified concepts.

Dos Reis and Stroustrup [10] present an alternative idea for concept specifica-
tion and checking. Their approach states concepts in terms of usage patterns, a
form of requirement specification that mirrors the declarations and expressions
in the template body that involve template arguments. If type checking of a con-
crete type against the usage pattern succeeds, then template instantiation will
succeed too. In essence, TACE reverses this process and derives the requirements
from C++ source code and converts them into signature based concepts.

The aim of type inference for dynamically typed languages, the derivation of
type annotations from dynamically typed code, is somewhat similar to concept
recovery. For example, Agesen et al [2]’s dynamic type inference on SELF gener-
ates local constraints on objects from method bodies. By analyzing edges along
trace graphs their analysis derives global constraints from local constraints. This
kind of analysis differs from our work in various ways. Agesen et al start at a spe-
cific entry point of a complete program (i.e., function main in a C++ program).
This provides concrete information on object instantiations from prototypes.
Concept recovery neither depends on a single entry point, nor does the analyzed
program have to be complete (instantiations are not required). Moreover, con-
cept recovery is concerned with finding higher level abstractions that describe
multiple types (concepts).

Matching the requirements against the definitions in the concept repository is
similar to the Hindley-Milner-Damas (HMD) type inference algorithm for func-
tional languages [8]. HMD and its variations derive a type scheme for untyped
entities of a function from type annotations and the utilization of these entities
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in the context of defined functions. Type classes [29] help overcome problems
of the type inference algorithm that stem from operator overloading. Peterson
and Jones [19] present an extension to the HMD algorithm, which utilizes type
classes to derive an unambiguous type scheme for polymorphic functions.

Our type checking mechanism that tests the requirement sets against concepts
in a repository differs from type checking with type classes in several ways:

– C++ template code follows regular C++ programming style, where variables
have to be declared before they can be used. The type of a variable can
be template argument dependent. C++ concepts allow overloaded function
requirements (e.g., random access iterator’s subtraction and difference re-
quirement). The types of variable declarations provide the type information
that we use for overload resolution.

– C++’s type system allows type coercions. Based on C++ binding rules and
conversion (and constructor) requirements that are defined in the concept,
TACE generates all possible type combinations that a specific function re-
quirement can handle. For example, if a signature is defined over const T&

another signature for T& is added to the concept.
Consequently, checking whether a requirement kernel is expressible by a
concept in the repository relies on signature unification. The result type of
a function is inferred from the requirement specification in the repository.

– in C++, type checking of expressions is context dependent. For example the
disambiguation of overloaded functions relies on the expression context. In a
call context, this is the argument list of the call. When a function is assigned
to a function pointer, the context is provided by the type of the function
pointer (i.e., the left hand side of an assignment determines the type that is
expected on the right hand side). When code suppresses argument dependent
lookup, the rules become more subtle. In this circumstance, the overload set
only contains functions that were available at template definition time.

– Haskell type checking utilizes context reduction. For example, an equality
implementation on lists may require that the list elements be comparable.
Context reduction, extracts the requirements on the element type from the
container context. Extending TACE with context reduction would be useful
for deriving requirements from templated data-structures (see §3.3).

8 Conclusion and Future Work

TACE is a part of a larger project to raise the level of abstraction of existing C++
programs through the use of high-level program analysis and transformations. In
this paper, we have presented our tool, TACE, that extracts sets of requirements
from real C++ code. TACE analyzes these requirements and generates concept
definitions for functions. Alternatively, our tool clusters requirement sets into
concepts by matching against predefined concepts in a repository.

Our results show that a static tool, limited to analyzing syntactic require-
ments, will not always be able to infer concepts correctly. However, for a large
number of industrial-strength function templates, TACE can recover and cluster
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constraints correctly. The Pivot system provides an extensible compiler based
framework that enables enhancements of our analysis.

TACE’s current implementation searches the repository for suitable concepts.
A formal analysis based approach [28] could be applicable to more library do-
mains. Also, a more precise analysis of class templates (data structures, trait
classes, tag hierarchies, etc.) will improve the analysis precision.
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Abstract. The Eclipse Graphical Modeling (GMF) Framework provides the ma-
jor approach for implementing visual languages on top of the Eclipse platform.
GMF relies on a family of modeling languages to describe abstract syntax, con-
crete syntax as well as other aspects of the visual language and its implementa-
tion in an editor. GMF uses a model-driven approach to map the different GMF
models to Java code. The framework, as it stands, lacks support for evolution. In
particular, there is no support for propagating changes from the domain model
(i.e., the abstract syntax of the visual language) to other editor models. We ana-
lyze the resulting co-evolution challenge, and we provide a solution by means of
GMF model adapters, which automate the propagation of domain-model changes.
These GMF model adapters are special model-to-model transformations that are
driven by difference models for domain-model changes.

1 Introduction

In the context of Model Driven Engineering (MDE) [2], the definition of a domain-
specific modeling language (DSML) or its implementation in an editor (or another tool)
consists of a collection of coordinated models. These models specify the abstract and
concrete syntaxes of the language, and possibly further aspects related to semantics
or the requirements of a particular DSML tool. The increasing understanding of the
problem domain for DSML may necessitate continuous evolution. Hence, DSML have
to evolve, and DSL tools have to co-evolve [11].

In the present paper, we make a contribution to the general theme of evolution for
DSMLs by addressing the more specific problem of supporting co-evolution between
the coordinated models that constitute the definition of a DSML, or, in fact, its imple-
mentation in a graphical editor. We focus on the propagation of abstract-syntax changes
to other models, e.g., the model for a graphical, concrete syntax.

In MDE, the abstract syntax of DSMLs is typically expressed in terms of metamod-
els which are created by means of generic modeling environments, e.g., the Eclipse
Modeling Framework (EMF) [9,3]. Indeed, we leverage EMF in the present paper. Fur-
ther, we build upon the Eclipse Graphical Modeling Framework (GMF) for developing
graphical editors based on EMF and other Eclipse components [14]. Arguably, GMF
defines the mainstream approach to graphical editor development within the Eclipse
platform. GMF uses a generative approach to obtain a working editor implementation
(in Java) from the coordinated models of the editor for a DSML.

For illustration, consider the simple mind-map editor in Fig. 1. We have annotated the
different panes of the editor with the associated GMF models underneath. The domain

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 143–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Snapshot of a simple editor with indications of underlying models

model is concerned with the abstract syntax. The graphical and the tooling definition
are concerned with concrete syntax and the editor functionality. The mapping model
connects the various models. We will describe the architecture of the editor in more
detail later. In the GMF approach, model-to-model and model-to-code transformations
derive the implementation of a graphical editor which provides the means for editing
models conforming to the specified domain model.

With such a multi-model and generative approach to editor implementation, changes
to the abstract syntax (i.e., the metamodel) invalidate instances (i.e., models), other edi-
tor models, generated code, and all model transformations that may depend on the afore-
mentioned models. In previous work, the problem of metamodel/model co-evolution
has been addressed [4,29], but the problem of co-evolution among coordinated editor
models is largely unexplored. The present paper specifically contributes to this open
problem, which helps with the co-evolution of DSML editors as opposed to the co-
evolution of pre-existing DSML models. More specifically, we are concerned with the
questions what and how GMF models need to be co-changed in reply to changes of
the domain model (say, metamodel, or abstract syntax definition) of the editor. The co-
evolution challenge at hand is to adapt GMF editors when changes are operated on the
domain model.

The GMF framework does not support such co-evolution, and this somewhat dimin-
ishes the original goal of GMF to aggressively simplify the development of graphical
editors. That is, while it is reasonable simple to draft and connect all GMF models from
scratch, it is notably difficult to evolve an editor through changes of specific GMF mod-
els. A recurring focus for evolution is the domain model of the editor. When the domain
model is changed, the user may notice that the editor has to be fixed through unsuccess-
ful runs of some generator, the compiler, or the editor itself, and in all cases, subject
to error messages at a low level of abstraction. Alternatively, the user may attempt to
regenerate some models through the available wizards (model-to-model transforma-
tions of GMF), which however means that the original, possibly customized models are
lost.
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The complexity of the co-evolution problem for DSML editors has been recognized
also by others (e.g., see [20,27]). Also, in [27], the authors discuss that the GMF in-
frastructure has a number of limitations, some of them related to co-evolution, and they
even propose an alternative solution to define graphical editors for modeling languages.
Even outside the MDE context, the identified co-evolution challenge is relevant, and it
has not been generally addressed. For instance, in compiler construction and domain-
specific language implementation for languages with textual syntax, the same kind of
breaking changes to abstract or concrete syntaxes can happen, and not even the most
advanced transformation- or mapping-based approaches to the coordination of the syn-
taxes readily address the challenge (e.g., see [18,30]). The challenge is only exacerbated
by the multiplicity of coordinated models in an approach for DSML editors such as with
GMF.

The contributions of the paper can be summarized as follows:

– We analyze GMF’s characteristics in terms of the co-evolution of the various mod-
els that contribute to a GMF editor. Starting from conceived domain-model
changes, their implications for the editor itself and other GMF models are
identified.

– Even though catalogues for metamodel changes are available from multiple exist-
ing works (e.g., [4,28,29]—to mention a few), the application of such a change
catalogue to a different scenario (i.e., the editor models in a “dependency” relation)
is a novelty.

– We address the resulting co-evolution challenge by complementing GMF’s wizard-
and generator-biased architecture with GMF adapters, which are model-to-model
transformations that propagate changes of the domain model to other models.

– The GMF adapters leverage on a difference model which is used to represent differ-
ences between subsequent versions of a given metamodel. Such difference models
have been used in previous works on co-evolution, but the illustration of their ap-
plicability to the new kind of co-evolution challenge at hand is an important step
towards their promotion to a general MDE technique.

We make available some reusable elements of our development publicly (scenarios,
transformations, difference models, etc.)1.

Road-map of the paper

In Sec. 2, we recall the basics of the GMF approach to graphical editor development,
and we clarify GMF’s use of a collection of coordinated editor models. In Sec. 3, we
study a detailed evolution scenario to analyse the co-evolution challenge at hand. In
Sec. 4, we develop an initial list of domain model changes and derive a methodology of
co-evolution based on propagating changes to all relevant GMF models. In Sec. 5, we
describe a principled approach for the automation of the required co-evolution transfor-
mation based on the interpretation of difference models for the domain-model changes.
In Sec. 6, we sketch a proof-of-concept implementation that is also available online.
Related work is described in Sec. 7, and the paper is concluded in Sec. 8.

1 http://www.emfmigrate.org/gmfevolution

http://www.emfmigrate.org/gmfevolution
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Create GMF Project

Develop Domain
Model

Develop Graphical
Model

Develop Tooling
Model

Develop Mapping
Model

Create Generator
Model

Generate Diagram
Plug-in

Fig. 2. The model-driven approach to GMF-based editor development

2 GMF’s Coordinated Editor Models

GMF consists of a generative component (GMF Tooling) and runtime infrastructure
(GMF Runtime) for developing graphical editors based on the Eclipse Modeling Frame-
work (EMF) [9,3] and the Graphical Editing Framework (GEF) [12]. The GMF Tooling
supports a model-driven process (see Fig. 2) for generating a fully functional graphical
editor based on the GMF Runtime starting from the following models:

– The domain model is the Ecore-based metamodel (say, abstract syntax) of the lan-
guage for which representation and editing have to be provided.

– The graphical definition model contains part of the concrete syntax; it identifies
graphical elements that may, in fact, be reused for different editors.

– The tooling definition model contains another part of the concrete syntax; it con-
tributes to palettes, menus, toolbars, and other periphery of the editor.

– Conceptually, the aforementioned models are reusable; they do not contain refer-
ences to each other. It is the mapping model that establishes all links.

Consider again Fig. 1 which illustrates the role of these models for a simple mind-map
editor.2 Fig. 3 shows all the models involved in the definition and implementation of
the mind-map editor. The rectangular boxes highlight contributions that are related to
the Topic domain concept. It is worth noting how information about domain concepts is
scattered over the various models. Most of these recurrences are not remote since most
of the correspondences are name-based. Remote references are only to be found in the
mapping and the generator models as clarified in the rest of the work.

Domain model. This model contains all the concepts and relationships which have
to be implemented in the editor. In the example, the class Mindmap is introduced as a
container of instances of the classes Topic and Relation.

Graphical definition model. This model specifies a figure gallery including shapes,
labels, lines, etc., and canvas elements to define nodes, connections, compartments,
and diagram labels. For instance, in the graphical model in Fig. 3, a rectangle named

2 A mind map is a diagram used to represent words, ideas, tasks, or other items linked to and
arranged around a central keyword or idea. The initial mind-map editor suffices with “topics”
and “relations”, but some extensions will be applied eventually.
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Domain model

Generator model

Tooling definition
model

Graphical definition model

Mapping model

EMF Generator model

Fig. 3. The GMF models and model dependencies for the editor of Fig. 1

TopicFigure is defined, and it is referred to by the node Topic. A diagram label named
TopicName is also defined. Such graphical elements will be used to specify the graphical
representations for Topic instances and their names.

Tooling definition model. This model defines toolbars and other periphery to facilitate
the management of diagram content. In Fig. 3, the sample model consists of the Topic
and Relation tools for creating the Topic and Relation elements.

Mapping model. This model links together the various models. For instance, accord-
ing to the mapping model in Fig. 3, Topic elements are created by means of the Creation
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Tool Topic and the graphical representation for them is Node Topic. For each topic the
corresponding name is also visualized because of the specified Feature Label Mapping
which relates the attribute name of the class Topic with the diagram label TopicName
defined in the graphical definition model. The meaning of the false value near the Fea-
ture Label Mapping element is that the attribute name is not read-only, thus it will be
freely edited by the user.

EMF and GMF generator models. Once a domain model is defined, it is possible
to automatically produce Java code to manage models (instances), say mind maps in
our example. To this end an additional model, the EMF generator model, is required to
control the execution of the EMF generator. A uniform version of the extra model can
be generated by EMF tooling.

Once the mapping model is obtained, the GMF Tooling generates (by means of a
model-to-model transformation) the GMF generator model that is used by a code gen-
erator to produce the real code of the modeled graphical editor.

3 GMF’s Co-evolution Challenge

Using a compound change scenario, we will now demonstrate GMF’s co-evolution chal-
lenges. We will describe how domain-model changes break other editor models, and the
editor’s code, or make them unsound otherwise. Hence, domain-model changes must
be propagated. Such change propagation is not supported currently by GMF, and it is
labor-intensive and error-prone, when carried out manually. Conceptually, it turns out
to be difficult to precisely predict when and how co-changes must be performed.

Fig. 4. An evolved mind-map editor with different kinds of topics
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(a) New version of the sample metamodel

(b) Dangling references in the GMF mapping model

Fig. 5. The domain model for the evolved mind-map editor with the “broken” mapping model

3.1 A Compound Change Scenario

Consider the enhanced mind-map editor of Fig. 4. Compared to the initial version of
Fig. 1, scientific vs. literature topics are distinguished, and topics have a duration prop-
erty in addition to the name property.

Now consider Fig. 5; it shows the evolved metamodel at the top, and the status of
the, as yet, unamended mapping model at the bottom. We actually show the mapping
model as it would appear to the user if it was inspected in Eclipse. Some of the links in
the mapping model are no longer valid; in fact, they are dangling (c.f., “null”). Through
extra edges, we show what the links are supposed to be like.

We get a deeper insight into the situation if we comprehend the evolved domain
model through a series of simple, potentially atomic changes:

1. The Topic class was renamed to ScientificTopic.
2. The abstract class NamedElement was added.
3. The attribute name is pulled up from the Topic class to the NamedElement class.
4. The attribute duration was added to the NamedElement class.
5. The class LiteratureTopic was added as a further specialization of NamedElement.
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Table 1. Idiosyncratic symptoms of broken and and unsound GMF editors

1 The EMF generator or the GMF generator fails (with an error).
2 The EMF generator or the GMF generator completes with a warning.
3 The generator for the GMF generator model fails.
4 The compiler fails on the generated EMF or GMF code.
5 The editor plugin fails at runtime, e.g., at launch-time.
6 A GMF model editor reports an error upon opening a GMF model.
7 The editor plugin apparently executes, but misses concepts of the domain.
8 The editor plugin apparently executes, but there are GUI events without handlers.

3.2 Broken vs. Unsound GMF Models and Editors

In practice, these changes would have been carried out in an ad-hoc manner through
editing directly the domain model. Because of these changes, the existing mapping
model is no longer valid—as shown in Fig. 5. In particular, references to Topic or the
attribute name thereof are dangling. The other GMF models are equally out-of-sync
after these domain model changes. For clarity, in Table 1, we sketch a classification
of the symptoms that may indicate a broken or unsound GMF editors. Due to space
limitation we do not provide an explanation of the reported symptoms which are listed
in Table 1 only for the sake of completeness.

Let us consider two specific examples. First, the addition of a new class to the domain
model, e.g., LiteratureTopic, should probably imply a capability of the editor to create
instances of the new class. However, such a creation tool would need to be added in
the mapping and tooling models. Second, the renaming of a class, e.g., the renaming
of Topic to ScientificTopic, may lead to an editor with certain functionality not having
any effect because elements are referenced that changed or do not exist anymore in
the domain model. Both examples are particularly interesting in so far that the editor
apparently still works. i.e., it is not broken in a straightforward sense. However, we say
that the editor is unsound; the editor does not meet some obvious expectations.

4 Changes and Co-changes

We will now describe a catalogue of domain-model changes and associated co-changes
of other editor models. It turns out that there are different options for deciding on the
impact of the co-changes. We capture those options by corresponding strategies. As far
as the catalogue of changes is concerned, we can obviously depart from catalogues of
metamodel changes as they are available in the literature, e.g., [29,15], and previous
work by the authors [4]. For brevity’s sake, we make a selection here. That is, we con-
sider only atomic changes that are needed for the compound scenario of the previous
section, completed by a few additional ones. Many of the missing changes would refer
to technical aspects of the EMF implementation, and as such, they do not contribute to
the discussion.
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Table 2. Levels of editor soundness along evolution.

Level Description

1 Unsound in the sense of being broken; there are reported issues (errors, warnings).
2 Unsound in the sense that the editor “obviously” lacks capabilities.
3 Sound as far as it can be achieved through automated transformations.
4 Sound; established by human evaluation.

4.1 Strategies for Co-changes

Such a distinction of broken vs. not broken but nevertheless unsound also naturally
relates to a spectrum of strategies for co-changes. A minimalistic strategy would focus
on fixing the broken editor. That is, co-changes are supposed to bring the editor models
to a state where no issues are reported at generation, compile or runtime. A best-effort
strategy would try to bring the editor to a sound state, or as close to it as possible with
a general (perhaps automated) strategy.

Consider again the example of adding a new class C:

Minimalistic strategy. The execution of the EMF generator emits a warning, which
we take to mean that the editor is broken. Hence, we would add the new class C to
the EMF generator model. This small co-change would be sufficient to re-execute
all generators without further errors or warnings, and to build and run the editor
successfully. The editor would be agnostic to the new class though because the
mapping and tooling models were not co-changed.

Best-effort strategy. Let us make further assumptions about the added class C. In fact,
let us assume that C is a concrete class, and it has a superclass S with at least
one existing concrete subclass D. In such a case, we may co-change the other GMF
models by providing management for C based on the replication of the management
for D.

Here we assume that a best-effort strategy may be amenable to an automated transfor-
mation approach in that it does not require any domain-specific insight. The modeler
will still need to perform additional changes to complete the evolution, i.e., to obtain a
sound editor.

4.2 Editor Soundness Related to Co-changes

In continuation of the soundness discussion from the previous section, Table 2 identifies
different levels of soundness for an evolving editor. The idea here is that we assess the
level of the editor before and after all (automated) co-changes were applied. The pro-
posed transformations can never reach Level 4 because it requires genuine evaluation by
the modeler. In other words, Level 4 refers to situations where GMF models can not be
automatically migrated and they have to be adapted by the modeler in order to support
all the modeling constructs defined in the new version of the considered metamodel.

However, we are not just interested in the overall level of the editor, but we also want
to blame one or more editor models for the editor’s unsoundness. In Table 3, we list
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Table 3. Considered Ecore metamodel changes
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Add empty, concrete class × ◦ ◦ ◦ 1 • ◦ ◦ ◦ 2
Add empty, abstract class × • • • 1 • • • • 3
Add specialization • • • • 3 • • • • 3
Delete concrete class × ◦ × × 1 • ◦ • • 2
Rename class × ◦ ◦ × 1 • • • • 3
Add property × ◦ ◦ ◦ 1 • ◦ ◦ • 2
Delete property × ◦ × × 1 • ◦ • • 2
Rename property × ◦ ◦ × 1 • • • • 3
Move property × ◦ × × 1 • ◦ ◦ ◦ 2
Pull up property × ◦ × × 1 • ◦ • • 2
Change property type • ◦ × × 1 • ◦ ◦ ◦ 2

atomic changes with the soundness levels for the editor before and after co-changes,
and all the indications as to what models are to blame. We use “×” to blame a model
for causing the editor to be broken, i.e., to be at Level 1. We use “◦” and “•” likewise
for Level 2 and Level 3.

The EMFGen model is frequently to blame for a broken editor before the co-changes;
the Graph model is never to blame for a broken editor; the remaining models are to
blame occasionally for a broken editor. Obviously, there is trend towards less blame af-
ter the co-changes: no occurrences of “×”, more occurrences of “•”. In different terms,
for all domain-model changes, all other models can be co-changed so that the editor is
no longer broken. In several cases, we reach Level 3 for the editor.

There are clearly constellations for which changes cannot be propagated in an au-
tomated manner that resolves all Level 2 blame. For instance, the metamodel change
add empty, concrete class does not require a co-changed Graph model as long as some
existing graphical element can be reused. However, avoidance of Level 2 blame would
require a manual designation of a new element or genuine selection of a specific element
as opposed to an automatically chosen element.

4.3 Specific Couples of Changes and Co-changes

In the rest of the section, the changes reported in Table 3 and the corresponding co-
changes, which have to be operated on the GMF models, are described in more detail.

Add empty, concrete class. Apart from the EMFGen model, the other ones are not af-
fected; the editor simply does not take into account the added class. Thus, modelers
cannot create or edit instances of the new class. The co-change may replicate the model
from existing classes as discussed in Sec. 3. Ultimately, the modeler may need to man-
ually complete the management of the new class.
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Add empty, abstract class. In comparison to the previous case, the co-change of the
EMFGen model is fully sufficient since abstract classes cannot be instantiated, and
hence, no additional functionality is needed in the editor.

Add specialization. The change consists of modifying an existing class by specifying it
as specialization of another one. In particular, in the simple case of the superclass being
empty, this modification does not affect any model; thus, no co-changes are required.

Delete concrete class. Deleting an existing class is more problematic since all the GMF
models except the Graph model are affected. Especially the Mapping model has to be
fixed to solve possible dangling references to the deleted class. The Tooling model is
also co-changed by removing the creation tool used to create instances of the deleted
class. Even if the model is not adapted, the generator model and thus the editor can
be generated—even though the palette will contain a useless tool without associated
functionality. The Graph model can be left unchanged. The graphical elements which
were used for representing instances of the deleted class, may be re-used in the future.

Rename class. Renaming a class requires co-change of the Mapping model which can
have, as in the case of class deletion, invalid references which have to be fixed by
considering the new class name. The Graph model does not require any co-change
since the graphical elements used for the old class can be used even after the rename
operation. The Tooling model can be left untouched, or alternatively the label and the
description of the tool related to the renamed class can be modified to reflect the same
name. However, even with the same Tooling model, a working editor will be generated.

Add property. The strategy for co-change is similar to the addition of new classes.

Delete property. Deleting a property which has a diagrammatic representation requires a
co-change of the Mapping model in order to fix occurred dangling references. Moreover
if some tools were available to manage the deleted property, also the Tooling model has
to be co-changed. As in the case of class removals, the graphical model can be left
unchanged.

Rename property. The strategy for co-change is similar to the renaming of classes.

Move property. When a property is moved from one class to another, then dangling
references may need to be resolved in the Mapping model. If the moved property is
managed by means of some tools, the Tooling model require co-changes, too. We only
offer a simple, generic strategy for co-changes: the repaired editor does not consider the
moved property.

Pull up property. Given a class hierarchy, a given property is moved from an extended to
a base class. This modification is similar to the previous one—even though an automatic
resolution can be provided to co-change Tooling and Mapping models in a satisfactory
manner.

Change property type. The EMFGen model is not affected. However, by changing the
type of a property some dangling references can occur in the Mapping model; their
resolution cannot be fully automated. Also, if the affected property is managed by some
tool, then the Tooling model must be co-changed as well.
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Fig. 6. Overview of the process of co-evolution with automated transformations

5 Automated Adaptation of GMF Models

Having a catalogue of changes like the one previously discussed is preparatory for sup-
porting the adaptation of GMF models. In particular, it can be exploited to automatically
detect the modifications that have been operated on a given domain model, and to in-
struct corresponding migration procedures as proposed in the rest of the paper.

We have developed a general process for GMF co-evolution which involves model
differencing techniques and automated transformations to adapt existing GMF models
with respect to the changes operated on domain models. The approach is described in
Fig. 6 and consists of the following elements:

– Difference calculation, given two versions of the same domain model, their differ-
ences are calculated to identify the changes which have been operated on the first
version of the model to obtain the last one. The calculation can be operated by
any of the existing approaches able to detect the differences between any kind of
models, like EMFCompare [7];

– Difference representation, the detected differences have to be represented in a way
which is amenable to automatic manipulations and analysis. To take advantage
of standard model driven technologies, the calculated differences should be rep-
resented by means of another model;

– Generation of the adapted GMF models, the differences represented in the differ-
ence model are taken as input by specific adapters each devoted to the adaptation of
a given GMF model with respect to the metamodel modifications and correspond-
ing co-changes reported in Table 3. In particular, the GMFMap and the GMFTool
adapters are devoted to the adaptation of the GMFMap model and the GMFTool
model, respectively. Such adapters take both models because of dependencies be-
tween them which have to be updated simultaneously. The EMFGen model is up-
dated by means of a specific adapters, whereas no adapter is provided for the Graph
model. In fact, the discussion of the previous sections suggested that we can always
reasonable continue with the old Graph model. The adapters can be implemented
as model transformations which take as input the old version of the GMF models
and produce the adapted ones.



Automated Co-evolution of GMF Editor Models 155

Model

Difference
Metamodel
(MMD)

MM2MMD
transformation

Ecore
Metamodel

Metamodel
(MM)

conformsTo

M3

M2 Difference Model
(MD)

conformsTo

detected in

conformsTo

induces

MC

AddedMC

DeletedMC

ChangedMC updatedElement

1..*

Fig. 7. Difference metamodel generation

Interestingly, the process in Fig. 6 is independent from the technologies which have
been adopted both for calculating and managing domain model differences, and to au-
tomatically manipulate them for generating the adapted GMF models.

6 Proof-of-Concept Implementation of the GMF Adapters

In this section we propose the support for the GMF model adaptation approach we
described in the previous section. That is, in Sec. 6.1, we outline a technique for rep-
resenting the differences between two versions of a same metamodel. Such a represen-
tation approach has been already used by the authors for managing other co-evolution
problems [4]. Further, in Sec. 6.2, the ATL transformation language [17] is adopted for
implementing the different model adapters which have been identified to evolve existing
GMF models. The implementation of the approach is available publicly as described in
the introduction of the paper.

6.1 Model-Based Representation of Domain Model Differences

The differences between different versions of a same domain model can be represented
by exploiting the difference metamodel concept, presented by the authors in [5]. The ap-
proach is summarized in Fig. 7: given two Ecore metamodels, their difference conforms
to a difference metamodel MMD derived from Ecore by means of the MM2MMD trans-
formation. For each class MC of the Ecore metamodel, the additional classes AddedMC,
DeletedMC, and ChangedMC are generated in the extended Ecore metamodel by en-
abling the representation of the possible modifications that can occur on domain models
and that can be grouped as follows:

– additions, new elements are added in the initial metamodel;
– deletions, some of the existing elements are deleted;
– changes, some of the existing elements are updated.

In Fig. 8, a fragment of the difference model representing the changes between the do-
main models in Fig. 3 and Fig. 5 is shown. Such a difference model conforms to a differ-
ence metamodel automatically obtained from the ECore metamodel. For
instance, from the metaclass EClass of the ECore metamodel, the metaclasses AddedE-
Class, DeletedEClass, and ChangedEClass are generated in the corresponding differ-
ence metamodel.
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Fig. 8. Fragment of the difference model for the evolution scenario of Sec. 3

For some of the reported differences in Fig. 8, the corresponding properties are
shown. For instance, the renaming of the Topic class is represented by means of a
ChangedEClass instance which has as updated element an instance of EClass named
LiteratureTopic (see the updatedElement property of the changed class Topic shown on
the right-hand side of Fig. 8). The addition of the class NamedElement is represented by
means of an AddedEClass instance. The move operation of the attribute name from the
class Topic to the added class NamedElement is represented by means of a ChangedEAt-
tribute instance which has one EAttribute instance as updated element with a different
value for the eContainingClass property. In fact, in the initial version it was Topic (see
the second property window) whereas in the last one, it is NamedElement (as specified
in the third property window).

6.2 ATL-Based Implementation of GMF Model Adapters

Our prototypical implementation of the GMF model adapters leverages ATL [17], a
QVT [24] compliant language which contains a mixture of declarative and imperative
constructs. In particular, each model adapter is implemented in terms of model trans-
formations which use a common query library described in rest of the section.

An ATL transformation consists of a module specification containing a header sec-
tion (e.g. lines 1-3 in Listing 1.1), transformation rules (lines 5-42 in Listing 1.1) and
a number of helpers which are used to navigate models and to define complex calcula-
tions on them (some helpers which have been implemented are described in Table 4). In
particular, the header specifies the source models, the corresponding metamodels, and
the target ones; the helpers and the rules are the constructs used to specify the transfor-
mation behaviour.

Small excerpts of the GMFMap and GMFTool adapters are shown in Listing 1.1 and
Listing 1.2, respectively. For instance, the AddedSpecializationClassTo... transforma-
tion rules manage new classes which have been added in the domain model as special-
izations of an existing one. The code excerpts involve the replication strategy that we
have described in previous sections.

ATL transformation rules consist of source and target patterns: the former consist of
source types and an OCL [25] guard stating the elements to be matched; the latter are
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Table 4. Some helpers of the gmfAdaptationLib

Helper name Context Return type Description
getEClassInNewMetamodel EClass EClass Given a class of the old metamodel, it re-

turns the corresponding one in the new
metamodel.

getNewContainer EAttribute EClass Given an EAttribute in the old metamodel,
the corresponding container in the new
one is retrieved. To this end, the helper
checks if the EAttribute has been moved
to a new added class, if not an existing
class is returned.

isMoved EAttribute Boolean It checks if the considered EAttribute has
been moved to another container

isMovedToAddedEClass EAttribute Boolean It checks if the considered EAttribute has
been moved to a new added EClass.

isRenamed EAttribute Boolean It checks if the given EAttribute has been
renamed.

composed of a set of elements, each of them specifies a target type from the target meta-
model and a set of bindings. A binding refers to a feature of the type, i.e. an attribute, a
reference or an association end, and specifies an expression whose value initializes the
feature. For instance, the AddedSpecializationClassToNodeMapping rule in Listing 1.1
is executed for each match of the source pattern in lines 8-17 which describes situations
like the one we had in the sample scenario where the LiteratureTopic class (see s1) is
added as specialization of an abstract class (see s2) which is specialized by another class
(see s3). In this case, the Mapping model is updated by adding a new TopNodeReference
and its contained elements (see lines 24-41) which are copies of those already existing
for s3.

A similar source pattern is used in the rule of Listing 1.2 (lines 7-12) in order to add
a creation tool for the new added class s1 to the Tooling model (see lines 19-23).

1module GMFMapAdapter;
2create OUT : GMFMAPMM from IN : GMFMAPMM, GMFTOOL: GMFTOOLMM, DELTA: DELTAMM,
3 NEWECORE : ECORE, OLDECORE : ECORE ;
4...
5rule AddedSpecializationClassToNodeMapping {
6
7 from
8 s1: DELTAMM!AddedEClass, s2: DELTAMM!AddedEClass,
9 s3: DELTAMM!ChangedEClass, s4: DELTAMM!ChangedEAttribute,

10 s5: DELTAMM!EAttribute
11 ((not s1.abstract)
12 and s1.eSuperTypes->first() = s2
13 and s2.abstract
14 and s3.updatedElement->first().eSuperTypes->first() = s2
15 and s4.updatedElement->first() = s5
16 and s4.eContainingClass = s3
17 and s5.eContainingClass = s2 ))
18
19 using {
20 siblingFeatureLabelMapping : GMFMAPMM!FeatureLabelMapping =
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21 s3.getNodeMappingFromChangedClass().labelMappings
22 ->select(e | e.oclIsTypeOf(GMFMAPMM!FeatureLabelMapping))->first()

; }
23
24 to
25 t1 : GMFMAPMM!TopNodeReference (
26 containmentFeature <- s3.getTopNodeReferenceFromChangedClass().
27 containmentFeature.getFeatureInNewMetamodel(),
28 ownedChild <- t2
29 ),
30 t2 : GMFMAPMM!NodeMapping (
31 domainMetaElement <- s1.getAddedClassInNewMetamodel(),
32 relatedDiagrams <- s3.getNodeMappingFromChangedClass().relatedDiagrams,
33 tool <- s1.name.getNewToolFromTitle(),
34 diagramNode <- s3.getNodeMappingFromChangedClass().diagramNode
35 ),
36 t3 : GMFMAPMM!FeatureLabelMapping (
37 diagramLabel <- siblingFeatureLabelMapping.diagramLabel,
38 features <- siblingFeatureLabelMapping.features->collect(e |
39 e.getFeatureInNewMetamodel())
40 ),
41 ...
42}

Listing 1.1. Fragment of the GMFMap Adapter

To summarize, the implementation of the GMF adapters consists of transformation
rules which copy the given source model to a target one; during this operation they
evaluate if changes are needed. A number of helpers have been defined; they navigate
models and perform complex queries on them. Many of the helpers are common to all
the adapters, and hence, they are available through a library gmfAdaptationLib. Table 4
describes some of these helpers.

1module GMFToolAdapter;
2create OUT : GMFTOOLMM from IN : GMFTOOLMM, GMFMAP : GMFMAPMM, DELTA: DELTAMM,
3 NEWECORE : ECORE, OLDECORE : ECORE ;
4...
5rule AddedSpecializationClassToCreationTool {
6
7 from
8 s1: DELTAMM!AddedEClass, s2: DELTAMM!AddedEClass, s3: DELTAMM!ChangedEClass
9 ( (not s1.abstract)

10 and s1.eSuperTypes->first() = s2
11 and s2.abstract
12 and s3.updatedElement->first().eSuperTypes->first() = s2 )
13
14 using {
15 toolGroup : GMFTOOLMM!ToolGroup = OclUndefined;
16 }
17
18 to
19 t : GMFTOOLMM!CreationTool (
20 title <- s3.getToolFromChangedClass().title.regexReplaceAll(s3.
21 getToolFromChangedClass().title, s1.name),
22 description <- ’Create new ’ + s1.name
23 ),
24 ...
25}

Listing 1.2. Sample transformation rule of the GMFTool Adapter
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7 Related Work

7.1 Graphical Model Editors

In [1], a number of technologies for the development of domain-specific modeling lan-
guages (DSMLs) are evaluated; Eclipse (EMF with GEF) is covered, but not GMF. The
evaluation criteria include language evolution to mean the ability to co-evolve models
when the domain model changes. There is no criterion though that relates to GMF’s
particular characteristics of using multiple editor models.

Other GMF- or GEF-based frameworks have been proposed. For instance, the Muvi-
torKit framework [23] is based on EMF and GEF and specifically meant as an alterna-
tive to GMF for the benefit of additional editor capabilities (e.g., multiple panes) as well
as additional modeling capabilities, thereby requiring less customization of generated
code. There is also the EuGENia framework [20,19] which raises the level of abstrac-
tion in GMF-based development by using annotations on the domain model, thereby
feeding into code generation. We are not aware of any prior effort to propagate changes
across GMF models.

The ViatraDSM framework [27] replaces GMF in that it allows for versatile
mappings between abstract and concrete syntax. Live transformations are leveraged
to maintain the coherence of the two models. Our uni-directional, difference-driven
transformations propagate domain-model changes elsewhere. Our work is specifically
targeted at the mainstream GMF-based approach with its various models.

7.2 Model Consistency

The status of GMF models being out-of-sync can be compared to the notion of model
inconsistency in (UML-based) modeling where different models providing different
views may require synchronization. For instance, in [8], inconsistencies between the
different diagrammatic forms in UML models are considered, and possible fixes are
proposed in the form of value changes. In [13], the dependencies between models are
modeled through triple graph grammars in a manner that enables incremental model
synchronization. Our specific contribution is one of reverse engineering: discovering the
GMF model dependencies, and making them operational through automated
transformations.

7.3 Co-evolution of Metamodels and Models

The techniques and the methodology of our work are inspired by research on co-
evolution in model-driven engineering [10,28]. Much of this work is concerned with
co-transforming models in reply to metamodel changes [29,15]. In that case metamodel
changes can invalid existing models that have to be adapted to recover the conformance
with the new version of the metamodel.

In this work, we analyze another kind of co-evolution, even though related to the
previous one, which aims at propagating metamodel changes to the other GMF models
according to a given soundness level of the editor. The overall proposal leverages the
difference representation approach proposed by the authors in [5] and already used to
manage co-evolution problems in [6].
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7.4 Syntax Relationships for Textual Languages

In [18,30,26], approaches for the operationalization of the link between concrete and
abstract syntax definition are described. That is, concrete syntax definitions are cus-
tomized into abstract syntax definitions. In fact, the approach of [18] is based on the
idea that concrete and abstract syntax definitions can be incomplete but they automat-
ically complete each other based on name mapping and other heuristics. In contrast,
the approach of [30] is based on grammar transformations where the concrete syntax
is mapped operationally to the abstract syntax. In [26], yet another approach is exer-
cised, where the abstract syntax definition is associated with the concrete syntax defini-
tion through annotations. (A similar MDE approach is the one of TCS for KM3 [16].)
None of these approaches provides any automated capabilities for change propagation.
The classical approach to concrete-to-abstract syntax mappings is to use an attribute
grammar. There are a number of approaches to align grammar transformations with at-
tribution transformations, see, e.g., [21,22], but none of these approaches are directly
applicable to the synchronization of abstract and concrete syntax. We contend that the
problem of collections of coordinated GMF editor models seems to be even more com-
plicated than concrete/abstract syntax synchronization.

8 Concluding Remarks

We have described the challenge of sound evolution for graphical editors based on
model-driven development with GMF in particular, and we have addressed this chal-
lenge by a system of co-transformations that propagate changes from domain models
to the other editor models.

We have identified a range of options for evolved editors to be unsound, and we have
described corresponding resolution strategies. In the more established area of meta-
model/model co-evolution, models either are not broken, or they are broken and can
be reasonably resolved in an automated manner, or a well-understood problem-specific
contribution to the resolution must be provided manually or through a heuristic. In the
case of co-evolution for editor models, there is a scale of models being broken or un-
sound. Also, each of the various models calls for a designated analysis. Finally, there
are intricate inter-model dependencies.

The existing GMF infrastructure is obviously rather complicated: it consists of a
number of metamodels, libraries, generators, model transformations of industrial scale.
We cannot claim to provide a full-fledged solution to the co-evolution challenge of
GMF—this would require full coverage of Ecore, the metamodeling language of EMF,
and full understanding of the implicit semantics of GMF model dependencies and tools.

The focus of this paper is on the conceptual co-evolution challenge at hand. The de-
velopment of industrial-strength tools for co-evolution or the revision of the GMF suite
is a clearly a major undertaking that is beyond the scope of this paper. The prototypical
implementation of the proposed approach supports all the metamodel changes reported
in Table 3. Nevertheless, we are confident that our transformational approach can be
scaled incrementally over time to cover an increasing number of concrete evolution
scenarios. In the future we plan to support them by providing additional effort in the
implementation of the overall approach. The most critical omission in our methodology
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is that we do not currently cover co-evolution of custom code. This is a very intricate
problem by itself, to which we hope to contribute through future work.

In our ongoing research, we try to better understand the co-evolution issues and
associated strategies for the code level of GMF where generated code has been possibly
customized. Based on preliminary research, we can already report that customization
is used by some GMF projects extensively, and hence designated co-evolution support
may provide significant help with real-world editor development.
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Abstract. Modeling languages and thus their metamodels are subject
to change. When a metamodel is evolved, existing models may no longer
conform to it. Manual migration of these models in response to meta-
model evolution is tedious and error-prone. To significantly automate
model migration, operator-based approaches provide reusable coupled
operators that encapsulate both metamodel evolution and model migra-
tion. The success of an operator-based approach highly depends on the
library of reusable coupled operators it provides. In this paper, we thus
present an extensive catalog of coupled operators that is based both on a
literature survey as well as real-life case studies. The catalog is organized
according to a number of criteria to ease assessing the impact on models
as well as selecting the right operator for a metamodel change at hand.

1 Introduction

Like software, modeling languages are subject to evolution due to changing re-
quirements and technological progress [9]. A modeling language is adapted to the
changed requirements by evolving its metamodel. Due to metamodel evolution,
existing models may no longer conform to the evolved metamodel and thus need
to be migrated to reestablish conformance to the evolved metamodel. Avoiding
model migration by downwards-compatible metamodel changes is often a poor
solution, since it reduces the quality of the metamodel and thus the modeling
language [5]. Manual migration of models is tedious and error-prone, and hence
model migration needs to be automated. In coupled evolution of metamodels
and models, the association of a model migration to a metamodel evolution
is managed automatically. There are two major coupled evolution approaches:
difference-based and operator-based approaches.

Difference-based approaches use a declarative evolution specification, gener-
ally referred to as difference model [6,11]. The difference model is mapped onto
a model migration, which may be specified declaratively as well as imperatively.
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Operator-based approaches specify metamodel evolution by a sequence of op-
erator applications [24,13]. Each operator application can be coupled to a model
migration separately. Operator-based approaches generally provide a set of re-
usable coupled operators which work at the metamodel level as well as at the
model level. At the metamodel level, a coupled operator defines a metamodel
transformation capturing a common evolution. At the model level, a coupled
operator defines a model transformation capturing the corresponding migration.
Application of a coupled operator to a metamodel and a conforming model pre-
serves model conformance.

In both operator-based and difference-based approaches, evolution can be
specified manually [24], can be recorded [13], or can be detected automati-
cally [6,11]. When recording, the user is restricted to a recording editor. Using
automated detection, the building process can be completely automated, but
may lead to an incorrect model migration.

In this paper, we follow an operator-based approach to automate building
a model migration for EMOF-like metamodels [18]. The success of an opera-
tor-based approach highly depends on the library of reusable coupled operators
it provides [20]. The library of an operator-based approach needs to fulfill a
number of requirements. A library should seek completeness so as to be able
to cover a large set of evolution scenarios. However, the higher the number of
coupled operators, the more difficult it is to find a coupled operator in the library.
Consequently, a library should also be organized in a way that it is easy to select
the right coupled operator for the change at hand.

To provide guidance for building a library, we present an extensive catalog of
coupled operators in this paper. To ensure completeness, the coupled operators
in this catalog are either motivated from the literature or from case studies that
we performed. However, we do not target theoretical completeness—to capture
all possible migrations—but rather practical completeness—to capture migra-
tions that likely happen in practice. To ease usability, the catalog is organized
according to a number of criteria. The criteria do not only allow to select the
right coupled operator from the catalog, but also to assess the impact of the
coupled operator on the modeling language and its models. For difference-based
approaches, the catalog serves as a set of composite changes that such an ap-
proach needs to be able to handle.

The paper is structured as follows: Section 2 presents the EMOF-like meta-
modeling formalism on which the coupled operators are based. Section 3 intro-
duces the papers and case studies from which the coupled operators originate.
Section 4 defines different classification criteria for coupled operators. Section 5
lists and groups the coupled operators of the catalog. Section 6 discusses the
catalog, and Section 7 concludes the paper.

2 Metamodeling Formalism

Metamodels can be expressed in various metamodeling formalisms. Well-known
examples are the Meta Object Facility (MOF) [18], the metamodeling standard
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proposed by the Object Management Group (OMG) and Ecore [21], the meta-
modeling formalism underlying the Eclipse Modeling Framework (EMF). In this
paper, we focus only on the core metamodeling constructs that are interesting
for coupled evolution of metamodels and models. We leave out annotations, de-
rived features, and operations, since these cannot be instantiated in models. An
operator catalog will need additional operators addressing these metamodeling
constructs in order to reach full compatibility with Ecore or MOF.

Metamodel. Figure 1 gives a textual definition of the metamodeling formalism
used in this paper. A metamodel is organized into Packages which can themselves
be composed of sub packages. Each package defines a number of Types which can
be either primitive (PrimitiveType) or complex (Class). Primitive types are either
DataTypes like Boolean, Integer and String or Enumerations of literals. Classes
consist of a number of features. They can have super types to inherit features and
might be abstract, i.e. are not allowed to have objects. The name of a feature
needs to be unique among all features of a class, including inherited ones. A Fea-
ture has a multiplicity (lower bound and upper bound) and is either an Attribute
or a Reference. An attribute is a feature with a primitive type, whereas a refer-
ence is a feature with a complex type. An attribute can serve as an identifier for
objects of a class, i.e. the values of this attribute must be unique among all ob-
jects. A reference may be composite and two references can be combined to form
a bidirectional association by making them opposite of each other.

abstract class NamedElement {
name :: String (1..1)

}

class Package : NamedElement {
subPackages <> Package (0..∗)
types <> Type (0..∗)

}

abstract class Type : NamedElement {}

abstract class PrimitiveType : Type {}

class DataType : PrimitiveType {}

class Enumeration : PrimitiveType {
literals <> Literal (0..∗)

}

class Literal : NamedElement {}

class Class : Type {
isAbstract :: Boolean
superTypes −> Class (0..∗)
features <> Feature (0..∗)

}

abstract class Feature : NamedElement {
lowerBound :: Integer
upperBound :: Integer
type −> Type

}

class Attribute : Feature {
isId :: Boolean

}

class Reference : Feature {
isComposite :: Boolean
opposite −> Reference

}

Fig. 1. Metamodeling formalism providing core metamodeling concepts

Model. At the model level, instances of classes are called objects, instances
of primitive data types are called values, instances of features are called slots,
and instances of references are called links. The set of all links of composite
references forms a containment structure, which needs to be tree-shaped and
span all objects in a model.
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Notational Conventions. Throughout the paper, we use the textual notation
from Figure 1 for metamodels. In this notation, features are represented by
their name followed by a separator, their type, and an optional multiplicity.
The separator indicates the kind of a feature. We use :: for attributes, -> for
ordinary references, and <> for composite references.

3 Origins of Coupled Operators

The coupled operators are either motivated from the literature or from case
studies that we performed.

Literature. First, coupled operators originate from the literature on the evo-
lution of metamodels as well as object-oriented database schemas and code.

Wachsmuth first proposes an operator-based approach for metamodel evolu-
tion and classifies a set of operators according to the preservation of metamodel
expressiveness and existing models [24]. Gruschko et al. envision a difference-
based approach and therefore classify all primitive changes according to their
impact on existing models [2,4]. Cicchetti et al. list a set of composite changes
which they are able to detect using their difference-based approach [6].

Banerjee et al. present a complete and sound set of primitives for schema
evolution in the object-oriented database system ORION and characterize the
primitives according to their impact on existing databases [1]. Brèche introduces
a set of high-level operators for schema evolution in the object-oriented system
O2 and shows how to implement them in terms of primitive operators [3]. Pons
and Keller propose a three-level catalog of operators for object-oriented schema
evolution which groups operators according to their complexity [19]. Claypool
et al. list a number of primitives for the adaptation of relationships in object-
oriented systems [7].

Fowler presents a catalog of operators for the refactoring of object-oriented
code [10]. Dig and Johnson show—by performing a case study—that most chan-
ges on object-oriented code can be captured by a rather small set of refactoring
operators [8].

Case Studies. Second, coupled operators originate from a number of case stud-
ies that we have performed. Table 1 gives an overview over these case studies.
It mentions the tool that was used in a case study, the name of the evolving
metamodel, an abbreviation for the case study which we use in other tables
throughout the paper, and whether the evolution was obtained in a forward or
reverse engineering process. In forward engineering, the tool is used to aid and
possibly record evolution as it happens, whereas in reverse engineering, the tool
is used to reconstruct evolution after it occurred. To provide evidence that the
case studies are considerable in size, the table also shows the number of different
kinds of metamodel elements at the end of the evolution as well as the number
of operator applications needed to perform the evolution.
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Table 1. Statistics for case studies
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[12]
F FLUID

reverse
8 155 95 155 0 1 10 223

T TAF-Gen 15 97 81 114 1 13 76 134

COPE

[13] PCM
reverse

19 99 18 135 0 4 19 101
[14] GMF 4 252 379 278 0 27 166 737
U Unicase forward 17 77 88 161 0 11 49 58
Q Quamoco 1 22 14 35 0 1 2 423

Acoda
B BugZilla reverse – 51 208 64 – – – 237
R Researchr forward – 125 380 278 – 6 31 64
Y YellowGrass – 12 33 21 – 0 0 30

Herrmannsdoerfer et al. performed a case study on the evolution of two indus-
trial metamodels to show that most of the changes can be captured by reusable
coupled operators [12]: Flexible User Interface Development (FLUID) for the
specification of automotive user interfaces and Test Automation Framework -
Generator (TAF-Gen) for the generation of test cases for these user interfaces.

Based on the requirements derived from this study, Herrmannsdoerfer imple-
mented the operator-based tool COPE1 [13] which records operator histories
on metamodels of the Eclipse Modeling Framework (EMF). To demonstrate its
applicability, COPE has been used to reverse engineer the operator history of a
number of metamodels: Palladio Component Model (PCM) for the specification
of software architectures [13] and Graphical Modeling Framework (GMF) for the
model-based development of diagram editors [14]. Currently, COPE is applied
to forward engineer the operator history of a number of metamodels: Unicase2

for UML modeling and project management and Quamoco3 for modeling the
quality of software products.

Vermolen implemented the operator-based tool Acoda4 [22] which detects op-
erator histories on object-oriented data models. To demonstrate its applicabil-
ity, Acoda has been used to reverse engineer the operator history of the data
model behind BugZilla which is a well-known tool for bug tracking. Currently,
Acoda is applied to forward engineer the operator-based evolution of a number
of data models: Researchr5 for maintaining scientific publications and Yellow-
Grass6 for tag-based issue tracking. The crossed-out cells in Table 1 indicate

1 COPE web site, http://cope.in.tum.de
2 Unicase web site, http://unicase.org
3 Quamoco web site, http://www.quamoco.de
4 Acoda web site, http://swerl.tudelft.nl/bin/view/Acoda
5 Researchr web site, http://researchr.org
6 YellowGrass web site, http://yellowgrass.org

http://cope.in.tum.de
http://unicase.org
http://www.quamoco.de
http://swerl.tudelft.nl/bin/view/Acoda
http://researchr.org
http://yellowgrass.org
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that the metamodeling constructs are currently not supported by the used data
modeling formalism.

4 Classification of Coupled Operators

Coupled operators can be classified according to several properties. We are inter-
ested in language preservation, model preservation, and bidirectionality. There-
fore, we stick to a simplified version of the terminology from [24].

Language Preservation. A metamodel is an intensional definition of a lan-
guage. Its extension is a set of conforming models. When an operator is applied
to a metamodel, this has an impact on its extension and thus on the expres-
siveness of the language. We distinguish different classes of operators according
to this impact [15,24]: An operator is a refactoring if there exists always a bi-
jective mapping between extensions of the original and the evolved metamodel.
An operator is a constructor if there exists always an injective mapping from
the extension of the original metamodel to the extension of the evolved meta-
model. An operator is a destructor if there exists always a surjective mapping
from the extension of the original metamodel to the extension of the evolved
metamodel.

Model Preservation. Model preservation properties indicate when migration
is needed. An operator is model-preserving if all models conforming to an origi-
nal metamodel also conform to the evolved metamodel. Thus, model-preserving
operators do not require migration. An operator is model-migrating if models
conforming to an original metamodel might need to be migrated in order to
conform to the evolved metamodel. It is safely model-migrating if the migra-
tion preserves distinguishability, i.e. different models (conforming to the original
metamodel) are migrated to different models (conforming to the evolved meta-
model). In contrast, an unsafely model-migrating operator might yield the same
model when migrating two different models.

Classification of operators w.r.t. model preservation is related to the classi-
fication w.r.t. language preservation: Refactorings and constructors are either
model-preserving or safely model-migrating operators. Destructors are unsafely
model-migrating operators. Furthermore, the classification is related to a classifi-
cation of changes known from difference-based approaches [2,4]: model-preserving
operators perform non-breaking changes, whereas model-migrating operators
perform breaking, resolvable changes. However, there is no correspondence for
breaking, non-resolvable changes, since coupled operators always provide a mi-
gration to resolve the breaking change.

Bidirectionality. Another property we are interested in is the reversibility
of evolution. Bidirectionality properties indicate that an operator can be safely
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undone on the language or model level. An operator is self-inverse iff a second
application of the operator—possibly with other parameters—always yields the
original metamodel. An operator is the inverse of another operator iff there is
always a sequential composition of both operators which does not change the
metamodel. Finally, an operator is a safe inverse of another operator iff it is an
inverse and there is always a sequential composition of both operators which is
model-preserving.

5 Catalog of Coupled Operators

In this section, we present a catalog of 61 coupled operators that we consider
complete for practical application. As discussed in Section 3, we included all
coupled operators found in nine related papers as well as all coupled operators
identified by performing nine real-life case studies. In the following, we explain
the coupled operators in groups which help users to navigate the catalog. We
start with primitive operators which perform an atomic metamodel evolution
step that can not be further subdivided. Here, we distinguish structural primi-
tives which create and delete metamodel elements and non-structural primitives
which modify existing metamodel elements. Afterwards, we continue with com-
plex operators. These can be decomposed into a sequence of primitive opera-
tors which has the same effect at the metamodel level but not neccessarily at
the model level. We group complex operators according to the metamodeling
techniques they address—distinguishing specialization and generalization, del-
egation, and inheritance operators—as well as their semantics—distinguishing
replacement, and merge and split operators.

Each group is discussed separately in the subsequent sections. For each group,
a table provides an overview over all operators in the group. Using the classi-
fications from Section 4, the table classifies each coupled operator according to
language preservation (L) into refactoring (r), constructor (c) and destructor (d)
as well as according to model preservation (M) into model-preserving (p), safely
(s) and unsafely (u) model-migrating. The table further indicates the safe (s)
and unsafe (u) inverse (I) of each operator by referring to its number. Finally,
each paper and case study has a column in each table. An x in such a column
denotes occurrence of the operator in the corresponding paper or case study.
Papers are referred to by citation, while case studies are referred to by the ab-
breviation given in Table 1. For each coupled operator, we discuss its semantics
in terms of metamodel evolution and model migration.

5.1 Structural Primitives

Structural primitive operators modify the structure of a metamodel, i.e. cre-
ate or delete metamodel elements. Creation operators are parameterized by the
specification of a new metamodel element, and deletion operators by an existing
metamodel element.
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Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Create Package r p 2s x x x
2 Delete Package r p 1s x x
3 Create Class c p 4s x x x x x x x x x x x x x
4 Delete Class d u 3u x x x x x x x x x x x x
5 Create Attribute c s 7s x x x x x x x x x x x x x
6 Create Reference c s 7s x x x x x x x x x x x x x
7 Delete Feature d u 5/6u x x x x x x x x x x x x
8 Create Opposite Ref. d u 9u x x x x x x x x
9 Delete Opposite Ref. c p 8s x x x x

10 Create Data Type r p 11s x
11 Delete Data Type r p 10s x x
12 Create Enum r p 13s x x x x x x
13 Delete Enum r p 11s x x
14 Create Literal c p 15s x x
15 Merge Literal d u 14u x x

Creation of non-mandatory metamodel elements (packages, classes, optional fea-
tures, enumerations, literals and data types) is model-preserving. Creation of
mandatory features is safely model-migrating. It requires initialization of slots
using default values or default value computations.

Deleting metamodel elements, such as classes and references, requires delet-
ing instantiating model elements, such as objects and links, by the migration.
However, deletion of model elements poses the risk of migration to inconsistent
models: For example, deletion of objects may cause links to non-existent objects
and deletion of references may break object containment. Therefore, deletion op-
erators are bound to metamodel level restrictions: Packages may only be deleted
when they are empty. Classes may only be deleted when they are outside inher-
itance hierarchies and are targeted neither by non-composite references nor by
mandatory composite references. Several complex operators discussed in subse-
quent sections can deal with classes not meeting these requirements. References
may only be deleted when they are neither composite, nor have an opposite.
Enumerations and data types may only be deleted when they are not used in
the metamodel and thus obsolete.

Deletion operators which may have been instantiated in the model (with the
exception of Delete Opposite Reference) are unsafely model-migrating due to
loss of information. Deletion provides a safe inverse to its associated creation
operator. Since deletion of metamodel elements which may have been instanti-
ated in a model is unsafely model-migrating, creation of such elements provides
an unsafe inverse to deletion: Lost information cannot be restored.

Creating and deleting references which have an opposite are different from
other creation and deletion operators. Create Opposite Reference restricts the
set of valid links and is thus an unsafely model-migrating destructor, whereas
Delete Opposite Reference removes a constraint from the model and is thus a
model-preserving constructor.

Create / Delete Data Type and Create / Delete Enumeration are refactorings,
as restrictions on these operators prevent usage of created or deleted elements.
Deleting enumerations and data types is thus model-preserving. Merge Literal
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deletes a literal and replaces its occurrences in a model by another literal. Merg-
ing a literal provides a safe inverse to Create Literal.

5.2 Non-structural Primitives

Non-structural primitive operators modify a single, existing metamodel element,
i.e. change properties of a metamodel element. All non-structural operators take
the affected metamodel element, their subject, as parameter.

Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Rename r s 1s x x x x x x x x x x x x x x x
2 Change Package r s 2s x x x x x
3 Make Class Abstract d u 4u x x x x
4 Drop Class Abstract c p 3s x x x
5 Add Super Type c p 6s x x x x x x x x x
6 Remove Super Type d u 5u x x x x x x x
7 Make Attr. Identifier d u 8u x x x
8 Drop Attr. Identifier c p 7s x x x
9 Make Ref. Composite d u 10u x x x x x x

10 Switch Ref. Composite c s 9s x x x x x x
11 Make Ref. Opposite d u 12u x x x x x
12 Drop Ref. Opposite c p 11s x x x x

Change Package can be applied to both package and type. Additionally, the
value-changing operators Rename, Change Package and Change Attribute Type
are parameterized by a new value. Make Class Abstract requires a subclass pa-
rameter indicating to which class objects need to be migrated. Switch Reference
Composite requires an existing composite reference as target.

Packages, types, features and literals can be renamed. Rename is safely model-
migrating and finds a self-inverse in giving a subject its original name back.
Change Package changes the parent package of a package or type. Like renaming,
it is safely model-migrating and a safe self-inverse.

Classes can be made abstract, requiring migration of objects to a subclass,
because otherwise, links targeting the objects may have to be removed. Conse-
quently, mandatory features that are not available in the super class have to be
initialized to default values. Make Class Abstract is unsafely model-migrating,
due to loss of type information and has an unsafe inverse in Drop Class Ab-
stract. Super type declarations may become obsolete and may need to be re-
moved. Remove Super Type S from a class C implies removing slots of features
inherited from S. Additionally, references targeting type S, referring to objects
of type C, need to be removed. To prevent breaking multiplicity restrictions, Re-
move Super Type is restricted to types S which are not targeted by mandatory
references—neither directly, nor through inheritance. The operator is unsafely
model-migrating and can be unsafely inverted by Add Super Type.

Attributes defined as identifier need to be unique. Make Attribute Identifier
requires a migration which ensures uniqueness of the attribute’s values and is
thus unsafely model-migrating. Drop Attribute Identifier is model-preserving and
does not require migration.
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References can have an opposite and can be composite. An opposite reference
declaration defines the inverse of the declaring reference. References combined
with a multiplicity restriction on the opposite reference restrict the set of valid
links. Make Reference Opposite needs a migration to make the link set satisfy the
added multiplicity restriction. The operator is thereby unsafely model-migrating.
Drop Reference Opposite removes cardinality constraints from the link set and
does not require migration, thus being model-preserving.

Make Reference Composite ensures containment of referred objects. Since all
referred objects were already contained by another composite reference, all ob-
jects must be copied. To ensure the containment restriction, copying has to be
recursive across composite references (deep copy). Furthermore, to prevent cardi-
nality failures on opposite references, there may be no opposite references to any
of the types of which objects are subject to deep copying. Switch Reference Com-
posite changes the containment of objects to an existing composite reference. If
objects of a class A were originally contained in class B through composite refer-
ence b, Switch Reference Composite changes containment of A objects to class C,
when it is parameterized by reference b and a composite reference c in class C.
After applying the operator, reference b is no longer composite. Switch Reference
Composite provides an unsafe inverse to Make Reference Composite.

5.3 Specialization / Generalization Operators

Specializing a metamodel element reduces the set of possible models, whereas
generalizing expands the set of possible models. Generalization and specialization
can be applied to features and super type declarations. All specialization and
generalization operators take two parameters: a subject and a generalization or
specialization target. The first is a metamodel element and the latter is a class
or a multiplicity (lower and upper bound).

Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Generalize Attribute c p 2s x x x x x x x x x x x
2 Specialize Attribute d u 1u x x x x x x x
3 Generalize Reference c p 4s x x x x x x x x x
4 Specialize Reference d u 3u x x x x x x x x
5 Specialize Composite Ref. d u 3u x x x
6 Generalize Super Type d u 7u x x x
7 Specialize Super Type c s 6s x x x x x x x

Generalization of features does not only generalize the feature itself, but also
generalizes the metamodel as a whole. Feature generalizations are thus model-
preserving constructors. Generalizing a super type declaration may require
removal of feature slots and is only unsafely model-migrating. Feature special-
ization is a safe inverse of feature generalization. Due to the unsafe nature of
the migration resulting from feature specialization, generalization provides an
unsafe inverse to specialization. Super type generalization is an safe inverse of
super type specialization which is a unsafe inverse vice versa.
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Specialize Attribute either reduces the attribute’s multiplicity or specializes
the attribute’s type. When reducing multiplicity, either the lower bound is in-
creased or the upper bound is decreased. When specializing the type, a type
conversion maps the original set of values onto a new set of values conforming
the new attribute type. Specializing type conversions are surjective. Generalize
Attribute extends the attribute’s multiplicity or generalizes the attribute’s type.
Generalizing an attribute’s type involves an injective type conversion. Type con-
versions are generally either implemented by transformations for each type to an
intermediate format (e.g. by serialization) or by transformations for each com-
bination of types. The latter is more elaborate to implement, yet less fragile.
Most generalizing type conversions from type x to y have a specializing type
conversion from type y to x as safe inverse. Applying the composition vice versa
yields an unsafe inverse.

Similar to attributes, reference multiplicity can be specialized and general-
ized. Specialize / Generalize Reference can additionally specialize or generalize
the type of a reference by choosing a sub type or super type of the original
type, respectively. Model migration of reference specialization requires deletion
of links not conforming the new reference type. Specialize Composite Reference is
a special case of reference specialization at the metamodel level, which requires
contained objects to be migrated to the targeted subclass at the model level,
to ensure composition restrictions. Specialize Composite Reference is unsafely
model-migrating.

Super type declarations are commonly adapted, while refining a metamodel.
Consider the following example, in which classes A, B and C are part of a linear
inheritance structure and remain unadapted:

class A { }
class B : A { f :: Integer (1..1) }
class C : A { }

class A { }
class B : A { f :: Integer (1..1) }
class C : B { }

From left to right, Specialize Super Type changes a declaration of super type A

on class C to B, a sub type of A. Consequently, a mandatory feature f is inherited,
which needs the creation of slots by the migration. In general, super type special-
ization requires addition of feature slots which are declared mandatory by the
new super type. From right to left, Generalize Super Type changes a declaration
of super type B on class C to A, a super type of B. In the new metamodel, feature
f is no longer inherited in C. Slots of features which are no longer inherited need
to be removed by the migration. Furthermore, links to objects of A that target
class B, are no longer valid, since A is no longer a sub type of B. Therefore, these
links need to be removed, if multiplicity restrictions allow, or adapted otherwise.

5.4 Inheritance Operators

Inheritance operators move features along the inheritance hierarchy. Most of
them are well-known from refactoring object-oriented code [10]. There is always
a pair of a constructor and destructor, where the destructor is the safe inverse
of the constructor, and the constructor is the unsafe inverse of the destructor.
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Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Pull up Feature c p 2s x x x x x x x x
2 Push down Feature d u 1u x x x x x x
3 Extract Super Class c p 4s x x x x x x x x x x x x
4 Inline Super Class d u 3u x x x x x x x x x
5 Fold Super Class c s 6s x x
6 Unfold Super Class d u 5u x x
7 Extract Sub Class c s 8s x x x x x
8 Inline Sub Class d u 7u x x x x

Pull up Feature is a constructor which moves a feature that occurs in all sub-
classes of a class to the class itself. For migration, slots for the pulled up feature
are added to objects of the class and filled with default values. The corresponding
destructor Push down Feature moves a feature from a class to all its subclasses.
While objects of the subclasses stay unaltered, slots for the original feature must
be removed from objects of the class itself.

