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Preface

The International Conference on Information Systems for Indian Languages
(ICISIL 2011) has provided a first-of-its-kind platform to scientists, engineers,
professionals, researchers and practitioners from India and abroad working on
automation of Indian languages. The primary goal of the conference is to present
state-of-the-art techniques and promote collaborative research and developmen-
tal activities in natural language processing of Indian languages and related
fields. This pioneering effort has won many accolades and brought together the
community, otherwise so diverse.

In the technical session, seven topics were identified relating to the theme
of the conferences. In all, 126 submissions were received. Each paper was sent
to four reviewers from within India and abroad. Each submission was reviewed
by at least three reviewers. Based on the reviewers’ evaluation, 58 papers were
selected, 27 for oral presentation and 31 for poster. Some other good papers were
left out due to paucity of time at the conference.

A special demo session was also arranged to demonstrate the systems devel-
oped for Indian languages. The demo session generated a good response, and
25 demos of working systems for text-to-speech, optical character recognition,
M translation, and Web corpora for Indian languages were received. Finally,
14 systems were selected and their abstracts are published in the conference
proceedings.

Very special thanks are due to all the reviewers who extended their maxi-
mum co-operation in finishing the job of reviewing and selecting the papers. We
wish to express our thanks to Angarai Ganesan Ramakrishnan for organizing a
special tutorial on “Online Handwritten Recognition”. We deeply acknowledge
the financial assistance provided by UGC and DST.

Many deserve special thanks for contributing to the cause of the conference,
including all the faculty and administrative staff members of the Department of
Computer Science, Punjabi University, Patiala, as well as the entire staff of the
Advanced Centre for Technical Development of Punjabi Language, Literature
and Culture.

We aim to make this conference a regular event and hope you will enjoy read-
ing the proceedings ICISIL 2011! We heartily thank everybody who contributed
in making ICISIL 2011 a grand success.

Chandan Singh
Gurpreet Singh Lehal

Jyotsna Sengupta
Dharam Veer Sharma

Vishal Goyal
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A Novel Method to Segment Online Gurmukhi Script 

Manoj K. Sachan1, Gurpreet Singh Lehal2, and Vijender Kumar Jain1 

1 Sant Longowal Institute of Engineering & Technology, Longowal, India 
2 Punjabi University Patiala, India 
manojsachan@gmail.com  

Abstract. Segmentation of handwritten script in general and Gurmukhi Script 
in particular is a critical task due to the type of shapes of character and large 
variation in writing style of different users. The data captured for online Gur-
mukhi Script consists of x,y coordinates of pen position on the tablet, pressure 
of the pen on the tablet, time of each point and pen down status of the pen. A 
novel method to segment the Gurmukhi script based on pressure, pen down 
status and time together is presented in the paper. In case of some characters 
getting over segmented due to the shape of character and user’s style of writing, 
a method to merge the substrokes is presented. The proposed algorithms have 
been applied on a set of 2150 words and have given very good results.  

Keywords: Stroke, Substroke, Merging, Segmentation, Gurmukhi, Devanagari. 

1   Introduction 

The process of online handwriting recognition consists of steps such as preprocessing 
of the user handwriting, segmentation of script into meaningful units or shapes, rec-
ognition of shapes, and post processing to refine the results of recognition [1, 2]. 
Gurmukhi Script like Devanagari script consists of large number of strokes with high 
variation. The number and type of strokes constituting the character may vary from 
writer to writer. For example as shown in fig 1a and 1b, the character l (lalla) is writ-
ten with three strokes and two strokes by two different writers respectively.  

   

  

l 

 

Stroke1 Stroke2 Stroke3 

 

 
Stroke1 Stroke2 

Fig. 1. a) l(lalla)  = stroke1+stroke2+stroke3 b) l(lalla) = stroke1+stroke2 

Similarly, the headline (shirorekha) which is an important feature of  
Gurmukhi/Devanagari script is generally drawn from left to right as one stroke as 
shown in fig 2b, but in some cases it may be drawn in parts. For example, the word 
X`kw  (yakka) is written using two headline stroke as shown in fig 2a and with one 
headline stroke as shown in fig 2b.  
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a 

First Writer Headline 
Stroke 

Stroke1 Stroke2 Stroke3 Stroke4 Headline 
Stroke 

  

 
 

  
b 

Second 
Writer 

Stroke1 Stroke2 Stroke3 Stroke4 Headline Stroke 

Fig. 2. Words with single or multiple headlines 

Thus, there is high variation in the number and type of strokes constituting the 
Gurmukhi word. In the past, Niranjan Joshi et al. [10] have used syntactic and struc-
tural approaches to recognize and segment shirorekha and vowels from isolated 
Devanagari characters. Anuj Sharma et.al [14] have used point based method to seg-
ment isolated Gurmukhi character. In this method, each stroke is observed for number 
of points and if number of points exceed 300 (an empirically observed value) and the 
direction of stroke at that point is less than 90 degree, the stroke is segmented at that 
point. We have taken complete word instead of isolated character in online Gurmukhi 
Script for segmentation. In subsequent sections, the techniques of segmenting online 
Gurmukhi Script are described. [3, 4, 12]. 

2   Characteristics of Gurmukhi 

The script of Gurmukhi is cursive and has 41 consonants, 12 vowels and 2 half char-
acters which lie at the feet of consonants .The consonants, vowels and half characters 
of Gurmukhi are shown in Fig 3. 

a A e s h k K g G | 
c C j J \ t T f F x 
q Q d D n p P b B m 
X r l v V S ^ Z L & 
z w y Y u U  i I o O 
` M N H R      

 

Fig. 3. Gurmukhi character set 

Most of the characters have a horizontal line (shirorekha) at the upper part. The 
characters of word are connected mostly by this line called the head line (shirorekha). 
Hence there is no vertical inter-character gap in the letters of the word. A word in the 
Gurmukhi can be partitioned into three horizontal zones. The upper zone denotes the 
region above the head line where vowels reside, while the middle zone represents  
the area below the head line where the consonants and some parts of vowels are pre-
sent. The middle zone is the busiest zone. The lower zone represents the area below 
the middle zone where some vowels and some half characters lie at the foot of conso-
nants. The three zones are shown in Fig 4. [3, 4, 12]. 
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gurpRym 

Upper zone 

Middle 
zone 

Headline 

Lower Zone 
 

Fig. 4. Three zones in Gurmukhi Script 

3   Data Capture and Preprocessing 

The data is collected through a Wacom Tablet and Digitizer Pen. As the pen touches 
the tablet and moves on the surface it sends data packets. The data captured in each 
packet includes pressure of the pen, position of the pen in terms of x, y coordinates, 
button which captures the touch of pentip on the surface and time which captures 
system time of capturing each packet. Fig 5 shows some of the samples of the data 
captured. In general, the Gurmukhi script is written left to right. Each word is 
composed of a sequence of strokes. Each stroke consists of the trace of pentip from 
pendown to penup. From segmentation point of view, the pre-processing steps 
followed are rescaling and duplicate point removal. 

Rescaling: In rescaling, the x,y coordinates are rescaled to origin. The pressure and 
time are also recalculated w.r.t to their minimum values. The button value remains 
unchanged. 

Duplicate Point Removal: Each stroke contains a large number of duplicate points 
that occur either in the beginning of the stroke or when the stylus or digitizer pen is 
stationary on the surface of the tablet. In duplicate point removal, the point (xi,yi) is 
compared with point (xi+1 ,yi+1). If (xi == x i+1) and (yi == yi+1) then point (xi+1 ,yi+1) is 
removed from the stroke.[11]. The pressure and button component at (xi,yi) remains 
unchanged. The  time component is averaged and is stored at point (xi,yi). 

a 
 

b 
 

c 
 

d 
 

Fig. 5. Samples of words captured 

4   Proposed Segmentation Algorithm 

The segmentation technique is based on the idea to separate the strokes based on the 
way user write them on the tablet. The segmetation algorithm consists of two phases 
namely Extraction of Strokes and Merging of Strokes. 

4.1   Extraction of Strokes  

In this step, the strokes in the word as written by the user are extracted. The packet 
captured by the digitizer tablet consists of information such as button, pressure and 
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time apart from x-y position.When the user places the digitizer pen on the tablet 
surface, the pressure increases and when the pen is taken off the tablet surface it 
approaches to zero. Thus, a pressure gap is created in every stroke. Also a time gap is 
created when the digitizer pen is takenoff the tablet and put on the tablet. Each tip of 
the  digitizer pen have some identification number. Thus, when the tip of digitizer pen 
touches the surface its identification number is recorded with every packet. The 
information in button field is the identification number of the pentip. Therefore the 
strokes in the word  can be extratcted on the basis of pressure, time  and button. In our 
algorithm, a combination of all parameters are used for extracting the strokes. The 
algorithm for extraction of strokes named as ESPPBT (Extraction of strokes based on 
position,pressure,button and time) is described below.   

Algorithm ESPPBT  
    varibles 
    x,y // x,y coordinates of pen 
    button   // pentip identification 
    pressure // pressure of pentip 
    time_diff_cur // current time – prev time 
    time_diff_next // next time – current time 
    pressure_diff  //diff in pressure 
    pressure_th // pressure threshold 
    timei //time at i

th point,  
    timei+1 //time at i+1

th point, 
    number_of_points // total number of points, 

input[] //array of all input packets,      
strokes[][]  //stroke data, 

    packet_data//packet of all input parameters from tablet  
    point_id // index into stroke data,  

stroke_id //index of strokes 
1.Repeat for  i = 0 to number_of_points   

if button == 0 
 {  x← -1; y← -1; 

pressure_diff← pressurei – pressurei-1; 
   time_diff_cur←timei–timei-1; 

time_diff_next←timei+1-timei    }  
2. Repeat for  i = 0 to number_of_points   

If(x! = -1)and(y! = -1)and(button! = 0)     
and(pressure_diff>pressure_th)and 
(time_diff_current<time_th)and 
(time_diff_next < time_th) 
{ 
strokes[stroke_id][point_id].packet_data 
= input[point_id].packet_data; 
point_id←point_id+1; 
} 
else  stroke_id ← stroke_id + 1; 
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The words shown in fig 5a - 5d  have been segmented by algorithm  ESPPBT and the 
results are shown in fig 6a – 6d respectively. The results of segmentation show that 
the strokes are extracted as they are written by the writer on the tablet. All the strokes 
show left to right order. The fig 6a shows that the strokes forming the AMb (pro-
nounced as ‘amb’) is clearly segmented into characters A, b and  M respectively. The 
fig 6b to fig 6d show that the characters of words are segmented into substrokes or 
subparts because the writer has written the characters in that way. For example, char-
acters  e, j and x as shown in fig 6b and character j as shown in fig 6c is segmented 
into two substrokes. However, character l as shown in fig 6d, is segmented into three 
substrokes.   

AMb
A , b  M

e ,  j x j
l 

 
a 

 
   

Stroke 1 2 3 4 (headline stroke) 
b 

    
  

   

Stroke 1 2 3 4 5 6 7 8 9 
c 

      

Stroke 1 2 3 4 5 6 (headline stroke) 
d 

 
   

  
 

Stroke 1 2 3 4 5 6 7(headline stroke) 
 

Fig. 6. Extraction of Strokes 

The results of segmentation also show that headline is extracted as a different 
stroke as can be seen from fig 6a to fig 6d. Thus, the characters which were seg-
mented into substrokes as shown in fig 6b to fig 6d requires merging of substrokes in 
order to form proper character shapes. 

4.2   Merging of Substrokes  

In merging of substrokes, the two substrokes are compared to find whether the  
substrokes lie below the headline and overlap horizontally. If the substrokes overlap 
then these can be merged. The algorithm for merging of strokes (MOS) is described 
below.  

 
Algorithm MOS 
  varibles 
     x,y //position coordinates of each point in a stroke 

strxmin,strxmax //xmin and xmax for each stroke 
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    strymin,strymax //ymin and ymax for each stroke 
    strqueue //queue of all the strokes of a word 

1. for each stroke find strxmin,strxmax, 
strymin, strymax ; 

2. Store all the strokes in strqueue 
3. Find the headline stroke 

4. Repeat while (strqueue !=empty) thru 4a-4b 
4a. Pick strokei and strokei+1; 
4b. if strokei  and strokei+1  are  below  
    Headline stroke and overlap         

        horizontally then  
    merge strokei+1  and  strokei  

The results of mergence are shown in fig 7.  Comparison of fig 7a and fig 7b shows 
that subparts or substrokes which form the characters e, j and x are merged. The 
merging of substrokes or subparts are illustrated by line drawing among different 
parts in fig 7. Similarly, comparison of fig 7c and fig 7d shows mergence of sub-
strokes of character  j , comparison of  fig 7e and fig 7f shows shows mergence of 
substrokes forming character l . The fig 7b,7d and 7f shows the clear segmentation of 
Gurmukhi words shown in fig 5b to fig 5d  into proper shapes for recognition. 

a 

 
b 

 
c 

 
d 

 
e 

 
f 

 

Fig. 7. Mergence of  sub-strokes 

5   Results, Discussions and Future Scope 

The results of ESPPBT produces substrokes constituting the individual Gurmukhi 
character. The parameters such as pressure, time and button are used only to segment 
the strokes from Gurmukhi word. The number of substrokes constituting individual 
Gurmukhi character varies from writer to writer. It is difficult to fix the substrokes for 
individual Gurmukhi character. Therefore, the substrokes constituting the Gurmukhi 
character are merged using MOS to form the proper Gurmukhi character shape. The 
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correctness of the MOS algorithm is checked manually by comparing the outcome 
with the desired shape of Gurmukhi character. The final outcome from MOS algo-
rithm is size normalized to 16x16. The sized normalized character is used for feature 
extraction and classification. The proposed algorithm for extraction of strokes and 
merging of substrokes  were applied on 2150 words collected from 50 users. The 
extraction of strokes algorithm (ESPPBT) gives 100% accuracy. However the merg-
ing of substrokes algorithm (MOS) gives accuracy varying between 80% to 100% 
with the average accuracy being 86.4%. The MOS algorithm gives inaccurate results 
in the following cases: 

• If the words are written slanted or the headline drawn is slanted then it results in 
incorrect finding of headline stroke   which results in incorrect merging of sub-
strokes. For example, in fig 8a, subcharacter ‘-’ of character Q (thatha) is de-
tected as headline stroke due to which the subcharacter ‘-’ is not considered for 
merging with stroke p. 

• In some cases, the stroke forming the vowels such as aunkar ‘u’ or dulainkar  
‘ U‘ is detected as headline, resulting in incorrect merging of substrokes. For ex-
ample in fig 8b vowel aunkar is detected as headline as the desired headline 
stroke is slanted. 

• If the stroke to be merged is cutting above the headline at some point then it re-
sults in incorrect merging. For example in fig 8c the substroke or subcharacter 
of character J is cutting the headline. 

Thus, MOS algorithm gives inaccurate results mainly due to the incorrect finding of 
headline stroke or improper alignment of headline stroke. In case, the user writes the 
strokes in proper left to right direction then the performance of both algorithms 
touches 100%. The performance of MOS algorithm can be improved by adding 
smoothing operations on strokes and by incorporating fuzzy rules for merging. 

a 

 

b 

 

c 

 

Fig. 8. Cases of  failure of MOS algorithm 
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Abstract. An accurate, properly labeled speech corpus is very important for 
speech research.  However, manual segmentation and labeling is very laborious 
and error prone. This paper describes an automatic tool for segmenting and la-
beling of Malayalam speech data. The tool is based on Hidden Markov Model 
(HMM). HMM Tool Kit is used for training, segmentation and labeling the 
data. Special care was taken in the preparation of pronunciation dictionary so 
that it will cover most of the possible pronunciation variations. Syllabification 
rule is applied in the phone label for generating syllable label also.. Segmenta-
tion and labeling experiment was done on the speech corpus collected for build-
ing text-to-speech system. The performance of the tool is reasonably good as it 
shows only 19ms average deviation compared to manual labels. 

Keywords: Annotated Speech Corpus, Speech segmentation, Speech labeling, 
automatic segmentation tool, Hidden Markov Model, HMM Tool Kit. 

1   Introduction 

Annotated speech corpus is the prime raw material in spoken language research [5]. It 
is an essential component for both Automatic Speech Recognition (ASR) and Text-to-
Speech Systems (TTS).  Segmenting and labeling of speech corpus is the main bottle-
neck in the creation of annotated speech corpus. It involves defining a speech segment 
and assigning suitable label to it. The manual segmentation and labeling are laborious, 
time consuming and error prone. These difficulties make the development of segmen-
tation and labeling tool, either automatic or semi automatic a necessity.  

The core technology behind either automatic or semi automatic labeling is speech 
recognition. In the segmentation process the speech recognition is aided by the tran-
scription of corresponding speech. Even though there are many approaches available 
for speech recognition, the sole technique that gains the acceptance of the researchers 
is Hidden Markov Model (HMM). HMM based technique is a statistical based model 
of speech recognition and requires training before using it for the segmentation and 
labeling. The inputs for the training are speech, its transcription and the pronunciation 
dictionary. The pronunciation dictionary maps each word in the transcription to its 
corresponding pronunciation. The functional block diagram of the tool is given in 
figure 1. 
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Speech Feature 
Extraction 

Phone list
Transcription files Initialization of 

HMM Models

Training the 
Models

Fixing the 
silence Models 

Phone Labeling Converting to 
SFS format 

Pronunciation 
Dictionary 

Syllable Labeling 

Phone labels 

Syllable labels
Syllabification rules 

 

Fig. 1. The functional block diagram of the system 

2   System – Overview 

2.1   Feature Extraction 

Feature extraction is the process of transforming the speech waveform into a set of 
feature vectors. The system is configured to extract features based on Mel Frequency 
Cepstral Coefficients (MFCCs) [2]. Speech will be converted to a sequence of feature 
vectors of length 39. This number, 39, is computed from the length of the parameter-
ized static vector (MFCC_0 = 13) plus the delta coefficients (+13) plus the accelera-
tion coefficients (+13) [2].  System is configured with 10ms frame rate with 25ms 
Hamming window.  

2.2   Initialization of HMM Models 

HMM initialization process involves the creation of HMM definition file, finding and 
storing of global mean and variance.  The HMM definition file contains 

• Type of observation vector 
• Number and width of each data stream 
• Number of states  
• Transition matrix 
• Mixture component weights or discrete probabilities 
• Means and covariances 

There will be HMM definition for each phone in the phone list. Three state left-to-
right HMM with no skip is used to represent each phone. The command “HCompV”  
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scans the data, and computes the global mean and variance for the whole corpus and 
outputs to a file [2]. 

2.3   Training the Models 

The inputs to the training module are parameterized speech files, transcription, pro-
nunciation dictionary and phone list. 

Creation of transcription files. Three levels of transcription of the input speech are 
essential for the functioning of the tool ie sentence, word and phone level 

The sentence level transcription is kept in the following format  

text0001 yuvatiye mar:r:evit:eyoo vechch kolappet:uttiya ......  
text0002 yuur:oopp r:ashhya jeitaakkal:~ khattar:in!~r:e ...... 

The word level transcription was done by using a script file and phone level transcrip-
tion is done using HLEd command in HTK tool kit [2]. 

Creation of pronunciation dictionary. The pronunciation dictionary maps the or-
thographic representation in the transcription file to its corresponding pronunciations. 
For a language like Malayalam which is phonetic, creation of pronunciation diction-
ary is considered to be comparatively easy. But the existence of words pronounced 
differently from orthographical representation and common usage of foreign words 
having valid multiple pronunciations makes the creation of pronunciation dictionary 
difficult.  

Malayalam in general has three types of words [1] 

Type-1- Pronunciation in correspondence to the orthographic representation 
Type-2- Pronunciation different from respective orthographic representation  
Type-3- Pronunciation different from respective orthographic representation and 
having  multiple valid pronunciations 

Eg:- utpannam  u t p a n# n# a m 
         utpannam(2)  u l p a n# n# a m 

For accurate labeling, all the pronunciation variations for the words in the transcript 
file should also be available in the pronunciation dictionary.  A hybrid method com-
bining both the rule and statistical method is applied to generate the pronunciation 
variations [1].   

The pronunciation dictionary  is then converted to HTK format by using the HTK 
tool kit which take the phone list, created pronunciation dictionary and the sorted 
unique word list as input and creates dictionary in HTK format. 

Training process. Training constitutes the re-estimation of initial parameters such as 
means, covariances and transition matrix.  The training process is iterative and uses 
the Baum-Welsh algorithm for re-estimating the parameters and stores it to a file. 
After the three iterations the silence model is fixed and then the training iteration will 
be continued up to ten so that parameters get stabilized. 
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2.4   Fixing the Silence Models 

There are two types of silence in the input speech data, one at the beginning and end 
of sentences which is long (sil) and other between the phrases which is short (sp). The 
fixing of silence models involves the following processes [2].   

• Making the long silence model more robust to various impulsive noises in the 
speech data by adding an extra transition between states. 

• Creating one state short pause model which has direct transition from entry to 
exit node. This model has its emitting state tied to the centre of the silence model 

2.5   Phone Labeling 

The phone models created so far can be used to realign the training data and create 
new transcriptions. It is implemented using  the Viterbi Algorithm, an ingenuous 
method for finding the most likely sequence in a probability distribution.  It requires 
the “pronunciation'” for the silence model to be present in the dictionary.  

The following is the format of the labeled output   

#!MLF!# 
"mfc/text0001.lab"  # the name of the file  
# Format :-  Start duration <space> End duration<space> phone name<space> 
Word [optional] 
0 6400000 SIL SIL 
6400000 7400000 y yu 
7400000 7900000 u 
12200000 12200000 sp 

2.6   Syllable Labeling 

The phone labels from the previous module are converted to syllable label by apply-
ing the syllabification rule [4]. The phone segments are merged and segment dura-
tions are recalculated. 

The labeled output is  as follows  

0 6400000 SIL SIL 
6400000 7900000 yu  yu 
12200000 12200000 sp 

2.7   Converting to SFS Format 

Speech Filing System (SFS) is used as a visualizing tool for the labeled file. It can 
also be used for manual correction of the labels and train them for getting more accu-
rate results.  

The following steps are to be executed for viewing both speech and labeled file in 
SFS [3] 

1. Creates a SFS file- hed -n <name of SFS file>  
2. Loads the label file- anload -H <name of label file> <name of transcrip-

tion file> <name of the created SFS file>  
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3. Link the corresponding speech file to the created SFS file- slink -isp -f  
<sampling rate> <path speech file> <name of SFS file> 

After executing these steps open the SFS file and check both label and speech file and 
click view for viewing both labeled and speech file in the same window as given in 
Fig 2. 

 

Fig. 2. Screenshot of labeled file 

3   Performance Results 

The tool has been tested to label Malayalam speech (~ 700 sentences). The difference 
between estimated begin-end points and the actual begin-end points was computed 
and summed to call it as deviation. The segments are broadly classified as consonants 
(other than nasals), vowels and nasals. The deviations were computed for all the seg-
ments and an average deviation noted in milliseconds is used as measure of perform-
ance. The results are tabularized in Table 1. The speed of labeling is also found to be 
reasonably good as it took only 25% less time compared to EHMM based labeling 
tool provided in festival.  

Table 1. The results of testing 

Segment type Avg. Deviation 
(ms) 

Nasals 22 
Consonants (Other than nasals) 15 

Vowels 20 
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4   Conclusion 

The comparison of labels generated by the tool with the manual one shows only an 
average deviation of 19 ms.. The labeling speed is also found to be quite satisfactory 
with around 5second per sentence. But the average deviation of nasals is found to be 
more compared to others. The syllable labels are derived from phone label and there-
fore the deviation will be added up and hence the error will be more for syllable label-
ing. Another limitation of the tool is with the labeling of long silence (i. e. with the 
silence more than 40 ms). It will be labeled as a part of adjacent segment rather than 
single one. Currently there is no provision for handling non speech data like lip 
sound, cough etc in the speech data. Our next effort will be to remove these limita-
tions and improve the system to handle any speech data.  
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Abstract. In applications like Morphological Analyzer, Machine Aided Trans-
lation (MAT), Spell checker, etc. the verb synthesis and or generation are prime 
tasks. For paradigm approach verb classification is needed. There exist many 
verb classifications in Malayalam. Suranad Kunjan Pillai's  classification con-
tains sixteen classes, Wickremasinghe and Menon proposed eight, Sekhar and 
Glazov have twelve, Asher and Prabodhchandran Nair have four and Valentine 
have two.[1]  All descriptions focus on past tense forms, because the much sim-
pler forms present and future tense forms are easily predictable. In regard to 
verbs an entirely new item of work had to be undertaken. The verbs in the lan-
guage present a multiplicity of conjugational forms which may perplex anyone 
who is not thoroughly familiar with them.[3] This paper is focused on the clas-
sification of verbs based on the past forms and the morphophonemic changes in 
the verb roots. This classification is basically done for the rule based MAT Sys-
tem and can be used in the similar NLP applications.   

Keywords: Verb morphology, Morphophonemic changes, verb classes, causa-
tive suffix. 

1   Introduction 

The first step in natural language processing (NLP) is to recognize the words in a 
sentence. We have to look into the way they are created, placement of morphemes in 
a word, combinations of the morphemes or words and the rules associated with the 
formation of a semantic category... The analysis of words will provide the syntactic 
and semantic information. There must be an accord between the language rules and 
computation. An effective linguistic rule customized for computational purpose can 
make a paradigm shift in the field of NLP. Malayalam is a morphologically rich lan-
guage. Even a complete sentence can be combined together to form a word. Decom-
position of such sentence is highly complicated. A verb can have up to ten suffix 
attachments. [5] This makes the analysis of verb a complex task.  Notable works on 
Malayalam verb classification are by Prof. A.R.Rajaraja Varma and Prof. Suranad 
Kunjan Pillai (SKP). We have derived the 53 classes from the 16 classes of SKPs 
verb classification. Roman notations used for Malayalam representation is given in 
appendix 1. 
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2   Verb Classification of Prof. A.R. Rajaraja Varma (ARR) 

ARR was an Indian poet, grammarian and Professor of Oriental Languages at Maha-
raja's College (Present University College) Trivandrum (1910-18). He wrote widely in 
Sanskrit and Malayalam. He is known as Kerala Panini for his contributions to 
Malayalam Grammar. He had listed and classified Malayalam verbs into 38 different 
classes in his monumental work Keralapaniniyam. The classification has been ana-
lyzed in detail and found not suitable for computational purpose. For computational 
purposes, the root word belonging to each class mentioned by ARR has to be rear-
ranged to a new classification based on root word ending and its behavior in various 
morphological processes. The available classification is a listing of verbs on the basis 
of karita and akarita forms and root word ending [2]. For Example, root word ending 
in Alveolar ‘l’ akarita (akal, wal, iyal, etc.), ending in Alveolar ‘l’ karita (El, wOl, nil, 
etc), etc. This classification can be treated only as a listing of root verbs considering 
word ending and not suitable for use in language computing as such. An extensive 
study is needed for the reclassification in this case. At the same time the root words 
listed by ARR was used for verifying SKP’s list of root words. For the verb “iruwwi” 
SKP has given two root words “iru/iZ_”. We verified this with the ARR’s root forms 
and have taken the apt root ‘iZ_’ for classification. 

3   Verb Classifications by Prof. Suranad Kunjan Pillai (SKP) 

SKP is a historian, researcher, lexicographer, poet, essayist, literary critic, orator, 
socio-cultural leader, grammarian, educationist, and scholar of Malayalam language.  
His verb classification has been published in the first volume of Malayalam lexicon 
which is based on the tense suffixes especially the past form of the verb. This contains 
a total of 2881 root verbs. When a tense suffix or causative suffix is added to a root 
verb certain morphophonemic changes will occur. SKP has considered this change in 
a pedagogical view. [1] The classification has been analyzed thoroughly to find the 
compatibility for various computational purposes.  

In the preface to the volume he mentioned the parameters used for the classifica-
tion. The morphophonemic change which occurs in the root verb while adding a tense 
suffix has been taken care of in the classification. He paid much attention to classify 
Sanskrit derived Malayalam verbs, which is the largest group of Malayalam verbs.. 
Before each class he has demonstrated the inflection process of the members in the 
class except the causative forms. Due to these features the classification is found suit-
able for computation. But it can not be accepted as such for computation. Root words 
which are belonging to a particular class contain various word ending. Those word 
endings will have different morphophonemic changes. SKP’s classification has two 
major groups of verbs evolved from the realization of past tense. One group i.e. 
classes from 13-16 the verb ending is ‘i’ and for the other group the verb ending is 
‘wu’ and its variants. The variants are wu, ttu, nnu, ZZu, ccu, FFu, and NNu. This 
classification will allow the prediction of a past tense form from a statement of the 
phonology of the stem. Considering this a reclassification was done with minimum 
deviation from the base classification. 
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Table 1. SKP’s 16 classes of Verbs  

Class 
No 

Class Name No of 
words  

Past Form Past tense formation 

Category -‘wu’ 
1 uYuka 13 uYuwu u-wu->wu 
2 uNNuka 7 uNtu N_+wu->Ntu 
3 ituka 14 ittu t+wu->ttu, Z+wu->ZZu 
4 atayuka 202 ataFFu Y+n+wu->FFu 
5 karaLuka 27 karaNtu L_+n+wu ->Ntu 
6 akaYuka 22 akaNNu Y+n+wu->NNu, nnu 
7 akaluka 102 akannu l+n+wu->nnu, r+n+wu->nnu 
8 ataZ_kkuka 155 ataZ_wwu kk+wu->wwu 
9 El_kkuka 10 EZZu l+kk+wu->ZZu, L_+kk+wu->ttu 
10 ayaykkuka 422 ayaccu y+kk+wu->ccu 
11 aMSikkuka 1013 aMSiccu i+kk+wu->ccu 
12 anal_kkuka 30 anannu kk+n+wu ->nnu 

Category- ‘i’ 
13 akaZUka 530 akaZi i 
14 ataffuka 127 ataffi n+k+i->ffi 
15 atakkuka 132 ataccu kk+i->kki 
16 ataZ_wwuka 75 ataZ_wwi ww+i->wwi 

Morphotactics for class 1 

1) Three tense forms  Root Word (RW) + unnu, RW + uM, RW + u+ wu.   
2) Causative (Single)  RW + uvi + kk + unnu/uM or RW + uvi + ccu. 

  (Double) RW+ uvi+ppi+kk+ unnu/uM or RW + uvi+ppi+ccu. 
3) Verbal Noun  RW + al_ 

Here SKP’s classification is chosen as base because each class has a unique word 
ending for a verb in the past tense forms. That will make the computation simpler and 
easier. After going through all the classes of SKP’s verb classification we found that 
for computational applications 16 classes will not be sufficient as the root word end-
ings are different in same class. Analysis will be difficult with this classification. If 
we use the rules derived for ‘uY’ for ‘nO’ in class 2, the rule will fail and will not 
give proper verb formation. Considering the computational aspect and without much 
sacrificing the syntactic rules we have derived 53 verb classes from the 16 classifica-
tion. These 53 classifications are based on the addition or deletion of characters of the 
root verb in the formation of different tense forms. Some of the SKP’s verb classes 
were merged together for computational purpose...  

The bases of classifications are as follows: 

1. Make the computational processing simpler 
2. Minimum number of classes for handling all verb forms 
3. Each class must take care of transitive, intransitive, and their causative and 

noun form of the verb formed by a root word. 
4. Minimum deviation from SKP’s verb classification while grouping of root 

words. 
5. No alterations in the language rules 
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In some cases same root words are occurring in different classes of SKP’s verb 
classification. For example consider the root word ‘vIY’. This is placed in Classes 16 
and 6. The past form “vIYwwi” and “vINu” are the transitive and intransitive forms 
respectively of the verb “vIY”... Thus they are included in the same class... See table: 
2 for example. 

Table 2. Same paradigm for different SKP classes 

Sl No Paradigm Class Past form Past tense formation SKP class 
vIYwwi Y+i->Ywwi 16 1 8 

vINu Y+wu->Nu 6 
varuwwi r+i ->wwi 13 2 27 

vannu r+wu->nnu 7 

Consider the SKP Class 2 verbs. The root words are ending in three different forms 
like ‘vE’ for ‘venwu’,’nO’ for ‘nonwu’ and ‘uN_’ for ‘uNtu’. Generation of all the 
verb forms is not possible using the same rule. So SKP Class 2 is subdivided into 
three paradigm classes. SKP Class 10 has 37 different root word endings. This class is 
divided into 11 sub classes. Verb formation for all the verbs with the 37 different root 
word ending are contained in the 11 sub classes. Similarly past form verb ending for 
SKP Class 13 is ‘i’ and almost all the root words are different.  This class is also cate-
gorized into 11 sub classes and is able to generate all the verb formation of SKP Class 
13 root words. 

In applications like Morphological Synthesizer the selected paradigm class should 
work for both transitive and intransitive forms. For the same root word the classes are 
different for some verbs in the SKP’s classification. This will make the synthesis am-
biguous. To avoid that such verb classes can be placed in the same category. 

In applications like Machine Translation we use morphological synthesizers. If we 
are adopting rule based system, we need a dictionary that contains root word and its 
paradigm number. The paradigm number will give the inflection details of the verb 
according to its Tense, Aspect and Modality. While going through a set of verb roots 
like ‘nil’ (ninnu) and ‘cEr’ (cEZ_nnu) it is found that the root word is different for its 
transitive and intransitive form. In such case the root word itself is changed to ac-
commodate it in the same class. This is a violation of language rule. But applications 
like machine translation should give more importance to the apt meaning of the word. 
We need a single root word that is able to generate the tense, aspect and modality of 
the verb. So the violation of language rule is inevitable here. 

Table 3. Different root word for words with same meaning in transitive and intransitive form 

Transitive Form Intransitive Form Sl 
No Root Word Past Root Word Past 

1 nil niZ_wwi nil_ ninnu 
2 urutt urutti uruL_ uruNtu 
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Some compound verbs behave differently considering its final root word. The verb 
like kAwwirunnu (kAww+irunnu) is not having the similar properties of verb 
‘irunnu’. It does not have an intransitive form as in verb ‘irunnu’. Such verb forms are 
listed in separate classes. 

Table 4. Compound Verbs 

Sl No Class Name Root Past tense formation SKP class 
kAwwiZ_ Z_+wu nnu 1 52 
-- -- 

12 

vEZ_pet t+i->uwwi 16 2 53 
vEZ_pet t+wu->ttu 3 

The illustration of generation of the verb form based on the paradigm number ap-
proach is given below: 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Morph Synthesizer 

Morph Synthesizer gets the root word along with its paradigm number. >From the 
paradigm info the suffixes needed for inflection is extracted using the syntactic infor-
mation. Consider the sentence “Raman crossed the river”. The Malayalam translation 
will be “rAman_ puYa muZiccu katannu”.. The Malayalam equivalent of “crossed” 
will be “muZiccu katannu”. The root word will be “muZiccu kata”. The assigned 
paradigm is 22 and the Synthesiser will identify the word “crossed” as intransitive 
verb. Using this info it will identify the suffix “nnu” and combine it with the verb root 
to generate the past tense form “muZiccu katannu”. 