Extract Super Class is a constructor which introduces a new class, makes it
the super class of a set of classes, and pulls up one or more features from these
classes. The corresponding destructor Inline Super Class pushes all features of
a class into its subclasses and deletes the class afterwards. References to the
class are not allowed but can be generalized to a super class in a previous step.
Objects of the class need to be migrated to objects of the subclasses. This might
require the addition of slots for features of the subclasses.

The constructor Fold Super Class is related to Extract Super Class. Here, the
new super class is not created but exists already. This existing class has a set
of (possibly inherited) features. In another class, these features are defined as
well. The operator then removes these features and adds instead an inheritance
relation to the intended super class. In the same way, the destructor Unfold
Super Class is related to Inline Super Class. This operator copies all features of
a super class into a subclass and removes the inheritance relation between both
classes. Here is an example for both operators:

class A { f1 :: Integer }
class B : A { f2 :: Integer }
class C { f1 :: Integer

f2 :: Integer
f3 :: Integer }

class A { f1 :: Integer }
class B : A { f2 :: Integer }
class C : B { f3 :: Integer }

From left to right, the super class B is folded from class C which includes all the
features of B. These features are removed from C, and B becomes a super class
of C. From right to left, the super class B is unfolded into class C by copying
features A.f1 and B.f2 to C. B is not longer a super class of C.

The constructor Extract Subclass introduces a new class, makes it the subclass
of another, and pushes down one or more features from this class. Objects of the
original class must be converted to objects of the new class. The corresponding
destructor Inline Subclass pulls up all features from a subclass into its non-
abstract super class and deletes the subclass afterwards. References to the class
are not allowed but can be generalized to a super class in a previous step. Objects
of the subclass need to be migrated to objects of the super class.
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5.5 Delegation Operators

Delegation operators move metamodel elements along compositions or ordinary
references. Most of the time, they come as pairs of corresponding refactorings
being safely inverse to each other.

Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Extract Class r s 2s x x x x x x x x x x x x
2 Inline Class r s 1s x x x x x x x x
3 Fold Class r s 4s x x x
4 Unfold Class r s 3s
5 Move Feature over Ref. c s 6s x x x x x x x x x
6 Collect Feature over Ref. d u 5u x x

Extract Class moves features to a new delegate class and adds a composite
reference to the new class together with an opposite reference. During migration,
an object of the delegate class is created for each object of the original class,
slots for the moved features are moved to the new delegate object, and a link
to the delegate object is created. The corresponding Inline Class removes a
delegate class and adds its features to the referring class. There must be no
other references to the delegate class. On the model level, slots of objects of the
delegate class are moved to objects of the referring class. Objects of the delegate
class and links to them are deleted. The operators become a pair of constructor
and destructor, if the composite reference has no opposite.

Fold and Unfold Class are quite similar to Extract and Inline Class. The only
difference is, that the delegate class exists already and thus is not created or
deleted. The following example illustrates the difference:

class A { a1 :: Integer
a2 :: Boolean
r1 −> B (1..1)
r2 −> B (0..∗) }

class B { }
class C { a1 :: Integer

r1 −> B (1..1) }

class A { c <> C (1..1)
d <> D (1..1) opposite a }

class B { }
class C { a1 :: Integer

r1 −> B (1..1) }
class D { a2 :: Boolean

r2 −> B (0..∗)
a −> A (1..1) opposite d }

From left to right, the features a1 and r1 of class A are folded to a composite
reference A.c to class C which has exactly these two features. In contrast, the
features a2 and r2 of class A are extracted into a new delegate class D. From
right to left, the composite reference A.c is unfolded which keeps C intact while
A.d is inlined which removes D.

Move Feature along Reference is a constructor which moves a feature over a
single-valued reference to a target class. Slots of the original feature must be
moved over links to objects of the target class. For objects of the target class
which are not linked to an object of the source class, slots with default values
must be added. The destructor Collect Feature over Reference is a safe inverse of
the last operator. It moves a feature backwards over a reference. The multiplicity
of the feature might be altered during the move depending on the multiplicity of
the reference. For optional and/or multi-valued references, the feature becomes
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optional respectively multi-valued, too. Slots of the feature must be moved over
links from objects of the source class. If an object of the source class is not linked
from objects of the target class, slots of the original feature are removed. Here
is an example for both operators:

class A { f1 :: Integer (1..∗)
r1 −> B (1..1)
r2 −> C (0..∗) }

class B { }
class C { f2 :: Integer (1..1) }

class A { f2 :: Integer (0..∗)
r1 −> B (1..1)
r2 −> C (0..∗) }

class B { f1 :: Integer (1..∗) }
class C { }

From left to right, the feature A.f1 is moved along the reference A.r1 to class
B. Furthermore, the feature C.f2 is collected over the reference A.r2 and ends
up in class A. Since A.r2 is optional and multi-valued, A.f2 becomes optional
and multi-valued, too. From right to left, the feature B.f1 is collected over the
reference A.r1. Its multiplicity stays unaltered. Note that there is no single
operator for moving A.f2 to class C which makes Collect Feature over Reference
in general uninvertible. For the special case of a single-valued reference, Move
Feature along Reference is an unsafe inverse.

5.6 Replacement Operators

Replacement operators replace one metamodeling construct by another, equiva-
lent construct. Thus replacement operators typically are refactorings and safely
model-migrating. With the exception of the last two operators, an operator to
replace the first construct by a second always comes with a safe inverse to replace
the second by the first, and vice versa.

Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Subclasses to Enum. r s 2s x
2 Enum. to Subclasses r s 1s x x
3 Reference to Class r s 4s x x x
4 Class to Reference r s 3s x x
5 Inheritance to Delegation r s 6s x x x x x
6 Delegation to Inheritance r s 5s x x
7 Reference to Identifier c s 8s x
8 Identifier to Reference d u 7u x x x x

To be more flexible, empty subclasses of a class can be replaced by an attribute
which has an enumeration as type, and vice versa. Subclasses to Enumeration
deletes all subclasses of the class and creates the attribute in the class as well
as the enumeration with a literal for each subclass. In a model, objects of a
certain subclass are migrated to the super class, setting the attribute to the
corresponding literal. Thus, the class is required to be non-abstract and to have
only empty subclasses without further subclasses. Enumeration to Subclasses
does the inverse and replaces an enumeration attribute of a class by subclasses
for each literal. The following example demonstrates both directions:

class C { ... }
class S1 : C {}
class S2 : C {}

class C { e :: E ... }

enum E { s1, s2 }
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From left to right, Subclasses to Enumeration replaces the subclasses S1 and S2 of
class C by the new attribute C.e which has the enumeration E with literals s1 and
s2 as type. In a model, objects of a subclass S1 are migrated to class C, setting
the attribute e to the appropriate literal s1. From right to left, Enumeration to
Subclasses introduces a subclass to C for each literal of E. Next, it deletes the
attribute C.e as well as the enumeration E. In a model, objects of class C are
migrated to a subclass according to the value of attribute e.

To be able to extend a reference with features, it can be replaced by a class,
and vice versa. Reference to Class makes the reference composite and creates
the reference class as its new type. Single-valued references are created in the
reference class to target the source and target class of the original reference. In a
model, links conforming to the reference are replaced by objects of the reference
class, setting source and target reference appropriately. Class to Reference does
the inverse and replaces the class by a reference. To not lose expressiveness, the
reference class is required to define no features other than the source and target
references. The following example demonstrates both directions:

class S {
r −> T (l..∗) ...

}

class S { r <> R (l..∗) ... }
class R { s −> S (1..1) opposite r

t −> T (1..1) }

From left to right, Reference to Class retargets the reference S.r to a new
reference class R. Source and target of the original reference can be accessed
via references R.s and R.t. In a model, links conforming to the reference r

are replaced by objects of the reference class R. From right to left, Class to
Reference removes the reference class R and retargets the reference S.r directly
to the target class T.

Inheriting features from a superclass can be replaced by delegating them to
the superclass, and vice versa. Inheritance to Delegation removes the inheritance
relationship to the superclass and creates a composite, mandatory single-valued
reference to the superclass. In a model, the slots of the features inherited from
the superclass are extracted to a separate object of the super class. By removing
the super type relationship, links of references to the superclass are no longer
allowed to target the original object, and thus have to be retargeted to the
extracted object. Delegation to Inheritance does the inverse and replaces the
delegation to a class by an inheritance link to that class. The following example
demonstrates both directions:

class C : S { ... } class C { s <> S (1..1), ... }

From left to right, Inheritance to Delegation replaces the inheritance link of class
C to its superclass S by a composite, single-valued reference from C to S. In a
model, the slots of the features inherited from the super class S are extracted to
a separate object of the super class. From right to left, Delegation to Inheritance
removes the reference C.s and makes S a super class of C.

To decouple a reference, it can be replaced by an indirect reference using
an identifier, and vice versa. Reference to Identifier deletes the reference and
creates an attribute in the source class whose value refers to an id attribute in
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the target class. In a model, links of the reference are replaced by setting the
attribute in the source object to the identifier of the target object. Identifier to
Reference does the inverse and replaces an indirect reference via identifier by
a direct reference. Our metamodeling formalism does not provide a means to
ensure that there is a target object for each identifier used by a source object.
Consequently, Reference to Identifier is a constructor and Identifier to Reference
a destructor, thus being an exception in the group of replacement operators.

5.7 Merge / Split Operators

Merge operators merge several metamodel elements of the same type into a sin-
gle element, whereas split operators split a metamodel element into several ele-
ments of the same type. Consequently, merge operators typically are destructors
and split operators constructors. In general, each merge operator has an inverse
split operator. Split operators are more difficult to define, as they may require
metamodel-specific information about how to split values. There are different
merge and split operators for the different metamodeling constructs.

Class. MM OODB OOC [12] COPE Acoda
# Operator Name L M I [24] [2] [6] [1] [3] [19] [7] [10] [8] F T [13] [14] U Q B R Y

1 Merge Features d u x x x
2 Split Reference by Type r s 1s x
3 Merge Classes d u 4u x x x x x x
4 Split Class c p 3s
5 Merge Enumerations d u x

Merge Features merges a number of features defined in the same class into a
single feature. In the metamodel, the source features are deleted and the target
feature is required to be general enough—through its type and multiplicity—
so that the values of the other features can be fully moved to it in a model.
Depending on the type of feature that is merged, a repeated application of
Create Attribute or Create Reference provides an unsafe inverse. Split Reference
by Type splits a reference into references for each subclass of the type of the
original reference. In a model, each link instantiating the original reference is
moved to the corresponding target reference according to its type. If we require
that the type of the reference is abstract, this operator is a refactoring and has
Merge Features as a safe inverse.

Merge Classes merges a number of sibling classes—i.e. classes sharing a com-
mon superclass—into a single class. In the metamodel, the sibling classes are
deleted and their features are merged to the features of the target class accord-
ing to name equality. Each of the sibling classes is required to define the same
features so that this operator is a destructor. In a model, objects of the sibling
classes are migrated to the new class. Split Class is an unsafe inverse and splits
a class into a number of classes. A function that maps each object of the source
class to one of the target classes needs to be provided to the migration.

Merge Enumerations merges a number of enumerations into a single enumer-
ation. In the metamodel, the source enumerations are deleted and their literals
are merged to the literals of the target enumeration according to name equality.
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Each of the source enumerations is required to define the same literals so that
this operator is a destructor. Additionally, attributes that have the source enu-
merations as type have to be retargeted to the target enumeration. In a model,
the values of these attributes have to be migrated according to how literals are
merged. A repeated application of Create Enumeration provides a safe inverse.

6 Discussion

Completeness. At the metamodel level, an operator catalog is complete if any
source metamodel can be evolved to any target metamodel. This kind of com-
pleteness is achieved by the catalog presented in the paper. An extreme strategy
would be the following [1]: In a first step, the original metamodel needs to be
discarded. Therefore, we delete opposite references and features. Next, we delete
data types and enumerations and collapse inheritance hierarchies by inlining sub-
classes. We can now delete the remaining classes. Finally, we delete packages.
In a second step, the target metamodel is constructed from scratch by creating
packages, enumerations, literals, data types, classes, attributes, and references.
Inheritance hierarchies are constructed by extracting empty subclasses.

Completeness is much harder to achieve, when we take the model level into
account. Here, an operator catalog is complete if any model migration corre-
sponding to an evolution from a source metamodel to a target model can be
expressed. In this sense, a complete catalog needs to provide a full-fledged model
transformation language based on operators. A first useful restriction is Turing
completeness. But reaching for this kind of completeness comes at the price of
usability. Given an existing operator, one can always think of a slightly different
operator having the same effect on the metamodel level but a slightly different
migration. But the higher the number of coupled operators, the more difficult
it is to find an operator in the catalog. And with many similar operators, it is
hard to decide which one to apply.

We therefore do not target theoretical completeness—to capture all possi-
ble migrations—but rather practical completeness—to capture migrations that
likely happen in practice. When we started our case studies, we found the set of
operators from the literature rather incomplete. For each case study, we added
frequently reoccurring operators to the catalog. The number of operators we
added to the catalog declined with every new case study, thus approaching a
stable catalog. Our latest studies revealed no new operators. Although, in most
case studies, we found a few operators which were only applied once in a single
case study. They were never reused in other case studies. Therefore, we decided
not to include them in the catalog.

We expect similar special cases in practical applications where only a few
evolution steps can not be modeled by operators from the catalog. These cases
can effectively be handled by providing a means for overwriting a coupling [13]:
The user can specify metamodel evolution by an operator application but over-
writes the model migration for this particular application. This way, theoretical
completeness can still be achieved.
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Metamodeling Formalism. In this paper, we focus only on core metamod-
eling constructs that are interesting for coupled evolution of metamodels and
models. But a metamodel defines not only the abstract syntax of a modeling
language, but also an API to access models expressed in this language. For this
purpose, concrete metamodeling formalisms like Ecore or MOF provide meta-
modeling constructs like interfaces, operations, derived features, volatile features,
or annotations. An operator catalog will need additional operators addressing
these metamodeling constructs to reach full compatibility with Ecore or MOF.

These additional operators are relevant for practical completeness. In the
GMF case study [14], we found 25% of the applied operators to address changes
in the API. Most of these operators do not require migration. The only excep-
tions were annotations containing constraints. An operator catalog accounting
for constraints needs to deal with two kinds of migrations: First, the constraints
need migration when the metamodel evolves. Operators need to provide this
migration in addition to model migration. Second, evolving constraints might
invalidate existing models and thus require model migration. Here, new coupled
operators for the evolution of constraints are needed.

Things become more complicated when it comes to CMOF [18]. Concepts like
package merge, feature subsetting, and visibility affect the semantics of operators
in the paper and additional operators are needed to deal with these concepts.
For example, we would need four different kinds of Rename due to the package
merge: 1) Renaming an element which is not involved in a merge neither before
nor after the renaming (Rename Element). 2) Renaming an element which is
not involved in a merge in order to include it into a merge (Include by Name).
3) Renaming an element which is involved in a merge in order to exclude it from
the merge (Exclude by Name). 4) Renaming all elements which are merged to
the same element (Rename Merged Element).

Tool Support. In operator-based tools, operators are usually made available
to the user through an operator browser [23,13]. Here, the organization of the
catalog into groups can help to find an operator for a change at hand. The
preservation properties can be used to reason about the impact on language
expressiveness and on existing models. In grammarware, similar operators have
been successfully used in [16] to reason about relationships between different
versions of the Java grammar. To make the user aware of the impact on models,
it can be shown by a traffic light in the browser: green for model-preserving,
yellow for safely and red for unsafely model-migrating. Additionally, the oper-
ator browser may have different modes for restricting the presented operators
in order to guarantee language- and/or model-preservation properties. Bidirec-
tionality can be used to invert an evolution that has been specified erroneously
earlier. Recorded operator applications can be automatically undone with dif-
ferent levels of safety by applying the inverse operators. Tools that support evo-
lution detection should evade of destructors in favor of refactorings to increase
the preservation of information by the detected evolution.

Difference-based tools [6,11] need to be able to specify the mappings un-
derlying the operators from the catalog. When they allow to specify complex
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mappings, they could introduce means to specify the mappings of the opera-
tors in a straightforward manner. Introducing such first class constructs reduces
the effort for specifying the migration. For instance, the declarative language
presented in [17] provides patterns to specify recurrent mappings.

7 Conclusion

We presented a catalog of 61 operators for the coupled evolution of metamod-
els and models. These so-called coupled operators evolve a metamodel and in
response are able to automatically migrate existing models. The catalog covers
not only well-known operators from the literature, but also operators which have
proven useful in a number of case studies we performed. The catalog is based
on the widely used EMOF metamodeling formalism [18] which was stripped of
the constructs that cannot be instantiated in models. When a new construct is
added to the metamodeling formalism, new operators have to be added to the
catalog: Primitive operators to create, delete and modify the construct as well as
complex operators to perform more intricate evolutions involving the construct.
The catalog not only serves as a basis for operator-based tools, but also for
difference-based tools. Operator-based tools need to provide an implementation
of the presented operators. Difference-based tools need to be able to specify the
mappings underlying the presented operators.

Acknowledgments. The work of the first author was funded by the Ger-
man Federal Ministry of Education and Research (BMBF), grants “SPES 2020,
01IS08045A” and “Quamoco, 01IS08023B”. The work of the other authors was
supported by NWO/JACQUARD, project 638.001.610, MoDSE: Model-Driven
Software Evolution.

References

1. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation
of schema evolution in object-oriented databases. SIGMOD Rec. 16(3), 311–322
(1987)

2. Becker, S., Goldschmidt, T., Gruschko, B., Koziolek, H.: A process model and clas-
sification scheme for semi-automatic meta-model evolution. In: Proc. 1st Workshop
MDD, SOA und IT-Management (MSI 2007), pp. 35–46. GiTO-Verlag (2007)
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Abstract. In Model Driven Engineering bidirectional transformations are con-
sidered a core ingredient for managing both the consistency and synchronization
of two or more related models. However, while non-bijectivity in bidirectional
transformations is considered relevant, current languages still lack of a com-
mon understanding of its semantic implications hampering their applicability in
practice.

In this paper, the Janus Transformation Language (JTL) is presented, a bidi-
rectional model transformation language specifically designed to support non-
bijective transformations and change propagation. In particular, the language
propagates changes occurring in a model to one or more related models according
to the specified transformation regardless of the transformation direction. Addi-
tionally, whenever manual modifications let a model be non reachable anymore
by a transformation, the closest model which approximate the ideal source one
is inferred. The language semantics is also presented and its expressivity and ap-
plicability are validated against a reference benchmark. JTL is embedded in a
framework available on the Eclipse platform which aims to facilitate the use of
the approach, especially in the definition of model transformations.

1 Introduction

In Model-Driven Engineering [1] (MDE) model transformations are considered as the
gluing mechanism between the different abstraction layers and viewpoints by which a
system is described [2,3]. Their employment includes mapping models to other models
to focus on particular features of the system, operate some analysis, simulate/validate
a given application, not excluding the operation of keeping them synchronized or in
a consistent state. Given the variety of scenarios in which they can be employed, each
transformation problem can demand for different characteristics making the expectation
of a single approach suitable for all contexts not realistic.

Bidirectionality and change propagation are relevant aspects in model transforma-
tions: often it is assumed that during development only the source model of a transfor-
mation undergoes modifications, however in practice it is necessary for developers to

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 183–202, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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modify both the source and the target models of a transformation and propagate changes
in both directions [4,5]. There are two main approaches for realizing bidirectional trans-
formations: by programming forward and backward transformations in any convenient
unidirectional language and manually ensuring they are consistent; or by using a bidi-
rectional transformation language where every program describes both a forward and a
backward transformation simultaneously. A major advantage of the latter approach is
that the consistency of the transformations can be guaranteed by construction. More-
over, source and target roles are not fixed since the transformation direction entails
them. Therefore, considerations made about the mapping executed in one direction are
completely equivalent to the opposite one.

The relevance of bidirectionality in model transformations has been acknowledged
already in 2005 by the Object Management Group (OMG) by including a bidirectional
language in their Query View Transformation (QVT) [6]. Unfortunately, as pointed
out by Perdita Stevens in [7] the language definition is affected by several weaknesses.
Therefore, while MDE requirements demand enough expressiveness to write
non-bijective transformations [8], the QVT standard does not clarify how to deal with
corresponding issues, leaving their resolution to tool implementations. Moreover, a
number of approaches and languages have been proposed due to the intrinsic complex-
ity of bidirectionality. Each one of those languages is characterized by a set of specific
properties pertaining to a particular applicative domain [9].

This paper presents the Janus Transformation Language (JTL), a declarative model
transformation language specifically tailored to support bidirectionality and change
propagation. In particular, the distinctive characteristics of JTL are

– non-bijectivity, non-bijective bidirectional transformations are capable of mapping
a model into a set of models, as for instance when a single change in a target model
might semantically correspond to a family of related changes in more than one
source model. JTL provides support to non-bijectivity and its semantics assures
that all the models are computed at once independently whether they represent the
outcome of the backward or forward execution of the bidirectional transformation;

– model approximation, generally transformations are not total which means that tar-
get models can be manually modified in such a way they are not reachable anymore
by any forward transformation, then traceability information are employed to back
propagate the changes from the modified targets by inferring the closest model that
approximates the ideal source one at best.

The language expressiveness and applicability have been validated by implementing
the Collapse/Expand State Diagrams benchmark which have been defined in [10] to
compare and assess different bidirectional approaches. The JTL semantics is defined in
terms of the Answer Set Programming (ASP) [11], a form of declarative programming
oriented towards difficult (primarily NP-hard) search problems and based on the sta-
ble model (answer set) semantics of logic programming. Bidirectional transformations
are translated via semantic anchoring [12] into search problems which are reduced to
computing stable models, and the DLV solver [13] is used to perform search.

The structure of the paper is as follows: Section 2 sets the context of the paper
through a motivating example that is used throughout the paper to demonstrate the
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approach and Section 3 discusses requirements a bidirectional and change propagating
language should support. Section 4 describes conceptual and implementation aspects
of the proposed approach and Section 5 applies the approach to a case study. Section 6
relates the work presented in this paper with other approaches. Finally, Section 7 draws
the conclusions and presents future work.

2 Motivating Scenario

As aforesaid, bidirectionality in model transformations raises not obvious issues mainly
related to non-bijectivity [7,14]. More precisely, let us consider the Collapse/Expand
State Diagrams benchmark defined in the GRACE International Meeting on Bidirec-
tional Transformations [10]: starting from a hierarchical state diagram (involving some
one-level nesting) as the one reported in Figure 1.a, a flat view has to be provided as
in Figure 1.b. Furthermore, any manual modifications on the (target) flat view should
be back propagated and eventually reflected in the (source) hierarchical view. For in-
stance, let us suppose the designer modifies the flat view by changing the name of the
initial state from Begin Installation to Start Install shield (see Δ1 change
in Figure 2). Then, in order to persist such a refinement to new executions of the trans-
formation, the hierarchical state machine has to be consistently updated by modifying
its initial state as illustrated in Figure 3.

The flattening is a non-injective operation requiring specific support to back prop-
agate modifications operated on the flattened state machine to the nested one. For
instance, the flattened view reported in Figure 1 can be extended by adding the al-
ternative try again from the state Disk Error to Install software (see Δ2
changes in Figure 2). This gives place to an interesting situation: the new transition
can be equally mapped to each one of the nested states within Install Software as
well as to the container state itself. Consequently, more than one source model prop-
agating the changes exists1. Intuitively, each time hierarchies are flattened there is a
loss of information which causes ambiguities when trying to map back corresponding
target revisions. Some of these problems can be alleviated by managing traceability
information of the transformation executions which can be exploited later on to trace
back the changes: like this each generated element can be linked with the correspond-
ing source and contribute to the resolution of some of the ambiguities. Nonetheless,
traceability is a necessary but not sufficient condition to support bidirectionality, since
for instance elements discarded by the mapping may not appear in the traces, as well
as new elements added on the target side. For instance, the generated flattened view
in Figure 1.b can be additionally manipulated through the Δ3 revisions which consist
of adding some extra-functional information for the Install Software state and the
transition between from Memory low and Install Software states. Because of the
limited expressive power of the hierarchical state machine metamodel which does not
support extra-functional annotations, the Δ3 revisions do not have counterparts in the
state machine in Figure 3.

1 It is worth noting that the case study and examples have been kept deliberately simple since
they suffice to show the relevant issues related to non-bijectivity
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a) A sample Hierarchical State Machine (HSM).

b) The corresponding Non-Hierarchical State Machine (NHSM).

Fig. 1. Sample models for the Collapse/Expand State Diagrams benchmark

Current declarative bidirectional languages, such as QVT relations (QVT-R), are of-
ten ambivalent when discussing non-bijective transformations as already pointed out [7];
whilst other approaches, notably hybrid or graph-based transformation techniques, even
if claiming the support of bidirectionality, are able to deal only with (partially) bi-
jective mappings [4]. As a consequence, there is not a clear understanding of what
non-bijectivity implies causing language implementors to adopt design decisions which
differ from an implementation to another.

In order to better understand how the different languages deal with non-bijectivity,
we have specified the hierarchical to non-hierarchical state machines transformation
(HSM2NHSM) by means of the Medini2 and MOFLON3 systems. The former is an

2 http://projects.ikv.de/qvt/
3 http://www.moflon.org
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1

2

2

3

3

Fig. 2. A revision of the generated non-hierarchical state machine

Fig. 3. The source hierarchical state machine synchronised with the target changes

implementation of the QVT-R transformation language, whereas the latter is a frame-
work which bases on Triple Graph Grammars (TGGs) [15]: our experience with them
is outlined in the following

Medini. When trying to map the generated target model back to the source without
any modification, a new source model is generated which differs from the original one4.
In particular, incoming (outgoing) transitions to (from) nested states are flattened to
the corresponding parent: when going back such mapping makes the involved nested
states to disappear (as Entry and Install in the Install Software composite in
Figure 1). Moreover, the same mapping induces the creation of extra composite states
for existing simple states, like Begin Installation and the initial and final states
of the hierarchical state machine. Starting from this status, we made the modifications

4 In this paper the details about the experiments done with Medini and TGGs can not be de-
scribed in detail due to space restrictions. The interested reader can access the full implemen-
tation of both the attempts at http://www.mrtc.mdh.se/∼acicchetti/HSM2NHSM.php
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on the target model as prescribed by Figure 2 and re-applied the transformation in the
source direction, i.e. backward. In this case, the Start Install shield state is cor-
rectly mapped back by renaming the existing Begin Installation in the source. In
the same way, the modified transition from Disk Error to the final state is consistently
updated. However, the newly added transition outgoing from Disk Error to Install
software is mapped by default to the composite state, which might not be the pre-
ferred option for the user. Finally, the manipulation of the attributes related to memory
requirements and cost are not mapped back to any source element but are preserved
when new executions of the transformation in the target direction are triggered.

MOFLON. The TGGs implementation offered by MOFLON is capable of generating
Java programs starting from diagrammatic specifications of graph transformations. The
generated code realizes two separate unidirectional transformations which as in other
bidirectional languages should be consistent by construction. However, while the for-
ward transformation implementation can be considered complete with respect to the
transformation specification, the backward program restricts the change propagation to
attribute updates and element deletions. In other words, the backward propagation is
restricted to the contexts where the transformation can exploit trace information.

In the next sections, we firstly motivate a set of requirements a bidirectional transfor-
mation language should meet to fully achieve its potential; then, we introduce the JTL
language, its support to non-bijective bidirectional transformations, and its ASP-based
semantics.

3 Requirements for Bidirectionality and Change Propagation

This section refines the definition of bidirectional model transformations as proposed
in [7] by explicitly considering non-bijective cases. Even if some of the existing bidi-
rectional approaches enable the definition of non-bijective mappings [7,5], their valid-
ity is guaranteed only on bijective sub-portions of the problem. As a consequence, the
forward transformation can be supposed to be an injective function, and the backward
transformation its corresponding inverse; unfortunately, such requirement excludes most
of the cases [16]. In general, a bidirectional transformation R between two classes of
models, say M and N, and M more expressive than N, is characterized by two unidirec-
tional transformations

−→
R : M × N → N
←−
R : M × N → M∗

where
−→
R takes a pair of models (m, n) and works out how to modify n so as to en-

force the relation
−→
R . In a similar way,

←−
R propagates changes in the opposite direction:←−

R is a non-bijective function able to map the target model in a set of corresponding
source models conforming to M 5. Furthermore, since transformations are not total in

5 For the sake of readability, we consider a non-bijective backward transformation assuming
that only M contains elements not represented in N . However, the reasoning is completely
analogous for the forward transformation and can be done by exchanging the roles of M and
N .
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general, bidirectionality has to be provided even in the case the generated model has
been manually modified in such a way it is not reachable anymore by the considered
transformation. Traceability information is employed to back propagate the changes
from the modified targets by inferring the closest6 model that approximates the ideal
source one at best. More formally the backward transformation

←−
R is a function such

that:

(i) if R(m,n) is a non-bijective consistency relation,
←−
R generates all the resulting mod-

els according to R;
(ii) if R(m,n) is a non-total consistency relation,

←−
R is able to generate a result model

which approximates the ideal one.

This definition alone does not constrain much on the behavior of the reverse transforma-
tion and additional requirements are necessary in order to ensure that the propagation
of changes behaves as expected.

Reachability. In case a generated model has been manually modified (n′), the back-
ward transformation

←−
R generates models (m∗) which are exact, meaning that the orig-

inal target may be reached by each of them via the transformation without additional
side effects. Formally:

←−
R (m, n′) = m∗ ∈ M∗

−→
R (m′, n′) = n′ ∈ N for each m′ ∈ m∗

Choice preservation. Let n′ be the target model generated from an arbitrary model
m′ in m∗ as above: when the user selects m′ as the appropriate source pertaining to n′

the backward transformation has to generate exactly m′ from n′ disregarding the other
possible alternatives t ∈ m∗ such that t �= m′. In other words, a valid round-trip process
has to be guaranteed even when multiple sources are available [14]:

←−
R (m′,−→R (m′, n′)) = m′ for each m′ ∈ m∗

Clearly, the above requirement in order to be met demands for adequate traceability
information management.

In the rest of the paper, the proposed language is introduced and shown to satisfy
the above requirements. The details of the language and its supporting development
environment are presented in Section 4, whereas in Section 5 the usage of the language
is demonstrated by means of the benchmark case.

4 The Janus Transformation Language

The Janus Transformation Language (JTL) is a declarative model transformation lan-
guage specifically tailored to support bidirectionality and change propagation. The

6 This concept is clarified in Sect. 4, where the transformation engine and its derivation mecha-
nism are discussed.
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Fig. 4. Architecture overview of the JTL environment

implementation of the language relies on the Answer Set Programming (ASP) [11].
This is a form of declarative programming oriented towards difficult (primarily NP-
hard) search problems and based on the stable model (answer set) semantics of logic
programming. Being more precise model transformations specified in JTL are trans-
formed into ASP programs (search problems), then an ASP solver is executed to find
all the possible stable models that are sets of atoms which are consistent with the rules
of the considered program and supported by a deductive process.

The overall architecture of the environment supporting the execution of JTL trans-
formations is reported in Figure 4. The JTL engine is written in the ASP language and
makes use of the DLV solver [13] to execute transformations in both forward and back-
ward directions. The engine executes JTL transformations which have been written in
a QVT-like syntax, and then automatically transformed into ASP programs. Such a se-
mantic anchoring has been implemented in terms of an ATL [17] transformation defined
on the JTL and ASP metamodels. Also the source and target metamodels of the con-
sidered transformation (MMsource, MMtarget) are automatically encoded in ASP and
managed by the engine during the execution of the considered transformation and to
generate the output models.

The overall architecture has been implemented as a set of plug-ins of the Eclipse
framework and mainly exploits the Eclipse Modelling Framework (EMF) [18] and the
ATLAS Model Management Architecture (AMMA) [19]. Moreover, the DLV solver
has been wrapped and integrated in the overall environment.

In the rest of the section all the components of the architecture previously outlined
are presented in detail. In particular, Section 4.1 presents the JTL engine, the syntax
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1metanode(HSM, state).
2metanode(HSM, transition).
3metaprop(HSM, name, state).
4metaprop(HSM, trigger, transition).
5metaprop(HSM, effect, transition).
6metaedge(HSM, association, source, transition, state).
7metaedge(HSM, association, target, transition, state).
8[...]

Listing 1.1. Fragment of the State Machine metamodel

of transformation language is described in Section 4.2 by using a running example,
whereas the semantic anchoring is described in Section 4.3.

4.1 The Janus Transformation Engine

As previously said the Janus transformation engine is based on a relational and
declarative approach implemented using the ASP language to specify bidirectional
transformations. The approach exploits the benefits of logic programming that enables
the specification of relations between source and target types by means of predicates,
and intrinsically supports bidirectionality [9] in terms of unification-based matching,
searching, and backtracking facilities.

Starting from the encoding of the involved metamodels and the source model (see
the serialize arrows in the Figure 4), the representation of the target one is generated
according to the JTL specification (as shown in Section 4.2). The computational pro-
cess is performed by the JTL engine (as depicted in Figure 4) which is based on an
ASP bidirectional transformation program executed by means of an ASP solver called
DLV [13].

Encoding of models and metamodels. In the proposed approach, models and meta-
models are defined in a declarative manner by means of a set of logic assertions. In
particular, they are considered as graphs composed of nodes, edges and properties that
qualify them. The metamodel encoding is based on a set of terms each characterized
by the predicate symbols metanode, metaedge, and metaprop, respectively. A frag-
ment of the hierarchical state machine metamodel considered in Section 2 is encoded in
Listing 1.1. For instance, the metanode(HSM,state) in line 1 encodes the metaclass
state belonging to the metamodel HSM. The metaprop(HSM,name,state) in line 3
encodes the attribute named name of the metaclass state belonging to the metamodel
HSM. Finally, the metaedge(HSM,association,source,transition,state) in
line 6 encodes the association between the metaclasses transition and state, typed
association, named source and belonging to the metamodel HSM. The terms in-
duced by a certain metamodel are exploited for encoding models conforming to it. In
particular, models are sets of entities (represented through the predicate symbol node),
each characterized by properties (specified by means of prop) and related together
by relations (represented by edge). For instance, the state machine model in Figure 1
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1node(HSM, "s1", state).
2node(HSM, "s2", state).
3node(HSM, "t1", transition).
4prop(HSM,"s1.1","s1",name,"begin installation").
5prop(HSM,"s2.1","s2",name,"install software").
6prop(HSM,"t1.1","t1",trigger,"install software").
7prop(HSM,"t1.2","t1",effect,"start install").
8edge(HSM,"tr1",association,source, "s1","t1").
9edge(HSM,"tr1",association,target, "s2","t1").

10[...]

Listing 1.2. Fragment of the State Machine model in Figure 1

is encoded in the Listing 1.2. In particular, the node(HSM,"s1",state) in line 1

encodes the instance identified with "s1" of the class state belonging to the meta-
model HSM. The prop(HSM,"s1",name,"start") in line 4 encodes the attribute
name of the class "s1" with value "start" belonging to the metamodel HSM. Fi-
nally, the edge(HSM,"tr1",association,source,"s1","t1") in line 7 encodes
the instance "tr1" of the association between the state "s1" and the transition "t1"

belonging to the metamodel HSM.

Model transformation execution. After the encoding phase, the deduction of the tar-
get model is performed according to the rules defined in the ASP program. The trans-
formation engine is composed of i) relations which describe correspondences among
element types of the source and target metamodels, ii) constraints which specify restric-
tions on the given relations that must be satisfied in order to execute the corresponding
mappings, and an iii) execution engine (described in the rest of the section) consist-
ing of bidirectional rules implementing the specified relations as executable mappings.
Relations and constraints are obtained from the given JTL specification, whereas the
execution engine is always the same and represents the bidirectional engine able to
interpret the correspondences among elements and execute the transformation.

The transformation process logically consists of the following steps:

(i) given the input (meta)models, the execution engine induces all the possible solution
candidates according to the specified relations;

(ii) the set of candidates is refined by means of constraints.

The Listing 1.3 contains a fragment of the ASP code implementing relations and con-
straints of the HSM2NHSM transformation discussed in Section 2. In particular, the
terms in lines 1-2 define the relation called "r1" between the metaclass State

machine belonging to the HSM metamodel and the metaclass State machine belong-
ing to the NHSM metamodel. An ASP constraint expresses an invalid condition: for ex-
ample, the constraints in line 3-4 impose that each time a state machine occurs in the
source model it has to be generated also in the target model. In fact, if each atoms in
its body is true then the correspondent solution candidate is eliminated. In similar way,
the relation between the metaclasses State of the involved metamodels is encoded
in line 6-7. In this case, constraints in line 8-11 impose that each time a state oc-
curs in the HSM model, the correspondent one in the NHSM model is generated only
if the source element is not a sub-state, vice versa, each state in the NHSM model is
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1relation ("r1", HSM, stateMachine).
2relation ("r1", NHSM, stateMachine).
3:- node(HSM, "sm1", stateMachine), not node’(HSM, "sm1", stateMachine).
4:- node(NHSM, "sm1", stateMachine), not node’(NHSM, "sm1", stateMachine).
5
6relation ("r2", HSM, state).
7relation ("r2", NHSM, state).
8:- node(HSM, "s1", state), not edge(HSM, "ow1", owningCompositeState, "s1", "cs1

"), not node’(NHSM, "s1", state).
9:- node(HSM, "s1", state), edge(HSM, "ow1", owningCompositeState, "s1", "cs1"),

node(HSM, "cs1", compositeState), node’(NHSM, "s1", state).
10:- node(NHSM, "s1", state), not trace_node(HSM, "s1", compositeState), not node

’(HSM, "s1", state).
11:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), node’(HSM, "

s1", state).
12
13relation ("r3", HSM, compositeState).
14relation ("r3", NHSM, state).
15:- node(HSM, "s1", compositeState), not node’(NHSM, "s1", state).
16:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), not node’(HSM

, "s1", compositeState).
17[...]

Listing 1.3. Fragment of the HSM2NHSM transformation

mapped in the HSM model. Finally, the relation between the metaclasses Composite
state and State is encoded in line 13-14. Constraints in line 15-16 impose that each
time a composite state occurs in the HSM model a correspondent state in the NHSM
model is generated, and vice versa. Missing sub-states in a NHSM model can be gener-
ated again in the HSM model by means of trace information (see line 10-11 and 16).
Trace elements are automatically generated each time a model element is discarded
by the mapping and need to be stored in order to be regenerated during the backward
transformation.

Note that the specification order of the relations is not relevant as their execution is
bottom-up; i.e., the final answer set is always deduced starting from the more nested
facts.

Execution engine. The specified transformations are executed by a generic engine
which is (partially) reported in Listing 1.4. The main goal of the transformation ex-
ecution is the generation of target elements as the node’ elements in line 11 of List-
ing 1.4. As previously said transformation rules may produce more than one target
models, which are all the possible combinations of elements that the program is able
to create. In particular, by referring to Listing 1.4 target node elements with the form
node′(MM,ID,MC) are created if the following conditions are satisfied:

- the considered element is declared in the input source model. The lines 1-2 con-
tain the rules for the source conformance checking related to node terms. In partic-
ular, the term is source metamodel conform(MM,ID,MC) is true if the terms
node(MM,ID,MC) and metanode(MM,MC) exist. Therefore, the term bad source

is true if the corresponding is source metamodel con- form(MM,ID,MC) is
valued to false with respect to the node(MM,ID,MC)source element.
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1is_source_metamodel_conform(MM,ID,MC) :- node(MM,ID,MC), metanode(MM,MC).
2bad_source :- node(MM,ID,MC), not is_source_metamodel_conform(MM,ID,MC).
3mapping(MM,ID,MC) :- relation(R,MM,MC), relation(R,MM2,MC2), node(MM2,ID,MC2), MM

!=MM2.
4is_target_metamodel_conform(MM,MC) :- metanode(MM,MC).
5{is_generable(MM,ID,MC)} :- not bad_source, mapping(MM,ID,MC),

is_target_metamodel_conform(MM,MC), MM=mmt.
6node′(MM,ID,MC) :- is_generable(MM,ID,MC), mapping(MM,ID,MC), MM=mmt.

Listing 1.4. Fragment of the Execution engine

- at least a relation exists between a source element and the candidate target ele-
ment. In particular, the term mapping(MM,ID,MC) in line 3 is true if exists a
relation which involves elements referring to MC and MC2 metaclasses and an el-
ement node(MM2,ID,MC2). In other words, a mapping can be executed each time
it is specified between a source and a target, and exists the appropriate source to
compute the target.

- the candidate target element conforms to the target metamodel. In particular, the
term is target metamodel conform(MM,MC) in line 6 is true if the MC meta-
class exists in the MM metamodel (i.e. the target metamodel).

- finally, any constraint defined in the relations in Listing 1.3 is valued to false.

The invertibility of transformations is obtained by means of trace information that con-
nects source and target elements; in this way, during the transformation process, the
relationships between models that are created by the transformation executions can be
stored to preserve mapping information in a permanent way. Furthermore, all the source
elements lost during the forward transformation execution (for example, due to the dif-
ferent expressive power of the metamodels) are stored in order to be generated again in
the backward transformation execution.

4.2 Specifying Model Transformation with Janus

Due to the reduced usability of the ASP language, we have decided to provide support
for specifying transformations by means of a more usable syntax inspired by QVT-R.
In Listing 1.5 we report a fragment of the HSM2NHSM transformation specified in
JTL and it transforms hierarchical state machines into flat state machines and the other
way round. The forward transformation is clearly non-injective as many different hier-
archical machines can be flattened to the same model and consequently transforming
back a modified flat machine can give place to more than one hierarchical machine.
Such a transformation consists of several relations like StateMachine2StateMachine,
State2State and CompositeState2State which are specified in Listing 1.5. They define
correspondences between a) state machines in the two different metamodels b) atomic
states in the two different metamodels and c) composite states in hierarchical machines
and atomic states in flat machines. The relation in lines 11-20 is constrained by means
of the when clause such that only atomic states are considered. Similarly to QVT, the
checkonly and enforce constructs are also provided: the former is used to check if the
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domain where it is applied exists in the considered model; the latter induces the modi-
fications of those models which do not contain the domain specified as enforce. A JTL
relation is considered bidirectional when both the contained domains are specified with
the construct enforce.

1transformation hsm2nhsm(source : HSM, target : NHSM) {
2
3 top relation StateMachine2StateMachine {
4
5 enforce domain source sSM : HSM::StateMachine;
6 enforce domain target tSM : NHSM::StateMachine;
7
8 }
9

10 top relation State2State {
11
12 enforce domain source sourceState : HSM::State;
13 enforce domain target targetState : NHSM::State;
14
15 when {
16 sourceState.owningCompositeState.oclIsUndefined();
17 }
18
19 }
20
21 top relation CompositeState2State {
22
23 enforce domain source sourceState : HSM::CompositeState;
24 enforce domain target targetState : NHSM::State;
25
26 }
27}

Listing 1.5. A non-injective JTL program

The JTL transformations specified in the QVT-like syntax are mapped to the corre-
spondent ASP program by means of a semantic anchoring operation as described in the
next section.

4.3 ASP Semantic Anchoring

According to the proposed approach, the designer task is limited to specifying relational
model transformations in JTL syntax and to applying them on models and metamodels
defined as EMF entities within the Eclipse framework.

Designers can take advantage of ASP and of the transformation properties discussed
in the previous sections in a transparent manner since only the JTL syntax is used. In
fact, ASP programs are automatically obtained from JTL specifications by means of ATL
transformations as depicted in the upper part of Figure 4. Such a transformation is able to
generate ASP predicates for each relation specified with JTL. For instance, the relation
State2State in Listing 1.5 gives place to the relation predicates in lines 6-7 in Listing 1.3.

The JTL when clause is also managed and it induces the generation of further ASP
constraints. For instance, the JTL clause in line 16 of Listing 1.5 gives place to a couple
of ASP constraints defined on the owningCompositeState feature of the state machine
metamodels (see lines 8-9 in Listing 1.3). Such constraints are able to filter the states
and consider only those which are not nested.
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To support the backward application of the specified transformation, for each JTL
relation additional ASP constraints are generated in order to support the management of
trace links. For instance, the State2State relation in Listing 1.5 induces the generation
of the constraints in lines 10-11 of Listing 1.3 to deal with the non-bijectivity of the
transformation. In particular, when the transformation is backward applied on a State
element of the target model, trace links are considered to check if such a state has
been previously generated from a source CompositeState or State element. If such trace
information is missing all the possible alternatives are generated.

5 JTL in Practice

In this section we show the application of the proposed approach to the Collapse/Ex-
pand State Diagrams case study presented in Section 2. The objective is to illustrate
the use of JTL in practice by exploiting the developed environment, and in particular
to show how the approach is able to propagate changes dealing with non-bijective and
non-total scenarios. The following sections present how after the definition of models
and metamodels (see Section 5.1), the JTL transformation may be specified and applied
over them (see Section 5.2). Finally, the approach is also applied to manage changes
occurring on the target models which need to be propagated to the source ones (see
Section 5.3).

5.1 Modelling State Machines

According to the scenario described in Section 2, we assume that in the software de-
velopment lifecycle, the designer is interested to have a behavioral description of the
system by means of hierarchical state machine, whereas a test expert produces non-
hierarchical state machine models. The hierarchical and non-hierarchical state machine
matamodels (respectively HSM and NHSM) are given by means of their Ecore repre-
sentation within the EMF framework. Then a hierarchical state machine model con-
forming to the HSM metamodel can be specified as the model reported in the left-hand
side of Figure 5. Models can be specified with graphical and/or concrete syntaxes de-
pending on the tool availability for the considered modeling language. In our case, the
adopted syntaxes for specifying models do not affect the overall transformation ap-
proach since models are manipulated by considering their abstract syntaxes.

5.2 Specifying and Applying the HSM2NHSM Model Transformation

Starting from the definition of the involved metamodels, the JTL transformation is spec-
ified according to the QVT-like syntax described in Section 4.2 (see Listing 1.5). By
referring to the Figure 4, the JTL program, the source and target metamodels and the
source model have been created and need to be translated in their ASP encoding in or-
der to be executed from the transformation engine. The corresponding ASP encodings
are automatically produced by the mechanism illustrated in Section 4. In particular,
the ASP encoding of both source model and source and target metamodels is gener-
ated according to the Listing 1.2 and 1.1, while the JTL program is translated to the
corresponding ASP program (see Listing 1.3).
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Fig. 5. HSM source model and the correspondent NHSM target model

After this phase, the application of the HSM2NHSM transformation on sampleHSM
generates the corresponding sampleNHSM model as depicted in the right part of
Figure 4. Note that, by re-applying the transformation in the backward direction it is
possible to obtain again the sampleHSM source model. The missing sub-states and the
transitions involving them are restored by means of trace information.

5.3 Propagating Changes

Suppose that in a refinement step the designer needs to manually modify the generated
target by the changes described in Section 2 (see Δ changes depicted in Figure 2), that
is:

1. renaming the initial state from Begin Installation to Start Install

shield;
2. adding the alternative try again to the state Disk Error to come back to

Install software;
3. changing the attributes related to memory requirements (m=500) in the state

Install software and cost (c=200) of the transition from Memory low to
Install software.

The target model including such changes (sampleNHSM’) is shown in the left part of the
Figure 6. If the transformation HSM2NHSM is applied on it, we expect changes to be
propagated on the source model. However, due to the different expressive power of the
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Fig. 6. The modified NHSM target model and the correspondent HSM source models

involved metamodels, target changes may be propagated in a number of different ways,
thus making the application of the reverse transformation to propose more solutions.
The generated sources, namely sampleHSM’ 1/2/3/4 can be inspected through Figure
6: the change (1) has been propagated renaming the state to Start Install shield;
the change (2) gives place to a non-bijective mapping and for this reason more than one
model is generated. As previously said, the new transition can be equally targeted to
each one of the nested states within Install Software as well as to the super state
itself (see the properties sampleHSM’ 1/2/3/4 in Figure 6). For example, as visible in
the property of the transition, sampleHSM’ 1 represents the case in which the transition
is targeted to the composite state Install Software; finally, the change (3) is out of
the domain of the transformation. In this case, the new values for memory and cost are
not propagated on the generated source models.

Even in this case, if the transformation is applied on one of the derived sampleHSM’
models, the appropriate sampleNHSM’ models including all the changes are generated.
However, this time the target will preserve information about the chosen sampleHSM’
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source model, thus causing future applications of the backward transformation to gen-
erate only sampleHSM’.

With regard to the performances of our approach, we performed no formal study on
its complexity yet, since that goes beyond the scope of this work; however, our obser-
vations showed that the time required to execute each transformation in the illustrated
case study is more than acceptable since it always took less than one second. In the
general case, when there are a lot of target alternative models the overall performance
of the approach may degrade.

6 Related Work

Model transformation is intrinsically difficult, and its nature poses a number of obsta-
cles in providing adequate support for bidirectionality and change propagation [14]. As
a consequence, despite a number of proposals, in general they impose relevant restric-
tions of the characteristics of the involved transformations. For instance, approaches
like [20,21,22,23] require the mappings to be total, while [20,21,5] impose the existence
of some kind of bijection between the involved source and target. Such comparison is
discussed in [14].

Stevens [7] discusses bidirectional transformations focusing on basic properties
which such transformations should satisfy. In particular, (i) correctness ensures a bidi-
rectional transformation does something useful according to its consistency relation,
(ii) hippocraticness prevents a transformation from does something harmful if nether
model is modified by users, (iii) finally, undoability is about the ability whether a per-
formed transformation can be canceled. The paper considers QVT-R as applied to the
specification of bidirectional transformation and analyze requirements and open issues.
Furthermore, it points out some ambiguity about whether the language is supposed to
be able to specify and support non-bijective transformations.

Formal works on bidirectional transformations are based on graph grammars, es-
pecially triple graph grammars (TGGs) [15]. These approach interpret the models as
graphs and the transformation is executed by using graph rewriting techniques. It is
possible to specify non-bijective transformations; however, attributes are not modeled
as part of the graphs.

In [5] an attempt is proposed to automate model synchronization from model trans-
formations. It is based on QVT Relations and supports concurrent modifications on
both source and target models; moreover, it propagates both sides changes in a non de-
structive manner. However, some issues come to light: in fact, conflicts may arise when
merging models obtained by the propagation with the ones updated by the user. More-
over, it is not possible to manage manipulations that makes the models to go outside the
domain of the transformation.

The formal definition of a round-trip engineering process taking into account the
non-totality and non-injectivity of model transformations is presented in [14]. The valid
modifications on target models are limited to the ones which do not induce backward
mappings out the source metamodel and are not operated outside the transformation
domain. The proposal discussed in this paper is capable also to manage target changes
inducing extensions of the source metamodel by approximating the exact source as a



200 A. Cicchetti et al.

set of models; i.e., the set of possible models which are the closest to the ideal one from
which to generate the previously modified model.

In [16] the author illustrates a technique to implement a change propagating trans-
formation language called PMT. This work supports the preservation of target changes
by back propagating them toward the source. On the one hand, conflicts may arise each
time the generated target should be merged with the existing one; on the other hand, the
back propagation poses some problems related to the invertibility of transformations,
respectively.

Declarative approaches to model transformations offer several benefits like for exam-
ple implicit source model traversal, automatic traceability management, implicit target
object creation, and implicit rule ordering [9,24]. A number of interesting applications is
available, varying from incremental techniques [25] to the automation of transformation
specifications by means of the inductive construction of first-order clausal theories from
examples and background knowledge [26]. One of the closest works to our approach
is xMOF [27]. It aims to provide bidirectionality and incremental transformations by
means of an OCL constraint solving system which enables the specification of model
transformations. However, transformation developers have no automation support to de-
rive constraints from source/target metamodel conformance and transformation rules,
which may make their task hard in case of complex mappings [16]. Moreover, it has not
been clarified how such technique would deal with multiple choices and the require-
ments described in Sect. 3.

We already introduced in [28] an ASP based transformation engine enabling the sup-
port for partial and non injective mappings. However, the inverse transformation has to
be given by the developer and a valid round-trip process is not guaranteed, as already
discussed throughout the paper. For this purpose, we introduced JTL, a transformation
language specifically designed for supporting change propagation with model approxi-
mation capabilities.

7 Conclusion and Future Work

Bidirectional model transformations represent at the same time an intrinsically difficult
problem and a crucial mechanism for keeping consistent and synchronized a number of
related models. In this paper, we have refined an existing definition of bidirectional
model transformations (see [7]) in order to better accommodate non-bijectivity and
model approximation. In fact, existing languages fail in many respect when dealing
with non-bijectivity as in many cases its semantic implications are only partially ex-
plored, as for instance in bidirectional QVT transformations whose standard does not
even clarify whether valid transformations are only bijective transformations. Naturally,
non-bijective transformations can possibly map a number of source models to the same
target model, therefore whenever a target model is manually modified, the changes must
be back propagated to the related source models.

This paper presented the Janus Transformation Language (JTL), a declarative model
transformation approach tailored to support bidirectionality and change propagation
which conforms to the requirements presented in Section 3. JTL is able to map a model
into a set of semantically related models in both forward and backward directions,
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moreover whenever modifications to a target model are making it unreachable from
the transformation an approximation of the ideal source model is inferred. To the best
of our knowledge these characteristics are unique and we are not aware of any other
language which deals with non-bijectivity and model approximation in a similar way.
The expressivity and applicability of the approach has been validated against a relevant
benchmark, i.e., the transformation among hierachical and non-hierarchical state ma-
chines as prescribed by [10]. The language has been given abstract and concrete syntax
and its semantics is defined in terms of Answer Set Programming; a tool is available
which renders the language interoperable with EMF 7.

As future work we plan to extend the framework with a wizard helping the architect
to make decisions among proposed design alternatives. The alternatives are initially
partitioned, constrained, abstracted, and graphically visualized to the user. Then, when
decisions are made, they are stored and used to drive subsequent decisions. Another
interesting future work is to investigate about incremental bidirectional model trans-
formations. If a developer changes one model, the effects of these changes should be
propagated to other models without re-executing the entire model transformation from
scratch. In the context of bidirectional transformation it should coexist with the ability
to propagate changes in both the directions but preserves information in the models and,
in our case, also allows the approximation of models.
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Abstract. The Semantic Web provides models and abstractions for the
distributed processing of knowledge bases. In Software Engineering en-
deavors such capabilities are direly needed, for ease of implementation,
maintenance, and software analysis.

Conversely, software engineering has collected decades of experience
in engineering large application frameworks containing both inheritance
and aggregation. This experience could be of great use when, for example,
thinking about the development of ontologies.

These examples—and many others—seem to suggest that researchers
from both fields should have a field day collaborating: On the surface
this looks like a match made in heaven. But is that the case?

This talk will explore the opportunities for cross-fertilization of the
two research fields by presenting a set of concrete examples. In addition
to the opportunities it will also try to identify cases of fools gold (pyrite),
where the differences in method, tradition, or semantics between the two
research fields may lead to a wild goose chase.

Keywords: Software Engineering, Semantic Web, Software Analysis,
Knowledge Representation, Statistics, Ontologies.

The Semantic Web at Use for Software Engineering Tasks
and Its Implications

Semantic Web technologies have successfully been used in recent software en-
gineering research. Dietrich [2], for example, proposed an OWL1 ontology to
model the domain of software design patterns [4] to automatically generate
documentation about the patterns used in a software system. With the help of
� I would like to thank the participants of the Semantic Web Software Engineering

Workshop (SWSE) at the International Semantic Web Conference (ISWC) 2009 for
their valuable comments on an earlier version of this presentation. Partial support
for some of the work presented in this talk was provided by Swiss National Science
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this ontology, the presented pattern scanner inspects the abstract syntax trees
(AST) of source code fragments to identify the patterns used in the code.

Highly related is the work of Hyland-Wood et al [6], in which the authors present
an OWL ontology of Software Engineering Concepts (SECs). Using SEC, it is pos-
sible to enable language-neutral, relational navigation of software systems to fa-
cilitate software understanding and maintenance. The structure of SEC is very
similar to the language structure of Java and includes information about classes
and methods, test cases, metrics, and requirements of software systems. Informa-
tion from versioning and bug-tracking systems is, however, not modeled in SEC.

Both, Mäntylä et al [7] and Shatnawi and Li [8] carried out an investigation
of code smells [3] in object-oriented software source code. While the study of
Mäntylä additionally presented a taxonomy (i.e., an ontology) of smells and
examined its correlations, both studies provided empirical evidence that some
code smells can be linked with errors in software design.

Happel et al [5] presented the KOntoR approach that aims at storing and
querying metadata about software artifacts in a central repository to foster their
reuse. Furthermore, various ontologies for the description of background knowl-
edge about the artifacts such as the programming language and licensing models
are presented. Also, their work includes a number of SPARQL queries a devel-
oper can execute to retrieve particular software fragments which fit a specific
application development need.

More recently Tappolet et al [9] presented EvoOnt,2 a set of software ontolo-
gies and data exchange formats based on OWL. EvoOnt models software design,
release history information, and bug-tracking meta-data. Since OWL describes
the semantics of the data, EvoOnt (1) is easily extendible, (2) can be processed
with many existing tools, and (3) allows to derive assertions through its inherent
Description Logic reasoning capabilities. The contribution of their work is that
it introduces a novel software evolution ontology that vastly simplifies typical
software evolution analysis tasks. In detail, its shows the usefulness of EvoOnt
by repeating selected software evolution and analysis experiments from the 2004-
2007 Mining Software Repositories Workshops (MSR). The paper demonstrates
that if the data used for analysis were available in EvoOnt then the analyses
in 75% of the papers at MSR could be reduced to one or at most two simple
queries within off-the-shelf SPARQL3 tools. In addition, it presents how the in-
herent capabilities of the Semantic Web have the potential of enabling new tasks
that have not yet been addressed by software evolution researchers, e.g., due to
the complexities of the data integration.

This semi-random4 selection examples clearly illustrate the usefulness of Se-
mantic Web technologies for Software Enginering.

Conversely, decades of experience in engineering large application frameworks
containing both inheritance and aggregation provides a sound foundation for the
usefulness of Software Engineering techniques to Semantic Web research.

2 http://www.ifi.uzh.ch/ddis/research/evoont/
3 http://www.w3.org/TR/rdf-sparql-query/
4 All of the examples are focused on Semantic Web enabled software analysis.
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These insights seem to suggest that researchers from the fields should have a
field day collaborating: On the surface this looks like a match made in heaven.
But is that the case?

The main purpose of this talk is to identify the opportunities for cross-
fertilization between the two research fields by presenting a set of concrete
examples.

To contrast these opportunities it will also try to identify possible barriers
and/or impediments to collaboration, where the differences in method, tradition,
or semantics between the two research fields may lead to a wild goose chase.
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Abstract. We have analyzed a substantial number of language doc-
umentation artifacts, including language standards, language specifica-
tions, language reference manuals, as well as internal documents of
standardization bodies. We have reverse-engineered their intended in-
ternal structure, and compared the results. The Language Document
Format (LDF), was developed to specifically support the documentation
domain. We have also integrated LDF into an engineering discipline for
language documents including tool support, for example, for rendering
language documents, extracting grammars and samples, and migrating
existing documents into LDF. The definition of LDF, tool support for
LDF, and LDF applications are freely available through SourceForge.

Keywords: language documentation, language document engineering,
grammar engineering, software language engineering.

1 Introduction

Language documents form an important basis for software language engineering
activities because they are primary references for the development of grammar-
based tools. These documents are often viewed as static, read-only artifacts.
We contend that this view is outdated. Language documents contain formalized
elements of knowledge such as grammars and code examples. These elements
should be checked and made available for the development of grammarware.
Also, language documents may contain other formal statements, e.g., assertions
about backward compatibility or the applicability of parsing technology. Again,
such assertions should be validated in an automated fashion. Furthermore, the
maintenance of language documents should be supported by designated tools for
the benefit of improved consistency and traceability. In an earlier publication, a
note for ISO [KZ05], we have explained why a language standardization body
needs grammar engineering (or document engineering).

This paper presents a data model (say, metamodel or grammar) for de-
veloping language documents. Upon analyzing and reverse-engineering a wide
range of language documents, which included international ISO-approved stan-
dards and vendor-specific 4GL manuals, we have designed a general format for
language documents, the Language Document Format (LDF), which supports
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the documentation of languages in a domain-specific manner. We have integrated
LDF with a formalism for syntax definition that we designed and successfully
utilized in previous work [LZ09, LZ10, Zay10b].

We have integratedLDF also with existing tools and methods for grammar engi-
neering from our previouswork; see the grammar life cycle at the top of Figure 1 for
an illustration. Furthermore, we have added LDF-specific tools, and begun work-
ing towards a discipline of language document engineering. There is support for
creating, rendering, testing, and transforming language documents; see the docu-
ment life cycle at the bottom of Figure 1 for an illustration. Given the new format
LDF, it is particularly important that there are document extractors so that one
can construct consistent LDF documents from existing language documents.

In this paper, we will be mainly interested in LDF as the format for language
documents, and the survey that supports the synthesis of the LDF format. The
broader discussion of language document engineering is only sketched here. For
instance, most aspects of rich tool support are deferred to substantial future
work efforts.

LDF can be seen as an application of literate programming [Knu84] ideology
to the domain of language documentation: we aim to have one artifact that is
both readable and executable. By “readable” we mean its readability, under-
standability and information retrievability qualities. By “executable” we assume
a proper environment such as a compiler compiler (for parser definitions) or a
web browser (for hyperlinked grammars). LDF provides us with a data model
narrowly tailored to the domain; it allows us to focus on one baseline artifact
which is meant for both understanding and formal specification. Other artifacts
such as grammars, test sets, web pages, language manuals and change documents
are considered secondary in that they are to be generated or programmed. The
full realization of this approach relies on a transformation language for language
documents that we will briefly discuss.
Summary of contributions

– We have analyzed a substantial number of language documentation artifacts,
including language standards, specifications and manuals of languages such
as BNF dialects, C, C++, C#, Cobol dialects, Fortran, 4GLs, Haskell, Jovial,
Python, SDF, XML, and other data modeling languages. Company-specific
internal documents and software engineering books that document a software
language (e.g., [GHJV95] with the well-known design patterns) were also
researched. The objective of the analysis was to identify domain concepts
and structuring principles of language documentation.

– We have designed the Language Document Format (LDF) to specifically sup-
port the documentation domain, and to make available language documents
to language document engineering.

Validation

We have applied LDF to a number of language documentation problems, but
a detailed discussion of such problems is not feasible in this paper for space
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Grammar focus

Document focus

Fig. 1. Megamodels related to language document engineering. At the top,
we see the life cycle of grammar extraction, recovery, and deployment. Grammars are
extracted from existing software artifacts on the left, and represented in the unified
format BGF. Grammars may then be subject to transformation using the XBGF trans-
formation language. Parsers, browsable grammars, and other “executable” artifacts are
delivered on the right. Such grammar engineering feeds into language document engi-
neering. At the bottom, we see the life cycle of language document extraction, language
(document) evolution, generation of end-user documents, extraction of grammars and
test suites. Non-LDF documents can be converted to LDF through the extraction
shown on the left. Document transformation may be needed for very different reasons,
e.g., structure recovery or language evolution; see the reference to XLDF, which is the
transformation language for LDF.
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reasons. For instance, we have applied language document engineering system-
atically to the documentation of XBGF—the transformation language for BGF
grammars which is used extensively in our work on grammar convergence; the
outcome of this case study is available online [Zay09]. In the current paper, we
briefly consider mapping W3C XML to LDF, specifically W3C’s XPath stan-
dard; this case study is available online, too [W3C]. In the former case, we rely
on a document extractor that processes XSD schemata in a specific manner. In
the latter case, the extractor maps W3C’s XML Spec Schema to LDF.

More generally, the SourceForge project “Software Processing Language Suite”
(SLPS)1 hosts the abovementioned two case studies, the LDF definition, tool
support for LDF, other LDF applications, and all other grammars and tools
mentioned in this paper and our referenced, previous work. For instance, we
refer to the SLPS Zoo2, which contains a collection of grammars that we ex-
tracted from diverse language documents. The next step would be to properly
LDF-enable all these documents.

Road-map

The rest of the paper is organized as follows. §2 discusses the state of the art in
language documentation as far as it affects our focus on a format for language
documents and its role in language document engineering. §3 identifies the con-
cepts of language documentation as they are to be supported by a unified format
for language documents, and as they can be inferred, to some extent, from exist-
ing language documents. §4 describes the Language Document Format (LDF) in
terms of the definitional grammar for LDF. It also provides a small scenario for
language document transformation. §5 discusses related work (beyond the state
of the art section). §6 concludes the paper.

2 State of the Art in Language Documentation

As a means of motivation for our research on a unified format for language
documents, let us study the state of the art in this area. The bottom line of this
discussion is that real-world language documents are engineered at a relatively
low level of support for the language documentation domain.

2.1 Background on Language Standardization

In practice, all mainstream languages are somehow standardized; the standard of
a mainstream language would need to be considered the primary language doc-
ument. For instance, the typical standard for a programming language entails
grammar knowledge and substantial textual parts for the benefit of understand-
ing the language.

Let us provide some background on language standardization. In particu-
lar, we list standardization bodies, and we discuss some of the characteristics of

1 SLPS project, slps.sf.net
2 SLPS Zoo, slps.sf.net/zoo

http://slps.sf.net/
http://slps.sf.net/zoo
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language standards. Standardization bodies that produce, maintain and dis-
tribute language standards, are, among others:

– American National Standards Institute (ANSI, since 1918), ansi.org
– European Computer Manufacturers Association (ECMA, since 1961),

ecma-international.org
– Institute of Electrical and Electronics Engineers Standards Association

(IEEE-SA, since 1884), standards.ieee.org
– International Electrotechnical Commission (IEC, since 1906), iec.ch
– International Organization for Standardization (ISO, since 1947),

open-std.org
– International Telecommunication Union (ITU, since 1865), itu.int
– Internet Engineering Task Force (IETF, since 1986), ietf.org
– Object Management Group (OMG, since 1989), omg.org
– Organization for the Advancement of Structured Information Standards

(OASIS, since 1993), oasis-open.org
– Website Standards Association (WSA, since 2006), websitestandards.org
– World Wide Web Consortium (W3C, since 1994), w3.org

A language specification (programming language standard) is a complex doc-
ument that may consist of hundreds of pages: the latest COBOL standard,
ISO/IEC 1989:2002 [ISO02], has more than 800 pages; the latest C [ISO05]
and C# [ECM06] standards contain over 500 pages each, C++ draft is already
well over 1100 pages [ISO07]. It has not always been like that. For example,
the Algol 60 standard [BBG+63] is not much longer than 30 pages, and yet, it
claimed to contain a complete definition of the language. However, as program-
ming languages evolve, their specifications grow in size. Also, the complicated
structure of modern language documents reflects the complicated structure of
modern programming languages and the associated ecosystems.

2.2 The Language Documentation Challenge

Writing and maintaining a quality language document and keeping it consis-
tent is as complex as writing and maintaining a large software system—these
processes have a lot in common.

Defining a programming language in a standardized specification is often con-
sidered as a process that is executed just once. The dynamic and evolving nature
of programming languages is frequently underestimated and overlooked [Fav05].
Not only software itself, but programming languages that are used to make it,
evolve over time. This process usually comes naturally in the sense that the first
version of a language does not have all the features desired by its creator. Also,
new requirements may be discovered for a language, and hence, the language
needs to be extended or revised. However, it is desirable for that process to be
guided and controlled for the sake of the quality of resulting specifications.

There are tools like parsers and compilers whose development is based on
a language specification. Inconsistencies in the language documents may lead
to non-conformant language tools; such inconsistencies certainly challenge the
effective use of the language documents. Languages need to evolve, and hence, it

ansi.org
ecma-international.org
standards.ieee.org
iec.ch
open-std.org
itu.int
ietf.org
omg.org
oasis-open.org
websitestandards.org
w3.org
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should be easy enough to evolve language documents. However, with the current
practice of language standardization, evolution of language documents may be
too ad-hoc, error-prone and labor-intensive; see, for example, our previous study
on the language documentation for the Java Language Specification [LZ10].

Overall, it is difficult to support language evolution for programming lan-
guages or software languages that are widely used. We contend that a systematic
approach to language documents is an important contribution to a reliable and
scalable approach to language evolution in practice.

2.3 Language Documentation Approaches

In practice, language documents are created and maintained with various tech-
nologies, e.g., LATEX [ISO08], HTML [BBC+07], Framemaker [ISO02], home-
grown DSLs based on the language being defined in the document [Bru05], XML
Schema [Zay09], DITA, DocBook. The creation and maintenance of language
document is also regulated by practices of design committees and standardiza-
tion bodies or simply language document editors. The practices are often con-
strained by the technologies (or vice versa). We make an attempt to organize
technologies and practices. To this end, we identify different language documen-
tation approaches.

The text- and presentation-oriented approach considers a language
specification as a text document subject to text editing. The editor manually
adds text to the document, manages section structure, moves around paragraphs
and other units of text, performs layout and formatting operations. Typically,
the text is meant to be immediately ready for presentation—perhaps even based
on WYSIWYG.

The course of action for an editor of a language document is often described
in a separate “change document” that is created before the actual change takes
place or directly after it. The change document comprises a list of intended modi-
fications. Once the editing process reaches a certain milestone, a new “revision” is
delivered and stored in the repository. Once all the modifications approved by the
language design committee are brought upon the main document, a new “version”
is delivered and officially distributed within the terms of its license. This approach
tends to utilize programs like Adobe Framemaker (ISO/IEC JTC1/SC22/WG43),
Microsoft Word (Microsoft version of C# [Mic03]), etc. It is also possible to use
HTML (early W3C [Rag97]) in such a way that the main document is edited man-
ually and the changes are discussed and/or documented elsewhere.

This approach involves significant low-level text editing. The links between
the change documents and the main document revisions often remain unverified.
(Versioning and change tracking facilities can be too constraining.) Any struc-
tured content that is a part of a language document must be formatted in a way
dictated by the medium: e.g., the formulæ can only use the symbols available
in the font. It is also common to have several differently organized layers in the
infrastructure: e.g., the main document is edited by one person following the
3 ISO/IEC JTC1/SC22/WG4 — COBOL Standardization Working Group,
http://www.cobolstandard.info/wg4/wg4.html

http://www.cobolstandard.info/wg4/wg4.html
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instructions in the change document, but the change documents circulate in the
form of co-authored Word documents.

The structure-oriented approach operates on documentation domain con-
cepts such as “sections” or “divisions”. The approach may leverage existing
editing software to support maintenance activities at the central repository of
structured data. The approach also leverages backend tools that produce PDF,
LATEX, and other types of deliverables. An example of such a documentation
support system is DocBook [WM99]. It is a mature, well-document, actively
used technology. For instance, Microsoft uses DocBook to generate help files for
Windows applications.

The separation between the content and its presentation can be sufficient in
DocBook and similar systems. However, their orientation on books does not
anticipate documents that have several intertwined hierarchies. In a language
document, for example, a grammar production that is a part of the correspond-
ing section, is also a part of the complete grammar in the appendix, and should
appear there automatically (as opposed to being manually cloned). In principle,
one could leverage transformations (such as XSLT for DocBook) for the repre-
sentation of the evolution of a (language) document. We are not aware of related
work of this kind.

The topic-oriented approach operates in terms of “topics” that should be
covered in order for the documentation to be complete. The DocBook counterpart
in this group of approaches is Darwin Information Typing Architecture (DITA)
[OAS07] which was designed specifically for authoring, producing and delivering
technical information. IBM uses DITA for their hardware documentation. PDF,
HTML, Windows help files and other output formats are possible. DITA is a rela-
tively modern technology (2004 versus 1991 for DocBook), its support is growing,
but is not as mature as for DocBook. A more lightweight approach is wiki tech-
nology that allows for topics to be left uncovered, showing explicitly which parts
of the documentation are intended to be written in the future.

Language documentation is not naturally organized in topics and tasks, and
thus is not anticipated by DITA. In principle, it is possible to use DITA to repre-
sent our proposed model (LDF). In order to do that, necessary element types—
like grammar productions, code examples, notes concerning version differences,
optional feature descriptions, possible implementation remarks, language engi-
neering explanations—would need to be defined. Designated backends will also
be required. There is no apparent benefit of using DITA, when compared to the
XML/XSD-based approach that we chose for LDF’s description.

The XML Spec Schema, available from http://www.w3.org/2002/xmlspec,
combines elements of structure and topic orientation in a manner that brings
us closer to the domain of language documentation. The XML Spec Schema
is a DTD that is used for some W3C recommendations. It is based on the
literate programming tag set SWEB and the text encoding tag set TEI Lite.
The Spec Schema covers some elements of the language documentation domain
such as tagging facilities for grammar fragments; it does not capture LDF’s rich
classification of sections in language documents.

http://www.w3.org/2002/xmlspec
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3 Concepts of Language Documentation

As a preparatory step towards introducing LDF, we identify the concepts of the
language documentation domain. We set up a control group to this end, and we
also illustrate several concepts specifically for one member of the control group:
the XPath W3C Recommendation.

3.1 Control Group for the Domain Model

As we have indicated in the introduction, we have consulted a large set of lan-
guage documents to eventually synthesize a unified format. For reasons of scala-
bility, we have selected a smaller set of documents which we use here to present
the results of our reverse-engineering efforts and to prepare the synthesis of a
unified format for language documents. The control group of documents has been
chosen for its diversity. Table 1 shows some basic metadata about the language
documents for the control group. Here is a short description of the control group:

Table 1. Some basic metadata of the standards chosen for the survey

IAL Jovial Patterns Smalltalk Informix C# MOF XPath
Property [Bac60] [MIL84] [GHJV95] [Sha97] [IBM03] [ECM06] [MOF06] [BBC+07]
Body ACM DoD — ANSI IBM ECMA, ISO OMG W3C
Company IBM — Pearson — IBM Microsoft — —
Year 1960 1984 1995 1997 2003 2006 2006 2007
Pages 21 158 395 304 1344 548 88 111
Notation BNF BNF UML BNF RT BNF UML EBNF

– IAL stands for International Algebraic Language that later became known
as Algol-58 [Bac60]. It is historically the first programming language docu-
ment, and as such, it is the first time that the notation for specifying gram-
mar productions was explicitly defined. The majority of all other standards
produced over the following decades re-used this notation and extended it.

– JOVIAL, or J73 [MIL84] is a Military Standard of 1984, which “has been
reviewed and determined to be valid” in 1994. It is approved for use by the
Department of the Air Force and is available for use by all other Depart-
ments and Agencies of the Department of Defense of USA. The version that
was examined in this survey is a result of a second upgrade of the original
language. It is less than 200 pages and very strictly composed: basically ev-
ery section has a syntax, semantics and constraints subsections, with rare
notes or examples. A traditional BNF is used for syntax, plain English for
semantics.

– Design Patterns: Elements of Reusable Object-Oriented Software [GHJV95]
is a well-known book by Erich Gamma et al., which defines 23 well-known
design patterns. Since design patterns can be considered a special language,
their definition can be considered a language document—and Table 2 only
proves that, letting the 400 pages long book’s structure fit in the general
data model perfectly.
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– ANSI Smalltalk [Sha97] is an NCITS J20 draft of 1997, 300+ pages long,
it describes both the language (ANSI Smalltalk is derived from Smalltalk-80)
and the Standard Class Library.

– Informix [IBM03] is an IBM manual for a proprietary fourth generation
language. It exemplifies industrial standards, which are extensively strictly
structured, contain minimum extra sections and have impressive volume.
Informix specification utilizes “railroad track” syntax diagrams, which can
be mapped more or less directly to EBNF.

– C# specification [Mic03, ECM06] is both an ISO and an ECMA standard,
yet it was developed entirely within Microsoft and only approved by stan-
dardization bodies. The ECMA version used for this survey is 550 pages long
and very loosely structured, explaining a lot of issues in running text and
using liberal sub-sectioning.

– MOF Core Specification [MOF06] is a 90-pages long document describ-
ing Meta Object Facility. It uses UML and presents the information in a
significantly different way, being oriented on diagrams, properties, opera-
tions and constraints. However, structuring overall turns out to be similar
to conventional (E)BNF-based standards.

– The structure of XPath W3C Recommendation [BBC+07] is rather
volatile, following the tradition of all other W3C recommendations. Each
section contains one or several EBNF formulæ, the definition for a domain
concept modeled by it and a body of text organized arbitrarily in lists and
subsections.

3.2 Identification of Concepts

The core domain concepts of LDF are these: synopsis, description (an extended
textual definition), syntax (associated grammar productions), constraints (re-
stricting the use of the construct), references (to other language constructs),
relationship (with other language constructs), semantics, rationale, exam-
ple, update (from the previous language version), default (for absent parts).
Four additional concepts can occur multiple times: value (associated named piece
of metadata), list (itemized data), section (volatile textual content), subtopic
(structured section).

Table 2 compares the documents from the control group in terms of the do-
main concepts. The cells in the table are filled with names of the sections, sub-
sections or otherwise identifiable paragraphs in the corresponding documents,
unless noted otherwise. The coverage graph shows fully covered parts of LDF in
black (represented by section names in table cells), partially covered in gray (“∼”
in a table cell means that the information is given but lacks any specific markup)
and not covered in white (“—” in a cell means that this kind of information is
absent from the language document). Gray concepts are interesting in so far that
we face instances of implicit structure which can only be recovered with human
intervention or advanced information retrieval techniques in the extraction tool.
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3.3 Example: The XPath Language Document

The discovery of a language document’s structure and underlying domain con-
cepts is a genuine process which we would like to sketch here for one example.
We have chosen XPath 1.0 for this purpose—mainly because of its modest size.

The XML Path Language 1.0 specification [CD99] is one of the small stan-
dards, it contains only 32 pages in the printed version. We perform a cursory
examination of it, trying to locate the domain concepts identified in the previous
section:

Synopsis — is not automatically retrievable. We contend that, in some sec-
tions, the first sentence seems to serve as a synopsis (e.g., “Every axis has a
principal node type.”).

Description — if no specific structure can be recovered, we will treat all section
content as a description.

Syntax — when we use the XML version of the specification as a source, all
grammar productions are easily identifiable by the <scrap> tag. A specific
parser had to be developed in XSLT to deal with the mix of plain text (e.g.,
for EBNF metasymbols) and XML tags (e.g., for nonterminal symbols).

Constraints — some of the Notes are mentioning constraints (e.g., “The num-
ber function should not be used...”), but they are not automatically distin-
guishable from other Notes.

References — since all nonterminal names are always annotated with hyper-
links to the corresponding sections, no explicit references are required.

Relationship — there are mentions of relationships, some of which are even
inter-documentary (e.g., the mod operator is being compared to the % op-
erator in ECMAScript and the IEEE 754 remainder operation, but it is
impossible to derive them naturally during recovery.

Semantics — is defined in plain English in running text.
Rationale — almost all Notes can be classified as providing rationales. We map

them all to rationales at the extraction step. Exceptions would need to be
handled by programmed transformations.

Example — as typical for a W3C document, examples sections are inlined, but
preceded by the sentences like “for example,” or “here are some examples”.

Update — XPath 1.0 is the first specification of its kind, which means that it
contains no updates.

Default, Value — not found in this standard.
List — found inside the <ulist> and <slist> tags in the XML version of the

document.
Section — Data Model section contains simple subsections.
Subtopic — every function description (the <proto> tag) can be treated as a

subtopic. They are never long, but still can contain structured information
such as lists and examples.

The global structure of the XPath specification is mapped to LDF in a straight-
forward fashion: for example, specific sections within the <header> such as Ab-
stract and Status form a front matter part; <body> subsections populate the
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core part; <back> subsections become the back matter part. The mapping is
mainly terminological: i.e., Status becomes “scope”, “Introduction” becomes
“foreword”, etc. The extracted LDF for XPath 1.0 is available as [W3C].

4 A Unified Format for Language Documents

We will now describe the Language Document Format (LDF)—a unified format
for language documents (say, language documentation). Given the motivation
of LDF in previous sections, we will focus here on the actual language descrip-
tion for LDF. LDF’s description is available online through the SLPS Source-
Forge project as shared/xsd/ldf.xsd. (LDF’s primary description leverages
XML Schema.) This section presents and discusses a full grammar for (current)
LDF. The grammar notation we use here is a pretty-printed EBNF dialect called
BGF [LZ10, Zay10b, Zay10a], for BNF-like Grammar Format, which should be
intuitively comprehensible. For brevity’s sake, some more routine (obvious) for-
mat elements are skipped in the discussion.

4.1 Language Document Partitioning

Consider the following productions concerning the document top sort and top
level sections. For example, a document always contains one document meta-
data, and one or more parts. Each part also contains a portion of metadata,
and consists of sections of various types.

document:

document-metadata part+

document-metadata:

body? number::string? author::person� topic::string status

version-or-edition previous::named-link� date::time-stamp
body:

ansi::ε | ecma::ε | ieee::ε | iso::ε | iso/iet::ε | itu::ε | iec::ε
| ietf::ε | oasis::ε | omg::ε | wsa::ε | w3c::ε

person:

name::string affiliation::string? email::string?
status:

unknown::ε | draft::ε | candidate::ε | proposed::ε | approved::ε
| revised::ε | obsolete::ε | withdrawn::ε | collection::ε
| trial::ε | errata::ε | report::ε

version-or-edition:

version::string | edition::string
named-link:

title::string version-or-edition? uri::any-uri?
part:

part-metadata section+

part-metadata:

id::id? part-role title::string? author::person�

part-role:

front-matter::ε | core-part::ε | back-matter::ε | annex::ε

http://slps.svn.sourceforge.net/viewvc/slps/shared/xsd/ldf.xsd
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Most of the structural facets and elements should be self-explanatory. Let us
highlight here the mandatory division of each language document into parts. In
this manner, we encourage more structure than a simple list of top-level chapters.
Existing documents vary greatly in the order of sections and their presentation.
For instance, “conformance” and “references” sections are usually found in the
front matter between the title page and the core chapters, but in the XPath
1.0 standard [CD99], conformance is the last core chapter, and references form
an appendix. LDF’s emphasis on parts encourages some grouping among the
many sections.

4.2 Top Sections

On the top level, several types of sections can be found. First, there are sim-
ple sections that have no or minimal subdivisioning and dedicate themselves to
one specific (side) issue—they are commonly found in the front or back matter.
They can also describe lexical details, in such case we identify several commonly
encountered section roles. Finally, there can be container sections—each of them
explains one language construct and presents information in a specifically struc-
tured way.

section:

section-metadata section-structure

section-metadata:

id::id? section-role type? title::string? author::person�

section-role:

abstract::ε | conformance::ε | compatibility::ε | design-goals::ε
| outline::ε | foreword::ε | references::ε | scope::ε | index::ε
| notation::ε | what-is-new::ε | full-grammar::ε | tables-list::ε
| authors-list::ε | contents::ε | overview::ε | lexical-issue::ε
| line-continuations::ε | literals::ε | preprocessor::ε
| tokens::ε | whitespace::ε | glossary::ε | container::ε

type:

normative::ε | informative::ε
section-structure:

content::(content-content+)

placeholder::ε
subsection+

As shown above, the metadata of a top section contains a possible id that is
used to refer to it from elsewhere; the role of the section; possibly its type; a
possible specific title (if absent, assumed to be determined by the role); and a
possible list of authors (if absent, assumed to be equal to the list of the document
authors). If the id is missing, one can still use an XPath expression over the
document structure to access the section at hand (by its position, title or other
distinctive features). However, explicit ids are potentially preferred because of
their greater robustness with regard to document evolution.

A type relates to the way the content of the section should be treated: for
example, an informative code sample is a way to tell the reader how a piece
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of code would look like, but a normative one can serve as an official test case.
Placeholders can be used if the content can be generated automatically: for
example, a references section can be written manually in a verbose way with lots
of useful annotations, but it can also be just a list of all references occurring in
the rest of the specification.

The list of section roles was synthesized from the reverse-engineered lan-
guage documents. The roles should be intuitively understandable, but the con-
crete wording may vary: a particular foreword can be called “introduction”
the same way that an obsolete standard can be called “rescinded”. Further-
more, roles are not exclusively one per document: for example, there can be one
“glossary” for the list of definitions and one for the list of abbreviations.

4.3 Inner Sections

As discussed above, the inner sections of the simple top sections are rather
unsophisticated, but a container section explaining one syntactic category con-
sistently shows the same set of possible subsections across many manuals and
standards that we analyzed. The exact set of container sections depends on the
set of categories and is therefore very language dependent.

subsection:

subsection-metadata section-structure

subsection-metadata:

id::id? subsection-role type? title::string? author::person�

subsection-role:

synopsis::ε | description::ε | syntax::ε | constraints::ε
| references::ε | relationship::ε | semantics::ε | rationale::ε
| example::ε | update::ε | default::ε | value::ε | list::ε
| plain-section::ε | subtopic::ε

Subsections have roles that map directly to the domain concepts already been
seen in Table 2.

4.4 Detailed Content

Language documents, especially modern standards, have structured content even
at the textual level of a section: hyperlinks, other references, tables, figures, for-
mulæ, lists, inline code fragments are among the most commonly used formatting
elements.

content-content:

empty::ε | code::string | para::mixed | list | figure | table

| formula | sample::(string source::string) | production

list:

item::mixed+

figure:

figure-metadata figure-source+

figure-metadata:

id::id? short-caption::string? caption::string author::person�
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figure-source:

type::figure-type location::any-uri
figure-type:

PDF::ε | PostScript::ε | SVG::ε | PNG::ε | GIF::ε | JPEG::ε
table:

header::table-row� row::table-row+

table-row:

table-cell::content-content

For formulæ we reuse MathML[ABC+01], which definition is omitted here. For
productions we reuse BGF [LZ10, Zay10b, Zay10a]—the same notation we use
in this paper.

We allow multiple figure sources so that the rendering tools for LDF can pick
the source that is most convenient for the desired output format. For instance,
a bitmap (PNG, GIF, JPEG) picture can be easily inserted into a web page,
but a PDF file cannot be used in this manner. However, PDF may be preferred
when LDF is rendered with pdfLATEX.

4.5 Transformation of LDF Documents

In the introduction, we mentioned the pivotal role of transformations for enabling
the life cycle of language documents. In this section, we want to briefly illustrate
such document transformations on top of LDF.

Let us set up a challenge for document transformation. Consider the two stan-
dards of XPath: versions 1.0 [CD99] and 2.0 [BBC+07]. They are vastly different
documents, the one being three times the size of the other; with different author
teams, and generally following different structure. Thus, there is no correspon-
dence (neither explicitly defined nor easily conceived) between the two versions,
except for the backwards compatibility section in the latter, which statements
cannot be validated explicitly. However, using language document engineering—
including document transformations—we should be able to represent the delta
between the two versions through a script of appropriate transformation steps.

We are working on a transformation language for LDF, i.e., XLDF, which
should be ultimately sufficient in addressing conveniently the above challenge.
We refer to [Zay10a] for a more extensive discussion of the XLDF effort, and we
sketch XLDF in the sequel. Our current XLDF design and implementation has
been useful already for simple problems. For [Zay09], we extracted a complete
XBGF manual from the corresponding XML Schema, improved it with a few
XLDF transformation steps and delivered a browsable version at the end. Such
steps were needed because the assumed profile of XML Schema does not cover
all LDF functionality.

XLDF is to LDF what XBGF [Zay09] is to BGF [LZ09]. That is, in the same
sense as grammars can be adapted programmatically with XBGF, language doc-
uments would be adapted with XLDF. Apart from xldf:transform-grammar
operator that lifts grammar transformations, XLDF also contains operators for
introducing and moving content. Consider the following illustration where a
number of operators are applied in a transformation sequence.
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xldf:add-section(section:((title:"For Expressions",

id:"id-for-expressions"),

...));

xldf:move-section(id:"section-Function-Calls",

inside:"id-primary-expressions");

xldf:rename-id(from:"section-Function-Calls",

to:"id-function-calls");

One could even think of meta-level transformations that affect the grammar
notation used in LDF. For instance, XPath 1.0’s grammar notation uses single
quotes, while XPath 2.0’s grammar notation uses double quotes:

xldf:change-grammar-notation(start-terminal,");

xldf:change-grammar-notation(end-terminal,");

Executing such XLDF commands would have to involve transforming the trans-
formations that pretty-print BGF productions. Such higher-order transforma-
tions will be studied in future work on XLDF.

5 Additional Related Work

A discussion about general documentation approaches was already included in
§2. Below we will discuss related work more broadly.

We have carried out a previously published case study for Cobol [Läm05]
where the grammar of Cobol is extracted from the Cobol standard; it is then
refactored, made consistent and finally put back into the standard without de-
tailed parsing of the standard’s structure. This is a limited case of document
engineering where only grammar parts are affected, but it goes beyond grammar
extraction due to the persistent link between the grammar and the manual.

In [Wai02, Wei02], respected experts in the field of technical documentation
advocate the engineering approach to documentation, as opposed to the artistic
one—without though covering the kind of domain support or life cycle that is
enabled by LDF.

Original verification techniques on language documentation are presented
in [SWJF09]. Checks include formulae like “for all reading paths, a term X
must be defined before it is used”. These ideas are complementary to ours.

The use of highly interactive eBooks for technical documentation is proposed
in [DMW05]. In our domain, we use “browsable grammars” to enable interaction
with language documentation.

Extraction for documentation is not necessarily restricted to text; extraction
in [TL08] operates on graphic-rich documents. We could think of visual lan-
guages, UML-like models and “railroad tracks” kind of syntax diagrams.

One may also use Natural Language Generation (NLG) in deriving readable
documents. For instance, in [RML98], the text is automatically generated with
NLG when creating a final PDF output of the domain knowledge stored in a well-
structured way. On a related account, several OMG technologies such as Knowl-
edge Discovery Metamodel [KDM09] and Semantics of Business Vocabulary
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and Business Rules [SBV08] try to capture ontological concepts of the software
domain and a means to make formal statements about them.

In [HR07], an industrial (Hewlett Packard) case study on documentation is
presented. It involves user guides, man pages, context-sensitive help and white
papers. The approach caters for a primary artifact from which a heterogeneous
set of deliverables is generated with XMLware. To this end, disparate pieces of
related information are positioned into final documents. A conceptually similar
relationship between different documentation artifacts is considered in [BM06],
where a view-based approach to software documentation is proposed.

6 Concluding Remarks

We have described the Language Document Format (LDF)—a unified format for
language documents (say, language documentation). The unique characteristics
of LDF are that i) it is derived by abstracting over a substantial and diverse
body of actual language documents, and ii) it is integrated well with our previous
research and infrastructure for grammar extraction, grammar recovery, grammar
convergence, and grammar transformation.

Language document engineering with LDF brings us a step closer to the tech-
nical and methodological feasibility of life-cycle-enabled language documents so
that state of the art documents could be migrated to a more structured setup of
language documentation that is amenable to i) continuous validation, ii) system-
atic reuse of all embedded formal parts (grammars, examples, keywords, norma-
tive sections) in other grammar engineering activities, and iii) transformational
support for evolution.

There are these major areas for future work on the subject. First, we will fur-
ther improve our infrastructure for engineering language documents so that we
serve a number of input and output formats with sufficient quality, for example,
in terms of “recall” for extraction or “roundtripping” for re-exporting to legacy
formats. Second, our current approach to supporting evolution of language doc-
uments is not fully developed. More language design work and possibly tool
support is needed for the transformation language XLDF. Third, a case study
bigger than XPath is required where an important language document (say,
Cobol’s or Java’s standard) is converted into LDF, and the various benefits of
our approach to language document engineering are properly illustrated, with
language evolution as one of the most important issues.
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Abstract. Programmers rely on the conventional meanings of method
names when writing programs. However, these conventional meanings are
implicit and vague, leading to various forms of ambiguity. This is prob-
lematic since it hurts the readability and maintainability of programs.
Java programmers would benefit greatly from a more well-defined vocab-
ulary. Identifying synonyms in the vocabulary of verbs used in method
names is a step towards this goal. By rooting the meaning of verbs
in the semantics of a large number of methods taken from real-world
Java applications, we find that such synonyms can readily be identified.
To support our claims, we demonstrate automatic identification of syn-
onym candidates. This could be used as a starting point for a manual
canonicalisation process, where redundant verbs are eliminated from the
vocabulary.

1 Introduction

Abelson and Sussman [1] contend that “programs must be written for people to
read, and only incidentally for machines to execute”. This is sound advice backed
by the hard reality of economics: maintainability drives the cost of software sys-
tems [2], and readability drives the cost of maintenance [3,4]. Studies indicate
some factors that influence readability, such as the presence or absence of abbre-
viations in identifiers [5]. Voices in the industry would have programmers using
“good names” [6,7], typically meaning very explicit names. A different approach
with the same goal is spartan programming1. “Geared at achieving the program-
ming equivalent of laconic speech”, spartan programming suggests conventions
and practical techniques to reduce the complexity of program texts.

We contend that both approaches attempt to fight ambiguity. The natural
language dimension of program texts, that is, the expressions encoded in the
identifiers of the program, is inherently ambiguous. There are no enforced rules
regarding the meaning of the identifiers, and hence we get ambiguity in the
form of synonyms (several words are used for a single meaning) and polysemes
1 http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan_programming

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 226–245, 2011.
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(a single word has multiple meanings). This ambiguity could be reduced if we
managed to establish a more well-defined vocabulary for programmers to use.

We restrict our attention to the first lexical token found in method names.
For simplicity, we refer to all these tokens as “verbs”, though they need not
actually be verbs in English: to and size are two examples of this. We focus on
verbs because they form a central, stable part of the vocabulary of programmers;
whereas nouns tend to vary greatly by the domain of the program, the core set
of verbs stays more or less intact.

We have shown before [8,9,10] that the meaning of verbs in method names can
be modelled by abstracting over the bytecode of the method implementations.
This allows us to 1) identify what is typical of implementations that share the
same verb, and 2) compare the set of implementations for different verbs. In this
paper, we aim at improving the core vocabulary of verbs for Java programmers
by identifying potential synonyms that could be unified.

The contributions of this paper are:

– The introduction of nominal entropy as a way to measure how “nameable”
a method is (Section 3.1).

– A technique to identify methods with “unnameable semantics” based on nom-
inal entropy (Section 4.3).

– A technique to mechanically identify likely instances of code generation in a
corpus of methods (Section 4.1).

– A formula to guide the identification of synonymous verbs in method names
(Section 3.3).

– A mechanically generated graph showing synonym candidates for the most
commonly used verbs in Java (Section 5.1).

– A mechanically generated list of suggestions for canonicalisation of verbs
through unsupervised synonym elimination (Section 5.2).

2 Problem Description

To help the readability and learnability of the scripting language PowerShell,
Microsoft has defined a standardised set of verbs to use. The verbs and their
definitions can be found online2, and PowerShell programmers are strongly en-
couraged to follow the conventions. The benefits to readability and learnability
are obvious.

By contrast, the set of verbs used in method names in Java has emerged
organically, as a mixture of verbs inherited from similar preceding languages,
emulation of verbs used in the Java API, and so forth. A similar organic pro-
cess occurs in natural languages. Steels argues that language “can be viewed
as a complex adaptive system that adapts to exploit the available physiologi-
cal and cognitive resources of its community of users in order to handle their
communicative challenges” [11].

2 http://msdn.microsoft.com/en-us/library/ms714428%28VS.85%29.aspx

http://msdn.microsoft.com/en-us/library/ms714428%28VS.85%29.aspx
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We have seen before that Java programmers have a fairly homogenous, shared
understanding of many of the most prevalent verbs used in Java programs [8]. Yet
the organic evolution of conventional verb meaning has some obvious limitations:

– Redundancy. There are concepts that evolution has not selected a sin-
gle verb to represent. This leads to superfluous synonymous verbs for the
programmer to learn. Even worse, some programmers may use what are
conventional synonyms in subtly different meanings.

– Coarseness. It is hard to organically grow verbs with precise meanings. To
make sure that a verb is understood, it may be tempting to default to a very
general and coarse verb. This results in “bagging” of different meanings into
a small set of polysemous verbs.

– Vagueness. Evolution in Java has produced some common verbs that are
almost devoid of meaning (such as process or handle), yet are lent a sense of
legitimacy simply because they are common and shared among programmers.

Redundancy is the problem of synonyms, and can be addressed by identifying
verbs with near-identical uses, and choosing a single, canonical verb among them.
Coarseness is the problem of polysemes, and could be addressed by using data
mining to identify common polysemous uses of a verb, and coming up with more
precise names for these uses. Vagueness is hard to combat directly, as it is a result
of the combination of a lack of a well-defined vocabulary with the programmer’s
lacking ability or will to create a clear, unambiguous and nameable abstraction.
In this paper, we primarily address the problem of redundancy.

3 Analysis of Methods

The meaning of verbs in method names stems from the implementations they
represent. That is, the meaning of a verb is simply the collection of observed uses
of that verb (Section 3.1). Further, we hold that the verbs become more mean-
ingful when they are consistently used to represent similar implementations. To
make it easier to compare method implementations, we employ a coarse-grained
semantic model for methods, based on predicates defined on Java bytecode (Sec-
tion 3.2). We apply entropy considerations to measure both how consistently
methods with the same verb are implemented, and how consistently the same
implementation is named. We refer to this as semantic and nominal entropy, re-
spectively. These two metrics are combined in a formula that we use to identify
synonymous verbs (Section 3.3). Figure 1 presents an overview of the approach.

3.1 Definitions

We define a method m as a tuple consisting of three components : a unique fin-
gerprint u, a name n, and a semantics s. Intuitively m is an idealised method,
a model of a real method in Java bytecode. The unique fingerprints are a tech-
nicality that prevents set elements from collapsing into one; hence, a set made
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Fig. 1. Overview of the approach

from arbitrary methods {m1, . . . , mk} will always have k elements.3 Often, we
elide u from method tuples, writing just m = (n, s).

We need two kinds of languages to reason about methods and their semantics.
First, a concrete language where the semantics of a method is simply the string of
Java bytecodes in m’s implementation. Thus, bytecode is the canonical concrete
language, denoted as LJava. For convenience, we define a labelling function fMD5
that maps from the bytecode to the MD5 digest of the opcodes in the bytecode.
This allows us to easily apply uniform labels to the various implementations.

Second, we need an abstract language consisting of bit-vectors [b1, . . . , bk]
where each bi represents the result of evaluating a logical predicate qi on a
method’s implementation. In the context of a concrete method m and its im-
plementation, we refer to the vector [b1, . . . , bk] as profile of m. Different choices
of predicates q1, . . . , qk, leads to different abstract languages. Note that with the
concrete language there is no limit on the size of a method’s semantics; hence
there is in principle an unlimited number of semantic objects. With an abstract
language there is a fixed number of semantic objects, since s is a k-bit vector for
some fixed number k, regardless of the choice of predicates.

A corpus C is a finite set of methods. We use the notation C/n to denote the
set of methods in C that have name n, but where the semantics generally differs;
and similarly C/s denotes the subcorpus of C where all methods have semantics
s irrespective of their name. C/n is called a nominal corpus, C/s a semantic
corpus.

Let x denote either a name component n or a semantics component s of some
method. If x1, . . . , xk are all values occurring in C for a component, then we can
view C as factored into disjoint subcorpora based on these values,

C = C/x1 ∪ · · · ∪ C/xk. (1)

3 The fingerprints models the mechanisms that the run-time system has for identifying
distinct callable methods.
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Corpus semantics and entropy. We repeat some information-theoretical con-
cepts [12]. A probability mass function p(x) is such that a) for all i = 1, . . . , k

it holds that 0 ≤ p(xi) ≤ 1; and b)
∑k

i=1 p(xi) = 1. Then p(x1), . . . , p(xk) is a
probability distribution. From Equation (1) we observe that the following defines
a probability mass function:

p(C/x) def=
|C/x|
|C|

We write pN for the nominal probability mass function based on name factoring
C/n and Equation (1), and pS for the semantic version.

We define the semantics �C� of a corpus C in terms of the distribution defined
by pS :

�C�
def= p(C/s1) . . . pn(C/sk)

where we assume that s1, . . . , sk are all possible semantic objects in C as in
Equation (1). Of particular interest is the semantics of a nominal corpus; we
therefore write �n� as a shorthand for �C/n� when C is obvious from the context.
This is what we intuitively refer to as “the meaning of n”.

Using the probability mass function, we introduce a notion of entropy for
corpora—similar to Shannon entropy [12].

H(C) def= −
∑
x∈χ

p(C/x) log2 p(C/x)

where we assume 0 log2 0 = 0. We write HN (C) for the nominal entropy of C,
in which case χ denotes the set of all names in C; and HS(C) for semantic
entropy of C, where χ denotes the set of all semantics. The entropy HS(C) is a
measure of the semantic diversity of C: High entropy means high diversity, low
entropy means few different method implementations. Entropy HN(C) has the
dual interpretation.

Entropy is particularly interesting on subcorpora of C. The nominal entropy of
a semantic subcorpus, HN(C/s), measures the consistency in the naming meth-
ods with profile s in C. The semantic entropy of a nominal subcorpus, HS(C/n)
measures the consistency in the implementation of name n. The nominal entropy
of a nominal subcorpus is not interesting as it is always 0. The same holds for
the dual concept. When there can be no confusion about C, we speak of the
nominal entropy of a profile s,

HN (s) def= HN(C/s)

and similarly for the dual concept HS(n).
Nominal entropy can be used to compare profiles. A profile with comparatively

low nominal entropy indicates an implementation that tends to be consistently
named. A profile with comparatively high nominal entropy indicates an ambigu-
ous implementation. An obvious example of the latter is the empty method.
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We can also compare the semantic entropy of names. A name with compar-
atively low semantic entropy implies that methods with that name tend to be
implemented using a few, well-understood “cliches”. A name with comparatively
high semantic entropy implies that programmers cannot agree on what to call
such method implementations (or that the semantics are particularly ill-suited
at capturing the nature of the name).

We define aggregated entropy of corpus C as follows.

Hagg(C) def=

∑
x∈χ |C/x|H(C/x)

|C|
again leading to nominal and semantic notions of aggregated entropy, HN

agg(C)
and HS

agg(C). These notions lets us quantify the overall entropy of subcorpora
in C, weighing the entropy of each subcorpus by its size.

Semantic cliches. When a method semantics is frequent in a corpus we call the
semantics a semantic cliche, or simply a cliche, for that corpus. When a cliche
has many different names we call it an unnameable cliche. Formally, a method
semantics s is a semantic cliche for a corpus C if the prevalence of s in C is above
some threshold value φcl ,

|C/s|
|C| > φcl . (2)

Furthermore, s is an unnameable semantic cliche if it satisfies the above, and in
addition the nominal entropy of corpus C/s is above some threshold value HN

cl ,
HN (C/s) > HN

cl .

3.2 Semantic Model

There are many ways of modelling the semantics of Java methods. For the pur-
pose of comparing method names to implementations, we note one desirable
property in particular. While the set of possible method implementations is
practically unlimited, the set of different semantics in the model should both
be finite and treat implementations that are essentially the same as having the
same semantics. This is important, since each C/s should be large enough so that
it is meaningful to speak of consistent or inconsistent naming of the methods in
C/s. This ensures that we can judge whether or not methods with semantics s
are consistently named.

Some candidates for modelling method semantics are opcode sequences, ab-
stract syntax trees and execution trace sets. However, we find these to be ill
suited for our analysis: they do not provide a radical enough abstraction over
the implementation. Therefore, we choose to model method semantics using an
abstract language of bit vectors, as defined in Section 3.1.

Attributes. The abstract language relies on a set of predicates defined on Java
bytecode. We refer to such predicates as attributes of the method implementa-
tion. Here we select and discuss the attributes we use, which yield a particular
abstract language.
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Individual attributes cannot distinguish perfectly between verbs. Rather, we
expect to see trends when considering the probability that methods in each
nominal corpus C/n satisfy each attribute. Furthermore, we note that 1) there
might be names that are practically indistinguishable using bytecode predicates
alone, and 2) some names are synonyms, and so should be indistinguishable.

Useful attributes. Intuitively, an attribute is useful if it helps distinguish between
verbs. In Section 3.1, we noted that a verb might influence the probability that
the predicate of an attribute is satisfied. Useful attributes have the property that
this influence is significant. Attributes can be broad or narrow in scope. A broad
attribute lets us identify larger groups of verbs that are aligned according to the
attribute. A narrow attribute lets us identify smaller groups of verbs (sometimes
consisting of a single verb). Both can be useful. The goal is to find a collection
of attributes that together provides a good distinction between verbs.

Chosen attributes. We hand-craft a list of attributes for the abstract method
semantics. An alternative would be to generate all possible simple predicates on
bytecode instructions, and provide a selection mechanism to choose the “best”
attributes according to some criterion. However, we find it useful to define pred-
icates that involve a combination of bytecodes, for instance to describe control
flow or subtleties in object creation. We deem it impractical to attempt a brute
force search to find such combinations, and therefore resort to subjective judge-
ment in defining attributes. To ensure a reasonable span of attributes, we pick
attributes from the following categories: method signature, object creation, data
flow, control flow, exception handling and method calls. The resulting attributes
are listed in Table 1.

Probability distribution. The probability distribution for an attribute indicates if
and how an attribute distinguishes between verbs. To illustrate, Figure 2 shows
the probability distribution for two attributes: Returns void and Writes pa-
rameter value to field. Each dot represents the pv for a given verb v, where
v is a “common verb”, as defined in Section 4.2. Returns void is a broad at-
tribute, that distinguishes well between larger groups of verbs. However, there

Table 1. Attributes

Returns void Returns field value
Returns boolean Returns created object
Returns string Runtime type check
No parameters Creates custom objectsa

Reads field Contains loop
Writes field Method call
Writes parameter value to field Returns call result
Throws exceptions Same verb call
Parameter value passed to method call on field value

a A custom object is an instance of a type not in the
java.* or javax.* namespaces.
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are also verbs that are ambiguous with respect to the attribute. By contrast,
Writes parameter value to field is a narrow attribute. Most verbs have a
very low probability for this attribute, but there is a single verb which stands
out with a fairly high probability: this verb is set, which is rather unsurprising.

(a) Broad attribute:
Returns void.

(b) Narrow attribute:
Writes parameter value
to field.

Fig. 2. Probability distribution for some attributes

Critique. We have chosen a set of attributes for the semantic model based on
our knowledge of commonly used method verbs in Java and how they are im-
plemented. While all the attributes in the set are useful in the sense outlined
above, we have no evidence that our set is “optimal” for the task at hand. There
are two main problems with this.

First, we might have created an “unbalanced” set of attributes, meaning that
we can have too many attributes capturing some kind of behaviour, such as
object creation, and too few attributes capturing some other behaviour, such
as exception handling. There might even be relevant behaviours that we have
omitted altogether.

Second, we can construct many other attributes that could be used to dis-
tinguish between names; Inverted method call4 and Recursive call are two
candidates that we considered but rejected. The former is a narrow attribute
that would help characterise visit methods, for instance. However, it turns out
that visit is not ubiquitous enough to be included in our analysis (see Sec-
tion 4.2); hence the attribute does not help in practise. The latter is simply too
rarely satisfied to be very helpful.

The underlying problem is that there is no obvious metric by which to measure
the quality of our attribute set. Arguably, the quality — or lack thereof — reveals
itself in the results of our analysis.

4 By “inverted method call”, we mean that the calling object is passed as a parameter
to the method call.
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3.3 Identifying Synonyms

Intuitively, a verb n1 is redundant if there exists another, more prevalent verb n2
with the same meaning. It is somewhat fuzzy what “the same meaning” means. We
define the meaning �n� of a verb n as the distribution of profiles in C/n (see Sec-
tion 3.1). It is unlikely that the distributions for two verbs will be identical; how-
ever, some will be more similar than others. Hence we say that n1 and n2 have the
same meaning if they are associated with sufficiently similar profile distributions.

We identify synonyms by investigating what happens when we merge the
nominal corpora of two verbs. In other words, we attempt to eliminate one of
the verbs, and investigate the effects on nominal and semantic entropy. If the
effects are beneficial, we have identified a possible synonym.

The effects of synonym elimination. Elimination has two observable effects.
First, there is a likely reduction in the aggregated nominal entropy HN

agg of
semantic corpora. The reason is that the nominal entropy of an individual se-
mantic corpus is either unaffected by the elimination (if the eliminated verb is
not used for any of the methods in the corpus), or it is lowered. Second, there
is a likely increase in the aggregated semantic entropy HS

agg of the nominal cor-
pora — except for the unlikely event that the distribution of profiles is identical
for the original corpora C/n1 and C/n2. How much HS

agg increases depends on
how semantically similar or different the eliminated verb is from the replacement
verb. The increase in semantic entropy for the combined nominal corpus will be
much lower for synonyms than for non-synonyms.

Optimisation strategy. When identifying synonyms, we must balance the positive
effect on nominal entropy with the negative effect on semantic entropy. If we were
to ignore the effect on semantic entropy, we would not be considering synonyms
at all: simply to combine the two largest nominal corpora would yield the best
effect. If we were to ignore the effect on nominal entropy, we would lose sight
of the number of methods that are renamed. To combine a very large nominal
corpus with a very small one would yield the best effect.

With this in mind, we devise a formula to guide us when identifying synonyms.
A naive approach would be to demand that the positive effect on nominal en-
tropy should simply be larger than the negative effect on semantic entropy. From
practical experiments, we have found it necessary to emphasise semantic entropy
over nominal entropy. That way, we avoid falsely identifying verbs with very large
nominal corpora as synonyms. We therefore employ the following optimisation
formula, which emphasises balance and avoids extremes, yet is particularly sen-
sitive to increases in semantic entropy:

opt(C) def=
√

4HS
agg(C)2 + HN

agg(C)2

4 Software Corpus

We have gathered a corpus of Java programs of all sizes, from a wide variety
of domains. We assume that the corpus is large and varied enough for the code
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Table 2. The corpus of Java applications and libraries

Desktop applications
ArgoUML 0.24 Azureus 2.5.0 BlueJ 2.1.3 Eclipse 3.2.1
JEdit 4.3 LimeWire 4.12.11 NetBeans 5.5 Poseidon CE 5.0.1

Programmer tools
Ant 1.7.0 Cactus 1.7.2 Checkstyle 4.3 Cobertura 1.8
CruiseControl 2.6 Emma 2.0.5312 FitNesse JUnit 4.2
Javassist 3.4 Maven 2.0.4 Velocity 1.4

Languages and language tools
ANTLR 2.7.6 ASM 2.2.3 AspectJ 1.5.3 BSF 2.4.0
BeanShell 2.0b Groovy 1.0 JRuby 0.9.2 JavaCC 4.0
Jython 2.2b1 Kawa 1.9.1 MJC 1.3.2 Polyglot 2.1.0
Rhino 1.6r5

Middleware, frameworks and toolkits
AXIS 1.4 Avalon 4.1.5 Google Web Toolkit 1.3.3 JXTA 2.4.1
JacORB 2.3.0 Java 5 EE SDK Java 6 SDK Jini 2.1
Mule 1.3.3 OpenJMS 0.7.7a PicoContainer 1.3 Spring 2.0.2
Sun WTK 2.5 Struts 2.0.1 Tapestry 4.0.2 WSDL4J 1.6.2

Servers and databases
DB Derby 10.2.2.0 Geronimo 1.1.1 HSQLDB JBoss 4.0.5
JOnAS 4.8.4 James 2.3.0 Jetty 6.1.1 Tomcat 6.0.7b

XML tools
Castor 1.1 Dom4J 1.6.1 JDOM 1.0 Piccolo 1.04
Saxon 8.8 XBean 2.0.0 XOM 1.1 XPP 1.1.3.4
XStream 1.2.1 Xalan-J 2.7.0 Xerces-J 2.9.0

Utilities and libraries
Batik 1.6 BluePrints UI 1.4 c3p0 0.9.1 CGLib 2.1.03
Ganymed ssh b209 Genericra HOWL 1.0.2 Hibernate 3.2.1
JGroups 2.2.8 JarJar Links 0.7 Log4J 1.2.14 MOF
MX4J 3.0.2 OGNL 2.6.9 OpenSAML 1.0.1 Shale Remoting
TranQL 1.3 Trove XML Security 1.3.0

Jakarta commons utilities
Codec 1.3 Collections 3.2 DBCP 1.2.1 Digester 1.8
Discovery 0.4 EL 1.0 FileUpload 1.2 HttpClient 3.0.1
IO 1.3.1 Lang 2.3 Modeler 2.0 Net 1.4.1
Pool 1.3 Validator 1.3.1

to be representative of Java programming in general. Table 2 lists the 100 Java
applications, frameworks and libraries that constitute our corpus.

We filter the corpus in various ways to “purify” it:

– Omit compiler-generated methods (marked as synthetic in the bytecode).
– Omit methods that appear to have been code-generated.
– Omit methods without a common verb-name.
– Omit methods with unnameable semantics.
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Table 3. The effects of corpus filtering

Total methods 1.226.611
Non-synthetic 1.090.982
Hand-written 1.050.707
Common-verb name 818.503
Nameable semantics 778.715

The purpose of the filtering is to reduce the amount of noise affecting our anal-
ysis. Table 3 presents some numbers indicating the size of the corpus and the
impact of each filtering step.

4.1 Source Code Generation

Generation of source code represents a challenge for our analysis, since it can lead
to a skewed impression of the semantics of a verb. In our context, the problem is
this: a single application may contain a large number of near-identical methods,
with identical verb and identical profile. The result is that the nominal corpus
corresponding to the verb in question is “flooded” by methods with a specific
profile, skewing the semantics of that corpus. Conversely, the semantic corpus
corresponding to the profile in question is also “flooded” by methods with a
specific verb, giving us a wrong impression of how methods with that profile are
named.

To diminish the influence of code generation, we impose limits on the num-
ber of method instances contributed by a single application. By comparing the
contribution from individual applications to that of all others, we can calculate
an expected contribution for the application. We compare this with the actual
contribution, and truncate the contribution if the ratio between the two numbers
is unreasonable.

If the actual contribution is above some threshold T , then we truncate it to:

max(T, min(
|Ca/v|
|C/v| , L

|C/v| − |Ca/v|
|C| − |Ca| ))

where L acts as a constraint on how much the contribution may exceed expec-
tations.

Determining T and L is a subjective judgement, since we have no way of
identifying false positives or false negatives among the method instances we
eliminate. Our goal is to diminish the influence of code generation on our analysis
rather than eliminate it. Therefore, we opt to be fairly lax, erring more on the
side of false negatives than false positives. In our analysis, T = 50 and L = 25;
that is, if some application contains more than 50 identical methods (n, s), we
check that the number of identical methods does not exceed 25 times that of the
average application. This nevertheless captures quite a few instances of evident
code generation.
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Table 4. Vocabularies

Vocabulary % Apps Verbs Methods Example verbs
essential 〈 90, 100 ] 7 50.73% get, set, create
core 〈 75, 90 ] 21 13.26% find, equals, parse
extended 〈 50, 75 ] 74 13.92% handle, match, save
specific 〈 25, 50 ] 220 11.72% sort, visit, refresh
narrow 〈 10, 25 ] 555 5.95% render, shift, purge
marginal 〈 0, 10 ] 5722 4.43% squeeze, unhook, animate

4.2 Common Verbs

Some verbs are common, such as get and set, whereas others are esoteric, such
as unproxy and scavenge. In this paper, we focus on the former and ignore the
latter. There are several possible interpretations of common; two obvious candi-
dates are ubiquity (percentage of applications) and volume (number of methods).

We choose ubiquity as our interpretation of common. Rudimentary grouping
of verbs according to ubiquity is shown in Table 4. Since we are interested in
the shared vocabulary of programmers, we restrict our analysis to the top three
groups: essential, core and extended. The 102 verbs in these three groups cover
nearly 77% of all methods (after filtering of generated code). Figure 3 shows a
“word cloud” visualisation5 of the common verbs.

Fig. 3. The 102 most common verbs

4.3 Unnameable Cliches

Unnameable cliches, that is, method implementations that are common, yet
inherently ambiguous, constitute noise for our analysis. We aim to reduce the
5 Generated by Wordle.net.
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impact of this noise by omitting methods whose implementations are unnameable
cliches. The rationale is that the semantics of each verb will be more distinct
without the noise, making it easier to compare and contrast the verbs.

In some cases, an implementation cliche may appear to be unnameable with-
out being inherently ambiguous: rather, no generally accepted name for it has
emerged. By applying canonicalisation through synonym elimination, the nam-
ing ambiguity can be reduced to normal levels. We must therefore distinguish
between cliches that are seemingly and genuinely unnameable.

To identify implementation cliches, we use the concrete language LJava (see
Section 3.1). Table 5 shows unnameable cliches identified using Equation (2),
with φcl = 500 and HN

cl = 1.75. We also include a reverse engineered example
in a stylized Java source code-like syntax for each cliche.

To label the method implementations we apply fMD5, which yields the MD5
digest of the opcodes for each implementation. Note that we include only the
opcodes in the digest. We omit the operands to avoid distinguishing between im-
plementations based on constants, text strings, the names of types and methods,
and so forth. Hence fMD5 does abstract over the implementation somewhat. As
a consequence, we cannot distinguish between, say, this.m(p) and p.m(this):
these are considered instances of the same cliche. Also, some cliches may yield
the same example, since there are opcode sequences that cannot be distinguished
when written as stylized source code.

Most of the cliches in Table 5 seem genuinely unnameable. Unsurprisingly,
variations over delegation to other methods dominate. We cannot reasonably

Table 5. Semantic cliches with unstable naming

Cliche # Methods HN Retain Top names
{ super.m(); } 539 3.50 remove [10.6%], set [8.7%], insert [6.5%]
{ } 14566 3.40 set [18.1%], initialize [8.4%], end [7.8%]
{ this.m(); } 794 3.22 set [18.5%], close [7.2%], do [6.2%]
{ this.f .m(); } 2007 2.94 clear [20.7%], close [13.2%], run [11.7%]
{ return p; } 532 2.94 get [34.4%], convert [7.1%], create [4.7%]
{ super.m(p); } 742 2.69 set [32.2%], end [12.0%], add [9.4%]
{ throw new E(); } 3511 2.68 get [25.4%], remove [17.2%], set [14.8%]
{ this.f .m(); } 900 2.65 clear [28.2%], remove [16.1%], close [9.9%]
{ throw new E(s); } 5666 2.59 get [25.9%], set [22.3%], create [10.7%]
{ this.f .m(p); } 1062 2.48 set [39.2%], add [14.8%], remove [12.0%]
{ this.m(p); } 1476 2.45 set [24.4%], end [21.7%], add [14.2%]
{ return this.f .m(p); } 954 2.38 contains [25.9%], is [20.8%], equals [11.1%]
{ this.f .m(p1, p2); } 522 2.34 set [33.0%], add [17.2%], remove [13.0%]
{ return this.f .m(p); } 929 2.14 contains [28.3%], is [25.0%], get [11.1%]
{ return this.m(p); } 618 2.14 get [52.8%], post [8.4%], create [6.3%]
{ this.f = true; } 631 2.08 � set [48.5%], mark [12.8%], start [6.7%]
{ C.m(this.f); } 544 1.96 run [46.9%], handle [14.3%], insert [9.9%]
{ this.f .m(p); } 3906 1.92 set [36.8%], add [29.7%], remove [16.8%]
{ return new C(this); } 1540 1.87 � create [34.6%], get [25.7%], new [11.9%]
{ return this.m(); } 520 1.83 get [45.0%], is [20.0%], has [12.5%]
{ return false; } 6322 1.83 � is [52.8%], get [20.1%], has [7.3%]
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provide a name for such methods without considering the names of the methods
being delegated to. There are also some examples of “unimplemented” methods;
for instance { throw new E(); } or the empty method { }. We believe that in
many cases, the presence of these methods will be required by the compiler (for
instance to satisfy some interface), but in practice, they will never be invoked.

Table 5 also contains three cliches that we deem only seemingly unnameable.
This is based on a subjective judgement that they could be relatively consistently
named, given a more well-defined vocabulary. These have been marked as being
retained, meaning they are included in the analysis. The others are omitted.

5 Addressing Synonyms

To address the problem of synonyms, we employ the formula opt from
Section 3.3. We use opt to mechanically identify likely synonyms in the cor-
pus described in Section 4, and then to attempt unsupervised elimination of
synonyms.

5.1 Identifying Synonyms

Compared to each of the common verbs in the corpus, the other verbs will range
from synonyms or “semantic siblings” to the opposite or unrelated. To find the
verbs that are semantically most similar to each verb, we calculate the value
for opt when merging the nominal corpus of each verb with the nominal corpus
of each of the other verbs. The verbs that yield the lowest value for opt are
considered synonym candidates.

It is more likely that two verbs are genuine synonyms if they reciprocally hold
each other to be synonym candidates. When we identify such pairs of synonym
candidates, we find that clusters emerge among the verbs, as shown in Figure 4.

Several of the clusters could be labelled, for instance as questions, initialisers,
factories, runners, checkers and terminators. This suggests that these clusters
have a “topic”. It does not imply that all the verbs in each cluster could be
replaced by a single verb, however. For instance, note that in the factory cluster,
create and make are indicated as synonym candidates, as are create and new,
but new and make are not. An explanation could be that create has a broader
use than new and make.

We also see that there are two large clusters that appear to have more than one
topic. We offer two possible explanations. First, polysemous verbs will tie together
otherwise unrelated topics (see Section 2). In the largest cluster, for instance, we
find a mix of verbs associated with I/O and verbs that handle collections. In this
case, append is an example of a polysemous verb used in both contexts. Second,
we may lack attributes to distinguish appropriately between the verbs.

5.2 Eliminating Synonyms

To eliminate synonyms, we iterate over the collection of verbs. We greedily select
the elimination that yields the best immediate benefit for opt in each iteration.
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Fig. 4. Clusters of synonym candidates. Clusters with a single topic are labelled.

Table 6. Mechanical elimination of synonyms

Run Canonical verb (cv) Old verbs |C/cv| Sum ΔHS
agg ΔHN

agg Δopt

1 is has+is 49041 6820+42221 0.00269 -0.02270 -0.01152
2 is can+is 51649 2608+49041 0.00178 -0.01148 -0.00409
3 add remove+add 43241 16172+27069 0.00667 -0.03004 -0.00237
4 init initialize+init 11026 3568+7458 0.00149 -0.00743 -0.00126
5 close stop+close 5025 1810+3215 0.00074 -0.00348 -0.00040
6 create make+create 38140 4940+33200 0.00363 -0.01525 -0.00021
7 close flush+close 5936 911+5025 0.00061 -0.00266 -0.00014
8 reset clear+reset 5849 2901+2948 0.00100 -0.00421 -0.00007
9 write log+write 13659 1775+11884 0.00131 -0.00547 -0.00004
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Table 7. Manual elimination of synonyms

Canonical verb (cv) Old verbs |C/cv| Sum ΔHS
agg ΔHN

agg Δopt

clone clone+copy 4732 2595+2137 0.00271 -0.00147 0.00979
execute execute+invoke 4947 2997+1950 0.00197 -0.00229 0.00589
verify check+verify 8550 7440+1110 0.00126 -0.00298 0.00223
stop stop+end 4814 1810+3004 0.00126 -0.00283 0.00242
write write+log+dump 15987 11884+1775+2328 0.00420 -0.01109 0.00635
start start+begin 5485 4735+750 0.00081 -0.00200 0.00135
init init+initialize 11026 7458+3568 0.00149 -0.00743 -0.00126
error error+fatal 1531 1116+415 0.00027 -0.00088 0.00023
create create+new+make 45565 33200+7425+4940 0.00901 -0.03588 0.00152

We assume that beneficial eliminations will occur eventually, and that the order
of eliminations is not important. We only label a synonym candidate as “gen-
uine” if the value for opt decreases; the iteration stops when no more genuine
candidates can be found. For comparison, we also perform manual elimination
of synonyms, based on a hand-crafted list of synonym candidates.

The results of mechanical synonym elimination are shown in Table 6. Note
that the input to the elimination algorithm is the output given by the preceding
run of the algorithm. For the first run, the input is the original “purified” corpus
described in Section 4, whereas for the second, the verb has has been eliminated,
and the original nominal corpora for has and is have been merged.

The elimination of has is interesting: it is considered the most beneficial
elimination by opt, yet as Java programmers, we would hesitate to eliminate
it. The subtle differences in meaning between all “boolean queries” (is, has,
can, supports and so forth) are hard to discern at the implementation level.
Indeed, we would often accept method names with different verbs for the same
implementation: hasChildren and isParent could be equally valid names. This
kind of nominal flexibility is arguably beneficial for the readability of code.

It is easier to see that either init or initialize should be eliminated: there is
no reason for the duplication. Eliminating make and using create as a canonical
verb for factory methods also seems reasonable. Similarly, the suggestion to use
write instead of log is understandable — however, one could argue that log is
useful because it is more precise than the generic write.

There seems to be quite a few verbs for “termination code”; some of these verbs
might be redundant. The unsupervised elimination process identifies flush, stop
and close as candidates for synonym elimination. However, we find it unaccept-
able: certainly, flush and close cannot always be used interchangeably. In our
coarse-grained semantic model, we lack the “semantic clues” to distinguish be-
tween these related, yet distinct verbs.

The suggestion to combine add and remove is also problematic, again showing
that the approach has some limitations. Both add and remove typically involve
collections of items, perhaps including iteration (which is captured by the Con-
tains loop attribute). The crucial distinction between the two operations will
often be hidden inside a call to a method in the Java API. Even if we were to
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observe the actual adding or removing of an item, this might involve increment-
ing or decrementing a counter, which is not captured by our model.

Table 7 shows the result of the manual elimination of synonyms. We note
that only the elimination of initialize yields a decreased value for opt —
apparently, we are not very good at manual synonym identification! However, it
may be that the requirement that opt should decrease is too strict. Indeed, we
find that many of our candidates are present in the clusters shown in Figure 4.
This indicates that there is no deep conflict between our suggestions and the
underlying data.

5.3 Canonicalisation

Overall, we note that our approach succeeds in finding relevant candidates for
synonym elimination. However, it is also clear that the elimination must be su-
pervised by a programmer. We therefore suggest using Figure 4 as a starting
point for manual canonicalisation of verbs in method names. Canonicalisation
should entail both eliminating synonyms and providing a precise definition, ra-
tionale and use cases for each verb.

6 Related Work

Gil and Maman [13] introduce the notion of machine-traceable patterns, in order
to identify so-called micro patterns; machine-traceable implementation patterns
at the class level. When we model the semantics of method implementations
using hand-crafted bytecode predicates, we could in principle discern “nano pat-
terns” at the method implementation level. According to Gamma et al. [14],
however, a pattern has four essential elements: name, problem, solution and
consequences. Though we do identify some very commonly used implementation
cliches, we do not attempt to interpret and structure these cliches. Still, Singer
et al. [15] present their own expanded set of bytecode predicates under the label
“fundamental nano patterns”, where the term “pattern” must be understood in
a broader, more colloquial sense.

Collberg et al. [16] present a large set of low-level statistics from a corpus of
Java applications, similar in size to ours. Most interesting to us are the statistics
showing k-grams of opcodes, highlighting the most commonly found opcode
sequences. This is similar to the implementation cliches we find in our work.
Unfortunately, the k-grams are not considered as logical entities, so a common
2-gram will often appear as part of a common 3-gram as well.

Similar in spirit to our work, Singer and Kirkham [17] find a correlation be-
tween certain commonly used type name suffixes and some of Gil and Maman’s
micro patterns. Pollock et al. [18] propose using “natural language program anal-
ysis”, where natural language clues found in comments and identifiers are used to
augment and guide program analyses. Tools for program navigation and aspect
mining have been developed [19,20] based on this idea. Ma et al. [21] exploit the
fact that programmers usually choose appropriate names in their code to guide
searches for software artefacts.
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The quality of identifiers is widely recognised as important. Deißenböck and
Pizka [22] seek to formalise two quality metrics, conciseness and consistency,
based on a bijective mapping between identifers and concepts. Unfortunately,
the mapping must be constructed by a human expert. Lawrie et al. [23] seek to
overcome this problem by deriving syntactic rules for conciseness and consistency
from the identifiers themselves. This makes the approach much more applicable,
but introduces the potential for false positives and negatives.

7 Conclusion and Further Work

The ambiguous vocabulary of verbs used in method names makes Java programs
less readable than they could be. We have identified redundancy, coarseness and
vagueness as the problems to address. In this paper, we focussed on redundancy,
where more than one verb is used in the same meaning. We looked at the iden-
tification and elimination of synonymous verbs as a means towards this goal.

We found that we were indeed able to identify reasonable synonym candi-
dates for many verbs. To select the genuine synonyms among the candidates
without human supervision is more problematic. The abstract semantics we use
for method implementations is sometimes insufficient to capture important nu-
ances between verbs. A more sophisticated model that takes into account in-
voked methods, either semantically (by interprocedural analysis of bytecode) or
nominally (by noting the names of the invoked methods) might overcome some
of these problems. Realistically, however, the perspective of a programmer will
probably still be needed. A more fruitful way forward may be to use the identified
synonym candidates as a starting point for a manual process where a canonical
set of verbs is given precise definitions, and the rest are discouraged from use.

Addressing the problem of coarseness is a natural counterpart to the topic
of this paper. Coarseness manifests itself in polysemous verbs, that is, verbs
that have more than a single meaning. Polysemous verbs could be addressed
by investigating the semantics of the methods that constitute a nominal corpus
C/n. The intuition is that polysemous uses of n will reveal itself as clusters
of semantically similar methods. Standard data clustering techniques could be
applied to identify such polysemous clusters. If a nominal corpus were found
to contain polysemous clusters, we could investigate the effect of renaming the
methods in one of the clusters. This would entail splitting the original nominal
corpus C/n in two, C/n and C/n′. The effect of splitting the corpus could be
measured, for instance by applying the formula opt from Section 3.3.
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Abstract. Thanks to steady advances in hardware, mobile computing
platforms are nowadays much more connected to their physical and logi-
cal environment than ever before. To ease the construction of adaptable
applications that are smarter with respect to their execution environ-
ment, the context-oriented programming paradigm has emerged. How-
ever, up until now there has been no proof that this emerging paradigm
can be implemented and used effectively on mobile devices, probably the
kind of platform which is most subject to dynamically changing contexts.
In this paper we study how to effectively realise core context-oriented
abstractions on top of Objective-C, a mainstream language for mobile
device programming. The result is Subjective-C, a language which goes
beyond existing context-oriented languages by providing a rich encoding
of context interdependencies. Our initial validation cases and efficiency
benchmarks make us confident that context-oriented programming can
become mainstream in mobile application development.

1 Introduction

New computing platforms are interrelated to their physical execution environ-
ment through all kinds of sensors that are able to measure location, orientation,
movement, light, sound, temperature, network signal strength, battery charge
level, and so forth. At the logical level, even traditional desktop and server plat-
forms are getting exposed to richer environments in which they can find network
services of all sorts. Both at the physical and logical levels, the live environment
in which applications execute is acquiring a central role. If equipped with higher
levels of context-driven adaptability, software systems can become smarter with
respect to their environment and to user needs, exhibit emergent properties, be
resilient in the face of perturbations, and generally fit better in the technical
ecosystem in which they are used.

Unfortunately, most software systems do not meet the high adaptability ex-
pectations that stem naturally from their connectedness to their environment.
Most applications exhibit fixed functionality and are seldom aware of changing
contexts to adapt their behaviour accordingly. Many chances of delivering im-
proved services to users and network peers are thus missed. We hypothesise that
a major reason for this lack of adaptability is the unavailability of appropriate
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context-aware programming languages and related tool sets. Current program-
ming technology does not put programmers in the right state of mind, nor does
it provide adequate abstractions, to program context-aware applications.