An example for the verb formation structure in a morph synthesiser for a verb with 
paradigm number 22, using C language is given below: 

#include "struct.h" 
struct verb_paradigms verb_parad_list[1090] =  
{ 
  0, "wwunnu",  //katawwunnu /*trans*/ 
  0, "wwuM",  //katawwuM 
  0, "wwi",   //katawwi 
  0, "kkunnu",  //katakkunnu /*Intrans*/ 
  0, "kkuM",  //katakkuM 
  0, "nnu",   //katannu 

Verb Root and  
Paradigm Number 

Syntactic  
Information 

Sandhi  
Engine 

Inflected 
verb form 
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  0, "wwikkunnu",  //katawwikkunnu /*Causative*/ 
  0, "wwikkuM",  //katawwikkuM 
  0, "wwiccu",  //katawwiccu 
  0, "wwippikkunnu", //katawwippikkunnu /*Causative*/ 
  0, "wwippikkuM", //katawwippikkuM 
  0, "wwippiccu",  //katawwippiccu 
  0, "wwal_",  //katawwal_ /*verbal noun*/ 

‘0’ indicates the deletion of characters from the root word while inflection/derivation, 
the string in double quotes is the suffix to be added. In the example above we can 
observe how the verb forms are generated for the root word ‘kata’ in transitive, in-
transitive, their causative forms and the verbal noun formation. 

Some Sanskrit verbs in SKP Class 11 will also have some deviation from usual 
verb formation in the transitive form. There will be no transitive form for certain root 
verb like ‘Ananx’.  If the sentence has an object then the verb will appear in its causa-
tive form ‘Ananxippiccu’. 

4   Conclusions 

The 53 verb classes can be used to realize most of the verb roots in Malayalam for 
NLP applications. The verbs belonging to two different groups are merged together in 
some classes. We cannot say exactly that this is a subset of SKP’s verb classification. 
Many of the verb classes are added to handle the exceptions in the classifications. In 
some cases the root word of transitive and intransitive form of a verb with the same 
meaning is different. Violation of language rules were necessitated here. The com-
pound verb will have different formations compared to that of the final root. We have 
analyzed the rules for about 6700 verbs and they are giving proper verb formation. 
This includes commonly occurring compound verbs that are combined with common 
nouns like “nqwwaM ceywu” for the English word “danced”. This classification is 
found to give the intended verb formation for the 6700 verbs tested. Even if it is de-
rived based on the SKP’s classification, this classification can be treated as a general 
one and can be used for all NLP applications of similar nature.  
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Appendix 1: Roman Notations for Malayalam 

Unicode
Glyph

Unicode Value in Hex ASCII 
Character 

ASCII Value 
in Hex 

a 0D05 a 61 

0D06 A 41 

i 0D07 i 69 

0D08 I 49 

u 0D09 u 75 

0D0A U 55 

0D0B q 71 

e 0D0E e 65 

0D0F E 45 

0D10 Q 51 

o 0D12 o 6F 

0D13 O 4F 

0D14 V 56 

a 0D02 M 4D 

a 0D03 H 48 

0D15 k 6B 

0D16 K 4B 

0D17 g 67 

0D18 G 47 

0D19 f 66 

0D1A c 63 

0D1B C 43 

0D1C j 6A 

0D1D J 4A 

0D1E F 46 

0D1F t 74 

0D20 T 54 

0D21 d 64 

0D22 D 44 

0D23 N 4E 

0D24 w 77 

0D25 W 57 

0D26 x 78 
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0D27 X 58 

0D28 n 6E 

0D2A p 70 

0D2B P 50 

0D2C b 62 

0D2D B 42 

0D2E m 6D 

0D2F y 59 

0D30 r 72 

0D32 l 6C 

0D35 v 76 

0D36 S 53 

0D37 R 52 

0D38 s 73 

0D39 h 68 

0D33 L 4C 

0D34 Y 59 

0D31 Z 5A 

0D28 + 0D4D + 200D n_ 6E + 5F 

0D33 + 0D4D + 200D L_ 4C + 5F 

0D23 + 0D4D + 200D N_ 4E + 5F 

0D30 + 0D4D + 200D Z_ 5A + 5F 

0D32 + 0D4D + 200D l_ 6C + 5F 

0D3E A 41 

0D3F i 69 

0D40 I 49 

0D41 u 75 

0D42 U 55 

0D43 q 71 

0D46 e 65 

0D47 E 45 

0D48 Q 51 

0D4A o 6F 

0D4B O 4F 

0D4C V 56 
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Abstract. Tamil is one of the ancient languages of the world with records in the 
language dating back over two millennia. Epigraphical scripts are the inscription 
written on various materials and the study of it is vital in knowing the civilized 
past and hence classification of character belonging to various periods is 
imperative before using the character bank of the particular period. Therefore a 
system is proposed for prediction of the period and it is being done by examining 
a few character referred to as test characters in Tamil language. These test 
characters are sampled from the script automatically and matched with the 
characters available for different periods using machine intelligence. The 
proposed system here has various modules like binarization, thinning, 
segmentation, feature extraction and finally classification and period prediction 
using Support Vector Machine. Its performance is most successful in 
differentiating between four centuries of character. The performance of the 
system is measured using the four parameters such as prediction rate, Correction 
rate, Error rate and Time taken to predict the centuries. The system achieves 
overall accuracy of 90.45%. 

Keywords: Prediction, Support Vector Machine, Tamil language, Epigraphical 
Scripts, Feature Extraction. 

1   Introduction 

For more than thirty years, researchers have been working on Tamil handwritten 
character recognition and prediction of the period of an epigraphical script. 
Epigraphical scripts are the inscription written on various materials and the study of 
theses inscription is vital in knowing the civilized past. To decipher the script 
belonging to different periods it is necessary to use the character pertaining to those 
periods. Hence classification of character belonging to various periods is imperative 
before using the character bank of the particular period [1]. Several scholars have 
developed techniques for the recognition of characters in Indian languages such as 
Devanagari, Bangla, and Telegu whose characters are fairly complex and large in 
numbers. In this research, an experiment is concerned for period prediction of Tamil 
Epigraphical scripts using SVM. In the following discussion, section 2 gives an  
overview of the proposed system, section 3 discuss about the preprocessing  
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techniques which are adopted in the system, section 4 deals with segmentation of line 
and character, section 5 discuss about the feature extraction, section 6 deals with clas-
sification and period prediction and in section 7 and 8 the performance of the pro-
posed system and conclusion are presented respectively. 

2   System Overview 

The underlying objective of this system is to make the interface of a computer more 
natural for a human being. This prediction method is designed to ease the manual bar-
rier by helping the computer to understand human handwritten characters through an 
automated system. The design mainly aims in implementation of character period 
prediction system in which the computer will be able to understand a few simple 
commands, and identify the century of these characters. Figure 1 shows the overall 
system for prediction and figure 2 shows the design for the proposed methodology. 
Figure 3 shows the sample image of different century characters. 

 
Fig. 1. Overall system for Prediction 

 
 Tamil historical 
data 
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Thinning Horizontal and 
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Segmentation 

 Geometrical 
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output 

 

Fig. 2. Design of the proposed system 

 

Fig. 3. Sample images of 6th century character 
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3   Preprocessing 

The aim of preprocessing is to process the images in raw form and obtain images suit-
able for prediction. Since the documents are scanned, the image consists of various 
gray levels. Hence, thresholding becomes an important part of any handwritten char-
acter prediction system.  

3.1   Binarization 

Before performing binarization, this system is in need of noise removal processing. 
Hence Median filter technique is adopted for removing noise from the script image.  
The equ (1) for Median filter is  

                                1
1

2
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i f i
w

o t h e r w i s e
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(1)

 

Then the filtered image is been binarized using Otsu’s method. The process is esti-
mated using the following equ (2) 

              ( ) ( ) ( ) ( ) ( )ttttwtw
2
22

2
11

2 σωσσ +=        (2) 

Weights iω  are the probabilities of the two classes separated by a threshold t and 
2
iσ variances of these classes.This is done since the binary document images allow 

the use of fast binary arithmetic during processing, and also require less space to store 
and this process is achieved by calculating the optimal threshold value. [2] Figure 3 
shows the preprocess phase of the proposed methodology. 

 

Fig. 4. Binarization process 

3.2   Thinning 

Binarized image is therefore skeletoinzed using standard thinning algorithm. Thinning 
is a morphological operation that is used to remove selected foreground pixels from 
binary images. Algorithm iteratively deletes pixels inside the shape to shrink it with-
out shortening it or breaking it apart.[3]  The algorithm makes two passes. The results 
after the two passes decide if a pixel is to be removed to get the skeleton of the object 
of interest.  the equ (3) for thinning is 

                 ( )1 2 3 9.....N P P P P= + + +      (3) 
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Fig. 5. Thinning process 

4   Efficient Segmentation Method for the Proposed Methodology 

In this process it includes two tasks such as line segmentation and character segmen-
tation. This segmentation process use both Vertical and horizontal projection profile 
techniques. By using horizontal projection technique the system segments the lines 
form the document image. [4] The lines in the paragraphs are scanned for horizontal 
space intersection with respect to the background. Histogram of the image is used to 
detect the width of the horizontal lines. Then the lines are scanned vertically for verti-
cal space intersection. The vertical projection profile is obtained by summing pixel 
values along the horizontal axis for each y value using equ (4), 

Profile(y) = ∑ f(x,y)        
(4)

 

                      1<=x<=M  

Here histograms are used to detect the width of the words. Then the words are de-
composed into characters using character width computation. Characters are seg-
mented using Vertical projection technique. The letters could be segmented using the 
vertical projection. However, this method fails for the scripts having no space below 
two text line which could cause difficulty in period prediction and also it may in-
crease the error rate of the prediction. In order to over this a confirmation of top and 
bottom for the character is needed. For this the system uses an optional confirmation 
algorithm implemented in the system for segmentation and the algorithm is: A. start at 
the top of the current line and left of the character. B. scan up to the right of the char-
acter (a).if a black pixels is detected register y as the confirmed top. (b).if not con-
tinue to the next pixel. (c).if no black pixels are found increment y and reset x to scan 
the next horizontal line To increase the efficiency of the system a two pass character 
segmentation algorithm is proposed for Tamil period prediction system. 

 

Fig. 6. Line and character segmentation 
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5   Feature Extraction Phase  

In this phase, all the segmented images are then scaled into a common height and 
width using bilinear interpolation technique. Here each image is divided into equal 
number of horizontal and vertical strips. The key idea is to perform linear interpolation 
first in one direction, and then again in the other direction. Linear interpolation is yield 
in the x-direction using equ (5)  

( ) ( ) ( )2 1
1 11 21

2 2 11

x x x x
f R f Q f Q

x x x x

− −≈ +
− −

      (5) 

Linear interpolation in the y-direction is calculated using equ (6). 

( ) ( ) ( )2 1
1 2

2 2 11

y y y y
f P f R f R

y y y y

− −
≈ +

− −
       (6) 

From the above equation f(x, y) is estimated in the desired form. The characters are 
defined by the following attributes such as Height, Weight, Horizontal Projection, Ver-
tical Projection, Hcenter, Vcenter, HPSkewness and VPSkewness [5]. The following 
table 1 represents the features of Tamil handwritten characters from various periods.  

Table 1. Features of Tamil characters 

 

6   Classification and Period Prediction 

Classification is done using the features extracted in the previous step, which corre-
sponding to the each character attribute. Here the system uses a Support Vector Ma-
chine (SVM) for classification. SVMs are set of related supervised learning method 
used for classification.  It is based on the concept of decision planes that define deci-
sion boundaries [6]. To construct an optimal hyperplane, SVM provides an iterative 
training algorithm which will minimize an error function. For this, training involves 
the minimization of the error function using equ (7) as below: 
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Subject to the constraints   

( )( )T
i i iy w x bφ ρ ξ+ ≥ − and  0, 1,...... ; 0i i Nξ ρ≥ = ≥       (8) 

where C is the capacity constant, w is the vector of coefficients, b a constant and ξi 
are parameters for handling nonseparable data (inputs). The index i label the N train-
ing cases. Note that y±1 represents the class labels and xi is the independent variables. 
The kernel φ is used to transform data from the input (independent) to the feature 
space. The RBF kernel type is selected here to improve the efficiency of Support Vec-
tor Machines in this system. [7] 

 ( )2
exp i jx xφ γ= − −         (9)  

This is mainly because of their localized and finite responses across the entire range 
of the real x-axis. Here the training model takes the input file, target file and trains the 
network. The last phase prediction is so done based on the precision of the classifica-
tion module. Multiclass SVM turned out to be a very efficient method in process of 
prediction here. The accuracy of the algorithm depended on two parameter settings 
(RBF Kernel parameter σ and regularization parameter C).   

 

Fig. 7. Classification and Period predictions 

7   Performance of the System 

The accuracy rate yielded by the SVM classifier was quite commendable. 

 

Fig. 8. SVM classifier Accuracy 

The Sigma and C value is –5 or 0.5 the accuracy is achieved 95 %. The values of the 
parameter is 1 the accuracy 97 %. Figure 7 shows the improving performance/accuracy 



 Period Prediction System for Tamil Epigraphical Scripts 29 

of the system with changing of the parameters. In this system the Sigma and C value is 
static. Here the Sigma and C value is 1. The System was tested using 4 centuries of 
Tamil character and 11 most similar characters respectively. The accuracy rate was 
calculated using 10 fold cross validation technique. Table2 represent performance of 
the SVM based on 4 parameters and Table 3 depicts the Classification and Period pre-
diction accuracy yielded by the various classifiers. 

8   Conclusion 

The period prediction of epigraphical script is the area of research where it is possible 
for the user to the computer and has it understand or recognize what the character is. 
A calculative approach is proposed here for predicting the Tamil scripts using SVM. 
To perform this, proposed methodology uses many tests, like finding whether the 
character is on which century. This research work has successfully managed to iden-
tify the centuries of characters. The proposed system successfully differentiated be-
tween four different centuries of character. The system achieved overall accuracy is 
88.45%. 

Table 2. Performance of the System 

Parameters SVM Classification & Period prediction 
Prediction rate 97.7% 
Correction rate 97.7% 
Error rate 2.2% 
Time 0.031000s 

Table 3. Classifier performances and Period prediction 

Classification 
& Centuries 

SVM Accuracy with % 

CR 10 6th centuries  
11 characters ER 1 

90.9% 

CR 10 10th centuries  
11 characters ER 1 

90.9% 

CR 9 11th centuries  
11 characters ER 2 

81.1% 

CR 10 13th centuries  
11 characters ER 1 

90.9% 
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Abstract. This paper describes the named Entity Recognition (NER) System 
for Hindi using CRF approach. In this paper, our experiments with various fea-
ture combinations for Hindi NER have been explained. The training set has 
been manually annotated with a Named Entity (NE) tagset of 12 tags. The per-
formance of the system has shown improvements by using the part of speech 
(POS) information of the current and surrounding words, name list, location 
name list, organization list, person prefix gazetteers list etc. It has been ob-
served that using prefix and suffix feature helped a lot in improving the results. 
We have achieved Precision, Recall and F-score of 72.78%, 65.82% and 
70.45% respectively for the current NER Hindi system. We have used CRF++ 
toolkit for training and testing data.  

Keywords: Named Entity, Named Entity Recognizer, Conditional Random 
Field, CRF++ toolkit, Tagset, IOB Tagging, Word Prefix, Word Suffix, Context 
Word Feature. 

1   Introduction 

Named Entity Recognition (NER) is the task of identifying and classifying tokens in a 
text document into predefined set of classes such as person, organization, location and 
miscellaneous. It is an important tool in almost all Natural Language Processing 
(NLP). The ability to determine the Named Entity in a text has been established as an 
important task for several natural language processing areas, including Information 
Retrieval, Machine Translation, Information Extraction and Language understanding. 
NER emerged as one of the sub-tasks of the DARPA-Sponsored Message Understand-
ing Conference (MUCs).The current trend in NER is to use the Machine-Learning 
approach, which is more attractive in that it is trainable and adoptable and the mainte-
nance of a machine learning system is much cheaper than that a rule based one. 

2   Related Work for Indian Languages 

Parmod Kumar Gupta et al. (2009) presents the hypothesis by making experiment 
on NER system in Hindi language by using CRF approach. Recall, Precision and  
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F-score are claimed to be 66.7%, 69.5% and 58% respectively [4]. Asif Ekbal et al. 
(2008) reports about the development of a NER system for Bengali and Hindi lan-
guage by using CRF approach. Recall, Precision and F-score are claimed to be 
51.63%, 59.60% and 55.36% for Bengali and 71.05%, 23.54% and 35.37% respec-
tively for Hindi language [5]. Parveen Kumar et al. (2008) reports about the devel-
opment of a NER system for 5 languages (Hindi, Bengali, Oriya, Telugu, Urdu) by 
using Hidden Markov Language. They have used POS-Tag and Chunk information. 
They obtained a decent F-measure of 39.77%, 46.84%, 45.84%, 46.58% and 44.78% 
respectively for all 5 languages [2]. Sujan Kumar Saha et al. (2008) presents the 
hypothesis by making experiments on NER system in Hindi language by using the 
Maximum Entropy and Transliteration approach. They have reported Maximal F-
score of 55.36%, nested F-score of 61.46% and lexical F-score of 59.39% for Hindi 
language respectively [1]. Praneeth M Shishtla et al. (2008) presents the hypothesis 
by making experiments on NER system in Telugu language by adopting CRF ap-
proach. Recall, Precision and F-score are claimed to be 64.70%, 34.57% and 44.91% 
respectively [3].   

3   Experiment Setup 

3.1   Named Entity Tagset  

We have used the tagset1 released in IJCNLP-08 workshop on NER for South and 
South East Asian (SSEA) language.2 We have concentrated on recognizing 12 Named 
Entities. For our experiments we have used the C++ based OpenNLP CRF++4 pack-
age for segmenting/labeling sequential data.  

3.2   Tagging Scheme 

The corpus is tagged using the IOB (Immediately Outside Beginning) tagging 
scheme.  POS tagging of the data has been done manually.  

3.3   Named Entity Feature 

The named entity feature contains 29 columns. The first column contains the current 
word, second word POS feature contains one column, the third column is IOB format 
which contains one column, the fourth column contains the word length and next 
column contains the prefixes and suffixes. It contains window size 5 to 7. The next is 
gazetteer list, which contains 12 columns. We have considered different combination 
from the following set for inspecting the best feature set for NER task: 
Following are the details of the set of the feature that are applied to the NER tasks 

 
o Context Word Feature. The previous and next words of a particular word might 

be used as a feature. In our work we have experimented on word window of 
length 5 and 7. 

                                                           
1 http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=3 
2 http://ltrc.iiit.ac.in/ner-ssea-08/ 
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o Word Prefix. The prefix information of a word is helpful to identify NEs. A 
fixed length prefix of the current and the surrounding words might be treated as 
feature. In our work, the length of prefixes is upto 4. We have experimented on 
the word by categorizing them on the basis of word prefix. So, the fourth, third, 
second and first letter is used as a prefix. 

o Word Suffix. Word suffix information is helpful to identify NEs. A fixed length 
word of the current and surrounding words might be treated as feature. In our 
work, the length of suffixes is upto 7. So, the last seventh, sixth, fifth, fourth, 
third, second and first letter of the word is used as a suffix in our experiments. 

o POS Information. The first categorization of named entity depends upon POS 
tag. POS tagger is very helpful in tagging the data. POS feature is done manually 
for training data only in our experiments. In the experiment we have used all the 
8 POS tags. 

o Gazetteer Lists. The lists of gazetteers have been used for preparing the training 
data. 12 different lists which were prepared with the help of telephone directory 
and various web sites have been used. These lists are not exhaustive. Following 
are the description of these lists. 

• Person Name. This list contains near about 8000 entries for the first name of the 
person, middle name and the last names. This feature is set to 1 for the current 
word otherwise it set to 0.  

• Location Name. This list contains near about 1000 entries for the location names 
like cities of India, different state names, district names, country names etc and 
the feature is set to 1 for the current word. 

• Organization Name. This list contains near about 900 entries for the organiza-
tion names like political parties, college names etc and the feature is set to 1 for 
the current word. 

• Person Prefix. This list consists on 120 entries. This feature is set to 1 for the 
current and next 2 words. 

• Abbreviation Name. This list contains 600 abbreviations. This feature set to 1 
for the current word. There are two types of entries in the lists. In the first list 
there is no any space between two characters and another list contains a dot be-
tween every character. 

• Month Name and Day Name. This list contains the name of all the twelve dif-
ferent months of both English and Hindi calendars also it contains the day names. 
This list total contains 31 entries. This feature is set to 1 for the current word. 

3.4   Training and Test Set Collection 

For the evaluation of Hindi NER, we have developed training and test data which has 
been manually tagged. This corpus has been developed from the Online Hindi news-
papers like http://aajtak.intoday.in/, http://www.bhaskar.com/ etc. and we used 
http://www.google.com/transliterate/ for transliterating the data. We have also refined 
the training and test data sets in order to remove the sentences which do not contain 
any named entity. After this the refinement the training set consists of 21,000 words 
and test data contains 12000 words. There are total 1200 NEs in training set and 395 
NEs in test set data. 
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4   Evaluation and Results 

We have used the window [-3,-2,-1,0,+1,+2,+3] for seven words, then we have used 
other features to find out the optimal feature set. The feature sets and the correspond-
ing F-scores values are mentioned below. After applying all these features we have 
achieved an overall result Precision, Recall and F-score of 72.78%, 65.82% and 
70.45% respectively for the current NER Hindi system. We conducted experiments on 
a testing data of 21,000 words. All the results are shown in Table 1. 

Table 1. Feature set by Overall Code 

Feature set F-Score 
(%) 

Pw,cw,nw 34.12 
Pw2,pw,cw,nw,nw2 42.67 
Pw3,pw2,pw,cw,nw,nw2,nw3 42.44 
Pw2,pw,cw,nw,nw2,pt,pp,cp, 1<|prefix|<5,1<suffix|<5 76.34 
Pw2,pw,cw,nw,pt,cp,np1<|prefix|<5,1<suffix|<5 77.67 
Pw2,pw,cw,nw,nw2,pt,cp,np,1<prefix|<5,1<suffix<5,1 name list 82.13 
Pw2,pw,cw,nw,nw2,pt,cp,np,0<prefix|<4,0<suffix<4,1 name list 80.80 
Pw2,pw,cw,nw,nw2,pt,cp,np,1<prefix|<5,1<suffix<5, name list, 
location list, person prefix list 

81.12 

Pw2,pw,cw,nw,nw2,pt,cp,np,1<prefix|<5,1<suffix<5, name list, 
location list, person prefix list, title object list, number list, time list 

78.02 

Cw: current word, pw: previous word, nw: next word, pw2: previous to previous 
word, nw2: next to next word, cp: POS tag of current word, pp: POS tag of previous 
word, np: POS tag of next word, pt: NE tag of previous word 
|prefix| length of the prefix of the current word, |suffix| length of the suffix of the 
current word. 
Cwi,pwi,nwi: current , previous and the next ith word from the current word.  

We have also observed that for different NE tags, different feature sets gives better 
results. The best F-score value is 80% found, in NEP tag because we have used it 
from the first name, middle name and the last name gazetteer lists. By using the prefix 
and suffix of the current name no result is changed. The f-score value will decrease 
when we will add person name list and location name will be add in a gazetteer list 
because some times person names and location names are same. In database, the des-
ignation of a person has been written with the person name.  

5   Conclusion 

CRF approach for NER for Hindi and all the 12 NE tags has been used. Experiments 
have been performed on training data from Sports domain because this data contains 
large number of named entities. Six features- Context Word Feature, Word Prefix, 
Word Suffix, POS Information, Named Entity Feature and various Gazetteer Lists 
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have been used. The contextual window of the size seven, prefix and suffix length and 
NE information of the previous word, current word and different digit features have 
been used. After applying all these features an overall Precision, Recall and F-score of 
72.78%, 65.82% and 70.45% respectively for the current NER Hindi system has been 
found. The performance of the system can further be improved by using the Part-Of-
Speech (POS) information of the current and surrounding words also.  
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Abstract. Keyphrases provide the subject metadata that gives the clues about 
the content of a document. In this paper, we present a new method for Bengali 
keyphrase extraction. The proposed method has several steps such as extraction 
of n-grams, identification of candidate keyphrases and assigning scores to the 
candidate keyphrases. Since Bengali is a highly inflectional language, we have 
developed a lightweight stemmer for stemming the candidate keyphrases. The 
proposed method has been tested on a collection of Bengali documents selected 
from a Bengali corpus downloadable from TDIL website. 

Keywords: Bengali keyphrase extraction, Information retrieval, Metadata. 

1   Introduction  

Keyphrases are sequence of words that capture the main topics covered in a docu-
ment. Keyphrases are useful for many applications such as summarization, indexing, 
improving performance of retrieval engines etc.  

In early works, the researchers have proposed a number of keyphrase extraction 
techniques discussed below. 

A technique to choose noun phrases from a document as keyphrases has been pro-
posed in [1] that uses the features such as phrase length, frequency and head noun.  

Chien [2] introduced a PAT-tree-based keyphrases extraction system for Chinese 
and other oriental languages.   

 HaCohen-Kerner [3] and HaCohen-Kerner et al. [4] proposed a model for key-
phrase extraction which uses a supervised machine learning method to combine the 
baseline methods. They applied the decision tree for effective feature combination.   

Hulth et al. [5] developed a keyphrase extraction algorithm in which they inte-
grated a hierarchically organized thesaurus and the frequency analysis.  

A graph based model for keyphrase extraction has been proposed in [6].  
 A keyphrase extraction approach that uses a Neural Network for keyphrase extrac-

tion has been presented in [7]. 
Turney [8] has viewed the problem of keyphrase extraction as supervised learning 

task. Kea is a keyphrase extraction system, presented in [9][10], uses the Bayesian 
learning technique for keyphrase extraction task.  

An n-gram based technique for filtering keyphrases has been presented in [11]. 
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All the keyphrase extraction approaches discussed above have been tested on the 
documents written in English language. In this paper, we have presented a new 
method for extracting keyphrases from Bengali documents using many features such 
as position of phrase’s first occurrence, phrase's frequency, number of links of a 
phrase to other phrases, phrase length and phrase’s inverse document frequency.  

Since Bengali is a partially free order and highly inflectional language, candidate 
keyphrase identification is relatively tough and stemming of the candidate keyphrases 
is desirable. Stemming is required for computing the frequency of a phrase in a docu-
ment. So, we have developed an n-gram based candidate keyphrase identification 
method and a lightweight stemmer for stemming the candidate keyphrases. 

The paper is organized as follows. The description of the corpus has been dis-
cussed in section 2. In section 3, the proposed keyphrase extraction method has been 
presented. We present the evaluation and the experimental results in section 5. 

2   Description of the Corpus 

To build a test corpus, we have selected 41 documents from the corpus downloaded 
from TDIL website: “www.tdil.mit.gov.in”.  Keyphrases for each document have been 
created manually. Most of the keyphrases consist of one, two and three words.  
Keyphrases consisting of more than three words are few in number in our corpus.  
Average number of keyphrases per document= 9. Average number of sentences per 
document= 27.  

3   Proposed Method 

The proposed keyphrase extraction method has two major components: candidate 
phrase identification and ranking of candidate phrases for extracting the final set of 
keyphrases. 

3.1   Candidate Keyphrase Identification 

Our n-gram based candidate keyphrase identification technique extracts n-grams from 
the sentences of an input Bengali document. We treat the n-grams representing noun 
phrases as the initial set of candidate keyphrases. Each candidate phrase is stemmed 
using a lightweight stemming procedure.  

Stemming. In our work, we use a lightweight stemmer for Bengali that strips the 
suffixes using a predefined suffix list, on a “longest match” basis, using the algorithm 
similar to that for Hindi [12]. We find that stemming procedure is useful to compute 
the frequency of a phrase. 

N-gram Based Candidate Keyphrase Extraction. Our algorithm for N-gram based 
candidate keyphrase extraction, accepts a Bengali text document, a stop-word list, a 
Bengali verb suffix list and a Bengali noun suffix list as the input. The stop word list 
which consists of 275 stop words has been created manually from our corpus. The 
verb suffix list consists of 18 verb suffixes and the noun suffix list consists of 20 noun 
suffixes.  
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The algorithm initially computes unigrams, bigrams and trigrams from each sen-
tence in a document.  N-grams which start or end with a stop word are discarded. 
Similarly, the n-grams which start or end with a word having a verb suffix are also 
discarded to form the final list of candidate keyphrases. The candidate phrases are 
then stemmed using a lightweight suffix matching method [12] that uses the noun 
suffix list for this purpose. 

3.2   Calculating Scores for Keyphrase Candidates 

The score for a candidate keyphrase is defined by adding a factor SF to a factor SP. SP 
is the score for a phrase for its first occurrence and SF is the score for a phrase, which 
nonlinearly combines phrase's frequency (PF), number of links of a phrase to other 
phrases (LC), phrase length (PL) and phrase’s inverse document frequency (IDF). 
Thus we have the following equation: 

Score of a candidate phrase = _P F normS S+ , where SF_norm is the normalized value 

of SF.  The score for a phrase for its first occurrence SP is defined as: 
1

PS
i

= , 

where i is the sentence number where the phrase has occurred first in a document. 
The score for a phrase SF, which nonlinearly combines phrase's frequency (PF), 

number of links of a phrase to other phrases (LC), phrase length (PL) and inverse 
document frequency (IDF), is defined as  
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N: is the total number of documents in the collection 
DF: the number of documents in the collection, which contain a phrase  
m: maximum of the lengths of the candidate keyphrases belonging to a document 

To normalize the value of SF, we divide this value by the maximum of SF values for 
the candidate keyphrases. The formula for computing SF has four major components 
(1) Phrase frequency, whose value has been squared to emphasize more on the 
phrase’s independent occurrence than its partial occurrence, (2) Phrase’s links to 
other phrases, which indicates the number of partial occurrences of a phrase in a 
document. We consider a phrase P has a link to another phrase Q if P and Q share 
some common words, (3) Phrase Length: we hypothesize that phrase frequency has 
some non-linear relationships with the phrase length, because we observed in our 
corpus that the average frequency of one-word phrases is greater than that of two-
word phrases and the average frequency of two-word phrases is greater than that of 
three-word phrases and so on, (4) IDF (inverse document frequency): It gives the 
global statistics about a term. IDF value of a phrase indicates that how rare a phrase in 
the natural language corpus.  
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3.3   Extracting Keyphrases 

All the scores of keyphrase candidates are normalized to range from 0 to 1 after they 
are calculated. All candidate keyphrases for a document are then ranked in descending 
order by their scores. The keyphrases of a document can be extracted from the ranked 
list. Our system has a parameter for users to decide the number of keyphrases they 
want from a document. The number of extracted keyphrases for a document can be 
defined in a specific number of keyphrases to be extracted. 

4   Comparisons to Existing Methods 

We did not find any previous research work on Bengali keyphrase extraction for 
comparison to our work. So, we compare the proposed method with a hybrid method 
that linearly combines two baseline methods in English domain: TF*IDF based 
method (where TF is the number of times a phrase occurs in a document and IDF= 
log (N/(DF+1))) and position based method (discussed in subsection 3.2). 

5   Evaluation and Experimental Results 

To evaluate the Bengali keyphrase extraction methods, we use 41 Bengali articles 
downloaded from the TDIL website.  Details on corpus development have been dis-
cussed in section 2. From each of 41 test documents, we extract the desired number of 
keyphrases using the proposed method (discussed in section 3) and the baseline 
method (discussed in section 4). The number of keyphrases to be extracted from a 
document is set to 5, 10 and 15. 

We have evaluated the proposed keyphrase extraction system using the well known   
metrics: precision and recall. The precision and recall are defined as follows: 

Precision = 
N

K
 and  Recall = 

N

M
 

Where, N = number of keyphrases matched, K = number of keyphrases generated by 
the system and M = number of keyphrases generated manually. 

During the comparison between the manually created keyphrases and the system 
generated keyphrases, the keyphrases are also stemmed using the same procedure 
discussed in subsection 3.1 and a match between a manually created keyphrase  
and a system generated keyphrase is meant for a full match (no partial match is 
considered). 

5.1   Results 

Fig. 1 shows the manually created keyphrases for the test document number 3 in our 
corpus and fig. 2 shows the top 10 keyphrases extracted by the system that uses the 
proposed method for extracting keyphrases from the document number 3.  
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  ,  s ,  k , u  
i  , p l ,   n ,  k , 

 , a
 

Fig. 1. Manually created keyphrases for the document number 3 in our test corpus 

 
 
 

,  s ,  k , u  i  
, p l , p l  , k   , , 

p l,  s  u  
 

Fig. 2. Top 10 keyphrases extracted by the proposed method from  the document number 3 in 
our test corpus 

We calculate the precision and recall for the baseline method and the proposed 
method when the number of extracted keyphrases is 5, 10 and 15 respectively and we 
show in table 1 the results after testing those methods on our dataset.  

Table 1 shows the comparisons between the proposed method and the baseline 
method that uses TFIDF and positional features. We also conduct the statistical sig-
nificance test on the difference between precisions of the two methods, as well as 
their recalls, using a paired t test. From table 1, we can find that, in respect to preci-
sion and recall, the proposed method performs better than a hybrid method combining 
two baseline methods TFIDF and position. The results are statistically significant at 
95% confidence level in most of the cases. 

Table 1. Comparisons between the proposed method and the baseline method that uses TFIDF 
and position features 

Number of 
extracted 
keyphrases 

Average Precision Significance 
test on 

precision 
difference (  

value) 

Average Recall Significan
ce test on 

recall 
difference  
(  value) 

 Proposed 
Method 

Position 
+TFIDF 
method 

 Proposed 
Method 

Position 
+TFIDF 
method 

 

5 0.25 0.19 <0.05 0.13 0.10 <0.05 
10 0.19 0.15 <0.05 0.20 0.17 <0.05 
15 0.15 0.13 <0.05 0.23 0.20 > 0.05  
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6   Conclusion and Future Work 

In this paper we present a new method for Bengali keyphrase extraction that nonline-
arly combines many features such as position of phrase’s first occurrence, phrase's 
frequency, count of links of a phrase to other phrases, phrase length and phrase’s 
inverse document frequency. The proposed method performs significantly better than 
the methods to which it is compared.  

The proposed system can be enhanced by improving the two major components of 
the system mainly (1) stemming, (2) candidate keyphrase extraction. 
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Abstract. Character recognition is an emerging area of research in the field of 
image processing and pattern recognition. The objective here is to generate a 
Bengali dictionary and develop an artificial neural network based technique for 
matching an input word with the dictionary word. The technique uses the fea-
tures of the words as a whole rather than the features of each character. For fea-
ture extraction purpose, we have used 2D Gabor filter. For the dictionary words, 
it shows 93.67% accuracy in matching and for non-dictionary words, it shows 
83% accuracy in non-matching. The overall accuracy of the system becomes 
91%. 

Keywords: Gabor filter, iLeap, binarization, normalization, orientation matrix, 
back propagation algorithm. 

1   Introduction 

A language recognizing software may be thought as an application of artificial  
intelligence.  

In case of English, the number of alphabets is limited and there is no hazard of 
combined character (“yuktakshar”) or modifier character ( ,  etc.). In Bengali text, 
characters are complicated also as compared to English, which makes the Bengali 
language recognizing software a challenging task. There may be two effective ap-
proaches of feature extraction. First one is to find out structural features and second 
one is to find out frequency features. 

Gabor filter is a frequency filter, which has already been applied for texture analy-
sis, moving object tracking and face recognition. It has successfully been applied for 
character recognition [5] also. 

2-D Gabor filters are local spatial filters that can extract orient-dependent frequen-
cy content. 

In [6], response output of Gabor filter at four different orientations has been  
extracted and used for handwritten Bengali numeral recognition. 

Two ways of finding out Bangla word from a Bangla dictionary have been  
discussed in [3] and [4].  