Starting from this observation, Context-Oriented Programming (COP) has
been introduced as a novel programming paradigm which eases the development
of adaptable behaviour according to changing contexts [4,9]. COP offers an al-
ternative to hard-coded conditional statements and special design patterns to
encode context-dependent behaviour. COP thereby renders code more reusable
and maintainable. Unfortunately, current COP languages do not run on mobile
platforms —probably the kind of platform for which context is most relevant,
thus offering the most promising possibilities for development of context-aware
applications. Furthermore, COP languages still lack dedicated facilities to model
the knowledge of the situation in which applications execute.

With the aim of having a COP language that runs on a mobile platform, we
set out to develop an extension of Objective-C, one of the most widespread pro-
gramming languages for mobile systems. The result is Subjective-C, a new COP
language extension aimed at easing the construction of context-aware mobile ap-
plications. In Subjective-C, object behaviour depends on the context in which it
executes. Hence, observed behaviour is not absolute or objective, but rather of a
more relative or subjective nature [17]. A minimum amount of computational re-
flection available in Objective-C suffices to add the necessary abstractions which
allow the straightforward expression of context-specific behaviour.

Subjective-C is not a mere reimplementation of the concepts behind main
COP languages like Ambience [8] and ContextL [4]. Subjective-C goes beyond
the simple inheritance relationships that are possible between context objects in
Ambience, and between layer classes in ContextL, by providing explicit means
to encode more advanced interdependencies between contexts. Not only does
Subjective-C allow for more kinds of dependencies, but also they can be ex-
pressed in a domain-specific language developed especially for this purpose, mak-
ing the declaration of such dependencies more readable.

To validate Subjective-C, we implemented three proof-of-concept applica-
tions that run on actual smartphones. These case studies showed the feasibility of
programming context-aware applications using subjective programming abstrac-
tions, with a noticeable increase in software understandability, maintainability
and extensibility. Furthermore, efficiency benchmarks show that the performance
impact of COP abstractions in Subjective-C is negligible, to the point that in
some cases it can even improve performance.

The remainder of this paper is organised as follows. Section 2 introduces the
basics of context-oriented programming in Subjective-C. Section 3 goes on to
explain context relations in detail. Section 4 presents the reflective implementa-
tion technique we used to add a subjective layer on top of Objective-C. Section 5
briefly presents three validation cases we conducted to assess the advantages and
disadvantages of Subjective-C. Section 6 reports on the efficiency benchmarks we
carried out. Section 7 discusses limitations and future work. We present related
work in Section 8, and draw the paper to a close in Section 9.

Subjective-C 247



2 Context-Oriented Programming in Subjective-C

Context-Oriented Programming (COP) is an emerging programming paradigm
in which contextual information plays a central role in the definition of appli-
cation behaviour [4,8,18]. The essence of COP is the ability to overlay adapted
behaviour on top of existing default behaviour, according to the circumstances in
which the software is being used. Such adaptations are meant to gracefully adjust
the service level of the application, following detected changes in the execution
environment. COP languages provide dedicated programming abstractions to
enable this behavioural adaptability to changing contexts. This section presents
the COP core on which Subjective-C is based. The fundamental language con-
structs are introduced progressively, as core mechanisms are explained.

2.1 General System Architecture

Subjective-C has been conceived for a fairly straightforward system architecture,
illustrated in Fig. 1. Context information is received mainly from two sources.
Firstly, there is a context discovery module which collects sensor data to make
sense of the physical world in which the system is running, and also monitors net-
work services to make sense of the logical environment. Logical context changes
can also be signalled internally by the running application, for instance when
switching to secure or logging mode. Having all context changes at hand, the
context management module analyses the current situation and might chose to
prioritise some of the context changes, defer others for later application, drop
context changes that have become outdated, and solve possible conflicts stem-
ming from contradictory information and adaptation policies (for instance, in-
creasing fan speed due to overheating, versus reducing fan speed due to low
battery charge). It then commits a coherent set of changes to the active context
representation, which directly affects application behaviour.

Sensors Actuators

context
information arbitrated

context changes

context 
effect

external internal

Active
Context

Context 
Management

Context 
Discovery

Application 
Behaviour

World

Fig. 1: General architecture for context-aware systems
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Context* landscape = [[Context alloc] initWithName: @"Landscape"];
[CONTEXT addContext: landscape];

Snippet 1: Subjective-C context definition.

The global architecture proposed here is compatible with more detailed ones
such as Rainbow [6], meaning that the more refined subsystems of those architec-
tures can be accommodated within ours. However, the presented level of detail
suffices as frame of reference for the explanations that follow.

2.2 Contexts

We define context as an abstraction of the particular state of affairs or set of
circumstances for which specialised application behaviour can be defined. The
context discovery module shown in Fig. 1 is in charge of making sense of perceived
data and assigning it a higher-level meaning as contexts. Table 1 shows a few
examples. This mapping of data into meaningful contexts is not explored further
in this paper.

Sensed data Contexts

Coordinates = 50◦50’N 4◦21’E In Brussels
Battery charge = 220 mAh Low battery charge

Idle cycles = 11 MHz High CPU load
Z axis = 0.03 Landscape orientation

Table 1: Environmental data vs. contexts as semantically-rich situations

The notion of context put forward by Subjective-C is in line with dictionary
definitions such as “the situation within which something exists or happens, and
that can help explain it”1 and “the interrelated conditions in which something
exists or occurs”.2 This is in contrast to the more general definition of context by
Hirschfeld et al. [10] as “any information which is computationally accessible”.

In Subjective-C, contexts are reified as first-class objects. A typical context
definition is shown in Snippet 1. The landscape context is allocated and given a
name. Contexts are declared to the system’s context manager by means of the
addContext: call. As exemplified in Sections 2.3 and 2.4, the Landscape context
can be used by a smartphone application whose behaviour depends on the spatial
orientation of the device.

At any given time, contexts can be either active or inactive. Active contexts
represent the currently perceived circumstances in which the system is running,
and only these active contexts have an effect on system behaviour. Snippet 2
shows the way a context can be activated and deactivated. We call such changes
from one state to the other context switches. Context switches are carried out
by the context manager in response to incoming context changes.
1 http://dictionary.cambridge.org/dictionary/british/context_1
2 http://merriam-webster.com/dictionary/context
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[CONTEXT activateContextWithName: @"Landscape"];
[CONTEXT deactivateContextWithName: @"Landscape"];

Snippet 2: Context activation and deactivation.

#context Landscape
- (NSString*)getText() {
return [NSString stringWithString:@"Landscape view"];

}

Snippet 3: Context-specific method definition.

2.3 Contextual Behaviour

Subjective-C concentrates on algorithmic adaptation, allowing the definition
of behaviour that is specific to certain execution contexts. Programmers can
thereby define behaviour that is more appropriate to those particular contexts
than the application’s default behaviour.

In Subjective-C, defining context-dependent behaviour is straightforward.
Adapted behaviour can be defined at a very fine granularity level, namely on
a per-method basis. To define methods that are specific to a context, a simple
annotation suffices. Snippet 3 illustrates a typical context-specific method defini-
tion. The #context annotation lets Subjective-C know that the getText method
definition is specific to the given named context. This version of getText should
be invoked only when the device is in Landscape position. The method is not
to be applied under any other circumstances. The general EBNF syntax for
context-specific method definitions is as follows:

#context ([!]contextName)+
methodDefiniton

This is one of the two syntactic extensions Subjective-C lays over Objective-C;
the other one is explained in Section 2.4. As can be observed in this general
form, it is possible to specialise a method on more than one context. It suffices
to provide multiple context names after the #context keyword that precedes
the method definition. The method is applicable only when all its corresponding
contexts are active simultaneously.

As a convenience, Subjective-C introduces method specialisation on the com-
plement of a context by means of the negation symbol (!). Such complementary
method specialisations mean that the method is applicable only when the given
context is inactive. Complementary specialisations serve as a shortcut to ex-
plicitly defining a complementary context object and associated management
policies.

2.4 Behaviour Reuse

For most cases it is of little use to provide a means to define context-specific
behaviour but no means to invoke at some point the original default behaviour
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1 @implementation UILabel (color)
2 #context Landscape
3 - (void)drawTextInRect:(CGRect)rect{
4 self.textColor = [UIColor greenColor];
5 [superContext drawTextInRect:rect];
6 }
7 @end

Snippet 4: Sample use of superContext construct.

as part of the adaptation. The absence of such a mechanism would lead to the
reimplementation of default behaviour in overriding context-specific methods,
resulting in code duplication. Subjective-C therefore permits the invocation of
overridden behaviour through the superContext construct, which has two general
forms:

[superContext selector];
[superContext keyword: argument ...];

Next to the #context construct explained in Section 2.3, superContext is the
second syntactic extension of Subjective-C over Objective-C.

Snippet 4 shows an example in which the colour of a label widget changes
to green when the orientation of the host device is horizontal (i.e., when the
context Landscape is active). This example shows in passing that it is possible to
modify the behaviour of stock library objects such as UILabel, which have been
developed independently, and for which adaptations such as the one in Snippet 4
were not foreseen. It is possible to layer adaptations on top of any existing object,
without access to its source code. This is made possible by Objective-C’s open
classes and categories.

3 Context Relations

Subjective-C allows the explicit encoding of context relationships. These rela-
tionships impose constraints among contexts, which either impede activation or
cause cascaded activations and deactivations of related contexts. A failure to
respect the natural relationships between contexts could lead to unexpected,
undesired, or erroneous application behaviour. All behaviour described in this
section is part of the context management subsystem illustrated in Fig. 1.

When a context is switched, the system has to inspect all relations involv-
ing the context, checking if the change is consistent with imposed constraints,
and performing other switches triggered by the requested one. This section con-
cisely specifies the different relation types and their effect on context switching
through four main methods that any context must implement: canActivate,
canDeactivate, activate and deactivate.

To deal with multiple activations, every context has an activation counter,
which the activate method increases, and deactivate decreases (if positive).
Only when the counter falls down to zero is the context actually removed from
the active context representation.
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3.1 Weak Inclusion Relation

Sometimes the activation of a context implies the activation of a related one.
For example, if domain analysis yields that cafeterias are usually noisy, then the
activation of the Cafeteria context should induce the activation of the Noisy
context. We say that the former context includes the latter one. However, the
inclusion is a weak one in the sense that the contrapositive does not necessarily
hold. Even though there might be no noise, the device might still be located
in a cafeteria. The key here is that cafeterias are usually, though not always,
noisy. Fig. 2 shows the definition of weak inclusion relations. Activating (resp.
deactivating) the source context Cafeteria implies activating (resp. deactivat-
ing) the target context Noisy. The source context can always be activated and
deactivated. Conversely, because it is a weak inclusion relation, the target con-
text Noisy is not constrained at all by the source context Cafeteria. The target
context can be activated and deactivated anytime, without consequences on the
activation status of the source context.

Cafetaria Noisy

message source behaviour target behaviour
canActivate YES YES

canDeactivate YES YES
activate target activate —

deactivate target deactivate —

Fig. 2: Weak inclusion relation specification

3.2 Strong Inclusion Relation

In a strong inclusion relation, the activation of the source context implies the
activation of the target context, as in weak inclusions. Additionally, the contra-
positive holds: deactivation of the target implies automatically a deactivation of
the source. For example, if the current location is Brussels, then necessarily the
device is also located in Belgium. If the current location is not Belgium, then it is
certainly also not Brussels. Fig. 3 shows the definition of such strong inclusion
relations. As illustrated by the example, this kind of relation can be used to
signal that a specific context is a particular case of a more general one.

Brussels Belgium

message source behaviour target behaviour
canActivate target canActivate YES

canDeactivate YES source canDeactivate
activate target activate —

deactivate target deactivate source deactivate

Fig. 3: Strong inclusion relation specification
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3.3 Exclusion Relation

Some contexts are mutually exclusive. For instance, a network connection sta-
tus cannot be Online and Offline simultaneously, and the battery charge level
cannot be high and low at the same time (note however that it makes sense for
two exclusive contexts such as LowBattery and HighBattery to be simultane-
ously inactive). This motivates the introduction of exclusion relations between
contexts, specified in Fig. 4. Note that the exclusion relation is symmetrical.

LowBattery HighBattery

message source behaviour target behaviour
canActivate target isInactive source isInactive

canDeactivate YES YES
activate — —

deactivate — —

Fig. 4: Exclusion relation specification

3.4 Requirement Relation

Sometimes certain contexts require other contexts to function properly. For in-
stance, a high-definition video decoding context HDVideo might work only when
HighBattery is active. If HighBattery is inactive, then HDVideo cannot be acti-
vated either. Fig. 5 specifies this requirement relation between contexts.

HDVideo HighBattery

message source behaviour target behaviour
canActivate target isActive YES

canDeactivate YES source canDeactivate
activate — —

deactivate — source deactivate

Fig. 5: Requirement relation specification

3.5 Context Declaration Language

For non-trivial scenarios, the programmatic definition of contexts and their rela-
tions in Subjective-C can become verbose. As an example, consider the relatively
complex code to create just two contexts and an exclusion relation between them,
shown in Snippet 5 (left).

Observing that it is cumbersome to describe context settings programmati-
cally, we developed a small Domain-Specific Language (DSL) for this purpose.
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Context* on = [[Context alloc] initWithName:@"Online"];
Context* off = [[Context alloc] initWithName:@"Offline"];
[CONTEXT addContext:on];
[CONTEXT addContext:off];
[on addExclusionLinkWith:off];

Contexts:
Online
Offline
Links:
Online >< Offline

Snippet 5: Manual creation of contexts and their relations in Subjective-C (left)
versus equivalent code using the context declaration language (right).

In this DSL, contexts are declared simply by naming them, and their relations
established by means of the following textual notation:

– Weak Inclusion: A -> B
– Strong Inclusion: A => B
– Exclusion: A >< B
– Requirement: A =< B

The right side of Snippet 5 shows how the context set-up on the left side
is obtained using the context declaration language. This language permits the
edition of contexts and their relations with all the advantages brought by a
DSL: it has a more intuitive notation that can be understood even by non-
programmers, it results in more succinct code, and eases rapid prototyping.3

In its current version, Subjective-C does not check inconsistencies among
context relationships at the moment they are created (for example if A => B
on the one hand but A >< B on the other); as mentioned earlier, it checks for
inconsistencies when contexts are switched, preventing any contradictory change.
Support for earlier checks is part of our future work.

4 Implementation

Most existing COP implementations exploit meta-programming facilities such as
syntactic macros and computational reflection provided by the host object model
to modify method dispatch semantics, thereby achieving dynamic behaviour se-
lection. It is no surprise that these implementations have been laid on top of
dynamic languages that permit such level of flexibility.

For approaches based on more static languages such as ContextJ for Java [1],
existing implementations use a dedicated compiler. This is also the case of
Subjective-C, in which the compiler is just a small language transformer to plain
Objective-C. However, Subjective-C does not intercept method dispatch as other
approaches do. Rather, it precomputes the most specific methods that become
active right after every context switch. This original implementation technique,
explained in this section, is possible thanks to some of the dynamic features
offered by Objective-C. Section 6 presents an efficiency comparison of the two
approaches (method precomputation versus method lookup modification).
3 A script integrated in the build process of the IDE parses the context declaration

files written in the DSL and translates them into equivalent Objective-C code. The
result is compiled together with regular source code files.
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@implementation UILabel (color)
- (void)Context_Landscape_drawTextInRect:(CGRect)rect {
self.textColor = [UIColor greenColor];
SUPERCONTEXT(@selector(drawTextInRect:), [self drawTextInRect:rect]);

}
@end

Snippet 6: Context-specific version of UILabel’s drawTextInRect: method
translated to plain Objective-C.

[MANAGER
addMethod:@selector(Context_Landscape_drawTextInRect:)
forClass:[UILabel class]
forContextNames: [NSSet setWithObjects: @"Landscape", nil]
withDefautSelector:@selector(drawTextInRect:)
withPriority:0];

Snippet 7: Registration of a context-specific method.

4.1 Method Translation

Context-specific methods, explained in Section 2.3, have the same signature as
the original method containing the default implementation. For instance, the
drawTextInRect: method from Snippet 4 has the same signature as the stan-
dard method furnished by Apple’s UIKit framework.4 The intention of adapted
methods is precisely to match the same messages the original method matches,
but then exhibit different behaviour in response to the message.

To disambiguate method identifiers that have been overloaded for multiple
contexts, and thus distinguish between the different context-dependent imple-
mentations sharing a same signature, Subjective-C uses name mangling. Name
mangling is a well-known technique in which identifiers are decorated with addi-
tional information from the method’s signature, class, namespace, and possibly
others pieces of information to render the decorated name unique. In Subjective-
C, the selector of any context-specific method is mangled by prefixing the Con-
text keyword, followed by the name of all contexts on which the method has
been specialised. The name of complementary contexts (explained in Section 2.3)
is prefixed with NOT. The different name parts are separated by underscores. As
an example, Snippet 6 shows how the name of the drawTextInRect: method
from Snippet 4 is mangled. The snippet also shows the translation of the super-
Context construct, discussed further in Section 4.3.

The different method versions are registered to the context manager by auto-
matically generated code, shown in Snippet 7. The priority index lets the context
manager order method implementations to avoid ambiguities. This ordering is
discussed further in Section 7.

4 UIKit provides the classes needed to manage an application’s user interface in iOS.
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Method current_method =
class_getInstanceMethod(affectedClass, defaultMethodName);
Method selected_method =
class_getInstanceMethod(affectedClass, mangledMethodName);
method_setImplementation
(current_method, method_getImplementation(selected_method));

Snippet 8: Reflective method replacement to achieve predispatching.

4.2 Method Predispatch

Contrary to existing COP implementations, Subjective-C does not modify the
method lookup process of its host language. Rather, it determines the method
implementations that should be invoked according to the currently active context
at context-switching time. The chosen methods become the active methods in
the system. The set of active methods is recalculated for every change of the
active context. We call this process method predispatch.

Method predispatch is made possible by the ability to dynamically replace
method implementations in Objective-C. As sketched in Snippet 8, the predis-
patcher uses the reflective layer of Objective-C to exchange method implementa-
tions.5 The currently active implementation is replaced by a version that is most
specific for the active context. It can very well be that the old and new versions
are the same, in which case the method switching operation has no effect.

This implementation technique would be less easy to achieve in other mem-
bers of the C language family such as C++, due to the lack of a standard reflec-
tive API that enables the manipulation of virtual method tables. A non-reflective
implementation would probably involve compiler– and platform-specific pointer
manipulations to patch such tables manually.

Finally, from Snippet 8 it can be observed that the default method and
its context-dependent adaptations belong to the same class. Since Objective-C
features open classes, methods can be added to any existing class. Open classes
make it possible for Subjective-C to add context-specific methods to any user-
defined, standard or built-in class, without access to its source code. Adaptability
of third-party code is one of the strongest advantages brought by Subjective-C,
and is another area in which other members of the C language family would fall
short in implementing a similar mechanism (because they lack open classes).

4.3 Super-Context Calls

Snippet 6 shows how the superContext construct from Snippet 4 is translated to
plain Objective-C. Snippet 9 shows the definition of the SUPERCONTEXT preproces-
sor macro used by the translated code. This macro replaces the current method
implementation by the next one in the method ordering corresponding to the
given class, default selector and currently active context, invokes the newly set
implementation, and reverts the change to leave the system in its original state.
5 Besides instance methods, it is also possible to manipulate class methods through
class_getClassMethod, but the details are inessential to the discussion.
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#define SUPERCONTEXT(_defaultSelector, _message) \
[MANAGER setSuperContextMethod:_defaultSelector forClass:[self class]]; \
_message; \
[MANAGER restoreContextMethod:_defaultSelector forClass:[self class]];

Snippet 9: Macro definition used to translate superContext constructs.

5 Validation

This section summarises three case studies we developed to assess the qualities of
Subjective-C to respectively create a new context-aware application from scratch,
extend an existing application so that it becomes context-aware, and refactor an
existing application by exploiting its internal modes of operation (i.e. logical
contexts, as opposed to making it adaptable to physical changes).

Home Automation System. The goal of this case study is to build a home
automation system using Subjective-C from the ground up. The system permits
the use of a smartphone as remote control to regulate climatic factors such as
temperature, ventilation and lighting, and to command household appliances
such as televisions. The remote control communicates through the local network
with a server system, which simulates these factors and appliances, in a home
with a kitchen, bathroom, bedroom and living room. Each room is equipped
with a different combination of windows (for ventilation regulation), heating, air
conditioning and illumination systems. The remote control application adapts
its user interface and behaviour dynamically according to the simulated context
changes coming from the server.

This case study heavily uses the context declaration language introduced in
Section 3.5. Fig. 6 shows a graphical overview for the home server implemen-
tation. The relatively complex relations for this proof-of-concept system show
that the definition of a dedicated context declaration language is justified. In a
full-fledged home automation system the contexts and their relations could be
even more intricate, and defining all entities programmatically would result in
complex code.

Device Orientation. The goal of this case study is to extend an existing
Objective-C application with context-oriented constructs. The original Device
Orientation application is a proof-of-concept whose basic functionality is to dis-
play a text label which dynamically adjusts its display angle so that it remains
parallel to the ground, regardless of the physical device orientation. The applica-
tion extension consists in changing the text and colour of the label according to
orientation changes in the x and z axes. The guideline is to be able to introduce
said extensions with minimal intervention of the original source code. Several
code snippets from this case study are used throughout this paper.

Regarding efficiency, Device Orientation switches contexts as frequently as
every 100 milliseconds to keep the label constantly parallel to the ground. We
observed no apparent slowdown with respect to the original application: the label
adapts swiftly to orientation changes.
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Fig. 6: Context and relations in the Home Automation case study

Accelerometer Graph
preserving refactoring of an existing application using contexts, to assess the
impact on source code quality. The chosen application is Accelerometer Graph,
developed by Apple to illustrate the use of filters to smooth the data obtained
from an iPhone’s accelerometer. The application presents a graph of read ac-
celerometer data against time. It can work in standard (default) or adaptive
mode. Independently from these modes, it can work in low-pass or high-pass
mode. Due to these operation modes, the original application presents some
cases of conditional statements related to the operation mode, and code dupli-
cation. The refactored version avoids the conditionals and the duplication by
modelling the different operation modes as contexts.

From the experience gathered in the described case studies, we have ob-
served that extensibility and maintainability are particularly strong points of
Subjective-C. These main strengths come from the separation of concerns be-
tween the base application and its context-specific adaptations. Subjective-C
allows the adaptation of any method of the application, and all such method
adaptations that correspond to a given context can be modularised and furnished
as a single unit. Further details and in-depth discussion of the case studies are
provided by Libbrecht and Goffaux [13].

6 Benchmarks

As mentioned in Section 1, one of the main advantages of COP is that it of-
fers an alternative to hard-coded conditional statements. By helping to avoid
such statements, COP renders code more reusable and maintainable. However,
this advantage would be nullified if the penalty in performance would be pro-
hibitively high. Therefore, to assess the cost of using COP abstractions, we mea-

. The goal of this case study is to perform a behaviour-

sured the difference in execution time between an application that uses contexts
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-(void) test:(int) mode {
if (mode == 1)
result = 1;

else if (mode == 2)
result = 2;

...
else if (mode == N)
result = N;

else
result = 0;

}

#context C1
-(void) test {
result = 1;

}
...
#context CN
-(void) test {
result = N;

}
-(void) test {
result = 0;

}

Snippet 10: Dummy test methods in Objective-C (left) and Subjective-C (right)
with N + 1 behavioural variants. The choice of the variant depends on the
application’s current operating mode and the application’s current execution
context, respectively.

in Subjective-C and an equivalent application that uses conditional statements
in Objective-C. Our benchmark consists of a dummy application that runs in
1+N possible operation modes (the default one plus N variants). In Objective-C
these modes are encoded as integers stored in a global variable, on which ap-
plication behaviour depends. In Subjective-C the alternatives are represented as
contexts. Snippet 10 illustrates the two approaches. For the sake of the bench-
mark, the test method merely produces a side effect by assigning the result
global variable. Since the execution cost of such an assignment is negligible, the
cost of test is dominated by the cost of method invocation. Additionally, the
Objective-C solution incurs the cost of testing the branches in the conditional
statement. For sufficiently high values of N , this cost becomes considerable. In
Subjective-C there is no additional cost associated to the choice of a behavioural
variant during method invocation, because such choice has been precomputed
at context-switching time.

Naturally, the question is how the costs of conditional statement execution
in Objective-C and context switching in Subjective-C compare. To measure the
difference, we invoke the test method M times for every context change, as
shown in Snippet 11. In Objective-C, test execution time depends on the num-
ber of branches K that need to be evaluated in the conditional statement. In
Subjective-C, test execution time is constant, but at context-switching time it
is necessary to iterate over the first K possible methods to find the one that
needs to be activated. The results of the comparison between these two ap-
proaches are shown graphically in Fig. 7a for N = 50 and K = 50. The test
application was run in debugging mode on an iPhone 3GS with iOS 4.0. In the
case illustrated in Fig. 7a, context switching reaches the efficiency of conditional
statement execution at about 1150 method calls per context switch. Beyond this
point, Subjective-C is more efficient than Objective-C; the execution time in
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for (int i = 0; i < 1000; i++) {
if (i % 2)
[CONTEXT activateContextWithName:@"CK"]; // mode = K;

else
[CONTEXT deactivateContextWithName:@"CK"]; // mode = 0;

for (int j = 0; j < M; j++)
[self test];

}

Snippet 11: Code to measure the relative cost of context changes with respect
to context-dependent method invocation in Subjective-C; the Objective-C
counterpart is analogous and is therefore just suggested as comments.

both approaches will tend to grow linearly, although Objective-C will have a
considerably higher slope due to conditional statement execution,6 besides the
cost of method invocation which is incurred in both approaches. Fig. 7b sum-
marises the intersection points for various values of N and K, including the case
of Fig. 7a.
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Fig. 7: Performance comparison of Objective-C and Subjective-C; (a) illustration
with logarithmic scale for the case N = 50, K = 50, and (b) summary of
efficiency meeting points M∗ for various values of N and K

The benchmarks just discussed use contexts that are not linked through any
of the relations introduced in Section 3. Though not shown here for space limita-
tions, we have carried out a few benchmarks to assess the impact of relations on
context activation [13]. The presence of exclusion relations increases slightly the
time of activation (i.e. an extra check for every excluded context); in inclusion
6 This difference is not apparent in Fig. 7a because of the logarithmic scale.
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relations, the (de)activation must be not only accepted but also propagated on
the chain of included contexts. Processing inclusion relations is about 4 times
more costly than processing exclusion relations.

In another benchmark we assessed the cost of activation according to the
number of methods associated to the switched context. As can be expected, the
activation time increases linearly with the number of methods (e.g. if a context
has twice as many methods, it takes twice as much time to switch).

Yet in one more benchmark we evaluated the activation time according to
number of contexts that specialise a given method. In our implementation, the
execution time grows linearly with the number of contexts that implement the
same method, because finding the most specific method involves a linear search
in a list of available methods.7

The efficiency of Subjective-C depends highly on its usage. Most benefits are
obtained for contexts that are switched infrequently with respect to the rate of
usage of affected methods. Fortunately, this is the case for most common scenar-
ios, because context changes are usually linked to physical phenomena such as
orientation changes, temperature changes, battery charge changes, network con-
nections, and so forth. In particular, in each of the three case studies described in
Section 5, the Subjective-C implementation did not give rise to apparent perfor-
mance penalties. This being said, we can think of a few kinds of contexts which
could be switched very rapidly, for instance software memory transactions imple-
mented as contexts [7], used in tight loops. For these cases the penalty incurred
by Subjective-C could become detrimental to overall performance. However, for
most practical cases we can conclude that COP abstractions do not incur a
performance penalty that would bar them from mobile platform programming.

7 Limitations and Future Work

Even though Subjective-C is usable for application development on mobile de-
vices as suggested in Section 5, it still has rough edges we need to iron out. This
section describes the most salient ones, starting with the more technical and
going over to the more conceptual.

Super-Context Translation. A caveat of the implementation presented in
Section 4.3 is the impossibility to retrieve the return value from a superContext
message. Our current solution consists in having a different syntax when the
return value is needed, which complements the definition of the superContext
construct given in Section 2.4:

[superContext selector] => variable;
[superContext keyword: argument ...] => variable;

This syntax is translated to a variant of the SUPERCONTEXT macro which expands
the message as variable = _message instead of just _message.
7 We have invested no effort yet in improving this straightforward implementation.
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The additional syntax shown here is due to a particularity of our current
implementation, but we see no fundamental reason why it could not be avoided
in a more sophisticated version of the compiler.

Context Scope and Concurrency. Context activation in Subjective-C is
global. All threads share the same active context and see the effects of con-
text switching performed by other threads. This can give rise to race conditions
and behavioural inconsistencies if concurrent context switches occur at inappro-
priate execution points [9]. However, note that this issue does not stem from a
conceptual error. As discussed in Section 2.1, any computing device is embedded
in a physical and logical execution environment, which all applications running
on the device share. For instance, it is natural that all applications become aware
of a LowBattery condition, or a reorientation of the device to Landscape position.
Rather than avoiding the problem of shared contexts altogether by limiting the
scope of context effects to individual threads, our open research challenge and
line of future work consists in detecting the execution points at which shared
context changes are safe to perform, whether automatically or with some sort of
assistance such as source code annotations.

Nevertheless, having made a case for global contexts, we do believe that
adding support for local contexts, representing the running conditions of par-
ticular threads, would be a useful addition to Subjective-C. For instance, one
thread could run in Debug or Tracing mode simultaneously with other threads
running in default mode.

Behaviour Disambiguation. Whenever multiple methods are applicable for
a given message and active context configuration, the context manager should
be able to deterministically define which of the methods is to be invoked. For
example, suppose there are two versions of UILabel’s drawTextInRect: method,
respectively specialised on the Landscape and LowBattery contexts. If both con-
texts are active at any given time, it is unclear which of the two versions of
drawTextInRect: should be applied first.

Currently, the choice is based on a priority assigned to every method. De-
fault methods have always less priority than context-dependent methods. For
two context-dependent methods, the priority is given by the order in which the
compiler comes across the method definitions.8 Hence, the later a method is
found, the higher its priority. Clearly this ad hoc mechanism to automatically
determine priorities is insufficient. A better solution is to define a version of the
ambiguous method specialised on the set of conflicting contexts (in the exam-
ple, Landscape and LowBattery), and resolve the ambiguity manually in that
specific method implementation. This solution cannot be used for every possible
combination as this would result in a combinatorial explosion. A line of research
is to help predicting which ambiguities arise in practice by analysing context
relations, and provide declarative rules to resolve remaining ambiguities based
on domain-specific criteria.

8 Note that Objective-C open classes can be defined across multiple files.

262 S. González et al.



8 Related Work

COP-like ideas for object-oriented systems can be traced back as far as 1996.
The Us language, an extension of the Self language with subjective object be-
haviour [17], inspired our work since the early stages. In Us, subjectivity is ob-
tained by allowing multiple perspectives from which different object behaviour
might be observed. These perspectives are reified as layer objects, and hence,
Us layers are akin to Subjective-C contexts.

The contemporary notion of COP has been realised through a few imple-
mentations, in particular ContextL [4] which extends CLOS [2], Ambience [9]
which is based on AmOS [8], and further extensions of Smalltalk [10], Python
[14] and Ruby,9 among others. Most existing approaches, with the exception of
Ambience, seem to be conceptual descendants of ContextL, and therefore share
similar characteristics. None of these COP languages is similar to Subjective-C
in that they affect method dispatch semantics to achieve dynamic behaviour
selection, whereas Subjective-C uses method predispatching, introduced in
Section 4.2.

Subjective-C is inspired on our previous work with Ambience. In particular,
both languages use the notion of contexts as objects representing particular
run-time situations, described in Section 2.2. Further, contexts in Ambience are
also global and shared by all running threads, an issue discussed in Section 7.
Whereas in Ambience it would not be difficult to adapt the underlying AmOS
object model to support thread-local contexts, in Subjective-C we do not control
the underlying object system inherited from Objective-C.

An issue barely tackled by existing COP approaches is the high-level mod-
elling of contexts and their conditions of activation. Subjective-C makes a step
forward in this direction by introducing different types of relations between con-
texts, explained in Section 3. This system of relations bears a strong resemblance
to some of the models found in Software Product Line Engineering (SPLE). Un-
fortunately, thus far SPLE has focused mostly on systems with variability in
static contexts [15]. Variability models such as Feature Diagrams (FDs) [11]
and their extensions have not been geared towards capturing the dynamism of
context-dependent behavior. More recent work on variability models acknowl-
edges the concept of dynamic variability in SPLE [3,5,12].

Also related to COP in general, and Subjective-C in particular, is the family
of dynamic Aspect-Oriented Programming approaches. PROSE [16] for instance
is a Java-based system using dynamic Aspect-Oriented Programming (AOP)
for run-time adaptability. Since dynamic aspects can be woven and unwoven
according to context, dynamic AOP can be a suitable option to obtain dynamic
behaviour adaptation to context. Dynamic AOP buys flexibility (for instance,
the ability to express join points that capture only certain invocations of a given
method, instead of every invocation) at the expense of more conceptual and
technical complexity (e.g. additional join point language and abstractions for
aspect definition).

9 http://contextr.rubyforge.org
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9 Conclusions

The field of Context-Oriented Programming (COP) was born in response to a
lack of adequate programming abstractions to develop adaptable applications
that are sensible to their changing execution conditions. Observing that no ex-
isting COP language allowed us to experiment with context-oriented mobile
application programming, we set out to develop an extension of one of the most
widely used languages for mobile devices, namely Objective-C. The result is the
Subjective-C language,which furnishes dedicated language abstractions to deal
with context-specific method definitions and thus permits run-time behavioural
adaptation to context. Subjective-C objects are less “objective” than those of
Objective-C in that their expressed behaviour does not depend entirely on the
messages they receive, but also on the current execution context.

Subjective-C goes beyond existing COP approaches by providing an explicit
means to express complex context interrelations. The different relations have
a corresponding graphical depiction and textual representation, to ease their
description and communication among developers and domain experts. Although
we cannot guarantee that the set of supported relation types is complete enough
to express all relevant context settings, we have found it to be sufficient in
practice for now.

Subjective-C introduces an original implementation technique that trades
context switching efficiency for method execution efficiency. Our experience with
the validation cases shows that this technique results in no noticeable efficiency
penalties, despite the relatively resource-constrained host platforms on which
these applications run. Even more, under some circumstances efficiency is im-
proved as compared to using plain Objective-C. From the same experience we
have observed that Subjective-C seems to achieve its ultimate software engineer-
ing goals, which are improved modularisation, increased readability, reusability,
maintainability and extensibility of context-aware software.
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Abstract. As an alternative modeling infrastructure and paradigm, multi-level 
modeling addresses many of the conceptual weaknesses found in the four level 
modeling infrastructure that underpins traditional modeling approaches like 
UML and EMF. It does this by explicitly distinguishing between linguistic and 
ontological forms of classification and by allowing the influence of classifiers 
to extend over more than one level of instantiation. Multi-level modeling is 
consequently starting to receive attention from a growing number of research 
groups. However, there has never been a concrete definition of a language de-
signed from the ground-up for the specific purpose of representing multi-level 
models. Some authors have informally defined the “look and feel” of such a 
language, but to date there has been no systematic or fully elaborated definition 
of its concrete syntax. In this paper we address this problem by introducing the 
key elements of a language, known as the Level-Agnostic Modeling Language 
(LML) designed to support multi-level modeling.  

Keywords: Multi-Level Modeling, Modeling Language. 

1   Introduction 

Since it kick started the modern era of model driven development in the early 90s, the 
concrete syntax of the structural modeling features of the UML has changed very lit-
tle. Almost all the major enhancements in the UML have focused on its abstract syn-
tax and infrastructure [1]. Arguably, however, the original success of the UML was 
due to its concrete syntax rather than its abstract syntax as the former has been 
adopted in many other information modeling approaches, such as ontology and data 
modeling [9]. Today, discussions about the concrete syntax of languages usually take 
place in the context of domain specific modeling languages [3]. Indeed, domain spe-
cific languages are increasingly seen as one of the key enabling technologies in soft-
ware engineering. While the importance of domain specific languages is beyond 
doubt, universal languages that capture information in a domain independent way still 
have an important role to play. They not only provide domain-spanning representa-
tions of information, they can tie different domain specific languages together within 
a single framework.  

Existing universal languages such as the UML are not set up to fulfill this role. The 
UML's infrastructure not only has numerous conceptual weaknesses [5], it does not 
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satisfactorily accommodate the newer modeling paradigms that have become popular 
in recent years, such as ontology engineering [2]. In this paper we present a proposal 
for a new universal modeling language that addresses these weaknesses. Known as 
the Level-agnostic Modeling language, or LML for short, the language is intended to 
provide support for multi-level modeling, seen by a growing number of researchers as 
the best conceptual foundation for class/object oriented modeling [6], [7], [8]. It is 
also intended to accommodate other major knowledge/information modeling ap-
proaches and to dovetail seamlessly with domain specific languages. Since the core 
ideas behind multi-level modeling have been described in a number of other publica-
tions, in this paper we focus on the concrete syntax of the LML and only provide 
enough information about the semantics and abstract syntax to make it understand-
able. The language is essentially a consolidation and extension of the notation  
informally employed by Atkinson and Kühne in their various papers on multi-level 
modeling [6], [11], [12]. Some of the concrete goals the LML was designed to fulfill 
are as follows: 

To be UML-like. Despite its weaknesses, the UML's core structural modeling fea-
tures, and the concrete syntax used to represent them, have been a phenomenal suc-
cess and have become the de facto standard for the graphical representation of 
models in software engineering. To the greatest extent possible the LML was de-
signed to adhere to the concrete syntax and modeling conventions of the UML. 

To be level agnostic. The language was designed to support multi-level modeling 
based on the orthogonal classification architecture described by Atkinson, Kühne 
and others [6], [7], [12]. The core requirement arising from this goal is the uniform 
(i.e. level agnostic) representation of model elements across all ontological model-
ing levels (models) in a multi-level model (ontology). 

To accommodate all mainstream modeling paradigms. Although UML is the 
most widely used modeling language in software engineering, in other communi-
ties other languages are more prominent. For example, in the semantic web and ar-
tificial intelligence communities ontology languages like OWL [9] are widely 
used, while in the database design community Entity Relationship modeling lan-
guages such as those proposed by Chen [13] are still important. A key goal of the 
LML therefore is to support as many of these modeling paradigms as possible, 
consistent with the overall goal of being UML-oriented. 

To provide simple support for reasoning services. The lack of reasoning ser-
vices of the kind offered by languages such as OWL is one of the main perceived 
weaknesses of UML. However, there are many forms and varieties of reasoning 
and checking services provided by different tools, often with non-obvious seman-
tics. One goal of the LML is therefore to provide a foundation for a unified and 
simplified set of reasoning and model checking services. 

Unfortunately, due to space restrictions it is only possible to provide a general over-
view of LML's features, and it is not possible to discuss LML's support for reasoning 
services in any detail. In the next section we provide a brief overview of  multi-level 
modeling and the infrastructure that underpins the LML. In section 3 we then present 
the main features of the language in the context of a small case study motivated by the 
movie Antz. In section 4 we discuss logical relationships, which are one of the  
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foundations for the reasoning services built on the LML, before concluding with some 
final remarks in section 5. 

2   Orthogonal Classification Architecture 

As illustrated in Fig. 1, the essential difference between the orthogonal classification 
architecture and the traditional four level modeling architecture of the OMG and EMF 
is that there are two classification dimensions rather than one. In the linguistic dimen-
sion, each element in the domain modeling level (L1) is classified according to its 
linguistic type in the L0 level above. Thus, elements such as AntType, Ant, Queen and 
the relationships between them are defined as instances of model elements in the L0 
level according to their linguistic role or form. In the ontological dimension, each 
element in an ontological level (e.g. O1, O2, ..) is classified according to its ontologi-
cal type in the ontological level above (i.e. to the left in Fig. 1). Thus Bala is an onto-
logical instance of Queen, which in turn is an ontological instance of AntType. The 
elements in the top level in each dimension (with the label 0) do not have a classifier. 
The bottom level in Fig. 1 is not part of the modeling infrastructure, per se, but con-
tains the entities that are represented by the model element in L1. Like the bottom 
level of the OMG and EMF modeling infrastructures, therefore, it can be regarded as 
representing the “real world”. 

 

Fig. 1. Multi-Level Modeling Example 

In principle, it is possible to have an arbitrary number of linguistic levels, but in 
practice the arrangement shown in Fig. 1 is sufficient. In our orthogonal classification 
architecture there are only two linguistic levels and only one of these, L1, is divided 
into ontological levels. The top level linguistic model therefore defines the underlying 
representation format for all domain-oriented and user-defined model content in the 
L1 level, and spans all the ontological levels in L1. For this reason we refer to it as the 
Pan-Level Model or PLM for short. In effect, it plays the same role as the MOF and 
Ecore in the OMG and EMF modeling infrastructures, but its relationship to user 
models respects the tenet of strict meta modeling [5]. 

The Pan Level Model (PLM) defines the abstract syntax of the language that we in-
troduce in the ensuing sections [10]. The LML therefore essentially defines a concrete 
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syntax for the PLM. To simplify discussions about content organized in the way 
shown in Fig. 1 we use the terms “ontology” and “model” in a specific way. We call 
all the modeling content in the L1 level, across all ontological levels, an “ontology”, 
while we call the modeling content within a single ontological level a “model”. This 
is consistent with common use of the terms since models in the UML are usually type 
models [14] and ontologies often define the relationships between instances and types 
(i.e. the relationship between two ontological levels or models). 

There are two basic kinds of elements in an LML ontology: InstantiatableElements 
and LogicalElements, each of which has a name attribute and an owner attribute.  In-
stantiatableElements are the core modeling elements that fulfill the role of classes, 
objects, associations, links and features in traditional modeling languages such as the 
UML, OWL or ER languages. The main difference is that they fulfill these roles in a 
level-agnostic way. LogicalElements on the other hand represent classification, gener-
alization and set theoretic relationships between InstanstiatableElements. Instantiat-
ableElements come in two basic forms, Clabjects, which represent classes, objects, 
associations and links, and Features that play a similar role to features in the UML – 
that is, attributes, slots and methods. Field is the subclass of Feature that plays the 
role of attributes and/or slots, while Method is the subclass of Feature that plays the 
role of methods. Clabjects, in general, can simultaneously be classes and objects 
(hence the name – a derivative of “class” and “object”). In other words they represent 
model elements that have an instance facet and a type facet at the same time. There 
are two kinds of Clabjects, DomainEntities and DomainConnections. DomainEntities 
are Clabjects that represent core domain concepts, while DomainConnections, as 
there name implies, represent relationship between Clabjects. They play the role of 
associations and links, but in a way that resembles association classes with their own 
attributes and slots.  

3   Clabjects 

The concrete representation of clabjects in LML is based on the notational 
conventions developed by Atkinson and Kühne [11] which in turn are based on the 
UML. Fig. 2 shows an example multi-level model (i.e. ontology) rendered using the 
LML concrete syntax. Inspired by the film Antz, this contains three ontological levels 
(i.e. models) organized vertically rather than horizontally as in Fig. 1. 

In its full form a clabject has three compartments: a header compartment, a field 
compartments and a method compartment. The header is the only mandatory com-
partment and must contain an identifier for the clabject, shown in bold font. This can 
be followed, optionally, by a superscript indicating the clabject's potency and a sub-
script indicating the ontological level (or model) that it occupies. Like a multiplicity 
constraint, a potency is a non-negative integer value or “*” standing for “unlimited” 
(i.e. no constraint). Thus the clabject FlyingAnt, in Fig. 2 has potency 1 and level 1, 
while clabject Z has potency 0 and level 2. The field and method compartments are 
both optional. They intentionally resemble the attribute and slot compartments in 
UML classes and objects. However, the key difference once again is that the notation 
for fields is level agnostic. This allows them to represent UML-like attributes, slots 
and a mixture of both, depending on their potency. 
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Fig. 2. Antz domain example in LML concrete syntax 
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Potencies on fields follow the same rules as potencies on domain entities. The only 
constraint is that a field cannot have a higher potency than the clabject that owns it. In 
general, the representation of a field has three parts: a name, which is mandatory,  
a type and a value. A traditional UML slot corresponds to a potency 0 field with a 
value,  whereas a traditional UML attribute corresponds to a potency 1 field without a 
value. 

When a value is assigned to a field with a potency greater than 0, the value 
represents the default value for corresponding fields of the clabject's instances. In  
Fig. 2, FlyingAnt has a potency 0 field, hasWings, of type Boolean with the value True. 

Methods are represented in the same way as operations in the UML using signature 
expressions that include the name, the input parameters and the return value if there is 
one. The only difference is that methods in LML have a potency associated with 
them. As with fields, the potency of a method cannot be higher than the potency of its 
owning clabject. 

3.1   Proximity Indication 

The UML provides various notational enhancements in the header compartment of 
classes and objects to show their location within the instantiation, inheritance and con-
tainment hierarchies. More specifically, the “:” symbol can be used to to express the 
fact that an object is an instance of a class and the “::” notation can be used to show 
that a model element belongs to, or is contained in, another model element. However, 
these notations are rather ad hoc and cannot be used in a level agnostic way. For exam-
ple, to show that a class is an instance of another class at a higher meta-level, a stereo-
type has to be “attached” to the class using the guillemot notation. Alternatively, the 
powertype concept can also be used to indicate that a class X is an instance of another 
class Y, but only if it is one of numerous subclasses of another class, Z. In contrast to 
the UML, the LML provides a fully level-agnostic way of representing a clabject's 
location in the instantiation, inheritance and containment hierarchies.  

Classification (Instantiation) Hierarchy. The basic notation for representing a clab-
ject's location in the instantiation hierarchy in the LML is the same as that used in the 
UML for objects. In Fig. 2, the header of the Worker clabject, “Worker:AntType”,  
indicates that Worker is an instance of AntType. Of course this notation can also be 
applied over multiple ontological levels as shown in the header of Azteca  
(“Azteca:Worker:AntType”). It is also possible to use the “::” notation to omit one 
one or more clabjects in the instantiation hierarchy. For example, if it is only of rele-
vance that Azteca is an instance of AntType, Azteca's header can be reduced to  
“Azteca::AntType”. 

Generalization (Inheritance) Hierarchy. The UML provides no way of showing the 
ancestry of a class within its header compartment. In LML this can be done using the 
“<” symbol on the left hand side of a clabject's name to represent subtypeOf relation-
ships. This is intended to resemble the white triangle at the supertype end of a gener-
alization in the UML. As with the “::” notation, two consecutive “<” characters can be 
used to indicate that one or more clabjects of the inheritance hierarchy are not identi-
fied. Thus, the header of Soldier in Fig. 2 shows that it is a subclass of Worker and 
Ant, but omits the fact that it is also a subclass of FemaleAnt. Of course, in Fig. 2 this 
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information is redundant in the header of Soldier because the inheritance hierarchy is 
shown explicitly using generalization relationships. 

Ownership (Containment) Hierarchy. Ownership is the basis for defining  
namespaces. Basically, an element is a namespace for everything that it owns - that is, 
anything that identifies it as its owner through its owner attribute. The relationship 
between a clabject and its Fields is also ownership. Fields have the clabject they be-
long to as their owner. Ownership information can be included in the identifier of a 
clabject, like the Ant clabject in Fig. 2. In LML this is shown using the “.” symbol 
rather than the “::” symbol as in the UML. This is consistent with the notation used in 
programming languages such as Java. Thus, the header of Ant in Fig. 2, 
“”Antz.O1.Ant”, shows that Ant is contained in the model O1 which in turn is con-
tained in the ontology Antz. 

3.2   Attribute Value Specifications 

In traditional modeling environments, model elements only derive their attributes 
from one type, and in UML like languages these are shown in the compartment below 
the header. In a multi-level modeling environment, all model elements except those at 
the top ontological level (i.e. model) have two types, a linguistic one and an ontologi-
cal one. The attributes of the ontological types are shown in the field compartment in 
the traditional way. The linguistic attributes, in contrast, are shown elsewhere in one 
of two different ways. The first way uses special notations or conventions for differ-
ent attributes, such as the subscript and superscript notations for  level and potency. 
The second way is to add explicit “attribute specifications” under the name of a clab-
ject, similar to tagged value specifications in the UML. The general form of an attrib-
ute value specification, is the following 

  {attributeName = value, attributeName = value, ...} 

For boolean attributes the UML convention applies. If a boolean attribute is true it is 
only necessary to include its name in the list. However, if this convention is used then 
all true boolean attributes of the clabject must be shown as well. This is because all 
boolean attributes that are not shown are assumed to be false. In Fig. 2 the Ant clab-
ject has an attribute value specification indicating the value of it attributes. 

3.3   Domain Connections 

As mentioned in section 2, there are two distinct kinds of clabjects – domain entities 
and domain connections. The former play a role similar to classes/objects  in the 
UML and the latter play a role similar to associations/links. As shown in Fig. 2  they 
are distinguished visually by different symbols - rectangles in the case of domain enti-
ties and flattened hexagons in the case of domain connections. This is intended to 
resemble the diamond symbol that is used to represent connections in Entity Relation-
ship diagrams [13]. ERA diagrams can therefore easily be represented in LML. We 
use flattened hexagons rather than diamonds because they are ergonomically more 
compact. 

The other major difference is that domain connections are responsible for “carry-
ing” the lines that are used in the representation of connections. The problem with 
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using a symbol like a hexagon to represent a domain connection is that this breaks the 
fundamental visualization metaphor of the UML in which relationships are mapped to 
edges rather than nodes. To address this problem and accommodate both the UML 
and ERA visualization metaphors at the same time, LML allows a domain connection 
to be represented in an imploded form by a “visually insignificant” dot as well as in 
the full exploded form as a flattened hexagon [15]. In the former case, the domain 
connection is still conceptually represented as a node, but the overall visual effect is 
that of an edge as in the UML. In Fig. 2, the domain connection mate is shown in this 
dotted form. This shows that the multiplicity constraints, role names and navigability 
values owned by the domain connection can be shown at the end of the appropriate 
lines using the standard UML conventions. In general, it is possible to present all the 
information that can appear in the header of the expanded form of a domain connec-
tion next to the dot. This includes the name and an attribute value specification. How-
ever, the fields and methods of a domain connection can only be shown in the ex-
panded form, as indicated by the descends connections in Fig. 2. 

4   Logical Elements 

Logical relationships capture set theoretic relationships between clabjects and come in 
three basic forms – Generalization, Instantiation, and SetRelationship. The first kind 
captures subtyping/supertyping relationships between clabjects, the second kind cap-
tures classification relationships between clabjects and the third kind captures other 
general set theoretic relationships between clabjects. 
Since they are relationships, the same basic representation options used for Domain-
Connections is also supported for LogicalElements – namely, they can be rendered in 
an exploded form and in an imploded form as a “dot”. The expanded form uses a 
slightly different symbol to DomainConnections – namely, a “rectangle” with 
rounded sides at the top and bottom. Another minor difference is that for logical rela-
tionships the name is optional in the expanded form.  

Generalization. Generalization relationships show the basic subtype/supertype re-
lationships in set-based models. In Fig. 2, the connection-line between Ant and 
Thing using the white triangular arrow (which is similar to the UML representation 
of generalizations) indicates that Ant is a subtype of Thing in the imploded repre-
sentation. The generalization, maleFly, on the other hand shows generalization in 
an exploded form. It indicates that FlyingAnt and FemaleAnt are both subtypes of 
Ant. Besides the generalization's name the generalization symbol contains an at-
tribute value specification indicating that maleFly is complete. 

Instantiation. Instantiation relationships show that one clabject is an instance of 
another clabject. As such they are the only kind of relationships that are allowed to 
cross an ontological level boundary (in fact they have to) to connect two clabjects 
at different levels. As the instantiation between Bala and Queen in Fig. 2 shows, 
Instantiation relationships are represented in a similar way to the UML using an 
open-headed, dashed arrow going from the instance to the type. They can also be 
represented in an imploded or exploded form. 

SetRelationship. Set relationships specificity some other kind of set theoretic rela-
tionship between clabject. Typical examples are complements, inverseOf and 



274 C. Atkinson, B. Kennel, and B. Goß 

 

equals. The equals relationship between FlyingAnt and FertileAnt in Fig. 2 indi-
cates that they essentially represent the same set, since every fertile ant can fly and 
only fertile ants can fly. As usual the name of the relationship is shown inside the 
shape. Set relationships do not normally have attribute value specifications. 

5   Conclusion 

In this paper we have presented a language, LML, designed to support multi-level 
modeling using the orthogonal classification architecture, with a focus on its concrete 
syntax. As mentioned in the introduction this work builds on the informal notation 
developed by Atkinson and Kühne in a series of papers. As well as supporting multi-
level modeling the language has also been designed to exhibit several other important 
characteristics. However, for space reasons it is not possible to fully explain them all 
in a paper of this size. 

First, to the greatest extent possible, LML was designed to support and be consis-
tent with the notations and conventions popularized by the UML. As is hopefully evi-
dent from the discussion, LML can easily be made to have the look and feel of tradi-
tional UML. Like the UML, the LML concrete syntax is intended to be renderable in 
black and white and to be readily drawable by hand where necessary. There are lots of 
ways in which colour could enhance the information shown in LML diagrams, but 
this is left to individual tools and modelers. 

Second, LML is also designed to support the look and feel of other important mod-
eling paradigms as well. In particular it can support the entity relationship modeling 
approach pioneered by Chen for data modeling and contains all the features needed to 
represent OWL ontologies. Because it supports all ontological levels in a uniform and 
relatively rich way, the LML provides a natural representation of both instance and 
type knowledge. OWL, in contrast, only directly supports the latter. 

Third, the language has built-in support for depicting which information in a model 
has been explicitly expressed by a human modeler and which has been computed by a 
reasoning or transformation engine. This allows the LML to support simpler, more 
understandable reasoning services. For example the traditional “subsumption” service 
offered by ontology engineering tools such as Protegé [16] essentially computes new 
generalization and classification relationships based on the properties of the classes 
and objects in the ontology. With LML, these could be offered in a more understand-
able way through services such as “add all generalizations” or “add all instantiation 
relationships”. This not only breaks down the service into its constituent parts which 
can be invoked independently, it also allows them to be fine tuned into more useful 
services.  

Finally, the language includes various kinds of elision symbols which can show 
when expressed information is not shown in a particular view of a model. In other 
words, it can be used to show that the underlying model or knowledge base has fur-
ther expressed information that is not shown in the current diagram. This is important 
in clarifying whether a diagram, and queries direct to it, should be interpreted in an 
“open world” or a “close world” way. 

Although the focus of modeling language research has turned from universal mod-
eling languages like the UML to DSLs we believe the evolution of universal modeling 
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languages is far from over. We hope the ideas presented in this paper will contribute 
towards this evolution and will help lead towards a better synergy of DSL and univer-
sal modeling languages. We also hope it will pave the way for a unification of soft-
ware modeling (i.e. UML-oriented), knowledge representation (i.e. OWL-oriented) 
and information modeling (i.e. ER-oriented) technologies. 
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Abstract. An important obstacle to the wide-spread adoption of model-
driven development approaches in industry is the lack of proper debug-
ging facilities. Software debugging support is provided by a combination
of language and Integrated Development Environment (IDE) features
which enable the monitoring and altering of a running program’s state.
In Domain-Specific Modelling (DSM), debugging activities have a wider
scope: designers debug model transformations (MTs) and synthesized
artifacts, while domain-specific modellers debug their models, unaware
of generated artifacts. This work surveys the state-of-the-art of debug-
ging in the context of DSM and proposes a mapping between debugging
concepts (e.g., breakpoints, assertions) in the software and DSM realms.

1 Introduction

DSM allows domain experts to play active roles in (software) development ef-
forts. It provides them with means to manipulate constructs they are familiar
with and to automate the error-prone and time-consuming conceptual mapping
between the (often very distant) problem and solution domains. Empirical evi-
dence suggests increases in productivity of up to one order of magnitude when
using DSM and automatic artifact synthesis as opposed to traditional code-
driven development approaches [9,5].

MTs1 are used to specify the semantics of Domain-Specific Languages (DSLs)
by defining interpreters or by mapping onto formalisms whose semantics is well
understood such as Petri Nets, Statecharts or code. In this work, we focus on
rule-based approaches, where MTs are composed of rules, each parameterized by
a left-hand side (LHS) and right-hand side (RHS) pattern, an optional negative
application condition (NAC) pattern, condition code, and action code. The LHS
and NAC patterns respectively describe what sub-graphs should and should
not be present in the source model for the rule to be applicable while the RHS
pattern describes how the LHS pattern should be transformed by its application.

1 See [2] for a detailed feature-based classification of existing MT techniques.
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Further applicability conditions may be specified within the condition code while
post-application actions may be specified within the action code.

The typical work flow of a DSM project consists of the specification of one or
more DSLs and of the MTs that define their semantics. Subsequently, Domain-
Specific models (DSms2) are created. In practice, DSms, MTs, and synthesized
artifacts may all require debugging. In Section 2, we survey the state-of-the-art
of debugging in the context of DSM. In Section 3, we review common debugging
concepts such as breakpoints and assertions from the programming world, which
we map onto the DSM world in Section 4. The contributions of this work are our
mapping of debugging concepts from the programming to the DSM world, and
the demystification of the amount of effort required to produce DSM debuggers.

2 Related Work

Little research has focused on debugging in DSM. In the numerous industrial ap-
plications of DSM presented in [9,5], the debugging of DSms, of their associated
ad hoc generators, and of the synthesized artifacts is always accomplished without
tool support and is performed at the code rather than the DSm level, dealing only
with artifacts and modelling tool APIs. Conceptually, this equates to debugging
compilers and bytecode to find and resolve issues in a coded program.

Wu et al. presented the most advanced DSm debugger to-date in [13]. By
transparently building a detailed mapping between model entities and synthe-
sized code, they allow the creator of textual DSms to re-use Eclipse’s debugging
facilities (e.g., setting breakpoints and stepping in DSms) without being exposed
to the synthesized code or its generator. The main advantage of this technique
is perhaps that it avoids the implementation of a brand new debugger. However,
it is limited to textual DSLs, restricts the modeller to the Eclipse tool, assumes
that generated artifacts are code, and does not consider MT debugging.

In [7], we laid the basis for extending Wu et al.’s work to visual DSLs. MT
rules are instrumented such that backward links (or “traceability links”) are
maintained between constructs at different levels of abstraction during artifact
synthesis. These links enable DSms to be animated and updated in real-time as
their corresponding synthesized artifacts are executed. Means to further exploit
these links to ease DSm and artifact debugging will be explored in Section 4.3.

Certain tools (e.g., AToM3 [3]) enable basic MT debugging by allowing rule-
by-rule execution, manual intervention when multiple rules are simultaneously
applicable (across multiple matches), and model modification between rule ap-
plications. Thus, the rule designer can observe the effects of each rule in isolation
and stear the MT. However, advanced functionality such as pausing the execu-
tion when arbitrary rules or patterns are encountered are not natively supported.

The inclusion of exceptions within Model Transformation Languages (MTLs)
is proposed in [11]. A control flow environment for rule execution is extended
with provisions for specifying exceptions (and their handlers). The technique for

2 We refer to domain-specific modelling and model as DSM and DSm, respectively.
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the modelling of interruptions by exceptions can readily be extended to support
interruptions by debugging commands, as we will discuss in Section 4.1.

3 Debugging Code

Several authors have looked into common sources of bugs, what makes some
of them more insidious than others, and popular debugging activities [4,14]. It
seems observing system state and hand-simulation are often used for locating
and resolving bugs. Means to carry out these activities are thus commonly found
in modern programming languages and IDEs. Below, an overview is given of
common and useful debugging facilities featured in languages and IDEs.

Print Statements. Print statements are commonly used to output variable
contents and verify that arbitrary code segments are executed.

Assertions. Assertions enable the verification of arbitrary conditions during
program execution. They cause the execution to be aborted when their condition
fails, and compilers provide means to enable and disable them – as opposed to
manual removal – to avoid undesired output or computation.

Exceptions. Exceptions are thrown at runtime to indicate and report on prob-
lematic system state. They may halt the execution of a program or be caught
by handlers which take appropriate action. Provisions for defining new types of
exceptions enable support for application-specific exceptional situations.

The language primitives above are traditionally used to create a “poor man’s
debugger”. The facilities below are commonly provided by modern IDEs.

Execution Control. Modern IDE debuggers support continuous and line-by-
line execution, as well as terminating and non-terminating interruption via
“play”, “step”, “stop” and “pause” commands respectively. There are usually
three step commands: step over, step into and step out (or step return). The
first atomically executes the current statement. The second executes one sub-
statement contained within the current statement, if any, thus effecting a change
in scope. Advanced debuggers support stepping into seemingly atomic constructs
into their corresponding lower-level representations, if any (e.g., Eclipse supports
stepping through Java bytecode). Stepping out causes continuous execution un-
til the current scope is exited. Finally, most IDEs allow running code in release
(as opposed to debug) mode leaving only the play and stop commands enabled.

Runtime Variable I/O. IDE debuggers usually provide means to read (and
change) global and local variables when the program’s execution is paused.

Breakpoints. Breakpoints are commonly set on statements indicating that pro-
gram execution should be interrupted before running the said statements.

Stack Traces. Visible when the execution is paused, stack traces display which
function calls led the program into its current state and enable navigation be-
tween the scopes of any level in the call stack for debugging purposes.
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4 Debugging in DSM

The development process in DSM has two important facets: developing mod-
els and developing MTs3. These facets introduce two very important differences
between the programming and DSM worlds. First, in the latter realm, artifacts
to debug are no longer restricted to code and include model transformations,
synthesized and hand-crafted models, and other arbitrary non-code artifacts.
Second, the counterparts of the common DSM activities of designing and debug-
ging MTs (i.e., designing and debugging code compilers/interpreters) are both
specialized activities in the coding realm. This section explores how the previous
concepts translate into the debugging stages of both facets of DSM development.

4.1 Debugging Transformations

To carry meaning and be more than metamodels for blueprints, DSLs need
associated semantics which the Model-Driven paradigm dictates should be spec-
ified as MTs [1]. Operational semantics can be specified as a collection of rules
each describing the transformation between valid system states. Executing these
rules effectively executes the model. Denotational semantics define the mean-
ing of a DSL by mapping its concepts onto other formalisms for which
semantics are well defined. This mapping is often encoded within code genera-
tors that transform DSms to code4 [9,5]. We demonstrated in [7] that modelled
mapping onto intermediate modelling formalisms (as opposed to directly onto
code) is modular, adheres closely to the Multi-Paradigm Modelling philosophy
[3], and considerably facilitates debugging by easing the specification, display
and maintenance of backward links between models and synthesized artifacts.
For both operational and denotational semantics, the resulting transformation
model describes a flow of rule applications which may require debugging. Below,
we re-visit the debugging concepts described earlier and translate them to MT
debugging.

Print Statements. Print statements for MTs could be emulated by creating
rules with output function calls in their action code. This entails accidental
complexity: LHS and RHS patterns need to be identical to avoid modifying
source models which in turn implies the necessity of loop prevention action code
and/or NAC patterns. A more domain-specific solution is to enhance MTLs
with printing functionality by introducing print rules that could be sequenced
with other rules, as shown in Fig. 1a. Print rules would be parameterized by
a pattern, condition code and printing code. Their natural semantics would be
to execute the printing code if the condition code is satisfied when the pattern
is found in the host model. Automatic synthesis of the contrived traditional
rules described above could trivially be achieved from print rules using higher-
order transformation rules5 thus leaving the transformation execution engine

3 Describing a formalism’s operational or denotational semantics.
4 Non-code artifacts such as XML, documentation and models may also be synthesized.
5 Rules that take other rules as input and/or output.
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(a) (b) (c)

Fig. 1. (a)Print rule prt inserted between traditional rules i and j; (b)Resuming,
restarting or terminating after handling an assertion; (c)A breakpoint on a rule

unchanged. Although it may seem odd to support a language construct whose
usefulness is mostly restricted to debugging purposes, we should remember that
print statements (whose usefulness is mostly restricted to debugging purposes)
are supported in every modern GPL.

Assertions. Assertions in transformation models can be emulated similarly to
print statements: their conditions encoded in rule condition code or patterns, and
exception throwing calls in rule action code6. This entails the same accidental
complexities as those mentioned for print statements. A similar solution applies:
enhancing the MTL with assertion rules – parameterized by a pattern, condi-
tion code and assert code – that could also be sequenced arbitrarily with other
rules. Analogous reasoning applies regarding their semantics, their automatic
translation to traditional rules and the validity of their inclusion in MTLs.

Exceptions. Exceptions and their handlers in the context of model transforma-
tion debugging were extensively studied in [11]. Syriani et al. provide a classifi-
cation of several common exceptions and support user-defined exception types.
They propose enhancing MTLs with exception handler rules to which traditional
rules can be sequenced to in case of exceptions. Figure 1b shows an assertion
rule sequenced to a normal rule and an exception handler.

Execution Control. Certain MT engines already support continuous and step-
by-step execution. In the former, the MT is executed until none of its rules apply
with user input optionally solicited when more than one rule applies simultane-
ously. In the latter, the user is prompted after every rule application. Stepping
over in the context of rule-based MT corresponds to the execution of one (pos-
sibly composite) rule. Stepping into a composite rule should allow the modeller
to execute its sub-rules one at a time. In T-Core-based languages [12], where
rules are no longer atomic blocks but rather sequences of primitive operations,
stepping into non-composite rules may also be sensible. Conversely, stepping out
should cause the continuous execution of any remaining rules or primitives in the
current scope. As for pausing an ongoing MT7, the naive approach is immediate
interruption although transactional systems might choose to commit or roll-back

6 This exact approach is presented in [11].
7 To our knowledge, this is only supported by VMTS [6].
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the current rule before pausing while T-Core-based systems might offer pausing
between primitives. Either choice has its merits and, like the step commands, is
heavily dependent on MTL and engine features: it seems reasonable that pausing
only occur when the system state is consistent and observable. Finally, release
(as opposed to debug) mode in this context should also disable pausing and
stepping functionality.