Here, a novel approach of extracting features of a whole word using Gabor filter 
and text recognition using ANN will be discussed thoroughly. 
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The whole work is divided in five phases: 

1. Image preprocessing, 2. Formation of Bengali dictionary, 3. Feature extraction 
of each word as a whole, 4. Train the neural network with dictionary words, 5. Rec-
ognition of Bengali text. 

2   Gabor Filter 

If  λ is the wavelength of Gabor filter and θ is the orientation angle of Gabor filter. σx 
, σy is the standard deviation of Gaussian along the x – direction and y – direction 
respectively. If we set σx = σy = σ, Following is the impulse response [5] of 2D Gabor 
filter,  we get, ,   √ θ θ                                        (1) 

Applying this type of Gabor filter h(x, y) to an image u(x, y) we are getting the re-
sponse output I(x, y) which is defined by the convolution sum: 

    , ,  ∑ ∑    u x1, y1  e/ // /       ……(2) 

M and N are the dimensions of the filter. 
The control parameters are λ, σ, M, N. 
Here, the image of a word is convolved with a set of Gabor filters. This set consists 

of Gabor filters at different orientations where 
{θk | θk = kπ/n, k = 0, …. , (n-1)}……… (5) 

3    Present Work 

3.1   Image Preprocessing 

We have applied median filtering with 3 × 3 mask over the image to get rid of salt and 
pepper noise.  

For further processing, the image needs to be binarized first. In the current work, 
after comparing different binarization methods [2], faster Sauvola’s method [1] is 
applied for the purpose of binarization as it provides satisfactory result in case of noi-
sy images also. 

3.2   Generation of Bengali Dictionary Pages 

Well circulated Bengali newspapers are used for collection of most frequently used 
words. These words are typed using the iLeap software. The iLeap file is sorted alpha-
betically using their ISCII (Indian Script Code for Information Interchange) values, 
printed on white papers and scanned to get the images of the dictionary pages  
(in .bmp format). 
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Fig. 5. Gabor Filters, Resultant Images and corresponding graphical representations 

Now Gabor orientation matrix m is also an X*Y matrix, where m(x, y) is assigned 
the value k if u(x, y) obtain maximum response at an angle θk. In this case each ele-
ment of m is assigned a value between 0-3.This X*Y vector is considered as feature 
vector. 

The optimal values for λ, σ, M and N are taken as 1, 2, 11 and 11 respectively, 
which gives satisfactory results.  

Gabor Orientation matrix is an X*Y matrix and each element m(x, y) of that matrix 
contains a value between 0 to n-1. Here,  

{ θk |  θk = kπ/n, k = 0, …. , (n-1)} 

But besides orientation information, the position information is also important to the 
same extent. So, for each pixel, we are storing a value set comprises of three indices 
{r, c, k}. Thus for each word, 2000 three set feature values are obtained. Fig. 5 shows  
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filtered images and corresponding graphical representations of that particular word 
obtained by using Gabor filter at four different orientations. 

3.5   Training ANN Using Back Propagation Algorithm 

In the current work multilayer perceptron is used with one input layer with 2000 
nodes, one output layer with 1050 nodes and one hidden layer with nodes between 10 
-50. 

Insufficient no. of hidden nodes causes under fitting whereas excess no. of hidden 
nodes causes over fitting. 

The hidden and output layer perceptron weights are initialized with random num-
bers between 0 and 1. The training is done repeatedly for all dictionary words for a 
predefined number of iterations and for a particular number of hidden layer neurons. 
Intermediately, the maximum accuracy thus obtained for a specific iteration is stored 
in the network file. In the same way, the network is trained for a specific range of 
hidden layer neuron values. For each such value the trained network is used to find 
the output efficiency when applied on the test dataset. The network giving maximum 
accuracy is stored in the network file and is used for matching purpose. 

‘Mean Squared Error’ (MSE) has been used as performance parameter function, 
which is actually the average squared error between the actual output and the target 
output and the error is back propagated to adjust the weight factors.  Learning rate is 
set to 0.1.  

4   Results 

A Bengali dictionary having 1050 number of words has been generated. 10 to 25 
numbers of samples of each word are collected from newspapers leading to a collec-
tion of a total of 20000 words. Now 90% data are used to generate the training dataset 
and 10% are used to generate the test dataset.  

We have collected fresh set Bengali words from newspapers, which includes 300 
images of 150 words residing in the dictionary, termed hereafter as “class-1” words 
and 100 images of 50 words not residing in the dictionary, termed hereafter as “class-
2” words. All these words are given as unknown word to the network to generate the 
output in terms of match or mismatch. 

Out of the 300 samples of class-1 words, the network shows a matching for 281 
samples, Out of the 100 samples of class-2 words, it shows a matching for 83 samples. 

Table 1. Comparison of efficiency 

Word Type Percentage Efficiency 

Class-I 93.67 

Class-II 83 

Overall Efficiency 91 
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Abstract. Character recognition is an important stage of any text recognition 
system. In Optical Character Recognition (OCR) system, the presence of half 
characters decreases the recognition rate. Due to touching of half character with 
full characters, the determination of presence of half character is very challeng-
ing task. In this paper, we have proposed new algorithm based on structural 
properties of text to segment the half characters in handwritten Hindi text. The 
results are shown for both handwritten Hindi text as well as for printed Hindi 
text. The proposed algorithm achieves the segmentation accuracy as 83.02% for 
half characters in handwritten text and 87.5% in printed text. 

Keywords: Segmentation, half character, over segmentation. 

1   Introduction 

The simplest technique to segment the characters is to use inter-character gap  
between the characters. This technique cannot be applied on touching half charac-
ters. Also, the technique used to segment the printed characters cannot be applied to 
handwritten documents due to different writing styles, different sizes of characters 
and different shapes of characters in texts written by different people. The presence 
of half characters in handwritten text makes the problem of segmentation more  
complex. 

2   Related Work  

A good survey about OCR is given in [1]. Hindi is the official language of India. To 
the best of author’s knowledge, no commercial OCR for handwritten Hindi text is 
available, yet. Many algorithms have been developed for segmenting touching charac-
ters in Indian scripts, but most of them are on printed text. Bansal and Sinha [2] had 
segmented the conjuncts (type of touching characters) based on structural properties 
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of text in printed Devanagari script. They  segmented the conjuncts with an accuracy 
of 84%. Jindal et al. [3, 4] had segmented the touching characters in middle zone and 
upper zone of printed Gurmukhi script using structural properties of the script. 
Chaudhuri et al. [5] had used the principal of water overflow from a reservoir to seg-
ment touching characters in Oriya script. Garain and Chaudhuri [6, 7] had used a 
technique based on fuzzy multifactorial analysis to segment touching characters in 
printed Devnagari and Bangla scripts.  

Tripathi and Pal [8] had worked on segmentation of touching characters in hand-
written Oriya text using structural, topological and water reservoir features. But this 
technique cannot be directly applied to handwritten Hindi text due to presence of half 
characters touching the full characters(conjuncts). The work on line segmentation, 
consonant segmentation, upper modifier segmentation and lower modifier segmenta-
tion in Handwritten Hindi text were explained by us in [9, 10].  In this paper, we have 
explained a new method based on structural features for segmentation of half charac-
ters in handwritten Hindi text. 

3   Database 

All experiments were conducted on database constructed by taking handwritten data 
from 15 writers. The handwritten documents were reduced in size in paint to 35% to 
increase the speed of execution. The percentage of stretching of the document in hori-
zontal and vertical direction was same. In some documents, up to 2 degree skew cor-
rection was done in paint. This was done on whole document and not on particular 
lines.  

Figure 1 contain part of handwritten Hindi database. 

 

Fig. 1. Part of Database 
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4   Characteristics of Hindi Language 

Devanagari is the script for writing Hindi language. Hindi is written from left to right 
and there is no concept of upper or lower case. The half characters may touch with 
full characters to make the characters called conjuncts. 

 

Fig. 2. Conjuncts 

This paper deals with segmentation of these conjuncts. When two or more charac-
ters are combined to form a word, the horizontal lines touch each other and generate a 
header line called shirorekha. The vowels (modifiers) can be placed at the left, right 
(or both), top or bottom of the consonant. 

5   Segmentation of Half Characters 

For separation of Half characters (Conjuncts), the following algorithm has been  
developed. 

After separating the lower and upper modifiers, the consonant separation is done. 
We determine vertical projection profile of the word and pass the separated characters 
through this algorithm. Let m is the matrix storing the conjunct character. Let r is 
number of rows and c is number of columns. 

The determination of presence of half character is very challenging. The characters 
whose width is greater than 1.65 times the height of a character are assumed as con-
juncts or touching characters and treated separately. We also tried the algorithm with 
threshold value as 1.5 but the results are best with threshold value of 1.65 only. But, if 
the height of a character is very small i.e height of the character is less than 12 pixels 
(in printed text), it will not work. To handle this problem we choose the threshold 
value as 1.4 for characters with less than 12 pixels in height. 

The algorithm is as follows: 

Step 1: For each column (i), the number of pixels are determined from row (r/7) to  
rth row, and stored in an array say vpixels(i), i=1 to n, where n is the number of  
columns.  
Step 2: Starting from the left most pixel, we scan the character from left towards right 
upto first 70% part of the character i.e (c×0.7)th column of the character. If number of 
pixels vertically in two continuous columns is greater than one and column position is 
less than ceil(c/5), we set the flag flag_1 and continue to scan further till we get two 
continuous columns with single pixel. For printed text(r<12), the flag is set if number 
of pixels in any column is greater than one and column position is less than ceil(c/5).   



 The Segmentation of Half Characters in Handwritten Hindi Text 51 

Step 3: If we get two continuous columns with single pixel and column position is 
greater than (c/5)th column we set another flag flag_2 and continue to scan towards 
right till (c×0.7)th column.  
Step 4: If flag_1 and flag_2 are set and we get the column with more than one pixel 
again, and column is between (c/4)th and (c×0.7)th column, we store the column-1 
position in a variable say v1.   
Step 5: In this step following conditions are checked to avoid over segmentation of 
other characters that satisfy the condition that their width is greater than 1.65 times 
the height of a character like , , ,  etc., which are generally written longer 

in width while writing the text. 

i) The number of pixels in v1 column is less than half of the maximum no. 
of pixels in any column or there are more than three continuous columns 
with one pixel  

ii) The maximum height of remaining columns(v1+1 to c) is greater than or 
equal to maximum height of any of the columns from 1 to v1. 

iii) Presence of two continuous columns with pixels greater than two from 
v1 to v1+4 columns. 

If all the above three conditions are true, we store the value of v1 for half character 
separation otherwise it is set to zero. If v1 is zero, than it is a problem of second type 
i.e. two consonants are touching each other (Segmentation is done separately).   
Step 6: Starting from first left most pixel to the column v1, we copied the matrix to 
another matrix say m1 and copied the pixels from column v1 to end column, to matrix 
m2. 

The step 2 is further modified to solve the problem of pen width in the starting of 
character. Instead of scanning the character from left most pixels we scan from third 
pixel position.   

6   Results 

The proposed algorithm is tested on both handwritten as well as on printed Hindi text 
to segment the half characters and it gives very good results (Table 1 and Table 2, 
figure 3).  

Table 1. Accuracy of Segmentation of Handwritten Hindi Text 

Total 
Words 

Total Half 
Characters 

% of Half 
Characters  

Half Characters  
Correctly Segmented 

% Accuracy of Half 
Character Segmentation 

1294 106 8.18 88 83.02 

Table 2. Accuracy of Segmentation of printed Hindi text 

Total 
Words 

Total Half 
Characters 

% of Half 
Characters   

 Half   Characters   
 Correctly Segmented 

% Accuracy of Half 
Character Segmentation 

345 24 2.9 21 87.5 
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Fig. 3. Half Character Segmentation Results 

Further, for visual inspection, some of the correctly segmented conjuncts are 
shown in figure 4 and incorrectly segmented conjuncts in figure 5.  

 

Fig. 4. Correctly segmented conjuncts 

 

Fig. 5. Incorrectly segmented figures 

In figure 5(a), the half character is overlapped with consonant  and not attached 
with  during vertical separation of consonants. In figure 5(b), the half character  
and character  are very much overlapped and no vertical single pixel columns pre-
sent as required in step 3.  

The main problem in half character separation is the overlapping of half character 
with the full character. The determination of presence of half character is even more 
difficult task to handle.  
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Multiple conditions specified in step five are put on data to avoid the over segmen-
tation of other characters (like ) with width greater than 1.65 times the height of a 
character. The same technique is also tried on printed Hindi text. 

7   Discussion 

From the above results, it is clear that the proposed technique used to segment the 
conjuncts (half characters) in Handwritten Hindi text is very useful. The study may be 
carried out in future in the following direction: 

1. The above algorithm with some modification may be used to segment the 
touching characters in handwritten Hindi text. 

2. The above technique may be used to segment touching characters in other 
Indian scripts.   

References 

[1] Mori, S., Suen, C.Y., Yamamoto, K.: Historical review of OCR Research and develop-
ment. Proceedings of the IEEE 80(7), 1029–1058 (1992) 

[2] Bansal, V.: Integrating knowledge sources in Devanagari text recognition. Ph.D. thesis, 
IIT Kanpur, INDIA (1999) 

[3] Jindal, M.K., Lehal, G.S., Sharma, R.K.: On Segmentation of touching characters and 
overlapping lines in degraded printed Gurmukhi script. International Journal of Image 
and Graphics (IJIG) 9(3), 321–353 (2009) 

[4] Jindal, M.K., Sharma, R.K., Lehal, G.S.: Segmentation of Touching Characters in Upper 
Zone in printed Gurmukhi Script. In: Proceedings of the 2nd Bangalore Annual Compute 
Conference, Bangalore, vol. (9). ACM, New York (2009) 

[5] Chaudhuri, B.B., Pal, U., Mitra, M.: Automatic recognition of printed Oriya Script. In: 
Int. Conf. on Document Analysis and Recognition, pp. 795–799 (2001) 

[6] Garain, U., Chaudhuri, B.B.: Segmentation of touching characters in printed Devnagari 
and Bangla scripts using fuzzy Multifactorial Analysis. IEEE Trans. on Systems, Man 
and Cybernetics. Part C 4(32), 449–459 (2002) 

[7] Garain, U., Chaudhuri, B.B.: On recognition of touching characters in printed Bangla 
documents. In: Int. Conf. on Document Analysis and Recognition, Germany, pp. 1011–
1016 (1997) 

[8] Tripathi, N., Pal, U.: Handwriting segmentation of unconstrained Oriya Text. Sad-
hana 6(31), 755–769 (2006) 

[9] Garg, N.K., Kaur, L., Jindal, M.K.: Segmentation of Handwritten Hindi Text. Interna-
tional Journal of Computer Applications (IJCA) 1(4), 22–26 (2010) 

[10] Garg, N.K., Kaur, L., Jindal, M.K.: A new method for line segmentation of Handwritten 
Hindi Text. In: Proceedings of the 7th International IEEE Conference on Information 
Technology: New Generations (ITNG), pp. 392–397 (2010) 

 



C. Singh et al. (Eds.): ICISIL 2011, CCIS 139, pp. 54–59, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Finding Influence by Cross-Lingual Blog Mining  
through Multiple Language Lists 

Aditya Mogadala and Vasudeva Varma 

Search and Information Extraction Lab, IIIT Hyderabad, India 
aditya.mogadala@research.iiit.ac.in, vv@iiit.ac.in  

Abstract. Blogs has been one of the important resources of information on the 
internet. Now-a-days lot of Indian language content being generated in the form 
of blogs. People express their opinions on various situations and events. The 
content in the blogs may contain named entities–names of people, places, and 
organizations. Named entities also contain names of eminent personalities who 
are famous in or out of that language community. The goal of this paper is to 
find the influence of a personality among cross-language bloggers. The 
approach we follow is to collect information from blog pages and index the 
named entities along with their probabilities of occurrence by removing 
irrelevant information from the blog. When user searches to find the influence 
of a personality through a query in Indian language, we use a cross language 
lexicon in the form of multiple language parallel lists to transliterate the query 
into other Indian languages and mine blogs to return the influence of the 
personality across Indian language bloggers. An overview of the system and 
preliminary results are described. 

Keywords: Cross-lingual, Blog analysis, multilingual. 

1   Introduction 

Blogs are considered to be one of the personal journals where people express their 
personal opinions on different aspects like movie reviews, travelling experiences, 
daily activities and current happenings in the society. Blog-tracking site Technorati1 
stated that blogosphere has doubled every six months for the last three years. This 
contains good percentage of blogs which are created in native languages. Work 
published previously explains designing frameworks [1] and new metrics for blog 
mining [2].Focus of them was to use new techniques, as it has been observed 
techniques that have been developed for standard information retrieval purposes are 
suboptimal when applied to blogs because of their high degree of quotation, brevity 
and rapidity of update. Another aspect of the blogs is that they are multi lingual; 
understanding them to building systems is important area of research. Some work was 
focused to get concern analysis from Multilingual Weblog Articles [3] and building 
collaboration system for intercultural collaboration [4]. 
                                                           
1 http://www.technorati.com  
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Analysis from Internet and Mobile Association of India (IAMAI)2 and 
Blogs.oneindia.in3 show increase in Indian language blogs. Proposed research paper 
focus to understand the commonality in thinking of these bloggers from different 
cultural backgrounds divided by language. Our approach is to find the influence of a 
personality across cross language bloggers. We propose a cross-lingual system that 
collects multilingual blog articles from Indian language blogs and extract keywords 
from articles to provide functions for (1) Eminent persons named entities (2) cross 
language reference and (3) Influence of eminent persons on cross language bloggers. 
Because we aim to facilitate users to find and compare influence of native language 
prominent people across other languages, the system transliterates keywords written 
in a language into other languages automatically, and shows influence across 
languages. 

This paper is divided into following sections .Section2 describes overview of the 
system. Section3 is about preliminary results, Section4 explains related work. In 
Section5, we summarize the arguments and describe future work.Section6 is for 
references. 

2   Overview 

In this paper we try to find the influence of prominent persons across Indian 
community bloggers. Prominent means to be famous and important. It also means to 
be eminent. Therefore to be prominent indicates the act of standing out and towering. 
This also provides intuition that prominent people will show influence on others.  

2.1   Understanding Influence 

According to Dictionary.com4 “Influence” is the capacity or power of persons or 
things to be a compelling force on or produce effects on the actions, behavior, 
opinions, etc. Blogs are usually maintained by individual’s writing commentary on 
the news or events and there is chance to write something about eminent personalities 
from cross language community. 

As Indian community bloggers are from different cultural backgrounds and their 
cross language knowledge may be limited, if anything written about a person who is 
outside of language community must have some influence .Our aim is to find this 
cross cultural influence through cross lingual blog mining using the influence scores 
for the named entities using the equation mentioned later in the section. Our system 
has two steps 1) An information retrieval step and 2) cross lingual search. 

2.2   Information Retrieval 

Initial preprocessing is done to get the indented content. 

                                                           
2 http://www.iamai.in 
3 http://Blogs.oneindia.in 
4 http://dictionary.reference.com/browse/influence 
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2.2.1   HTML Parsing 
Blogs produced by Blogger, Word Press and Live Journal are collected manually. 
They contain extra information besides the blog post in the form of readers’ 
comments, previous posts, similar related pages, navigation bars, side bars, 
advertising, etc. Noise is reduced by taking content only from the body is into flat 
files. Each flat file consists of four blog articles that have been extracted. 

2.2.2   Named Entity Recognition  
Data is cleansed by removing stop words, whitespaces extra junk characters. Stop 
word dictionaries created for languages Telugu, Hindi, Bengali, Tamil, Marathi and 
Punjabi is used for removing stop words from the flat files. Then named entities are 
identified using NE dictionaries from the cleaned data.  

2.2.3   Calculating Influence Scores 
Influence scores are calculated for named entities. It is the probability of occurrence 
of named entity in total number of blog articles parsed. These scores decide the 
influence of that named entities among cross language bloggers. It is understood that 
if the named entity occurs in a particular article is valued less compared to the 
frequency of its occurrence in multiple blog articles. Equation below is used to 
calculate the influence score. 

P (Per/Ar) =    P (FA/TA) * (Per / TotalNE)  (1) 

Per = Personality whose influence to be calculated 
Ar = In Total Articles. 
FA= Found Articles 
TA = Total Articles parsed up to then 
TotalNE= Total Named entities. 
P (Per/Ar) = Probability of influence of the personality 
P (FA/TA) = Probability of finding the Personality in the Article 

High value of P (Per/Ar) shows the more influence and there is no threshold for the 
same. 

2.3   Cross Lingual Search 

Cross lingual search involves finding influence of a personality across multiple Indian 
languages by querying the system. 

2.3.1   Multiple Languages List 
Multiple languages list stores named entities of all the eminent personalities in 
different Indian languages with English transliteration. User query in one Indian 
language is translated to other Indian languages to return the influence scores. This 
approach is new compared to the existing bilingual dictionaries [5, 6] which take a lot 
of permutations and combinations to maintain the parallel dictionaries. It also 
decreases the complexity of adding new languages. 
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Chandrababu: , , , , ,   

: Chandrababu : Chandrababu : Chandrababu

: Chandrababu  : Chandrababu : 

Chandrababu
 

Fig. 2. Sample of Multi language list 

2.3.2 Search Strategy 
When a user enters a query about a personality it will be searched through the 
multiple language list to find the related translation or transliteration. First the English 
equivalent is retrieved and then the corresponding Indian language equivalents are 

extracted. नारायणा राजशेखर रेद्द्य,রাজkমার ராஜ்குமார் స న్ ਚੰਦਰ੍ਬਾਬੂ are some of the 

sample query terms in Hindi, Marathi, Bengali, Tamil, Telugu and Punjabi 
respectively. These multi lingual keywords are then searched through Indian language 
parsed blog content to find the influence. Pseudo code written below depicts the 
sample parsing of a multiple language list used for the transliterations. 

1. Read Input Value;   //Take Input from the user 
2. From the Multi language list Map 
3. Search for the input value; 
4. If value found: 
5.  Take key from Map to find English Translation; 
6. from the English Translation Key 
7. Find the corresponding Indian language words; 
8. Parse the Indian language words; 
9. While the Indian language words not NULL: 
   Search influence probabilities of those words; 
10. If Found in any of the language data: 
       Display the result; 

3   Preliminary Results 

In this section we describe about the preliminary results obtained by the system. 

3.1   Data Collection 

Total 350 in Hindi, 400 in Telugu, 300 in Punjabi, 400 in Marathi, 200 in Tamil and 
300 in Bengali blog articles are collected randomly from different publishers like 
Blogger, Word press and live journal. 
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3.2   Sample NE Extracted and Their Influence Scores 

Named entities extracted from the blogs are added with their influence scores. 

Table 1. Sample keywords found in different language blogs 

Languages Words with Influence Scores 
Telugu :0.004566210, :0.004566210, :0.002024291 

Hindi :0.001290947, :0.0003227368, :0.0001613684 

Punjabi :0.001736111, :0.003472222, :0.001736111 

Tamil :0.0004251701, :0.0008503401, 

:0.0004251701 

Marathi :0.001758087, :0.001758087, :0.0007032349 

Bengali :0.001319261,e :0.001319261, :0.002638522 
 

3.3   Search Results 

Search results obtained for the sample queries to find the popularity of eminent 
personalities among different community bloggers are listed below 

Table 2. Results for the query entered in Marathi 

Query Transliteration to Other Languages Search Results 

<======>
Sachin 

, , , , ,

After Parsing 31 Marathi Blog Articles 

probability of existence of [ ] in 
32  is :: 0.003861004 

After Parsing 43 Marathi Blog Articles 

probability of existence of [ ] in 
44  is :: 0.01011236 

After Parsing 131 Telugu Blog Articles 
probability of existence of [ ] in 

132 is :: 0.0006963788 

 

4   Related Work 

Google provides linguistic tools such as Google Trends5 that analyzes trends of 
keywords fed to Google search but it does not translate keyword strings into other 

                                                           
5 http://www.google.com/trends 
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languages and display the results. With respect to cross-lingual analysis, there has be 
some work done prior to find the concerns reported in the blogs[7] and trend 
visualization through blog mining[8].But these works majorly concentrated on 
European, Chinese and Japanese languages. There has been severe dearth in analyzing 
the Indian language content generated in blogs. 

5   Conclusion and Future Work 

Blogs can be used to extract lot of information about society. This paper proposed an 
approach to analyze multilingual blogs by finding the influence of an eminent 
personality by cross lingual blog mining. In addition, it also proposed multiple 
language lists for storing all the translations into a single dictionary instead of storing 
them in parallel dictionaries for different languages. 

Our future works for cross-lingual blog analysis continue in the direction of finding 
the influence by incorporating multilingual sentiment analysis techniques. This helps 
us in knowing whether the personality has a positive or negative influence on the 
bloggers. 
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Abstract. Everyone has short span of time and the information to be analyzed 
is too large. Opinion Finder or sentiment analysis provides the quick response 
to user that whether the sentence follow positive or negative opinion. As WWW 
is growing more rapidly more and more information is available on web. Vari-
ous sites provide daily routine facilities like shopping, blogs and consultancy 
etc. On shopping site various users provide the reviews for the particular prod-
uct with rating. But to read each review (where 1000’s of review has been 
posted by users) is difficult and time consuming. Sentiment analysis or Opinion 
finder provides a summarization and overall opinion for all the reviews. Senti-
ment can be positive or negative and favorable or unfavorable. In this paper, we 
will discuss research work done by various researchers related to sentiment 
analysis.  

Keywords: Sentiment analysis, Opinion finder, Polarity of sentence, Summari-
zation. 

1   Introduction 

Sentiment analysis and opinion finders are important for majority of the organizations 
and users. Government used this tool to analyze the previous work done, e-commerce 
site also used to give user overview of the product when a large amount of reviews 
are given. Also sentiment of the person depends on the pitch of voice while speaking. 
But we cannot get to know in written text. In this paper we will discuss works done 
various researchers on sentiment analysis for the written text.  Many researcher train 
their system using reviews from various site, like e-commerce site, movie reviews etc. 
Little work has been done in sentiment analysis of Indian languages or any other lan-
guages except English. Many factors affect the polarity of the sentence. So it is not 
easy to predict the sentiment of the sentence. There are many modifiers which affects 
the sentiment of the sentence. Also it is necessary to know in what sense or combina-
tion adjective or adverb are used in the sentence. Sentiments are related to some fea-
tures. E.g. ‘mobile has long battery life’ has a positive polarity whereas ‘Weighing 
machine takes long time to measure the weight’ has negative polarity. As the same 
word ‘long’ has been used in both the sentences but polarity depends upon the context 
in which it has been used. There are many techniques have been developed for this. 
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2   Related Work 

Verma and Bhattacharayya[21] used SentiWordNet [20] in their sentiment analysis 
implementation. The input document is preprocessed and the sentiment scores are 
calculated using the words appearing in the input document using the SentiWordNet 
[20]. They make one threshold value of the sentiment score. Those words which have 
higher score than threshold values are selected and others are rejected. Sometime 
some attribute features are more important to tell the sentiment. So, the importance of 
attribute/features for particular class of attribute also calculated. Following formula is 
used to calculate the Information gain (measure the importance of an attribute(X) 
w.r.t. class attribute(Y)) 

InforGain(X, Y) = Entropy(Y)-Entropy(Y|X) (1)

Where X is the attribute and Y is the class to which attribute belongs. 

∑
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Then document vector is created in four steps: a) pre processing,  b) sentiment score 
based pruning (c)TF-IDF (Term Frequency - Inverse Document Frequency) vector 
creation and d) information gain based pruning. The authors have used websited 
www.rottenmaotes.com and www.imdb.com for gathering review corpus used in trai-
ning set. 

Goldensohn et al. [19] developed hybrid model based summarizer that uses both 
lexicon based and machine learning algorithm. Text extractor has been used for 
breaking the reviews text into a set of text pieces. Using WordNet, all the synonym 
and antonym for all the features words on which sentiment depends were extracted. 
They assigned +1 for the positive sentiment word, -1 for the negative sentiment word 
and 0 for the neutral word. If string x= (w1, w2… wN), the formula for classifying the 
sentiment is 

raw-score(x) = ∑
=

n

i

si
1

 (4)

They used the simple lexical negation detector to reverse the sign of Si if the word 
proceeded with negative term like no, not or never etc. If the raw-score(x) is below 
some threshold value then it is neutral otherwise positive or negative depending upon 
the sign of the raw score.  

Wiebe’s [8] developed algorithm for finding whether the sentence is subjective or 
objective which further helps in the sentiment analysis of that sentence. WordNet is 
very useful to identify whether the word is subjective or objective in nature. The au-
thor simply divided the corpus into 10 different random sets, and then they identify all 
the adjectives of strength 3 from top 20 entries. He used Hatzivassiloglou’s and  
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Mckeown’s [5] method for recognizing the semantic orientation or polarity of adjec-
tives. The words having desirable or feasible state have been assigned positive polarity 
while other has been assigned negative polarity. For this purpose, they had extracted 
adjectives and conjunctive words from large corpus upon which the polarity depends. 
They also generated a list of 73 adverbs and noun phrase which is used as grading 
modifier (words which change the orientation of the words). The result of this work 
produced the intersection of seed set and lexicon feature set were at least 9% point. 

Hu and Lu [11] proposed a technique for summarizing customer reviews. They 
identified the features of the product about which customer has given his/her reviews 
and then made the summary using this information about the product. In their tech-
nique, first they used crawler to get all the reviews posted on the website by different 
customers. They have used POS (part of speech tagging) to know which element is 
noun, noun phrase, verb, adjectives, adverb etc. Then the frequent features of the 
product are identified and the feature pruning is used to remove the features that re-
peat itself in the sentence. Then the opinion words were found. For finding the orien-
tation of the word they used the WordNet [23] for collecting all the synonyms and 
antonym of the word. If the word is not found then the user manually assigns the ori-
entation to the word. The authors also found the infrequent features. But the searching 
for the infrequent feature pose some problem i.e. it may find the noun or noun phrase 
which is irrelevant to product feature. Also if two opinion words are found in one 
sentence then nearest features or opinion word is given more weightage because it 
occurs most of the time. At last, summary is generated to show which are positive and 
negative words along with the count which show how many reviews or sentences are 
positive or negative. They performed opinion sentence extraction on many products 
and found average 0.693 and 0.642 recall and precision respectively.  

Hu and Lu [12], developed a system for feature-based opinion summarization. The 
input to the system is the product name and an entry page for all the reviews of the 
product. They have used POS tagging to know which element is noun, noun phrase, 
verb, adjectives, adverb etc. After processing the sentence, it is saved in the review 
database along with POS tagging output. Then the item set is extracted from the sen-
tence and phrase. Item set is the set of word or a phrase that occur together. For extrac-
tion of the features or item set form, the sentences association rule mining is used.  
Association Mining rule is implication of the form YX → , where 

IYIX ⊂⊂ , and φ=YX I . The rule YX →  holds in D with confidence c if c% of 

transactions in D that support X also support Y, Where D is a set of dataset. Apriori [1] 
algorithm is used to find all the frequent items or features. First it finds all the frequent 
item sets from a set of transactions that satisfy a user-specified minimum support and 
then Generate rules from the discovered frequent item sets. Then feature pruning is 
used to remove the incorrect features. It works on the principle - “For each sentence in 
the review database, if it contains any frequent feature, extract the nearby adjective”. If 
such an adjective is found, it is considered an opinion word. A nearby adjective refers 
to the adjacent adjective that modifies the noun/noun phrase that is a frequent feature. 
If no feature is found in the sentence then it is known as infrequent feature. Sentence 
which contains the opinion word, near to the noun or noun phrase then added to the 
dataset as infrequent feature of the product. At the end orientation of the review is 
identified with bootstrapping technique and using WordNet. Explicit features are 
manually tagged. They achieved average recall of 80% and average precision of 72%. 
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Srivastaval et al [17] used grammatical dependencies and dependency structure for 
sentiment analysis. A syntactic structure consists of lexical items, linked by binary 
asymmetric relations called Binary Grammatical Dependencies (BGD).  They repre-
sented BGD by terms governor and dependent, where governor is a superior term and 
dependent is an inferior term.  They collect the reviews from sites amazon.com and 
epinio.com. They developed the DIOWL (Domain Independent Opinion Words Lexi-
con). DIOWL considered only adjectives as opinion words. They also found and 
counted the explicit product features seeds, which are mostly the noun or noun phrase 
in the sentence. For the implicit features, they made the corpus which contained the 
entire implicit feature which may describe the product features. In their proposed ap-
proach, they used Stanford Typed Dependency [10] and identified the binary gram-
matical relationship among the words of a sentence. System incorporates the SDs 
(Stanford Typed Dependency), EPFS (Explicit Product Feature Seed) and IFTC (Im-
plicit Feature Tag Corpus) for finding the infrequent, compact, and other features in 
the review. The opinion words in DIOWL have polarity ambiguity. If the sentence or 
phrase contain two opinion words and one word is of unknown polarity and connected 
by cooperative conjunction then the opinion word with unknown polarity adopts the 
same polarity of the prior polarity opinion word conjoined with it. On the same way if 
two opinion words are conjoined with contrary conjunction then opinion word with 
unknown polarity adopts the reverse polarity of the prior polarity. To determine the 
polarity of the sentence, they have used the Adverb Adjective Combination (ACC) 
scoring method which is based on linguistic classification of adverb of degree. Every 
opinion can be found only of identifying the presence of adjective and adverbs. 

Ding, Liu and Yu [24], used the general term to identify the opinion in the sen-
tence. The objects have other parts like features or attribute of the features. They iden-
tified the implicit and explicit features and represented these features with features set 
F= {f1,f2…fn}. Each feature fi in F expressed a finite set of words. W= {w1,w2…Wn} 
is the set of synonyms of  n features. Opinion holder j commented on a subset of fea-
tures FS j ⊆ . They choose the word from set W to described the feature and gave a 

positive, negative or neutral opinion on it. In their proposed technique, they made a 
list of words having particular state which may be positive and negative. Such a list is 
known as opinion lexicon. They also make a database of idioms which may be posi-
tive or negative.  A positive word is assigned +1 otherwise -1. All the scores are then 
summed as equation (5): 

∑
∈∧∈

=
Vwiswiwi fwidis

SOWi
fscore

: ),(

.
)(  (5)

Where V is set of all opinion words, S is sentence containing the feature f, and 
dis(Wi,f) is the distance between feature f. If the final score is positive then the opin-
ion of the sentence is positive otherwise negative.  They also give the negation rule to 
reverse the sentiment opinion. They observed that without context dependence,  
F score dropped to 87% because many features are assigned the neutral orientation. 

Das, Bandyopadhyay [2], developed the algorithm for identifying opinionated and 
non-opinionated sentences Bengali and English language. They used the rule based 
approach for opinion subjectivity. They extracted the private state in the phrase  
by making direct subjective frames and expressive subjective elements.. Bengali  
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SentiWordNet has been used which is created using English to Bengali dictionary. 
They found the noun, adjective and adverb and verb using POS tagging in the sen-
tence. Then identified the theme to which sentence or phrase belongs to. They pro-
posed the opinion units or the words as quadruple i.e. Subject, Aspect, Opinion hold 
and Evaluation. They used the POS tagger developed by IIIT-H. Then they identified 
Subject phrase ( noun combinations), Aspect phrase (attribute of subject) and evalua-
tion phrases (positive or negative). Accuracy of these three with Bengali text has been 
reported to be 79.11%.  They also created a list of 205 suffixes for Bengali language 
because in some sentences opinion words may be present in inflected form. Stemming 
clustering is used for feature analyzes prefixes and suffices word that is identified in a 
document. Also verb inflection list with 50 entries was generated. For English lan-
guage Standard Porter Stemmer algorithm is used for this purpose. After performing 
all the above steps, frequency of the words is counted. Title of the document is also 
found because it always carries some meaningful subjective information.  They meas-
ured the distribution value which is done by counting the distance between the occur-
rences of a thematic word measure. They achieved the Precision and Recall of 51% 
and 61% for English and 49.86% and 58.66% for Bengali respectively. 