Runtime Variable I/O. MT debuggers should allow modellers to observe
and change a rule’s (or T-Core primitive’s) inputs and outputs. Ideally, these
should be presented using domain-specific constructs (and editors) rather than
in their internal format. If future MT engines support on-the-fly changes (i.e.,
do not require the transformation model to be recompiled and/or relaunched
for changes to take effect)8, rule parameters and sequencing should themselves
become viewable and editable at runtime.

Breakpoints. MT breakpoints could be set on composite and non-composite
rules, and T-Core primitives, as depicted in Figure 1c.

Stack Traces. Stack traces could enable the navigation between the contexts of
sub-rules and their parent rules, and between the contexts of T-Core primitives
and their enclosing rule. Like stepping and pausing, they are thus clearly and
closely related to the supported level of granularity of MTLs.

4.2 Creating Debuggable Artifacts

Before proceeding, we briefly review our technique for artifact synthesis from
DSms. In [7], we proposed a means of generating backward links between DSms
of mobile device applications, generated Google Android code, and intermediate
representations. Our technique is based on triple graph rules (TGRs)[10], which
provide generic means of relating constructs in LHS and RHS rule patterns.
Figure 2 shows four perspectives of the same system connected via a complex
“web” of links that reflects the application of the numerous TGRs that describe
the DSL’s denotational semantics. Though this web is not intended for direct hu-
man consumption, it can considerably facilitate the implementation of numerous
components of a DSM model and artifact debugger by, amongst other things,
enabling elegant two-way communication between DSms and generated artifacts,
and providing implicit and navigable relationships between related concepts.

4.3 Debugging Models and Artifacts

MT debugging facilities may not be sufficient for debugging models whose se-
mantics are specified denotationally. Running such models implies executing
synthesized artifacts9, not MTs. It is sensible to assume that in industry, DSLs
(and their semantics) will often be defined by different actors than the end-users
of the DSLs. Thus, we distinguish between two types of users. Designers are

8 To our knowledge, no such MT tools exist yet.
9 We restrict our attention here to programs and models.
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Fig. 2. (1)A DSm of a mobile conference registration application, generated models
which isolate its (2)layout and (3)behavioural aspects, and (4) a trivial generated model
of the final files on disk, all connected via traceability links

fully aware of the MTs that describe their models’ semantics and generate arti-
facts. Modellers have an implicit understanding of their models’ semantics but
have little or no knowledge about how they are specified. As an example, consider
Figure 2: a designer would be aware of each perspective, the links between them,
and of the synthesized code and executable; a modeller would only be concerned
with the DSm and synthesized executable. Consequently, the debugging scenar-
ios for designers and modellers differ. Designer debugging focuses on ensuring
the correctness of the MTs whereas modellers may assume that the MTs applied
to their models are flawless and must instead establish the correctness of their
models. In both scenarios, the basic work flow entails observing DSm versus
artifact evolution10 (with the designer possibly studying intermediate forms, if
any). A formal discussion on implementing this exceeds the scope of this paper
but the approach reviewed in Section 4.2 enables the sort of communication be-
tween DSm and artifact that would be required. Below, we re-visit the debugging
concepts described earlier and translate them to DSm and artifact debugging.

Print Statements. Modern DSm editors offer means to display pertinent in-
formation as concrete syntax (e.g., depictions of Petri Net places often include
their number of tokens) and provide easy access to construct parameters. Still,
explicit output may be required. An elegant solution is the (semi-)automatic
integration of output constructs in DSLs at design time. This is closely related
to what we propose for MTLs and what is done in GPLs.

10 DSm evolution here equates to program variables taking on values at runtime.
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(a) (b)

Fig. 3. (a)A high-level construct, its mapping to code, and a possible rendering of
exception translation specification facilities; (b)Stepping into in “designer debug mode”
navigates across levels of abstraction

Assertions. Assertions can also be (semi-)automatically specified DSL con-
structs. Provisions to enable and disable them, and to halt model animation and
artifact execution when they fail are needed. These might be rules or function
calls and should be generated (and weaved into artifacts) automatically.

Exceptions. Although DSms may be animated, what is truly being executed are
synthesized artifacts. Consequently, exceptions originate from artifacts and are
described in terms of their metamodel. Some exceptions may describe irrelevant
transient issues, others may describe issues relevant only to designers. Their
handling is thus a design choice of the DSL architect. “Silent” exception handlers
for irrelevant exceptions should be generated along with synthesized artifacts
while relevant exceptions should be translated into domain-specific terms and
propagated11 to the modeller or designer (as depicted in Fig. 3a where a low-level
error message results in updated concrete syntax at the DSm level).

Execution Control. The play, pause, stop and step commands also require
two-way communication between DSm and artifact. Playing and stopping sim-
ply require means to remotely run or kill the generated model or program. The
meaning of a step in an arbitrary DSm, however, is not obvious. A general defi-
nition is that a step constitutes any modification to any parameter of any entity
in a DSm. Still, stepping can be considered from two orthogonal perspectives:
the modeller’s and the designer’s. On one hand, the three step commands, in
conjunction with our general definition, intuitively translate to DSLs which sup-
port hierarchy and composition. On the other, generating artifacts from DSms
creates an implicit hierarchy between them. Thus, a designer, may prefer for
the step into operation to take a step at the level of corresponding lower level
entities. This scenario is depicted in Figure 3b where two successive step into

11 The backward links described in Section 4.2 may be instrumental in this propagation.
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operations lead a designer from a domain-specific traffic light model entity to a
corresponding Statechart state and finally to a function in the generated code.
Conversely, stepping out would bring the designer back to higher level entities
and stepping over would perform a step given the current formalism (e.g., one
code statement, one operational semantics rule). As for the pause command, a
sensible approach is to pause the execution before running what would have been
the next step at the DSm level for the modeller, and at the artifact level for the
designer. These distinct stepping and pausing modes further motivate our previ-
ous proposal of separate debugging modes for designers and modellers. Finally,
all of the above implies that (ideally automatic) instrumentation of artifacts to
enable running only parts of them at a time are required12.

Runtime Variable I/O. Model editing tools can be used to view and modify
DSm and generated model variable values whereas code IDE debugger facilities
can be used for synthesized coded artifacts. The challenge is to propagate changes
such that consistency is preserved across all levels of abstraction12.

Breakpoints. Breakpoints in state-based languages (e.g., Statecharts) could be
set on states. For languages where state is implicit (e.g., Petri Nets whose state is
their marking), however, they could be specified as patterns (pausing execution
upon detection). Finally, designers should be able to specify breakpoints at any
level of abstraction while modellers should be restricted to the DSm level.

Stack Traces. Stack traces remain tightly bound to the step into and out com-
mands. Thus, they might display related actions at different levels of abstraction
for designers while reflecting construct composition, if any, for modellers.

5 Conclusion and Future Work

We proposed a mapping between concepts in the software and DSM debugging
realms. We distinguished between MT and DSm debugging, and between debug-
ging scenarios for designers, who are fully aware of the MTs that describe their
models’ semantics and generate artifacts, and modellers, who have an implicit
understanding of their models’ semantics but little or no knowledge about how
they are specified. Our work is meant as a guide for developing DSM debuggers:
numerous MT debugger features can be built-in to MTLs and engines, while
modular TGR-based artifact synthesis can considerably facilitate the implemen-
tation of most DSm and artifact debugger facilities. We plan to fully implement
the concepts proposed in this work in AToM3’s successor, AToMPM.
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Abstract. Model-driven software development promises to increase pro-
ductivity by offering modeling languages tailored to a problem domain.
Consequently, an increasing number of modeling languages are built us-
ing metamodel-based language workbenches. In response to changing
requirements and technologies, the modeling languages and thus their
metamodels need to be adapted. Manual migration of existing models
in response to metamodel adaptation is tedious and error-prone. In this
paper, we present our tool COPE to automate the coupled evolution of
metamodels and models. To not lose the intention behind the adapta-
tion, COPE records the coupled evolution in an explicit history model.
Based on this history model, COPE provides advanced tool support to
inspect, refactor and recover the coupled evolution.

1 Introduction

Model-driven development promises to raise the abstraction level of today’s soft-
ware development with the help of the pervasive use of models. Models are built
by using modeling languages that allow the users to directly express the abstrac-
tions from their problem domain. To reduce the effort for software development,
implementation code can be automatically generated from these models. Re-
cent approaches such as Model-Driven Architecture [11], Software Factories [5]
and Domain-Specific Modeling [10] advocate to also develop modeling languages
in a model-driven way—using metamodels to define the modeling language’s
syntax. Language workbenches—such as the Eclipse Modeling Project (EMP),
Microsoft DSL Tools and MetaCase MetaEdit+—significantly reduce the effort
to build tool support for modeling languages around the metamodels. In EMP,
for instance, metamodels are built using the Ecore formalism provided by the
Eclipse Modeling Framework (EMF). As a consequence, an increasing number
of modeling languages is built both in industry and research. These languages
range from general-purpose modeling languages like UML, over industry-wide
languages like AUTOSAR, to languages used only inside an organization.

Problem. Like software, modeling languages are subject to evolution due to
changing requirements and technological progress [3]. A modeling language is
evolved by first adapting its metamodel to the new requirements. Metamodel
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adaptation requires the migration of tools for the modeling language such as
editors and code generators. Most importantly, existing models may need to
be migrated to conform to the adapted metamodel again. Avoiding model mi-
gration by downwards-compatible metamodel changes is often a poor solution,
since it reduces the quality of the metamodel and thus the modeling language.
By contrast, manual migration of models is tedious and error-prone, and there-
fore model migration needs to be automated. Building an automated model
migration—even if highly desired in practice—is a non-trivial task, as it has to
ensure the preservation of the meaning of a possibly unknown set of models. This
task is further complicated by the issue that, in current practice, the intention
behind the metamodel changes is lost in the evolution process.

Contribution. To not lose the intention behind the adaptation, we advocate to
record the metamodel changes throughout the evolution process. In this paper,
we present our tool COPE to record the metamodel adaptation together with the
model migration—we call this the coupled evolution of metamodels and models.
COPE records the evolution as a sequence of coupled operations in an explicit
history model. Each coupled operation encapsulates both metamodel adaptation
as well as reconciling model migration. Recurring coupled operations can be
reused to further reduce the effort for building a model migration. Using the
history model, existing models can be automatically migrated to the adapted
version of the metamodel. Sometimes the recorded history does not perfectly
specify the intended model migration—which is found out after testing the model
migration—and thus needs to be modified. Sometimes the history cannot be
recorded and hence needs to be recovered from the metamodel versions before
and after the adaptation. To address these issues, COPE provides additional
tool support to inspect, refactor and recover the coupled evolution.

2 Related Work

An approach to build a model migration for a metamodel adaptation needs
to face two main challenges. First, it should lead to a correct migration which
preserves the meaning of all models. Second, it should automate the building
process to reduce the effort for model migration.

Manual specification approaches provide transformation languages to manually
specify the model migration. Sprinkle presents a visual model transformation
language to specify the transformation only for the difference between two meta-
model versions [14]. Balasubramanian extends this language with usage pat-
terns for typical migration scenarios [12]. The resulting Model Change Language
(MCL) comes with the Generic Modeling Environment (GME). Flock is an EMF-
based textual model transformation language that also automatically unsets
model elements that are no longer conforming to the adapted metamodel [13].
While manual specification fosters correctness of the model migration, it also
requires the most effort.
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Matching approaches try to automatically derive a model migration from the
matching between two metamodel versions. Cicchetti presents an EMF-based
tool prototype that can not only derive a model migration for primitive changes,
but also for compound changes [2]. Garcés presents an EMF-based matching
language that allows the user to customize the matching process and to add new
matching patterns [4]. While difference-based approaches completely automate
the building process, they may not lead to a correct model migration. However,
matching approaches can be complemented by manual specification to complete
and correct the generated model migration.

Operation-based approaches record the coupled operations which are used to
adapt the metamodel and which also encapsulate a model migration. Operation-
based approaches provide a compromise for both challenges: They are likely
to lead to a correct migration by means of recording, and at the same time
reduce the effort by means of reusable coupled operations. However, they also
require integration into the editor for the metamodel. Wachsmuth presents his
EMF-based tool prototype ECORAL that provides a library of reusable coupled
operations [15]. To increase expressiveness, we extended COPE with a means
to specify a custom model migration for a recorded metamodel adaptation [8].
Compared to our previous work, in this paper, we introduce additional functions
of COPE to inspect, refactor and recover the coupled evolution.

3 COPE – Coupled Evolution of Metamodels and Models

COPE is implemented based on the widely used Eclipse Modeling Framework
(EMF)1. Besides recording the coupled evolution in an explicit history model,
COPE provides support to inspect, refactor and recover the coupled evolution.

3.1 Recording the Coupled Evolution

As is depicted in Figure 1, COPE records the metamodel adaptation as a se-
quence of primitive changes in an explicit history model [6]. As is depicted in
Figure 2, COPE’s user interface—which is directly integrated into the existing
EMF metamodel editor—provides access to the recorded history model. COPE
supports two methods to form coupled operations [8], i.e. to attach a model
migration to a sequence of primitive changes.

Enabling Reuse. Reuse of recurring migration specifications allows to signifi-
cantly reduce the effort associated with building a model migration [7]. COPE
thus provides reusable coupled operations which encapsulate metamodel adap-
tation and model migration in a metamodel-independent way. Reusable coupled
operations are organized in a library which can be extended by declarations of
new operations. The declaration is made independent of a specific metamodel
through parameters, and may provide constraints to restrict the applicability of

1 See EMF web site: http://www.eclipse.org/modeling/emf

http://www.eclipse.org/modeling/emf
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Fig. 1. Overview of COPE

the operation. Currently, COPE comes with about 60 reusable coupled opera-
tions. The user can adapt the metamodel by applying reusable coupled opera-
tions through the operation browser. The operation browser allows the user to
set the parameters of a reusable coupled operation, and gives feedback on its
applicability based on the constraints. When a reusable coupled operation is ex-
ecuted, its application is automatically recorded in the history model. Figure 2
shows the operation Extract Subclass being selected in the operation browser
and recorded to the history model.

Supporting Expressiveness. Specifications of model migration can become so
specific to a certain metamodel that reuse makes no sense [7]. To be able to cover
these specifications, COPE allows the user to manually define a custom coupled
operation. In order to do so, the user has to manually encode a model migration
for a recorded metamodel adaptation. To encode a model migration, COPE
provides a language expressive enough to cater for complex model migrations [8].
The user needs to perform a custom coupled operation only, in case no reusable
coupled operation is available for the change at hand. First, the metamodel is
directly adapted in the metamodel editor, in response to which the changes are
automatically recorded in the history. A migration can later be attached to the
sequence of metamodel changes. Figure 2 shows the migration editor to encode
the custom migration for a metamodel adaptation.

Migrator Generation. A migrator can be generated from the history model that
allows for the batch migration of existing models. The migrator packages the
sequence of coupled operations which can be executed to automatically migrate
existing models.
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Fig. 2. User Interface of COPE

3.2 Inspecting the Coupled Evolution

The recorded history model allows the user to understand the intention behind
the metamodel adaptation. Based on the history model, COPE provides the
following functions to ease understanding the coupled evolution.

Identifying Breaking Changes. Breaking changes are changes which can possibly
invalidate existing models [1]. To prevent errors during model migration, these
changes need to have a model migration attached. COPE provides an analysis
to identify breaking changes which do not yet have a model migration attached.
Breaking changes are identified on the metamodel-level, i.e. independently of the
existing models.

Metamodel Reconstruction. To understand the evolution, COPE allows the user
to reconstruct metamodel versions from the history model. Earlier metamodel
versions can be simply reconstructed by interpreting the primitive changes recor-
ded in the history model. Thus it is not necessary to store all the intermediate
metamodel versions which would require a large memory footprint. This recon-
struction is interactive, allowing the user to browse through the history model.
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When the user selects a change in the user interface, COPE reconstructs the
snapshot of the metamodel right after the change. The metamodel snapshot is
shown in a separate view through which it can be inspected.

History Differencing. Comparing two metamodel snapshots in the Eclipse Mod-
eling Framework using EMF Compare2 does not always yield an accurate differ-
ence model. This is due to the fact that—in the absence of universally unique
identifiers—the matching between the metamodel elements from the two snap-
shots has to be inferred. To produce a more accurate difference model, the match-
ing can be generated from the history model. In the user interface, COPE allows
the user to select the source and target version for the comparison directly in
the history model. COPE produces a view showing the difference model between
the two metamodel versions.

3.3 Refactoring the Coupled Evolution

As the recorded history does not always perfectly specify the intended model
migration, COPE provides functions to refactor the history model. The refac-
torings have to ensure the overall consistency of the history model: the history
model has to reconstruct the current metamodel version.

Undoing Changes. When performing further changes, earlier changes might
prove to be wrong. Manually performing the reverse changes is a possible solu-
tion, but might lead to a different intention when regarding the model migration.
For example, deleting an attribute and creating it again would lead to the loss of
the attribute’s values in the model. Therefore, COPE provides support to undo
changes after they have already been recorded. To facilitate undoing changes,
the changes are stored in the history model both in forward and reverse direc-
tion. Then the changes to be undone need to be simply applied in the reverse
direction. To preserve the consistency of the history model, changes can only be
undone if no later changes depend on them.

Replacing Changes. For certain breaking changes, we might later identify a
reusable coupled operation that provides the intended model migration. Rather
than manually reimplementing the model migration, it is better to apply the
reusable coupled operation instead. The primitive changes, however, have al-
ready been recorded to the history model. COPE thus provides support to re-
place a sequence of primitive changes with the application of a reusable coupled
operation. COPE reconstructs the metamodel version before the changes and
presents it to the user in a dialog where she can select and apply the appropriate
reusable coupled operation. To keep the history model consistent, the primitive
changes can only be replaced, if the operation application yields the same result.

Reordering Changes. Only consecutive changes can be replaced by a reusable
coupled operation or can be enriched by a custom model migration. Sometimes
the changes which we want to replace or enrich are not consecutive. Certain

2 See EMF Compare web site: http://wiki.eclipse.org/index.php/EMF_Compare

http://wiki.eclipse.org/index.php/EMF_Compare
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changes, however, are independent of each other and thus can be reordered to
make them consecutive. COPE therefore provides support to move changes to
another position in the history model. To ensure the overall consistency of the
history model, the following constraints need to be fulfilled: The changes can
only be moved to an earlier position, if they do not depend on the changes that
are jumped over, and the changes can only be moved to a later position, if the
changes that are jumped over do not depend on them.

3.4 Recovering the Coupled Evolution

There are certain cases where COPE cannot be used during the adaptation of
the metamodel. For example, the metamodel might be generated from another
artifact, and therefore a different tool is used to edit the artifact. In these cases,
the history model needs to be recovered from the metamodel versions before and
after the adaptation.

Metamodel Convergence. COPE provides advanced tool support to reverse engi-
neer the history model. Figure 3 depicts the user interface to let a source meta-
model version converge to a target metamodel version. The source metamodel
version is loaded directly in the metamodel editor, whereas the target metamodel
is displayed in a separate view. This view also displays the current difference
model which results from the comparison between the source and target meta-
model using EMF Compare. The differences are linked to the metamodel ele-
ments from both source and target version to which they apply. Breaking changes
in the difference model—which necessitate a model migration—are highlighted
in red. By means of the operation browser, the user can apply reusable coupled
operations to bring the source metamodel nearer to the target metamodel. After
an operation is executed on the source metamodel, the difference is automatically
updated to reflect the changes. Non-breaking changes in the difference model can
be easily applied to the source metamodel by double-clicking on them.

4 Evaluation

The presented functions are motivated from a number of case studies in which
COPE has been applied. In these case studies, COPE has been applied to either
reverse or forward engineer the coupled evolution.

Graphical Modeling Framework (GMF) is a widely used open source framework
for the model-driven development of diagram editors3. To demonstrate the ap-
plicability of COPE, we have reverse engineered the coupled evolution of the four
metamodels defined by GMF [9]. More specifically, we have applied the function
for metamodel convergence to facilitate the reverse engineering of the coupled
evolution. The resulting coupled evolution covers all the intermediate versions
of the metamodels, meaning that COPE could have been directly applied for
the maintenance of all four metamodels. The GMF case study indicates that,
3 See GMF web site: http://www.eclipse.org/modeling/gmf

http://www.eclipse.org/modeling/gmf


COPE – A Workbench for the Coupled Evolution 293

Fig. 3. Metamodel Convergence

in practice, most of the coupled evolution can be captured by reusable coupled
operations. Moreover, this case study helped to build an extensive library of
reusable coupled operations.

Palladio Component Model (PCM) is a modeling language for the specification
and analysis of component-based software architectures4. As a second applica-
tion of the function for metamodel convergence, we have reverse engineered the
coupled evolution of the metamodel defined by the Palladio Component Model
(PCM) [8]. Similar to GMF, most of the coupled evolution could be covered by
reusable coupled operations. In contrast to GMF, the resulting coupled evolution
does not capture all the intermediate versions of the metamodel, as there were
a lot of destructive changes that were reversed at a later instant. To be able to
deal with these destructive changes in a clean manner, we have implemented the
function for undoing changes.

Quamoco is a research project whose goal is to develop a language for model-
ing the product quality of software5. Currently, we are applying COPE for the
evolutionary development of the metamodel on which the modeling language
is based. The coupled evolution forward engineered by this case study is not

4 See PCM web site: http://www.palladio-approach.net
5 See QUAMOCO web site: http://www.quamoco.de

http://www.palladio-approach.net
http://www.quamoco.de
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much different from the reverse engineered metamodel histories: most of the
coupled evolution can still be covered by reusable coupled operations. Many of
the reusable coupled operations identified in the previous case studies proved to
be useful for the adaptation of the Quamoco metamodel. Furthermore, the func-
tions to refactor the coupled evolution showed to be useful to introduce reusable
coupled operations that have been newly identified.

UNICASE is a CASE tool that integrates models from the different develop-
ment activities—amongst others, requirements engineering, design and project
planning—into a unified model6. COPE is applied to forward engineer the cou-
pled evolution of the metamodel to which these models conform. To support
model evolution, UNICASE records the changes performed on the models and
stores them in a repository. When the metamodel is adapted, we thus do not
only have to migrate the models, but also the recorded changes. While COPE’s
migration language showed to be expressive enough to specify the change mi-
gration, we have extended COPE to be able to refine existing reusable coupled
operations with the appropriate change migration.

5 Conclusion

Just as other software artifacts, modeling languages and thus their metamodels
have to be adapted. To facilitate language evolution, adequate tool support is
required to automate the migration of models. To obtain a correct model mi-
gration, COPE records the coupled evolution of metamodels and models in an
explicit history model. As a result, the history model stores the sequence of cou-
pled operations that have been performed during evolution. A coupled operation
encapsulates the metamodel adaptation and reconciling model migration. Recur-
ring coupled operations can be reused to further reduce the effort for building
a model migration. To make the operation-based approach usable in practice,
more advanced tool support is necessary to maintain the history model. COPE
provides functions to inspect, refactor and recover the history model to better
understand, correct and reverse engineer the coupled evolution.

Even if the presented functions have shown to be useful in a number of case
studies, there is still room for further improvement. To facilitate reverse engineer-
ing the coupled evolution, we envision a function that automatically proposes
reusable coupled operations based on the difference between two metamodel ver-
sions. To validate the resulting model migration, we plan to develop a framework
for testing the coupled evolution.

COPE is open source and can be obtained from its website7. Moreover, COPE
is about to be made available via the newly created Eclipse Project Edapt.

Acknowledgments. We are grateful to Daniel Ratiu for providing feedback on ear-
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6 See UNICASE web site: http://www.unicase.org
7 See COPE web site: http://cope.in.tum.de
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Abstract. In this paper we present DSLTrans: a visual language and
a tool for model transformations1 . We aim at tackling a couple of im-
portant challenges in model transformation languages — transformation
termination and confluence. The contribution of this paper is the propo-
sition of a transformation language where all possible transformations
are guaranteed to be terminating and confluent by construction. The re-
sulting transformation language is simple, turing incomplete and includes
transformation abstractions to support transformations in a software lan-
guage engineering context. Our explanation of DSLTrans includes a com-
plete formal description of our visual language and its properties.

Keywords: Model Transformations, Turing Incompleteness, Termina-
tion, Confluence.

1 Introduction

A problem in modern model transformation languages that has recently received
some attention is to how to guarantee that a transformation terminates. Because
the semantics of transformation languages are usually based on graph grammars,
the termination problem is in general undecidable [7]. Termination has been de-
scribed in [6] as one of the ’quality requirements for a transformation language
or tool ’. The problem has been approached by several authors [2,3,4] who have
proposed criteria that can be applied to decide about the termination of transfor-
mations under particular conditions. The EMFTrans tool [1] presents a complete
formalization of all concepts involved in a transformation and it is possible un-
der certain conditions to decide if a given transformation is locally confluent and
terminates.
1 This work has been developed in the context of project BATIC3S partially funded
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In this paper we propose an ’egg of Columbus’ approach to the termination
problem by building a visual transformation language called DSLTrans which
guarantees that the number of steps in a model transformation is always finite.
As a consequence, any transformation expressed in our language will always
end. We also guarantee by construction the confluence of any model transforma-
tion written in DSLTrans, which is an important correctness property of model
transformations as mentioned in [3]. DSLTrans is, by construction, a turing in-
complete language. This is due to the fact that our language is free of loop or
recursion constructs. The work presented in this paper provides the basis for the
work we present in [5], where a technique for proving properties of the type ’if a
structural relation between some elements of the source model holds, then another
structural relation between some elements of the target model should also hold ’
is presented. By proposing such a technique we are able to provide additional
’success criteria for a transformation language or tool ’ [6], which is the ability
to verify our model transformations.

The rest of this paper is organized as follows. In section 2, we informally
describe the syntax and semantics of DSLTrans; In section 3, we describe the
mathematical underpinnings of our transformation language; Finally, in section 4
we summarize and discuss future work.

2 Language Overview

Let us present the DSLTrans language with a simple example.

Fig. 1. Metamodels of a squad of agents(left) and a squad organized by gender(right)

Figure 1 presents two metamodels of languages for describing views over the
organization of a police station. The metamodel annotated with ’Organization
Language’ represents a language for describing the chain of command in a po-
lice station, which includes male (Male class) and female officers (Female class).
The metamodel annotated with ’Gender Language’ represents a language for de-
scribing a different view over the chain of command, where the officers working
at the police station are classified by gender. In figure 2 we present a transforma-
tion written in DSLTrans between models of both languages. The purpose of this
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Fig. 2. A model transformation expressed in DSLTrans using a concrete visual syntax
of an Eclipse diagrammatic editor [8]

transformation is to flatten a chain of command given in language ’Organization
Language’ into two independent sets of male and female officers. Within each of
those sets the command relations are kept, i.e. a female officer will be directly
related to all her female subordinates and likewise for male officers.

An example of an instance of this transformation can be observed in figure 3,
where the original model is on the left and the transformed one on the right.
Notice that the elements s, mk and fk in the figure on the left are instances of the
source metamodel elements Station, Male and Female respectively (in figure 1).
The primed elements in the figure on the right are their instance counterparts
in the target metamodel.

A transformation in DSLTrans is formed by a set of input model sources called
file-ports (’inputSquad.xmi’ in figure 2) and a list of layers (’Basic entities’ and
’Relations’ layers in figure 2). Both layers and file-ports are typed according to
metamodels. DSLTrans executes sequentially the list of layers of a transforma-
tion specification. A layer is a set of transformation rules, which executes in
a non-deterministic fashion. Each transformation rule is a pair (match, apply)
where match is a pattern holding elements from the source metamodel, and
apply is a pattern holding elements of the target metamodel. For example, in
the transformation rule ’Stations’ in the ’Basic entities’ layer (in figure 2) the
match pattern holds one ’Station’ class from the ’Squad Organization Language’
metamodel — the source metamodel; the apply pattern holds one ’Station’ class
from the ’Squad Gender Language’ metamodel — the target metamodel. This
means that all elements in the input source which are of type ’Station’ of the



DSLTrans: A Turing Incomplete Transformation Language 299

Fig. 3. Original model (left) and transformed model (right)

source metamodel will be transformed into elements of type ’Station’ of the
target metamodel.

Let us first define the constructs available for building transformation rules’
match patterns. We will illustrate the constructs by referring to the transforma-
tion in figure 2.

– Match Elements : are variables typed by elements of the source metamodel
which can assume as values elements of that type (or subtype) in the input
model. In our example, a match element is the ’Station’ element in the
’Stations’ transformation rule of layer ’Basic Entities’ layer;

– Attribute Conditions : conditions over the attributes of a match element;
– Direct Match Links: are variables typed by labelled relations of the source

metamodel. These variables can assume as values relations having the same
label in the input model. A direct match link is always expressed between
two match elements;

– Indirect Match Links: indirect match links are similar to direct match links,
but there may exist a path of containment associations between the matched
instances. In our implementation, the notion of indirect links captures only
EMF containment associations. In our example, indirect match links are
represented in all the transformation rules of layer ’Relations’ as dashed
arrows between elements of the match models;

– Backward Links : backward links connect elements of the match and the
apply models. They exist in our example in all transformation rules in the
’Relations’ layer, depicted as dashed vertical lines. Backward links are used
to refer to elements created in a previous layer in order to use them in the
current one. An important characteristic of DSLTrans is that throughout all
the layers the source model remains intact as a match source. Therefore, the
only possibility to reuse elements created from a previous layer is to reference
them using backward links;

– Negative Conditions : it is possible to express negative conditions over match
elements, backward, direct and indirect match links.
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The constructs for building transformation rules’ apply patterns are:

– Apply Elements and Apply Links : apply elements, as match elements, are
variables typed by elements of the source metamodel. Apply elements in
a given transformation rule that are not connected to backward links will
create elements of the same type in the transformation output. A similar
mechanism is used for apply links. These output elements and links will
be created as many times as the match model of the transformation rule is
instantiated in the input model. In our example, the ’StationwMale’ transfor-
mation rule of layer ’Relations Layer’ takes instances of Station and Male
(of the ’Gender Language’ metamodel) which were created in a previous
layer from instances of Station and Male (of the ’Organization Language’
metamodel), and connects them using a ’male’ relation;

– Apply Attributes: DSLTrans includes a small attribute language allowing the
composition of attributes of apply model elements from references to one or
more match model element attributes.

3 Formal Syntax and Semantics

In this section, we build a formal definition of DSLTrans in order to provide a
clear specification of our language and a basis for studying and proving properties
about it. In the mathematical theory we disregard the formalization of: class
attributes; negative conditions; class inheritance at the metamodel level. We
present a light formalization of the relations at the metamodel and model levels
which deals only with the difference between reference and containment relations
between classes. These non formalized — but implemented in [8] — features
of the language do not affect the termination or confluence properties of our
language.

3.1 Transformation Language Syntax

Definition 1. Typed Graph and Indirect Typed Graph
A typed graph is a triple 〈V, E, τ〉 where V is a finite set of vertices, E ⊆ V ×V
is a finite set of directed edges connecting the vertices and τ : {V ∪ E} →
Type∪ {containment, reference} is a typing function for the elements of V
and E such that τ(v) ∈ Type if v ∈ V and τ(e) ∈ {containment, reference}
if e ∈ E. Edges (v, v′) ∈ E are noted v → v′. We furthermore impose that the
graph 〈V, {v → v′ ∈ E|τ(v → v′) = containment}〉 is acyclic2. The set of all
typed graphs is called TG.

An indirect typed graph is a 4-tuple 〈V, E, T, Il〉, where 〈V, E, T 〉 is a typed
graph and Il ⊆ E is a set of edges called indirect links. The set of all indirect
typed graphs is called ITG.
2 By using containment and reference as types for edges we allow modeling the dif-

ferent types of associations between the elements of a metamodel or a model. In our
implementation, the EMF containment associations implements the acyclic subgraph
of containment relations in a typed graph.
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Definition 2. Typed Graph Union
Let 〈V, E, τ〉, 〈V ′, E′τ ′〉 ∈ TG be typed graphs. The typed graph union is the
function � : TG × TG → TG defined as:

〈V, E, τ〉 � 〈V ′, E′, τ ′〉 = 〈V ∪ V ′, E ∪ E′, τ ∪ τ ′〉

Definition 3. Typed Subgraph and Indirect Typed Subgraph
Let 〈V, E, τ〉 = g, 〈V ′, E′, τ ′〉 = g′ ∈ TG be typed graphs. g′ is a typed subgraph
of g, written g′ � g, iff V ′ ⊆ V , E′ ⊆ E and τ ′ = τ |V ′ .
An indirect typed graph 〈V ′, E′, τ ′, Il〉 ∈ ITG is an indirect typed subgraph of a
typed graph 〈V, E, τ〉 ∈ TG, written 〈V ′, E′, τ ′, Il〉� 〈V, E, τ〉 iff:

1. 〈V ′, E′ \ Il, τ ′〉 � 〈V, E, τ〉
2. if vi → v′i ∈ Il then there exists v → v′ ∈ E∗

c where τ(vi) = τ(v), τ(v′i) =
τ(v′) and E∗

c is obtained by the transitive closure of Ec = {v → v′ ∈ E|τ(v →
v′) = containment}.

Definition 4. Typed Graph Equivalence
Let 〈V, E, τ〉 = g, 〈V ′, E′, τ ′〉 = g′ ∈ TG be typed graphs. g and g′ are equivalent,
written g ∼= g′, iff there is a graph isomorphism f : V → V ′ of graphs 〈V, E〉 and
〈V ′, E′〉 such that ∀x ∈ V ∪ E . τ(x) = τ ′(f(x)) and ∀x′ ∈ V ′ ∪ E′ . τ ′(x′) =
τ(f−1(x′))

More informally, two typed graphs are defined equivalent if they have the same
shape and related vertices and edges have the same type.

Definition 5. Typed Graph Instance
Let 〈V, E, τ〉 = g, 〈V ′, E′, τ〉 = g′ ∈ TG be typed graphs. g′ is a typed graph
instance of g, written g′ � g, iff for all v′1 → v′2 ∈ E′ there is a v1 → v2 ∈ E
such that τ(v′1) = τ(v1), τ(v′2) = τ(v2) and τ(v′1 → v′2) = τ(v1 → v2).

Notice that we only enforce that connections between vertices of g′ must exist
also in g and have the same type.

Definition 6. Metamodel and Model
A metamodel 〈V, E, τ〉 ∈ TG is a typed graph where τ is a bijective typing func-
tion. The set of all metamodels is called META.

A model is a 4-tuple 〈V, E, τ, M〉 where 〈V, E, τ〉 is a typed graph. More-
over M = 〈V ′, E′, τ ′〉 ∈ META is a Metamodel and the codomain of τ equals
the codomain of τ ′. Finally 〈V, E, τ〉 � M , which means 〈V, E, τ〉 is an in-
stance of a metamodel M . The set of all models for a metamodel M is called
MODELM .

Definition 7. Match-Apply Model
A Match-Apply Model is a 6-tuple 〈V, E, τ, Match, Apply, Bl〉, where Match =
〈V ′, E′, τ ′, s〉 and Apply = 〈V ′′, E′′, τ ′′, t〉 are models and 〈V, E, τ〉=〈V ′, E′, τ ′〉�
〈V ′′, E′′, τ ′′〉. Edges Bl ⊆ V ′ × V ′′ ⊆ E are called backward links. s is called
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the source metamodel and t the target metamodel. The set of all Match-Apply
models for a source metamodel s and a target metamodel t is called MAM s

t .
Vertices in the Apply model which are not connected to backward links are called
free vertices. The back : MAM s

t → MAM s
t function connects all vertices in the

Match model to all free vertices with backward link edges.

The Match part of a match-apply model is used to hold the immutable source
model during a transformation. The Apply part is used to hold the intermediate
results of the transformation.

Definition 8. Transformation Rule
A Transformation Rule is a 7-tuple 〈V, E, τ, Match, Apply, Bl, Il〉, where 〈V,
E, τ, Match, Apply, Bl〉 ∈ MAM s

t is a match-apply model. Match = 〈V, E, τ, M〉
and the edges Il ⊆ E are called indirect links (see definition 3). The set of all
transformation rules is called TRs

t . The strip : TRs
t → TRs

t function removes
from a transformation rule all free vertices and associated edges.

We define a transformation rule as a kind of match-apply model which allows
indirect links in the match pattern.

Definition 9. Layer, Transformation
A layer is a finite set of transformation rules tr ⊆ TRs

t . The set of all layers for a
source metamodel s and a target metamodel t is called Layers

t . A transformation
is a finite list of layers denoted [l1 :: l2 :: . . . :: ln] where lk ∈ Layers

t and
1 ≤ k ≤ n. The set of all transformations for a source metamodel s and a target
metamodel t is called Transformations

t .

We naturally extend the notion of union (definition 2) to models (definition 6),
match-apply models (definition 7) and transformation rules (definition 8). We
also extend the notion of indirect typed subgraph (definition 3) to transformation
rules (definition 8) and match-apply models (definition 7). Finally, we extend
the notion of typed graph equivalence (definition 4) to transformation rules
(definition 8).

3.2 Transformation Language Semantics

Definition 10. Match Function
Let m ∈ MAM s

t be a model and tr ∈ TRs
t be a transformation rule. The match :

MAM s
t × TRs

t → P(TRs
t ) is defined as follows:

matchtr(m) = remove
({

g | g �m ∧ g ∼= strip(tr)
})

Due to the fact that the ∼= relation is based on the notion of graph isomorphism,
permutations of the same match result may exist in the

{
g | g�m∧g ∼= strip(tr)

}
set. The — undefined — remove : P(TRs

t ) → P(TRs
t ) function is such that it

removes such undesired permutations.
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Definition 11. Apply Function
Let m ∈ MAM s

t be a match-apply model and tr ∈ TRs
t a transformation. The

apply : MAM s
t × TRs

t → MAM s
t is defined as follows:

et m ∈ MAM s
t be a match-apply model and tr ∈ TRs

t a transformation. The
apply : MAM s

t × TRs
t → MAM s

t is defined as follows:

applytr(m) =
⊔

g∈matchtr(m)

back(g � gΔ)

where gΔ is such that g � gΔ
∼= tr

The freshly created vertices of gΔ in the flattened applytr(m) set are disjoint.

Definitions 10 and 11 are complementary: the former gathers all subgraphs of a
match-apply graph which match a transformation rule; the latter builds the new
instances which are created by applying that transformation rule as many times
as the number of subgraphs found by the match function. The strip function is
used to enable matching over backward links but not elements to be created by
the transformation rule. The back function connects all newly created vertices
to the elements of the source model that originated them.

Definition 12. Layer Step Semantics
Let l ∈ Layer be a Layer. The layer step relation

layerstep→ ⊆ MAM s
t × TRs

t ×
MAM s

t is defined as follows:

tr ∈ l, applytr(m) = m′′′,

〈m,m′,∅〉 layerstep−−−−−→m�m′
〈m,m′′�m′′′,l\{tr}〉 layerstep−−−−−→m′

〈m,m′′,l〉 layerstep−−−−−→m′

where {m, m′, m′′} ⊆ MAMs
t are match-apply models.

The freshly created vertices in m′′′ are disjoint from those in m′′.

For each layer we go through all the transformation rules and build for each one
of them the set of new instances created by their application. These instances
are built using the apply function in the second rule of definition 12. The new in-
stance results of the apply function for each transformation rule are accumulated
until all transformation rules are treated. Then, the first rule of definition 12 will
merge all the new instances with the starting match-apply model. The merge
is performed by uniting (using the non-disjoint � union) match-apply graphs
including the new instances with the starting match-apply model.

Definition 13. Transformation Step Semantics
Let [l :: R] ∈ Transformations

t be a Transformation, where l ∈ Layers
t is a

Layer and R a list. The transformation step relation
trstep→ ⊆ MAM s

t × TRs
t ×

MAM s
t is defined as follows:
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〈m,[]〉 trstep−−−→m

〈
m,〈∅,∅,∅,∅,∅,∅〉,l

〉
layerstep−−−−−→m′′, 〈m′′,R〉 trstep−−−→m′

〈m,[l::R]〉 trstep−−−→m′

where {m, m′, m′′} ⊆ MAMs
t are match-apply models.

A model transformation is a sequential application of transformation layers to
a match-apply model containing the source model and an empty apply model.
The transformation output is the apply part of the resulting match-apply model.

Definition 14. Model Transformation
Let ms ∈ MODELs and mt ∈ MODELt be models and
tr ∈ Transformations

t be a transformation. A model transformation
transf→ ⊆

MODELs × Transformations
t × MODELt is defined as follows:

ms, tr
transf−−−−→ mt ⇔ 〈V, E, τ, ms, ∅, ∅〉, tr trstep−−−−→ 〈V, E, τ, ms, mt, Bl〉

We now prove two important properties about DSLTrans’ transformations.

Proposition 1. Confluence
Every model transformation is confluent regarding typed graph equivalence.

Proof. (Sketch) We want to prove that for every model transformation tr ∈
Transformations

t having as input a model ms ∈ MODELs, if ms, tr
transf−−−−→ mt

and ms, tr
transf−−−−→ m′

t then mt
∼= m′

t. Note that we only have to prove typed
graph equivalence between mt and m′

t because the identifiers of the objects pro-
duced by a model transformation are irrelevant.
If we assume ¬(mt

∼= m′
t) then this should happen because of non-determinism

points in the rules defining the semantics of a transformation: 1) in definition 11
gΔ is non-deterministic up to typed graph equivalence, which does not contra-
dict the proposition; 2) in definition 12 transformation rule tr is chosen non-
deterministically from layer l. Thus, the order in which the transformation rules
are treated is non-deterministic. However, the increments to the transformation
by each rule of a layer are united using �, which is commutative and thus renders
the transformation result of each layer deterministic. Since there are no other
possibilities of non-determinism points in the semantics of a transformation,
¬(mt

∼= m′
t) provokes a contradiction and thus the proposition is proved. �

Proposition 2. Termination
Every model transformation terminates.

Proof. (Sketch) Let us assume that there is a transformation which does not ter-
minate. In order for this to happen there must exist a section of the semantics
of that transformation which induces an algorithm with an infinite amount of
steps. We identify three points of a transformation’s semantics where this can
happen: 1) if definition 13 induces an infinite amount of steps. The only possi-
bility for this to happen is if the transformation has an infinite amount of layers,
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which is a contradiction with definition 9; 2) if definition 12 induces an infinite
amount of steps. The only possibility for this to happen is if a layer has an infi-
nite amount of transformation rules, which is a contradiction with definition 8;
3) if the result of the matchtr(m) function in definition 10 is an infinite set of
match-apply graphs. The match-apply graph m is by definition finite, thus the
number of isomorphic subgraphs of m is infinite only if the transitive closure of
containment edges of m is infinite. The only possibility for this to happen is if
the graph induced by the containment edges of m has cycles, which contradicts
definition 1. Since there are no more points in the semantics of a transformation
that can induce an infinite amount of steps, the proposition is proved. �

4 Conclusions and Future Work

We have presented DSLTrans, a turing incomplete transformation language with
a mathematical underpinning which guarantees transformation termination and
confluence by construction. With this language, we have introduced interesting
abstractions such as layers, backward and indirect links. An important side effect
of DSLTrans not being a turing complete language is the fact that verification
of properties about our transformations are possible.
Our efforts are now focused on the optimization of the efficiency of the transfor-
mation engine itself, and we will perform a thorough validation on the usability
aspects of this language in several transformation use cases.
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Abstract. ART (Ambiguity Resolved Translators) is a new translator
generator tool which provides fast generalised parsing based on an ex-
tended GLL algorithm and automatic generation of tree traversers for
manipulating abstract syntax. The input grammars to ART comprise
modular sets of context free grammar rules, enhanced with regular ex-
pressions and annotations that describe disambiguation and tree mod-
ification operations using the TIF (Tear-Insert-Fold) formalism. ART
generates a GLL parser for the input grammar along with an output
grammar whose derivation trees are the abstract trees specified by the
TIF tree modification operations.

1 Introduction

ART is an integrated generalised parser generator and tree rewriter. ART sup-
ports the traditional applications for parser generators (such as compiler front
end generation) by providing high performance parsing coupled with parser
generation times that are typically less than the time needed to compile the
generated code. ART is the first full-scale implementation of both the GLL al-
gorithm [2] and the TIF formalism [3].

Existing generalised parser generators typically use a variant of bottom-up
GLR parsing; for example, in ASF+SDF [6], Stratego [1] and Elkhound[4]; even
Bison has a partial GLR mode. We have described elsewhere improvements to
the GLR algorithm that provide worst-case cubic performance using binarised
SPPF’s but recognise that users find shift-reduce automata hard to understand.
GLL is a generalisation of recursive descent that also provides worst-case cubic
performance with linear performance on LL(1) parts of a grammar: in practice
we find that GLL runs approximately as fast as our BRNGLR parsers.

An ART-generated parser or treewalker, Π , performs the following steps (i)
lexical analysis of string characters or tree labels into tokens; (ii) parsing of those
tokens against the grammar to form a Shared Packed Parse Forest (SPPF) of
derivations; (iii) disambiguation of the potentially many derivations into a single
derivation tree; (iv) restructuring of that derivation tree using the TIF operators
to form a restructured derivation tree (RDT); (v) semantics evaluation.

This paper is mostly concerned with step (iv). The GLL algorithm used in
step (ii) was presented at LDTA09 [2] and we shall discuss disambiguation in a
future presentation.

On each run, ART produces a parser or treewalker for its input grammar,
along with a TIF Transformed Grammar (TTG) which completely describes the

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 306–315, 2011.
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family of trees that can be constructed by that parser or tree walker. A TTG is
itself a TIF grammar, and can thus be used as input to ART, usually after TIF
operators specifying the next phase of tree reworking have been added.

The idea is that parsing and tree transformation can be broken down into
a series of distinct phases, allowing separation of concerns, but using a single
notation and conceptually identical processing at each stage. Our goal is to have
a system which is theoretically well founded, but which software engineers and
casual users find approachable. The TIF operators are based on the notions of
tearing and folding trees using three simple local transforms, coupled with the
ability to insert arbitrary tree fragments.

Consider the construction of a C++ to ANSI-C converter such as CFront
or of an intermediate language converter such as CIL [5] which simplifies and
normalises C++ into a core sub-language in which, for instance, all loops are
represented by a single form. We envisage writing such converters as a number
of distinct phases, for instance one to handle loop constructs and another to
rework data scoping. This separation of concerns between phases allows better
testing and in principle reduces the opportunities for unexpected interactions be-
tween tree restructurings. We illustrate the process here as a chain of parser/tree
walkers Π0, Π1, . . . with associated TTG’s Γ1, Γ2, . . .. At each stage, we envisage
the software engineer intervening by adding TIF annotations and by factoring,
deleting or multiplying out rules to form a Γ ′

i . This process is marked by dashed
lines.

σ �

Γ0 Γ ′
0

� ART

�
Π0

� τ1 �

� Γ1 Γ ′
1

� ART

�
Π1

� τ2 �

� Γ2 Γ ′
2

� �

�

ART

�
Π2

� � �

The initial inputs are a concrete grammar Γ0 (say, the ANSI-C standard gram-
mar) and a string σ to be parsed. The translator designer adds TIF annotations
to specify the first intermediate form and semantic actions to be executed over
trees from that intermediate form. ART then generates a GLL parser/TIF RDT
builder Π0 which processes σ to produce an RDT τ1. ART also produces the
TTG Γ1 which specifies the full range of τ intermediate forms that can arise
from Π0. Further annotation and reworking of Γ1 to Γ ′

1 provides the input to
the next stage.

There are significant open questions concerning change management with this
approach. As things stand, if a change is made to the grammar is an early phase,
the contingent changes to TIF annotations will have to be manually propagated
throughout the chain. Ideally we would have some meta-TIF notation that could
specify the TIF annotations and thus reapply them automatically. At present
we are attempting to gain experience with the ‘manual’ approach before trying
to abstract a meta-notation.
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Part of the motivation for ART comes from our experience of manually con-
structing simplified equivalent grammars for complex languages such as the C-
like assembler for Analog Device’s digital signal processor line. Our asm21toc
reverse compiler started off with a detailed context free grammar (CFG) that
captured in the syntax many constraints that arise from the hardware of those
processors: for instance shifter operations and arithmetic operations use different
sets of input and output registers. We then moved to a grammar which formally
accepted a larger language in which, amongst other things, any register could
supply the operands for any operator. This widened grammar was safe to use
because any real program had already been parsed for correctness by the tight
grammar: the fact that the grammar could accept programs that were strictly
illegal was of no consequence because they had already been filtered out. The
widened grammar concentrated operand fetch semantics into one rule, rather
than the complicated case analysis that we would have had to implement with
the ‘real’ grammar.

An important feature of our approach in ART is that the tool provides not
only a parser, but a formal description of the parser’s output which is guaranteed
to be complete. A common failure mode when writing systems based on tree
rearrangement is to forget about some obscure or infrequently used special case.
For instance, a tree-walker based code generator must be able to completely tile
any possible intermediate tree with target instructions, and proving that every
possible case has been covered is hard if we use ad hoc mappings. An engineer
working with ART is presented with a grammar which completely describes
all possible output trees at each stage of a compiler: by ensuring that every
production has appropriate rewrites or semantics, complete coverage is assured.

2 Source Syntax, Modularity and Parsing

The ART source syntax mostly follows the conventions of our earlier RDP and
GTB toolkits with added support for modularisation and lexical level rules.
We have also created the tools gramex and gramconv which extract grammar
rules from electronically readable standards documents and convert them to the
source syntax for a variety of tools including Bison, ASF+SDF, GTB and ART;
optionally converting EBNF to BNF using a variety of idioms. These tools and
extracted grammars for multiple standardisations of Java, C, C++ and Pascal.
are available from

http://www.cs.rhul.ac.uk/research/languages/projects/grammars/index.html

An ART specification comprises one or more modules with associated import and
export lists. In software engineering, modularisation is used to allow separation of
concerns, to encapsulate and abstract away from details, and to support reuse;
we believe that the engineering of large grammar-based systems also benefits
from effective modularisation. A complete example of an ART specification for
a tiny language is shown on page 313.

ART grammar rules use conventional CFG syntax augmented with the postfix
regular operators *, + and ? for Kleene closure, positive closure and optional
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items respectively, as well as parentheses and the | operator to allow alternates
to be gathered together. The symbol # represents the empty string ε. We also
provide the form A@B which is shorthand for A (B A)*.

To support scannerless parsing, terminals come in three forms. The most fun-
damental is the character terminal denoted by a back-quote followed by either
a printable character or one of the ANSI-C conventional character escape se-
quences. These are designed to be used in lexical level specifications and we also
allow the shorthands ‘x-‘z and \‘x to represent sets of character tokens in the
range x through z and the set that includes all character tokens except x. The
range operator may only be applied between operands that are either both dig-
its, both lowercase or both uppercase characters because ART does not expect
any other sequences to have a portable ordering.

Whether ART uses a separate lexer, specified in this way, or deploys the GLL
algorithm right down to character level (in the manner of scannerless parsing
in SDF [7]) is user selectable: there are theoretical and engineering implications
which are beyond the scope of this paper but which will be discussed in future
presentations.

Case sensitive terminals are demarcated by single quotes, and represent a
shorthand for a whitespace nonterminal followed by the sequence of character
terminals corresponding to the pattern of the terminal; that is ’while’ is just
shorthand for (artWhiteSpace ‘w ‘h ‘i ‘l ‘e).

The nonterminal artWhiteSpace is predefined by ART to correspond to the
nonprinting characters; if the user provides explicit productions then the internal
default is suppressed. ART specifications are modular, as we describe in the next
section, and each module may have its own artWhiteSpace definition.

Case insensitive terminals are demarcated by double quotes, and represent
a shorthand for a whitespace nonterminal followed by the sequence of charac-
ter terminals corresponding to the mixed-case pattern of the terminal; that is
"while" is shorthand for

(artWhiteSpace (‘w|‘W) (‘h|‘H) (‘i|‘I) (‘l|‘L) (‘e|‘E)).

Nonterminals and terminals may be named by appending a colon and an al-
phanumeric identifier. Names are used in semantic expressions to disambiguate
multiple instances of a nonterminal, and to identify torn subtrees that will be
reinserted into an RDT.

ART modules export a list of nonterminals. Non-exported nonterminals are
private to a module and invisible outside of their parent module. A module
import list comprises import entities written as M.X = Y. This asks for the pro-
ductions from module M whose left hand side is X to be copied into the current
module but with their left-hand side name changed to Y. The simpler form M.X
copies the productions for X with the same local name as in the exporting mod-
ule, and the form M simply copies all rules that are exported from M with their
original names. When a rule X ::= Z1 Z2 ... Zk is exported by module M and
imported into module N via the instruction M.X = Y, the copy rule is prop-
erly written N.Y ::= M.Z1 M.Z2 ... M.Zk, in particular if Zi=X then M.Zi is
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different from N.Y. In a derivation using this rule the grammar rules for Zi in
module M are used to expand M.Zi.

Module re-use sometimes demands that we modify imported nonterminal def-
initions. Extra rules may be added locally simply by writing them into the im-
porting module. However, we can also remove productions from a nonterminal
by using the deleter X \ ::= α. In this case, all rules of the form X ::= α (af-
ter suppression of TIF annotations and semantic actions) are deleted from the
module containing the deleter.

An attempt to recursively import a module is an error, the dependency graph
of modules must form a directed acyclic graph. During module resolution, we say
a module M is complete if all of the modules in its import list are complete, and
all imports to M have been performed and all deleters in M have been applied.
In practice this means that we start at the leaves of the dependency DAG and
work our way back to the root module.

The order of modularity operations for M is as follows:

1. Construct internal representations of all of the rules in the source text for
M .

2. When all modules listed as imports to M are complete, execute each import
in M and apply renamings.

3. Apply deleters in M to the resulting set of rules.
4. Construct the export list from M .
5. Mark M as complete.

ART uses GLL-style parsing [2] which is a generalisation of recursive descent
using the process management regime from our RIGLR parsers. A feature of GLL
is that the parser is defined in terms of a small series of templates corresponding
to various grammar idioms. Converting ART to produce parsers and tree walkers
written in a new programming language requires us to write templates in that
language and to implement a small set of support routines. ART generates C++;
we plan to implement Java templates next.

The present ART implementation uses RDP to generate its front end: ART
has not yet been ported to itself. When a bootstrapped version of ART becomes
available, some aspects of the source syntax (such as the trailing ; on produc-
tions) will become optional: they are only there to ensure that ART’s source
syntax is LL(1) and thus admissible by RDP.

A major space component of the generated parsers is the bit strings associated
with the selector sets that guard the activation of individual productions. For
performance reasons, we do not wish to implement the well known compression
techniques used in table driven parsers, but we have observed that for typical
programming languages a 75% reduction in space is obtainable simply by storing
sets by contents rather than by name because many selector sets have the same
contents. For ANSI-C, there are 866 selector sets in the parser but only 218
contents-unique selector sets.
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3 Tear-Insert-Fold Annotations

The TIF formalism described in [3] provides four tree manipulation operators.
We imagine the tree as being drawn on a piece of paper, and allow for a node
to be folded under or over its parent or for complete subtrees to be torn away
and then reattached in a different position under the same parent. Essentially
we use the derivation tree of a string as a starting point, and then rearrange it
into an RDT as specified by the TIF operators.

The four TIF operations are carefully designed to be completely local: we do
not allow subtrees to be torn and reattached to any node other than the original
parent. This allows us to write an algorithm which generates a specification for
the possible output trees in the form of another grammar which we call the TIF
Transformed Grammar (TTG): the derivation trees of the TTG are the RDT’s
of the original grammar.

We shall illustrate the TIF operators using the following grammar:

A ::= ’b’ C ’d’; C ::= ’e’ ’f’; X ::= ’y’ ;

Nonterminal X is unreachable from start symbol A but will be used in an insertion.
The derivation tree for string befd is

b

A

e

C

f

d
�

�
��

�
��

	 


Now, if we add a fold-under (^) TIF operator to C and d in A giving
A ::= ’b’ C^ ’d’^; the derivation tree is transformed to this RDT:

b

A

e f
�

�
��

�
��

which has TTG A ::= ’b’ ’e’ ’f’; Similarly, if we add the fold-over (^^)
operator giving A ::= ’b’ C^^ ’d’; then the derivation tree would be trans-
formed to this RDT:

b e f d
�

�
��

�
��

�����

A C

with TTG A_C ::= ’b’ ’e’ ’f’ ’d’;, A_C is a new nonterminal. The tear op-
erator (^^^) removes an entire sub-tree: the rule A ::= ’b’ C^^^ ’d’; yields
this RDT:
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b

A

d

�
��

�
��

with TTG A ::= ’b’ ’d’; .
We can also perform arbitrary insertions within rules using the $ operator

which may be applied to terminals, nonterminals that generate singleton lan-
guages and named tears. The TIF production

A ::= ’b’ C:tearName^^^ [ $X ] ’d’ [ $tearName ];

tears the subtree generated b nonterminal C, inserts a tree corresponding to the
single derivation in the language of X and then re-inserts the torn tree:

b

A

y

X d
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f
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�����

	 
�

with TTG A ::= ’b’ X ’d’ C; C ::= ’e’ ’f’; X ::= ’y’ ;
As a more substantial example, here is the source code for Euclid’s Greatest

Common Divisor algorithm written in the mini language originally designed
as a tutorial example for RDP together with the RDT used by mini’s code
generator.

int a = 9,
b = 12;

if a == 0 then
print("GCD is", b)

else

begin

while b != 0 do
if a>b then
a = a - b

else
b = b - a;

print("GCD is", a)

end;
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The RDT was produced using the following TIF grammar.

*mini(declarations statements)(program)
program ::= #^ | (var_dec | statement | #^ ) ’;’^ program^ ;

*declarations(lexer expressions)(var_dec)
var_dec ::= ’int’^^ dec_body dec_list^ ;
dec_list ::= #^ | ’,’^ dec_body dec_list^ ;

dec_body ::= id^^ ( ’=’^ e0 )? ;

*statements(lexer expressions)(statement)
statement ::= id ’=’^^ e0 |

’if’^^ e0 ’then’^ statement ( ’else’^ statement )? |
’while’^^ e0 ’do’^ statement |
’print’^^ ’(’^ ( e0 | stringLiteral ) print_list^ ’)’^ |
’begin’^^ statement stmt_list^ ’end’^;

print_list ::= #^ | ’,’^ ( e0 | String ) print_list^ ;

stmt_list ::= #^ | ’;’^ statement stmt_list^ ;

*expressions(lexer)(e0)
e0 ::= e1 (’>’^^ e1 | ’<’^^ e1 | ’>=’^^ e1 | ’<=’^^ e1 | ’==’^^ e1 | ’!=’^^ e1)? ;
e1 ::= e2^^ | e1 (’+’^^ | ’-’^^) e2 ;
e2 ::= e3^^ | e2 (’*’^^ | ’/’^^) e3 ;
e3 ::= e4^^ | ’+’^ e3^^ | ’-’^^ e3 ;
e4 ::= e5^^ | e5 ’**’^^ e4 ;
e5 ::= id^^ | integerLiteral^^ | ’(’^ e1^^ ’)’^ ;

*lexer()(id integerLiteral stringLiteral)
alpha ::= ‘a..‘z | ‘A..‘Z | ’_’ ;
digit ::= ‘0..‘9;
id ::= alpha (alpha|digit)*;
integerLiteral ::= digit*;
stringLiteral ::= ‘" (..)* ‘";

4 Some Source-to-Source Conversion Examples

The ANSI-C do-while and for statements can be expressed using the while
statement. They are provided for user convenience but mapping them onto the
while statement means that target code has only to be specified for one type of
intermediate form. The ANSI-C production describing iteration statements is:

iteration_statement ::=

’while’ ’(’ expression ’)’ statement |

’do’ statement ’while’ ’(’ expression ’)’ ’;’ |

’for’ ’(’ ( expression )? ’;’ ( expression )? ’;’

( expression )? ’)’ statement ;

The following TIF rules parse the C for and do constructs respectively but
generate RDT’s corresponding to the equivalent while statements.

mappedForLoop ::=
’for’^ ’(’^ expr:init^^^ ’;’^ expr:test^^^ ’;’^ expr:step^^^ ’)’^
[ $init ’;’ ’while’ ’(’ $test ’)’ ’{’ ] statement [ ’;’ $step ’}’ ] ’;’ ;

mappedDoLoop ::=
’do’^ ’{’^ statement:body^^^ ’}’^ ’while’^ ’(’^ expr:test^^^ ’)’^ ’;’^
[ $body ’;’ ’while’ ’(’ $test ’)’ $body ’;’ ] ;
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We can also use TIF annotations to generate a uniform intermediate form from
restricted cases of generic constructs. The following TIF rules generate an RDT
from a for loop which has a root node labelled for and exactly four children,
three of them valid expression sub-trees and one an instance of statement.

expressionFriendlyForLoop ::=

’for’^^ ’(’ Eexpr ’;’ Eexpr’;’ Eexpr ’)’ statement ;

Eexpr ::= expression^^ | # [’true’^^] ;

Empty expressions are remapped so that if the programmer chooses to omit one
of the control expressions we insert the expression true instead of leaving a child
labelled with the epsilon symbol (or indeed no child at all by some conventions).
We choose true because the C semantics for for specifies that the default for
the step expression is that loop execution continues forever. C always discards
the result of the initialisation and step expressions; only the side effects are used.
Hence any side-effect free expression is a valid default.

5 Concluding Remarks and Open Issues

ART is fast, powerful and unfinished. There are a variety of open issues that
we are experimenting with, and we expect to modify the tool’s behaviour in
response to user experiences.

At present, ART directly implements EBNF parentheses and the ? operator
by multiplying out. Closures are handled by the auxiliary gramconv tool. As a
result, ART only need generate parser templates for BNF grammars. We have
developed parser templates for EBNF constructs which allow iteration within
the GLL parser to directly and efficiently handle closures, but the exact form of
the trees to be produced is the subject of further study: it is not clear for instance
whether a Kleene closure matching the empty string should yield a node labelled
ε in the SPPF or simply be suppressed.

We have syntax to support lexical level rules, but the exact form of the
lexer/parser divide is not specified. ART can produce GLL parsers which truly
run at the character level, but the resulting SPPF’s can be very large. Alterna-
tively, ART can interface to DFA style lexers.

The fold operators in the TIF formalism are inspired by RDP’s fold operators.
RDP has been used in a wide variety of industrial and research projects over the
last 15 years, and we have confidence that the basic notions of folding are useful
and comfortable for engineers. In detail, ART’s folds work differently in the case
where we have chains of fold operators, that is when we fold a rule which also has
folds on its own right hand side. In RDP, a fold-under operator could promote
a fold over operator which then reached up and over the original parent node.
We have outlawed this behaviour in ART by ensuring that fold under operators
take priority over fold overs. Interestingly, we have never found an instance of
this construct in any real RDP grammar.

ART can perform insertions of nonterminals which generate singleton lan-
guages, that is languages with only one string. ART builds the derivation tree
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for that single sentence, and inserts it. In the TIF formalism as described in [3]
an insertion may be made of a (N, s) pair in which the derivation of string s in
the grammar whose start symbol is N is inserted. ART’s present limitation to
singleton languages is a restricted version of this: we intend to implement the
full semantics in a future version.

Finally, we note the lack of change management capability we need to design
a TIF metalanguage which described the annotations to be applied: this could
then be interpreted by ART as part of the generation of Γi.
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Abstract. Software linguistics is the science of software languages. In this short
paper, we sketch the general discipline of software linguistics, but our focus is
on one part of it: empirical analysis of software languages. Such analysis is con-
cerned with understanding language usage on the grounds of a corpus. In this
short paper, we sketch a survey on empirical language analysis, and we argue
that the research method of content analysis is needed for a thorough survey.

1 Introduction

Software Language Engineering (SLE) or “Software Languages are Software too”.
Software language descriptions and processors are pieces of software. Hence, all kinds
of Software Engineering concepts and techniques can be adopted to software languages.
SLE is about the systematic design, implementation, deployment, and evolution of soft-
ware languages [14]. Clearly, software language descriptions have particular properties,
when compared to other kinds of artifacts in software engineering. Hence, traditional
software engineering life-cycles, methods, set of qualities and constraints must be gen-
uinely adapted. If we think about the distinction of software languages vs. natural lan-
guages, then Software Language Engineering can be compared to the established field
of Natural Language Engineering [6,10].

Software Linguistics (SL) or “Software Languages are Language too”. SLE prac-
tices should be informed by scientific knowledge. In the case of natural languages,
linguistics is the science of languages [5]. Hence, it is worth to see which concepts,
research methods, perhaps even techniques or results from the field of linguistics could
be adopted to the study of software languages. In this manner, we obtain “Software Lin-
guistics”. The term Software Linguistics was introduced by Misek-Falkoff in 1982 [18].
This term and the whole concept of adopting linguistics for software (programming)
languages has not seen much interest. We refer to [8,17] for some controversy. We note
that Software Linguistics should not be confused with Computational Linguistics—the
former is “linguistics for software languages”; the latter is (simply speaking) “comput-
ing for linguistics” (for natural languages).