Wilson et al [22] worked on finding the subjectivity of the sentence. Subjectivity of 
the sentence identifies the various aspects of the phrase to predict the opinion. Their 
Opinion Finder operates in one large pipeline. It has two parts. First part performs 
mostly general purpose document processing. Second part performs the subjectivity 
analysis. They used Sundance partial parser to get semantic class tag, identify Named 
entities, and match extraction patterns that corresponds to subjectivity language.  
Then OpenNLP 1.1.0 [6] is used to tokenize, sentence splitting and POS tagging the 
data. SCOL [7] version 1G is used to stem. Clue finder is used to identify the words 
and phrases from a large subjective language lexicon. For the subject sentence classi-
fication they used the Naive Bayes classifier [14] to know which are subjective and 
objective. They used large corpus of un-annotated data to train their system. Then 
system identifies speech events and direct subjective expression. The third component 
is a source identifier that combines a conditional random field sequence tagging 
model and extraction pattern learning to identify the source of speech events and di-
rect subjective expression. They used two classifiers. First classifier identifies senti-
ment expression and second classifier identifies those that are positive and negative. 
They used MPQA opinion corpus [13].  

Prabowo and Thelwall [18] used three approaches viz. rule based, Support Vector 
machine and hybrid.  In rule based approach, a rule is an antecedent and its associated 
consequent is in ‘if then’ relationship. There are various rule based classifiers like 
GIBC, RBC, and SBC. GIBC is General Inquirer Based Classifier which has 3672 pre 
classified rules. Out of which 1598 are positive and others are negative. It is applied 
to classify document. IRBC is the rule based classifier in which a second rule set is 
built by replacing each proper noun found within each sentence with ‘?’ or ‘#’ to form 
a set of antecedents, and assigning each antecedent a sentiment. For statistics based 
classifier (SBC) following formula was used: 

),( +=∑+ iwordantecedentClosenessS  (6)

),( +=∑− iwordantecedentClosenessS  (7)
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If S+ > S- then it is positive otherwise it is negative. If S+ = S- then its neutral. In SVM 

(Support Vector Machine), given two training sets a positive sample set ∑
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two set the maximum margin i.e. the maximum distance. Whereas in Hybrid Classifi-
cation apply various classifiers in sequence. A list of possible hybrid classification 
given by them is as follows: 
 

1. RBC  GIBC 
2. RBC  SBC 
3. RBC  SVM 
4. RBC  GIBC  SVM 
5. RBC  SBC  GIBC  
6. RBC  SBC  SVM 
7. RBC  SBC  SVM 
8. RBCinduced  SBC  GIBC  SVM etc. 

 

They collected large corpus from various sites like Pang (2007) and MySpace (2007). 
Ahmed et al. [4], all the adjective, adverb and noun phrase of the sentence mostly 

describes the sentiment of the word. First they pre-processed the document tagged 
with POS. Then feature selection phase find the features such as noun or noun phrase. 
Uni-gram [15] found noun, and bi-gram [15] found adjective followed by Noun. Also 
polarity list made. Polarity depends on the feature and the context in which it is used.  
They referred inclusive features as Local Polarity term. General Enquirer used to 
build global polarity list manually.  Modifier have important role in sentiment classi-
fication. It reverses the polarity of the term. As negation terms (not, couldn’t, never) 
change the associated polarity to its opposite meaning using WorldNet’s antonyms. 
They set a window size based on which Part-of-Speech allowed in between the nega-
tion and the polarity term. In last the polarity values of the terms identified both in 
global and local list as the ration of a term’s occurrence in the positive or negative 
reviews to the total number of occurrence. Polarity values calculated using ratio in 
either positive or negative reviews using the equation (8) and (9) 
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Check each review features for the training set. For each feature a score is calculated 
by summing up all the polarity values concern to that feature. e.g FS1=P1+P2+…Pn,, 

where FS1 is score of the first feature, Pi is the polarity expressed in a particular sen-
tence. The Overall polarity calculation formula is: 

RS=Positive if FS1+FS2+….+FSn>Ω (10)

RS=Positive if FS1+FS2+….+FSn<Ω (11)
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Where RS is the sentiment of the online review and Ω is the threshold value. For the 
experiment they got corpus from www.eopinions.com.  

Table 1. Experimental Result of Ahmed et al. System 

Method Class Accuracy 
Positive 76.00 

Term Count (TC) 
Negative 72.00 
Positive 78.50 

TC+Neg 
Negative 83.00 
Positive 77.50 

Tc+Mod 
Negative 76.00 
Positive 79.00 

TC+Neg+Mod 
Negative 86.00 

Hiroshi and et. al [9], categorized sentiment features as: favorable, unfavorable, 
question  and request. A sentiment unit is as « <sentiment unit> := <sentiment> <pre-
dicate> <argument>+ <surface>».To know the sentiment of Japanese sentence they 
converted sentence into English language. Top down parser is used to parse the sen-
tence and generate the parse tree. Then top node examined to know the combination 
relation with other words. They examined three types of patterns: principal patterns 
(subject is excluded from the arguments), auxiliary patterns (expands the scope of 
matching), and nominal patterns (used to avoid a formal noun being an argument). 
Word sense disambiguation was used to get the polarity of the word when adjective 
and verb occur together in the sentence. Aggregation of synonymous expressions had 
done to organize extracted sentiment units. Following table show the precision and 
recall result of sentiment unit extraction from 200 sentences: 

Table 2. Experimental Result of Deeper sentiment analysis 

 (A) MT (B) Lexicon only 
Weak prec. 100% (31/31) 80% (41/51) 
Strong prec. 89% (31/35) 44% (41/93) 

Recall 43% (31/72) 57% (41/72) 

3   Conclusion 

We have studied the work carried by researchers in the field of sentiment analysis. 
SentiWordNet was used by various researchers to know the positive and negative 
score for the words in sentence. Some used statistical method or rule based method to 
know the polarity of the sentence. Sentiment analysis for English, Bengali, Chinese 
and Japanese language has been done. 
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Abstract. OpenLogos is the open source version of the Logos Machine Trans-
lation System. The current system translates from English and German into the 
European languages (French, Italian, Spanish and Portuguese). This papers 
deals with extracting parse and useful linguistic information from English-
German OpenLogos MT system. Understanding and extracting useful informa-
tion from linguistic rich diagnosis file is explained in detail. Various parse  
relations such as POS, clause boundary, dependency, constituent information is 
extracted and mapped to Paninian format for use in English to Hindi MT system  
Anusaaraka.  
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1   Introduction 

OpenLogos [2] is the Open Source version of the Logos Machine Translation System. 
The current system translates from English and German into the European languages 
(French, Italian, Spanish and Portuguese). Currently we are using the English to Ger-
man translation system. The system generates diagnosis file at 3-levels (i.e Short, 
Long and Deep). For our purpose, we are using Long diagnosis file for extracting the 
various parse information of the source language (i.e English).  

2   Extracting Informations from OpenLogos System 

Various methods of extracting informations from the Open-Logos systems are  
described below. 

2.1   Part of Speech (POS) 

The part of speech values in Open Logos are mainly present in *RESOLVED SWORK 
RECORDS* table in its wc (word-class) column where each number represents POS 
value of the word. The numbers and their corresponding POS values are given in  
Table 1. 
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Table 1. POS information from Word Class mapping 

WC Description WC Description WC Description 

1 Noun 8 Clausal construction 16 Arithmates 
2 Verb 11 Preposition 

(locative/conceptual) 
17 Negatives 

3 Adverb 
(locative/time/place) 

12 Auxiliary/ 
modal verbs 

18 Conjunctions 

4 Adjectives 13 Preposition 
(locative) 

19 Relatives/ 
Interrogatives 

5 Pronouns 
(Personal/Indefinite) 

14 Definite articles/ 
 Demonstratives 

20 Punctuations 

6 Adverbs 
(manner/agency/degree) 

15 Indefinite articles   

Overloading of the word class values gives rise to ambiguity. For example, wc 1 is 
given to proper nouns, noun modifiers (adjectives) and verbal nouns. In case of an 
adjective, this happens only when the adjectives are parts of some NP. Such cases are 
resolved by consistency checking of form values for the word given in the SAL code. 
For example, if a word has wc 1 and the form 23 then the POS of that particular word 
is adjective because the form 23 represents adjectives. Similarity, form 54 represents 
adjectives which are also past participial adjectives (i.e. left and wet), form  60 repre-
sents only past participial adjectives and form 70 represents past participial adjectives 
that are also nouns (e.g. cut, input, set). Unknown first capital words have subset 
value  859, using this information we make their POS as proper-noun. Table 2 shows 
the POS info for English sentence I met Mohan in a beautiful garden. 

Table 2. POS information for the English sentence I met Mohan in a beautiful garden 

WC Form Subset Word Description 

5 1 795 I (pronoun) 
2 7 142 met (verb) 
1 33 859 Mohan (proper-noun) 

13 3 481 in (preposition) 
15 1 315 a (determiner) 
1 23 185 beautiful (adjective) 
1 1 26 garden (noun) 

2.2   Extracting Parse Information 

OpenLogos system provides the detail parse information of the source sentence in a 
diagnosis file, from which the equivalent dependency and constituent information is 
extracted. 
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2.2.1   Extracting Dependency Relations 
The diagnosis file gives the relations of subject, object, preposition and prepositional 
object with the verb in SEMWRK VALUES1 . For example, a verb in SEMWRK 
VALUES is represented by word class (wc) 2 and its subject is represented by the 
form 91. Though the object is not represented explicitly but we assume the noun as 
object if its form is not 91 and it is not a prepositional object. A prepositional object is 
easily identifiable because it is always kept next to the preposition in SEMWRK 
VALUES. 

Fig.1 represents the SEMWRK VALUES for the sentence Rama gave a book to 
Mohan.. It contains 7 groups of numbers and each group consists of a set of 4 num-
bers.  These set of 4 numbers represents word-class (wc), subset, form and word-id 
respectively. Openlogos adds an additional BOS to the beginning of the sentence. 
Fig.2 shows the words and their corresponding ids in our example sentence. 

 

Fig. 1. Semwork values 

 Word Ids:   1      2   3        4       5       6        7           8 
 Sentence:  bos Rama   gave     a    book   to     Mohan     . 

Fig. 2. English sentence with its corresponding word ids 

In SEMWRK VALUES, the first set  {2  494  37  0} is not of our interest because 
its fourth number represents word id less than 2. The second set {2 494 7 3}, with first 
number 2 represents word class of a verb and the fourth number 3 represents id of the 
verb gave. The third set {1 1 91 2} with its third number (form) 91 says the word-id 2,  
Rama is the subject of the verb gave. The set next to the subject is assumed to be ob-
ject if its wc is not 13 i.e preposition. And if the wc is 13 then it becomes preposi-
tional object. In our case the fifth set represents preposition having word-id 6 and the 
sixth set represents prepositional object having word-id 7. 

The within pada [1] (phrase/group) relations such as modifier-modified relations 
are extracted from the swork tables of tran1, tran3 and RESOLVED SWORK RE-
CORDS table. For example, in the pada a book, a is a determiner modifier of book. To 
get a modified-determiner_modifier relation among book and a we have to compute it 
from the OUTPUT TARGET ARRAY IN tran1. Fig.3 gives the tran1 table for the head 
word book. In the row starting with SCONPO,  ids greater than 0 (zero) and less than 
the head id are assumed to be the premodifiers of the head and the ids greater than the  
 
                                                           
1 From SEMWRK VALUES, predicate argument structure of the words in a sentence can be 

extracted. 
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head id and less than the length of the sentence are considered to be postmodifiers of 
the head. The information whether the id present in the SCONPO is a determiner 
modifier or a adjectival modifier is decided by looking at the wc of each word id in 
RESOLVED SWORK RECORDS table. 

 

Fig. 3. Analysis of the head and components in tran1 

The inter clausal relations are extracted form tran3. For example, in the sentence 
The dog which Chris bought is really ugly. there are two different clauses: The main 
clause, The dog is really ugly and the dependent clause, which Chris bought. In these 
clauses dog and which are related with each other but this information is not explicitly 
marked in SEMWRK VALUES. The SEMWRK VALUES for these clauses are given 
in Fig. [4] and  Fig. [5]. 

 

Fig. 4. Semwrk values for the main clause: The dog is really ugly 

 

Fig. 5. Semwrk values for the dependent clause: which Chris bought 

Such relations are extracted from tran3 using the subset and form ids, where subset 
id of modified is same as the subset id of its modifier. As in  Fig. [6] the subset id for 
both dog and which is 126 and the object of the relative clause (i.e which) is marked 
by its form 94. 

 

Fig. 6. Tran3 output 

2.2.1.1   Insertion of Relations for Missing Words in the Sentence. Sometimes new 
words are inserted in the sentence for proper translation. Along with the insertion of 
new words we need to give relations of that word with the other words present in the 
sentence. OpenLogos uses SWITCH68 to solve such cases. For example, in the  
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sentence The dog who I chased was black. can also be written as The dog I chased 
was black, where the word who is dropped and still the sentence remains grammati-
cally correct but in Hindi presence of who is a must for the sentence to be grammati-
cally correct. For e.g The dog I chased was black will be correctly translated into 
Hindi as vaha kuttaa jisakaa maine piichaa kiyaa kaalaa thaa. We have to insert 
who(jisakaa)2 for the correct translation. 

 

Fig. 7. Diagram showing insertion of SWITCH68 in OpenLogos 

For inserting the extra pada, we use the SWITCH68 information given in the 
SWORK TABLE IN tran4.  The wc, subset, and form of SWITCH68 tell us about the 
type and place of the word to be inserted. 

Fig.7 shows the SWORK TABLE IN tran4 for our example sentence. It shows 
the presence of * CLS-BOS * and * SWITCH68 * in the analysis. Whenever there is 
an insertion of SWITCH68 a word is assumed to be inserted exactly at this place in 
the sentence. The ids representing wc, subset and form help us to identify where and 
what type of word is to be inserted. In our example, * CLS-BOS * and the number 
present above show that the relative clause begins here and presence of * SWITCH68 
* after it suggests the place of the word at the beginning of the relative clause. The 
subset number 126 which is similar to subset of dog} says that the word to be inserted 
belongs to the same subset that of dog and the form 94 says that it is an object. Using 
this information we can insert the word who and give a modifier relation between dog 
and who and object relation between chased and who. 

2.2.2   Extracting Constituent Information 
Constituent information is extracted and represented in Pada [1] notation for the fur-
ther use in Anusaaraka[6] system. 

Hindi Pada is the minimal group of words, from which moving any word out of 
the group makes the sentence ungrammatical. According to Paninian grammar two 
types of padas (i.e Subanta and Tinganta) padas exist in a sentence. Noun phrases 
(NP) and preposition phrases (PP) come under Subanta pada and verb phrases (VP) 
come under Tinganta pada.  Due to the language divergence between English and 
Hindi the grouping rules have to take account of the differences while forming the 
padas.  
OpenLogos provides grouping information of NPs and PPs in the OUTPUT 

TARGET ARRAY of tran1, tran2 and tran3 level [2].The pada module constructs the 
subanta padas (NP and PP) using the collective information from these 3 level of 
analysis. Tinganta padas (VP) are constructed from the analysis of SWORK TABLE IN 
tran4, RESOLVED SWORK RECORDS, SCON FOR tran1, tran2, tran3 and applying 
some additional heuristics. 

                                                           
2 The word who is translated as jisakaa in Hindi after word sense disambiguation. 
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Fig. 8. Analysis of SWRK TABLE at the tran4 level in OpenLogos 

Fig.8 shows the SWORK TABLE IN tran4 for the sentence A fat ugly boy had 
been eating fruits.  We compute the subanta pada(VP) by looking at the verbs (wc=2) 
present in the analysis. Here the word eating has the set of numbers {2 835 46 7} rep-
resenting word class, subset, form and word-id respectively. The form 46 determines 
the verb group to be\textquotedblleft had been eating\textquotedblright  and the  
tingTAM [3] part to be had been ing.  

In this way the ting part and the root part of the verb are computed separately and 
given to the generation module for final generation of Hindi pada(VP). 

The above extracted information is represented in CLIPS fact format, in accor-
dance with Paninian framework. These sets of initial facts are given input to the cen-
tral expert system. Initial facts are processed by different modules and new output 
facts are generated until the target language generation is reached. 

3   Conclusion 

In this paper we have studied the Open-Logos system and successfully extracted vari-
ous linguistic and parse information of source language (I.e English) and imple-
mented it in English-Hindi Anusaaraka MT system. 

Acknowledgment. Authors want to acknowledge Shree Bud Scott and Prof. Vineet 
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and using the extracted information in Anusaaraka. 
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Abstract. E-learning is becoming dominant delivery method in workplaces 
around the globe in various sectors and of varying sizes. E-learning had become 
now a three decade old technology in comparison to computer based training 
and education.  There is essential need of design of new and efficient e-learning 
models which can incorporate all Indian languages spoken across for successful 
implementation of e-governance. Basically, e-learning models are attempts to 
develop a generalized framework to address the concerns of the learner and 
challenges presented by the technology so that online learning can take place 
effectively. The growth of e-learning changes the very nature of education, how 
it is designed, administered, delivered, supported, and evaluated. In this paper, 
of e-learning models has been proposed for Indian languages to implement e-
governance to develop school networks, to upgrade non-formal systems to im-
prove literacy and life skills, for teacher education, for development of policy in 
information and communications technology systems, and for modernizing  
curricula and learning methods. 

Keywords: Enterprise learning, Targeted learning, e-learning. 

1   Introduction 

As far as the relationship of e-learning to a country’s development is concerned, the 
creation of the national wealth of the country comes from the way it uses its invest-
ment and labor capital. Many developing countries are not able to provide students 
and citizens with the knowledge and skills training needed to compete in the increas-
ingly sophisticated global workforce. Many students are not able to take advantage of 
learning and training due to vast distances from learning centers. Through e-learning, 
people in rural areas especially in India can now remain in their communities and 
access a world-class education. Thus, e-learning can provide a cost-effective solution 
to geographic gaps in education. E-learning can be the fuel to propel India’s econo-
mies to new and greater heights. Many countries in Asia and the Pacific have shown 
their interest in the field of e-learning. Some have even embraced this technology and 
it has become a way of life. The private sector will always be a key element in devel-
oping e-learning technology and implementation of e-governance. However, the pub-
lic sector also needs to do its part by establishing policies that embrace this type of 
education, and setting standards and regulations. 
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E-learning covers a wide set of applications, but people mostly focus on the “e,” 
technical aspect rather than on the second part, which is learning. Some important 
aspects of e-learning include the specific needs of the target audience, the course 
content, the delivery mechanisms, and the tutorial and technical support. There are 
many debates on e-learning as it is the trade-off between traditional, instructor-led 
training and e-learning. Some of the major advantages of e-learning are individualiza-
tion, flexibility, active participation, continuous availability, and cost effectiveness. 
India is now at the forefront as active users of e-learning. Many states in India are  not 
making significant progress in e-learning and are falling behind their neighboring 
states due to language barriers as there are more than 26 Indian languages: Angika, 
Awadhi, Bagelkhandi, Bengali, Bhojpuri, Bishnupriya Manipuri, Bundelkhandi, 
Chhattisgarhi, Gujarati, Hindi, Kannada, Kashmiri, Konkani, Maithili, Malayalam, 
Manipuri, Marathi, Marwadi, Oriya, Punjabi, Rajasthani, Tamil, Telugu.  

2   Role of e-Learning in e-Governance Implementation 

An e-government uses technology to deliver services based on customer, rather than 
administrative, convenience and by transformation rather than automation. There are 
three applications where e-learning can help this transition. One is to facilitate cultural 
and organizational challenges faced by governments in transforming their structures, 
processes, and internal employee culture to drive e-government development. Second 
is to deploy e-learning in the community to raise the level of technology and applica-
tion-user skills, thereby lowering the cost of access to and raising demand for e-
government applications and services. Third is to effectively leverage investments in 
an e-government platform to complement e-learning frameworks in the formal and 
non-formal educational system. Governments integrating e-learning have to manage 
the learning transformation—changing the way an organization addresses its learning 
strategy, processes, and supporting infrastructure. This includes evaluating the impact 
of current learning programs on human and organizational performance, and redesign-
ing instructional processes, content, and delivery mechanisms. There are a number of 
benefits e-learning can contribute for e-government. It eliminates the barriers that 
have prevented people from different departments acquiring high-quality education 
and support services. It also makes learning pervasive, continuous, and relevant. Fi-
nally, e-learning propagates knowledge sharing through access to expertise and col-
laboration between employees and partners as well as improving the performance and 
productivity of employees. E-learning is a key enabler of e-government success. E-
learning can change people’s acquisition of skills through access to knowledge tech-
nology, eliminate barriers that hinder people from accessing high–quality technol-
ogy[5], and enable organizations to be more adaptive to the changing environment. 
Implementing e-learning will result in more pervasive, continuous, relevant, and col-
laborative learning that will deliver faster, measurable results. Governments in India 
are realizing the change; however, significant challenges still remain. Learning chal-
lenges fall into three categories, namely:  

• Enterprise learning, Targeted learning and Infrastructure for learning 

Enterprise learning is the establishment of an enterprise approach to learning with the 
goal of integrating and aligning learning with organizational priorities. Targeted 
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learning is the development of high-impact targeted learning initiatives that focus on 
performance improvement. Finally, infrastructure for learning is the implementation 
of an open, reliable, and scalable infrastructure to support learning initiatives that can 
be easily integrated with other enterprise systems. Governments are still struggling 
with the e-government concept and for some the transformation is very daunting. 
However, it cannot be denied that e-learning would be a very valuable tool for gov-
ernments wanting to shift to a paradigm of e-government. Government projects 
should start small; patience would be required in bringing everyone to the same mind-
set of e-government. Finally, one should not underestimate the amount of money, 
time, effort, and support needed because these are critical for e-government imple-
mentation and sustainability. Through e-learning, learning will be more pervasive, 
continuous, relevant, and collaborative. Are we all ready for the future? As citizens of 
any country, need to realize how to move forward.  
There are many factors that shape the future of learning.  

• Workforce:  In the current generation, many are in the habit of conducting nu-
merous tasks at the same time. They are used to multitasking and a fast lifestyle. 
Multitasking can facilitate the improvement of skills.  

• Technology: Technology also is a factor because it creates pervasive and intui-
tive innovations [7]. Learners are empowered to shape their learning experience 
through the use of technology. The next-generation workforce would be knowl-
edge hungry, interactive, and would value time, all of which imply that learning 
would be relevant and available, accessible beyond institution boundaries, inte-
grated, and dominated by collaboration. 

The Combination of learner empowerment and organizational learning results in em-
bedded learning. This is the ultimate goal of organizations involved in e-learning. 
Collaborative learning will enable innovation. Learning will start from the individuals 
linking into teams and then to the organization level where it can foster creation of 
ideas and growth. It is important to determine the “e-status” of the organization or 
institution and its priorities because this will determine where to start transforming 
innovations. IBM transformed itself from a hardware company to a services-driven 
organization. This change required rebuilding and re-skilling their employee base. 
IBM integrated a four-tiered approach to e-learning. Tier one is learning from infor-
mation, which requires persons to read, hear, or see information that comes their way. 
Tier two is learning from interaction, which requires trying and experiencing games 
and simulations for interactive learning. Tier three is collaborative learning or learn-
ing from peers. This involves virtual classroom, live conferences, teaming, real-time 
awareness, and collaborative sessions. The last tier is experience-based learning. This 
requires learning from co-location or face-to-face learning that includes role-playing, 
mentoring, coaching, case studies, etc. The important question is how to integrate 
these creations. Leaders and designers should plan such integration carefully. They 
should not duplicate what other countries are doing because there are factors that are 
not applicable to all countries. Leaders, policymakers, planners, teachers, and other 
stakeholders have to be consistent and vigilant about enforcing standards. Countries 
must continually evolve by creating and recreating strategies that will bring them to 
the global revolution. 
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3   e-Learning and e-Governance in India 

E-learning and  E-governance in India facing lot of changes due to technology and 
barriers of vast Indian languages spoken especially in rural part of India. e-governance 
and e-learning is now been practiced in urban part of India due to awareness and avail-
ability of technology at affordable cost. Technology is not a key item in India; how to 
use technology is the biggest challenge. In response to this challenge, the Government 
has partnered with private organizations, such as IBM. Their e-learning program fo-
cuses on providing computer literacy in the rural areas. As per 2001 Population Census 
of India, the Literacy rate of India has shown as improvement at 65.38%. It consists of 
male literacy rate 75.96% and female literacy rate is 54.28%. Kerala with 90.86% 
literacy rate is the top state in India. Mizoram and Lakshadweep are at second and third 
position with 88.80% and 86.66% literacy rate respectively. Bihar with 46% literacy 
rate is the last in terms of literacy rate in India. Government of India has taken several 
measures to improve the literacy rate in villages and towns of India. State Govern-
ments has been directed to ensure and improve literacy rate in districts and villages 
where people are very poor. There has been a good improvement in literacy rate of 
India in last 10 years but there is still a long way to go. There is a great digital divide 
between urban and rural India; thus, India needs to take information technology to the 
masses. There are approx. 5000 universities and engineering colleges providing com-
puter education at the degree/diploma level. The output of trained manpower in IT at 
this level has consistently been increasing. Mastery over quantitative concepts coupled 
with English proficiency has resulted in a skill set that has enabled the country to take 
advantage of the current international demand for IT. Still, there are many places in 
India, where both e-learning and e-governance are just a dream.  

4   Action Plans to Implement e-Learning and e-Governance 

Workforce skills development is imperative for 21st century workforce requirements. 
[5] Officials and citizens need to have basic skills training in order to survive in the 
global knowledge economy. Action plans should incorporate establishing a local 
training center. This entails new infrastructure but will improve education and enable 
a focus on training and improvement of skills. Many dramatic changes are happening 
in higher education: rising costs, competition between universities internationally, 
jobs requiring post-secondary education, etc. These changes are facts and institutions 
need to address them. One proposal is to enhance and encourage collaborative learn-
ing and integrate a management system. Information Technology learning project 
planning needs careful attention. [2] E-learning planning requires broad capabilities 
that help to advance learning effectiveness and efficiency to produce real educa-
tion/training value. Aspects to consider include learning strategy, content develop-
ment and management, learning delivery, learning technology, learning integration, 
and learning outsourcing. These are the key aspects for implementing a vast initiative 
that delivers measurable outcomes and enables real time learning. Good learning 
project planning consists of policy development, scope, project plan, and implementa-
tion. Once a plan is completed, it is important that the proposed policies be shared 
with other people. There are key elements identified in making successful e-learning 
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models for implementing e-governance: Strategic planning and vision, Curriculum 
and Content, Use of the Internet, Acceptable Use of Policies, ICT and Education 
Reform, Quality Assurance and Accreditation, Connectivity Infrastructure, Networks 
& Professional Development, Intellectual Property and Rights, Intra-governmental 
Issues, Cost, Finance and Partnership 
Issues for Strategic planning and vision 

• Lack of strategic planning and vision 
• Quality gap between private and public school education 
• Lack of awareness of problems and solutions 
• No appraisal of available technologies and needs of the country 
• Need to identify acceptable changes, cost-effective planning 
• Need for strong leadership and target pilot projects  

Strategies for Strategic planning and vision 

• Reach consensus on the vision &Share the vision nationwide 
• Set up basic ICT infrastructure & Develop e-learning societies 
• Keep fees for educational use of e-learning, especially in schools low 
• Clearly define agency responsibilities 
• Prepare national plans by government and private sector experts jointly 
• Provide high-level support to determine priorities and make clear Statements 

Issues for Curriculum and Content 

• Materials are outdated and Materials may be biased politically 
• Little capacity is available to develop content Strategies 
• Create an enabling environment to foster development of local content  
• Set up mechanisms for ongoing reviews of curriculum and content 

Issues for Use of the Internet and Acceptable Use of Policies 

• Lack of computer and language skills to use the Internet effectively  
• Incorporate “firewalls” for control purposes & Promote private sector  

Issues ICT and Education Reform 

• Lack of teachers’ materials and Provide e-learning materials for teachers 
• Teachers lack time to be (re)trained and Lack of funds Strategy 

Issues in Quality Assurance and Accreditation 

• Mechanisms of compliance implementation & Standards of quality 
• Institutional capacity needs to be matched with work/project requirements  
• Encourage self-regulation to avoid excessive government regulation 
• Develop an accreditation scheme for e-learning by a professional body 
• Encourage recognition of e-learning by requiring e-learning courses 
• Develop several levels of accreditation, such as diploma and degree 
• Adopt international standards & Develop an effective QA and monitoring  
• Enforce standards, also in projects and procurement 
• Allow accreditation by the private sector for non formal education 
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Issues in Connectivity Infrastructure and Networks 

• Costs of connectivity and infrastructure are high 
• Lack of basic infrastructure (electricity and telecommunications) 
• Access should be via a national “backbone” and networks should be secure 

Strategies in Connectivity Infrastructure and Networks 

• Create a national budget to subsidize ICT costs in education 
• Public-private partnerships should cooperate with ICT providers 
• Allow competition in telecommunication sector to reduce costs 
• Introduce IP networks with multimedia capacity and Introduce open learning  

Issues in Professional Development 

• Need for qualified teachers and Need for training of trainers 
• Need for high-quality ICT instructional material, also in local languages 

Strategies in Professional Development 

• Develop a system of continuing education and accept international standards  

Issues in Intellectual Property and Rights 

• Absence of “cyber” laws and Lack of enforcement where cyber laws exist 
• High costs of some brands of software and Lack of coordination 
• Emphasis on copyright, sharing of content and Need for strong enforcement  

Strategies in Intellectual Property and Rights 

• Copyright to be recognized and registered 
• Make government-sponsored development (software, content, etc.)  
• Negotiate an international pricing model based on gross domestic product 
• Find solutions based on innovative partnerships/financing models 

Issues in Intra-governmental Issues 

• Need for political will to enforce compliance regarding usage and licensing 
• Need for inter-government collaboration on enforcement of cyber laws 

Strategies in Intra-governmental Issues 

• Develop a strong interdepartmental coordination mechanism in ICT 
• Use ICT for information sharing/communication between government De-

velop an international (government) portal for sharing information 

7   Conclusion 

This paper concludes as for successful implementation of e-governance, the various 
issues and strategies must be considered seriously while drafting the action plan. The 
role of e-learning models for Indian Languages to implement e-governance will be to 
incorporate all the issues and strategies. 
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Abstract. Morphological analyzers are an essential parts of many natural lan-
guage processing (NLP) systems such as machine translation systems. They 
may be efficiently implemented as finite state transducers. This paper describes 
a morphological system that can be used as stemmer, lemmatizer, spell checker, 
POS tagger, and as E-learning tool for Kannada learning people giving detailed 
explanation of various morphophonemics changes that occur in saMdhi. The 
language specific components, the lexicon and the rules, can be combined with 
a runtime engine applicable to all languages. Building Morphological ana-
lyzer/generator for morphologically complex and agglutinative language like 
Kannada is highly challenging. The major types of morphological process like 
inflection, derivation, and compounding are handled in this system. 

Keywords: FST, POS, NLP, DFA, NFA. 

1   Introduction 

Morphological analyzers are essential parts of many natural language processing sys-
tems such as machine translation systems. Morphological analysis reads the inflected 
surface form of each word in a text and writes its lexical form consisting of of a  
canonical form of the word and a set of tags showing its syntactic category and mor-
phological characteristics.  The analyzer relies on two sources of information: a dic-
tionary of valid lemmas of the language and a set of rules for inflection handling. 

Finite state transducers (FST) is a most efficient approach to morphological analy-
sis (M. Mohri 1997: Oncina et al. 1993) a class of finite state automata,  is a complete 
example using an intuitive pattern matching approach which tries first to decompose 
the word in number of stem inflection pairs which are subsequently validated. There 
are a number of tools for the construction of FST based morphological analyzers the 
best known being developed at Xerox (Karttmen 1994: Karttmen 1993: Chanod 1994) 
for a review in Spanish on finite state morphology.  

In this work  a FST based morphological analyzer is developed. It is a compiler 
that reads a morphological dictionary containing static description of lemmas and 
inflections and writes a PERL program that implements a compact FST based ana-
lyzer performing the task.  This allows the linguist to focus on describing the lexicon 
and morphology of the language in question in a simple format. 

Retracted Chapter: A Compiler for Morphologica
Analyzer Based on Finite-State Transducers 
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2   Finite State Transducers 

The morphological analyzers are based on finite state transducers; in particular, we 
use string or pattern transducers instead of letter transducers (Roche & Schabes 1997). 
Any finite-state transducer may always be turned into an equivalent letter transducer. 
Instead of transition on letters we have transitions on sequences of letters i.e, strings, 
and generally valid suffixes in the language.  The machine starts in the specified ini-
tial state and reads in a string of symbols from its alphabet. The automaton uses the 
state transition function to determine the next state using the current state, and the 
symbol just read or the empty string. However, "the next state of an NFA depends not 
only on the current input event, but also on an arbitrary number of subsequent input 
events. Until these subsequent events occur it is not possible to determine which state 
the machine is in. If, when the automaton has finished reading, it is in an accepting 
state, the NFA is said to accept the string, otherwise it is said to reject the string.  
When the last input symbol is consumed, the NFA accepts if and only if there is some 
set of transitions that will take it to an accepting state. Equivalently, it rejects, if, no 
matter what transitions are applied, it would not end in an accepting state. Unlike a 
DFA, it is non-deterministic in that, for any input symbol, its next state may be any 
one of several possible states. Thus, in the formal definition, the next state is an ele-
ment of the power set of states.  

The  transducer is defined as T = (Q, L,δ, qI, F,)  where Q is a finite set of states, L 
a set of transition labels, qI ∈ Q the initial state,  F ⊆ Q the set of final states, and δ : 
Q × L → 2Q the transition function (where 2Q represents the set of all  finite sets of 
states). The set of transition labels is L = (Σ ∪ {ε} x ( Γ ∪ {ε}) where Σ is the alpha-
bet of input symbols, Γ the alphabet of output symbols, and ε represents the empty 
symbol. According to this definition, state transition labels may therefore be of four 
kinds: (σ : γ), meaning that symbol σ ∈ Σ is read and symbol  γ ∈ Γ is written  
(σ : ε), meaning that a symbol is read but nothing is written; (ε : γ ), meaning that 
nothing is read but a symbol is written; and (ε : ε) means that a state transition occurs 
without reading or writing. The last kind of transitions are not necessary neither  
convenient in final FSTs, but may be useful during construction. It is customary to 
represent the empty symbol ε with a zero (“0").  A letter transducer is said to be de-
terministic when δ : Q × L  → Q.  Note that a letter transducer which is deterministic 
with respect to the alphabet L = (Σ ∪ {ε} x ( Γ ∪ {ε}) may still be non-deterministic 
with respect to the input  Σ .   

A string w ' ∈Γ* is considered to be a transduction of an input string  w∈Γ* if  
there is at least one path from the initial state qI to a  final state in F whose transition 
labels form the pair w  : w ' when concatenated. There may in principle be more than 
one of such paths for a given transduction; this should be avoided, and is partially 
eliminated by determinization. On the other hand, there may be more than one valid 
transduction for a string w (in analysis, this would correspond to lexical ambiguity; in 
generation, this should be avoided). In analysis, the symbols in Σ are those found in 
texts, and the symbols in Γ are those necessary to form the lemmas and special sym-
bols representing morphological information, such as <noun>, <feminine>, <first 
person p1. second person p2. Third person p3> for pronouns, etc. In generation, Σ  
and Γ are exchanged. The general definition of letter transducers is completely  
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parallel to that of non-deterministic finite automata (NFA) and that of deterministic 
letter transducers, parallel to that of DFA; accordingly, letter transducers may be  
determinized and minimized (with respect to the alphabet L) using the existing algo-
rithms for NFA and DFA (Hopcroft & Ullman 1979; Salomaa 1973; van de Snep-
scheut1993). Transitions labeled (ε : ε) may be eliminated during determinization 
using a technique parallel to ε closure.  For all one writes if and only if q can be 
reached from p by going along zero or more ε  arrows. For any , the set of states that 
can be reached from p is called the epsilon-closure or ε -closure of p, and  
written as 

 

For any subset, define the ε -closure of P as for any P⊂Q subset, define the ε-closure 
of P as 

 

Which allows a transformation to a new state without consuming any input symbols. 
For example, if it is in state 1, with the next input symbol an a, it can move to state 2 
without consuming any input symbols, and thus there is an ambiguity: is the system in 
state 1, or state 2, before consuming the letter a. Because of this ambiguity, it is more 
convenient to talk of the set of possible states the system may be in. Thus, before con-
suming letter a, the NFA-epsilon may be in any one of the states out of the set {1,2}. 
Equivalently, one may imagine that the NFA is in state 1 and 2 'at the same time': and 
this gives an informal hint of the power set construction  2Q. 

Unlike other compilers like Karttunen's (1993), the compiler described in this  
paper builds  transducers having no cycles (transitions form a directed acyclic graph) 
which, in addition, have a unique final state. The absence of cycles is due to the fact 
that only concatenations and alternations are allowed in the morphological dictionary 
(see section 3)1. To minimize the resulting transducer, we use an algorithm described 
by van de Snepscheut (1993), which has two identical steps which may be summa-
rized as follows: in each step, the transition arrows in the letter transducer are  
reversed, so that the final state is initial and the initial state is final, and the resulting 
transducer is determinized with respect to L (that is, new states are formed with sets 
of old states so that the new  δ is  δ : Q×L→ Q). The transducer resulting from the 
double reversal determinization process is minimal. This algorithm is particularly 
efficient in the case of acyclic letter transducers. Moreover, the two steps have a  
simple interpretation: the first step joins common endings (finds regularities in  
suffixes) and the second one joins common beginnings of transduction (finds regulari-
ties in prefixes). FST-based analyzers output all possible analyses.  

3   Morphological Dictionary  

The morphological dictionary is a text file. Any text starting with “#" is ignored and 
may be used as a comment. The dictionary has the following three sections: 1. The 
symbol declaration section representing the actual root words  in the language. 2.  
Second section represent categories of the word followed by morphological features 
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such as (such as <feminine> or <singular>) are explicitly declared.  First second fields 
are separated by two vertical bars “||”. 3. The information section, where any morph 
relevant information like real u, past participle form of irregular verbs information  
etc. are declared:  when  lemmas in the dictionary share a common infection pattern, 
this pattern may be given a name in another file handling the inflection of the words 
in the language. While generating the inflections for a word the information field is 
looked upon.  Rules may be indefinitely nested, that is, the names of rules previously 
defined may be used to define derived forms of the words. (Category wise set of rules 
are compiled into sub transducers that are then integrated to build the complete trans-
ducer). The transition on suffix 'a' in Kannada stand for a genitive case of nouns also 
for negation for verbs and another sense of imprecate meaning of verb in some case. 
Hence we get more than one analyzes. All are valid transitions. Since context is not 
considered here. 

 
taavu || PRO-REF-P23.MFN.PL-NOM  
tamma || PRO-REF-P23.MFN.PL-GEN||N-COM-COU-M.SL-NOM::TYPE-kinship 
biMdu || N-COM-COU-N.SL-NOM::LV-real-u  
cakshu || N-COM-COU-N.SL-NOM::LV-real-u  
caru || N-COM-COU-N.SL-NOM::LV-real-u  
daaru || N-COM-UNC-N.SL-NOM::LV-real-u  
dattu || N-COM-COU-N.SL-NOM::LV-real-u  

Fig. 1. Sample of the morphological dictionary 

The null transitions are allowed since it is a NFA automata. We are not preserving 
any fixed length pattern strings since we perform transitions on suffixes not on single 
letter; Separate rule file is used to  holds set of orthographic  rules, it is not a part of 
dictionary. The idea behind holding separate file is to make the system language in-
dependent, the code is not hard wired i.e, SaMdhi rules governing insertion or dele-
tion of vowels are put in separate file and not written as part of code. And another 
advantage is the same code can be used for other languages too just by replacing or-
thographic rule file with their language morphophonemic. The valid transitions may 
be an entry in the another file called FST transitions file.  

4   The Compiler 

The compiler has been developed under Linux using Perl. Which reads in the mor-
phological dictionary file and combines the partial transducers corresponding to the 
declared paradigms and the dictionary entries into a single transducer containing one 
initial and one final state using (ε: ε ) transition. 

Error messages are designed to help the linguist correct possible errors in the  
format of the morphological dictionary. The back end minimizes the resulting trans-
ducer and combines the resulting code with a standard skeleton to produce a Perl  
program which is ready to be used on its own or included in a larger application such 
as a machine translation system.  
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5   Experiments and Comparisons 

We perform the experiments to evaluate the heuristic used by the compiler and used  
the morphological dictionary of 10000 words compiled by us following hierarchical 
tag set for Kannada which covers more detailed analysis of the word, design of Hierar-
chical tag set for Kannada was an another stage towards developing the morphological 
analyzer for Kannada, and for testing, the first 5000 most frequent Kannada words of 
Department of Electronics (DoE), Central Institute of Indian Languages (CIIL) corpus 
words are selected which included all the nominal, pronominal, adjectival and verbal 
inflections of the Kannada language. Around 80% words were analyzed correctly, 
manually checked and verified, remaining 20% words were a mixture of spelling varia-
tions, dialect variations, compound words, hence such words in the raw corpus selected 
for testing are not analyzed, regarding  ambiguity error is very less and missing entries 
in dictionary. Currently we are not handling compound words and dialectic variations. 
This system is first of its kind for Kannada using FST. 

6   Concluding Remarks 

A compiler to automatically build finite state transducer based morphological analyz-
ers using set of rules consisting of features for categories and another file with FST 
transition rules and  morphological dictionaries has been described. This tool may be 
of great interest when building natural language processing systems such as machine 
translation programs. When the linguist does not supply an explicit alignment  
between surface forms and lexical forms, the compiler uses a simple heuristic to pro-
duce an alignment that has been experimentally shown to be equally efficient. We are 
currently testing an extended version the program which to handle spelling variations, 
few dialectic variations and to improve dictionary as per the need of hierarchical de-
sign of tag set.  
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On Multifont Character Classification in Telugu 
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Abstract. A major requirement in the design of robust OCRs is the invariance 
of feature extraction  scheme with the popular fonts used in the print. Many sta-
tistical and structural features have been tried for character classification in the 
past. In this paper, we get motivated by the recent successes in object category 
recognition literature and use a spatial extension of the histogram of oriented 
gradients (HOG) for character classification. Our experiments are conducted on 
1453950 Telugu character samples in 359 classes and 15 fonts. On this data set, 
we obtain an accuracy of 96-98% with an SVM classifier.  

1   Character Classification  

Large repositories of digitized books and manuscripts are emerging worldwide [1]. 
Providing content-level access to these collections require the conversion of these 
images to textual form with the help of Optical Character Recognizers (OCRs). De-
sign of robust OCRs is still a challenging task for Indian scripts.  The central module 
of an OCR is a recognizer which can generate a class label for an image component. 
Classification of isolated characters and thereby recognizing a complete document is 
still the fundamental problem in most of the Indian languages.  The problem becomes 
further challenging in presence of diversity in input data (for example, variations in 
appearance with fonts and styles.)  

Characters are first segmented out from page or word images. A set of appropriate 
features are then extracted for representing the character image. Features could be 
structural or statistical. Structural features are often considered to be sensitive to de-
gradations in the print. A feature-vector representation of the image is then classified 
with the help of a classifier. Multilayer neural network, K nearest neighbour, support 
vector machines (SVM) etc. are popular for this classification task. Classification of 
Indian scripts is challenging  due to (i) large number  of classes  (compared   to Latin 
scripts) (ii) many pairs of very similar characters. (See Figure 1.) 

In a recent work, Neeba and Jawahar [2] had looked into the success rates of char-
acter classification problem in an Indian context. Though their results are primarily on 
Malayalam, they are directly extendible to other scripts. They successfully solved the 
character classification problem (even in the presence of large number of classes) for 
limited number of fonts popularly seen in print. They had argued that (i) multiclass 
classification solution can be made scalable by designing many pair-wise classifiers. 
(ii) use of large number of features (of the order of few hundred) makes the problems  
better separable  and solvable with simple classifiers. (iii) when the dimensionality of  
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Fig. 1. Challenges in character classification of Telugu. First row shows similar character pairs 
from Telugu. Second row shows how the same character gets rendered in different fonts. 

the feature is made reasonably high, even the simple features like raw-pixels or PCA-
projections provide satisfactory results.  

A strong requirement of any robust character recognition system is the high classi-
fication accuracy, in the presence of multiple and diverse font sets. In this paper,  we 
explore the problem  of character classification in a multifont setting. Though our 
studies are for Telugu script, we believe that these results are also extendible to other 
languages.  Our objective is to demonstrate the utility of the histogram of gradients 
(HoG) [3] sort of features for character classification. We also show that the linear  
SVM  with DDAG  sort of classifier fusion strategy provides equivalent results to an 
Intersection kernel  SVMs. We validate our experimental results on 1453950 Telugu 
character samples in 359 classes and 15 fonts. 

Telugu Script: Telugu is a south Indian language with its own script. Like most other 
Indian scripts, there are consonants, vowels and vowel-modifiers. In addition, there 
are also half consonants which get used in consonant clusters. Though the script  is 
getting written from left to right in a sequential manner,  many  of these modifiers 
often gets distributed in a 1.5D (not purely left to right; they are also written top-to-
bottom at places)  manner. Compared to most other Indic scripts, Telugu has large 
number of basic characters/symbols. Many of them are also similar in appearance. 
This makes the character classification problem in Telugu very challenging. (See 
Figure1) 

Telugu character recognition has been attempted in the past with various features. 
Negi et al. [4] used fringe maps as the feature. The method was tested on 2524 char-
acters. Jawahar et al. [5] did a more thorough testing (of close to one Million samples) 
of the character classifiers but with limited font variations as well as degradations. 
They used PCA, LDA etc. as the possible feature extraction scheme for Telugu char-
acter classification. 

2   Features and Classifiers 

Recent years have witnessed significant attention in  development of category level 
object  recognition schemes with many interesting features. Histogram of oriented  
gradients (HOG), which was successfully used for detecting pedestrians [3], is one of 
the prominent and popular features for capturing the visual data, when  there are  
strong edges. Naive histogram representation looses the spatial information in the 
image. To address this, spatial pyramid matching was proposed [6].  Similar to [7], 
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we also employ a feature vector which captures spatial information and histograms of 
oriented gradients.  

We are motivated by the recent classification experiments in multifont data 
sets [8] and handwritten MNIST and USPS digit data sets [7]. Many of these 
studies are limited to handwritten digits. There  have been many  studies in this 
area  (i)  focusing  on generalization  of classification  results  to unknown  fonts, 
and  thereby solving  the character ‘category’ recognition problem  [8].  (ii)  
accurately solving the handwritten digit recognition with many machine learn-
ing concepts [7]. (iii) d evelopment of recognition algorithms with fewer training 
data or lesser resource usage.  

Character/Symbol images are first normalized to a fixed size of 28 × 28 and histo-
grams are constructed by aggregating the pixel responses within the cells of various 
sizes. Our cell sizes include 14 × 14, 7 × 7 and 4 × 4, with overlap of half the cell 
size. The histograms at different levels are multiplied by weights 1, 2 and 4. The en-
tire sets of histograms are finally concatenated to form a single histogram. We refer 
this feature as SPHOG in the paper. 

Based on the conclusions obtained in our earlier work on character classification 
[2], we use SVM classifiers. SVM classifiers are the state of the art in machine learn-
ing, to produce highly accurate and generalizable classifier. The classification rule for 
a sample x is 

 

where  si s are the support vectors and  κ() is the kernel used for the classification.  
The Lagrangians α are used to weigh the individual kernel evaluations. The complex-
ity of classification linearly increases with the number of support vectors.  To make 
the classification fast, we can do the following [9]: (i) Use linear kernels instead of 
nonlinear ones. (ii) Store the weight vector  instead of the support  vectors  (iii)  Use 
binary  representation  as well as appropriate  efficient data structures and (iv) Simpli-
fication of repeating support vectors in a decision making  path consisting of multiple 
pair wise classifiers. 

It was shown that the intersection kernel can be evaluated fast in many practical 
situations [10].  However, the comparisons are with that of complex kernels like RBF 
Kernel.  Such classifiers are appropriate when the classes are not well separable.  In 
the case of large class character recognition data set, most of the pair wise classifiers 
could be linearly separable.  The overall classification accuracy reduces due to (i) 
cascading effects in the multiple classifier systems (ii) some of the pairs are difficult 
to separate with simple features. In this work, we compare the IKSVM with linear 
SVM and prefer to go for linear SVMs due to the computational and storage advan-
tages of the linear SVM over IKSVM. 

Based on the experimental results presented in the next section, we argue that  (i) 
object category recognition features are useful for the character recognition especially 
in presence of multiple fonts. (ii) linear SVMs perform very similar to IKSVM for 
most of the character classification  tasks.  (iii) Use of SPHOG sort of features can 
successfully solve the multifont character classification problem in Indic scripts. 
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3    Results and Discussions 

We start by investigating the deterioration of performance with the number of fonts. 
For this purpose, we collected a character level groundtruthed Telugu data set in fif-
teen fonts. Number of classes which is common to all these fonts is 359. We first 
investigate the utility of raw pixels as a feature with a linear SVM classifier. For this 
experiment, we consider only the first 100 classes.   

 

Fig. 2. (a) Variations of accuracies with increase in fonts (b) Accuracy and confused pair wise 
classifiers 

Results of the variation of accuracy are plotted in Figure 2(a). It may be seen that 
with only one or limited fonts, the accuracies are acceptable, however, with the num-
ber of fonts increasing, the accuracy comes down significantly. 

We now quantitatively show the results on a 100 class subset of the Telugu charac-
ters in 15 different and popular fonts. We show that the naive features, like raw pixels 
or PCA, are unable to address the significant font variation present in the dataset. 

Table 1. Comparative results on a smaller set of Telugu Multifont Data Set 

 

Table  1 compares  the performance  of the four  features in presence  of two dif-
ferent SVM classifiers – Linear  SVM(LSVM)  and  Intersection Kernel  SVM 
(IKSVM). Linear SVMs are also implemented as One Vs All as well as DDAG [2]. It 
may be  noted that the raw image features are not able to perform well when the num-
ber of fonts increases.  This is expected because of the variation in the styles and 
shapes of the associated glyphs. It is surprising  that the PCA,  which was performing  
reasonably  well for limited  number  of fonts  [2] is also not  able to scale well for the 
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multifont  situation.  A graph which shows the variation of the number of eigen vec-
tors (principal components) selected Vs the accuracy obtained is shown in Figure 3 
(a). The plot of magnitudes of eigen values of the covariance matrix (used in PCA)  is 
shown in Figure  3(b).  

 

Fig. 3. (a) Accuracy and number of eigen vectors (b) Eigen vectors and their magnitude 

These graphs explain that with an increase in the number of PCs the accuracy 
monotonically improves. However, the accuracy saturates at a level 91%, which is not 
an acceptable level of accuracy, we are looking for an OCR. On the contrary, the 
SPHOG features are performing consistently well for the large font data set, as can be 
seen in Table 1. PCA has been applied on the SPHOG feature as the dimensionality of 
the feature is large. Even with 23% of the SPHOG feature vector, accuracy close to 
the SPHOG result has been obtained. 

In short, it is clear from the experiments conducted on a 100 class data set, that 
SVM classifier with SPHOG and PCA-SPHOG features provide the most accurate 
classifiers. We have extended the results obtained for a full Telugu character set con-
sisting of 359 classes. They summarize as follows: 

Obtaining an accuracy of 96.4 on a truly challenging multifont data is significant. 
However, we would like to see the possibility of enhancing the accuracy further. For 
this, we analyze the confusions associated with all the pair wise classifications. As can 
be seen from Figure 2(b), the errors are associated with only certain pairs.  In Figure 
2(b), we plot the cumulative accuracy over all pair wise confusions. If we can address 
the errors in these pairs with the help of an additional classifier (we call them as post-
processing classifier), we can enhance the accuracy. We propose to use an RBF based 
SVM classifier for this purpose. The detailed design and analysis of the post-
processing classifier are beyond the scope of this paper. It is observed that with the 
help of a few robust post-processing classifiers, one can enhance the accuracy to 98%. 

Table 2. Classification accuracy: No of classes = 359, No of samples = 1453950 
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4   Conclusions 

We show that high classification accuracies can be obtained for character classifica-
tion problem with the help of SPHOG-SVM combination. Left out confusions is  
associated only to a small percentage of the classifier and a post-processing classifier 
with an uncorrelated feature set can successfully boost the overall classification  
performance. 
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Abstract. Fast and accurate algorithms are necessary for Optical Character 
Recognition (OCR) systems to perform operations on document images such as 
pre-processing, segmentation, extracting features, training-testing of classifiers 
and post processing. The main goal of this research work is to make segmenta-
tion accurate and faster for processing of large numbers of Devnagari document 
images using parallel implementation of algorithm on Graphics Processing Unit 
(GPU). Proposed method employs extensive usage of highly multithreaded ar-
chitecture and shared memory of multi-cored GPU. An efficient use of shared 
memory is required to optimize parallel reduction in Compute Unified Device 
Architecture (CUDA). Proposed method achieved a speedup of 20x-30x over 
the serial implementation when running on a GPU named GeForce 9500 GT.  

Keywords: OCR, Segmentation, Parallelization, GPU, CUDA. 

1   Introduction 

Research on Devnagari character and word recognition is very difficult due to its 
challenging properties. This area of research is still open for further research due to 
the extent of variation among writing styles, speed, thickness of character and direc-
tion of different writers, Real-world handwriting is a mixture of cursive and noncur-
sive parts, which makes the problem of recognition and synthesis more difficult, 
Similar looking characters may give ambiguity, Characters segment may touch where 
they should not or vice versa, variations and noises introduced during scanning and 
continuously increasing demand for accuracy, fast recognition, cheap and more prac-
tical to implement recognition system.  

The applications [1-3] of OCR such as form processing, automatic mail sorting, 
bank checks processing, and office automation for text entry. In handwritten docu-
ment processing, half of the errors are due to segmentation. Segmentation process is 
challenging due to touching components, wide variety of handwriting styles, text line 
segmentation, location of word boundaries, overlapping of characters, identification 
of physical gaps between words and characters. Some elaborate studies on line, word 
and character segmentation are in [4-9]. In this work, we modified the traditional 
profiling based segmentation method and parallelized to make it faster using CUDA. 
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2   Introduction to nVidia CUDA 

NVIDIA® CUDA™ [10] is a general purpose parallel computing architecture intro-
duced by NVIDIA. It includes the CUDA Instruction Set Architecture (ISA) and the 
parallel compute engine in the GPU. 

3   Proposed Segmentation Method 

The proposed segmentation method consists of two distinct stages. In the first stage, a 
preliminary segmentation was performed that executes line segmentation using modi-
fied histogram profiling method which uses the horizontal density of black pixels along 
with an axis. This process leads to the isolation of sub images corresponding to each 
line of the complete text. These sub images contain more than one word. In the second 
step, word segmentation was done using vertical density of black pixels along with an 
axis. These separate images of words can be further used for recognition purpose. 

3.1   Sequential and Parallel Implementation of Line Segmentation Method 

First, we implemented the sequential code and then parallelized code of proposed 
method. The following pseudo code outlines the structure of proposed parallelized 
modified horizontal profiling method implementations for line segmentation: 

 

Input  –  2 D image, Threshold Value 
Output –  Segmented Lines 
M      :  Image intensity matrix 
Density: An array having number of pixels less than 

threshold value. 
Minima : An array having the position from where image is 

to be segmented 
   Subroutine main() 
      Define a block and grid 
      For each row of M 
           Call Density_Kernel(Image) 
     End For 
 Set: i=0 
      For each horizontal row (j) of M  
        If (Density[j] ==0 && (Density[j - 1] > 0  || 

Density[j + 1] > 0)) 
              Then minima[i++]=j; 
      Modify_Kernel() 
    End For 
While(minimaLength !=null) 
    Calculate height between two rows 
Call Output_ Kernels(image) 
       End While 
       End Subroutine 
Density_kernel(image) 
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            If  Intensity is less than threshold  
       Then increment the density for each row 
 

Output_kenel(image) 
 Use to create an image 
Modify_kernel() 

Calculate average of all the vertical intensities and      
then check the leftover parts between neighbour segmented 
lines. Divide it in to two parts and compare the density 
of upper and lower half’s, using neighbour pixels and  
according to this results either neglect these part or 
embed with segmented image. 
End Function 

3.2   Sequential and Parallel Implementation of  Word Segmentation Method  

Proposed method for word segmentation for sequential processing was implemented 
first and then in CUDA to get more efficiency. Parallelized algorithm is more  
efficient than sequential in terms of time. The parallel implementation followed the 
structure shown in the pseudo code below: 

 

Input   – 2 D image, Threshold Vale 
Output  –  Segmentated Words 
M      : Image intensity matrix 
Density: An array having number of pixels less than 

threshold value. 
Minima : An array having the position from where image is  

to be segmented 
 

Subroutine main() 
      Define a block and grid 
      For each column in M 
           Call Density_Kernel(Image) 
    End For 
     Set i:=0 
      For each column (j) in M  
        If (Density[j] ==0 && (Density[j - 1] > 0  || 

Density[j + 1] > 0)) 
Then minima[i++]=j; 
End For 
While(minimaLength !=null) 
    Calculate height between two rows 
Call Output_ Kernels(image) 
       End While 
 End Subroutine 
Density_kernel(image) 

          If Intensity is less than threshold  
       Then increment the density for each row 
Output_kenel(image) 
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 Use to create an image 
Modify_kernel() 

Calculate average of all the horizontal intensities and      
then check the leftover parts between neighbour segmented 
lines. Divide it in to two parts and compare the density 
of upper and lower half’s, using neighbour pixels and  
according to this results either neglect these part or 
embed with segmented image. 
End Function 

4   Results and Discussions 

To test the proposed approach, we have collected a dataset of 10 document images of 
old newspapers and some are written by different writers. The results shown that 
modified profiling method works better than traditional profiling method. The com-
parison results are shown in figure 1and 2. The traditional profiling method works 
poor in overlapping text; it fails in calculating minima and maxima. Thus to avoid 
such problems we modified the method of finding minima and maxima for a text line. 
To make faster the profiling method, we parallelized proposed algorithm on CUDA 
and achieved a speedup of 20x-30x (on 10 images) over the serial implementation 
when running on a GPU named GeForce 9500 GT having 30 cores. Table 1 shows the 
comparison of execution time of proposed algorithm on CPU over GPU. Hence pro-
posed method proved that it works better in overlapping cases and run faster on GPU. 
Our method does not give good result when there is a more noise in background, but 
it gives good result as compared to traditional profiling method as shown in fourth 
image in figure 1. 

 
S.N. Input Image 

Traditional
Profiling Method 

Proposed Method 

1. 

 
 

Fig. 1. Shown line detection and segmentation in document images 
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S.N. Input Image 
Traditional

Profiling Method 
Proposed Method 

2. 

3. 

4. 

 
 

Fig. 1. (continued) 
 

 
Method 

Task 
Traditional Profiling 

Method 
Proposed Method 

Line
Segmentation 

Word 
Segmentation 

 
 

Fig. 2. Shown a sample of line and word segmentation 
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Table 1. Shown comparison of execution time CPU over GPU 
 

Average (Sec) 
Image 

Execution time 
 on CPU (Sec) 

Execution time
on GPU(Sec) CPU GPU

Speedup 

1.24 .0413 
1.24 .0423 1. 
1.23 .0413 

1.24 .0413 
30x 

 

.61 .0277 

.62 .0279 2. 

.61 .0278 
.61 .0277 22x 

1.12 .0412 
1.13 .0412 3. 
1.12 .0413 

1.12 .0412 28x 

1.91 .0706 
1.93       .0709 

 
4. 

    1.91     .0705 

  
1.91 

   
.0707 

   
27x 

5   Conclusion 

In this work a fast and modified profiling based segmentation algorithm has been pre-
sented and analyzed. The results of proposed method on the graphics device are very fast, 
with large two dimensional images than sequential algorithm. This algorithm serves as an 
excellent framework to solve a diverse array of problems. Parallelization plays important 
role in OCR research to speed up any algorithm to make faster processing.  
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Abstract. Phonetically, schwa is a very short neutral vowel sound, and like all 
vowels, its precise quality varies depending on the adjacent consonants. During 
utterance of words not every schwa following a consonant is pronounced. In or-
der to determine the proper pronunciation of words, it is necessary to identify 
which schwas are to be deleted and which are to be retained. Schwa deletion is 
an important step for the development of a high quality Text-To-Speech synthe-
sis system. This paper specifically describes the schwa deletion rules for Pun-
jabi written in Gurmukhi script. Performance analysis of the implemented rule 
based schwa deletion algorithm, evaluates its accuracy to be 98.27%. 

Keywords: Punjabi schwa deletion, Text-to-speech synthesis, Speech synthe-
sis, Punjabi vowels and consonants. 

1   Introduction 

Schwa is a mid-central vowel that occurs in unstressed syllables. Phonetically, it is a 
very short neutral vowel sound, and like all vowels, its precise quality varies depend-
ing on its adjacent consonants. Each consonant in Punjabi (written in Gurmukhi 
script) is associated with one of the vowels. Other vowels, except schwa (‘ਅ’ the third 

character of Punjabi alphabet and written as [ə] in International Phonetic Alphabet 
(IPA) transcription), are overtly written diacritically or non-diacritically around the 
consonant; however schwa vowel is not explicitly represented in orthography. The 
orthographical representation of any language does not provide any implicit informa-
tion about its pronunciation and is mostly ambiguous and indeterminate with respect 
to its exact pronunciation. The problem in many of the languages is mainly due to the 
existence of schwa vowel that is sometimes pronounced and sometimes not, depend-
ing upon certain morphological factors. In order to determine the proper pronuncia-
tion of words, it is necessary to identify which schwas are to be deleted and which are 
to be retained. Schwa deletion is a phonological phenomenon where schwa is absent 
in the pronunciation of a particular word, although ideally it should have been pro-
nounced [1].  The process of schwa deletion is one of the complex and important  
issue for grapheme-to-phoneme conversion, which in turn is required for the devel-
opment of a high quality text-to-speech (TTS) synthesizer. In order to produce natural 
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and intelligible speech, the orthographic representation of input has to be augmented 
with additional morphological and phonological information in order to correctly 
specify the contexts in which schwa vowel is to be deleted or retained [2]. 

Mostly phonological schwa deletion rules have been proposed in literature for In-
dian languages. These rules take into account morpheme-internal as well as across 
morpheme-boundary information to explain this phenomenon [3]. The morphological 
analysis can improve the accuracy of the schwa deletion algorithm which is a dia-
chronic and sociolinguistic phenomenon [1, 4]. The syllable structure and stress as-
signment in conjunction with morphological analysis can also be used to predict the 
presence and absence of schwa [5].  

1.1   Punjabi Language and Schwa 

Punjabi is an Indo-Aryan language spoken by more than hundred million people. Like 
other Indian languages, Punjabi includes segmental phonemes (vowels and conso-
nants), but not supra-segmental phonemes (stress, intonation, juncture, nasality and 
tone) in its alphabet. In Gurmukhi script, which follows the one sound-one symbol 
principle, Punjabi language has thirty eight consonants, ten non-nasal vowels (ਇ, ਈ, ਏ, 

ਐ, ਅ, ਆ, ਔ, ਉ, ਊ, ਓ ) and same numbers of nasal vowels (ਇੰ, ਈ,ਂ ਏ,ਂ ਐ,ਂ ਅੰ, ਆਂ, ਔ,ਂ ਉਂ, ਊਂ,  ). 

Vowels can appear alone in orthography (known as full vowels) however conso-
nants can appear along with vowels only. Vowels, except schwa ([ਅ]), are represented 

diacritically when these come along with consonants (known as half vowels), other-
wise as such. The consonant sound varies according to the vowel attached to conso-
nant. For example, consonant [ਸ] conjoined with vowel [ਈ] (having diacritic ◌ੀ)  
results a single orthographic unit “ਸੀ”, having pronunciation of a consonant-vowel 

sequence /ਸ+ਈ/ (/si/) however when this consonant comes with vowel [ਆ] the result-

ing single unit [ਸਾ] will be pronounced as /ਸ+ਆ/ (/sā/).  
Consonants represented in orthography without any attached diacritic, basically 

have the associated inherent schwa vowel that is not represented diacritically. While 
pronouncing the written word, the speaker retains the intervening schwa vowel asso-
ciated with a consonant where required and eliminate it from pronunciation where it is 
not required. In Punjabi the inherent schwa following the last consonant of the word is 
elided. For example, Punjabi word “ਸੜਕ” ([sədəkə] means road) pronounced as \ ਸ ਅ 
ੜ ਕ \ (\s ə d k\) is represented orthographically with only the consonant characters [ਸ], 

[ੜ] and [ਕ]. Schwa following the last consonant [ਕ] is deleted as per rule said above 

and the deletion the schwa following the second consonant [ੜ] makes the word 

monosyllabic of type CVCC (Consonant-Schwa-Consonant-Consonant).  

2   Schwa Deletion Algorithm 

Schwa vowel is not explicitly represented in orthography, so the schwa deletion algo-
rithm basically turns to be schwa insertion at the morphological processing grounds in 
the text analysis component of the TTS system.  The developed algorithm for schwa 
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deletion basically consists of the two tasks: vowel-consonant pattern generation and 
schwa deletion (/insertion) in vowel-consonant pattern. These modules of the devel-
oped system have been discussed in the following subsections.  

2.1   Module I: Vowel-Consonant Pattern Generation 

This module generates the Vowel-Consonant pattern of the input word. It locates the 
full/half vowels (nasal or non-nasal) and the consonants positions; and hence 
identifies the schwa locations in the word. The output sequence corresponding to the 
input word consists of a string of symbols: C, V, v and n for the consonants, full-
vowels, half-vowels and nasal-morphemes (bindī [◌ਂ ] / tippī [◌ੰ ]) respectively. This 

sequence of symbols will be helpful for marking the schwa positions. For example, 
the vowel-consonant pattern for the word “ਿਕਤਾਬ” ([kitāb] means book) is CvCvC and 

that of “ਅਿਧਆਪਕ” ([adiāpək] means teacher) is VCvVCC. 

The further processing of the input word emphasises on finding the presence or ab-
sence of the schwa vowel sound during word’s pronunciation. For example, the 
vowel-consonant pattern for the Punjabi word “ਮਰਦ” ([mərəd] means man) is CCC. 

Grammatically, there must be schwa vowel following each consonant in Punjabi but 
the word’s pronunciation specifies the existence of schwa [ə] /ਅ/ sound after the first 

consonant only. So, schwa following the first consonant [ਮ] will be retained, however 

schwa vowels following the second [ਰ] and third [ਦ] consonants will be deleted.  

2.2   Module II: Schwa Deletion (/insertion) in Vowel-Consonant Patterns 

As already discussed the schwa is not represented orthographically. For the process-
ing of the input text, schwa needs to be represented symbolically like other vowels. 
So, the schwa deletion process is taken up as schwa insertion and rules have been 
developed for the same. These rules are based on mainly three parameters: grammati-
cal constraints, inflectional rules and morphotactics of Punjabi. 

For these rules, let Σ = {V, v, C, S, b} be the set of all the symbols, where V = set 
of full vowels, v = set of half vowels, C = set of consonants, S = schwa vowel and b = 
blank space. A set of eleven rules has been designed and are discussed below. The 
underlined symbol in the following rules represents the current consonant that is un-
der consideration. 

Rule I: VCCC  VCCSC. If a consonant is preceded by VC syllable and followed 
by a single consonant (C), then schwa is inserted after that consonant. For example, in 
word “ਇਕਦਮ” ([ikdəm] means immediate) schwa is inserted after consonant ‘ਦ’ ([d]) 

as per this rule, however not after ‘ਕ’ ([k]) and ‘ਮ’ ([m]) being at the syllable and 

word boundary respectively. In terms of schwa deletion we can say that schwa vowels 
after the consonants ‘ਕ’ and ‘ਮ’ are being deleted and that after ‘ਦ’ is being retained. 

Rule II: VCCCC  VCCCSC. If a consonant is preceded by VCC syllable and is 
followed by single consonant (C), then schwa is inserted after that consonant. For 
example, in word “ਆਕਰਸ਼ਨ” ([ākərəshən] means attraction) schwa is inserted only 
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after the consonant ‘ਸ਼’ ([sh]). No schwa after consonants ‘ਕ’ [k] and ‘ਰ’ [r] is inserted 

(being at syllable and word boundary respectively) and thus making this word  
disyllabic. 

Rule III: CCCv(Σ - b)  CSCCv(Σ - b). If a consonant at word starting position is 
followed by a consonant cluster (CC), a half vowel (v) and one more character except 
the word boundary (Σ - b), then schwa is inserted after that consonant. For example, 
in word “ਹੜਤਾਲ” ([hədtāl] means strike), the schwa is inserted after consonant ‘ਹ’ 

([h]) as per this rule, however not after ‘ੜ’ being at syllable boundary. 

Rule IV: CCCC(Σ - b)  CSCCC(Σ - b). If a consonant at the word starting posi-
tion is followed by consonant triplet (CCC) and one more character except the word 
boundary (Σ - b), then schwa is inserted after that consonant. For example, the conso-
nant ‘ਗ’ ([g]) in word ਗਰਦਨਾਂ ([gərdnā]) satisfies this rule and so schwa is inserted 

after this consonant. 

Rule V: CCΣ(V/b)  CSCΣ(V/b). If a consonant cluster at word starting position is 
followed by any character (V, v or C) and a full vowel or word boundary, then schwa 
is inserted after the consonant at first position. For example, in the words “ਕਿਹਆ” 

([kəhiā] means said), “ਰਹੇ” ([rəhe] mean doing), “ਤਰਨ” ([tərn] means swimming), 

“ਕਰ” ([kər] means do), schwa is inserted after the first consonant of each word.  

Rule VI: CCvC  CSCvC. If a consonant at word starting position is followed by a 
CvC syllable, then schwa is inserted after that consonant. For example in word 
“ਸਵਾਲ” ([səwāl] means question) schwa is inserted after the first consonant ‘ਸ’ ([s]). 