Towards a survey on empirical software language analysis. A common form of
software linguistics is empirical analysis of software language where one is concerned
with understanding usage of software languages on the grounds of a corpus. We are
interested in any kind of software language. Such analysis has been carried out for

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 316–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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many software languages and many aspects of language usage. In this short paper, we
begin a corresponding survey of a collection of publications on the subject of empiri-
cal software language analysis. This is work in progress, and we discuss how we ex-
pect to use the research method of content analysis [15] for the continuation of the
project.1

Road-map. In Sec. 2, we contextualize the present paper in reference to linguistics for
natural and software languages. In Sec. 3, we begin the survey of a collection of papers
on empirical language analysis. In Sec. 4, we discuss the employment of the research
method of content analysis for completing the current efforts on surveying empirical
language analysis in a systematic manner. In Sec. 5, we conclude the paper.

2 Broader Research Context: Software Linguistics
Empirical software language analysis is an important part of Software Linguistics. A
survey on such work helps understanding and improving the state of the art in empirical
software language analysis—also specifically with regard to scientific methodology.
Such a surveying effort also exercises the adoption of regular linguistics to software.

In this section, we would like to contribute to a broader understanding and definition
of Software Linguistics—through references to (Natural) Linguistics. We have found
that the mature, scientific framework provided by linguistics can be reused for soft-
ware languages—even though many techniques related to natural languages may not
be (directly) applicable. Much can be reused beyond the classical separation of dif-
ferent levels such as syntax, semantics and pragmatics. In fact, one can systematically
mine Software Linguistics from resources such as “The Cambridge encyclopedia of
language” [5]. A few examples are given below.

Comparative linguistics studies, compares and classifies languages according to their
features using either a quantitative or qualitative approach. It aims at identifying pat-
terns that are recurrent in different languages, but also differences and relationships
between languages. Comparative linguistics may also apply to software languages. For
instance, “Programming Linguistics” [7] compares programming languages in terms
of commonalities, relationships, and differences while discussing basic matters of syn-
tax, semantics and styles. “The comparison of programming languages: A linguistic
approach” [12] goes deeper into linguistic aspects. We also refer to [2,19].

Historical linguistics studies the history and evolution of languages—often with the
goal of identifying language families, that is, languages that derive from a common
ancestor. Part of this research compensates for the lost origin of natural languages. In
the case of software languages, history is often well documented. Consider, for exam-
ple, the History of Programming Languages (HOPL) conference series. HOPL focuses
on programming languages rather than software languages in general. Also, HOPL does

1 There is the SourceForge project http://toknow.sourceforge.net/ that is desig-
nated to this surveying effort on empirical analysis of software languages. The project hosts
(identifies) a paper collection, in particular. In the present paper, references to the papers of the
collection use angle brackets as in “〈Knuth71〉”.

http://toknow.sourceforge.net/
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not stipulate systematic linguistics studies; a typical paper relies on historical accounts
by the primary language designers. Some reports, though, provide a large set of quali-
tative information regarding the evolution of dialects of languages, e.g., [1]. The impact
of the evolution of software languages on software evolution, though real, is not well
understood [9], and deserves more research inspired by linguistics.

Geo-linguistics studies the intersection of geography and linguistics. Studies can, for
example, take into account the distribution of languages or dialects over countries, con-
tinents, and regions. We encounter a related “clustering” dimension for software lan-
guages in Sec. 3. Also, in [19], the emergence of dialects of Lisp are considered in
terms of geographical zones.

Socio-linguistics studies languages as social and societal phenomena. The design of
software languages and dialects is often directly linked to such phenomena, too. For
instance, in [19] Steele and Gabriel conclude “Overall, the evolution of Lisp has been
guided more by institutional rivalry, one-upsmanship, and the glee born of technical
cleverness that is characteristic of the hacker culture than by sober assessments of tech-
nical requirements”. The field of socio-linguistics for software remains largely unex-
plored, but see [3] for a related account.

Corpus linguistics deals with all aspects of designing, producing, annotating, ana-
lyzing and sharing corpora. Producing a useful, natural linguistics corpus could be an
effort that goes far beyond what individual researchers or teams can do. There are in-
ternational associations who support sharing, e.g., the European Language Resources
Association (ELRA).2 One should assume that empirical research on the usage of soft-
ware languages also involves efforts on ‘software corpus engineering/linguistics’. Such
software corpus linguistics should be simplified by the fact that software language arti-
facts are inherently digitally stored. However, the survey of Sec. 3 shows that corpora
are too often unavailable or unreproducible.

3 Towards a Survey on Empirical Language Analysis

In the following, we describe the beginning of a survey on empirical language analy-
sis. In particular, we identify first research questions, and we provide a corresponding
coding scheme à la content analysis [15].

3.1 Paper Collection

At the time of writing, we have accumulated 52 papers on empirical analysis of soft-
ware languages. As an illustration, Fig. 1 shows the language distribution for the full
collection. For reasons of brevity and maturity of all metadata, all of the subsequent
tables will focus on a selective collection of 17 papers. Both the full and the selective
collections are described online; see footnote 1.

2 ELRA website: http://www.elra.info/

http://www.elra.info/
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Fig. 1. Tag cloud for the language distribution for the underlying paper collection

3.2 Research Questions

i) Each paper in the collection involves a corpus of a chosen software language. What
are the characteristics of those corpora; refer to Sec. 3.4? ii) Each empirical analysis
can be expected to serve some objective. What are those objectives for the collection
of papers; refer to Sec. 3.5? iii) Each empirical analysis can be expected to leverage
some actual (typically automated) analyses on the corpus. What are those analyses for
the collection of papers; refer to Sec. 3.6?

3.3 Terminology

We use the term (software) corpus to refer to a collection of items that are expressed in
the language at hand. (These items may be valid or invalid elements of the language in a
formal sense.) Items originate from possibly several sources. We use the term source to
refer to different kinds of physical or virtual sources that contribute items. For instance,
a corpus may leverage an open-source repository as a source to make available, or
to retrieve the items—based on an appropriate search strategy. A paper may provide
a corpus description that identifies sources and explains the derivation of the actual
corpus (say, item set) from the sources.

3.4 Corpus Characteristics

Fig. 2 provides metadata that we inferred for the corpora of the selective paper col-
lection.3 We capture the following characteristics of the software corpora: the software
language of the corpus, numbers of sources and items (with a suitable unit), the online
accessibility of the sources (on a scale of none, partial, and full), and the reproducibil-
ity of the corpus (on a scale of none, approximate, precise, and trivial). We say that
reproducibility is trivial, if the corpus is available online—in one piece; reproducibil-
ity is precise, if the sources and the corpus description suffice to reproduce the corpus
precisely by essentially executing the corpus description. Otherwise, we apply a judge-
ment call, and use the tags approximate or none. For instance, the inability to reproduce
a ranking list of a past web search may be compensated for by a new web search, and
hence, reproducibility can be retained at an approximate level. In future work, we would
like to go beyond the characteristics that we have sketched here.

3 A cell with content “?” means that the relevant data could not be determined.
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language sources items unit accessibility reproducibility
〈AlvesV05〉 SDF 8 27 grammars partial approximate
〈BaxterFNRSVMT06〉 Java 17 56 projects full precise
〈ChevanceH78〉 COBOL 1 50 programs none none
〈CollbergMS04〉 Java 1 1132 JAR files full approximate
〈CookL82〉 Pascal 1 264 programs none none
〈CranorESMC08〉 P3P 3 ? policies full approximate
〈GilM05〉 Java 4 14 projects full precise
〈HageK08〉 Haskell 1 68000 compilations none approximate
〈Hahsler04〉 Java 1 988 projects full approximate
〈Hautus02〉 Java ? 9 packages full approximate
〈KimSNM05〉 Java 2 2 programs full approximate
〈Knuth71〉 Fortran 7 440 programs none none
〈LaemmelKR05〉 XSD 2 63 schemas partial none
〈LaemmelP10〉 P3P 1 3227 policies full trivial
〈ReayDM09〉 P3P 1 2287 policies full approximate
〈SaalW77〉 APL 6 32 workspaces none none
〈Visser06〉 XSD 9 9 schemas full approximate

Fig. 2. Corpus characteristics for selective paper collection

3.5 Objectives of the Papers

Based on our (preliminary) analysis of the paper collection, we propose the following
(preliminary) list of objectives for empirical language analysis; see Fig. 3 for corre-
sponding metadata for the selective paper collection.

Language adoption. The objective is to determine whether the language is used, and
with what frequency. Typically, some scope applies. For instance, we may limit the
scope geographically, or on the time-line.

Language habits. The objective is to understand the usage of the language in terms of
syntactically or semantically defined terms. For instance, we may study the coverage
of the language’s diverse constructs, or any other, well-defined metrics for that matter.
This objective may be addressed with substantial measurements and statistical analysis.

Language taming. The objective is to impose extra structure on language usage so that
habits can be categorized in new ways. For instance, we may equip the language with
patterns or metrics that are newly introduced or adopted from other languages. In some
cases, the empirical effort towards addressing the objective of language taming may
also qualify as effort that attests to the objective of language habits.

User feedback. The objective is to compile data of any kind that helps the language user
to better understand or improve programs. For instance, we may carry out an analysis
to support the proposal of a new pattern that should help with using the language more
effectively. This objective could be seen as a more specific kind of language taming.
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language adoption • • •
language habits • • • • • • • •
language taming • • • • • •
user feedback •
language evolution • •
user behavior •
implementor feedback • • • •

Fig. 3. Objectives of the selected publications

Language evolution. The objective is to gather input for design work on the next
version of the language. For instance, we may try to detect indications for missing
constructs.

User behavior. The objective is to understand the usage of the language and its tools
in a way that involves users or user experiences directly—thereby going beyond the
narrow notion of corpus consisting only of “programs”. For instance, we may anal-
yse instances of compiler invocations with regard to problems of getting programs to
compile eventually.

Implementor feedback. The objective is to understand parameters of language usage
that help language implementors to improve compilers and other language tools. For
instance, we may carry out an analysis to suggest compiler optimizations.

Without going into detail here, the available data caters for various observations. For
instance, we realize that research on language adoption is generally not exercised for
programming languages. It appears that online communications but not scientific pub-
lications are concerned with such adoption.4,5,6

3.6 Analyses of the Papers

Based on our (preliminary) analysis of the paper collection, we have come up with a
simple hierarchical classification of (typically automated) analyses that are leveraged
in the empirical research projects; see Fig. 4 for the classification; see Fig. 5 for corre-
sponding metadata for the selective paper collection.

The presented classification focuses on prominent forms of static and dynamic anal-
ysis. In our paper collection, static analysis is considerably more common, and there

4 The TIOBE Index of language popularity: http://www.tiobe.com/tpci.htm
5 Another web site on language popularity: http://langpop.com/
6 Language Popularity Index tool: http://lang-index.sourceforge.net/

http://www.tiobe.com/tpci.htm
http://langpop.com/
http://lang-index.sourceforge.net/
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Static analysis Source code or other static entities are analyzed.
Validity The validity of items in terms of syntax or type system is analyzed.
Metrics Metrics are analyzed.

Size The size of items is analyzed, e.g., in terms of lines of code.
Complexity The complexity of items is analyzed, e.g., the McCabe complexity.
Structural properties Example: the depth of inheritance hierarchy in OO programs.

Coverage The coverage of language constructs is analyzed.
Styles The usage of coding styles is analyzed.
Patterns The usage of patterns, e.g., design patterns, is analyzed.
Cloning Cloning across items of the corpus is analyzed.
Bugs The items are analyzed w.r.t. bugs that go beyond syntax and type errors.

Dynamic analysis Actual program runs are analyzed.
Profiles Execution frequencies of methods, for example, are analyzed.
Traces Execution traces of method calls, for example, are analyzed.

Dimensions of analysis Orthogonal dimensions applicable to analyses.
Evolution An analysis is carried out comparatively for multiple versions.
Clustering The corpus is clustered by metadata such as country, team size, or others.

Fig. 4. Classification of analyses
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validity • • • •
metrics • • • • • • • • • • •
coverage • • • • • • • • •
styles • • • • •
patterns • •
cloning • •
bugs • • •
profiles • • •
traces
evolution • • •
clustering • • •

Fig. 5. Analyses of the selected publications

is a substantial variety of different analyses. We also indicate two additional dimen-
sions for analyses. An analysis is concerned with evolution, when different versions of
items, sources, or languages are considered. The dimension of clustering generalizes
geo-linguistics of Sec. 2. By no means, our classification scheme is complete. For in-
stance, we currently miss characteristics regarding data analysis (e.g., in terms of the
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involved statistical methods), and the presentation of research results (e.g., in terms of
the leveraged tables, charts, etc.).

4 Outlook on Research Methodology

The survey is work in progress. We are in the process of assessing the feasibility of such
a survey, discovering research questions, and studying applicable research methodol-
ogy. Ultimately, we aim at reproducible research results and assessment of validity and
limitations. In this discussion section, we briefly hint at the utility of content analysis
for the continuation of this research.

4.1 Content vs. Meta-analysis

We consider two research methods commonly used in social and health sciences, namely,
content analysis [15] and meta-analysis [11]. Content analysis is a qualitative research
method commonly used for systematically studying large amounts of communication
content such as news, articles, books, videos, or blogs. The key characteristic is that the
analyzed content is categorized by researchers. Systematic literature surveys [4] often
leverage content analysis.

Meta-analysis is another research method used for a systematic analysis of research
literature. Unlike content analysis, meta-analysis is a quantitative method, and it is fo-
cused on research studies that have highly related research hypotheses. The main goal
of a meta-analysis is to aggregate and statistically analyze findings of several research
studies. Meta-analysis uses stricter inclusion criteria than content analysis: measured
outcomes, and sufficient data to calculate effect sizes. These specifics of meta-analysis
challenge its application to empirical software engineering [13]. As a result, we focus
on content analysis for the ongoing survey.

4.2 Adoption of Content Analysis

Let us synthesize the main steps for applying content analysis for studying literature
on empirical software language engineering; here we follow the advice of [4]. (Content
analysis could serve as a convenient research method for studying not only research
publications, but also other types of communications such as online discussions about
languages, news articles, or bug report histories.)

1. Formulate research questions. In Sec. 3, we listed research questions related to
corpus characteristics, objectives and analyses. We may add questions, for example,
about i) the correlation between different factors (e.g., languages vs. objectives), ii) the
adopted research method, iii) the statistical techniques that are leveraged, and iv) the
presentational tools (figures, charts) etc. that are used in the papers.

2. Formulate inclusion criteria for papers. These criteria are derived from the re-
search questions. So far, we have been using these criteria: i) the paper discusses usage
of a software language, and ii) the paper reports empirical results on such usage based
on a corpus. These constraints may need to be made more precise to avoid inclusion of
“irrelevant” papers.
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3. Collect data. That is, we need to discover the relevant literature. Our preliminary
collection has been obtained in an ad-hoc manner. We harvested several papers from
the literature work that went into our prior, related research: 〈LaemmelKR05〉, 〈LaemmelP10〉.
We examined first-degree and second-degree references. While searching those papers
on the web, we encountered a few more “obvious” candidates.

A systematic approach commences as follows. First, we need to determine the
sources from which the papers will be collected. To this end, we may select digital
libraries (e.g., ACM, IEEE, Science Direct, and Springer), and other online sources
(DBLP7), where the papers will be searched. Next, we need to define the search strat-
egy. In particular, we need methodologically defined keywords including constraints on
their combination so that the search strategy is reproducible and amenable to assess-
ments. Ultimately, the search strategy needs to be executed so that all those papers are
collected that satisfy the inclusion criteria.

4. Evaluate data. The collected data is evaluated in terms of some classification scheme,
which is commonly called coding scheme, and which consists of a set of categories that
describe the studied domain. In some cases, a (part of a) coding scheme can be defined
up-front. For instance, we designed the corpus characteristics of the papers up-front;
refer to Sec. 3.4. In general, categories may emerge during evaluation. For instance,
we perceived the objectives for empirical language analysis only post-priori; refer to
Sec. 3.5. There is a systematic process for developing a coding scheme based on the
iteration of certain steps of discovery and testing by other researchers [20].

Each paper in the collection has to be coded eventually. Coding is typically done by
two researchers (so-called raters) independently. Two authors of the present paper have
acted as raters in some limited manner. For a proper execution, it is inevitable to keep
track of original codes of the researchers and the reconciled ones. This is needed for the
computation of a measure of accuracy of the coding scheme.

As the process of data collection and coding might be rather labor-intensive, content
analysis may leverage some more automated approaches. For example, text mining is
one possible approach [16], and off-the-shelf tools—such as AeroText and SPSS—
provide corresponding support. It will be interesting to see how well text mining works
in our domain.

5. Analyse data. Frequencies of each category are to be calculated and reported. The
frequencies describe the level of coverage of a certain phenomenon of interest studied
in the domain. As these frequencies are obtained through a systematic research process,
they can nicely reflect on the main types of problems the research has been focused on,
and probably discover some patterns about missing research. Such analysis also helps
giving relatively objective answers to the research questions.

6. Publish analysis. The publication must describe all methodological steps, and in-
clude all data needed for reproducibility. For instance, inclusion of the discovered num-
ber of papers (per used source), and included papers are mandatory. Similarly, details
of data evaluation and data analysis need to be included. For instance, measures of

7 http://www.informatik.uni-trier.de/˜ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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accuracy of the coding scheme are to be included. Further, a qualitative discussion of
the surveyed papers must be provided.

5 Concluding Remarks

We have described the beginning of a literature survey on empirical language analysis.
We have presented first results of the emerging survey and discussed details of the
underlying research method. We hope to get other software language engineers and
empirical software engineers as well as software linguists or even classical linguists
involved in this effort.

In the work on the survey, so far, we have found it inspirational to consult lin-
guistics (for natural languages). In particular, linguistics provides input for the cate-
gorization needed in the survey, and it suggests underrepresented areas of empirical
language analysis. The other interesting insight has been that a survey on empirical lan-
guage analysis, in itself, also calls for an empirical method, and we have found that
content analysis provides a good fit to produce a first survey on empirical language
analysis.
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Abstract. In meta-programming with concrete object syntax, meta programs can
be written using the concrete syntax of manipulated programs. Quotations of con-
crete syntax fragments and anti-quotations for meta-level expressions and vari-
ables are used to manipulate the abstract representation of programs. These small,
isolated fragments are often ambiguous and must be explicitly disambiguated
with quotation tags or types, using names from the non-terminals of the object
language syntax. Discoverability of these names has been an open issue, as they
depend on the (grammar) implementation and are not part of the concrete syn-
tax of a language. Based on advances in interactive development environments,
we introduce interactive disambiguation to address this issue, providing real-time
feedback and proposing quick fixes in case of ambiguities.

1 Introduction

Meta programs analyze, transform, and generate programs. Examples include compil-
ers, interpreters, and static analysis tools. Most frequently, meta programs operate on
the abstract syntax of an object language, using a structured representation of programs
rather than a textual representation of their source code. Using a structured representa-
tion ensures well-formedness, enables compositionality of transformations, and makes
it easier to support type safety and hygiene. However, manipulating the abstract syntax
through an API can get tedious, and larger structures are often hard to recognize.

Meta-programming with concrete object syntax [15] as a surface syntax for the ab-
stract representation is, for a great number of situations, a best of both worlds between
a textual and an abstract syntax representation: the meta program is written using the
familiar concrete syntax of the object language, while at the meta level, all operations
are done on a structured representation of the object program. Concrete object syntax
can be syntactically checked as meta programs are compiled. This technique is now
supported by many meta-programming systems [2,3,4,7,12].

A prevailing problem with embedding concrete object syntax inside a meta-language
is that the syntax of the combined meta-and-object language is usually highly ambigu-
ous when the embedding employs a single pair of quotation and anti-quotation symbols.
For example, a quoted Java code fragment |[ i = 2 ]| can either be an assignment
expression, part of a local variable declaration, or even an annotation element initializer.

Two approaches have been proposed to address ambiguity in meta programs, each
with their own trade offs and limitations. Perhaps the most straightforward approach
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c© Springer-Verlag Berlin Heidelberg 2011



328 L.C.L. Kats, K.T. Kalleberg, and E. Visser

Fig. 1. Screenshot of a quick fix dropdown menu, listing three possible tags to disambiguate a
Java quotation. The menu can be triggered by clicking on the error icon shown in the left margin,
or by using a keyboard shortcut. Selecting a suggestion fixes the ambiguity.

is to use tagged quotation and anti-quotation symbols, e.g. writing Expr |[ i = 2 ]|
using the tag Expr to indicate that the quotation contains an expression. The other
approach is to use type information of the meta-programming language to attempt to
select the intended interpretation of a concrete syntax quotation [5,13]. For example,
for an embedding of Java in Java, a statement Expr assign = |[ i = 2 ]|; can be
disambiguated based on the declared type Expr, while the quotation itself does not have
to be explicitly tagged.

A pressing problem that both approaches share is a lack of discoverability of quota-
tion tags and types. Meta-programmers may be intimately familiar with the concrete
syntax of a language, but may not be well-grounded in the specific names of non-
terminals in the syntax definition and the corresponding tag and type names. Having
to know these names adds to the learning curve of meta-programming. Furthermore, as
object languages evolve, or as additional object languages are added to a meta program,
new ambiguities can be introduced for existing code that has not yet, or insufficiently,
been explicitly disambiguated. Neither of the two approaches provides developers with
adequate feedback if the developer must decide how to fix such an ambiguity.

In this paper we propose interactive disambiguation as a complementary approach to
tag-based and type-based disambiguation that addresses the concern of discoverability.
Our work builds on advances in interactive development environments (IDEs). Modern
IDEs aid in discoverability of language features and APIs by providing features such
as context-aware code completion and quick fixes. Quick fixes provide a facility to
quickly fix common errors by selecting a fix from a list of suggestions. In this paper we
propose to use quick fixes to present developers a list of candidate type or tag names
for ambiguous concrete syntax fragments, allowing them to selectively fix problematic
ambiguities and quickly discover possible fixes (illustrated in Figure 1). Our interactive
disambiguation approach is fully language independent and does not have to be adapted
for a specific meta-programming language or its type system.

2 Meta-programming with Concrete Object Syntax

In this section we recapitulate the general method for supporting concrete object syntax
in meta languages and describe the problem of ambiguity. This method, as described
in [15,6], is independent of the meta language used and relies on composition of the
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action-to-java-method:
|[ action $[Id:name] {

$[Statement*:s∗]
}

]| ->
|[ public void $[Id:name]() {

$[Stm*:<statements-to-java> s∗]
}

]|

Fig. 2. A rewrite rule that uses concrete object syntax notation to rewrite a WebDSL action to a
Java method. s∗ is a meta variable containing a list of statements. name contains an identifier.

syntax of the meta language and the object language. Based on this composition, the
meta language can use quotations of object-level code to match and construct code
fragments in the object language. In turn, quotations can include anti-quotations that
escape from the object language code in order to include variables or expressions from
the meta language. As an example, Figure 2 shows a Stratego [4] rewrite rule that uses
quotations (indicated by |[...]|) and anti-quotations (indicated by $[...]) to rewrite a
WebDSL [16] action definition to a Java method.

Grammar composition. Some meta-programming systems, such as Jak [3] and Meta-
AspectJ [8], have been specifically designed for a fixed object language. These systems
use a carefully handcrafted grammar or parser for the combined meta and object lan-
guage. Other systems are more flexible and can be configured for different object lan-
guages by combining the grammar for the meta and object languages, and generating
a corresponding parser using a parser generator. Building flexible meta-programming
systems using traditional parser generators is very difficult, because their grammars are
restricted to LL or LR properties. This means that conflicts arise when the grammar of
the meta language and the object language are combined [6], and these must be resolved
before the meta-and-object language parser can be constructed. A further impediment
to language composition found in traditional parsers is the use of a separate scanner,
requiring the use of a single lexical syntax definition for the combined language.

By using a combination of SDF for syntax definition and SGLR for parsing [6,14],
any object language can be embedded in any meta language [15]. SGLR supports the
full class of context-free grammars, which is closed under composition. This makes
it possible to compose languages simply by combining grammar modules. Mixin gram-
mars can combine languages by introducing productions for quotation and
anti-quotation of an object language to a meta language. Mixin grammars can be written
by hand or automatically generated using a tool.

As an example of a mixin grammar, Figure 3 shows an excerpt of a grammar that
embeds Java into the Stratego program transformation language. Quotation productions
have the form q1 osort q2 ->msort and specify that a quotation of object-language non-
terminal osort , surrounded by (sequences of) symbols q1 and q2, can be used in place
of meta-language non-terminal msort . We sometimes refer to q1 and q2 collectively
as the quoting symbols. In most of our examples, q1 is |[ and q2 is ]|, or a variation
thereof.
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module Stratego-Java

imports Stratego Java1

exports context-free syntax
% Quotations %

"|[" ClassDec "]|" -> Term {cons("ToMetaExpr")}
"|[" BlockStm "]|" -> Term {cons("ToMetaExpr")}
"|[" CompUnit "]|" -> Term {cons("ToMetaExpr")}

% Anti-quotations %
"$[" Term "]" -> ClassDec {cons("FromMetaExpr")}
"$[" Term "]" -> BlockStm {cons("FromMetaExpr")}
"$[" Term "]" -> CompUnit {cons("FromMetaExpr")}

Fig. 3. A mixin grammar for embedding object language Java into host language Stratego. For se-
lected Java non-terminal, the mixin defines productions for quoting and anti-quoting. ClassDec,
BlockStm, CompUnit are defined by the Java grammar.

"CompUnit" "|[" BlockStm "]|" -> Term {cons("ToMetaExprTagged1")}
"Java:CompUnit" "|[" BlockStm "]|" -> Term {cons("ToMetaExprTagged2")}
"$[" "BlockStm" ":" Term "]" -> BlockStm {cons("FromMetaExprTagged")}

Fig. 4. Productions with tagged quoting symbols

Conversely, anti-quotation productions have the form q1 msort q2 -> osort . They
specify that an anti-quotation of meta-language non-terminal msort , using quoting
symbols q1 and q2, can be used in place of object-language non-terminal osort .

In our example we combine a single meta language with a single object language.
It is also possible to add additional object languages or embeddings and extensions
inside object languages. Using nestable quotations and anti-quotations, meta and object
language expressions can be arbitrarily nested.

Ambiguity. As the meta language and object language are combined, ambiguities can
arise in quotations and anti-quotations. Quotations and anti-quotations are ambiguous
if they can be parsed in more than one way, leading to multiple possible abstract syntax
representations. Ambiguities can also occur if the same quoting symbols are used for
(anti-)quotation of multiple non-terminals. Such ambiguities can be avoided by using
quoting symbol tags that indicate the kind of non-terminal or by using type information
from the meta language [5,13]. Both approaches use names based on the non-terminals
in a syntax definition for the object language. Without loss of generality, we focus on a
combination of tag-based disambiguation with interactive disambiguation in this paper.

As an example of tagged quoting symbols, Figure 4 shows tagged productions tag
(anti-)quotations for the CompUnit non-terminal. We indicate the kind of tag in the con-
structor of these productions. For untagged quotation productions we use ToMetaExpr,
for productions with a non-terminal name we use ToMetaExprTagged1 and for pro-
ductions that also include a language prefix we use ToMetaExprTagged2. The last

1 This example uses plain imports to combine the meta and object languages (Java and Stratego).
To avoid name clashes between non-terminals of the two grammars, actual mixin grammars
use parametrized imports, so that all symbols are postfixed to make them uniquely named.
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|[
public class X {
// ...

}
]|

CompUnit |[
public class X {

// ...
}

]|

|[
package org.generated;
public class X {
// ...

}
]|

Fig. 5. Quotations of a Java compilation unit. From left to right: an ambiguous quotation, a quo-
tation that is disambiguated by tagging, and a quotation that is already unambiguous without
tagging.

category enables distinction between non-terminals with the same name that are defined
in different object languages. For tagged anti-quotations we distinguish FromMetaExpr
and FromMetaExprTagged.

Figure 5 shows an illustration of both untagged and tagged quotations. The quotation
on the left is ambiguous, as it can represent a single class, a class declaration statement,
or a compilation unit, each represented differently in the abstract syntax. The quotation
in the middle makes it explicit that the intended non-terminal is a compilation unit, re-
solving the ambiguity. The quotation on the right is already unambiguous, because only
complete Java compilation units can include a package declaration, and does not have
to be explicitly disambiguated. Similar to quotations, anti-quotations can be ambiguous
if they can represent multiple possible non-terminals within the context of a quotation.

3 Interactive Disambiguation of Concrete Object Syntax

In this section we describe how ambiguities in concrete object syntax can be inter-
actively resolved by analyzing ambiguities and providing quick fix suggestions. We
describe different classes of ambiguities and give an algorithm for automatically deter-
mining disambiguation suggestions for a given parse forest and grammar.

3.1 Classes of Ambiguities

At the grammar level, there are a number of different classes of ambiguities. In this
paper we focus on ambiguities in quotations and anti-quotations. These ambiguities are
inherent to the use of mixin grammars, as languages are woven together and fragments
must be parsed with limited syntactic context. Disambiguation with tags or types can
resolve these ambiguities. Other forms of ambiguities can be caused by the meta or
object language, such as with the C language that notoriously overloads the * operator
for multiplication and pointer dereference. Such ambiguities must be retained if they are
part of the object language design, otherwise they should be resolved at the grammar
level. Ambiguities can also arise by the combination of the two languages if the syntax
between the meta and object language overlap. These cannot always be resolved by
type-based disambiguation [13], but can only be avoided by carefully selecting sensible
quoting symbols in such a way that they do not overlap with the meta language and
object language. Ideally, the symbols are chosen to be aesthetically pleasing characters
or character combinations that never occur in either the object or meta language.
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ClassDec BlockStm CompUnit

ClassDec PackageDec?ClassDecHead ClassBody ImportDec? TypeDec*

ToMetaExpr ToMetaExpr ToMetaExpr

amb

Fig. 6. The parse forest for the quotation |[ public class X {} ]|

Quotations are ambiguous when they can be parsed in more than one way, according
to one or more object languages. To illustrate interactive disambiguation suggestions
for quotations, consider again the untagged quotation in the left-hand side of Figure 5.
Recall that this fragment could represent a single class, a class declaration statement,
or a compilation unit. Using a generalized parser such as SGLR, the parser constructs a
parse forest that branches at the point such an ambiguity, containing all possible subtrees
for the ambiguous expression. Figure 6 illustrates the parse forest for our example, with
at the top a special “amb” tree node that has the three possible interpretations as its
children. The gist of our technique is to analyze the different possible parse trees, and
have the developer select which alternative they intended.

In the mixin grammar for the embedded Java language (shown in Figure 3), there
are three untagged productions that produce the three interpretations of our example.
The tagged productions of Figure 4 parse the same object language non-terminal, but
include distinguishing tags. These tags can be used to disambiguate the example: when
one of the tags ClassDec, BlockStm, or CompUnit is added, there is only one possible
interpretation of the quotation. By providing quick fix suggestions that automatically
insert one of these three tags, meta-programmers can consider the three options and
decide which is the interpretation they intended. In the event that the fragment could
also be parsed using a different object language that happens to use the same tag names,
the prefixed tags such as Java:CompUnit are proposed instead.

Anti-quotations can be disambiguated much like quotations. However, because they
always occur in the context of a quotation, there is no need for language-prefixed quot-
ing tags. For anti-quotations we also distinguish local ambiguity, where a single anti-
quotation can be parsed in multiple ways, and non-local ambiguity, where a larger area
of the quotation can be parsed in multiple ways. Non-local ambiguities arise as anti-
quotations productions typically reduce to multiple possible non-terminals, whereas
quotation productions typically reduce to only one, such as Term in Figure 3.

Figure 7 (left) shows a local ambiguity. The anti-quotation $[x] may be interpreted
as an identifier or as the signature of the quoted class. The remainder of the quotation is
unambiguous, making it trivial to identify the cause of the ambiguity in the parse forest.

Figure 7 (right) shows a non-local ambiguity. For this example, the entire body of the
quotation can be interpreted in multiple ways: it can be either a class y with modifier x,
or a package/import/type declaration x followed by a class y. For non-local ambiguities
it is harder to identify the cause of the ambiguity, as the quotation expressions are no
longer a direct subtree of the “amb” node as they are in Figure 6.
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CompUnit |[
class $[x] {
// ...

}
]|

CompUnit |[
$[x] class Y {
// ...

}
]|

Fig. 7. Example of a local ambiguity (left) and a non-local ambiguity (right). In the first only the
anti-quotation $[x] is ambiguous, in the other the entire contents of the quotation is ambiguous.

3.2 Automatic Disambiguation Suggestions

In this subsection we describe an algorithm to automatically collect disambiguation sug-
gestions. We implemented the algorithm using Stratego and published the implemen-
tation and source code online at [1]. A prototype currently integrates into the Spoofax
language workbench [10].

Figure 8 shows pseudocode for the disambiguation suggestions algorithm. At the top,
the CollectSuggestionsTop function is the main entry point, which gets the parse
forest and grammar as its input and returns a set of disambiguation suggestions as its
output. For each outermost ambiguous subtree amb, it uses the CollectSuggestions
function to find local disambiguation suggestions.

The CollectSuggestions function produces a set of disambiguation suggestions
by inspecting each subtree of the amb tree node (line 2). For each branch, it searches
for the outermost meta-expressions that are not yet completely tagged (line 3). For each
meta-expression it determines the production prod that was used to parse it (line 4), and
its left-hand and right-hand side non-terminals (line 5, 6). For SGLR parse trees, the
production is encoded directly in the tree node, allowing it to be easily extracted. Only
meta-expressions that are a direct child of amb (local ambiguities) and meta-expression
subtrees that do not have any tag (non-local ambiguities) are considered for suggestions
(line 7).2 For the selected meta-expressions, a set of possible disambiguation sugges-
tions is collected (line 8). These suggestions take the form of tagged meta-expression
productions (line 9) that contain the same left-hand and right-hand side non-terminals
as the production prod (line 10). Of course, we only include quotation productions if
the current expression is a quotation, and anti-quotation productions if it is an anti-
quotation (line 11). After all corresponding suggestions are collected, the complete set
is filtered using the FilterAmbiguousSuggestions function (line 13).

The FilterAmbiguousSuggestions function filters out any suggestions that are
ambiguous with respect to each other. This is useful if two object languages both match
a meta-expression and they use the same quotation tag X. In those cases, inserting
the tag X would not resolve the ambiguity, and a tag with a language prefix of the
form Lang:X must be proposed instead. For suggestions with quoting symbols q1 ,q2
(line 3, 4), the function only returns those for which there is no other suggestion with
the same quoting symbols (line 5, 6).

2 A special case is the ToMetaExprTagged1 constructor, used for tagged quotations without a
language prefix. Suggestions are only provided for local ambiguities with this constructor.
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COLLECTSUGGESTIONSTOP(tree, grammar)
1 results ← {}
2 foreach outermost subtree amb in tree where amb has the form amb(...)
3 results ← results ∪ COLLECTSUGGESTIONS(amb, grammar)
4 return results

COLLECTSUGGESTIONS(amb, grammar)
1 results ← {}
2 foreach child subtree branch in amb
3 foreach outermost subtree expr in amb where ISMETAEXPRTAGGABLE(expr)
4 prod ← the production for expr
5 lsort ← the non-terminal at left-hand side of prod
6 rsort ← the non-terminal at right-hand side of prod
7 if expr = branch ∨¬ISMETAEXPRTAGGED(prod) then
8 results ← results ∪ { (expr ,prod ′) | prod ′ ∈ productions of grammar
9 ∧ ISMETAEXPRTAGGED(prod ′)

10 ∧ prod ′ has the form (q1 lsort q2 -> rsort )
11 ∧ prod ′ and prod have the same construc-
12 tor prefix To or From }
13 return FILTERAMBIGUOUSSUGGESTIONS(results)

ISMETAEXPRTAGGABLE(t)
1 if t has FromMetaExpr, ToMetaExpr, or ToMetaExprTagged1 constructor
2 then return true
3 else return false

ISMETAEXPRTAGGED(p)
1 if p has FromMetaExprTagged, ToMetaExprTagged1 or ToMetaExprTagged2 constructor
2 then return true
3 else return false

FILTERAMBIGUOUSSUGGESTIONS(suggestions)
1 return { (prod ,expr ) | (prod ,expr ) ∈ suggestions
2 ∧ prod has the form (q1 lsort q2 -> rsort )
3 ∧¬∃ (expr ′ ,prod ′) ∈ suggestions :
4 prod ′ has the form (q1 lsort ′ q2 -> rsort ′) }

Fig. 8. Pseudo-code for collecting suggested quotation symbols

3.3 Presentation of Suggestions

Interactive disambiguation is based on the notion of quick fixes, small program transfor-
mations that can be triggered by the developer in case of a code inconsistency or code
smell. Quick fixes are non-intrusive: as developers write their program, errors or warn-
ings are marked inline, but it is up to the developer to decide when and if to address the
problems. For interactive disambiguation, quick fixes allow meta-programmers to write
concrete syntax for expressions first, allowing the parser to decide whether or not it is
ambiguous, proposing appropriate quick fixes as necessary.
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The CollectSuggestionsTop function is executed each time the result of parsing
the meta program is ambiguous. The quickfix menu is populated with the results, and
any ambiguity can be addressed by adding the tag name or by inserting the type into the
context of the quotation. In order to avoid spurious suggestions for multiple ambiguities,
we only provides suggestions for the outermost expressions (Collect-Suggestions,
line 8), allowing meta-programmers to incrementally fix any remaining ambiguities.

While we emphasize interactivity, it should be noted that the technique does not
necessarily require an IDE. Quotation alternatives can also be displayed as part of the
build process and used with generic text editors that may not interactively parse and
analyze the meta language source code.

In our implementation we cache operations such as collecting productions from the
grammar for efficiency, while in the algorithm described here we abstract from these
optimizations. Experience with the prototype tells us that the performance overhead
of the suggestions algorithm is very low, as it only does a depth-first traversal of each
ambiguity and a few hash table lookups.

4 Discussion and Conclusions

In this paper we combined interactive and tag-based disambiguation to reduce quotation
noise in meta-programs with concrete syntax. Developers only need to quote where
absolutely necessary, and are interactively helped to introduce appropriate quotation
symbols where required.

Interactive disambiguation can also be combined with type-based disambiguation,
assisting in cases where type-based disambiguation is inadequate, as multiple type-
based interpretations are type correct. These cases particularly arise when combining
the technique with type inference, as seen with Meta-AspectJ [8], or when forgoing
quoting symbols that distinguish between the meta and the object language, as observed
by Vinju [13]. Both works propose heuristics as a solution in these cases. Interactive dis-
ambiguation can let the programmer interactively, and thus more predictably, resolve
such ambiguities statically. Alternatively it can assist when programs are not yet type
consistent, providing suggestions for inserting type declarations or type casts. Strat-
ego is largely untyped, ruling out type-based disambiguation for our present prototype.
A typed variant of Stratego [11] might be a suitable testbed for experiments combin-
ing interactive disambiguation and type inference. On the dynamic side, we have had
promising experimental results using runtime disambiguation, where the decision of
the correct interpretation of a meta-expression is delayed until run-time, when the ac-
tual values of meta-level expressions are known. Based on a static analysis of the meta-
program, it is possible to determine which quotations can safely be disambiguated at
runtime.

We performed a preliminary evaluation of our approach using existing source files
that embed Java in Stratego, from the Dryad Java compiler [9]. The sources use a to-
tal of 55 concrete syntax quotations of a wide variety of different Java language con-
structs. Most are small quotations, but a few contain complete compilation units, used
for compilation and for unit testing. We stripped all existing disambiguation tags from
the sources, and by following the interactive disambiguation suggestions, were able to
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successfully disambiguate the files. We then introduced WebDSL [16] as an additional
object language as a form of an evolution scenario. This introduced new ambiguities, as
some expressions such as Expr |[ $[Expr:x] == $[Expr:y] ]| would be a valid
quotation for either language. Again, applying the quick fixes helped the transition and
resolved the ambiguities by introducing language-prefixed tags.

We have found interactive disambiguation to be a practically useful technique, com-
plementary approach to both tag-based [6], and type-based disambiguation [5,13], and
independent of the meta and object language and their type system.
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Abstract. Feature models are commonly used in software product line engineer-
ing as a means to document variability. Since their introduction, feature models
have been extended and formalised in various ways. The majority of these ex-
tensions are variants of the original tree-based graphical notation. But over time,
textual dialects have also been proposed. The textual variability language (TVL)
was proposed to combine the advantages of both graphical and textual notations.
However, its benefits and limitations have not been empirically evaluated up to
now. In this paper, we evaluate TVL with four cases from companies of differ-
ent sizes and application domains. The study shows that practitioners can benefit
from TVL. The participants appreciated the notation, the advantages of a textual
language and considered the learning curve to be gentle. The study also reveals
some limitations of the current version of TVL.

1 Introduction

Feature models (FMs) were introduced as part of the FODA (Feature Oriented Domain
Analysis) method 20 years ago [1]. They are a graphical notation whose purpose is
to document variability, most commonly in the context of software product line engi-
neering (PLE) [2]. Since their introduction, FMs have been extended and formalised
in various ways (e.g. [3,4]) and tool support has been progressively developed [5]. The
majority of these extensions are variants of FODA’s original tree-based graphical nota-
tion. Figure 1 shows an example of graphical tree-shaped FM that describes the vari-
ability of an eVoting component. The and-decomposition of the root feature (Voting)
implies that all its sub-features have to be selected in all valid products. Similarly, the
or-decomposition of the Encoder feature means that at least one of its child features has
to be selected, and the xor-decomposition of the Default VoteValue feature means that
one and only one child has to be selected. Cardinality-based decompositions can also be
defined, like for VoteValues in the example. In this case, the decomposition type implies
that at least two, and at most five sub-features of VoteValues have to be selected. Finally,
two <requires> constraints impose that the feature corresponding to the default vote
value (Yes or No) is part of the available vote values.

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 337–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Voting

Or-decomposition

Legend
aa And-decomposition

a Xor-decomposition a group cardinality[i..j]

Encoder VoteValues

NotYetEncoded YesNoAbstain NotVoteManager Voter

[2..5]
Default 

VoteValue

YesNo

<requires>
<requires>

Fig. 1. FM of the PloneMeeting voting component

Over time, textual FM dialects have also been proposed [6,7,8,9], arguing that it is
often difficult to navigate, edit and interpret large graphical FMs. The need for more
expressiveness was a further motivation for textual FMs since adding constructs to a
graphical language can quickly start harming its readability. Although advanced tech-
niques have been suggested to improve the visualisation of graphical FMs (e.g. [10,11]),
these techniques remain tightly bound to particular modelling tools and are hard to in-
tegrate in heterogeneous tool chains [12]. Finally, our experience shows that editing
functionalities offered by such tools are usually pretty limited.

Based on these observations, we proposed TVL [8,13], a textual FM dialect geared
towards software architects and engineers. Its main advantages are that (1) it does not
require a dedicated editor—any text editor can fit—(2) its C-like syntax makes it both
intuitive and familiar, and (3) it offers first-class support for modularity. However, TVL
is meant to complement rather than replace graphical notations. It was conceived to
help designers during variability modelling and does not compete, for instance, with
graphical representations used during product configuration.

The problem is that empirical evidence showing the benefits and limitations of ex-
isting approaches, be they graphical or textual, is cruelly missing [8]. The goal of this
paper is to collect evidence that demonstrates whether TVL is actually fit for practice,
which is translated into the following research questions:

RQ1. What are the benefits of TVL for modelling product line (PL) variability, as per-
ceived by model designers?

RQ2. What are the PL variability modelling requirements that are not fulfilled by TVL?

It is important to understand that the goal of this research is neither to compare TVL
to other languages, nor to assess capabilities of TVL other than its ability to model
variability, nor to compare graphical and textual approaches. Instead, this research aims
at identifying the benefits and limitations of TVL.

To answer these research questions, we conducted a controlled field experiment fol-
lowing a sequential explanatory strategy [14]. It consists of a quantitative data analysis
followed by a qualitative one. The quantitative analysis is meant to collect data while the
qualitative analysis assists in explaining the outcomes of the quantitative analysis. Quan-
titative data on TVL is collected via evaluation forms based on a set of quality criteria
inspired from the evaluation of programming languages. The main motivation for this is
that TVL is in many respects similar to a declarative constraint programming language.
TVL was evaluated by five participants working for four companies of different sizes
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(from 1 to 28 000 employees), domains (hardware and software) and business models
(proprietary and free software). Furthermore, TVL was evaluated by participants with
different backgrounds in modelling and programming languages. The interviews carried
out during the qualitative analysis helped us (1) collect evidence that practitioners can
benefit from TVL, (2) identify the types of stakeholders who can reap benefits from a
language like TVL, and (3) elicit requirements that are not fulfilled by TVL.

The remainder of the paper is structured as follows. Section 2 looks into related work
on feature-based variability modelling. Section 3 recalls the essence of TVL. Section 4
describes the research method and the four cases, whilst Section 5 presents the results of
the quantitative and qualitative analyses. Section 6 analyses these results and Section 7
discusses the threats to validity.

2 Related Work

This section studies related work respectively dedicated to graphical and textual ap-
proaches to feature modelling.

2.1 Graphical Feature Models

Most common FM languages are graphical notations based on FODA which was intro-
duced by Kang et al. [1] twenty years ago. Since this original proposal, several extensions
have been proposed by various authors [15]. Most of these graphical notations are meant
to be accessible to non-technical stakeholders. However, working with large-scale FMs
can become challenging with such notations. Given that a FM is a tree on a two dimen-
sional surface, there will inevitably be large physical distances between features, which
makes it hard to navigate, search and interpret them. Several tools have been developed
to help modellers [16,17,18,19]. Most of them use directory tree-like representations
of FMs to reduce physical distances between some features and provide collapse/ex-
pand functionalities. More advanced user interfaces and visualisation techniques have
also been proposed to attenuate the aforementioned deficiencies (e.g. [10,11]), but tools
have their own drawbacks. First, building FMs can become time consuming as tools of-
ten require lots of clicks and drag-and-drops to create, place or edit elements. Second,
they rely on software to visualise a model, meaning that without this software, like for
instance on paper, blackboard or on a random computer, they will not work. Furthermore
all those tools tend to have poor interoperability, which prevents effective collaboration.
Besides all those considerations, some constructs like cross-tree constraints or attributes
cannot be easily accommodated into those graphical representations.

2.2 Textual Feature Models

Various textual FM languages have been proposed for a number of purposes. Their
claimed advantages over graphical notations are: they do not require dedicated mod-
elling tools and well-established tools are available for text-based editing, transforma-
tion, versioning. . . Furthermore, textual information and textual models can be easily
exchanged, for instance by email.

To the best of our knowledge, FDL [6] was the first textual FM language. It is the
only such language to have a formal semantics. It also supports basic requires and
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excludes constraints and is arguably user friendly, but it does not include attributes,
cardinality-based decompositions and other advanced constructs.

The AHEAD [7] and FeatureIDE [18] tools use the GUIDSL syntax [7], where FMs
are represented through grammars. The syntax is aimed at the engineer and is thus easy
to write, read and understand. However, it does not support decomposition cardinalities,
attributes, hierarchical decomposition of FMs and has no formal semantics.

The SXFM file format is used by SPLOT [20] and 4WhatReason [21]. While XML
is used for metadata, FMs are entirely text-based. Its advantage over GUIDSL is that
it makes the tree structure of the FM explicit through indentation. However, except for
the hierarchy, it has the same deficiencies as GUIDSL.

The VSL file format of the CVM framework [22,23] supports many constructs. At-
tributes, however, cannot be used in constraints. The Feature Modelling Plugin [16] as
well as the FAMA framework [24] use XML-based file formats to encode FMs. Tags
make them hard to read and write by engineers. Furthermore, none of them proposes a
formal semantics. The Concept Modelling Language (CML) [9] has been recently pro-
posed but to the best of our knowledge is still a prototype and is not yet fully defined or
implemented.

3 TVL

Starting from the observation that graphical notations are not always convenient and that
existing textual notations have limited expressiveness, formality and/or readability, we
proposed TVL [8,13], a textual alternative targeted to software architects and engineers.
For conciseness, we can only recall here the basic principles of the language. More
details about its syntax, semantics and reference implementation can be found in [13].

The following model will be used to illustrate some TVL constructs. It is a translation
of the graphical model presented in Figure 1, which is an excerpt of the complete FM
we built for PloneMeeting, one of the case studies. It captures the variability in the
voting system that governs the discussion of meeting items1. Note that the default vote
value is specified here as an attribute rather than a feature.

01 root Voting { // define the root feature

02 enum defaultVoteValue in {yes, no}; //attribute is either yes or no

03 (defaultVoteValue == yes) -> Yes; //yes requires Yes in VoteValues

04 (defaultVoteValue == no) -> No; // no requires No in VoteValues

05 group allOf { // and-decomposition

06 Encoder { group someOf {manager, voter} },
07 VoteValues group [2..*] { // <2..5> cardinality

08 Yes,
09 No,
10 Abstain
11 NotYetEncoded,
12 NotVote,
13 }
14 }
15 }

1 The complete model is available at http://www.info.fundp.ac.be/˜acs/tvl

http://www.info.fundp.ac.be/~ acs/tvl
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TVL can represent FMs that are either trees or directed acyclic graphs. The language
supports standard decomposition operators [1,3]: or- , xor-, and and-decompositions.
For example, the and-decomposition of the Voting is represented from lines 05 to
12 (group allOf {...}). The xor-decomposition of the Encoder is represented
at line 06 (group oneOf {...}). Generic cardinality-based decompositions [25]
can also be defined using a similar syntax (see line 07). Five different types of feature
attributes [26] are supported: integer (int), real (real), Boolean (bool), structure
(struct) and enumeration (enum). The domain of an attribute can be restricted to a
predefined set of values using the in keyword. For instance, the set of available values
of the enumerated attribute defaultVoteValue is restricted to yes and no (see line
02). Attributes can also be assigned fixed or calculated values using the is keyword.
Furthermore, the value of an attribute can differ when the containing feature is selected
(ifIn: keyword) or not selected (ifOut: keyword). Several standard operators are
available for calculated attributes (e.g. arithmetic operations). Their value can also be
computed using aggregation functions over lists of attributes. Calculated attributes are
not illustrated in the example.

In TVL, constraints are attached to features. They are Boolean expressions that can
be added to the body of a feature. The same guards as for attributes are available for
constraints. They allow to enable (resp. disable) a constraint depending on the selection
(resp. non-selection) of its containing feature. Line 05 is an example of (unguarded)
constraint where the assignment of the yes value to the defaultVoteValue at-
tribute requires the selection of the Yes feature.

TVL offers several mechanisms to reduce the size of models and modularise them.
We only touch upon some of them here and do not illustrate them in the example. First,
custom types can be defined and then used in the FM. This allows to factor out recurring
types. It is also possible to define structured types to group attributes that are logically
linked. Secondly, TVL supports constants that can be used inside expressions or car-
dinalities. Thirdly, include statements can be used to add elements (e.g. features or
attributes) defined in an external file anywhere in the code. Modellers can thus struc-
ture the FM according to their preferences. The sole restriction is that the hierarchy of
a feature can only be defined at one place (i.e. there is only one group structure for
each feature). Finally, features can have the same name provided they are not siblings.
Qualified feature names must be used to reference features whose name is not unique.
Relative names like root, this and parent are also available to modellers.

4 Research Method

This section describes the settings of the evaluation, its goals and the four cases along
with the profiles of the companies and participants involved in the study. The section
ends with a description of the experiment’s protocol.

4.1 Objectives

The overall objective of this paper is to evaluate the ability of TVL to model the vari-
ability of a PL as perceived by software engineers. The criteria that we use to measure
the quality of TVL are inspired and adapted from [27,28]. Originally, these criteria were
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defined to evaluate the quality of programming languages. We have selected program-
ming language criteria because TVL resembles a declarative constraint programming
language whose constructs have been tailored for variability modelling. Finally, TVL
should ultimately be integrated in development environments like eclipse or advanced
text editors like emacs or vim. TVL is thus likely to be assimilated to a programming
language by developers. We outline the quality criteria relevant to our study below.

Quality criteria adapted from [27,28].

C1 Clarity of notation The meaning of constructs should be unambiguous
and easy to read for non-experts.

C2 Simplicity of notation The number of different concepts should be mini-
mum. The rules for their combinations should be as
simple and regular as possible.

C3 Conciseness of notation The constructs should not be unnecessarily verbose.

C4 Modularisation The language should support the decomposition
into several modules.

C5 Expressiveness The concepts covered by the language should be
sufficient to express the problems it addresses.
Proper syntactic sugar should also be provided to
avoid convoluted expressions.

C6 Ease and cost of model portability The language and tool support should be platform
independent.

C7 Ease and cost of model creation The elaboration of a model should not be overly hu-
man resource-expensive.

C8 Ease and cost of model translation The language should be reasonably easy to translate
into other languages/formats.

C9 Learning experience The learning curve of the language should be rea-
sonable for the modeller.

No specific hypothesis was made, except that the participants had the appropriate ex-
pertise to answer our questions.

4.2 Cases

The evaluation of TVL was carried out with five participants coming from four dis-
tinct companies working in different fields (two in computer hardware manufacture,
one in meeting management and one in document management). Table 2 summarises
the profiles of the five participants involved in the evaluation as well as the com-
pany and project they work for. For each participant, we indicate his position, years
of experience in software engineering, his fields of expertise, the modelling and pro-
gramming languages he used for the last 5 years, his experience with PLE and FMs,
and the number of years he actively worked on the selected project. For the experi-
ence with languages, PLE and FMs, we also mention the frequency of use, i.e. inten-
sive/regular/casual/evaluation. By evaluation, we mean that the language or concept is
currently being evaluated in the company. The four cases are described below as well
as the motivations of the participants to use TVL.
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PloneMeeting

Description. PloneGov [29] is an international Open Source (OS) initiative coordi-
nating the development of eGovernment web applications. PloneGov gathers hun-
dreds of public organizations worldwide. This context yields a significant diversity,
which is the source of ubiquitous variability in the applications [30,31,32]. We fo-
cus here on PloneMeeting, PloneGov’s meeting management project developed by
GeezTeem. PloneMeeting is built on top of Plone, a portal and content management
system (CMS) written in Python.

The current version of PloneMeeting extensively uses UML for code genera-
tion. However, the developer is not satisfied by the limited editing functionalities
and flexibility offered by UML tools. To eliminate graphical UML models, he de-
veloped appy.gen2. appy.gen allows to encode class and state diagrams, display
parameters, portlet creation, and consistency rules in pure Python and enables the
automated generation of full-blown Plone applications.

PloneMeeting is currently being re-engineered with appy.gen. A major challenge
is to extend appy.gen to explicitly capture variation points and provide systematic
variability management. We collaborate with the developer to specify the FM of
PloneMeeting.

Motivation. The initial motivation of the developer to engage in the evaluation was to
assess the opportunity of using FMs for code generation. He has not used FMs to
that end so far because, in his words, “graphical editing functionalities (typically
point-and-click) offered by feature modelling tools are cumbersome and counter-
productive”. The textual representation of FMs is therefore more in line with his
development practice than their graphical counterpart.

PRISMAprepare

Description. Océ Software Laboratories S.A. (OSL) [33], is a company specialized
in document management for professional printers. One of their main PLs is Océ
PRISMA, a family of products covering the creation, submission and delivery of
printing jobs. Our collaboration focuses on one sub-line called PRISMAprepare,
an all-in-one tool that guides document preparation and whose main features are
the configuration of printing options and the preview of documents.

In the current version of PRISMAprepare, mismatches between the preview and
the actual output can occur, and, in rare cases, documents may not be printable on
the selected printer. The reason is that some incompatibilities between document
options and the selected printer can go undetected. For example, a prepared docu-
ment can require to staple all sheets together while the target printer cannot staple
more than 20 pages together, or does not support stapling at all. The root cause is
that only some constraints imposed by the printers are implemented in the source
code, mostly for time and complexity reasons.

Consequently, OSL decided to enhance its PL by automatically generating con-
figuration constraints from printing description files. The objective is twofold: (1)

2 Available online at http://appyframework.org/gen.html

http://appyframework.org/gen.html
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build complete constraint sets and (2) avoid the manual maintenance of cumber-
some constraints. So far, we have designed a first FM of the variability of the print-
ing properties.

Motivation. Feedback was provided by the product line manager of PRISMAprepare.
OSL is currently evaluating different modelling alternatives to express the variabil-
ity of its new PL and generate the configuration GUI. The evaluation of TVL is thus
part of their exploratory study of FM languages. Additionally, most of the software
engineers dealing with FMs are developers, hence their interest for a textual lan-
guage.

CPU calculation

Description. NXP Semiconductors [34] is an international provider of Integrated
Circuits (IC). ICs are used in a wide range of applications like automotive, info-
tainment and navigation systems. They are the fundamental pieces of hardware
that enable data processing like video or audio streams. ICs typically embed sev-
eral components like CPU, memory, input and output ports, which all impose con-
straints on their possible valid combinations.

This study focuses on the FM that models the variability of a video processing
unit and study the impact it has on the CPU load. The FM, which is still under
development, is meant to be fed to a software configurator. Thereby, it will sup-
port the customer during the selection of features while ensuring that no hardware
constraint is violated (e.g. excessive clock speed required by the features). The
FM also allows the user to strike an optimal price/performance balance, where the
price/performance ratio is computed from attributes attached to features and moni-
tored within the configuration tool.

Motivation. The evaluation was performed by the developer who originally partici-
pated in the creation of the FM with a commercial tool, before and independently
from this experiment. Prolog was used for defining the constraints. The major prob-
lem is that the time needed to implement the calculation over attributes was deemed
excessive compared to the time needed to design the whole FM. This lead the com-
pany to consider TVL as an alternative. Furthermore, the developer’s knowledge of
a declarative language like Prolog motivated him to test a textual constraint mod-
elling language.

OSGeneric

Description. Virage Logic [35] is a supplier of configurable hardware and software to
a broad variety of customers such as the Dolby Laboratories, Microsoft and AMD.
Its variability-intensive products allows its customers to create a specific variant for
the manufacturing of highly tailorable systems on chip (SoC). OSGeneric (Oper-
ating System Generic) is a PL of operating systems used on SoCs. The produced
operating systems can include both proprietary and free software. Each SoC can
embed a large variety of hardware and contain several processors from different
manufacturers.
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Motivation. The evaluation was performed by two participants: the lead software ar-
chitect of OSGeneric and the software development manager. Their PL is currently
modelled with a commercial tool. The participants are now considering other vari-
ability modelling techniques. Their motivation for evaluating TVL lies in using a
language that (1) is more suited for engineers with a C/C++ background, (2) has
a lower learning curve than the commercial tool and (3) makes use of standard
editors.

4.3 Experiment Protocol

In this experiment, TVL was evaluated through interviews with the five participants of
the four companies. Interviews were conducted independently from each other, except
for Virage Logic where the two participants were interviewed together. Two researchers
were in charge of the interviews, the synthesis of the results and their analysis. For each
interview, they followed the protocol presented in Figure 2.

TVL model

1  Introduction 
to TVL

3  Quantitative 
evaluation

2  Presentation 
of TVL model

Evaluation 
forms

Slides

4  Qualitative 
evaluation

Document Action Process flow Data flow

Legend

Quality criteria
TVL 

documentation

Rationale

Fig. 2. Interview protocol

The protocol starts with a short introduction to TVL (circa 20 minutes) that aims at
giving the participants an overview of the language. At this stage, the participants are
not exposed to details of the language. The goal of the second step is to provide the
participants with a real TVL model. To keep the effort of the participants moderate,
the appointed researchers designed, for each company and prior to the interviews, TVL
models that respectively correspond to the configuration menus of PloneMeeting and
PRIMSAprepare, and the FMs of the CPU calculation and OSGeneric. The presentation
of the TVL model was limited to 30 minutes to keep the participants focused on the
understanding of the model and avoid untimely discussions about the quality of the
language. During that step, the participants are exposed to more details of the language
and discover how their PL can be modelled using TVL. Alternative design decisions
are also discussed to demonstrate the expressiveness of TVL.

During the third step, the participants fill out the evaluation form presented in Ta-
ble 3. The evaluation scale proposed to the participants is: + the participant is strongly
satisfied; + the participant is rather satisfied; the participant is neither satisfied nor
dissatisfied; - the participant is rather dissatisfied; - the participant is completely dis-
satisfied; N/A the participant is not able to evaluate the criterion.
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Table 3. Results of the evaluation of TVL

Criterion Plon
eM

ee
tin

g

PRIS
M

Apre
par

e

CPU
ca

lcu
lat

ion

OSGen
er

ic

C1 Clarity of notation + + + +

C2 Simplicity of notation + + + + +

C3 Conciseness of notation + + + + +

C4 Modularisation + + + +

C5 Expressiveness - + + +

C6 Ease and cost of model portability + + + + +

C7 Ease and cost of model creation + + +

C8 Ease and cost of model translation + + + +

C9 Learning experience + + + + +

The results of the evaluation are then discussed during the fourth step. The qualitative
information collected during this last phase is obtained by asking, for each criteria, the
rationale that lead the participant to give his mark. On average, these two last steps
lasted two hours in total.

5 Results

Table 3 synthesises the evaluation of TVL performed by the participants of GeezTeem,
OSL, NXP and Virage Logic. Note that we kept the evaluations of the two Virage Logic
participants separate, has indicated by the two columns under OSGeneric.

To facilitate the explanation, we group the criterion into five categories: notation,
modularisation, expressiveness, ease and cost, and learning experience. Note that the
collaborations with OSL, NXP and VirageLogic are protected by non-disclosure agree-
ments. Therefore, specific details of the models are not disclosed.

Notation [C1-C3]. The participants unanimously appreciated the notation and the ad-
vantages of text in facilitating editing (creating, modifying and copy/pasting model ele-
ments). The NXP and VirageLogic participants liked the compactness of attributes and
constraints and the fact that attributes were explicitly part of the language rather than
an add-on to a graphical notation.

The GeezTeem participant appreciated the ability of the language to express con-
straints very concisely. He reports that appy.gen, his website generator, offers two ma-
jor ways of specifying constraints. First, guards can be used to make the value of an
attribute depend on the value of another attribute. Secondly, Python methods can be
used to express arbitrary constraints. These mechanisms can rapidly lead to convoluted
constraints that are hard to maintain and understand. Additionally, developers struggle
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to maintain these constraints across web pages. The participant reports that at least 90%
of the constraints (both within and across pages) implemented in classical appy.gen ap-
plications could be more efficiently expressed in TVL.

The OSL participant was particularly satisfied to see that TVL is not based on XML.
He reported that their previous attempts to create XML-based languages were not very
satisfactory because of the difficulty to write, read and maintain them. He also reported
that the model represented in the language is much more compact than anything he
could have produced with existing graphical representations.

The NXP participant was concerned about the scalability of the nested structure, i.e.
the tree-shaped model, offered by TVL. He also reports that people used to graphical
notations who already know FMs might prefer classical decomposition operators (and,
or, xor) rather than their TVL counterparts (allOf, someOf, oneOf). Finally, the
participants from NXP and Virage Logic were confused by the fact that the -> sym-
bol can always replace requires but not the other way around. In their opinion, a
language should not offer more than one means to express the same thing.

One of the Virage Logic participants reports that attributes might be hard to discern
in large models. He suggested to declare them in an Interface Description Language
(IDL) style by prefixing the attribute declaration with the attribute keyword.

Modularisation [C4]. The ability to define a feature at one place and extend it fur-
ther in the code was seen as an undeniable advantage as it allows to distribute the FM
among developers. The Virage Logic participants both discussed the difference between
the TVL include mechanism and an import mechanism that would allow to specify
exactly what parts of an external TVL model can be imported but also what parts of
a model can be exported. In their opinion, it would improve FM modularisation and
module reuse since developers are already used to import mechanisms.

Apart from the include mechanism, TVL does not support model specialisation
and abstraction (as opposed to constructs, e.g. class and specialisation). In contrast,
the developer of appy.gen considers them as fundamental. Their absence is one of the
reasons that lead them to drop UML tools. Along the same lines, the OSL participant ar-
gued that the include should be augmented to allow macro definitions. By macro, the
participant meant parametrized models similar to parametrized types, e.g. Java generics.
A typical use case of that mechanism would be to handle common variability modelling
patterns.

Expressiveness [C5]. The GeezTeem participant expressed that TVL is sufficiently ex-
pressive to model variability in most cases. However, he identified several constructs
missed by TVL that would be needed to model PloneMeeting. First, TVL does not
offer validators. In his terms, a validator is a general-purpose constraint mechanism
that can constrain the formatting of a field. For instance, validators are used to specify
the elements that populate a select list, to check that an email address is properly for-
matted or that a string is not typed in where the system expects an integer. Secondly,
he makes intensive use of the specialisation and abstraction mechanisms available in
Python, which have no TVL equivalents. These mechanisms are typically used to refine
already existing variation points (e.g. add an attribute to a meeting item) or to spec-
ify abstract variation points that have to be instantiated and extended when generating



Evaluating a Textual Feature Modelling Language 349

the configuration menu (e.g. an abstract meeting attendee profile is built and it has to be
instantiated before being available under the Encoder feature in Figure 1). Thirdly, mul-
tiplicities are used to specify the number of instances, i.e. clones, of a given element.
Cloning is a fundamental aspect of appy.gen as many elements can be cloned and con-
figured differently in Plone applications. This corresponds to feature cardinalities (as
opposed to group cardinalities), which have already been introduced in FM [3], but are
currently not supported in TVL. Besides offering more attributes types, appy.gen also
allows developers to add parameters to attributes, e.g., to specify whether a field can
be edited or requires specific read/write permissions. Type parameters are mandatory
in appy.gen to support complete code generation. Finally, in order to be able to dis-
play web pages in different languages, i18n labels are attached to elements. i18n stands
for internationalisation and is part of Plone’s built-in translation management service.
Translations are stored in key/value pairs. A key is a label in the code identifying a
translatable string; the value is its translation. For instance, the meeting item i18n
element will be mapped to Meeting Item (English) and Point de discussion (French). In
most cases, several labels are attached to an element (e.g. a human-readable name and
a description).