Rule VII: (V/v)CCCC  (V/v)CCSCC. If a consonant is preceded by full or half 
vowel and one consonant and is followed by a consonant cluster, then schwa is in-
serted after that consonant. For example, in words “ਅਸਚਰਜ” ([aschərj] means 

strange), schwa is inserted after the consonant ‘ਚ’ ([ch]). 

Rule VIII: CvCCCCvC  CvCCSCCvC. If a consonant is preceded by a CvC syl-
lable and is followed by CCvC syllable, then a schwa is inserted after that consonant 
to make the word tri-syllabic. For example in word “ਰਾਸ਼ਟਰਵਾਦ” ([rāshtərwād] means 

nationalism), the consonant ‘ਟ’ ([t]) is at the position that satisfies the above said rule, 

so schwa is inserted after that consonant making the word tri-syllabic having syllables 
ਰਾਸ਼ (CvC), ਟਰ (CvC, where ‘v’ is schwa ‘ə’) and ਵਾਦ (CvC). 

Rule IX: (V/v/S)CCCCv(V/b)  (V/v/S)CCSCCv(V/b). If a consonant is preceded 
by the VC or CvC syllables and is followed by consonant cluster, half vowel and (/or) 
full vowel, then a schwa is inserted after that consonant. For example, the schwa in-
sertion in words “ਿਤਲਕਣਗੀਆਂ” ([tilkəngiyā] means to be slipped) and “ਉਸਰਨਗੀਆਂ” 

([usrəngiyā] means to be constructed) after the consonants ‘ਕ’ ([k]) and ‘ਰ’ ([r])  

respectively.  
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Rule X: CCCvC  CSCCvC. If a consonant at the word starting position is followed 
by the CCvC syllable, schwa is inserted after that consonant. For example, in the word 
“ਤਕਰਾਰ” ([təkrār] means argument) the consonant ‘ਤ’ ([t]) at the word starting posi-

tion, satisfies the above said rule and so schwa is inserted after this consonant. 

Rule XI: (V/Cv)CCCC  (V/Cv)CCSCC. If a consonant is preceded by VC or CvC 
syllable and is followed by consonant cluster (CC), then schwa is inserted after that 
consonant. For example, in words “ਉਪਕਰਣ” ([upkərn] means instrument) and 

“ਨਾਮਕਰਣ” ([nāmkərn] means naming), schwa is inserted after the consonant ‘ਕ’ ([k]) 

in both words. 

2.3   Algorithm 

The schwa deletion algorithm that has been basically implemented as schwa insertion 
can be described briefly as below.  

Input: vowel-consonant pattern of the input word. 
Output: vowel-consonant pattern with inserted (/deleted) Schwa. 
Algorithm: 

i. Set variable CVpattern to consonant-vowel pattern of the input word. 
ii. Set currSymbol to first symbol of the CVpattern. 

iii. Repeat steps (iv) and (v) while currSymbol < > “” 
iv. If currSymbol is a consonant then 

   (a) Seach rule base for the currSymbol. 
   (b) If the currSymbol satisfies any of the rules then insert schwa after that 

consonant  in the word. 
v. Set variable currSymbol to the next symbol of CVpattern. 

vi. Return current word. 

3   Performance Analysis 

The developed algorithm has been tested on ten thousand most frequently used words 
of Punjabi. These words have been selected from a Punjabi corpus having 104425741 
total and 232565 unique words. The set of most frequently used words have been 
generated on the basis of their frequency of occurrence in the above said corpus. Out-
put of the algorithm for these words has been checked manually. Out of ten thousand, 
173 words have been found with wrong schwa insertion. This results the accuracy of 
the algorithm to be 98.27%. It has been observed that most of the words for which the 
algorithm is giving wrong results are those containing addak (◌ੱ ) specifying gemina-

tion in Punjabi and the words having consonant conjuncts those appear at bottom of 
the barer consonant.  

4   Conclusions 

Schwa plays an important role in the correct pronunciation of a language and hence 
for the development of a high quality TTS system. The decision for retention or  
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deletion of schwa is very much obvious for a native speaker, but for machine process-
ing purpose this decision will be based on language specific rules. A set of eleven 
rules have been developed and discussed in this paper for Punjabi. These rules are 
based on grammar rules, inflectional rules and morphotactics for Punjabi. The algo-
rithm developed on the basis of these rules has good accuracy which will definitely 
improve the quality and hence naturalness of the output speech. 
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Abstract. We are proposing an approach to improve the final output coming 
English-Hindi Anusaaraka System. To improve final output, we need to refine 
the way of ordering of the Hindi sentence in existing system. The basic idea is 
to improve the target language reordering by marking the clausal level informa-
tion using OpenLogos diagnosis file. This paper presents, how to use clausal in-
formation along with pada, relations information (already used by present 
Anusaaraka system) to get Hindi sentence reordering correctly.  

Keywords: Anusaaraka, OpenLogos, Swork Table, Word Class, CLS-
MARKER. 

1   Introduction 

Anusaaraka is one of the well known machine translation system which gives result in 
two ways, one in the layered form and second the final ordered output. Layered out-
put is significant in order to preserve the information coming from source text. The 
final ordered output lacks in proper ordering which causes incorrect Hindi translation. 
During the various analyses of the source sentences and the target sentences in the 
Anusaaraka, it is noticed that the Hindi ordering for the target sentence lacks due to 
improper ordering of pada and their vibhakti. Here our main focus is to solve this 
problem by extracting and implementing the knowledge of the clause boundary from 
the diagnosis file produced by open-logos and using it for target language reordering 
in the Anusaaraka system. 

1.1   Anusaaraka 

As described above, Anusaaraka is an English-Hindi language accessor cum machine 
translation software. The approach of the Anusaaraka System lies in the fact that it 
uses various Open Source Softwares such as Link, Stanford parsers, Appertium and 
Open-Logos system for the parsing of the English Sentences. The information coming 
from these parsers is used along with predefined rules to get Hindi translation. 
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1.2   OpenLogos Diagnosis File  

OpenLogos is a free machine translation system, in which currently German and Eng-
lish are the source languages available. The target languages for English include the 
major European languages (such as French, Italian, Spanish and Portuguese). We are 
using diagnosis file of the system in which English and German are configured as 
source and target language respectively. It contains information of source sentence 
analysis in various tabular forms. 
 
SWORK. A Swork is created for every word in the text and is sent to Tran. It consists 
of Word class, Form field, Type, Tran-id.  
 
TRAN. TRANs are modules that progressively redefine analyses of input sentences 
and store information pertinent to the synthesis of output text, keep collecting infor-
mation about the source language, putting phrases together and reducing them to their 
heads, extracting subordinate clauses and gathering the information necessary for the 
generation of the target in Tran4 where the final decision is made. 
 
CLS-MRKR. It is introduced in table whenever there is modifier clause exist in the 
input sentence. It indicates the location where that modifier clause is to be placed. 
 
WORD CLASS. The Word class corresponds to the part of speech of the word which 
is indicated by 2 digits. There are 20 word classes i.e.  01 Noun, 02 Verb, 03 Adverb, 
04 Adjective etc. 

2   Existing Approach  

If we see layered output of Anusaaraka it gives the gradual analysis of the English 
sentence in the translation process. But if we see final output it contains almost all 
word meanings with proper vibhakti (case marker) but the target language ordering is 
not correct in most of the cases. Anusaaraka is performing Hindi ordering through set 
of rules. As Hindi is free word order language and we cannot bind it in rules.  Our 
main focus is to improve the final translation output using clausal information from 
diagnosis file. 

3   Proposed Approach  

The final ordered output in Anusaaraka lacks in proper ordering which causes incor-
rect Hindi translation. During the various analyses of the source sentences and the 
target sentences in the Anusaaraka, it is noticed that the Hindi ordering for the target 
sentence lacks due to improper ordering of pada and their vibhakti. Here our main 
focus is to solve this problem by extracting and implementing the knowledge of the 
clause boundary from the diagnosis file produced by open-logos and using it for target 
language reordering in the Anusaaraka system. 
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3.1   Approach  

Sentences can be grouped on three levels. i.e. 1. Pada level1 2. Clause level 3. Sen-
tence level. In pada level we only identify the pada present in the sentence and then 
place those pada as one unit. Pada give meaning with their vibhkati and preposition. 
On the other hand a clause represents the part of sentence which has some meaning 
and it may have subject and predicate or either one of them. After recognizing the 
clauses, within clause level ordering is done. Each clause will act as one unit. For 
final translation we need join different clauses and perform inter clause level ordering 
using tran4 information. 

3.2   Algorithm   

Input: English sentence 
  1. Find pada in the given sentence including there category (VP or PP). 
  2. Extract clauses information from the SWORK TABLE tran4. 
       a. To extract clauses identify word class of each word. If it is 20 then it acts as a   

connector. 
      b. All the words which are coming between two words whose word class is 20 

are considered in    one clause.  
       c.  Repeat this check of word class and identify all clauses of sentences. 
  3. Now take every clause one by one and fill the missing word ids in increasing 

order using RESOLVED SWORK RECORD table. 
  4. Group pada in each clause. 
  5. Apply subject object verb (SOV) rule for each clause. Move the pada having 

category VP to the last position of the clause. 
  6. Now place all the clauses in the order they were in tran4/tran3. 
 Output: Final order of the sentence 

Special Case. In case if *CLS-MRKR* comes in any clause switch to tran3.During 
inter clause ordering modifier clause will place at *CLS-MRKR* place. Modifier 
clauses are the one whose beginning word is preceded by the word CLS-BOS and id 
of CLS-BOS is equal to *CLS-MRKR*'s id plus one.  

3.3   Description of Algorithm Using Example  

Example 1. In below translation of example sentence 1, the location of connector 

“because: क्योँिक” is not in the proper order due to lack of clause information.  

English Sentence 1: The group of tourists decided to have lunch in the village because 
the van needed repairs. 

 

                                                           
1 Pada grouping is done in LWG module (local word grouping) which groups Subanta padas 

(Noun phrases and Prepositional phrases) and Tinganta pada (Verb phrases) differently using 
various Tran level information from the Openlogos diagnosis file. 
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Anusaaraka Output (Romanized): Paryaṭakō kē samūha nē gām̐va mēṁ dōpahara kā 
khānā kyōm ̐ki khānē kā niścaya kiyā vaina kī durustī āvaśyakatā 
 
Implementation of Algorithm. The words having swork containing WC 20 acts as 
connector (Con) and rest of words coming between two words of word class type 20, 
act as one clause, as shown in Fig 1.  

 
20  900   2  1  1  91  17  3       2  304   7  6   2  710  38  8   1  43   1  9 

            BOS                     group                  decided            have              lunch                                                             
 

         1 481 86 12     20  927  19 13  1  611  17 15   2  974   7 16  1  749   2 17 
           village             because                  van                   needed               repair 

20   10   1 18  
    EOS 

 

Fig. 1. Information from the SWORK TABLE in tran4 

Table 1. Connectors and Clauses with their corresponding chunks  

Clause & Connector 
level 

   Chunks  

Con1 BOS  
Clause1 group decided have lunch  
Con2 because  
Clause2 van  needed  repairs  
Con3 EOS  

 

 
The connectors and clauses with their corresponding chunks are formed as shown in 

Table 1. Now this information can be used to reorder the clauses as given in Table 2. 

Table 2. Reordering of Clauses 

Steps  Description  

Step 1 Head Ids from tran4 of clause1-3 6 8 9 12 
Step 2 All ids including missing-2 3 4 5 6 7 8 9 10 11 12 
Step 3 Group pada units-(2,3) (4,5) (6) (7,8) (9) (10,11, 12) 
Step 4 As id 6 pada form VP in clause, it must come at last. 
Step 5 
Step 6 

 
Step 7 
Step 8 
 
 
 
 

Now Clause1Order (C1) -  2 3 4 5 7 8 9 10 11 12  
Reorder Clause 2 using above steps 
Clause2 Order (C2) -   14 15 17 16 
Final Order becomes - Con1 C1 Con2 C2 Con3  
Output: Paryaṭakō kē samūha nē gām ̐va mēṁ 
dōpahara kā khānā khānē kā niścaya kiyā 
kyōm ̐ki vaina kō maram'mata kī āvaśyakatā thī 
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Example 2. Following example illustrates the case when CLS-MRKR appears in 
SWORK Table and also shows that conjunctions are not properly placed in existing 
system.  

English sentence 2: We learn what we have said from those who listen to our  
speaking. 

Anusaaraka   output (In Romanized): Hama hama kyā sīkhatē haiṁ unasē kaha cukā 
hai kauna hamārē bōlanē kē liyē sunatā hai 

Implementation of Algorithm. As in Fig. 2, we can see the tran4 contains the *CLS-
MRKR* then, we switch to the tran3 for clause and connector information as shown 
in Table 3 

 
 

 

 

 
 

Fig. 2. Information from the SWORK TABLE in tran4   

 
The connectors and clauses with their corresponding chunks are formed as shown 

in Table 3.  

Table 3. Connectors and Clauses with their corresponding chunks  

Clause & Connector 
level 

   Chunks 

Con1 BOS 
Clause1 we learn  
Con2 what 
Clause2 
Con3 

We have said those *CLS- MRKR* 
EOS 

     Con 4 
Clause 3 
Con 5 

    *CLS-BOS* 
who listen speaking 
*CLS-EOS*  

 
Now above information can be used to reorder the clauses as given in Table 4. 

 
 

20 900 2  1    1  796  2  2     2  579   1  3   20 393 19  4     1  796 2  5 
   BOS                we             learn                 what                         we 
12 710 1   6    2  312 54 7      1 679  43 9   1  175  18 16       20   10  1 15 
   Have               said                 those        * CLS-MRKR *               EOS 
20 103 18 17    1 103  2 10   2  573  1 11   1  945  53 14       20 10  18 18 
* CLS-BOS *         who                   listen            speaking       * CLS-EOS * 
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Table 4. Reordering of Clauses 

Steps  Description  

Step  1 Head Ids from tran4 of clause1-2 3 
Step  2 All ids including missing-2 3  
Step  3 Group pada units-(2,3)  
Step  4 
 

     Step  5 

If any VP is there apply SOV on it else the order 
remains same. Now Clause1Order (C1) -  2 3 
Head Ids from tran4 of Clause 2-5 6 7 9 

Step  6 
Step  7 
Step  8 
 
 

    Step  9  
 
 
 

   Step  10 
   Step  11 
   Step  12 

 
   Step  13 

 
 
                                              
 

All ids including missing - 5 6 7 8 9 
Group pada units - (6 7)  (8 9)   
Check for VP, as (6, 7) is VP, place it at last in 
clause. Now Clause1 Order (C1) -  5 8 9 6 7  
Now Clause2 Order (C2) -   14 15 17 16.  
As clause2 contains *CLS-MRKR. Mark clause 
marker’s id as i, and jump to the word whose id is 
i+1 which is to be placed in the position of the 
*CLS-MRKR*.  
Reorder Clause 3 using the same method above 
Now Clause3 Order (C3)  -  10 12 13 14 11  
Final Order Con1 C1 Con2  C2  Con4  C3  Con5  
Con3 
Final Output-Hama sīkhatē haiṁ jō hama unasē 
kaha cukē haiṁ jō hamārī bātō kō sunatē haiṁ 
 

4   Conclusion and Future Work  

The proposed method gives correct result for only 70% of cases. Future work will 
involve handling of inter-clause ordering heuristics rules. We must give our special 
thanks to Dr.Vineet Chaitanya for his guidance and knowledge during this work. 
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Abstract. The present paper is a comparative study of different feature extrac-
tion techniques for recognition of isolated handwritten characters in Gurmukhi 
script. The whole process consists of three stages. The first, feature extraction 
stage, analyzes the set of isolated characters and select the set of features that 
can be used to uniquely identify characters. For the selection of stable and rep-
resentative set of features of character under consideration in this problem Zon-
ing, Directional Distance Distribution (DDD) and Gabor methods have been 
used. The second stage is classification stage which uses features extracted in 
the first stage to identify the character. For classification Support Vector Ma-
chine (SVM) has been used to identify the character. In the third stage, feature 
extraction methods have been compared with respect to recognition rate. An 
annotated sample image database of isolated handwritten characters in Gur-
mukhi script has been prepared which has been used for training and testing of 
the system. Gabor based feature extraction proved to be better as compared to 
others. 

Keywords: Feature extraction methods, Zoning, Gabor filters, DDD, handwrit-
ten character recognition, Gurmukhi script. 

1   Introduction 

Optical character recognition (OCR), is the mechanical or electronic translation of 
scanned images of handwritten, typewritten or printed text into machine-encoded such 
as ASCII code. The potential of OCR systems is enormous because computer systems 
armed with OCR system improve the speed of input operations, reduce data entry 
errors, reduce storage space required by paper documents and thus enable compact 
storage, fast retrieval, scanning corrections and other file manipulations. OCR have 
applications in postal code recognition, automatic data entry into large administrative 
systems, banking, automatic cartography, 3D object recognition, digital libraries, in-
voice and receipt processing, reading devices for blind and personal digital assistants. 
Accuracy, flexibility and speed are the three main features that characterize a good 
OCR system.  
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Recognition of isolated handwritten characters is the process of identifying indi-
vidual characters. It is useful in wide range of real world problems like documentation 
analysis, mailing address interpretation, bank check processing, signature verification, 
documentation verification etc. Due to applications of recognition, it is one of the 
most challenging areas of pattern recognition. It has been topic of research for a long 
period of time. Work has been done in recognizing handwritten Chinese, Arabic, 
Devnagari, Urdu and English characters, recognizing handwritten numerals and 
handwritten digits. In the problem of recognition of isolated handwritten characters 
the input is isolated characters. Word segmentation provides isolated characters. 
Characters can be in upper zone, middle zone or lower zone. The rest of the paper is 
divided into three sections. Section 2 contains the existing work done in this area; 
section 3 covers feature extraction methods, section 4 covers classification and  
section 5 covers results and discussions. 

2   Literature Survey 

Pattern recognition is a field of research since a long period of time. Lazzerini and 
Marcelloni [1], presents EYE, a fuzzy logic based classifier for recognition of isolated 
handwritten characters. EYE is based on a new linguistic classification method. The 
method describes characters in terms of linguistic expressions and adopts a purposely 
defined operator to compare these expressions. Hanmandlu et al. [2], presents an in-
novative approach called box method for feature extraction for the recognition of 
handwritten characters. In this approach, the character image is partitioned into a 
fixed number of sub images called boxes. The features consist of normalized vector 
distance and angle from each box to a fixed point. The recognition schemes used are 
back propagation neural network (BPNN) and fuzzy logic. The recognition rate is 
found to be around 100% with the fuzzy based approach on the standard database. 
Zhang et al. [3], proposed a handwritten character recognition feature based on the 
combination of gradient feature and coefficients of wavelet transform. The gradient 
feature represents local characteristic of a character image properly, but it is sensitive 
to the deformation of handwritten character. The wavelet transform represents the 
character image in multiresolution analysis and keeps adequate global characteristic 
of a character image in different scales. Gary and Joe [4], proposed a new method to 
measure the similarity between two fuzzy attributed graphs of a known character class 
and an unknown character. In the recognition stage, when this similarity measure is 
applied, an input character can be correctly classified. Liolios et al. [5], presents a 
system capable of recognizing isolated handwritten characters using shape transform 
method. The shape transform approach is based on the calculations the cost of trans-
forming the image of a given character into that of another, thus taking into account 
local geometrical similarities and differences.  

3   Feature Extraction Methods 

Different types of features can be extracted depending on the representation forms of 
characters. 
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3.1   Zoning 

The frame containing the character is divided into several overlapping or non-
overlapping zones and the densities of object pixels in each zone are calculated. Den-
sity is calculated by finding the number of object pixels in each zone and dividing it 
by total number of pixels. Densities are used to form a representation. For binary im-
ages, value of each pixel is either 1 or 0. We have considered pixels having value 
BLACK (0) as object pixels. This feature is extracted from the scaled (normalized) 
character matrix of the character. The original character image (matrix) is first scaled 
to Normalized window of size 48*48.  

 

 
 

 
 

 

Fig. 1. Original Image of Gurmukhi char-
acter sassa (ਸ ) 

Fig. 2. Scaled Image of Gurmukhi Character 
sassa (ਸ ) 

 
The Zoning feature set consists of 64 values. The values in feature vector are nor-

malized in the range 0 to 1. Normalization is done by dividing all the values by the 
largest value in the feature set. 

3.2   Directional Distance Distribution  

DDD, proposed by Oh and Suen [9], is based on the distance information computed 
for both black pixels and white pixels in 8 directions. It regards input pattern array as 
circular. By regarding the array as being circular when computing distance, we could 
get a better discriminating power of the feature. As both distances from black pixel to 
white pixel and from white pixel to black pixel are computed, the feature contains 
both the black/white distribution and the directional distance distribution. To each of 
the pixels in the input binary pattern array, two sets of 8 bytes which W (White) set 
and B (Black) set are allocated. For a white pixel, the set W is used to encode the dis-
tances to the nearest black pixels in 8 directions. The set B is simply filled with value 
zero. For a black pixel, the set B is used to encode the distances to the nearest white 
pixels in 8 directions. The set W is filled with value zero. The 8-direction codes are 
0(E), 1(NE), 2(N), 3(NW), 4(W), 5(SW), 6(S), 7(SE). The distances of nearest 
black/white pixels in each direction for pixels (0,0) and (4,37) have been given in 
Table2 and  Table3. After computing WB encoding for each of the pixel, we have 
divided the input array into four equal zones both horizontally and vertically, hence 
producing 16 zones. In each of the sixteen grids an average for each of 16 bytes in 
WB encodings is computed. So, we finally get a 16(16 bytes in WB)*16 (4*4 grids) 
feature vector. 
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Fig. 3. Scaled image of size(48*48) of character hahha(ਹ) 

Table 1. WB Encoding for white pixel (0,0) in Figure 3 

 

Table 2. WB Encoding for Black pixel (4,37) in Figure 3 

 
 
The DDD (Directional Distance Distribution) feature set consists of 256 values. 

The values in feature vector are normalized in the range 0 to 1. Normalization is done 
by dividing all the values by the largest value in the feature set. 

3.3   Gabor 

A Gabor filter is a kind of local narrow band pass filter and selective to both orienta-
tion and spatial frequency. It is suitable for extracting the joint information in two-
dimensional spatial and frequency domains and widely applied in the fields such as 
character recognition, face and texture recognition, etc. Gabor filters are applicable to 
both binary images and   gray-scale images, and are immune to image noise. Gabor 
filters were utilized to extract the basic structures of the character, which combined 
the advantages of image analysis based on spatial domain and spatial-frequency do-
main. The Gabor feature set consists of 252 values. The values in feature vector are 
normalized in the range 0 to 1. Normalization is done by dividing all the values by the 
largest value in the feature set. 

4   Classification Methods 

Classification stage uses the features extracted in the feature extraction stage to iden-
tify the text segment. It is concerned with making decisions concerning the class 
membership of pattern in question. The task here is to design model using training 
data which can classify the unknown pattern based on that model. For training pur-
poses we have used isolated Gurmukhi characters written in different forms. Feature 
vector for all training data is produced and stored in files.  SVM (Support Vector  
Machine) is a useful technique for data classification [6,7,8]. The Support Vector Ma-
chine (SVM) is learning machine with very good generalization ability, which has 



114 D.V. Sharma and P. Jhajj 

been applied widely in pattern recognition, regression estimation, isolated handwritten 
character recognition, object recognition speaker identification, face detection in im-
ages and text categorization.  

5   Results and Discussions 

An annotated sample image database of isolated handwritten characters in Gurmukhi 
script has been prepared. The database contains name of source image, size of image 
and character value of the image. We have experimented the system on 2050 images 
of Gurmukhi characters contained in the database. The system is analyzed using dif-
ferent combinations of feature extraction methods and classification methods. We 
have used 3075 images to train the system and 2050 for testing. The recognition accu-
racy obtained by using different combinations of feature extraction methods and clas-
sifiers is given in the Table 3. The recognition accuracy is obtained by dividing the 
correctly recognized characters to total number of character images which are actually 
present in the database. 

Table 3. Performance of different combinations of feature extraction method and classification 
techniques 

Feature extraction 
method 

Classifier Total  
Images 

Correctly  
recognized 

Recognition 
Accuracy 

Zoning SVM(Linear Kernel) 2050 1490 72.68% 
Zoning SVM(Polynomial Kernel) 2050 1497 73.02% 
Zoning SVM(RBF Kernel) 2050 1493 72.83% 
DDD SVM(Linear Kernel) 2050 1490 73.21% 
DDD SVM(Polynomial Kernel) 2050 1497 73.65% 
DDD SVM(RBF Kernel) 2050 1493 73.36% 
Gabor SVM(Linear Kernel) 2050 1490 73.90% 
Gabor SVM(Polynomial Kernel) 2050 1497 74.29% 
Gabor SVM(RBF Kernel) 2050 1493 74.00% 

 
Gabor with SVM (Polynomial kernel) gives the best results of all the combinations 

of feature extraction methods and classification methods as is evident from the Table 3. 

5.1   Reasons of Failure 

Sometimes the characters are also wrongly classified. It happens due to many reasons 
like 

• The variability of writing styles, both between different writers and between 
separate examples from the same writer overtime. For example:  

 
Fig. 4. Variability in writing style 
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• Some characters have similar topological structures. 

Table 4. Similar Characters 

 and   and   and  and   and  and   and 
 and  and   and  and   and  and   and  
 and  and   and  and   and   and  and 

 
 
• The possible low quality of the text image. For example: 

 

Fig. 5. Low quality image 

• The unavoidable presence of background noise and various kinds of distortions 
(such as poorly written, degraded, or overlapping characters) can make the rec-
ognition process even more difficult. For example 

 

Fig. 6. Distorted images 

System sometimes confuses the character with some other character and does not rec-
ognize it correctly. In the Table5 the confusion matrix caused when Gabor and SVM 
(Polynomial Kernel) have been used is given. We have taken 2050 images, 50 images 
of each character. The characters ੳ  , ਗ , ਘ  , ਝ , ਨ  , ਲ   are recognized with higher 
accuracy and characters ਅ  , ਢ  , ਧ  , ਫ  are recognized with least accuracy. 
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Abstract. During the scanning of bound documents, some part of the document 
image is curled near the corners or near the binding resulting in bending of text 
lines. This hard to tackle distortion makes recognition very difficult. A method 
has been proposed for estimation and removal of line bending deformations in-
troduced in document images during the process of scanning. The estimation of 
bend involves determining the side of the document on which curl is present 
and direction of the bend. The method has been tested on varieties of printed 
document images of Gurmukhi containing the bent text-lines at page borders. 
The method consists of three stages. In the first stage, a decision methodology 
is proposed to locate the site of deformation and the direction of deformation. 
An elliptical approximation model is derived to estimate the amount of defor-
mation in the second stage. Finally, a transformation process brings out the  
correction.  Experiments show that the method developed works well under 
conditions where pixel distribution is uniform.  

Keywords: Dewarping, Machine printed, Gurmukhi script, OCR. 

1   Introduction 

One of the major issues while preparing a document image for processing is to pro-
duce a quality document image for further image analysis. Noise is a prevalent artifact 
introduced in document images by image acquisition device or due to poor quality of 
document media. Skew is the orientation introduced while placing the document into 
scanning device. Unless these two problems are handled properly in the document 
images, it is very difficult to proceed with the other sequence of activities in DIA 
(digital image acquisition). Generally, ‘noise’ components in a document image are 
referred as salt-and-pepper noise or impulse and speckle noise or just dirt. One more 
typical type of noise introduced while scanning a document image is due to:  

(1) Copying a page of a thick bound book because of non-planar surface created by 
the book on the flat copying surface  

(2) non-linearity in copying the contents at the start and finish ends of scanning. 
These result in ‘bending of text-lines’ at the page borders. Such bent text–lines are 
elliptical in shape. Samples of such bending of text-lines document images are shown 
in fig 1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 1. Sample of line bending in document images (a) left upward (b) left downward (c) right 
upward (d) right downward 

 
Bending of text-lines in document images may occur on left or right borders of the 

document image and deformation may be in either upward or downward direction. 
Hence it is required to know the side and direction of this deformation in document 
image viz., left upward or left downward or right upward or right downward to take 
further correction work. A decision process is adopted to locate the border and direc-
tion of deformation and our method also assumes that the document images are free 
from noise and skew. 

Rest of the paper has been organized as follows: previous work has been discusses 
in section 2, section 3 presents the proposed solution, experiments and results are 
given in section 4, the work has been concluded in section 5. 

2   Previous Work 

T. Vasudev et. al[1] focused on the problem of bending of text-lines observed in 
document images. The authors developed a method for estimation and removal of line 
bending deformations introduced in document images during the process of scanning. 
This method consists of three stages. In the first stage, a decision methodology is pro-
posed to locate the site of deformation and the direction of deformation. An elliptical 
approximation model is derived to estimate the amount of deformation in the second 
stage. Finally, a transformation process brings out the correction. The process of esti-
mation of deformation area is made using ellipse and line drawing algorithms. A digi-
tal differential analyzer (DDA) line drawing algorithm draws a line between any two 
specified points. A midpoint ellipse drawing algorithm draws an elliptical arc for 
given center, x-radius and y-radius. An imaginary elliptical arc and an imaginary line 
based on the side and direction of deformation from the position of deformation to  
 



 Dewarping Machine Printed Documents of Gurmukhi Script 119 

edge of document helps in further processing. A series of elliptical arcs and lines are 
drawn until a suitable arc and a line are encountered such that the arc and line enclose 
the deformed region. 

The approach proposed by B. Gatos et. al[2] is based on the construction of outer 
skeletons of text images. The main idea of this algorithm is based on the fact that it is 
easy to mark up long continuous branches that define inter-linear spaces of the docu-
ment in outer skeletons. Such branches can be approximated by cubic Bezier curves 
to find a specific deformation model of each inter-linear space of the document. On 
the basis of a set of such inter-linear space approximations, the whole approximation 
of the document is built in the form of a two-dimensional cubic Bezier patch. Then, 
the image can be dewarped using the obtained approximation of the image deforma-
tion. The main idea behind the algorithm is that in an outer skeleton of a text docu-
ment image, one can easily find branches that lie between adjacent text-lines. Then, 
one can use this separation branches to approximate deformation of inter-linear spaces 
on the image.  

In their technique, Xu-Cheng Yin et. al[3], enhance the quality of documents cap-
tured by a digital camera relying upon  

1.  Automatically detecting and cutting out noisy black borders as well as noisy text 
regions appearing from neighboring pages 

2.  text-lines and words detection using a novel segmentation technique appropriate 
for warped documents 

3.  a first draft binary image de-warping based on word rotation and translation ac-
cording to upper and lower word baselines 

4.  a recovery of the original warped image guided by the draft binary image de-
warping result.  

In their approach, black border as well as neighboring page detection and removal is 
done followed by an efficient document image de-warping based on text-line and 
word segmentation. The methodology for black border removal is mainly based on 
horizontal and vertical profiles. First, the image is smoothed, and then the starting and 
ending offsets of borders and text regions are calculated. Black borders are removed 
by also using the connected components of the image. Noisy text regions appearing 
from neighboring page is detected with the help of the signal cross correlation func-
tion. At a next step, all words are detected using proper image smoothing. Then, hori-
zontally neighboring words are consecutively linked in order to define text-lines. This 
is accomplished by consecutively extracting right and left neighboring words to the 
first word detected after top-down scanning. For every detected word, the lower and 
upper baselines are calculated, which delimit the main body of the word, based on a 
linear regression which is applied on the set of points that are the upper or lower black 
pixels for each word image column. The slope of each word is derived from the corre-
sponding baselines slopes. All detected words are then rotated and shifted in order to 
obtain a first draft estimation of the binary de-warped image. Finally, a complete res-
toration of the original warped image is done guided by the draft binary de-warping 
result of the previous stage. Since the transformation factors for every pixel in the 
draft binary de-warped image have been already stored, the reverse procedure is ap-
plied on the original image pixels in order to retrieve the final de-warped image. For 
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all pixels for which transformation factors have not been allocated, the transformation 
factors of the nearest pixel are used. 

B. Fu et al.[4] in their method have used a coordinate transform model and docu-
ment rectification process for book dewarping. This model assumes that the book sur-
face is a cylinder. It can handle both perspective distortion and book surface warping 
problems. The goal is to generate a transformation to flatten the document image to its 
original shape. The transformation is a mapping from the curved coordinate system to 
a Cartesian coordinate system. Once a curved coordinate net is set up on the distorted 
image as shown in Figure 8, the transformation can be done in two steps: First, the 
curved net is stretched to a straight one, and then adjusted to a well-proportioned 
square net. According to the transform model, two line segments and two curves are 
needed to dewarp a cylinder image. Therefore, the left and right boundaries and top 
and bottom curves in book images are found for the rectification as shown in Figure 
4. The rectification process involves three steps: 1) the text-line detection, 2) left and 
right boundary estimation and top and bottom curves extraction, and 3) document 
rectification. As an additional post-processing step, the participants used their pro-
grams to remove graphics and images from the processed pages. The results thus pro-
duced are referred to as CTM2. 

3   Proposed Solution 

The major issue while preparing a document image for processing is to produce qual-
ity document image for image analysis. In this design technique an image de-warping 
algorithm has been presented that removes the distortion and can enhance picture 
quality, help to improve all subsequent processing steps. The work presented in our 
approach focuses on the problem of bending of text-lines observed in document im-
ages. A method is developed for estimation and removal of line bending deformations 
introduced in document images during the process of scanning. Our method consists 
of three stages. In the first stage, a decision methodology is proposed to locate the site 
of deformation and the direction of deformation. A line drawing approximation model 
is derived to estimate the amount of deformation in the second stage. Finally, a trans-
formation process brings out the correction. The method has been tested on varieties 
of printed document images containing the bent text-lines at page borders. 

In our approach, the technique that we used, performs a line-by-line de-warping of 
the observed paper surface. First, we divide the book into two equal parts because in 
the case of curled pages and books, it is more complicated to correct these distortions. 
To reconstruct an image without distortions it is required to separate the book into 
two parts. This means finding the middle of a book and separating the book image 
into two pages before applying any dewarping process. This method is needed to 
make it convenient to de-warp them when we separate the images into pages. To 
achieve more accurate results we will divide the book into two parts. 

Now, we have to detect the side and direction of text lines bending. Here we will 
observe that the lines in document are clearly separated, bending of lines occur only at 
the borders of the document, bending is either upward or downward in a line. It is 
evident from number of samples that bending of text-lines is towards borders and the 
mid region of any document image is always free from bending deformation.  
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Deformation normally occurs only in 1/3rd part, near left or right border of the docu-
ment image, and middle of the document image is always free from deformation. First 
the process of warp detection is applied on 1st and 3rd part of the document image as 
2nd part (middle) is always free of warp as per observation. 

A digital differential analyzer (DDA) line drawing algorithm draws a line between 
any two specified points. An imaginary elliptical arc and an imaginary line based on 
the side and direction of deformation from the position of deformation to edge of 
document helps in further processing. A series of elliptical arcs and lines are drawn 
until a suitable arc and a line are encountered such that the arc and line enclose the 
deformed region.  

After detecting the area of bend the next step is to perform transformation for 
straightening the bends. A spatial domain transformation is performed on image to 
remove the bending of text-line in the deformed region. The correction of estimated 
bending deformation adopts a point processing technique of shift in y-direction. In 
this transformation the deformed part of document is shifted in y-direction based on 
the estimation of bending of text-lines. 

Transformation process can be represented as, 

g’(x,y) = T[g(x,y)] 

Where g is the original deformed image in spatial coordinate’s g’ is the deformation 
corrected image in the same coordinate system and T is the point processing transfor-
mation function for deformation correction.  

The proposed algorithm consists of three main steps given below: 

1. Determine the side of deformation (Left or right) 
2. Determine the direction of deformation (left upward, left downward, right up-

ward or right downward) 
3. Perform Correction 

for each line in the document image 
    A. fix up an imaginary arc or line. 

B. for each point p(x, y) on arc or line 
i ) d=distance between p(x, y) and q(x, y’) on top text line 
ii ) Shift all points at x up by a value d 

4   Experimental Results 

The proposed method is tested using more than 50 samples of English and Gurmukhi 
document images containing text-lines bending deformations. Tests were conducted 
on all four types of text-line bending deformed document images. The test samples 
were considered with different font size and style, different line spacing and different 
scanning resolution. Fig 2-5 shows the different input images and corrected output 
images as result. 

The proposed algorithm has some limitations: 

• It does not work if the document image is skewed or distorted. 
• If there are large spaces between words, the line tracker sometimes tries to 

make two lines out of one; this results in visually strong distortions.  
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Fig. 2(a). image with left-upward deforma-
tion 

 

Fig. 2(b). image with left-upward deforma-
tion (corrected i.e. leftup1) 

 

Fig. 3(a). image with left-downward defor-
mation 

 

Fig. 3(b). image with left-downward de-
formation (corrected i.e. leftdown1) 

 

Fig. 4(a). image with right-upward deforma-
tion 

 

Fig. 4(b). image with right-upward defor-
mation (corrected) 

 

Fig. 5(a). image with right-downward de-
formation  

 

Fig. 5(b). image with right-downward  
deformation (corrected) 

6   Conclusion 

The developed method for estimation and removal of line bending deformation does 
not require any special arrangements to acquire the document image, the image  
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obtained by flat -bed scanner is sufficient. The experimental results are fairly close to 
the results of the method proposed by Breuel and Zhang which requires set up for 
acquiring stereo vision image and Complex mathematical models for construction of 
3D image vision and interpolation techniques. The developed model is very sensitive 
to noise and skew. Since this is an initial effort on the problem further refine-
ment/enhancement on the work could be attempted like investigation of different  
approaches to fix a suitable elliptical arc that can show consistent performance of 
bending deformation correction, investigation of generic models to correct multiple 
types of bending deformations in a single document. A proposal is under investigation 
to extend the work to decompress the compressed characters in the bend region while 
carrying out transformation process. 
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Abstract. In this paper we present the work done on developing a Morphologi-
cal Analyzer (MA) for Oriya language, following the paradigm approach. A 
paradigm defines all the word forms of a given stem, and also provides a fea-
ture structure associated with every word. It consists of various paradigms un-
der which nouns, adjectives, indeclinables (avyaya) and finite verbs of Oriya 
are classified. Further, we discuss the construction of paradigms and the 
thought process that goes into their construction. The paradigms have been  
created using an XML based morphological dictionary from the Lt-toolbox 
package. 

Keywords: Oriya, Morph, Agglutinative, Apertium, Lt-toolbox, Morphological 
analyzer. 

1   Introduction 

Oriya is an Indo-Aryan language spoken by about 31 million people mainly in the 
Indian state of Orissa. “Oriya is a syntactically head final and morphologically agglu-
tinative language.” [9] “The subject agrees with the verb in person, number and hon-
orificity.” [5] It  has natural gender and it doesn't affect other grammatical categories 
like pronoun and verb. Oriya has four tenses, present, past, future and conditional. 
The last one is a mood but it behaves like a tense. Nouns in Oriya are generally char-
acterized by the presence of inflectional categories like number, gender and vibhakti. 
They can take classifiers like -ti, -tA. These classifiers can come with singular nouns, 
like bALakati1 where -ti is the classifier. All the nouns in Oriya have the third person 
features. Oriya doesn't have a grammatical gender. However, there exist a number of 
nouns indicating natural gender distinction at lexical level and there is no reflection of 
this distinction in the agreement with the verb. Only a few attributive adjectives refer-
ring to physical properties show gender agreement with their head noun. 

Since Oriya is an agglutinative language a word by itself is a bundle of linguistics 
information. Ex: let us take the noun ‘bALakaku’. Here, ‘bALaka’ is noun and ‘ku’ is 
the vibhakti. In Oriya, the Vibhakti attaches itself with the noun, unlike Hindi, where it 
is two different words. Also, unlike Hindi, Oriya nouns do not change their root. Eg:  
                                                           
1 All examples have been given in the WX notation.  
 http://sanskrit.inria.fr/DATA/wx.html 
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Table 1. Agglutinative feature of Oriya 

Oriya  Hindi  

bALakaku PaLa xia  ladake ko Pal xo 

bALakati PaLa KAuCi LadakA Pal KA rahA hE
 

In Hindi the form of “ladakA” (boy) changes as seen in table 1 above, whereas in 
Oriya, in both of the sentences in Table 1 the form of bALaka doesn't change. Only 
the vibhakti attached with the noun changes. 

In Oriya some suffixes are added only to a selected number of noun stems. Eg. '-
mAne' is the suffix, that adds only to animate nouns. 

Table 2. Suffixes attached with number  in Oriya 

Oriya English 

singular plural singular plural 

maNiRa maNiRa+mAne man men 

pua Pua + mAne son sons 
 

But this suffix can not be added to either human proper nouns or inanimate nouns. 
Eg.  we can not say paWara+ mAne (stones). The inflectional plural suffix '-mAne' 
can only be added to animate nouns, as seen in table 2 above. 

Further, in Oriya finite verb always agrees with the subject noun and is reflected by 
an agreement marker. The agreement suffix follows the tense suffix as a compulsory 
constituent of the finite verb construction. 

Non-finite verb forms don't take agreement markers. “A non-finite verb is created 
when the non-finite verb inflections add to the verb stem.” [4] 

Eg: muz BAwa KAi skulaku gali. 

      I rice eating school go (past) 

Here, the non-finite suffix is '-i'. It shows the completion of an action and forms a 
perfect particle. Eg: 

mowe miTA  KAibAku Bala lAge. 

I (Dat) sweet eat particle good feel 

“I like to eat sweet” 

Some non-finite constructions are formed by adjoining postpositions/avyaya. They 
don't take any grammatical information like nouns and verbs do. Postpositions come 
under this category.  

eg: apekRA (comparatively), anusAre (according to), xbArA (by), CadA (without), 
TAru (from). 
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2   Related Works 

Bharati et al. (2004) proposed a paradigm based algorithm for morphological analysis 
of Hindi, an inflecting language. It works with paradigms based on add-delete strings.  
All the word forms of a stem along with their corresponding feature structures are 
given. Bharti et. al. (1995, Chapter 3) discusses that this model works well for moder-
ately rich inflectional forms [10]. Since Marathi has a well defined paradigm-based 
system of inflection, Bapat et. al. (2010) [2] developed their morphological analyzer 
based on the paradigm approach. However, since Marathi is highly inflectional and 
also shows derivation to a high degree, they combined the paradigm-based inflec-
tional system with finite state machines (FSMs) to handle its morphotactics. As also 
seen in our work, Vaidya et. al. (2009)[1] too make use of the Lt-toolbox package to 
incorporate handling of derivational morphology of Marathi. Their work builds on the 
paradigm based MA for Marathi by Bharti et. al. (1998)[11]. 

3   Design 

“The morphological analyzer was developed as a part of a new language pair for Ap-
ertium, hence the analyzer data conforms to Apertium's dix format.” [8] The data for 
the analyzer is contained in an XML file, that is, the language paradigm dictionary 
(Oriya here). “This dictionary has two principal parts, the first one is pardef section, 
which contains the inflection rules for a particular type of word, the other is entry 
section, which contains the list of words stating which pardef they belong to.” [8] 
“The dictionary shows correspondences between surface forms and lexical forms. 
[1]”. Surface forms are the inflected forms of the words  found in texts, whereas lexi-
cal forms are the base forms of those words. For example, 'KAe' (eat) is a surface 
form and its lexical form is “KA” (eat) with features like verb, singular, first person.  

“The benefit of using Apertium is its robust architecture.” [8] Given an XML dic-
tionary it can create a compiled dictionary which is generally faster than a normal 
database based dictionary. 

4   Paradigm Approach 

A paradigm defines all the word forms of a given stem, and also provides a feature 
structure associated with each word form [3]. At first we focused on the open cate-
gory words like nouns, verbs, and adjectives and later on, closed category words like 
postpositions and conjunctions. We classified words from a given corpus into differ-
ent grammatical categories. Then we took all possible forms of each word, derived 
their root by detaching the suffix/es and then assigned each form a feature structure 
with grammatical information such as gender, number, person for nouns and tense, 
aspect, modality (TAM) for verbs. The root dictionary and paradigms for roots and 
their word forms were made using Lt-toolbox. To avoid redundancy, paradigms that 
have identical grammatical information are grouped. However, all words with similar 
endings/suffixes may not follow the same paradigm. Eg. the two verbs 'KA' (eat) and 
'gA' (sing) follow the same paradigm. But the verb 'yA' falls in a different paradigm 
though it has the same ending.  
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Table 3. Current Dictionary Size 

Categories Entry in dictionary 

Nouns 2449 

Verbs 200 

Adjectives 373 

Postpositions 44 

Conjunctions 21 

Total 3087 

4.1   Current Dictionary 

The present work has been carried out on a limited number of words ranging from 
closed categories to open categories. And the task of updating the figures mentioned 
in table 3 above, is on going. 

4.2   Source for Database 

The Oriya dictionary named Shabdatatwabodha Abhidhana [6] forms the main source 
for creating the database, along with other resources like the online Hindi dictionary 
Shabdanjali, created at LTRC, IIIT-H. The existing Hindi morph analyser based on 
the same approach, also served as a guide regarding the creation and analysis of the 
data. At present we have 14 paradigms for verbs, 15 for nouns, and 11 for adjectives. 
In “Oriya animate and inanimate nouns take different suffixes” [7] and paradigms for 
nouns are made on the basis of the suffixes. 

5   Experiment and Results 

5.1   Coverage of Verbs 

We currently have the CIIL corpus of 85000 words. Of which we randomly extracted 
10,000 words to experiment the coverage of verbs--since our preliminary focus was 
on verbs. We extracted words at the end of each sentence, since Oriya is a verb final 
language and a most constructions in Oriya end in verbs. As seen in Table 4, out of 
the 10,000 extracted words there are 595 unique verbs.  

Table 4. Results 

Total words 10000 

Unique verbs 595 

Recognized verbs 448 

Unrecognized verbs 147 
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5.2   Total Coverage 

We took another set of data consisting of 32,000 words from the CIIL Oriya corpus to 
run our analyzer to find out its total coverage of all the parts of speech which our 
morph analyzer handles. The results can be seen in table 5 below. 

Table 5. Results  

Total  words 32000 

Total unique words 9836 

Total  recognized words 3807 

Total unrecognized words 6029 

6   Error Analysis 

The words that remain unrecognized by the morph can be easily accounted for. The 
unanalyzed words mainly include the words that are not present in the dictionary 
used. This is a shortcoming of the dictionary based method for morph analysis that the 
words not present in the dictionary are not recognized and analyzed. The main prob-
lem encountered with the recognition of the verbs is that they do not fall into any of 
the existing verb paradigms. This can either be ascribed to the less robustness of the 
paradigms, or to the need for separate paradigms for these verbs. Further, since causa-
tive verbs and verbal complexes are currently not being handled, these remain unana-
lyzed too. Also, it needs a mention here, that more data/paradigms need to be added to 
the database for better performance. 

7   Conclusion and Future Work  

In the present work we have talked about developing a Morph analyzer using Lt-
toolbox. At present this morph analyzer handles only inflectional morphology, and we 
are working on nouns, verbs, indeclinables and adjectives. In the future this work can 
be extended to the remaining grammatical categories. Also, as a next step it can be 
extended to handle compound words and derivational morphology. Further, the dic-
tionary of paradigms being currently used gives information about suffixes. Since this 
is an ongoing work, constant additions to the database are underway. The same work 
can be done to handle prefixes. It needs a mention here, that currently the morph ana-
lyzer is in its preliminary stage and there is scope for its improvement such as addi-
tion of remaining categories, which will lead to an expansion of its current coverage, 
and improve its performance. 

A “Morph analyzer forms the foundation for applications like Part of Speech 
(POS) tagging, Chunking and Machine Translation.” [2] Developing an Oriya morph 
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analyzer will help build these applications and also, in machine translation of Oriya to 
other languages and vice versa. It is thus a useful resource for the language. 
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Abstract. Speech is the most important and common means of communication. 
Human beings identify a language by looking at the acoustics and the letter to 
sound rules (LTS) that govern the language. But pronunciation is governed by 
the person’s exposure to his/her native language. This is a major issue while 
considering words, especially nouns in Indian languages. In this paper, a new 
methodology of analyzing phoneme durations for language discrimination is 
presented. The work has been carried out on a database built with words, mostly 
nouns, common to Hindi, Tamil and Telugu languages. Durational analysis of 
phonemes has been carried out on the collected database. Our results show that 
phoneme durations play a significant role in differentiating Hindi, Telugu and 
Tamil languages with regard to stop sounds, vowels and nasals. 

Keywords: Phoneme, Duration and Statistical Significance. 

1   Introduction 

Analysis of language discrimination is important in a country like India with many 
languages. The differences between languages can be used in language identification, 
speech recognition, speaker recognition and also for building text-to-speech systems. 
In the past, the analysis on languages has been carried mostly using prosodic and 
spectral information. Much of the research on languages so far has been on spectral 
information, mainly using the phonemic features and their alignment. Such systems 
may perform well in similar acoustic conditions [4]. Indian languages such as Hindi, 
Tamil and Telugu share a similar phoneme set in the production of speech sounds. In 
the case of words that are common to Indian languages, the discrimination rate de-
creases as the phonemic alignment and their sound almost remains constant for a 
particular phoneme. Therefore, looking at prosodic features like duration, pitch, inten-
sity is a significant key for language discrimination. 

In this paper we are looking into durational characteristics of phonemes for lan-
guage discrimination. Klatt [1] studied the segmental duration of English language 
and showed that phoneme durations have potential cue in carrying language infor-
mation. Samudravijaya [2] stated that durational cues are useful in discriminating 
Hindi language phonemes. Y.K.Muthusamy [3] stated that phonemic transcriptions 
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are advantageous than arriving at accurate phonetic transcriptions. The study of 
durational characteristics of languages with similar phoneme set is therefore an 
interesting task. 

In section 2, building the phonemically balanced database is discussed. It in-
cludes collection of words, speech recording and manual labeling of speech. In 
section 3, analysis of language discrimination is discussed with the final conclusion 
in section 4. 

2   Database and Labeling 

In performing the phonemic durational analysis, we have jointly prepared a phone-
mically balanced word database. The words are nouns e.g., person names, place 
name, etc. of Indian origin and are common to the three Indian languages Hindi, 
Tamil and Telugu. A total of 440 words have been collected and ensured that each 
phoneme occurs at least 5 times in the beginning, middle and end of a word in the 
database. 

The speech database was collected with 25 speakers with an average age group of 
18 to 25 years having 13 males and 12 females in each language. All the speakers are 
bilingual in the sense that they have educational background in native language at 
least upto senior schooling. Speakers were provided with words in their native script 
and were instructed to speak each word in their respective language with normal rate 
and intonation into the microphone. The problem with the recording phase is that each 
speaker of a particular nativity has his own way of pronouncing the words. This will 
effect the phonemic coverage in each language. In order to avoid the above problem, 
we made sure that each word has been recorded with same pronunciation in three 
languages. All these utterances were recorded using Edirol R09 speech recorder at 48 
kHz frequency. Also, the high quality speech is digitized at 16 kHz with 16bits per 
sample in a quite environment to avoid echo effect. 

Table 1. The Indian Language Transliteration (ITRANS) symbols of phonemes common to 
three languages Hindi, Tamil and Telugu  

Semi Vowels Long Vowels Dipthongs 
a i u e o aa ii uu ei oo ai au 

 
 

 

 

 

 

Unvoiced 
Unaspirated 

Unvoiced 
Aspirated 

Voiced 
Unaspirated 

Voiced 
Aspirated 

Nasals 

k kh g gh - 
ch chh j jh nj~ 
t: t:h d: d:h nd~ 
t th d dh n 
p - b bh m 

Semi Vowels Fricatives 
y r l v sh shh s h 
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Manual labeling of the recorded data has been carried out for phoneme durational 
analysis. Figure 1 illustrates the waveform and spectrogram with phoneme labels of 
word “auku”. A total of 43 phonemes were considered for the study as tabulated in 
Table 1. In the manually labeled speech database, special symbols were used to sig-
nify the geminate consonants, and closure and release durations of stop consonants 
separately which were tabulated in Table 2. For e.g., the word “auku” in Fig 1 is  
labeled into phonemes au, kcl, k, and u. The singleton stops have same closure and 
release stop phonemes, the cluster stops have dissimilar closure and release stop pho-
nemes and gemination refers to repetition of same phoneme.  

 
Table 2. Rules followed in manual labeling 

 Consonant Rule 
Singleton stop k kcl k 
Cluster stop tk tcl k 

Gemination Stop kk k1cl k1 
Gemination nn n1 

 
 

 

Fig. 1. Waveform and spectrogram of word “auku” spoken by a Hindi speaker 

3   Analysis 

The speech database has words that were intentionally pronounced to have similar 
sound words. The mean values and standard deviation values of phoneme durations 
were computed and used to study the durational characteristics in differentiating lan-
guages. As shown in Table 3, the broad-phonetic classifications are categorized into 
short vowels, long vowels, semivowels, diphthongs, nasals and fricatives, and stop 
sounds. The stop sounds are separately labeled into closure and release phonemes. 
The following section provides an analysis of the duration of phonemes in the col-
lected word database. 

Student’s t-test is used in analyzing the significance of durational differences be-
tween phonemes. This test is used to calculate the statistical difference as a function 
of the difference between means relative to the variability [5]. Each of the other col-
umns in Table 3 contains the results of comparison of phoneme durations of any two 
languages. This was conducted at 99.95% confidence level.  

In stop sounds, release durations have more practical significance than closure du-
rations. Stop sounds shows that release durations have statistical significance in the  
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case of unvoiced unaspirated, unvoiced aspirated and voiced aspirated phonemes. 
Their durational statistics are tabulated in Table 4. In Hindi, the durations of  
unvoiced aspirated are twice the durations of unvoiced unaspirated. In Tamil lan-
guage, durations of unvoiced aspirated are equal to durations of unvoiced unaspi-
rated, this may be because of having single alphabet for the stop sound in the place 
of articulation. In Telugu, durations of voiced unaspiration are equal to that of 
voiced aspiration and durations of unvoiced aspiration are twice the durations of 
unvoiced unaspiration. 

The vowels show significant difference between Telugu and Hindi in short vowels 
and between Tamil and Telugu in long vowels. The vowels helps in differentiating 
Telugu language, because Hindi and Tamil speakers pronounce both short and long 
vowels almost at equal duration rates. We found that Hindi has more duration and 
Tamil has less duration than Telugu in short and long vowels respectively and are 
tabulated in Table 5.  

In the case of nasals, Hindi language has a significant durational characteristic. 
Hindi phonemes m, n, and n1, have more duration and nd~, nj~ have lesser duration 
compared to other two languages. This is more of a practical significance in differen-
tiating Hindi language and are tabulated in Table 6. 

From the above analysis, Telugu can be discriminated using vowels and Hindi can 
be discriminated using nasals. Along with the help of singleton stop phoneme dura-
tions, the three languages can be discriminated. 

Table 3. Table shows the phoneme durations that are statistically significant at 99.95% confi-
dence level between languages Hindi, Tamil and Telugu. “S” represents the significance  
between two languages. 

Broad Phonetic Classification Hindi-Tamil Tamil-Telugu Telugu-Hindi 
Short Vowels   S 
Long Vowels  S  
Semi Vowels    

Closure    
Unvoiced Unaspirated 

Release S S S 
Closure    

Unvoiced Aspirated 
Release S S S 
Closure    

Voiced Unaspirated 
Release    
Closure    

Voiced Aspirated 
Release S S S 

Diphthongs   S 
Nasals S  S 

Fricatives  S  
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Table 4. Mean and standard deviations, std (in msec) of release durations of singleton stop 
sounds in three languages Hindi, Tamil and Telugu languages 

  Hindi Tamil Telugu 
 Singleton Stops Mean Std Mean Std Mean Std 

k 34.60 11.25 37.72 11.99 39.36 11.91 
t: 20.27 6.02 21.58 5.73 20.52 5.96 
t 25.89 7.90 28.27 8.67 27.98 8.62 

Unvoiced 
Unaspirated 

p 23.00 8.32 26.60 9.74 26.69 10.46 
kh 76.67 22.22 37.80 10.28 54.94 22.70 
t:h 69.40 24.73 25.26 8.04 43.57 29.83 

Unvoiced 
Aspirated 

th 60.77 20.78 30.36 7.72 40.89 19.45 
g 60.73 26.21 60.84 26.60 54.93 20.88 
d: 46.46 31.80 43.27 28.88 37.60 25.24 
d 63.73 32.60 58.87 32.70 55.23 23.77 

Voiced 
Unaspirated 

b 63.18 27.59 65.44 26.49 59.75 21.25 
gh 62.97 30.92 63.94 35.00 53.97 20.01 
d:h 59.35 33.59 64.16 34.53 56.23 28.18 
dh 60.89 28.60 57.05 27.25 52.11 21.96 

Voiced 
Aspirated 

bh 60.69 22.70 69.77 21.95 61.85 37.35 

Table 5. Mean and standard deviations,std (in msec) of short and long vowels between Hindi 
and Telugu and between Telugu and Tamil languages respectively 

 Hindi Telugu 
Phone Mean Std Mean Std 

a 79.080 31.137 76.776 23.936 
e 109.439 43.779 92.286 38.739 
i 106.740 59.646 99.948 53.136 
o 103.772 29.205 75.068 22.171 
u 85.850 41.814 78.676 39.406 

 

 

 

 

 

 

 

 

 Telugu Tamil 
Phone Mean Std Mean Std 

aa 156.671 40.531 164.670 42.208 
ei 148.157 37.818 156.548 37.861 
ii 122.819 37.657 131.766 35.809 
oo 135.856 33.975 145.210 33.652 
uu 125.987 42.452 137.889 41.624 
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Table 6. Mean and standard deviations,std (in msec) of nasal sounds 

 Hindi Telugu Tamil 
Phone Mean Std Mean Std Mean Std 

m 82.59 27.94 77.70 24.10 78.69 27.24 
n 82.44 31.82 76.10 31.03 76.59 31.82 

n1 130.89 27.37 124.98 23.87 117.37 18.78 
nd~ 67.62 38.06 81.32 34.34 80.70 35.20 
nj~ 74.11 29.35 84.34 35.56 79.90 31.23 

4   Conclusion 

A study on the analysis of language discrimination on phonemically balanced speech 
database is presented. With intentionally spelled words having same pronunciation, 
we find major differences in the prosodic level. From the analysis, Telugu can be 
discriminated using vowels and Hindi can be discriminated using nasals. Along with 
the help of singleton stop phoneme durations, the three languages can be discrimi-
nated. Hence, phoneme duration holds key information for language discrimination. 
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Abstract. Word Segmentation is an important prerequisite for almost all Natu-
ral Language Processing (NLP) applications. Since word is a fundamental unit 
of any language, almost every NLP system first needs to segment input text into 
a sequence of words before further processing. In this paper, Shahmukhi word 
segmentation has been discussed in detail. The presented word segmentation 
module is part of Shahmukhi-Gurmukhi transliteration system. Shahmukhi 
script is usually written without short vowels leading to ambiguity. Therefore, 
we have designed a novel approach for Shahmukhi word segmentation in which 
we used target Gurmukhi script lexical resources instead of Shahmukhi re-
sources. We employ a combination of techniques to investigate an effective al-
gorithm by applying syntactical analysis process using Shahmukhi Gurmukhi 
dictionary, writing system rules and statistical methods based on n-grams  
models. 

Keywords: Shahmukhi, Gurmukhi, Word Segmentation, Transliteration. 

1   Introduction 

Segmentation of a sentence into words is one of the necessary preprocessing tasks of 
NLP. Word segmentation can be split into two main processes: word candidate gen-
eration and word candidate selection. The first process aims at constructing all possi-
ble word candidates from a given input text. While, the latter process aims at choos-
ing the most suitable candidate. For languages like English, French, and Spanish etc. 
tokenization is considered trivial because the white space or punctuation marks be-
tween words is a good approximation of where a word boundary is. Whilst many 
Asian languages like Urdu, Persian, Arabic, Chinese, Dzongkha, Lao and Thai have 
no explicit word boundaries [5-7]. Therefore, one must resort to higher levels of in-
formation such as: information of morphology, syntax, and statistical analysis to re-
construct the word boundary information [1-4]. In general the problem of segmenting 
word can be classified into dictionary based and statistical based methods. Statistical 
methods are considered to be very effective to solve segmentation ambiguities. Dur-
rani [5] and Durrani and Hussain [6] have discussed in detail the various Urdu word 
segmentation issues. A word segmentation system for handling space insertion prob-
lem in Urdu script has been presented by Lehal [9].  

In this paper, Shahmukhi word boundary issues have been discussed in detail. The 
word segmentation module is part of Shahmukhi-Gurmukhi transliteration system and 
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the novel approach presented in this paper, mainly uses target script lexical resources 
instead of Shahmukhi resources because Shahmukhi script is usually written without 
short vowels leading to potential ambiguity. We employ a combination of techniques 
to investigate an effective algorithm by applying syntactical analysis process using 
Shahmukhi Gurmukhi dictionary, writing system rules and statistical methods, includ-
ing n-grams to solve word segmentation.  

1.1   Shahmukhi Script 

Shahmukhi is a local variant of cursive Urdu script used to record the Punjabi 
language in Pakistan. It is based on right to left Nastalique style of the Persian and 
Arabic script. Shahmukhi script has thirty eight letters, including four long vowel 
signs Alif [ ], Vao [v], Choti-ye [j] and Badi-ye [j]. Shahmukhi script in general 
has thirty seven simple consonants and eleven frequently used aspirated consonants. 
There are three nasal consonants ( [ ], [n], [m]) and one additional nasalization 
sign, called Noon-ghunna  [ ]. In addition to this, there are three shot vowel signs 
called Zer  [ ], Pesh  [ ] & Zabar  [ ] and some other diacritical marks or symbols 
like hamza  [ ], Shad  , Khari-Zabar  [ ], do-Zabar  [ n], do-Zer  [ n] etc.   

Shahmukhi characters change their shapes depending upon neighboring context. 
But generally they acquire one of these four shapes, namely isolated, initial, medial 
and final. Arabic orthography does not provide full vocalization of the text, and the 
reader is expected to infer short vowels from the context of the sentence. Any ma-
chine transliteration or text to speech synthesis system has to automatically guess and 
insert these missing symbols. This is a non-trivial problem and requires an in depth 
statistical analysis [6]. 

2   Word Boundary Issues in Shahmukhi Text 

Shahmukhi is written in cursive Urdu script. The concept of space as a word boundary 
marker is not present in Urdu script but with the increasing usage of computer it is 
now being used, both to generate correct shaping and also to separate words [6]. The 
word boundary identification for Shahmukhi text is not simple. Due to cursive script 
and irregular use of space, Shahmukhi word segmentation has both space omission 
and space insertion problems as discussed below. Space insertion refers to insertion of 
extra spaces in a word, while space omission refers to deletion of spaces between 
adjacent words. 

2.1   Space Insertion Problem 

There are two basic reasons for space insertion in a Shahmukhi word. 

• The space within a word is also used to generate correct shaping while writing 
Shahmukhi words. Therefore, space is introduced as a tool to control the correct 
letter shaping and not to consistently separate words. For Example consider a 
word ات واد /att vād/ and گنجل دار /guñjhal dār/ having a space to generate the 
correct shape of ت [t] and ل [l] respectively. Without space both are having  
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visually incorrect forms as اتواد /attvād/ and   /guñjhaldār/ respectively. 
Presence of this type of space in Shahmukhi text leads to space insertion problem 
in Shahmukhi word which needs to be handled accordingly while processing the 
Shahmukhi text. 

• Many Shahmukhi words which are written as combination of two words are writ-
ten as single word in Gurmukhi script. So if the two words are as such transliter-
ated to Gurmukhi, they cannot be read properly and in some cases their meaning 
also gets changed. For example, if the Shahmukhi word ذمےواری /zimmē vārī/ is 
as such transliterated to Gurmukhi, then it will be read as ਿਜ਼ੰਮੇ ਵਾਰੀ /zimmē vārī/ 

while it should be written as single word ਿਜ਼ੰਮੇਵਾਰੀ/zimmēvārī/. Thus, the two 

Shahmukhi words had to be combined before transliteration so that the correct 
Gurmukhi word is generated. Similarly the city names like حيدر آباد /haidar ābād/, 
 jāfar ābād/ after transliteration produce/ جعفر آباد ,/jaikab ābād/ جيکب آباد
unacceptable names in Gurmukhi script as ਹੈਦਰ ਆਬਾਦ /haidar ābād/, ਜੈਕਬ 
ਆਬਾਦ/jaikab ābād/, ਜਾਫ਼ਰ ਆਬਾਦ/jāfar ābād/. To produce correct transliteration the 

extra space between the names should be removed to combine them as a single 
word as ਹੈਦਰਾਬਾਦ /haidrābād/, ਜੈਕਬਾਬਾਦ /jaikbābād/, ਜਾਫ਼ਰਾਬਾਦ /jāfrābād/.  

2.2   Space Omission Problem 

While writing in Urdu/Arabic script a common user finds that it is unnecessary to 
insert space between the two Urdu words because the correct shape is produced auto-
matically when the first word ends with a non-joiner Urdu character [6]. The same 
case is observed in Shahmukhi text that many times the user omits word boundary 
space between the consecutive words where the first word ends with a non-joiner 
character. This is because the absence of space after non-joiner character has no visi-
ble implication and do not affect the readability of the Shahmukhi text. But during 
computational processing where space is used as a word boundary delimiter, these 
two or more words are found to be merged together.  This gives rise to space omission 
problem in Shahmukhi text.  

Table 1. Space Omission Problem with Multiple Merged Words  

Word Merged Words Romanized 
w w4 w3 w2 w1 w1 w2 w3 w4 

      i spaik ar muhmmad n  
         risht  d  muk m  
         d  hai Ihd  vic  

For example, consider the following Shahmukhi words گياآ  /ā giā/ and ہو سکدا /hō 
sakdā/ having the first word token ends with a non-joiner character. We can see that 
they will retain same shape after deleting word boundary space as آگيا /āgiā/ and ہوسکدا 
/hōsakdā/. Therefore, user can easily skip word boundary space because it does not 
affect the readability of the Shahmukhi words. More examples of Shahmukhi words 
having space omission problem with multiple merged words is shown in table 1.  
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3   Algorithm for Handling Space Insertion Problem 

Rule based techniques like longest matching, maximum matching and statistical 
methods including n-grams have been extensively used for word segmentation. We 
employ a combination of both rule based and statistical n-gram techniques for Shah-
mukhi word segmentation, as proposed by Lehal [9] for Urdu space insertion prob-
lem. Based on the idea presented by Lehal [9] we have divided the whole process into 
two stage architecture as shown in fig.1. In the first stage, writing system rules have 
been applied to decide if the adjacent Shahmukhi words have to be joined. The rule 
based analyzer is incorporated based on the knowledge of the writing system specific 
information for instance some characters such as ں [ɲ] and  ًcome at the end of a word 
only, certain characters such as (ء ئ ,ؤ  ً  ّ  cannot come at the beginning of a ,(ۀ and  ں ٰ
word and the presence or absence of hamza(ء)  before the second vowel gives a indi-
cation of joining or not joining of words. Along with these rules there are some typi-
cal words in Shahmukhi for example يا /yā/, ياں /yāṃ/ and نہ /nā/ which need special 
care while processing.  

 

Word Joiner Phase 
Decision to Join Word Paris 

Writing 
System Rules 

Syntactic Analyzer of Shahmukhi 

Shahmukhi Word Frequency 
Analyzer  

Convert Shahmukhi Words to 
Gurmukhi 

Gurmukhi Word Frequency 
Analyzer 

 
Shahmukhi to 

Gurmukhi 
Transliteration 

Component Gurmukhi Word 

Shahmukhi Word 

Shahmukhi Word pair 

Shahmukhi Word or pair  
 

Fig. 1. Word Joiner Phase of Transliteration 

In case these rules give a definite answer, then we do not move to the second 
stage. Otherwise, after rule based analyzer the word pairs are analyzed for statistical 
analysis. In this stage, we have made use of Gurmukhi corpus resources to make the 
final decision. We use Shahmukhi resources only if the Gurmukhi resources are not 
sufficient to make a decision for example in case of out-of-vocabulary words (OOV) 
and unknown cases where the corresponding Gurmukhi transliteration is not present. 
The algorithm of the statistical analysis is as follows:  

Step 1: We have to first transliterate the individual (w1, w2) Shahmukhi tokens  
and their joined form (w1 concatenated with w2) into Gurmukhi say g1, g2 and g3 
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respectively and then look for the probability of occurrence in Gurmukhi corpus 
p(g1),p(g2) and p(g3).  

Step 2: If the probability of occurrence of Joined Gurmukhi form p(g3) is greater than 
the individual Gurmukhi tokens then the words are joined else not.  

Step 3: If the joining decision at step2 is to join the word tokens then we additionally 
look for the existence of the bigram (g1, g2) in Gurmukhi corpus. If the bigram is 
present, then the two Shahmukhi words are not joined. This is to overcome the situa-
tion when the product of probabilities p(g1).p(g2) becomes much more small. As a 
result many times step2 give the decision to join the words even though they were not 
to be joined.  

Consider the five outputs provided in table 2 to understand the detailed processing 
of statistical analysis. The system evaluated the unigram probabilities and found that 
at step 2 the condition is true for all the cases except the first case and the decision is 
to join them. But at step 3 system found that the last two cases are not joined because 
the corresponding bigrams (ਚੰਨ/cann/, ਵਲੀ/valī/) and (ਗੁਣ/guṇ/, ਗਾ/gā/) are present in 

the bigram lexicon. 