The OSL participant also pointed out some missing constructs in TVL. First, de-
fault values which are useful in their projects for things like page orientation or paper
dimensions. Secondly, feature cloning is missing. In PRISMAprepare, a document is
normally composed of multiple sheets, where sheets can be configured differently and
independently from one another. Thirdly, optionality of attributes should be available.
For instance, in TVL, the binding margin of a page was specified as an attribute deter-
mining its size. If the document does not have to be bound, the binding margin attribute
should not be available for selection.

The NXP and VirageLogic participants also recognized that feature cloning and de-
fault features were missing in the language. Additionally, they miss the specification of
error, warning and information messages directly within the TVL model. These mes-
sages are not simple comments attached to features but rather have to be considered
as guidance provided to the user that is based on the current state of the configuration.
For instance, in the NXP case, if the selected video codec consumes most of the CPU
resources, the configurator should issue a warning advising the user to select another
CPU or select a codec that is less resource-demanding. Since they are a needed input
for a configurator, they argued that a corresponding construct should exist in TVL.

Ease and cost [C6-C8]. The OSL participant reports that improvements in terms of
model creation are, in his words, very impressive compared to the graphical notation
that was used initially [3]. And since TVL is formally defined, he does not foresee major
obstacles to its translation into other formalisms.

The NXP and VirageLogic participants report that, no matter how good the language
is, the process of model creation is intrinsically very complex. This means that the cost
of model creation is always high for real models. Nevertheless, they observed that the
mechanisms offered by TVL facilitate the transition from variability elicitation to a
formal specification, hence the neutral score.

Learning experience [C9]. All the participants agreed that the learning curve for soft-
ware engineers with a good knowledge of programming languages was rather gentle.
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Software engineers who use only graphical models might need a little more time to feel
comfortable with the syntax. In fact, the NXP and VirageLogic participants believe that
people in their teams well versed in programming languages would give a + whereas
those used to modelling languages would give a , hence their average + score.

6 Findings

This sections builds upon the analysis by looking at the results from three different
angles: (1) the constructs missed by TVL, (2) the impact of stakeholder profiles on the
use of TVL, and (3) the tool support that is provided and still to provide.

6.1 Language Constructs

The analysis revealed that extensions to the catalogue of constructs provided by TVL
would be appreciated by the participants. We summarise below those that neither make
the language more complex nor introduce extraneous information (such as, e.g., be-
havioural specifications) into the language.

Attribute cardinality. Traditionally, the cardinality of an attribute is assumed to be
〈1..1〉 (oneOf), i.e. one and only one element in its domain can be selected. How-
ever, the translation of select lists in PloneMeeting would have required enumera-
tions with cardinalities. For instance, in Figure 3, the vote encoders would typically
be captured in a select list, which should be translated into an enumeration with car-
dinality 〈1..2〉. The absence of cardinality for enumerations forced us to translate
them has features. Yet, these select lists typically allow multiple selections, i.e. they
require a cardinality like 〈1..n〉 (someOf). Additionally, optional attributes, like
the binding margin, would require a 〈0..1〉 (opt) cardinality. Technically, arbitrary
cardinalities for attributes are a simple extension of the decomposition operators
defined for features. Their addition to TVL will thus be straightforward.

Cloning. All the participants expressed a need for cloning in FMs. They have not been
introduced in TVL because of the theoretical problems they yield, viz. reasoning
about potentially infinite configuration spaces and managing clone-specific con-
straints. Feature cardinalities will thus be proposed in TVL when all the reasoning
issues implied by cloning will be solved. This is work in progress.

Default values. The main advantage of default values is to speed up product configura-
tion by pre-defining values (e.g. the default page orientation). The participant from
OSL argued that, if their applications were to include a TVL-based configuration
engine, then TVL should contain default values. This would avoid having default
values scattered in the source code, thereby limiting the maintenance effort.

Extended type set. Far more types are needed in PloneMeeting than TVL offers. Our
experience and discussions with the developers show that only some of them should
be built in the language. For this reason, only the String, Date and File types
will be added to TVL.

Import mechanism. In addition to the include mechanism, the participants
requested a more fine grained import mechanism. This will require to add scop-
ing to TVL.
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Labels and messages. In the PloneMeeting case, the participant showed that labels
have to be attached to features to provide the user with human-readable feature
names and description fields, and also to propose multilingual content.
Both the NXP and VirageLogic participants use messages to guide the configu-
ration of their products. Constraints on features determine the messages that are
displayed based on the current configuration status.

Specialisation. In two cases, specialisation mechanisms appeared to be desirable con-
structs. They would typically allow to overload or override an existing FM, for ex-
ample, by adding or removing elements from previously defined enum, struct
and feature groups, or by refining cardinalities, e.g. from 〈0..∗〉 to 〈2..3〉.

The extensions that could have been added to TVL but that, we thought, would make
it deviate too much from its purpose are the following.

Abstraction. Although particularly useful for programming languages (e.g. abstract
classes in object-oriented programming), we do not see the interest of using abstract
FMs. FMs are, by definition, not meant to be instantiated but to be configured.

Method definition. TVL provides a static description of the variability of a PL. Meth-
ods, even declarative, would embed behavioural specifications within the language.
This is neither an intended purpose nor a desired property of the language. Any
method manipulating the FM should be defined externally.

Typed parameters. In PloneMeeting, typed parameters are extensively used. How-
ever, many of these parameters are very technical and case-specific, e.g. editable or
searchable fields. Unless we come across more use cases, we will not add param-
eters to attributes. For cases like PloneMeeting, these parameters can be encoded
with the data construct.

6.2 Stakeholder Profiles

As shown in Table 2, the participants had fairly different profiles. Our population con-
sists of two developers, one designer and two project managers. Their experience with
PLs and FMs also differ. Two participants are intensive users, one is a regular and the
other two are still in the transition phase, i.e. moving from traditional to PL engineering.

Interestingly, these profiles did not have a noticeable influence on the marks given
to the notation (C1-C3), ease and cost (C6-C8), and learning experience (C9). They
all preferred and attribute grammar-like syntax to a markup-based language like XML,
usually considered too verbose, difficult to read and tricky to edit. Furthermore, the C-
like syntax was deemed to preserve many programming habits—like code layout, the
development environment, etc.

Deviations appear at the level of modularisation (C4) and expressiveness (C5). One
way to interpret it is that OSL and PloneMeeting are still in the transition phase. This
means that they are not yet confronted to variability modelling tools in their daily work.
They are more familiar with traditional modelling languages like UML and program-
ming languages like C++ and Python. Compared to these languages, FMs, and TVL
in particular, are more specific and thus far less expressive. Furthermore, in the Plone-
Meeting case, the participant developed its own all-in-one website configuration and
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generation tool, which embeds a domain specific language for statechart and class dia-
gram creation.

These observations lead us to conclude that:

stakeholder profiles do no impact the evaluation of the notation. Developers clearly
appreciated the textual alternative proposed by TVL. The ease and efficiency of
use are the main reasons underlying that preference. Thanks to their knowledge
of programming languages, developers naturally prefer to write code than draw
lines and boxes. This is usually seen as a time-consuming and clerical task, even
with proper tool support. Surprisingly, the participants who were used to graphical
models also positively evaluated TVL. They not only liked the language but also
the convenience offered by the textual edition interface.

stakeholder profiles influence the preference for the configuration model. The de-
velopers looked for ways to reuse the TVL model for configuration purposes. Their
suggestion was to remove the unnecessary elements from the TVL model (unse-
lected features and attributes) and directly use it as a product specification. The
advantage of this approach is that comparison between products could be imme-
diately achieved with a simple diff. In contrast, the designers were in favour of a
graphical model, e.g. a tree-shaped FM, or more elaborate configuration interfaces
like configuration wizards or tables.

6.3 Tool Support

At the moment, TVL only comes with a parser that checks syntactic and type correct-
ness, as well as a configuration engine that supports decision propagation limited to
Boolean values. We have also developed plugins for tree editors, namelly NotePad++
(Windows), Smultron (MacOS) and TextMate (MacOS). These plugins provide basic
syntax highlighting and collapse/expand mechanisms to hide/show pieces of code.

Besides textual editors, out-of-the-box versioning tools like CVS or Subversion al-
ready support the collaborative editing of TVL models as any other text file, as reported
by the OSL and Virage Logic participants. The interpretation of a change made to a
TVL line is as easy as it is for programming code. By simply looking at the log, one
can immediately see who changed what and when. In contrast, graphical models usu-
ally require dedicated tools with their own encoding, which makes interoperability and
collaboration difficult.

The configuration capabilities of TVL have recently been applied to re-engineer the
configuration menu of PloneMeeting. This resulted in a prototype that demonstrates
how it is possible to use an application-specific web interface as frontend for a generic
TVL-based configurator. Although very limited in functionality, the prototype gave the
participant a better overview of the benefits of TVL. Surprisingly, the PloneMeeting
participant was not interested in generating appy.gen code from a TVL model because
of the Python code that would still have to be edited after generation. However, gen-
erating a TVL model from appy.gen code would greatly simplify constraint specifica-
tion and validation. Tedious and error-prone Python code would no longer have to be
maintained manually, and most of the constraints that are only available in the head of
developers would become trivial to implement. Put simply, TVL would be used here
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as a domain-specific constraint language. We could not produce similar prototypes for
the other cases because configuration interfaces were not available and/or access to the
code was not granted.

A functionality not provided by the TVL tools but requested by the participants is
code completion of language constructs, feature names and attributes. Another impor-
tant functionality would be the verification of the scope of features in constraints. Since
a constraint can contain any feature in the FM, it might rapidly become hard to identify
whether the referenced feature is unique or if a relative path to it has to be given. The
on-the-fly suggestion of alternative features by the editor would facilitate constraint
definition and make it less error-prone. By extension, the on-the-fly checking of the
satisfiability of the model would avoid wasting time later on debugging it. The down-
side of such checks is that they can be resource-intensive and should thus be carefully
scheduled and optimized.

7 Threats to Validity

The evaluation was performed with four PLs and five participants, providing a diversity
of domains and profiles. Yet, their diversity did not have a significant influence on the
results since we observed a substantial overlap between their comments. Therefore, we
believe that the results are valid for wide a range of organizations and products [36].

The TVL models were prepared in advance by the two researchers and later checked
by the participants. Consequently, the expertise of the researchers might have influ-
enced the models and the evaluation of the participants. In order to assess this poten-
tial bias more precisely, we will have to compare models designed by participants to
models designed by the two researchers. However, TVL is arguably simpler than most
programming languages and the modelling task was felt to be rather straightforward.
As as consequence, we do not expect this to be a problem for our evaluation. Further-
more, when the participants questioned the design decisions, alternative solutions were
discussed based on the constructs available in the language—even those not disclosed
during the presentation.

The limited hands-on experience with TVL might have negatively influenced the
evaluation of the expressiveness, notation and modularisation of the language, and pos-
itively impacted the evaluation of the ease and cost and learning experience. That situa-
tion resembles the setting of an out-of-box experience [37]. This gives valuable insight
as to how software engineers perceive TVL after a one-hour training and how fast they
can reach a good understanding of the fundamental concepts.

A more specific problem was the unavailability of proper documentation and the
limited access granted to the codebase in the case of OSL, NXP and Virage Logic. This
made the modelling of those cases more difficult.

In the case of OSL, the development team is still in the SPL adoption phase. This
could be a threat as the participant has only been exposed to FMs for reviewing. There-
fore, he might have focused on comparing the textual and graphical approaches rather
than evaluating the language itself. Along the same lines, the PloneMeeting participant
was already reluctant to use graphical FMs and might have evaluated the textual ap-
proach rather than TVL itself. In any case, we believe that the feedback received was
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more shaped by the expectations and requirements of the participants than by the pref-
erence for a textual representation over a graphical one.

More generally, one limitation of our study is the relatively small size of the subsys-
tems we could deal with during the experiment.

8 Conclusion

Effective representations of FMs are an open research question. Textual alternatives
have been proposed, including TVL, a textual variability modelling language meant to
overcome a number of known deficiencies observed in other languages. Yet, evidence of
the suitability of TVL in practice was missing. In this paper, we systematically evaluated
the language by conducting an empirical evaluation on four industrial product lines.

Our evaluation of TVL showed that practitioners positively evaluated the notation
and that efficiency gains are envisioned in terms of model comprehension, design and
learning curve. However, they suggested some extensions like attribute cardinalities,
feature cloning, default values and guidance messages that can be used during product
configuration.

In the future we will focus on integrating the recommended extensions into TVL.
Furthermore, the prototype implementation of the TVL parser and reasoner needs to be
extended to better support on-the-fly verification of model consistency. To assess these
new extensions, live evaluations through modelling sessions are envisaged. To better
assess the pros and cons of variability modelling languages, comparative evaluations
are planned, too.
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Abstract. Dynamic Meta Modeling (DMM) is a visual semantics spec-
ification technique targeted at behavioral languages equipped with a
metamodel defining the language’s abstract syntax. Given a model and
a DMM specification, a transition system can be computed which repre-
sents the semantics of that model. It allows for the investigation of the
model’s behavior, e.g. for the sake of understanding the model’s seman-
tics or to verify that certain requirements are fulfilled. However, due to
a number of reasons such as tooling and the size of the resulting transi-
tion systems, the manual inspection of the resulting transition system is
cumbersome.

One solution would be a visualization of the model’s behavior using
animated concrete syntax. In this paper, we show how we have enhanced
DMM such that visual execution and debugging can be added to a lan-
guage in a simple manner.

1 Introduction

One challenge of today’s software engineering is the fact that software systems
become more and more complex, making it hard to produce systems which work
correctly under all possible executions. As a result, the Object Management
Group (OMG) has proposed the approach of Model-Driven Architecture (MDA).
The main idea of MDA is to start with an abstract, platform-independent model
of the system, and to then refine that model step by step, finally generating
platform-specific, executable code.

In this process, behavioral models (e.g., UML Activities) play an increasingly
important role; they allow to model the system’s desired behavior in an abstract,
visual way. This has a couple of advantages, one of the most important being that
such visual models can be used as a base for communication with the system’s
stakeholders (in contrast to e.g. Java code).

However, to get the most usage out of behavioral models, their semantics has
to be defined precisely and non-ambiguously; otherwise, different interpretations
of a model’s meaning may occur, leading to all kinds of severe problems. Un-
fortunately, the UML specification [15] does not fulfill that requirement: The
semantics of the behavioral models is given as natural text, leaving room for
different interpretations.

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 357–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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One solution would be to specify the semantics of these behavioral languages
with a formal semantics, i.e., some kind of mathematical model of the language’s
behavior. A major advantage of such a specification is that it can be processed
automatically, e.g. for verifying the specification for contradictory statements.

Dynamic Meta Modeling (DMM) [9,13] is a semantics specification technique
which results in semantics specifications that are not only formal, but also claim
to be easily understandable. The only prerequisite for using DMM is that the
syntax of the language under consideration is defined by means of a metamodel.

In a nutshell, DMM works as follows: In a first step, the language engineer
creates a so-called runtime metamodel by enhancing the syntax metamodel with
concepts needed to express states of execution of a model. For instance, in the
case of the UML, the specification states that “the semantics of UML Activities
is based on token flow”. As a result, the runtime metamodel contains a Token
class.

The second step consists of creating operational rules which describe how in-
stances of the runtime metamodel change through time. For instance, the DMM
specification for UML Activities contains a rule which makes sure that an Action
is executed as soon as Tokens are sitting on all incoming ActivityEdges of that
Action.

Now, given a model (e.g., a concrete UML Activity) and an according DMM
specification, a transition system can be computed, where states are instances of
the runtime metamodel (i.e., states of execution of the model), and transitions
are applications of the operational rules. The transition system represents the
complete behavior of the model under consideration and can therefore be used
for answering all kinds of questions about the model’s behavior.

However, investigating such a transition system is a difficult and cumbersome
task for a number of reasons. First of all, we have seen that the states of the
transition system are instances of the runtime metamodel, which can be pretty
difficult to comprehend. Additionally, due to the so-called state explosion prob-
lem, the transition systems tend to be pretty large.

One solution for (at least partly) solving this problem would be to show the
execution of a model in the model’s own concrete syntax. This has two major
benefits:

– It is significantly easier to find interesting states of execution, e.g., situations
where a particular Action is executed.

– Investigating the states of the transition system only is an option for ad-
vanced language users, i.e., people who are at least familiar with the lan-
guage’s metamodel. In contrast, visualizing the model execution in concrete
syntax is much easier to comprehend.

In this paper, we show how we extended the DMM approach to allow for exactly
that. We will show how the language engineer (i.e., the person who defines
a modeling language) can make her language visualizable and debuggable by
adding a couple of simple models containing all information necessary to visualize
a model’s execution, and how this information is used to extend existing visual
editors at runtime for the sake of showing the model execution. As a result, the
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language engineer can make the language under consideration visualizable and
debuggable without writing a single line of code.

Structure of paper. In the next section, we will give a short introduction to
DMM, and we will briefly introduce the components we used to implement model
visualization in a generic way. Based on that, Sect. 3 will show what information
the language engineer has to provide, and how this information is specified by
means of certain configuration models. Finally, Sect. 3 will briefly explain how
we integrated our approach into the existing tooling. Section 5 will discuss work
related to our approach, and finally, Sect. 6 will conclude and point out some
future work.

2 Dynamic Meta Modeling

This section introduces the foundations needed for the understanding of the
main section 3. It gives a very brief introduction to Dynamic Meta Modeling
(DMM).

As already mentioned in the introduction, DMM is a language dedicated to
the specification of behavioral semantics of languages whose syntax is defined
by means of a metamodel. The general idea is to enhance the syntax metamodel
with information needed to express states of execution of a model; the enhanced
metamodel is called runtime metamodel. The actual behavior is then specified
by means of operational rules which are typed over the runtime metamodel.

Given such a runtime metamodel and a set of DMM rules, a transition sys-
tem can be computed. This is done as follows: First, a semantic mapping is used
to map an instance of the syntax metamodel into an instance of the runtime
metamodel; that model will then serve as the initial state of the transition sys-
tem to be computed. Now, all matching DMM rules are applied to the initial
state, resulting in a number of new states. This process is repeated until no new
states are discovered. The resulting transition system represents the complete
behavior of a particular model. It can then e.g. be analyzed with model checking
techniques (see [10]). An overview of the DMM approach is depicted as Fig. 1.

Let us demonstrate the above using the language of UML Activities. A careful
investigation of the UML specification reveals that the semantics of Activities
is based on tokens flowing through the Activity; as consequence, two runtime
states of the same Activity differ in the location of the flowing tokens.

In fact, the semantics is significantly more difficult: Tokens do not actually
flow through an Activity. Instead, they are only offered to ActivityEdges. Only
if an Offer arrives at an Action (and that Action is being executed), the Token
owning the Offer moves. Figure 2 shows an excerpt of the runtime metamodel for
UML Activities; elements depicted in white are part of the syntax metamodel,
gray elements belong to the runtime part of the metamodel.

Now for the specification of the semantics’ dynamic part: As mentioned above,
this is done by operational rules. A DMM rule basically is an annotated object
diagram. It matches a state if the rule’s object structure is contained in that
state. If this is the case, the rule is applied, i.e., the modifications induced by
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the annotations are performed on the found object structure, leading to a new
state.

Figure 3 shows a simple DMM rule with name decisionNode.flow(). Its seman-
tics is as follows: The rule matches if the incoming ActivityEdge of a DecisionNode
carries an Offer. If this is the case, the Offer is moved to one of the outgoing edges.
Note that usually, a DecisionNode has more than one outgoing edge. In this case,
the rule’s object structure is contained in the state more than once; every oc-
curence consists of the incoming ActivityEdge, the DecisionNode, the Offer, and
one of the outgoing ActivityEdges. As a result, we will end up with a new state
for every outgoing edge, and the states will differ in the location of the Offer
(which will sit on the according outgoing edge of that state). In other words: We
end up with one new state for every possible way the Offer can go.

Note that DMM specifications usually do not aim at making models exe-
cutable – if this would be the case, rule 3 would need to evaluate the guards of
the DecisionNode’s outgoing edges to determine the edge to which the Offer has
to be routed. Instead, the transition system representing the model’s behavior
contains all possible executions of that model. This allows to analyze the be-
havior of Activities which are modeled rather informally (e.g., if the guards are
strings such as “Claim valid”). See [10] for an example of such an analysis.

Technically, DMM rules are typed graph transformation rules (GTRs) [18].
DMM supports a couple of advanced features: For instance, universally quantified
structures can be used to manipulate all occurrences of a node within one rule;
negative application conditions allow to describe object structures which prevent
a rule from matching; additionally, DMM allows for the usage and manipulation
of attributes.

The main difference to common GTRs is the fact that DMM rules come in
two flavors: bigstep rules and smallstep rules. Bigstep rules basically work as
common GTRs: They are applied as soon as they match as described above.
In contrast, smallstep rules have to be explicitly invoked by a bigstep rule or
another smallstep rule;1 as long as there are smallstep rules which have been
invoked, but are yet to be processed, bigstep rules cannot match.

To actually compute a transition system from a model and a DMM seman-
tics specification, the model as well as the set of DMM rules are translated
into a graph grammar suitable for the graph transformation tool
GROOVE [17]. Slightly simplified, this is done as follows: The model is trans-
lated into a GROOVE state graph which serves as the initial state of the tran-
sition system to be computed. Furthermore, each DMM rule is translated into
an according GROOVE rule; features not directly supported by GROOVE are
translated into structures within the GROOVE rules which make sure that the
DMM rule’s behavior is reflected by the GROOVE rule. For instance, to be able
to handle invocation of rules, an actual invocation stack is added to the initial

1 Note that the invocation of a smallstep rule might fail in case it is invoked, but
the object structure required by the invoked rule is not contained in the current
state, resulting in the rule not matching; a DMM semantics specification potentially
leading to such situations is considered to be broken.
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state, and the GROOVE rules have structures which manipulate that invoca-
tion stack and make sure that smallstep rules can only match if an according
invocation is on top of the stack.

3 Visual Model Execution

With DMM, we can define the semantics of a modeling language, calculate ex-
ecution states of model instances, and apply further analytical methods to it.
Yet, the basic concept of DMM provides no means to visualize the execution
and the therein occurring states of a model; a feature which is feasible for mon-
itoring, better understanding, or debugging a model—especially if it is written
in a visual language.

Thus, we have developed a tool for visually executing and debugging models
with DMM-specified semantics, the DMM Player [1]. From a technical perspec-
tive, the tool is a set of Eclipse plug-ins, which is able to process models and
DMM semantics specified with the Eclipse Modeling Framework (EMF) [5]. The
visualization is realised using the Graphical Modeling Framework (GMF) [7],
which is the standard way of providing visual editors for EMF-based models. As
there are already numerous existing GMF editors for behavioral models which—
however—do not support displaying runtime-information such as tokens or active
states, the DMM Player also provides means to augment existing editors by such
elements.

Leaving those pesky technical details behind, we will now focus on the under-
lying concepts which make the visualization of a model execution possible. Using
UML Activities as a running example, we start with the fundamental question on
how to visualize execution states and how the augmentation of existing visualiza-
tions can be specified in a model-driven way. Beneath the graphical dimensions,
we will also have to consider the time axis when visualizing the execution. This
will be covered in Sect. 3.2. Section 3.3 covers means of controlling the execu-
tion path when external choices are necessary. Section 3.4 introduces concepts
that make debugging of models in the presented environment possible. Finally,
in Sect. 3.5 we will demonstrate our approach on another language, i.e., UML
Statemachines.

3.1 Visualizing Runtime Information

In order to visualize the behavior of a model, i.e., the development of its run-
time state over time, it is obviously essential to be able to visualize the model’s
runtime state at all. However, this cannot be taken for granted. While certain
visual languages have an inherent visual syntax for runtime information—such
as Petri nets [16] visualizing the state using tokens on places—many visual lan-
guages only support the definition of the static structure—such as UML activity
diagrams.

The specification for activity diagrams only informally describes the seman-
tics using concepts such as tokens, which are comparable to the tokens used
by Petri nets, and offers, which act as a kind of path finder for tokens. The



Extending DMM Behavior Specifications 363

specification does not provide any runtime information support in the formally
specified metamodel and also does not give any guidelines on how to visualize
runtime information. This is where DMM comes into play.

As we have seen in the previous section, the core concept of DMM translates
this informal description into the runtime metamodel, which formally defines an
abstract syntax for runtime states of models in the particular language. With
the DMM Player, we have developed a set of concepts and techniques to define a
concrete syntax for those runtime states. Similar to the enhancement by runtime
information in the abstract syntax, the concept allows for building on the con-
crete syntax of the static part of models in order to create the concrete syntax
for runtime states. The enhanced concrete syntax is defined using a completely
declarative, model-based way.

In order to create such a visualization with the DMM Player, three ingredients
are needed: An idea on how the concrete syntax should look like, the DMM
runtime metamodel, and an existing extensible visualization implementation for
the static structure of the particular language.

Our implementation of the DMM Player allows for extending GMF-based
editors, as GMF offers all required extension mechanisms. The particular imple-
mentation is described in Sect. 4. In the following, we will focus on the concepts,
which are—while being partially inspired by—independent from GMF. Essen-
tially, this means that definitions for an enhanced concrete syntax may be also
used in conjunction with other frameworks. This of course requires an imple-
mentation interpreting the DMM artifacts for these particular frameworks.

The first concern is how the runtime information should be visualized in con-
crete syntax. Beneath the obvious question on the shape or appearance of run-
time information, it may also be necessary to ask what runtime objects should
be included in the visualization at all. Certain runtime information may be only
useful in certain contexts. In the example of UML activity diagrams, the visu-
alization of tokens is certainly essential; we visualize tokens—aligned with the
visualization in Petri nets—as filled black circles attached to activity nodes. An
example for such a diagram can be seen in Fig. 4. For debugging of models and
semantics, visualized offers may also be useful; offers are visualized as hollow cir-
cles. As multiple tokens and offers may be in action at once, an arrow visualizes
which offers are owned by which tokens.

The diagram in Fig. 4 also shows boxes labeled with the letters EX. These
boxes indicate that the particular node is currently executing. We will not go
any further into the semantics of these boxes, though.

Having an idea on how the concrete syntax should look, we combine it with
the formal structure of the runtime metamodel to create a so called diagram
augmentation model which associates certain parts of the runtime metamodel
with visual shapes. The word “augmentation” in the name of the model refers
to the fact that it is used by the DMM Player to augment the third ingredient,
the preexisting static diagram visualization, with runtime information.

Diagram augmentation models use the metamodel which is partially pictured
in Fig. 5. The class DiagramAugmentationModel is the root element, i.e. each
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augmentation model contains exactly one instance of this class. The attribute
diagramType is used to associate a particular diagram editor with the augmenta-
tion model - this diagram editor will then be used for displaying runtime states.

The actual elements to be visualized are determined by the classes Augmen-
tationNode and AugmentationEdge. More precisely, as both classes are abstract,
subclasses of these classes must be used in an instance of the meta model. The
subclasses determine the implementation type of the visualization.

The way the elements are integrated into the existing diagram is determined
by the references between AugmentationNode and AugmentationEdge on the one
side and EReference and EClass on the other side. The latter two classes stem from
the Ecore metamodel, which is the EMF implementation of the meta-metamodel
standard MOF. They represent elements from the DMM runtime metamodel the
visualization is supposed to be based on.

In the case of an AugmentationNode, the following references need to be set:
The reference augmentationClass determines the class from the runtime meta-
model which is visualized by this particular node; however, this is not sufficient,
as the class needs to be somehow connected to elements that already exist in
the visualization of the static structure. For instance, a token is linked to an
activity node and should thus be visually attached to that node. This connec-
tion is realized by the reference named references; it must point to an EReference
object which emanates from the referenced augmentationClass or one of its super
classes. The EReference object in turn must point towards the model element the
augmenting element should be visually attached to. Thus, this model element
must stem from the static metamodel and must be visualized by the diagram
visualization to be augmented. The reference containment is only relevant if the
user shall be able to create new elements of the visualized type directly in the
editor; those elements will be added into the containment reference specified
here.

Figure 6 shows the part of the augmentation model for UML activities which
specifies the appearance of control tokens, which are a subclass of tokens. The ref-
erences link specifies that the reference named contained in determines to which
ActivityNode objects the new nodes should be attached to. The references link
is part of the class Token. However, as the link augmentationClass specifies the
class ControlToken as the class to be visualized, this particular ShapeAugmenta-
tionNode will not come into effect when other types of tokens occur in a runtime
model. Thus, other augmentation nodes may be specified for other tokens.

3.2 Defining the Steps of Executions

Being able to visualize individual runtime states, creating animated visualiza-
tions of a model’s behavior is straightforward. Sequentially applying the rules of
the DMM semantics specification yields a sequence of runtime states which can
be visualized with a brief pause in-between, thus creating an animation.

However, the sequence of states produced by DMM is not necessarily well
suited for a visualization. In many cases, subsequent states only differ in parts
that are not visualized. These parts are primarily responsible for internal
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Fig. 4. An UML activity diagram with additional runtime elements

Fig. 5. Excerpt of the metamodel for diagram augmentation models

Fig. 6. Excerpt of the augmentation model for UML activities
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information which is specific to the particular implementation of the seman-
tics, but is not relevant for the behavior of the final model. Including these steps
in the animation would cause strange, irregular pauses between visual steps.

Furthermore, DMM semantics may produce states with temporary inconsis-
tencies. These states also result from implementation details of the particular
DMM semantics specification. DMM rules may modify a model using several
consecutive invocations of other rules; this is necessary if the semantics of a lan-
guage element is too complex to be described within one rule. Each invoked rule
produces a new state, which however might be wrong—when viewed from pure
semantics perspective without implementation details. In the case of the particu-
lar implementation the state is of course still correct, as the subsequently invoked
rules correct this inconsistency, thus making it a temporary inconsistency.

Figure 7 shows an example for a temporary inconsistency. In the first state, an
offer has reached the final node. The activity diagram semantics now demands
that the corresponding token should be moved to the node reached by the offer.
The DMM implementation of the semantics however creates a new token on the
target node before removing the original token from its location. This creates
the exhibited temporary inconsistency with two tokens being visible at once.

The visualization of temporary inconsistencies might be interesting for the
developer of the DMM semantics implementation; for a user only interested in
viewing the behavior of a model, such states should not be visualized.

Thus, we need a way of selecting the states that should be displayed to the
user. There is a number of different approaches to that problem which we will
briefly discuss in the following.

If the visualization of temporary inconsistencies is desired and only the afore-
mentioned problem of steps without visual changes needs to be addressed, a
very simple solution is obvious: Using the diagram augmentation model, it is
possible to determine what elements of the runtime model are visualized. The
DMM Player can use this information to scan the consecutive states for visual
changes; only if changes are detected, a visual step is assumed and thus promoted
to the user interface.

If temporary inconsistencies are to be avoided in the visualization, other mea-
sures need to be applied. A simple and straight-forward approach would be to
visualize only the state when the application of a Bigstep rule has been finished;
application in this context means that the changes by the Bigstep rule and by
its invocations have been performed. As temporary inconsistencies are typically
raised by an invocation and again fixed by a consecutive invocation, temporary
inconsistencies will be fixed when all invocations have been finished and thus
the application of a bigstep rule has been finished.

Yet, the structuring concept of Bigstep and Smallstep rules has not been de-
signed for visualization purposes; thus, it is also possible to find cases in which
a state produced by a Smallstep rule should be visualized while the applica-
tion of the invoking Bigstep rule has not been finished yet. Just restricting the
visualization to states left by Bigstep rules is thus too restrictive.
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An obvious solution would be the explicit specification of all rules that should
trigger a visual step. This is, however, also the most laborious solution, as each
rule of the semantics specification needs to be checked. In the case of the DMM-
based UML activity semantics specification, this means the inspection of 217
rules.

Our solution for now is a combination of the approaches. Thus, in addition
to the specification of individual rules triggering visual steps, the DMM Player
also allows for the specification of all Bigstep rules. Furthermore, it is possi-
ble to specify whether the visualization should be triggered before or after the
application of the particular rules.

For creating a suitable animated visualization with the DMM UML activity
semantics, it is sufficient to trigger a visual step after the application of all
Bigstep rules and after the application of only one further Smallstep rule, which
takes the responsibility of moving a token to the new activity node that has
accepted the preceding offer.

3.3 Controlling Execution Paths

A limitation of the behavior visualization using an animated sequence of states
is its linearity. In some cases, the behavior of a model may not be unambiguously
defined. For instance, this is the case in the activity diagram we have seen before
in Fig. 4; the left decision node has two outgoing transitions. Both are always
usable as indicated by the guard [true]. In a transition system, such a behavior is
reflected by a fork of transitions leading from one state to several distinct states.
In an animation, it is necessary to choose one path of the fork. At first sight, it
is evident that such a choice should be offered to the user.

The DMM Player can offer this choice to the user by pausing the execution
and visualizing the possible choices; after the user has made a choice, execution
continues.

However, there are cases in which it is not feasible for the user to choose
the path to be used for every fork in the transition system. This is primarily
the case for forks caused by concurrency in the executed model. Even though a
linear execution does not directly suffer from state space explosion, concurrency
might require a decision to be made before most steps of a model execution.

As the semantics of concurrency can be interpreted as an undefined execution
order, it is reasonable to let the system make the decision about the execution
order automatically. Forks in the transition system which are caused by model
constructs with other semantics—such as decision nodes—should however sup-
port execution control by user interaction.

The problem is now to distinguish transition system forks that should require
user interaction from others. More precisely, as a single fork can both contain
transitions caused by decision nodes and by concurrency, it is also necessary to
identify the portions of a fork that are supposed to form the choices given to the
user.

A basic measure for identifying the model construct that caused a fork or a
part of it is considering the transformation rules that are used for the transitions
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forming the fork. In the case of the DMM semantics for UML activities, the tran-
sitions which cause the forks at decision nodes are produced by the Bigstep rule
decisionNode.flow() (see also Fig. 3). Forks which consist of transitions caused
by other rules can be regarded as forks caused by concurrency.

Just considering the rules causing the transitions is not sufficient, though.
Concurrency might lead to forks which consist of decisionNode.flow() transitions
belonging to different decision nodes in the model. If each of those decision node
has only one active outgoing transition, there is no choice to be made by the
user but just choices purely caused by concurrency.

Thus, it is necessary to group the transitions at a fork by the model element
they are related to. This model element can be identified by using the rule match
associated to the particular transition (see Sect. 2 for a brief explanation of rule
matching and application). The match is a morphism between the nodes of the
particular DMM rule and elements from the model. Generally, one node from
a rule that is supposed to trigger a user choice can be used to identify the
related model element. In the case of the DMM activity semantics, this is the
:DecisionNode element itself.

With these components, we can build an algorithm for identifying the in-
stances of transition system forks in which the user should be asked for a choice:
Group the transitions that are possible from the current state by the rule and
by the elements bound to the grouping node defined for the particular rule. If
there is no grouping node or the rule is not supposed to cause user choices, the
particular transition forms a group of size one. Now one of these groups is ar-
bitrarily chosen by the software; this reflects possible concurrency between the
single groups. If the chosen group contains more than one transition, the user
is requested to make a choice. Otherwise the single transition in the arbitrarily
chosen group will be used to gather the next state.

This algorithm enables us to ensure that the user is only required to make
choices regarding single instances of certain model constructs, such as decision
nodes. A remaining problem is how to give the user an overview over the possible
choices. We can again utilize nodes from the rules that are supposed to trigger
user choices. Those rules contain as a matter of principle always a node which
represents the different targets which can be reached while the aforementioned
grouping node stays constantly bound to the same model element. If the model
element represented by the target node is part of the diagram, this diagram
element can be used for identifying the different choices.

In the case of UML activities, this is the target ActivityEdge node in the
rule decisionNode.flow(). The DMM Player can now use these model elements to
visualize the possible choices using generic marker signs as is depicted in Fig. 8.
The user may easily select one of the choices using the context menu of one of
these model elements.

3.4 Debugging Concepts

As we have seen up to now, the main objective of the DMM Player is the vi-
sualization of a model’s behavior by means of animated concrete syntax. This
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Fig. 7. A sequence of states exhibiting a temporary inconsistency

Fig. 8. UI for choosing execution paths
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is very useful when trying to understand the details of a model’s behavior, for
instance if the model contains flaws. One feature which would obviously be of
great use in such scenarios is the possibility to stop the execution of a model as
soon as certain states of execution are reached. In other words: The transforma-
tion of concepts known from debuggers for classical programming languages to
the DMM world would stand to reason.

The main concept of classical debuggers is the breakpoint; in source code,
this is a line marked in such a way that the program execution is suspended
just before the statements on that line are executed. When the execution is
suspended, the values of program variables can be inspected by the user. Trans-
ferred to DMM, rules are the main units of execution; thus, the DMM Player
supports setting breakpoints on DMM rules. Before (or, configurable, after) a
rule is applied, the DMM Player suspends the execution. Using the property
editors supplied by GMF, the user may now inspect the state of the model.

A variant of breakpoints are watchpoints. These cause the execution to be sus-
pended when the condition defined by the watchpoint becomes true for variables
in the executed program. Property rules can be seen as an analogical concept
in the graph transformation and DMM world. Property rules do not modify the
state of a model, and so they do not change a language’s semantics. Their only
purpose is to recognize certain states by matching them. Using a rule breakpoint,
it is possible to suspend execution as soon as a property rule matches.

3.5 Example: UML Statemachines

To further demonstrate the usefulness of our approach, within this section we
provide a second language for which we have applied our approach. Despite its
visual similarity to UML Activities, we decided to use UML Statemachines. We
would have preferred to use UML Interactions; unfortunately, we had issues with
the GMF editor for Interactions as provided by the Eclipse UML2 tools [8], which
we used in the preliminary version 0.9.

Let us briefly discuss the language of UML Statemachines. Syntactically, a
Statemachine mainly consists of states and transitions between those states.
At every point in time, a Statemachine has at least one active state. There are
different kinds of states, the most important ones being the Simple state and the
Complex state (the latter will usually contain one or more states). The semantics
of transitions depends on their context: For instance, an unlabeled transition
from a complex state’s border to another state models that the complex state
can be left while any of its inner state(s) is active. More advanced concepts
like history nodes allow to model situations where, depending on different past
executions, the Statemachine will activate different states.

A sample Statemachine is depicted as Fig. 9 (note that this figure already
contains runtime information). The first active state will be state A1. From this
state, either state A2 or A3 will be activated. In case of state A3, the Complex
State 1 will be entered. The state marked H* is a so-called deep history state;
it makes sure that in case state Complex State 1 is activated again, all states
which were active when that state was left are reactivated.
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Fig. 9. Example state of Statemachine execution

We now want to briefly investigate the DMM semantics specification of UML
Statemachines. As we have seen before, states of execution2 of a Statemachine
are determined by the active states. As a consequence, the runtime metamodel
of Statemachines contains the concept of a Marker which references the currently
active states (and will be moved by according DMM operational rules). To re-
member the last active states in case a complex state is left that contains a
history state, the runtime metamodel introduces the HistoryMarker.

Next, we want to discuss how the execution of a Statemachine is visualized.
In Fig. 9, we have already seen a Statemachine augmented with runtime infor-
mation. Active states can be recognized by an attached box with the label ACT.
These boxes represent the Marker instances from the runtime metamodel.

Further runtime information can be seen around the deep history state H*.
The dashed arrows pointing away from that state signify the states that will be
activated as soon as the complex state containing the history state is entered
again. Thus, these arrows represent HistoryMarker instances. The part of the
augmentation model that realizes the arrows representing history markers can
be seen in Fig. 10. The ShapeAugmentationEdge instance specifies the class to be
additionally visualized, i.e., the HistoryMarker and its references which determine
the end points of the visualized edge.

We are now ready to explain the runtime state of the Statemachine which
can be seen in Fig. 9. The currently active state is A1. Since from that state,
either state A2 or A3 can be reached, the DMM player has already asked for a
user decision – as the icons show, the user has decided to follow the transition
leading to state A3.

Moreover, the visualization reveals that Complex State 1 had already been
active in the past. This is because there do exist HistoryMarker edges. The edges
point to the states which had been active within state Complex State 1 before it
was left through the transition between Complex State 2 and A1 (i.e., Complex
State 2 and, within that state, C2 ). Therefore, after two further execution steps,
these states will be set active again.

2 Note that state is overloaded here; as before, state of execution refers to the complete
model.
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Fig. 10. Excerpt of the augmentation model for UML Statemachines

4 Implementation

This section will give insights into our implementation of the concepts described
in the last section. However, our explanations are rather high-level – the reader
interested in more technical details is pointed to [1]. A high-level view of the
DMM Player’s architecture is provided as Fig. 11.

As mentioned above, the DMM Player builds upon Eclipse technologies; still,
the concepts of DMM are completely technology-independent. The implementa-
tion can be divided into two mostly independent parts: The diagram augmen-
tation and the model execution. Both are connected by the EMF [5] model just
using its standard interfaces; the model execution process changes the model.
The diagram augmentation part listens for such changes and updates the visu-
alization accordingly.

The model execution part utilizes EProvide [19], a generic framework for
executing behavioral models inside of Eclipse. EProvide decouples the actual
execution semantics and the method to define them using two layers:

On the first layer, EProvide allows to configure the semantics description
language, which provides the base for the actual definition. The DMM Player
registers DMM as such a language. The second layer defines the actual execution
semantics for a language using one of the languages from the first layer. Thus,
a DMM semantics definition—such as the UML activities definition—is defined
at this level.

EProvide essentially acts as an adaptor of the semantics description languages
to the Eclipse UI on one side and EMF-based models which shall be executed on
the other side. The DMM Player code receives commands from EProvide along
with the model to be executed and the semantics specification to be used. The
most important command is the step, i.e., the command to execute the next
atomic step in the given model. The DMM implementation realizes that step
by letting the backing graph transformation tool GROOVE [17] perform the
application of the according rule, and by translating the manipulations of the
GROOVE rule back to the EMF model which is visualized.
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Fig. 11. Architecture of DMM tooling

The advanced features, such as the definition of visual steps—which actually
combines multiple steps into single ones—, the user control of execution paths,
and the debugging functionality, are realized directly by the DMM Player. The
EProvide module MODEF [3] also offers debugging functionality which, how-
ever, could not be directly utilized, as it makes a quite strong assumption. It is
assumed that the model’s state can be deduced from one single model element.
Since this is not the case with DMM, where a state is a complete model, we
needed to bypass this module.

The implementation of the DMM debugging facilities makes use of the Eclipse
Debugging Framework. At every point in time, the DMM Player keeps track of
the GROOVE rule applied in the last step to derive the current state, as well as
the rules matching that new state. If a breakpoint or watchpoint is reached, the
execution is suspended as desired.

The diagram augmentation part of the DMM Player uses interfaces of GMF [7]
for extending existing diagram editors. GMF offers quite extensive and flexible
means for customizing editors using extension points and factory and decorator
patterns.

GMF uses a three-layer architecture to realize diagram editors: Based on the
abstract syntax model on the lowest level, a view model is calculated for the
mid layer. The view model is simply a model representation of the graph to be
visualized, i.e., it models nodes that are connected by edges. On the third layer,
the actual UI visualization components are created for the elements from the
second layer. Thus, specific elements get a specific look.

The DMM Player hooks into the mapping processes between the layers; be-
tween the abstract syntax model and the view model, it takes care that the
elements defined in the augmentation model are included in the view model.
Between view model and the actual UI, it chooses the correct components and
thus the correct appearance for the augmenting elements.
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Thus, the DMM Player provides a completely declarative, model driven way of
augmenting diagram editors; there is no need to writing new or altering existing
source code. Figure 8 shows screenshots of the activity diagram editor that comes
with the Eclipse UML2 Tools which has been augmented by runtime elements
using the DMM Player.

The DMM Player is designed to be generically usable with any DMM se-
mantics specification. Thus, it offers extension points and configuration models
that just need to be adapted in order to use a semantics specification with the
DMM Player.

5 Related Work

The scientific work related to ours can mainly be grouped into two categories:
Visualization of program execution and animation of visual languages. For the
former, we only want to mention eDOBS [12], which is part of the Fujaba tool
suite. eDOBS can be used to visualize a Java program’s heap as an object dia-
gram, allowing for an easy understanding of program states without having to
learn Java syntax; as a result, one of the main usages of eDOBS is in educa-
tion. In contrast to that, the concrete syntax of such eDOBS visualizations is
fixed (i.e., UML object diagrams), whereas in our approach, the modeler has to
come up with his own implementation of the concrete syntax, but is much more
flexible in formulating it.

In the area of graph grammars and their applications, there are a number of
approaches related to ours: For instance, in [14,2,11], the authors use GTRs to
specify the abstract syntax of the language under consideration and operations
allowed on language instances. The main difference to our approach is that in
[14,2], the actual semantics of the language for which an editor/simulator is to
be modeled is not as clearly separated from the specification of the animation
as in DMM, where the concrete syntax just reflects what are in fact model
changes caused solely by (semantical) DMM rules. In the Tiger approach [11],
a GEF [6] editor is generated from the GTRs such that it only allows for edit
operations equivalent to the ones defined as GTRs; however, Tiger does not allow
for animated concrete syntax.

Another related work is [4]; the DEViL toolset allows to use textual DSLs to
specify abstract and concrete syntax of a visual editor as well as the language’s
semantics. From that, a visual editor can be generated which allows to create,
edit, and simulate a model. The simulation uses smooth animations based on
linear graphical interpolation as default; only the animation of elements which
shall behave differently needs to be specified by the language engineer.

There is one major difference from all approaches mentioned to ours: As we
have seen in Sect. 3.1, DMM allows for the easy reuse of existing (GMF based)
editors. As a result, the language engineer only has to create the concrete syntax
for the runtime elements not contained in the language’s syntax metamodel, in
contrast to the above approaches, where an editor always has to be created from
scratch; reusing and extending an existing editor at runtime is not possible.
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6 Conclusions

Visually executing a behavioral model as animated concrete syntax is an intu-
itive, natural way to understand the model’s behavior. In this paper, we have
shown how we have extended our DMM approach to allow for exactly that.

For this, we have first given a brief overview of DMM and the involved tech-
nologies in Sect. 1. Based on that, and using the running example of UML
Activities, we have explained in Sect. 3 how the information needed to visually
execute a model is added to DMM specification, and we have shown how this
information is used to reuse existing GMF editors for the animation task by
adding the according functionality to the editors at runtime, transparently to
the user. Finally, we have discussed work related to ours in Sect. 5.

We believe that with the concepts and techniques described in this paper,
we have achieved the next step towards a comprehensive toolbox for engineer-
ing behavioral visual languages. In a next step, we will integrate the described
techniques more tightly into our DMM workflow. An obvious such integration
could work as follows: As mentioned in Sect. 2, models equipped with a DMM
semantics specification can be analyzed using model checking techniques. Now,
if the result of the model checker is a counterexample (i.e., if a property does
not hold for the model under consideration), the DMM Player can be used to
visualize that counterexample, visually showing under which circumstances the
property is violated.

Another area of our research is motivated by the fact that different people
working with DMM might want to see different amounts of detail while simulat-
ing a model. For instance, the language engineer probably wants to see tempo-
rary inconsistencies while developing the semantics of a language, whereas these
states should be hidden from end users (as we have argued in Sect. 3.2). More-
over, there might even be people which are only interested in an even higher
view of a model’s behavior; for instance, they might not care about the location
of the offers. To suite the needs of these different kinds of users, we plan to
extend our approach such that the augmentation and rulestep models can be
refined. This would allow to start with a specification of the visualization which
reveals all execution details, and then to refine that specification step by step,
each refinement fulfilling the information needs of a different kind of language
users.
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Abstract. BPMN 2.0 is an OMG standard and one of the leading pro-
cess modelling notations. Although the current language specification
recognises the importance of defining a visual notation carefully, it does
so by relying on common sense, intuition and emulation of common
practices, rather than by adopting a rigorous scientific approach. This
results in a number of suboptimal language design decisions that may
impede effective model-mediated communication between stakeholders.
We demonstrate and illustrate this by looking at BPMN 2.0 through the
lens of the Physics of Notations, a collection of evidence-based princi-
ples that together form a theory of notation design. This work can be
considered a first step towards making BPMN 2.0’s visual notation more
cognitively effective.

1 Introduction

The Business Process Modeling Notation (BPMN) has recently emerged as the
industry standard notation for modelling business processes. Originally devel-
oped by the Business Process Management Initiative (BPMI), it is now main-
tained by the Object Management Group (OMG). It aims to provide a common
language for modelling business processes, to replace the multiple competing
standards that currently exist. As stated in its latest release (BPMN 2.0 [1]1),
BPMN ambitions to “provide a notation that is readily understandable by all
business users, from the business analysts that create the initial drafts of the
processes, to the technical developers responsible for implementing the technol-
ogy that will perform those processes, and finally, to the business people who
will manage and monitor those processes” [1, p. 28]. Considering the enormous
influence that the OMG has in the IT industry, this mission statement holds the
promise of delivering a standardised lingua franca for all those who, in one way
or another, have to deal with business processes.

The standard goes on to say that “[a] key element of BPMN is the choice of
shapes and icons used for the graphical elements [. . . ]” and that “[the] intent
is to create a standard visual language that all process modelers will recognize
and understand” [1, p. 29–30]. From these statements, it is clear that a chief
1 This analysis was performed on version 0.9.15.
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concern of BPMN 2.0 is cognitive effectiveness – although the standard does not
use that term. Cognitive effectiveness is defined as the speed, ease and accuracy
with which a representation can be processed by the human mind [2,3]. A major
incentive for using visual notations is the widely-held belief that they convey
information more effectively than text, especially to novices [4]. However, cogni-
tive effectiveness is not an intrinsic property of visual notations but something
that must be designed into them [3,5].

The proponents of BPMN 2.0 somehow acknowledged this when they state
that “[they have] brought forth expertise and experience with many existing
notations and [have] sought to consolidate the best ideas from these divergent
notations into a single standard notation” [1, p. 28]. However, a striking thing
when reading through the voluminous document (504 pages) is the lack of de-
sign rationale, that is, explicit reference to theories and empirical evidence for
designing effective visual notations.

To be perfectly fair to BPMN 2.0, we should recognise that it actually does
better than many other language definitions, in at least two respects. Firstly, its
notation has been defined after reviewing a large number of other notations, in-
cluding UML Activity Diagrams, UML EDOC Business Processes, IDEF, ebXML
BPSS, ADF, RosettaNet, LOVeM, and EPC [1, p. 28]. Secondly, it gives a thor-
ough description of its graphical notation, including an extensive list of the
available symbols, how they can be combined and how they can (and cannot)
be customised for domain- or application-specific usages.

Still, BPMN 2.0 does not justify its notation design choices by referring to ex-
plicit principles. This is actually not surprising since this is a common practice in
visual notation design [2]. In this respect, BPMN 2.0 does neither better nor worse
than the vast majority of notations: it relies on common sense, intuition and em-
ulation of common practice, rather than adopting a rigorous scientific approach.

The objective of this paper is to conduct an analysis of the current BPMN
2.0 visual notation that is based on theory and empirical evidence rather than
common sense and opinion. Of course, it is always easy to criticise, but our aim
in conducting this analysis is constructive: to provide an independent analysis of
the strengths and weaknesses of the BPMN visual notation that can be used to
improve its usability and effectiveness in practice, especially for communicating
with business users. We believe that a unified business process modelling notation
is an important innovation and our aim is to help remove potential barriers to
its adoption and usage in practice.

A broader goal of this paper is to increase awareness about the importance
of visual representation in business process modelling, and the need to refer
to theory and empirical evidence in defining notations (evidence-based design
practice). Accordingly, our approach enriches emerging research in the area (see
Section 2.3). Visual syntax has a profound effect on the effectiveness of modelling
notations, equal to (if not greater than) decisions about semantics [6]. But, in
contrast to process modelling semantics [7,8], the analysis and definition of pro-
cess modelling visual notations is a much less mature discipline. Our intention
is to remedy this situation.
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This paper is structured as follows: Section 2 presents the research background
we build upon, and in particular the Physics of Notations, i.e., the theory against
which we evaluate BPMN. Section 3 reports on the analysis itself. Section 4 puts
the results in a broader perspective and provides a summary of the paper.

2 Previous Research

2.1 Language Evaluation Frameworks

The Cognitive Dimensions of Notations (CDs) framework defines a set of 13
dimensions that provide a vocabulary for describing the structure of cognitive
artefacts [9]. This has become the predominant paradigm for analysing visual
languages in the IT field. CDs have a level of genericity/generality that makes
them applicable to various domains, but it also precludes specific predictions
for visual notations. In [9], Green et al. noted that the dimensions are vaguely
defined and that “the lack of well-defined procedure disturbs some would-be
users”. These limitations as well as other disadvantages discussed by Moody [10]
support our choice not to base our analysis on CDs.

Also popular is the semiotic quality (SEQUAL) framework [11]. It proposes
a list of general qualities for models and modelling languages, that it organ-
ises along the semiotic ladder (i.e., the scale ‘physical’, ‘empirical’, ‘syntactic’,
‘semantic’, ‘pragmatic’ and ‘social’). SEQUAL also distinguishes quality goals
from the means to achieve them, and sees modelling activities as socially situ-
ated (constructivistic worldview). Essentially, SEQUAL offers a comprehensive
ontology of model and modelling language quality concepts. It provides a precise
vocabulary and checklist when engaging in a comprehensive analysis. The part
of SEQUAL that is most closely related to notation quality is termed ‘compre-
hensibility appropriateness’ [12]. However, for our purpose, SEQUAL shares a
number of important limitations with CDs (although the two frameworks are
very different in intent and content). The two main limitations are the level of
generality and the lack of theoretical and empirical foundations related to visual
aspects of notations.

2.2 The Physics of Notations

The Physics of Notations theory [2] provides a framework that is specifically
developed for visual notations. It defines a set of 9 evidence-based principles to
evaluate and improve the visual notation of modelling languages. The princi-
ples are clearly defined and operationalised using evaluation procedures and/or
metrics. They are synthesised from theory and empirical evidence stemming
from various scientific disciplines such as cognitive and perceptual psychology,
cartography, graphic design, human computer interface, linguistics, and commu-
nication. This theory is falsifiable [13], i.e., the principles can be used to generate
predictions, which are empirically testable. So far, the Physics of Notations has
been used to evaluate the visual notations of Archimate [14], UML [15], i* [16]
and UCM [17].
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The 9 principles are:

1. Semiotic Clarity: there should be a one-to-one correspondence between se-
mantic constructs and graphical symbols.

2. Perceptual Discriminability: symbols should be clearly distinguishable.
3. Visual Expressiveness : use the full range and capacities of visual variables.
4. Semantic Transparency: use symbols whose appearance is evocative.
5. Complexity Management : include mechanisms for handling complexity.
6. Cognitive Integration: include explicit mechanisms to support integration of

information from different diagrams.
7. Dual Coding: enrich diagrams with textual descriptions.
8. Graphic Economy: keep the number of different graphical symbols cogni-

tively manageable.
9. Cognitive Fit : use different visual dialects when required.

Operationalisations of the principles often rely on values of visual variables, i.e.,
the elementary characteristics forming the visual alphabet of diagrammatic no-
tations. The seminal work of Bertin [18] identified 8 visual variables divided
into two categories: planar and retinal variables (see Figure 1). Essentially, sym-
bols are obtained by combining visual variable values. Henceforth, we take the
convention of underlining visual variable names.

Fig. 1. The 8 visual variables from Bertin [18]

2.3 Visual Aspects of Process Modelling Notations

Studies of the visual syntax of process modelling languages are emerging. Some
are concerned with making improvements at the diagram level [19,20], whereas
our work makes observations and suggestions at the language level based on the
Physics of Notations. Our work thus focuses on defining notations that are cogni-
tively effective by construction. This, of course, does not preclude diagram level
improvements (which we actually support) by using so-called secondary notation
(see Section 3.7). Empirical research has also started to study the impacts of lan-
guage and context characteristics, such as diagram layout and user expertise [21],
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routing symbol [22], dual use of icons and labels for process activities [23], ease
of use of the language and user experience [24] as well as modularity [25]. Such
empirical research is important as it can falsify or corroborate predictions from
theories such as the Physics of Notations. However, in the case of BPMN 2.0, we
think that application of the theory must come first (see Section 4). Neverthe-
less, we took those studies into account for our analysis of BPMN 2.0, as well
work by zur Muehlen and Recker [26] who studied which BPMN concepts are
the most frequently used by modellers.

3 Analysis of BPMN 2.0 Process Diagrams

BPMN 2.0 consists of four2 types of diagrams: Process, Choreography, Col-
laboration and Conversation diagrams. Process diagrams are by far the
most important. The scope of our analysis is limited to them. The 9 principles
of the Physics of Notations were thus used to conduct a systematic, symbol-
by-symbol analysis of process diagrams. The main findings are reported in the
following subsections, organised by principle. For each principle, we provide a
definition, summarise the results of the evaluation (how well BPMN satisfies the
principle), and give recommendations for improvement. However, we do not go
as far as defining a complete new notation which would be overly ambitious and
premature. The full analysis can be found in [27].

3.1 Cognitive Fit

As stated by Vessey in the theory of Cognitive Fit [28], there should be a 3-way fit
between the audience (sender and receiver), the task characteristics (how and for
what purpose(s) the notation is used) and the medium on which the information is
represented. BPMN’s aim is to“provide a notation that is readily understandable
by all business users, from the business analysts that create the initial drafts of
the processes, to the technical developers responsible for implementing the tech-
nology that will perform those processes, and finally, to the business people who
will manage and monitor those processes” [1, p. 28]. However, Cognitive Fit the-
ory suggests that trying to design a language that is“all things to all men”is likely
to be an impossible mission. Instead, different representations should be used for
different tasks, audiences and/or media. BPMN process diagrams can be used in
various contexts, e.g., to communicate with non-technical stakeholders, as visual
representations of information to be processed by software, etc. The relative im-
portance of the principles differs from one context to another. Different versions
(dialects) of a same notation can even be defined for specific contexts. In practice,
Cognitive Fit is usually analysed according the two following points of view.

Expert-Novice Differences. There are well-known differences in the way ex-
perts and novices create and use diagrams. According to [2], the most important
differences are:
2 The standard does not clearly state if Conversation is a type of diagram or a view

on Collaboration diagrams.
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– Novices have more difficulties discriminating between symbols [4,29].
– Novices have more difficulties remembering what symbols mean [30].
– Novices are more affected by complexity, as they lack mental “chunking”

strategies [31].

Concretely, when the purpose of a diagram is to reach a shared high-level under-
standing of a process among an audience of novices (non-technical stakeholders
as end users, business experts), then it is particularly important to have a lan-
guage with few symbols (Graphic Economy) that are mnemonic (Semantic Trans-
parency) and quickly distinguishable (Perceptual Discriminability). Moreover,
such diagrams should be kept simple through Complexity Management and Cog-
nitive Integration. On the contrary, if a language is to support detailed discussion
between experts, or if it is to be fed into a workflow engine, it is more important to
have a comprehensive set of symbols with clear semantics (Semiotic Clarity), to
be able to represent all required extra details through text (Dual Coding) and to
be able to structure large models through Complexity Management and Cognitive
Integration. Of course, many other usage contexts could be envisioned, especially
when diagrams are devoted to a particular and well-defined task.

In this paper, we chose to illustrate the principles with examples that target
an audience of novices. We did so because we think that the BPMN 2.0 notation
is more challenging for novices than for experts.

The Differences in Representational Media also support the utilisation
of several visual dialects. Rendering diagrams in a computer-based editing tool
or drawing them by hand on a whiteboard call for distinct skills. Sketching on
a whiteboard requires good drawing abilities, which cannot be assumed from
everybody. Indeed, IT practitioners cannot be assumed to be skilled in graphic
design. Therefore, sophisticated icons and complex geometrical shapes must be
avoided in this kind of notation. Computer-based tools typically do not require
such skills (symbols are ‘dragged-and-dropped’ from a menu onto the diagram)
and can easily produce sophisticated visual objects. However, the whiteboard
remains a better support for collaborative and interactive modelling [32].

The most common BPMN symbols (see Figure 2A) are basic geometrical
shapes. They are easy to draw by hand which is convenient for use on white-
boards, flip charts as well as for paper sketches.

3.2 Semiotic Clarity

According to Goodman’s theory of symbols [33], for a notation to satisfy the
requirements of a notational system, there should be a one-to-one correspon-
dence between symbols and their referent concepts. Hence, our first task was to
inventorise all semantic constructs and all visual symbols of process diagrams.
At first sight, the list of semantic constructs can be approximated by the list
of concrete metaclasses in the BPMN metamodel. However, this is not 100%
reliable due to variations in metamodelling styles. A common example is when
a construct subtype (e.g., ExclusiveGateway, a subtype of Gateway) can
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be encoded either as a subclass, or as a particular attribute value of the base
metaclass (i.e., Gateway). Unless explicitly stated in the standard, this leads
to subjective decisions (based on document context and common sense) as to
which metamodel elements ought to be considered semantic constructs. We had
to make 160 such decisions, adopting consistent policies for similar cases. We
eventually counted 242 semantic constructs in process diagrams. Symbols, on
the other hand, correspond to legend entries and are thus more straightforward
to identify. Process diagrams have 171 symbols, a small sample of which appears
in Figure 2. The exhaustive list of all semantic constructs and symbols we took
into account is available in [27]. An immediate observation is that these num-
bers are huge: one or two orders of magnitude beyond languages such as ER (5
symbols), DFD (4 symbols) or YAWL (14 symbols).

Once these numbers are established, Semiotic Clarity can be assessed. Good-
man’s theory of symbols pinpoints four types of anomalies (analogous to onto-
logical anomalies [7]) that can occur:

– Symbol deficit : a construct is not represented by any symbol.
– Symbol redundancy: a single construct is represented by multiple symbols.
– Symbol overload : a single symbol is used to represent multiple constructs.
– Symbol excess : a symbol does not represent any construct.

Semiotic Clarity maximises expressiveness (by eliminating symbol deficit), pre-
cision (by eliminating symbol overload) and parsimony (by eliminating symbol
redundancy and excess) of visual notations.

We obtained the following results: 23.6% symbol deficit, 5.4% symbol overload,
0.5% symbol excess and 0.5% symbol redundancy. The latter two are negligible.
Symbol deficit is the biggest anomaly. It has diverse causes, including domain-
specific metaclasses that do not yet have a notation (e.g., Auditing) or apparent
omissions. Symbol overload appears for some constructs, like Gateway, which
can be represented equally by a diamond or a crossed diamond, with no asso-
ciated semantic distinction. We see no particular difficulties in removing those
anomalies at the notational level, provided that semantic constructs are estab-
lished. Determining whether modifications to the semantics are required or not
is beyond the scope of the Physics of Notations.

3.3 Perceptual Discriminability

Perceptual Discriminability is defined as the ease and accuracy with which differ-
ent symbols can be differentiated from each other. Discriminability is determined
by the visual distance between symbols, which is measured by the number of vi-
sual variables on which they differ and the size of these differences (number
of perceptible steps between the values of a visual variable). Perceptual Dis-
criminability is a prerequisite for accurate interpretation of diagrams [34]. The
greater the visual distance between symbols, the faster and the more accurately
they will be recognised [30]. When differences are too subtle, symbol interpre-
tation is much inaccurate. This is especially crucial for novices who have higher
requirements for discriminability than experts [4].
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Discriminability is a two-step mental process: firstly, symbols are distinguished
from the background. This step is called figure-ground segregation. Then sym-
bols of different types are discriminated from each other. This second step, called
symbol differentiation, relies on pair-wise value variations of visual variables be-
tween symbols : Shape plays a privileged role in this process, as it represents
the primary basis on which we classify objects in the real world [35]. In BPMN
process diagrams, 4 shapes are used to derive the majority of symbols. Varia-
tions are introduced by changing border style and thickness, and by incorpo-
rating additional markers. A selection of these symbols appears in Figure 2A.
All shapes are 2-D and from one of two shape families: ellipses (incl. circle) and
quadrilaterals (incl. “roundtangle”, rectangle and diamond). Ideally, shapes used
to represent different semantic concepts should be taken from different shape
families to minimise the possibility of confusion [35].

Size is another factor that influences discriminability. Large symbols take more
space on the reader’s field of vision and focus attention. The size of process dia-
gram symbols is not specified in BPMN 2.0. In practice, the size depends on the
amount of text inside the symbol and is thus not related to its semantics. Since
Activity appears to be the main symbol type in process diagrams, we would
suggest making it explicitly bigger than the 3 other types. Further variations in
Size can be used as a secondary notation [21].

Grain (aka. Texture) determines the style and thickness of shape borders.
This visual variable can also facilitate symbol differentiation. All BPMN border
styles for Events and Activities are shown in Figure 2A. Grain is used to
discriminate between 5 types of Events and 4 types of Activities. All 5 visual
variable values are distinct, which is a good point, but they quickly become hard
to discern when zooming out on the diagram: double lines are merged into a
single thick line and dotted/dashed lines become solid lines. Even if this issue is
not specific to BPMN, it remains an obstacle to effective discriminability.

Colour is one of the most cognitively effective visual variables: the human
visual system is highly sensitive to variations in colours and can quickly and ac-
curately distinguish between them [30]. However, if not used carefully, Colour can
undermine communication. In BPMN 2.0, the use of colours is mainly up to tool
developers [1, p. 29] (with the exception of the cases discussed in Section 3.7).
Nevertheless, the Physics of Notations argues that the choice of colours should
be justified by the existence of some sort of association (e.g., logical, metaphor-
ical, rhetorical, cultural) between a symbol and the concept(s) it represents.
Additionally, Colour can be used to achieve redundant coding. Redundancy is a
well-known technique to thwart noise and preserve the signal from errors [36].
Applied to our context, it consists in making symbols distinguishable through
concomitant use of several visual variables. Redundant coding is achieved when
the value of each visual variable (taken individually) is unique among all symbols
of the notation.

Based on the above considerations, we illustrate how Perceptual Discrim-
inability can be enhanced in practice, using symbols from BPMN 2.0 (see
Figure 3). These new versions of the symbols are motivated by several
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Fig. 2. Basic shapes and connection objects of BPMN 2.0 process diagrams

principles of the Physics of Notations, so further justifications will be provided
in the appropriate sections. Here we focus on the rationale related to Perceptual
Discriminability:

– We increased discriminability by using 3 shape categories: ellipses, quadri-
laterals and cylinders. Further justification of the shapes appears under Se-
mantic Transparency (Section 3.4).

– Border Grain is kept as is. It is hard to find another style of border that
is easy to draw by hand. However, we propose to improve symbol discrim-
inability by using Colour (see Semantic Transparency).

So far, we have focused on BPMN flow objects, i.e., Event, Activity and
Gateway. Relationships between Flow Objects are called Connecting Ob-
jects in the BPMN jargon. In BPMN process diagrams, there are two types of
relationships: Sequence Flow and Data Association3. As shown in
Figure 2B, they are represented by monochrome arrows. Sequence Flows can
have additional markers at the source, if they are constrained by a condition or
if they are the default output of a Gateway. The two representations differ on
their Grain: Sequence Flows are solid lines whereas Data Associations are
3 The BPMN standard defines Message Flow as an element of Collaboration

diagrams. Hence they are not considered in this work.
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Fig. 3. More semantically transparent symbols proposed for BPMN

dotted. This way, they are distinguishable because they have unique values on
at least one visual variable. We should also note that the arrowheads of these
two types of flows are distinct (Shape), which reinforces their discriminability.
Colour and Grain could also be used to improve their differentiation by intro-
ducing redundant coding.

3.4 Semantic Transparency

Symbols should provide cues to their meaning. Semantically direct representa-
tions reduce cognitive load through built-in mnemonics: their meaning can be
either perceived directly or easily learned [37]. Such representations speed up
recognition and improve intelligibility, especially for novices [4,38]. A symbol’s
semantic transparency is not a binary state: the transparency level is in a range
that goes from semantically immediate – the referent concept is understood im-
mediately – to semantically“perverse”– the symbol suggests a different meaning.

In BPMN 2.0 process diagrams, symbols are conventional shapes on which
iconic markers are added (Figure 2A). Symbol shapes seem not to convey any
particular semantics: there is no explicit rationale to represent an Event as
a circle, an Activity as a roundtangle and a Gateway as a diamond. The
situation is even worse for DataObject: its symbol suggests a “sticky note” (a
rectangle with a folded corner). This icon is typically used for comments and
textual annotations (e.g., in UML), not for first-class constructs. DataObject
is thus a case of semantic perversity. The differentiation of Event and Activity
subtypes is also purely conventional: it depends on styles of border that are not
perceptually immediate.

This lack of semantic immediacy is particularly puzzling, as one of the leit-
motivs of BPMN is its simplicity of use for novices. Figure 3 proposes more
semantically immediate shapes. These shapes are not meant to be the best
alternative to the current BPMN 2.0 notation. They are only demonstrations
of potential improvements. The suggested Event symbols are inspired from
YAWL [8], where they represent types of Conditions using icons inspired from a
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video player metaphor. Our proposal reuses the BPMN Event circle filled with
traffic light colours and adorned with player icons. The Gateway symbol keeps
its diamond shape which suggests the idea of an interchange road sign (yellow
diamond). A cylinder has been chosen to represent DataObject. It stands out
from other symbols by being 3-D, thereby also improving discriminability. The
cylinder reuses the symbol usually depicting databases or data storage devices,
which are in the end closely related.

Regarding Colour, we already justified the choices made for Events. The
choice of Colour values should always be based on the nature of the elements
represented by the symbols. In practice, this often results from a trade-off that
takes into account Symbol and Background Discriminability as well as Semantic
Transparency.

Fig. 4. Semantically transparent BPMN icons

The second element that makes BPMN symbols vary is the use of markers.
These markers are icons (also called mimetic symbols or pictographs) because
they perceptually resemble the concepts they represent [39]. Empirical studies
show that replacing abstract shapes with icons improves understanding of models
by novices [38]. They also improve likeability and accessibility: a visual repre-
sentation appears more daunting to novices if it is comprised only of abstract
symbols [37,40].

BPMN 2.0 includes a large repertoire of icons (more than 25). While the theory
recommends replacing conventional shapes by icons, BPMN makes a different
use of them. They are added inside symbols instead of being the symbols. Part of
the icon repertoire allows distinguishing between subtypes of the 4 basic semantic
constructs, while the other part represents attribute values of these constructs.
The Semantic Transparency of these icons varies: Figure 4 shows semantically
immediate icons that respectively mean: (a) message, (b) manual, (c) timer, (d)
loop and (e) exclusive. If symbols do not appear evocative to novices, once they
have been learned, these icons are easily remembered.

On the contrary, Figure 5A illustrates semantically opaque, and in some cases
“perverse”, icons from BPMN 2.0. The pentagon does not suggest any obvious
meaning. In relation to Event triggers, it actually means multiple. The second
icon represents a kind of lightning and could refer to something happening sud-
denly like an event. In fact, it signifies error. The third icon is particularly opaque
and even misleading, i.e., it does not mean list but condition. The 2 gears, that
usually suggest the idea of process or task, are also a case of perversity: this icon
refers to the concept of service (e.g., web service). The last icon resembles a data
sheet, but stands for business rule.

In Figure 5B, we suggest new icons that, following the Physics of Notations,
are more semantically immediate. As discussed previously, the level of semantic
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transparency depends on several factors and what seems immediate to someone
can remain opaque to somebody else. This suggestion is therefore by no means
definitive. The Service icon is a waiter carrying a tray and the Business Rule
icon is now composed of a judge’s hammer (meaning “rule”) filled with a dollar
symbol (meaning“business”). Consequently, and even if they may appear seman-
tically perverse at first sight to some people, these icons would probably become
immediate for novices as soon as their rationale is explained.

Fig. 5. (A) Semantically opaque icons and (B) More semantically transparent icons

Binary directed relationships are classically represented by arrows that are
essentially unidimensional (1-D) visual objects. Therefore, only a small portion
of the design space is available to achieve Semantic Transparency. Arrowheads
are a slight incursion in the 2-D world to show direction. Additionally, the source
anchor of Sequence Flows can be adorned with a Gateway or Default
marker (Figure 2B, left). The Gateway marker is rather well chosen whereas
the Default marker is purely conventional. The latter could be removed and
the default flow could be indicated by a larger Grain. This technique is used for
priority road signs, for example. The representation of Data Association (see
Figure 2B, right) is not semantically immediate but this quality seems hard to
achieve for this symbol.

3.5 Complexity Management

One of the major flaws of visual notations is their diagrammatic complexity, which
is mainly due to their poor scaling capability [41]. This complexity is measured by
the number of elements displayed on a diagram. The degree of complexity manage-
ment varies according to the ability of a notation to represent information without
overloading the human mind. The two main solutions to decrease diagrammatic
complexity are modularisation and hierarchic structuring.

Modularisation consists in dividing complex diagrams into manageable chunks.
The decomposition can be horizontal or vertical. While horizontal decomposition
takes place at the same level of abstraction, vertical decomposition produces finer
grained sub-diagrams.

BPMN 2.0 provides several mechanisms to manage diagrammatic complexity.
First, it supports modelling along 4 different viewpoints that correspond to the
4 types of diagrams: Process, Choreography, Collaboration and Con-
versation. In a diagram, only the information relevant to the chosen viewpoint
has to be represented. BPMN process diagrams achieve modularity thanks to 2
constructs (see Figure 6): (a) Link Events are used as intra or inter diagram
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connectors. They support horizontal decomposition. A Link Event comes as a
pair of symbols: a black arrow indicates the source while a white arrow represents
the target. Naming the pairs facilitates their association when there are several
instances on the same diagram. (b) SubProcesses are self-contained parts of
a process. They allow to vertically decompose a diagram in two levelled views:
a high-level view – collapsed subprocess – and a fine-grained view – expanded
subprocess.

Fig. 6. Modularisation with Link Events (example from the BPMN 2.0 spec)

Hierarchic Structuring is one of the most effective ways of organising com-
plexity for human comprehension. It allows systems to be represented at different
levels of detail, with manageable complexity at each level [42]. SubProcesses
provide a means for hierarchic structuring. Yet, to be effective, different levels of
information should be displayed in independent diagrams instead of expanding
into their parent diagram (see hierarchical vs. inline expansion in [43]).

3.6 Cognitive Integration

Large system representations cannot fit into a single diagram. The information
is spread across several diagrams and the reader needs to mentally integrate
all these pieces of knowledge. Cognitive Integration helps making this integra-
tion easier. It takes place at two levels: perceptual integration and conceptual
integration. Perceptual integration refers to cues that simplify navigation and
transitions between diagrams. Conceptual integration addresses the assembly of
information from separate diagrams into a coherent mental representation.

While Complexity Management leads to the multiplication of diagrams, no
technique is available in BPMN to reinforce perceptual or conceptual integration.
Mechanisms such as diagram level numbering, signposting and navigation maps
[44] could improve perceptual integration. Contextualisation information [45,46]
and summary diagrams [47] enhance conceptual integration. Concretely, the no-
tation should ensure that modellers could name their diagrams and number them
according to their level in the hierarchic structure. A navigation map could
be created based on Link Events and SubProcesses. Contextualisation is
partially achieved as expanded SubProcesses are integrated into their parent
Activity.
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3.7 Visual Expressiveness

Visual Expressiveness measures the extent to which the graphic design space
is used, i.e., the number of visual variables used by a notation and the range
of values for each variable. While Perceptual Discriminability focuses on pair-
wise visual variation between symbols, Visual Expressiveness measures visual
variations across the entire visual vocabulary. Variables that encode information
are called information-carrying variables and compose the primary notation. The
other variables, called the free variables, form the secondary notation [21]. They
allow modellers to reinforce or clarify the meaning of diagram elements.

Primary Notation. The BPMN process diagram notation uses half of the
visual variables: Location (x,y), Shape, Grain and Colour carry semantic infor-
mation, while Size, Orientation and Brightness are relegated to the secondary
notation. Visual variables also have to be chosen according to the type of infor-
mation to encode. Figure 7 summarises the power (highest level of measurement
that can be encoded), the capacity (number of perceptible steps), the BPMN val-
ues and the saturation (range of values / capacity) of each information-carrying
variable.

Fig. 7. Design space covered by the BPMN process diagram notation

We observe that visual variables in BPMN were chosen appropriately accord-
ing to the nature of information, which here is purely nominal (i.e., there is no
ordering between values). Location can actually be used to encode intervals but
it is used in BPMN only for enclosure (a symbol is contained in another symbol),
which is only a small portion of its capacity. Visual variable capacities are rather
well exploited and Grain is even completely saturated. However, as we discussed
in Section 3.3, this causes discriminability problems. The perceptible steps be-
tween Shape values are a major problem of the current notation. Current shapes
belong to only two categories (circles and quadrilaterals), whereas there is no
semantic relationship between the referent concepts within a shape category. We
have already illustrated possible solutions to this problem (see Figure 3).

Colour is one of the most cognitively effective of all visual variables. BPMN 2.0
specification states that “Graphical elements may be colored, and the coloring
may have specified semantics that extend the information conveyed by the ele-
ment as specified in this standard”[1, p. 30]. In fact, BPMN uses only two colours
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– black and white – that allow distinguishing between “throwing” (filled) and
“catching” (hollow) markers. Hence, the Colour capacity is underused. Improve-
ment proposals have been made for this, e.g., the Event symbols in Figure 3.

Secondary Notation consists of the visual variables that do not carry seman-
tic information, called free variables. At first sight, secondary notation could be
thought of as a low priority matter. However, it proves to be of utmost impor-
tance when notation engineers face one of the two following situations. The first
is when there is a need for introducing a new type of information in the language
(e.g., if Semiotic Clarity requires a new symbol to be added in the notation). The
language engineer should then first consider free variables before overloading a
visual variable that already belongs to the primary notation. This is also the
case if the language engineer wants to achieve redundant coding as described
in Section 3.3. The second situation occurs when modellers need to place visual
cues or hints on the diagram to improve its understandability. Most such cues
are cognitive helpers that should be implemented with the secondary notation.
The main reason is that they do not carry language information, so they should
not compete with existing information-carrying variables.

In practice, cognitive helpers are often defined when designing CASE tools.
But CASE tool developers usually implement these helpers differently for each
tool, resulting in non standard solutions even for the same modelling language.
To be effective, CASE tools should propose helpers defined by the notation and
based on theory and evidence.

3.8 Dual Coding

So far, text has not been considered as an option for encoding information (see
Perceptual Discriminability and Visual Expressiveness). However, this does not
mean that text has no place in visual notations. According to Dual Coding the-
ory [48], using text and graphics together to convey information is more effective
than using either on their own. BPMN makes limited use of Dual Coding. It does
so for Conditional and Complex Gateways only. Labels accompany the Al-
ternative or Conditional Flows as appearing in Figure 8. Although we did
not observe any major issue with current uses of Dual Coding in BPMN, we sug-
gest to further explore the usage of text in order to improve Graphic Economy,
which is BPMN’s major problem as discussed in the next section. This contrasts
with a recent proposal [49] where Dual Coding is achieved at the expense of
Graphic Economy by adding 25 new iconic markers.

3.9 Graphic Economy

Graphic complexity refers to the size of the visual vocabulary, i.e., the number
of symbols in a notation [50]. It is measured by the number of legend entries
required. This differs from diagrammatic complexity as graphic complexity fo-
cuses on the language (type level) rather than the diagram (token level). Graphic
Economy seeks to reduce graphic complexity. It is a key factor for cognitive ef-
fectiveness since humans’ span of absolute judgement when discriminating visual
alternatives is around 6 [51]. It can be higher for experts though.
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Fig. 8. Dual Coding in BPMN process diagrams

BPMN 2.0 process models have a graphic complexity of 171. This is at least
an order of magnitude beyond novice capabilities (28 times the aforementioned
limit). zur Muehlen and Recker observe that, in practice, the graphic complexity
of BPMN is significantly lower than its nominal complexity [26]. Their study
shows that most process diagrams designed for novices use only basic symbols:
Event, Activity, Gateway, Sequence Flow, DataObject and Associa-
tion, plus a few refinements. The practical complexity is thus around 10. This
is certainly much more manageable than the full language, but it is still high
compared to popular languages [52] such as ER diagrams (complexity of 5) and
DFDs (complexity of 4). YAWL, which is more closely related to BPMN, has a
complexity of 14. Moreover, the question remains open for BPMN experts: do
we really need 171 symbols, even when the goal is to produce detailed models
for other experts or for execution in workflow engines? A study similar to that of
zur Muehlen and Recker is necessary for such usage contexts too. It could make
the case for introducing symbol deficit [2], i.e., choosing not to provide symbols
for some seldom used constructs. Those can still be represented separately using
text as suggested in Dual Coding, similar to integrity constraints in ER. It might
also be useful to check BPMN for semantic redundancies that could be factored
out. Such semantic analyses are beyond the scope of this paper, but at the no-
tation level it is still possible to improve Perceptual Discriminability, Semantic
Transparency and Visual Expressiveness as discussed in the previous sections.

4 Discussion and Conclusions

Defining a cognitively effective notation is a time-consuming activity governed by
conflicting goals. As shown in the analysis presented in this paper, BPMN tries
to strike a balance between such goals. But we have argued that it does so in a
suboptimal way due to its lack of consideration for existing concepts and scientific
principles of notation design. This first complete analysis4 of BPMN 2.0 against
the Physics of Notations theory reveals various problems in the BPMN notation,
suggests some improvements, but most importantly recommends a change of
methodology.

Given the effort that this would require, we did not go as far as defining a
new notation. Our various suggestions are thus not meant to be definitive or
consistent with each other. Yet, we deem that they have a value in illustrating
4 The full analysis is available as a technical report [27].
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“outside-of-the-box” thinking about process modelling notations. We hope they
will be regarded as sources of inspiration and debate by the BPM(N) community.

Our analysis (in particular that of Cognitive Fit) also suggests that aiming at
a notation that is perfect for all audiences and tasks is utopian. There is no silver
bullet. An important question for the future is thus whether there should be one
or multiple dialects of BPMN. Silver [43] seems to support this idea with his
3-level methodology for BPM process modelling, using 3 dialects of the BPMN
notation. Empirical studies [26] also suggest to restrict the BPMN symbol set
when used by novices. But, the quantity of symbols (Graphic Complexity) is
only one of the dimensions to act upon. For example, in a recent similar analysis
of the i* goal modelling notation [16], Moody et al. suggested two dialects, one
(for hand sketching) being a qualitatively simplified version of the other (for
computer-based editing).

An obvious limitation of our research (and the Physics of Notations) is that
it focuses only on syntactic issues, whereas solving some of the identified prob-
lems (especially the huge number of constructs and symbols) partly requires
re-examining the semantics. Another limitation of our work is the lack of em-
pirical validation of our suggestions with real BPMN users. This is mitigated
by the fact that they are based on theory and empirical evidence synthesised
in the Physics of Notations. Moreover, we argue that it would be premature to
empirically test these ideas at this stage as they are only our suggestions and
are not yet fully developed. More work is needed to explore alternative solutions,
preferably with participation from BPMN users and researchers. Finally, we ac-
knowledge that there is much legacy related to BPMN as version 1.2 is already
used in practice, with support from dozens of commercial tools, some of which
cover additional elements from BPMN 2.0. Our contributions may have a limited
impact on several legacy symbols but they certainly apply to the numerous new
concepts and symbols found in version 2.0, to future versions of BPMN, and to
other related languages.
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Abstract. TEX (and its LATEX incarnation) is a widely used document
preparation system for technical and scientific documents. At the same
time, TEX is also an unusual programming language with a quite powerful
macro system. Despite the wide range of TEX users (especially in the
scientific community), and despite a widely perceived considerable level
of “pain” in using TEX, there is almost no research on TEX. This paper
is an attempt to change that.

To this end, we present Featherweight TEX, a formal model of TEX
which we hope can play a similar role for TEX as Featherweight Java did
for Java. The main technical problem which we study in terms of Feath-
erweight TEX is the parsing problem. As for other dynamic languages
performing syntactic analysis at runtime, the concept of “static” parsing
and its correctness is unclear in TEX and shall be clarified in this paper.
Moreover, it is the case that parsing TEX is impossible in general, but
we present evidence that parsers for practical subsets exists.

We furthermore outline three immediate applications of our formaliza-
tion of TEX and its parsing: a macro debugger, an analysis that detects
syntactic inconsistencies, and a test framework for TEX parsers.

1 Introduction

Almost every user of TEX [7,8] or LATEX [10] is familiar with the technique of
binary error search: Since TEX error messages often give no hints about the
cause of an error (”File ended while scanning use of . . . ”, ”Something’s wrong
- perhaps a missing . . . ”), TEX users comment out one half of the code were
the cause is suspected and continue by binary search. The situation gets even
worse when macros are involved, since all errors in macro definitions – including
simple syntactic errors – only show up when the macro is invoked. Even when
the error message contains some context information it will be in terms of ex-
panded macros with no obvious relation to the cause of the error in the original
document. There is no formal grammar or parser for TEX, and consequently no
syntactic analysis which could reveal such errors in a modular way – let alone
more sophisticated analyses such as type checkers.

Errors also often arise since it is not clear to the user how the evaluation
model of TEX works: When and in which context is a piece of code evaluated?
There is no formal specification, but only rather lengthy informal descriptions
in TEX books [4,7]. The TEX reference implementation [8] is much too long and
complicated to serve as a substitute for a crisp specification.

B. Malloy, S. Staab, and M. van den Brand (Eds.): SLE 2010, LNCS 6563, pp. 397–416, 2011.
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We believe it is a shame that the programming community designs beautiful
programming languages, analyses, and tools in thousands of papers every year,
yet the language which is primarily used to produce these documents is neither
very well understood, nor amenable to modern analyses and tools.

We have developed a formal model (syntax and operational semantics) of TEX,
which we call Featherweight TEX, or FTEX for short. FTEX omits all type-setting
related properties of TEX (which are constituted mostly by a set of a few hundred
primitive commands) and concentrates on the TEX macro system. We hope that
it can have the same fertilizing effect on TEX research that Featherweight Java
[6] had for Java.

We use FTEX to study the parsing problem. A parser for TEX would have im-
mediate applications such as “static” syntactic error checking, code highlighting
or code folding and many other conveniences of modern programming editors,
and it would enable the application of other more sophisticated analyses which
typically require an abstract syntax tree as input. It would also open the door to
migrating thousands of existing TEX libraries to other text preparation systems
or future improved versions of TEX.

To appreciate the parsing problem it is important to understand that in many
dynamic languages – general-purpose languages as well as domain-specific lan-
guages – parsing and evaluation are deeply intertwined. In this context, it is not
clear how a static parser could operate or what a correct parser even is. Due
to the many advantages of static syntactic analyses, the parsing problem is not
only relevant to TEX but to dynamic language engineering in general.

In particular, programs of dynamic languages do not necessarily have a syntax
tree at all. For example, consider the following TEX program:

\def · \app · #1 · #2 · {#1 · #2}
\def · \id · #1 · {#1}
\app · a · b
\app · \id · c

It defines a macro \app which consumes two arguments, the “identity macro” \id ,
and two applications of \app. This program will evaluate to the text a · b · c. Now
consider the question whether the body of \app, #1 ·#2, is a macro application
or a text sequence. The example shows that it can be both, depending on the
arguments. If the first argument to \app is a macro consuming at least one
argument, then it will be a macro application, otherwise a sequence. Since TEX
is a Turing-complete language, the property whether a program has a parse tree
is even undecidable.

Our work is based on the hypothesis that most TEX documents do have a
parse tree – for example, TEX users will typically not define macros where an
argument is sometimes a macro, and sometimes a character. Hence our ultimate
goal is to solve the parsing problem for a class of documents that is large enough
for most practical usages of TEX. To this end, we identify a set of TEX features
that are particularly problematic from the perspective of parsing, and present
evidence that many TEX documents do not use these features. As additional
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evidence we define a parser for a subset of TEX in which the absence of the
problematic features is syntactically guaranteed.

We will not present a working parser for unrestricted TEX documents, though.
A careful design of a parser will require a more in-depth analysis of typical TEX
libraries and documents, to come up with reasonable heuristics. But even more
importantly, we believe that the first step in developing a syntactic analysis must
be to understand exactly what it means for such an analysis to be correct. For
TEX, this is not clear at all. Most languages are designed on top of a context-
free grammar, hence the question of correctness does not arise, but since the
semantics of TEX is defined on a flat, unstructured syntax it is not clear what it
means for a parse tree to be correct. We will formulate correctness of a parse tree
as as a correct prediction of the application of reduction rules during program
evaluation.

The contributions of this work are as follows:

– We present FTEX, the first formal model of TEX. It is, compared to ex-
isting descriptions, rather simple and concise. It can help TEX users and
researchers to better understand TEX evaluation, and it can be the basis for
more research on TEX.

– We describe in detail the problem of parsing TEX and formalize a cor-
rectness criterion for syntactic analyses. This correctness criterion can not
only be used for formal purposes, but also as a technique to test parser
implementations.

– We identify those features of TEX that are particularly worrisome from the
perspective of parsing. We have also evaluated how the TEX macro system
is used in typical LATEX documents by instrumenting a LATEX compiler to
trace macro usages. This analysis shows that worst-case scenarios for parsing
(such as dynamically changing the arity of a macro) rarely occur in practice.

– We present a working parser for a subset of TEX and verify its correctness.
– We show how our formalism can be adapted to form tools relevant in practice.

Amongst others, we outline how a macro debugger can be constructed using
our TEX semantics.

– Since LATEX is just a library on top of TEX, all our results apply to LATEX as
well.

We also believe that our formal model and parsing approaches can be applied
and adopted to other languages that have similar parsing problems, such as C
with the C preprocessor, or Perl. CPP is agnostic to the grammar of C, hence the
C grammar cannot be used to parse such files. Obviously, it would be desirable
to have a parser that identifies macro calls and their corresponding arguments.
In Perl, like in TEX, parsing and evaluation are intertwined. For example, the
syntactic structure of a Perl function call (foo $arg1, $arg2) may be parsed
as either (foo($arg1), $arg2) or foo($arg1, $arg2), depending on whether
foo currently accepts one or two arguments. In this paper, we will concentrate
on TEX, though, and leave the application of our techniques to these languages
for future work.
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With regard to related work, to the best of our knowledge this is the first work
investigating the macro system and parsing problem of TEX (or any aspect of
TEX for that matter). There are some tools that try to parse LATEX code, such as
pandoc1 or syntax highlighters in LATEX IDEs such as TEXnicCenter2, but these
tools only work on a fixed quite small subset of LATEX and cannot deal with user-
defined macro definitions appropriately. This is also, to our knowledge, the first
work to define a correctness criterion for syntactic analyses of languages that
mix parsing and evaluation. The main existing related work is in the domain of
parsers for subsets of C with CPP [2,5,11,12,13,14], but none of these works is
concerned with formally (or informally) defining correctness.

The rest of this paper is structured as follows. The next section describes
why parsing TEX is hard. Section 3 presents our TEX formalization, FTEX. Sec-
tion 4 defines parser correctness by means of a conformance relation between
syntax trees and parsing constraints generated during program evaluation. In
Section 5 we explain the difficulties of parsing TEX in terms of our formalization
and demonstrate that provably correct parsers exist for reasonably large subsets
of TEX. Our empirical study of TEX and LATEX macro usage is presented in Sec-
tion 6. Section 7 discusses the applicability of our techniques to everyday TEX
programming. Section 8 concludes.

2 Problem Statement

TEX has a number of properties that make parsing particularly challenging. First,
TEX macros are dynamically scoped: A macro call is resolved to the last macro
definition of that name which was encountered, which is not necessarily the one
in the lexical scope of the macro call. This means that the target of a macro call
cannot be statically determined, which is a problem for parsing since the actual
macro definition determines how the call is parsed. For example, whether a is
an argument to \foo in the macro call \foo · a depends on the current definition
of \foo.

Second, macros in TEX can be passed as arguments to other macros. This
induces the same problem as dynamic scoping: Targets of macro calls can in
general not be determined statically.

Third, TEX has a lexical [3] macro system. This means that macro bodies
or arguments to macros are not necessarily syntactically correct3 pieces of TEX
code. For example, a macro body may expand to an incomplete call of another
macro, and the code following the original macro invocation may then complete
this macro call. Similarly, macros may expand to new (potentially partial) macro
definitions.

Fourth, TEX allows a custom macro call syntax through delimited parame-
ters. Macro invocations are then “pattern-matched” against these delimiters. For
example, the TEX program
1 http://johnmacfarlane.net/pandoc/
2 http://www.texniccenter.org
3 We do not know yet what syntactic correctness for TEX means anyway.

http://johnmacfarlane.net/pandoc/
http://www.texniccenter.org
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\def · \foo · #1 · d · #2 · {#1 · x · y · #2}
\foo · a · b · c · d · e

will evaluate to a · b · c · x · y · e. Such delimiters can be used by TEX libraries
to effectively define new domain-specific syntax. For example, using the qtree4

library for drawing trees, the command

\Tree [. Delimiter syntax [.is [.a ] pain ] ]

results in the following tree:
Delimiter

syntax is

a pain
There are two other parsing-related properties of TEX which, however, we will
not be concerned with in this paper, namely category codes and TEX primitives.
During the evaluation of a TEX program, a mapping of characters to category
codes is maintained. For example, the category code 0 describes escape charac-
ters, which is usually only the backslash \. In principle, it is possible to change
the category code mapping while evaluating a TEX program, but to our knowl-
edge this happens very rarely outside the “bootstrapping” libraries, so we do
not expect this to be a big problem in practice. It is in any case a problem that
can be dealt with separately from the problem we are dealing with here.

TEX primitives are also relevant for parsing, because they can change the
argument evaluation in a way that cannot be expressed using macros. Most no-
tably, the \expandafter and \futurelet commands affect the evaluation order of
programs. The former temporarily skips ahead of the expression following it,
while the latter constitutes a lookahead mechanism. Furthermore, with TEX’s
various kinds of variables come a multitude of special-syntax assignment primi-
tives, and alignments need their own special treatment anyway [4,7]. Still, there
seems to be no conceptual hurdle for our main goal, that is the development of
a correct syntactic analysis for a feature-rich subset of TEX, and we believe that
the formal model presented next captures the most interesting and challenging
aspects of TEX for parsing.

3 Featherweight TEX

We have formalized the core of the TEX macro system – in particular the as-
pects described in the previous section – in the form of a small-step operational
semantics. We call this language FTEX and present its syntax in Fig. 1.

In FTEX, a program s consists of five primitive forms, namely characters c,
macro identifiers m, macro parameters x, groups {s}, and the macro definition
command \def . We call these forms expressions. In addition, let ♦ represent the
empty expression, which is not allowed to occur in user programs. Expressions are
composed by sequentialization only, i.e. there is no syntactic distinction between
4 http://www.ling.upenn.edu/advice/latex/qtree/

http://www.ling.upenn.edu/advice/latex/qtree/
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c ∈ character characters
m ∈ M macro variables
x ::= #1 | . . . | #9 | #x macro parameters
e ::= c | m | x | {s} | \def | ♦ expressions
s ::= e FTEX programs

σ ::= {x �→ s} substitutions
r ::= c | x | m | ♦ parameter tokens

dM ::= \def · M · r · {s} macro values
v ::= ε | c · v | dM · v | ♦ · v values

RM ::= [ ] | c · RM | dM · RM reduction contexts
| ♦ · RM | {RM} | RM · e

Fig. 1. FTEX syntax

macro calls and the concatenation of text, see definition of s. Since this syntax
does not identify the structure of macro applications, we call s the flat syntax.
We do not restrict the use of the macro definition command to syntactically
valid macro definitions (such as md ::= \def · m · x · {s}) since in TEX macro
definitions may be computed dynamically by the expansion of other macros. For
example, one could define a macro \def ′ which behaves exactly like \def but, say,
adds an additional dummy argument to the macro.

The operational semantics of FTEX, Fig. 2 is defined in a variant of the eval-
uation context style from Wright and Felleisen [16]. This means that, instead of
introducing environments and similar entities, every relevant runtime entity is
encoded within the language’s syntax. The necessary additional (runtime) syn-
tax and evaluation contexts are defined below the FTEX syntax in Fig. 1. It is
important to note that the forms d and R are parametrized over the set of macro
variables M ⊆ M that may occur in definitions.

dropDefs : v → v
dropDefs(ε) = ε
dropDefs(c · v) = c · dropDefs(v)
dropDefs(d · v) = ♦ · dropDefs(v)
dropDefs(♦ · v) = ♦ · dropDefs(v)

σ̂ : s → s
σ̂(x) = σ(x)
σ̂({s}) = {σ̂(s)}
σ̂(e) = e
σ̂(ε) = ε
σ̂(e · e) = σ̂(e) · σ̂(e)

s → s′

RM[s] → RM[s′]
(R-RStep) {v} → dropDefs(v)

(R-GVal)

match(r, s′) = σ

\def · m · r · {s} · RM\{m}[m · s′]
→ \def · m · r · {s} · RM\{m}[σ̂(s)]

(R-Macro)

Fig. 2. FTEX reduction semantics
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The reduction system has only three rules: A congruence rule (R-RStep) which
allows the reduction inside a context, a reduction rule (R-GVal) to eliminate
groups that are already fully evaluated, and a rule (R-Macro) for evaluating macro
applications.

(R-RStep) is standard for every evaluation-context based semantics. For (R-GVal),
it is important to understand that macro definitions inside a group are not
visible outside the group, hence there is actually a mix of static and dynamic
scoping. Within a fixed nesting level, scoping is dynamic, i.e., the rightmost
definition of the macro wins, as long as it is on the same or a lower nesting level,
but definitions in deeper nesting levels are ignored. For this reason it is safe to
discard all macro definitions in fully evaluated groups and just retain the text
contained in it - which is exactly what dropDefs does.

Not surprisingly, the (R-Macro) rule for evaluating macro calls is the most
sophisticated one. The evaluation context RM\{m} is used to make sure that the
macro definition of m is indeed the right-most one on the same or lower nesting
level by prohibiting further definitions of m. (R-Macro) uses the parameter text r
and the macro arguments s′ to compute a substitution σ, which is then applied
to the macro body s.5 Substitution application σ̂ is not hygienic [9], capture-
avoiding or the like; rather, it just replaces every occurrence of a variable by its
substitute.

The match function is used for matching actual macro arguments with the
parameter text, i.e., the part between the macro name and the macro body,
which may potentially contain delimiters of the form c or m in addition to the
macro parameters; see the syntax of r. match expects the parameter text as
its first argument and the argument text as its second one. It then generates a
substitution σ, mapping macro parameters x to FTEX terms s.

Due to space limitations we cannot display the full definition of match here,
but instead present a few examples in Fig. 3. The first two calls of match accord
to usual parameter instantiation, where in the first one the argument’s group
is unpacked. Delimiter matching is illustrated by the subsequent three calls. In
particular, the fifth example shows that delimited variables may instantiate to
the empty expression. The last example fails because only delimited parameters
can consume sequences of arguments; the second character is not matched by
the parameter.

match(x, {c1 · c2} ) = {x �→ c1 · c2}
match(x1 · x2, c1 · c2 ) = {x1 �→ c1, x2 �→ c2}
match(c1 · c2, c1 · c2 ) = {}
match(x · c4, c1 · c2 · c3 · c4 ) = {x �→ c1 · c2 · c3}
match(x · c, c ) = {x �→ ♦}
match(x, c1 · c2 ) = undefined

Fig. 3. Examples of Matching

5 Here and in the remainder of this paper, we use a = a1 · · · an to denote a sequence
of a’s and ε to denote the empty sequence.
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In summary, macros are expanded by first determining their active definition
using parametrized reduction contexts, then matching the parameter text against
the supplied argument text, and finally applying the resulting substitution to the
macro body, which replaces the macro call.

4 Correctness of Syntactic Analyses

Given an unstructured representation of a program, syntactic analyses try to
infer its structured representation, that is a syntax tree. A syntax tree is a pro-
gram representation in which program fragments are composed according to the
syntactic forms they inhabit. In FTEX, there are three compositional syntac-
tic forms, namely macro application, macro definition and sequentialization, see
Fig. 4. Macro applications t @ t consist of a macro representation and the pos-
sibly empty list of arguments. The definition of a macro is represented by the
sequence of program fragments forming the definition 〈t〉. The sequentialization
of two trees t ; t is used to denote sequential execution and result concatenation.

f ::= c | m | x | {t} | \def tree expressions
t ::= ∅ | f | t ; t | t @ t | 〈 t 〉 syntax trees
t⊥ ::= ⊥ | t parse result

Fig. 4. Tree syntax

An FTEX parser thus is a total function p : s → t⊥ assigning either a syntax
tree or ⊥ to each program in s (see Fig. 1 for the definition of s). However, not
each such function is a valid parser; the resulting syntax trees must represent the
original code and its structure correctly. But what characterizes a correct struc-
tural representation? Looking at syntax trees from another angle helps answer
this question.

Syntax trees can also be understood to predict a program’s run in that the
evaluation needs to follow the structure specified by the tree. More precisely,
if we assume the language’s semantics to be syntax-directed, the syntax tree’s
inner nodes restrict the set of applicable rules to those matching the respective
syntactic form. By inversion, the reduction rules used to evaluate a program
constrain the set of valid syntax trees. For instance, in a program which is
reduced by macro expansion, the macro and its arguments must be related by
a macro application node in the syntax tree. A value, on the other hand, must
correspond to a sequence of macro definitions and characters.

Accordingly, a correct FTEX parser is a total function p : s → t⊥ such that
(i) each syntax tree represents the original code and (ii) each tree is compatible
with the reduction rules chosen in the program’s run.

In the present section, we formalize these requirements, i.e. we give a formal
specification of correct syntax trees and parsers. Often, however, one wants a
syntax tree to be compatible not only with the specific program run generated
by evaluating the represented program; rather, syntax trees should be modular,
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i.e. reusable in all contexts the represented programs may be used in. We refer
the specification of modular syntax trees and analyses to future work, though.

4.1 Structure Constraints

Essentially, FTEX programs are syntactically underspecified. The operator · is
used to compose expressions, but its syntactic meaning is ambiguous; it may
correspond to any of the following structural forms of the stronger tree syntax:

– Expression sequences: for example, c1 · c1 corresponds to the character se-
quence c1 ; c2.

– Macro application: for example,\foo·ccorresponds to the application \foo @ c
if \foo represents a unary macro.

– Macro argument sequence: for example, in \bar · c1 · c2 the second use of ·
forms a sequence of arguments to \bar if the macro takes two arguments.
The call then corresponds to the syntax tree \bar @ c1 · c2.

– Macro definition constituent sequence: for example, all occurrences of · in
\def · \id · #1 · {#1} contribute to composing the constituents of the macro
definition 〈\def · \id · #1 · {#1}〉.

While evaluating an FTEX program, the syntactic meaning of uses of · become
apparent successively, as illustrated in the above examples. In order to reason
about a program’s syntactic runtime behavior, we introduce a constraint system
which relates the syntactic meaning of occurrences of · to their use during re-
duction. A syntax tree then has to satisfy all generated constraints, i.e. it has to
predict the syntactic meaning of each occurrence of · correctly.

In order to distinguish different uses of · and relate them to their incarnations
in syntax trees, we introduce labels � ∈ L for expression concatenation and
tree composition as shown in Fig. 5.6 Similar to sequences a, we write ã =
a1 ·�1 · · · ·�n−1 an to denote sequences of a’s where the composing operator · is
labeled by labels �i ∈ L. All labels in non-reduced FTEX programs and syntax
trees are required to be unique. The reduction semantics from the previous
section is refined such that labels are preserved through reduction. This, however,
violates label-uniqueness as the following example shows.

	 ∈ L
s ::= ẽ

t ::= ∅ | f | t ;� t | t@� t̃ | 〈 t̃ 〉

k ::= SEQ(	) | APP(	) | DEF (	)

Fig. 5. Label-extended Syntax and Structure Constraints

6 Though the set of labels L is left abstract, we will use natural numbers as labels in
examples.



406 S.T. Erdweg and K. Ostermann

Example 1
\def ·1 \seq ·2 #1 ·3 #2 ·4 {#1 ·5 #2} ·6 \seq ·7 c1 ·8 c2

→ \def ·1 \seq ·2 #1 ·3 #2 ·4 {#1 ·5 #2} ·6 c1 ·5 c2

In this example, a macro \seq taking two arguments is defined. In the macro
body the two arguments are composed by the operator labeled 5. Since labels
are preserved through reduction, label 5 occurs outside the macro body after
expanding \seq, namely in the body’s instantiation c1 ·5 c2.

When only regarding the uninstantiated macro body of \seq there is no way of
telling how the macro arguments are combined, i.e. which syntactic meaning the
operator labeled 5 inhabits. Depending on the actual first argument the operator
could, for instance, denote a macro application or the construction of a macro
definition. In the above example, however, the macro expands into a composi-
tion of characters, hence the operator has to represent the sequentialization of
expressions.

More generally, labels fulfill two purposes. First, they enable the identification
of conflicts: if, for instance, a macro is called several times and expands into
conflicting syntactical forms, such as sequentialization and application, there
will be conflicting requirements on the involved labels. The respective operators
thus have to have several syntactic meanings during runtime, which rules out a
static syntactic model. Second, by using the same labels in FTEX programs and
syntax trees, the structural prediction made by a parser can be easily related to
the program’s structure during runtime.

Our formulation of syntax tree correctness relies on the notion of structure
constraints k, Fig. 5, which restrict the syntactic meaning of labeled composition
operators. SEQ(�) requires that ·� represents an expression sequentialization,
APP(�1 · · · �n) denotes that ·�1 is a macro application composition and ·�2 · · · ·�n

forms a sequence of macro argument. Since, macro argument sequentialization
always is accompanied by a macro application, only one form of constraint is
needed. Lastly, constraints of the form DEF (�1 · · · �n) demand that the labeled
operators ·�1 · · · ·�n represent the composition of macro definition constituents.

To see these constraints in action, reconsider Ex. 1. As we will show in
the subsequent subsection, all of the following constraints can be derived by
evaluation:

DEF (1 · 2 · 3 · 4), SEQ(5), SEQ(6) APP(7 · 8)

4.2 Constraint Generation

The syntactic relations between different parts of a program emerge during eval-
uation. To this end, we instrument the previously presented reduction semantics
to generate structure constraints as the syntactic meanings of compositions ·
become apparent.

The adapted reduction semantics is shown in Fig. 6. For a reduction step
s

K−→ s′, K denotes the set of generated constraints. Accordingly, the reduction
rule (R-RStep) simply forwards the constraints generated for the reduction of the



Featherweight TEX and Parser Correctness 407

subexpression s. When applying (R-GVal), it is exploited that the group contains
a value only, i.e. that it contains a sequence of macro definitions and characters.
The corresponding structure constraints are generated by applying valcons to
that value.

valcons : v → {k}
valcons(ε) = ∅
valcons(c) = ∅
valcons(d) = {DEF (	1 · · · 	n)},

where d = e1 ·�1 · · · ·�n en+1

valcons(c ·� v) = {SEQ(	)} ∪ valcons(v)
valcons(d ·� v) = valcons(d) ∪ {SEQ(	)} ∪ valcons(v)
valcons(♦ ·� v) = {SEQ(	)} ∪ valcons(v)

s
K−→s′

RM[s] K−→RM[s′]
(R-RStep)

{v} valcons(v)−−−−−−→dropDefs(v)
(R-GVal)

\def ·�1 m ·�2 {s} ·�3 RM\{m}[m]
∅−→\def ·�1 m ·�2 {s} ·�3 RM\{m}[σ̂(s)]

(R-MacroEps)

match(r̃, ẽ) = σ

ẽ = e1 ·�
′
1 · · · ·�′n en+1

k = APP(	′ · 	′1 · · · 	′n)

\def ·�1 m ·�2 r̃ ·�3 {s} ·�4 RM\{m}[m ·�′ ẽ]
{k}−−→\def ·�1 m ·�2 r̃ ·�3 {s} ·�4 RM\{m}[σ̂(s)]

(R-Macro)

Fig. 6. Constraint Generation

Macro expansion is split into two rules. The first one, (R-MacroEps), covers
the expansion of macros that have no parameters (note the lack of r̃ in the
macro definition). In this case no syntactical structure is exploited and thus no
constraints are generated. The second macro expansion rule, (R-Macro), generates
a single constraint which denotes the applicative structure of the expanded macro
call.

Constraint generation now can be summarized as follows.

Definition 1. The set of constraints Ω(s →∗ s′) associated to the reduction
sequence s →∗ s′ of the program s is defined by:

Ω(v) = valcons(v)
Ω(s) = ∅, if s �= v for all v

Ω(s K−→s′ →∗ s′′) = K ∪ Ω(s′ →∗ s′′)
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In the definition of Ω, the first two cases cover reduction sequences of length
zero, i.e. the constraints for the final state of the particular run of the program
is defined. The third case collects all constraint sets generated during reduction
and is recursively defined on the given reduction sequence.

Let us once again consider Ex. 1, where s is the initial program and s′ its
reduct. Then Ω(s →∗ s′) = {DEF (1 · 2 · 3 · 4),SEQ(5),SEQ(6)APP(7 · 8)}.
The constraint APP(7, 8) is generated because of the expansion of the macro
\seq with arguments c1 and c2. The remaining constraints follow from applying
valcons to s′, which is a value and therefore is handled by the first case of Ω.

4.3 Parser Correctness

We are finally back to formulating a correctness criterion for FTEX parsers.
First of all, a correct parser needs to produce a syntax tree which represents
the analyzed program. In order to be able to relate syntax trees to flat pro-
gram representations and structure constraints, we introduced labeled trees in
Fig. 5. Labeled trees can be easily flattened and compared to weakly structured
programs since composition operators are uniquely identified by their label. Ac-
cordingly, dropping all of a syntax tree’s structural information while retaining
the labels reveals the underlying FTEX program:

π : t → s
π(∅) = ε
π(t1 ;� t2) = π(t1) ·� π(t2)
π(t @� t1 ·�1 · · · ·�n−1 tn) = π(t) ·� π(t1) ·�1 · · · ·�n−1 π(tn)
π(〈t1 ·�1 · · · ·�n−1 tn〉) = π(t1) ·�1 · · · ·�n−1 π(tn)
π({t}) = {π(t)}
π(f) = f, if f �= {t} for all t

Nevertheless, not only need syntax trees to represent the code correctly, but also
its structure. In the previous subsection, we were able to derive the set of con-
straints representing all syntactic structure a program exhibits during and after
evaluation. According to our viewpoint of syntax trees as structural predictions,
correct parsers must foresee a program’s dynamic structures, i.e. syntax trees
have to satisfy all constraints associated with the evaluation of the program.

A constraint is satisfied by a syntax tree if the constrained composition op-
erators are represented within the tree as required. To this end, we first define
what it means for a syntax tree to match a constraint, in symbols � t : k, Fig. 7.
Note that we require the labels in the constraints to equal the ones in the syntax
tree, thus assuring that appropriate composition operators are matched only.
Constraint satisfaction then is defined as follows.

Definition 2. A syntax tree t satisfies a constraint k, in symbols t |= k, if t
contains a subtree t′ such that � t′ : k. A parse tree t satisfies a set of constraints
K, in symbols t |= K, iff t satisfies all constraints k ∈ K.

We are now able to specify correctness of FTEX parsers.
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� t1 ;� t2 : SEQ(	)
(K-Seq) � t @� t1 ·�1 · · · ·�n tn+1 : APP(	 · 	1 · · · 	n)

(K-App)

� 〈t1 ·�1 · · · ·�n tn+1〉 : DEF(	1 · · · 	n)
(K-Def)

Fig. 7. Constraint matching

Definition 3. A total function p : s → t⊥ is a correct FTEX parser if and only
if for all FTEX programs s with p(s) �= ⊥
1. π(p(s)) = s, and
2. for all programs s′ with s →∗ s′, p(s) |= Ω(s →∗ s′).

A syntactic analysis for FTEX thus is correct if the resulting syntax trees are
proper representations and structural predictions of original programs.

5 Towards Parsing TEX

In the previous section, we presented a formal specification of correct FTEX
parsers. Accordingly, syntax trees computed by correct parsers must satisfy all
structure constraints emerging during the evaluation of the analyzed program.
For some programs, however, the set of generated structure constraints is in-
herently unsatisfiable, that is, inconsistent: the constraints place contradicting
requirements on syntax trees.

In the present section we show that these inconsistencies arise from the prob-
lematic language features of TEX we discussed in Section 2. We furthermore
demonstrate that by restricting the language such that the problematic features
are excluded, we are able to define a provably correct parser for that subset.

5.1 Parsing-Contrary Language Features

When language features allow syntactic ambiguities they actually hinder
syntactic analyses. For TEX, these ambiguities translate into the generation of
inconsistent structure constraints, because ambiguous expression can be used
inconsistently. Here we present an example for each such language feature and
show that it entails inconsistent constraints. For brevity, we only denote those
labels in the examples that are used for discussion.

Dynamic scoping. In TEX, parsing a macro application depends on the applied
macro’s actual definition. It matters whether the macro expects one or two argu-
ments, for example, because then either the following one or two characters, say,
are matched. With dynamic scoping the meaning of a macro variable depends
on the dynamic scope it is expanded in. Therefore, one and the same macro
variable can exhibit different syntactic properties:
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\def · \foo · {c}
\def · \bar · {\foo ·1 c}
\bar
\def · \foo · #1 · {c}
\bar

Here, each of the calls to \bar reduces to \foo ·1c. In the former call, however, \foo
is defined as a constant, i.e. it does not expect any argument. Therefore, the for-
mer expansion of \bar implies the structure constraint SEQ(1). Contrarily, when
expanding the second call to \bar , \foo is bound to expect one argument. There-
fore, the expansion of \bar corresponds to a macro call of \foo with argument c,
and hence the constraint APP(1) is generated.

In a lexically scoped language, the expansion of \bar would consist of a closure
that binds all free variables in the macro body. The macro identifier \foo thus
would refer to the definition \def · \foo · {c} in both expansions of \bar .

Higher-order arguments. Similarly to macro identifiers in dynamic scoping,
higher-order arguments lead to syntactically ambiguous interpretations of macro
parameters. Depending on the actual argument, a parameter may represent a
constant expression or in turn a macro.

In the following we define two macros, both of which take two arguments. The
former one builds the sequence of its parameters while the second applies the
first parameter to the second parameter.

\def · \seq · #1 · #2 · {#1 ·1 #2}
\def · \app · #1 · #2 · {#1 · #2}

Evidently, the only difference between the definitions of \seq and \app are their
names. The macro body’s syntactic structure thus only depends on whether or
not the first argument is a constant or expects further input. When calling \seq
with two characters, say, the call expands to a sequence of these characters and
the constraint SEQ(1) is generated. In contrast, when calling \seq with a unary
macro and a character, it will expand into yet another macro call. In this case
the conflicting constraint APP(1) is generated.

Lexical macro system. In contrast to syntactical macro systems [15], macros in
TEX are lexical, that is, macro arguments and bodies do not necessarily corre-
spond to complete syntax trees.

\def · \foo · {\def ·1 \baz}
\def · \bar · #1 · {\foo ·2 #1 ·3 {c}}

In this example neither dynamic scoping nor higher-order macros is relevant.
Still, the structure of \bar ’s body is ambiguous and depends on the argument
#1. The call \bar · c′, for example, expands to \def ·1 \baz ·2 c′ ·3 {c} in two steps.
Correspondingly, the structure constraint DEF (1, 2, 3) is generated. On the other
hand, if \bar is called as in \bar · {{c′}}, it expands to \def ·1 \baz ·2 {c′} ·3 {c},
thus the constraints DEF (1, 2) and SEQ(3) are generated.
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Furthermore, the body of \foo cannot be correctly represented by any syntax
tree, because it does not inhibit a valid syntactical form. This is the intrinsic
difficulty in performing syntax analyses on top of a lexical transformation system
such as TEX.

Custom macro call syntax. TEX users are allowed to define their own macro
call syntax as desired. For instance, the following macro needs to be called with
parentheses.

\def · \foo · ( ·#1 · ) ·{c}
This, however, easily leads to ambiguities when the call syntax depends on macro
parameters, i.e. when a macro argument is matched against the call pattern.

\def · \bar · #1 · {\foo ·1 ( ·2#1 ·3 )}
\bar · c
\bar · )

Here, the call to \foo in the body of \bar depends on the macro parameter #1.
While the first call to \bar entails the constraint APP(1, 2, 3) as expected, the
second call expands to \foo ·1 ( ·2 ) ·3 ). Consequently, the constraints APP(1 · 2)
and SEQ(3) are generated, and establish an inconsistency with the first expan-
sion of \bar .

5.2 Parsing FTEX Correctly

We just identified some sources of syntactic ambiguities in FTEX, and can now
focus on finding an actually parsable subset of the language. To this end, we
present a non-trivial FTEX parser and prove it correct with respect to Def. 3.

First, let us fix the set of programs our parser p will be able to parse, i.e. for
which p results in an actual syntax tree. These programs are subject to the
following restrictions:

1. All macro definitions are complete, unary, top-level and prohibit custom call
syntax, that is, they strictly follow the syntactic description \def ·� m ·� #1 ·�
{s} and occur non-nestedly.

2. All uses of macro variables (except in macro definitions) are directly followed
by a grouped expression, as in m ·� {s}. Since all macros are unary, the
grouped expression will correspond to the macro’s argument which thus can
be statically identified.

3. All macros are first-order, i.e. their argument is not a macro itself. To this
end, we require all occurrences of macro parameters in macro bodies to be
wrapped in groups. A higher-order argument would thus always be captured
by a group, as in {\foo}. This would lead to a runtime error since the content
of a group must normalize to a value.

The complete parser pi is defined in Fig. 8. p0 accounts for the top-level pro-
grams which may contain definitions. Nested program fragments are parsed by
p1 where definitions are prohibited but wrapped macro parameters are allowed.
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pi(ε) = ∅
pi(c ·� s) = c ;� pi(s)
pi(m ·�1 {s} ·�2 s′) = (m @�1{p1(s)}) ;�2 pi(s′)
pi({s} ·� s′) = {p1(s)} ;� pi(s′)
pi(♦ ·� s) = ∅ ;� pi(s)
p0(\def ·�1 m ·�2 #1 ·�3 {s} ·�4 s′) = 〈\def ·�1 m ·�2 x ·�3 {p1(s)}〉 ;�4 p0(s′)
p1({#1} ·� s) = {x} ;� p1(s)
pi(s) = ⊥

Fig. 8. A provably correct FTEX parser

The definition of pi is to be read such that in each case the parser also returns
⊥ if any nested call returns ⊥.

In order to verify the correctness of p0 with respect to Def. 3, we need to
show that the resulting syntax trees represent the input programs and satisfy
all structure constraints associated to runs of the programs.

Theorem 1. For all programs s with pi(s) �= ⊥, π(pi(s)) = s for i ∈ {0, 1}.

Lemma 1. For all values v, pi(v) |= valcons(v) for i ∈ {0, 1}.

Lemma 2. For i ∈ {0, 1} and all programs s and s′ with s
K−→s′ and pi(s) �= ⊥

(i) pi(s) |= K,
(ii) pi(s′) �= ⊥, and
(iii) {k | pi(s) |= k} ⊇ {k | pi(s′) |= k}.

Proof. By case distinction on the applied reduction rule.

(i) By Lem. 1 and inversion on p0 and p1.
(ii) For (R-Macro) this holds since macro bodies are p1-parsable and p1-pars-

ability is closed under substitution. The other cases are simple.
(iii) For (R-Macro) let R = \def ·�1m·�2#1·�3{sb}·�4RM\{m}[] with R[m·�′{sa}] =

s, R[σ(sb)] = s′ and σ = {#1 �→ sa}. Then {k | p(R[m ·�′ {sa}]) |= k} ⊇
{k | p(R[ ]) |= k ∨ p(sa) |= k} ⊇ {k | p(R[σ(sb)]) |= k}. The other cases
are simple.

Theorem 2. For i ∈ {0, 1} and all FTEX programs s and s′ with s →∗ s′, if
pi(s) �= ⊥ then pi(s) |= Ω(s →∗ s′).

Proof. By induction on the reduction sequence s →∗ s′. For s = v by Lem. 1.
For s in normal form and s �= v, Ω(s) = ∅. For s

K−→s′ →∗ s′′ by Lem. 2 and the
induction hypothesis.

Corollary 1. p0 is a correct FTEX parser.
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6 Macro Usage in TEX and LATEX

In the previous section, we demonstrated how our formal specification of FTEX
parsers can be instantiated to give a provably correct parser. The subset of
FTEX the parser supports was designed to avoid all of the pitfalls described in
Section 5.1. Parsers which support larger subsets of FTEX do exist, though, and
in the present section we set out to justify their relevance in practice.

Identifying a sublanguage of TEX which is broad enough to include a wide
range of programs used in practice and, at the same time, is precise enough to
include a considerably large parsable subset, is a task involving a detailed study
of existing TEX and LATEX libraries as well as conflict-resolving heuristics, which
exclude some programs in favor of others. Nonetheless, we believe that signifi-
cantly large portions of the existing TEX and LATEX libraries in fact are parsable,
i.e. not exposed to the issues associated with dynamic scoping, delimiter syntax
and macro arguments consuming further input. This claim is supported by a
study of macro usage in existing TEX and LATEX libraries, Fig. 9, which we have
been carrying out.

Macro definitions
total 345823 ∼ 100.0%
constant 320357 ∼ 92.6%
recursive 56553 ∼ 16.4%
delimiter syntax 12427 ∼ 3.6%
redefinitions 160697 ∼ 46.5%
redef. arity changes 16289 ∼ 4.7%
– ignoring macros “*temp*” 7175 ∼ 2.1%
redef. delimiter syntax changes 16927 ∼ 4.9%
– ignoring macros “*temp*” 5827 ∼ 1.7%

Macro expansions
total 2649553 ∼ 100.0%
constant 746889 ∼ 28.2%
recursive 524320 ∼ 19.8%
delimiter syntax 95512 ∼ 3.6%
higher-order arguments 70579 ∼ 2.7%

Fig. 9. Macro usage in TEX and LATEX libraries

To collect various statistics about macro definitions and applications, we
adapted a Java implementation of TEX, called the New Typesetting System [1].7

Our adaption is available at http://www.informatik.uni-marburg.de/~seba/
texstats. We analyzed 15 LATEX documents originating from our research group
and ranging from research papers to master’s theses. These documents amount

7 This implementation is incomplete with respect to the typesetting of documents,
but complete regarding TEX’s macro facilities.

http://www.informatik.uni-marburg.de/~seba/texstats
http://www.informatik.uni-marburg.de/~seba/texstats
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to 301 pages of scientific writing and contain more than 300,000 macro defini-
tions and 2,500,000 macro expansions. The high number of macro definitions,
which might be surprising, is mainly caused by the use of libraries, e.g. amsmath.

Our analysis observes facts about the sample documents’ uses of macro defi-
nitions and macro applications. To this end, a macro is considered constant if its
definition has no declared parameter. A macro is called recursive if the transitive
hull of macro identifiers used in its body contains the macro’s own identifier.8

Since the assumed recursive call not necessarily is executed, a macro may be
considered recursive without actually being so. A macro has a delimited syntax
if the parameter text in its definition contains characters or macro identifiers.
A macro is redefined if a definition for the same macro identifier has previously
been executed. A redefinition changes the arity of a macro, if the number of
parameters in the previously executed definition differs. Similarly, the delimiter
syntax of a macro is changed by its redefinition if the previously executed def-
inition’s parameter text contains different characters or macro identifiers, or a
different order thereof. Additionally, arity and delimiter syntax changes have
been recorded for macro identifiers not containing the string “temp”. Lastly, a
macro is said to be applied with higher-order arguments if at least on argument
is a non-constant macro.

In the tables of Fig. 9, we state the absolute number of occurrences of the
observed effects and their percentage relative to the respective category’s total
number of effects.

Our study shows that only 3.6% of all macro definitions and expansions use
delimiter syntax. Furthermore, only 4.7% of all macro definitions correspond to
redefinitions changing the redefined macro’s arity, and 4.9% correspond to re-
definitions changing its delimiter syntax. Nonetheless, most of these definitions
redefine a macro with the string “temp” in its name. This gives reason to be-
lieve that the different versions of these macros are used in unrelated parts of
the program, and do not entail conflicting constraints. Moreover, higher-order
arguments are used only in 2.7% of all analyzed expansions.

The high number of redefinitions and constant macro definitions, 46.5% and
92.6%, is also interesting. This is in contrast to the number of expansions of
parameterless macros, which is only 28.2%. We believe that this effect can be
explained by the frequent usage of constant macros as variables, as opposed to
behavioral abstractions. Accordingly, a redefinition of a constant macro occurs
whenever the stored value has to change. This technique is often used for con-
figuring libraries. For example, the LLNCS document class for this conference
contains the macro redefinition

\renewcommand \labelitemi {\ normalfont \bfseries --}

which is used in the environment itemize and controls the label of items in top-
level lists. Any change of this parameter is a macro redefinition. Such macro re-
definitions cause no problems for parsing, since the protocol and parsing-related
behavior of the macro does not change.
8 For parsing, it is unimportant whether a macro is recursive. We included this prop-

erty anyway because we found it an interesting figure nonetheless.
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The presented data suggests that despite dynamic scoping, delimiter syntax
and higher-order arguments, the syntactical behavior of macros often can be
statically determined, because these language features, which are particularly
troublesome for parsing, are rarely used. Therefore, we believe that the develop-
ment of a practical syntactic analysis for TEX and LATEX is possible.

7 Applications

Besides giving a precise formulation of parser correctness, our formal model has
valuable, immediate applications in practice. In the following we propose three
tools easing the everyday development with TEX and LATEX.

Macro debugging. Our formal FTEX semantics is defined in form of a small-
step operational reduction semantics. Consequently, it allows single stepping of
macro expansions and FTEX processing. This support is of high potential benefit
for TEX users since it enables comprehending and debugging even complicated
macro libraries.

In order to apply macro stepping meaningfully to only part of a TEX document,
the context in which the code is evaluated has to be fixed. One promising possibil-
ity is to scan the document for top-level library imports and macro definitions, and
reduce the code in the context of those definitions. Similar techniques are already
applied in some TEX editors, however not for the purpose of debugging.

Syntactic inconsistency detection. In Section 4.2, we introduced constraint gen-
eration which denotes the dynamic syntactical structure of FTEX code. Con-
straint generation cannot be used in static analyses, though, because it implies
evaluating the program. In a programming tool, however, gathering structural
information by running the program is a valid approach. Therefore, the in-
strumented FTEX semantics can be used to generate and identify conflicting
structure constraints, which indicate accidental syntactic inconsistencies in the
analyzed program and should be reported to the programmer.

Parser testing. Almost all TEX editors contain a rudimentary parser for TEX
documents, so that syntax highlighting, for example, is possible. Often enough,
however, these simplistic parsers produce erroneous syntax trees, essentially dis-
abling all tool support. By taking advantage of constraint generation again, the
parser can actually be tested. As stated in the definition of parser correctness,
all generated constraints need to be satisfied by resulting syntax trees. The TEX
editor can thus check whether its parser is correctly predicting the document’s
structure, and deliberately handle cases where it is not.

More generally, all generated constraints can be understood as test cases for
user defined FTEX parsers. To this end, the constraint generator and the con-
straint satisfaction relation comprise a framework for testing FTEX parsers.

8 Conclusion

We have defined a formal model of TEX and have clarified formally what it
means for a static parser to be correct. We have identified language features that
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are hindering syntactic analyses and have shown that provably correct parsers
exist for subsets of TEX that exclude such features. Furthermore, we have given
empirical evidence that this class of practical interest. We have also demonstrated
how TEX programmers may benefit from our formal model in their everyday
work, for instance by using a macro debugger.

We hope that this work will trigger a new line of research that will result in a
broad range of tools for TEX users and, eventually, in a new design of TEX and
LATEX according to modern programming language design principles which will
remove the idiosyncrasies that today’s TEX users have to suffer.

Acknowledgments. This work was supported in part by the European Re-
search Council, grant #203099.

References

1. NTS: A New Typesetting System, http://nts.tug.org/ (visited on 20.03.2010)
2. Badros, G.J., Notkin, D.: A Framework for Preprocessor-Aware C Source Code

Analyses. Software: Practice and Experience 30(8), 907–924 (2000)
3. Brabrand, C., Schwartzbach, M.I.: Growing Languages with Metamorphic Syntax

Macros. In: Partial Evaluation and Semantics-Based Program Manipulation, pp.
31–40. ACM, New York (2002)

4. Eijkhout,V.:TEXbyTopic,ATEXnicansReference.Addison-Wesley,Reading (1992)
5. Garrido, A., Johnson, R.: Refactoring C with Conditional Compilation. In: Auto-

mated Software Engineering, pp. 323–326. IEEE Computer Society, Los Alamitos
(2003)

6. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java - A Minimal Core Calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems,
132–146 (1999)

7. Knuth, D.E.: The TEXbook. Addison-Wesley, Reading (1984)
8. Knuth, D.E.: TEX: The Program. Addison-Wesley, Reading (1986)
9. Kohlbecker, E.E., Friedman, D.P., Felleisen, M., Duba, B.F.: Hygienic Macro Ex-

pansion. In: LISP and Functional Programming, pp. 151–161. ACM, New York
(1986)

10. Lamport, L.: LATEX: A Document Preparation System. Addison-Wesley, Reading
(1986)

11. Latendresse, M.: Rewrite Systems for Symbolic Evaluation of C-like Preprocessing.
In: European Conference on Software Maintenance and Reengineering, pp. 165–
173. IEEE Computer Society, Los Alamitos (2004)

12. Livadas, P.E., Small, D.T.: Understanding Code Containing Preprocessor
Constructs. In: Program Comprehension, pp. 89–97. IEEE Comp. Society, Los
Alamitos (1994)

13. Padioleau, Y.: Parsing C/C++ Code without Pre-processing. In: de Moor, O.,
Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp. 109–125. Springer,
Heidelberg (2009)

14. Saebjoernsen, A., Jiang, L., Quinlan, D.J., Su, Z.: Static Validation of C Prepro-
cessor Macros. In: Automated Software Engineering, pp. 149–160. IEEE Computer
Society, Los Alamitos (2009)

15. Weise, D., Crew, R.: Programmable Syntax Macros. In: Programming Language
Design and Implementation, pp. 156–165. ACM, New York (1993)

16. Wright, A.K., Felleisen, M.: A Syntactic Approach to Type Soundness. Information
and Computation 115(1), 38–94 (1994)

http://nts.tug.org/


Author Index

Aßmann, Uwe 22
Amaral, Vasco 296
Amyot, Daniel 377
Atkinson, Colin 266

B ↪ak, Kacper 102
Bandener, Nils 357
Barroca, Bruno 296
Bernstein, Abraham 203
Boucher, Quentin 337
Braatz, Benjamin 82
Brandt, Christoph 82
Bürger, Christoff 22

Cádiz, Alfredo 246
Cardozo, Nicolás 246
Cicchetti, Antonio 183
Czarnecki, Krzysztof 102

Dechev, Damian 123
Di Ruscio, Davide 143, 183

Engels, Gregor 357
Eramo, Romina 183
Erdweg, Sebastian Thore 397
Erwig, Martin 1

Favre, Jean-Marie 316
Félix, Roberto 296

Gasevic, Dragan 316
Genon, Nicolas 377
Goß, Björn 266
Goffaux, Julien 246
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