Table 2.Processing Steps of Statistical Analysis  

Input tokens Transliteration Unigram Probability Decision 
w2 w1 g1 g2 g3 p(g3) p(g1).p(g2) Step2 Step3 

     0.00003919 0.00240909 No - 

     0.00001120 0.00000039 Join Join 

     0.00004478 0.00000387 Join Join 

     0.00003639 0.00000060 Join No 

     0.00172694 0.00001642 Join No 
 

4   Algorithm for Handling Space Omission Problem 

We employ a combination of both rule based and statistical n-gram techniques for 
handling space omission problem. This is a challenging task to predict the correct 
combination of words from the merged word string. Firstly, Input multi-word has to 
be broken up into character combinations (CC) as per defined rules. The position of 
non-joiner characters in the multi-word and the position of ے ,ں[e] and  ًcharacters is a 
good broken point with in a multi-word. Then each adjacent CC's are combined to 
form a list of the purposed Shahmukhi words. After which, each CC in all the pur-
posed words is transliterated using the transliteration component. Next, we have to 
design a strategy to select the most probable correct segmentation from the purposed 
word list. In this stage, the Shahmukhi and Gurmukhi lexical resources are used to 
make the final decision. For example consider the merged token تيلااکٹهاکرکےتيلا  
/tīlātīlāikṭṭhākarkē/ which is broken into تيلا، تيلا، اکٹها، کر، کے five CCs using the CC 
rules. Then each pair of adjacent CC's are combined to form a list of 16 purposed 
Shahmukhi words. After transliteration and statistical analysis of all the purposed 
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words, the best probable word is selected as an output by the system. To handle over 
segmentation of out-of-vocabulary (OOV) or unknown words we have imposed the 
condition that the system will accept only those purposed word combinations which 
contain at least one character combination of length greater than three or at least one 
valid bigram character combination exist. For example, consider the Shahmukhi word 
 ḵẖānsāmīāṃ/ which is out-of-vocabulary and it can be broken down into/ خانسامياں
three valid Gurmukhi CCs ਖਾ/khā/, ਨੱਸਾ/nassā/ and ਮੀਆਂ/mīāṃ/ by this algorithm. 

Clearly, these CCs qualify the first condition but they do not have existence of valid 
bigram. Hence, this word will not be broken down by the system due to imposed 
condition and transliterated into Gurmukhi script as ਖ਼ਾਨਸਾਮੀਆਂ /ḵẖānsāmīāṃ/ which 

is correct transliteration. The system architecture is shown in fig. 2. 
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Word Merger Phase 

Gurmukhi Word Tokens  
 

Fig. 2. Word Merger Phase of Transliteration 

5   Experiments and Results 

A study of segmentation analysis of Shahmukhi text is conducted on a Shahmukhi 
corpus of size 3 million words. This corpus is a collection of data like news, articles, 
short stories, books, novels, poetry etc. collected from Pakistan and downloaded from 
popular Shahmukhi Unicode website http://www.wichaar.com. It is observed that the 
Shahmukhi corpus has 1.49% words with space omission and 1.05% of words with 
space insertion problem.  The algorithm for space insertion problem was tested on this 
corpus and after manual evaluation we found that this algorithm works at 95.23% of 
accuracy. The system has shown good performance except some over joining cases 
are also observed. The main cases for consideration and improvement are those 
Shahmukhi tokens having no bi-gram in Gurmukhi lexicon as a result they are over 
joined. This type of situation can be improved by increasing the size of lexicon. 
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Table 3 shows the observed occurrence of space omission cases which are broken 
up with respect to number of merged words. It is observed that the maximum number 
of merged words in a multi-word ligature is five and their occurrence in the corpus is  
0.037%. The percentage of occurrence of four merged words is observed to be 0.23%  
 

Table 3. Occurrence of Merged Words in Shahmukhi Corpus 

Number of Merged words  
(n) 

Occurrence 
(%) 

Segmentation Accuracy 
(%) 

n=5 0.036778 75 

n=4 0.229864 77.5 

n=3 3.83413 76.11 

n=2 96.99338 93.77 

Table 4. Failure Cases of Space Omission Algorithm  

SN Merged words 
Error 
Type 

Incorrect Form 
 

Correct Form Romanized 

1   OOV       t  fir k 

           

2   OOV      aurku 

         

3    OOV        v ñju l  vic 

             

4   OOV        s raul j 

           

5   Prob.         n sir n 

             

6    Prob.        part  v 

             

7   Prob.        va d  rih 

             

8   Izafat     - -  ud -na- st 
           

9   Izafat     - - daur- -f r k 

          

10   Izafat 
  

  
 -
-  

sayyad mahim d-
ul-hasan 
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which is also very less in number. After that, relatively high occurrence 3.83% of 
three merged words is observed. The most frequent space omission cases are two 
merged words having maximum coverage 96.99% of the corpus. 

The overall segmentation accuracy of space omission algorithm is 92.97%. The 
system has shown highest accuracy 93.77% when two merged words are found in the 
multi-word ligatures. The accuracy of the system decreases when the number of 
merged word is more that two.  

The analysis of system errors shows that there are three types of errors that the 
system had made with the current input. As shown in table 4 first type of words are 
those which are out of vocabulary and system performed over segmentation. The 
second type of error words are those in which the joined word ligature (unigram) has 
less probability then the probability of individual word tokens (bi-gram) e.g. the uni-
gram ਪਰਤਾਂ/partāṃ/ has very less probability of occurrence where as the probability of 

bi-gram ਪਰ/par/ and ਤਾਂ/tāṃ/ is much more. The third type of error words are special 

unknown Izafat or compound words from Urdu domain which need to be handled. 
We can produce better results in the future with the scope to increase the size of the 
training corpus. 
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Abstract. Optical character recognition is a widely used technique for generat-
ing digital counterpart of printed or handwritten text. A lot of work has been 
done in the field of character recognition of Devanagari script. Devanagari 
script consists of several basic characters, half form of characters, vowel-
modifiers and diacritics. From character recognition point of view only 78 char-
acter classes are sufficient for the identification of these characters. But in 
Devanagari the characters fuse with each other, which result in segmentation er-
rors. Therefore to avoid such errors we shall consider such compound charac-
ters as separate recognizable unit. We have identified 864 such compound char-
acters that make a total of 942 recognizable units. But it is very difficult to han-
dle such a large number of classes; therefore we have optimized the character 
class count. We have found that the first 100 classes can contribute to 
98.0898% of the overall recognition. 

Keywords: Conjuncts, Segmentation, Recognizable unit. 

1   Introduction 

Optical character recognition belongs to the family of techniques performing automatic 
identification. It deals with the problem of recognizing optically processed characters. 
The character recognition work on Devanagari script started in 70’s when Sinha and 
Mahabala [1] presented a syntactic pattern analysis system with an embedded picture 
language. Sinha and Bansal [2] have discussed the use of various knowledge sources at 
all levels in Devanagari document processing system. Chaudhuri and Pal [3] have sug-
gested primary grouping of characters, where each character is assigned to one of the 
three groups namely basic, modifier and compound character group before going for 
actual recognition process. Bansal and Sinha [4-5] have presented method for segmen-
tation and decomposition of Devanagari composite characters into their constituent 
symbols. Kompalli et al [6] have discussed the wide range of challenges in Devanagari 
script that are not seen in Latin based scripts. They also mentioned that half consonants 
have different shapes from full-consonants; therefore the use of post-processing tech-
niques or half-consonant classifiers for the left part can improve conjunct recognition. 
In our work we shall consider each compound character as separate class so as to re-
duce the errors introduced due to over and under segmentation of such characters. 
Therefore in this paper we have presented the analysis and optimization of characters 
classes that would be sufficient to get the desired recognition rate. 
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2   Problems with Segmentation (Need of Multiple Classes) 

One of the significant phases in any optical character recognition system, upon which 
the performance of the overall system depends is the segmentation phase. Segmenta-
tion phase consists of the line segmentation, word segmentation and character seg-
mentation. Out of these, character segmentation is most critical one, as the most of the 
recognition errors in optical recognition system are due to the character segmentation. 
In Devanagari the constituent characters may join horizontally or vertically to form 
new characters. When the constituent characters (consonants) fuse horizontally (lat-
erally), they result in the formation of conjuncts (Fig. 1).  

 

 

Fig. 1.  Fig. 2. 

Although in the resulting conjuncts, the constituent characters are at adjacent posi-
tions, but they fuse laterally in such a way that there is no vertical space between them 
and hence it becomes very difficult to separate them during segmentation phase. In 
certain cases the constituent characters may combine in such a way which leads to the 
formation of new single character in which the constituent characters does not appear 
at adjacent positions i.e. they merge with each other (Fig. 2). 

 

 

Fig. 3. 

(a) (b) (c) 
 

Fig. 4. 

Similarly the constituent components may combine vertically, which result in the 
formation of characters having more height than the normal character height  
(Fig. 3).There is another class of characters in which height of the character itself or 
when combined with descenders (lower zone vowel modifiers) is such that it results in 
the problems in segmentation. In some cases the height of the primitive character is so 
large as compared to the adjacent consonant-descender combination that it leads to 
under segmentation (Fig. 4-a). Similarly the height of consonant itself may be so large 
that it will lead to the over segmentation of consonant-descender combination (Fig. 4-
b). In few cases the consonant-descender combination itself is small in height as com-
pared to adjacent character that it lead to the under segmentation (Fig. 4-c). From 
above it is clear that it is quite difficult to separate the constituent characters from 
these compound characters. If we try to segment them, it will lead to over or under 
segmentation and hence segmentation errors. Therefore treating such type of com-
pound characters as a separate recognizable unit can decrease the segmentation prob-
lems. In the same way all the consonant-descender combinations will be treated as 
separate classes. 
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3   Identification/Optimization of the Classes  

Before getting into the optical recognition process one must know the character 
classes that are going to be used for the underlying script. Any word in Devanagari 
can be divided into three zones: middle, upper and lower zone. The table shown be-
low (Table 1.) provides some of the recognizable units corresponding to all three 
zones. The recognizable unit is the smallest possible unit that can be recognized by 
character recognition process. For example ग contribute to both  and ◌ा, which are 
two recognizable units that will be separated during segmentation phase if one re-
moves the headline. Some other examples are given after Table 1. Apart from these 
basic recognizable units there exist a large number of compound characters that can 
be treated as separate recognizable units. Therefore we have to identify them, as they 
will contribute to the recognition process. As stated above there are four different 
categories of the character combination that are to be identified:  

Category-1: The combination in which consonants fuse to create conjuncts (Fig-1). 
Category-2: The combination in which the adjacent consonants fuse to form a com-

posite character having more height as compared to other (Fig-3). 
Category-3: The characters may join which result in a single character (Fig-2). 
Category-4: All of the consonant with the lower vowel modifier (Fig-4).  

In order to identify the possible character classes a corpus of approximately 3 million 
words has been used. The corpus comprises of Unicode data, therefore most of char-
acter combinations corresponding to categories 1-3 are identified with the help of 
diacritic ◌ ् (halant). It is to be noted that in many cases even the presence of halant 
does not cause the adjacent consonants to combine to form the compound character 
corresponding to categories 1-3. For example in the word �व�टी, ट and व does not result 
in conjunct despite the presence of halant. Therefore such characters along with the 
exceptions, which do not form conjuncts even in the presence of halant are identified. 
For example ट will not form the compound characters corresponding to categories 1-3 
with any consonant except with ट ठ य र. For the category 4, the presence of descender 
is checked after the consonant. Again there are certain exceptions to it, for example in 
the word अ�भुत even though द and भ can lead to conjunct �, but the presence of ◌ु will 
result in separate consonant with descenders द ्and भु. Therefore care is taken to count 
them separately. 

Table 1. First 10 recognizable units (out of 78) along with their frequency of occurrence 

S.No Recognizable 
unit 

Overall % 
occurrence 

1. 20.7631 
2. 7.4461 
3. 5.2938 
4. 5.2631 
5.  æ 3.7936 

S.No. Recognizable 
unit 

Overall % 
occurrence 

6.  3.7870 
7.  3.4365 
8.  3.3931 
9.  3.2991 

10. å 3.2023 
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In the above table आ, ऑ, ऒ, ओ, औ, ि◌, ◌ी, ◌ॉ, ◌ॊ, ◌ो, ◌ौ, ग, ण, श, ग़ contribute to ◌ा. 

Similarly “॥ Contribute twice to ।“, “ऐ, ओ, ◌ो contribute to ◌े”, “औ, ◌ौ contribute to ◌ै”, 
“ऍ, ऑ, ◌ॉ contribute to ◌ॅ” and “◌ॆ, ऎ, ऒ, ◌ॊ contribute to ◌ॆ”. 

The following table (Table 2.) depicts first few recognizable units obtained by lat-
eral fusion of the characters along with their constituent characters, their occurrence 
in middle zone and their overall contribution. A total of 655(unique) such recogniz-
able units corresponding to category-1 and category-2 have been identified.  

Table 2. Some recognizable units obtained by lateral fusion of the characters 

Horizontally fused 
consonants 

Character  
Combination 

% Occurrence with in all 
middle zone characters 

Overall %  
Occurrence 

+ प ◌् र 0.3766 0.2900 
- त ◌् र 0.1606 0.1237 
.त स ◌् त 0.1601 0.1233 
0 क ◌् ष 0.1332 0.1026 
3ह न ◌् ह 0.1198 0.0923 
6 र  ◌ु 0.1121 0.0863 

7य क ◌् य 0.1052 0.0810 
3द न ◌् द 0.0949 0.0731 

The table shown below (Table 3.) provides the overall contribution of these recog-
nizable units if we select a definite number of these units. From this table (Table 3.) it 
is evident that if we select first 200 such units they will contribute to 2.9040%, and 
they all will contribute to 2.9349% toward overall recognition.  

Table 3. Overall contribution of laterally fused recognizable units 

Horizontally fused consonants 
selected out of 655 

% Contribution  toward 
middle zone 

Overall % contribution 

10 1.4286 1.1003 
20 2.0878 1.6080 
50 3.0632 2.3593 

100 3.5570 2.7396 
150 3.7094 2.8570 
200 3.7705 2.9040 
250 3.7915 2.9202 
350 3.8043 2.9301 
400 3.8066 2.9318 
450 3.8079 2.9329 
500 3.8089 2.9336 
655 3.8106 2.9349 

Similarly 209 (unique) and total of 317980 recognizable units corresponding to 
category-3 and category-4 have been identified. The table (Table 4.) depicts first few 
such units along with the frequency of their occurrence in middle zone and their over-
all occurrence.  
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Table 4. Overall occurrence of consonants with descender/vertically overlapped consonants 

Consonants with descender/vertically 
overlapped consonants 

% Occurrence with in all 
middle zone characters 

Overall %  
occurrence 

कु 0.2879 0.2217 
8 0.2744 0.2113 
मु 0.2734 0.2105 
सु 0.2301 0.1772 
गु 0.1380 0.1063 
पु 0.1142 0.0879 
पू 0.1141 0.0879 

The following data provides the overall contribution of these recognizable units if 
we select a fix number of these units. From this data it is clear that if we select all 
such units they will contribute to 2.6206% toward overall recognition. 

Table 5. Percentage contribution of consonants with descender/vertically overlapped conso-
nants selected out of 209 recognizable units 

Consonants with descender/vertically  
overlapped consonants out of 209 

% Contribution toward 
middle zone 

Overall %  
contribution 

10 1.6988 1.3084 
20 2.3778 1.8314 
50 3.1215 2.4042 

100 3.3695 2.5952 
150 3.4000 2.6187 
209 3.4025 2.6206 

The total number of recognizable units counts to 942. These units are so large in 
number that it is very difficult to handle all these as separate classes, therefore we 
optimize the class count by considering all possible recognizable units and then 
evaluating their overall contribution. The table (Table 6.) depicts first few recogniz-
able units and their contribution with in all 942 classes. 

Table 6. Percentage occurrence of few recognizable units out of 942 recognizable units 

S.No. Recognizable 
unit 

Overall % 
Occurrence 

1. 22.9577 
2. 8.2331 
3. 5.1207 
4. 4.9624 
5.  æ 4.1946 

S.No. Recognizable 
unit 

Overall % 
Occurrence 

6. 3.7131 
7.       å 3.5408 
8. 3.3730 
9. 3.3140 
10. 3.1325 

 

From data given below (Table 7.) we find that if we chose first 100 recognizable 
units they will contribute to 98.0898%. Similarly the selection of first 600 units will 
result in the contribution of 99.9951%. 
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Table 7. Percentage contribution of recognizable units 

Recognizable units  % contribution 
20 82.0185 
30 90.1112 
40 93.4336 
50 95.0826 
70 96.6985 

100 98.0898 
150 99.1658 
200 99.5661  

Recognizable units % contribution 
300 99.8817 
400 99.9672 
500 99.9883 
600 99.9951 
700 99.9976 
800 99.9989 
942 100.0000  

4   Conclusion 

In Devanagari script each zone contributes to the different recognizable units. From 
character recognition point of view there are 78 distinct recognizable units in Devana-
gari script. But in Devanagari script the characters may fuse (Fig.1-4) resulting in 
compound characters. These characters may be very difficult to separate, and hence 
contribute to segmentation errors. So to avoid such errors we shall consider all such 
compound characters as separate recognizable unit. We have identified 864 such 
unique units. The overall recognizable units are obtained by adding basic 78 recog-
nizable units and the 864 (Table 2, 4.) compound recognizable units, which result in a 
total of 942 recognizable units. As it would be very difficult to handle such a large 
number of classes, so the contribution of each class is evaluated to find how many 
classes would be sufficient to get desired recognition rate. From above table it is clear 
that if we consider first 100 classes they will contribute to 98.0898%, similarly first 
150 classes will contribute to 99.1658%. It has also been found that the single recog-
nizable unit ‘◌ा’ contributes 22.9577% toward the overall accuracy. 
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Abstract. In this paper, we have proposed a new character recognition method 
for Oriya script which is based on curvelet transform. Multi font Oriya charac-
ter recognition has not been attempted previously. Ten popular Oriya fonts have 
been used for the purpose of character recognition. The wavelet transform has 
widely been used for character recognition purpose, but it cannot well describe 
curve discontinuities. We have used curvelet transform for recognition which is 
done using curvelet coefficients. This method is suitable for Oriya character 
recognition as well as various other scripts’ recognition purpose also. The pro-
posed method is simple and extracts effectively the features in target region, 
which characterizes better and represents more robustly the characters. The  
experimental results validate that the proposed method improves greatly the 
recognition accuracy and efficiency than other traditional methods.  

Keywords: Optical Character Recognition, Oriya Characters, Curvelet Trans-
form, Morphological Operations, SVM Classifier.  

1   Introduction 

The optical character recognition (OCR) in image sequences is a very popular prob-
lem in the field of image processing today. It is one of the most common techniques 
using these days among face recognition, signature recognition, text recognition and 
fingerprint recognition, etc. High accuracy character recognition is a challenging task 
for scripts of languages. Various Indic scripts are used in the Indian mainland. Some 
of them are Bengali, Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, 
Tamil, and Telugu. The character recognition techniques for the English script have 
been exploited very much. Even commercial software is also available for this pur-
pose. However, for the major part of other scripts such as Arabic [1] and Indian [2], 
OCR is still an active domain of research. For English and Kanji scripts, good 
progress has been made towards the recognition of printed scripts, and the focus no-
wadays is on the recognition of handwritten characters [3].  

OCR research for different Indian languages is still at a nascent stage. There has 
been limited research on recognition of Oriya [4, 5]. The proposed system [4] was 
developed by combining traditional and modern proposed techniques. In [5], the focus 
was on a bilingual OCR for recognition of the printed English and Oriya texts.  
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2.3   Renormalization 

After smooth partitioning, Renormalization of each subband is done. In this step, each 
subband is converted from dyadic square to unit square [0,1] x [0,1]. This is done to 
make the further process easy and to reduce the computational complexity. 

For renormalization, an operator TQ is defined for each Q as                            T f x , x  2  f 2 x k , 2 x k  .   (4) 

where ,  are ridge lines along first and last high pass filters. This operation is used 
for renormalization of each subband. The renormalization of each subband is done as 

            g T h   .                    (5)  

Hence we get g  as renormalized subband image. 

2.4   Ridgelet Analysis 

The last and important step of curvelet transform is doing ridgelet analysis of different 
renormalized subbands. In this step, each subband is processed in ridgelet domain. 
For field L (R ), the basis elements are defined as ρλ and we get,                                                          α λ  g , ρλ  .     (6)  

The curvelet transform is useful for character recognition due to its following properties:  

(1) The curvelet coefficients are directly calculated in the Fourier space. In the 
context of the curvelet transform, this allows avoiding the computation of the 
1D inverse Fourier transform along each radial line. 

(2) Each subband is sampled above the Nyquist rate, hence, avoiding aliasing – a 
phenomenon typically encountered by critically sampled curvelet transform. 

(3) The reconstruction is trivial. The curvelet coefficients simply need to be co-
added to reconstruct the input signal at any given point. In our application, 
this implies that the curvelet coefficients simply need to be co-added to re-
construct Fourier coefficients. 

(4) In curvelet domain, the most essential information in the image is com-
pressed into relatively few large coefficients, which coincides with the area 
of major spatial activity.  

3   The Proposed Method 

In this paper, we have presented an innovative character recognition method. This 
method is based on the curvelet transform of morphologically transformed versions of 
an original character. In previous years, Mohammad and Husain [10] have been used 
morphology for the character recognition task.  

Curvelets provide a very good representation of curves in an image. Thinning or 
thickening of this image changes the position of the curves. With the use of curvelet 
transform, the changes in position of curves were encoded in the transformed domain. 

In the proposed method, 2-level thinning and 2-level thickening of the image was 
done. This was performed one by one. First a thinning process was performed  
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followed by thickening. After that again a thinning process was performed followed 
by thickening again. After that the original image and the morphologically changed 
images, both were used. According to definition of curvelet transform, there were five 
sets of curvelet coefficients, which were used to train five SVM classifiers. If a cha-
racter was not recognized from original image, then it could be recognized from trans-
formed image. Also, in the process of recognition of test characters, five versions of 
the input image were created. The curvelet coefficients of these five versions were 
classified using the corresponding SVM classifiers. The block diagram of the classifi-
cation scheme is shown in Fig. 3.  

       

Original Image 

2-Level Thinning

2-Level Thickening

Curvelet Transform 

5-level SVM Classifier

 Result 
 

Fig. 3. Classification Scheme based on Curvelet Transform  

4   Experiments and Results 

Ten Oriya fonts were used in the proposed method. For each of the fonts 10 different 
font sizes viz., 8, 10, 12, 14, 16, 18, 20, 22, 24 and 28 points were taken. The experi-
mental part of recognition of Oriya characters was divided into two parts. In the first 
part of the experiments, 8 different font sizes of all the 10 fonts were used as the pro-
totype for the SVM classifier. The remaining 2 sizes were used for testing of experi-
ments. For each of the fonts, the two different sizes that need to be tested were se-
lected randomly, i.e. say for the Ori 1 Uni font the testing set comprised of sizes 12 
and 20 while for RaghuOriya the font sizes for testing were randomly selected to be 
18 and 28 points. For the other different fonts the selected sizes were still different. 
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For every font, the remaining eight font sizes behaved as the prototype for the SVM. 
In the second part, the 2 fonts were randomly selected for testing and the remaining 8 
served as the prototypes for the SVM classifiers. Here division was not done on the 
basis of the font sizes. For the testing all the sizes for the 2 fonts were considered, the 
same being true for the 8 prototypes used by the SVM. Two examples of original 
images, thinned images and thickened images are shown in Fig. 4. 

                       

                Original Image                      Thinned Image                      Thickened Image 

Fig. 4. 

As described earlier, 2-level thinning and 2-level and thickening was performed on 
the original image to obtain morphologically transformed version of the original im-
age. The curvelet transform was performed on these original and transformed images 
of the same character at a single scale. The curvelet coefficients served as the feature 
set for training SVM classifiers. The final result was made on the basis of these clas-
sifiers. The output from classifier with the highest recognition accuracy was chosen to 
be the final result. Both the experiments were repeated 4 times. The results of the 
experiments are presented in the Table 1 and Table 2 below. 

Table 1. Results of testing with different font sizes 

Experiment            1              2            3           4 
Accuracy(%)         94.75         94.40         95.30        95.15 

Table 2. Results of testing with different fonts 

Experiment           1            2            3            4 
Accuracy(%)       93.70         94.40         94.15         94.70 

While testing for different font sizes, the best results were achieved during experi-
ment No. 3 and for testing with different fonts, the best results were obtained for ex-
periment No. 4. The detailed results for these two experiments are shown in Table 3 
and Table 4.  

Table 3. Detailed results for experiment No. 3 for testing different font sizes 

                   Classifier trained with                Recognition Accuracy (%) 
                       Original image                                      92.80 
                           Thinning                                      92.45 
                         Thickening                                      91.70 
                      Total accuracy                                      95.25 
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Table 4. Detailed results for experiment No. 4 for testing different fonts 

                 Classifier trained with               Recognition Accuracy (%) 
                      Original image                                 92.00 
                          Thinning                                 91.70 
                        Thickening                                 90.80 
                      Total accuracy                                 94.70 

5   Conclusions 

In this paper, we have developed and demonstrated a new algorithm for character 
recognition of different fonts of Oriya language that exploits new tight frames of 
curvelet and provides a sparse expansion for typical images having smooth contours. 
We use curvelet coefficients for character recognition and feature extraction of the 
object in the image. The curvelet transform provides near-ideal sparsity of representa-
tion for both smooth objects and objects with edges. It is clear that the proposed  
method performs well.  
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Abstract. Traditional approaches for information retrieval from textual docu-
ments are based on keyword based similarity. A key limitation of these  
approaches is that they do not take care of meaning and semantic relationship 
between words. Recently some work has been done on concept based informa-
tion retrieval(CBIR), which allows to capture semantic relations between words 
in order to identify importance of a word. These semantic relations can be ex-
plored by using ontology. Most of the work for  CBIR has been done in English 
language. In this paper we explore the use of Hindi Wordnet ontology for CBIR 
from Hindi text documents. Our work is significant because very limited 
amount of work has been done on CBIR for Hindi documents. Basic motivation 
of this paper is to provide an efficient structure for representing concept clusters 
and develop an algorithm for identifying concept clusters. Further we suggest a 
way of assigning weights to words based on their semantic importance in the 
document.  

Keywords: Information retrieval, semantic relations, concept cluster, vector 
space model, Hindi Wordnet ontology, Concept based information retrieval.  

1   Introduction 

Information retrieval is devoted to finding relevant documents from a collection of 
documents in response to a query provided by the user [12]. Vector Space Mod-
el(VSM)  is the most popular method for information retrieval. In traditional VSM a 
document is represented by providing weights to the keywords, mostly based on tf-idf 
measure.  Similarity between query and document depends on terms, which are com-
mon to both query and document. Some of the popularly used similarity measures in 
VSM are: Cosine measure, Jaccard’s coefficient, dice coefficient etc. [12, 13]. 

Considering subjectivity in NLP (Natural language processing), it is well known 
fact that the keywords (important terms present in the document) are not sufficient to 
provide information about content of the document. Therefore, we say that VSM does 
not take into account the content of a document. The content of a document can 
be extracted by finding semantically important terms [2, 3, 7]. This can be ex-
plained by an example. Let us consider a document D1 with following content: 
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D1: भारतीय समाज में नारी के ःथान की बात हो तो  दगार्ु , शिक्त से ले कर िवज्ञान, तकनीकी, जसेै के्षऽों में काम करने 

वाली िस्तर्यों, इंिदरा गाँधी  जसैी नेताओ ंके उदाहरण दे कर हम अपना गवर् व्यक्त करते हैं. हर के्षऽ में नािरयाँ परुुषों से 

कदम से कदम िमला कर बढ़ रही हैं।  

Reading document D1, one can make out that नारी,   दगार्ु  and  स्तर्ी are more important 
than other terms such as परुुष, िवज्ञान and तकनीकी. However using VSM with traditional  
TF measure weight of the term ‘स्तर्ी is 1, which is  same as that of terms परुुष, िवज्ञान, and 

तकनीकी. Therefore, ‘स्तर्ी’ and परुुष, िवज्ञान, and तकनीकी will have equal importance. This 
leads to the need of Concept Based Information Retrieval (CBIR), which captures 
semantic relation between terms in order to identify importance of a term. There can 
be several approaches for developing concept based information retrieval systems. 
Most of these approaches use ontology for extracting concepts from documents. Vari-
ous attempts have been made to capture semantic similarities by exploiting linguistic 
ontology such as WordNet [4, 6, 10]. 

Ontology can be used to  build up a lexical chain. Two words are in a lexical chain 
if they are related by a relation [1, 5]. There are many relations among words such as - 
identity, synonymy, hypernymy-hyponymy and meronymy-holonymy. These rela-
tions link related terms in a document to represent the lexical cohesion structure of the 
document. Thus presence of a lexical chain identifies semantically important terms.  
Now if we again consider the earlier example (document D1) we observe that नारी,   दगार्ु  

and स्तर्ी form a lexical chain. Therefore, these words can be identified as semantically 
important terms.  

We suggest use of ontology for representing a document as a collection of concept 
clusters. When a document is associated with multiple concepts, there will be multiple 
clusters and each cluster may represent single concept.  

2   Ontology Based Model for Concept Based Information Retrieval 

Kang et. al [3] have provided a method for exploiting ontology for CBIR. However, 
we found that this method has certain limitations. We are suggesting a modified 
method which is more efficient and overcomes these limitations. In this section we 
present a brief review of the model provided by Kang et. al [3] followed by presenting 
the modified model. Using Kang’s approach a document can be represented as a  
collection of concept clusters. A concept cluster is a weighted lexical chain that repre-
sents one aspect of the meaning of a document and expresses the degree of related-
ness among the semantic terms within a document. Concept clusters have been  
defined in several ways (refer to Kang et.al [3] for details). 

Now again consider document D1. Figure1(a) shows the relationship between some 
of the nouns (shown as nodes) extracted from document D1 and links (shown as 
edges) denoting relations between terms: 

If we observe representation of concept clusters (figure 1),  we find some ambigui-
ties in the representation:-  

1 Firstly, there can be different possible representations for the same concept cluster. 
For instance for the example discussed in D1, two possible representations are 
shown in Figure 1(a) and 1(b) 
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         Identity                                 hpernym-hyponym 
         synonym                           meronym-holonym 

                                                   
                                            
                                

                                                  
 

              (a)                                                                          (b) 
 

Fig. 1. A representation of concept cluster for D1 

This problem arises because there are multiple (two) nodes representing नारी. 
Therefore the nodes attached to the node नारी can be linked to any one of the above 
nodes. 

2 This problem is a consequent of first problem, where we cannot develop a well 
defined algorithm for constructing concept cluster due to ambiguity in structure  
itself. 

3 There is a redundancy in the resulting concept clusters as same node can appear 
multiple times.  

A   Modified Representation for Concept Clusters 

Keeping in view the above discussed problems in the generation of  concept clusters, 
we are suggesting a modified structure, which captures the same information, but 
avoids ambiguities. In this model each term has a unique representation with one 
attribute giving frequency of the term. This frequency actually captures identity rela-
tionship among the terms. According to our model a concept cluster can be defined as 
follows: 

Definition. Let T={( t1,f1),( t2,f2), . . . ,(tm,fm) } be the set of terms and their frequency 
in a concept cluster, where ti is term and fi is frequency of ith term. Let R = {identity, 
synonyms, hypernym-hyponym, meronym-holonym } be the set of lexical relations. 
Let M (rk, tg) be the sum of frequency of all the terms linked to term tg ∈T through 
relation rk ∈ R and let W(rk) be the weight of relation rk. Then the score STerm(tg) of 
term tg in a concept cluster is defined as: 

)(*),(*)(*)1()(
4

2
1 k

k
gkgggTerm rWtrMfrWftS ∑

=

+−=   1 ≤ g ≤ m       (1) 

Where r1, r2, r3, r4 are identity, synonym, hypernym -hyponym and meronym-holonym 
relations respectively. Concept cluster in Figure 1(a) can now be constructed as: 
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        (1) 

(2)                 
             
                                  
                           (1) 

 

Fig. 2. Modified representation of figure 1 

Based on above structure we suggest an algorithm for developing concept clusters. 

3   Algorithm for Identifying Concept Clusters 

Before giving the algorithm for identifying concept clusters we start with defining 
concept clusters in terms of a graph. Each document can be represented as graph 
where nodes represent terms and edges represent relations between the terms. Each 
concept clusters then represents a connected component of the graph. (Refer to Figure 
1 and 2). 

Now we present simplified algorithm for concept based IR. 

1 Initialize weights W (rk) of semantic relations rk. 
2 For a document D find T, where T represents the set of all nouns in document  

D (use Part of Speech(POS) tagger [9]). 
3 Repeat 

3(a) For document D identify a concept cluster represented as a graph C(V, E) 
3.1 Start with a term x ∈ T and add x as vertex V to cluster C. 
3.2 Assign fx as frequency of x in  D 
3.3 Assign T = T - x   
3.3 For each term y  ∈ T related to any x ∈ V  through any relation rk  

(a) Assign fy as frequency of y in D  

(b) Use y to extend the graph C by adding y to V as vertex and relation 
rk as edge between x and y. 

(c) Assign T = T-y. 

    Until T=  

4 Find weight of each term x using concept cluster 

4.1 Find the concept cluster to which term x belongs. 
4.2 Repeat following steps within concept cluster. 

4.2.1 For node x, identify the relations using the edges connected to x 
and calculate weight of x using formula given in equation (1). 

5 Represent document by the concept clusters identified along with weights  
assigned by concept based model. 
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Now we present a small example that explains working of algorithm and highlights 
importance of CBIR in comparison to traditional VSM. In this example we consider 5 
documents as shown in appendix 1 and a query “मह”. Assigning similarity manually 
(considering actual relevance), we can say that for query “मह”, the ranked relevant 
documents are: Doc 1, Doc 2, Doc 4, Doc 3 and Doc 5.  

From our algorithm (step 3) concept clusters identified for document Doc 1 are:  

                         

                                                                                 
   

                                                                                                                     
                                                                                     

                                                                  
                                  

                                                                                                               
                                           
                                                     

                   
                                                     

                          
 
 
                           

[5] [2] 

[7] 

 

Fig. 3. Concept clusters for Doc 1 

Inside the oval, the numeral shows the frequency of the term in document. 
Table 1 shows weight assigned to query using tf-idf technique and Table 2 shows 

semantic weight assigned to same query by our algorithm (step 4). 
After constructing concept clusters we can calculate weight of each term using 

equation (1). Accordingly weight of term ‘मह’ is equal to ((4*0.7) (5*8*.3) (0.1*5)) = 
15.3. 

Table 1. Weights assigned to terms using 
TF-IDF technique  

Table 2. Weights assigned to terms using 
concept based model 

                   
Doc/Term 

“ ”

Doc 1 0.4845 
Doc 2 0.2907 
Doc 3 0.1938 
Doc 4 0.6783 
Doc 5 0.0 

 
 

Doc/Term 
  “  ”  

Doc 1 15.3 
Doc 2 7.4 
Doc 3 0.7 
Doc 4 1.8 
Doc 5 0.0 
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Table 3. Ranked relevant documents retrieved by VSM, concept based technique and the ex-
pected results 

Query/Techniques VSM CBIR Expected Results 
Doc 4 Doc 1 Doc 1 
Doc 1 Doc 2 Doc 2 
Doc 2 Doc 4 Doc 4 
Doc 3 Doc 3 Doc 3 

 
     मह 

Doc 5 Doc 5 Doc 5 

Table 3 shows the ranked result of relevant documents retrieved by VSM and 
CBIR. The result shows that returned by concept based model is more accurate. In 
this case result obtained by concept based model is same as actual result. This is quite 
obvious, as this model is able to capture semantic similarity between the terms.  

4   Conclusion 

In this paper, we have suggested the use of ontologies for CBIR.  Specifically, we have 
presented a way to represent a document as a collection of concept clusters. Further we 
have developed an algorithm for finding concept based clusters and for assigning se-
mantic weights to the terms in a document. The working of the algorithm has been 
shown for CBIR from Hindi documents using Hindi Wordnet [8].  It has been shown 
that concept based model can increase the efficiency of document retrieval in compari-
son to traditional VSM. This is a preliminary attempt for CBIR using Wordnet ontol-
ogy in Hindi, which is definitely better than traditional VSM. In future the results need 
to be further investigated on larger data set to see the extent of improvement. Further 
our next attempt is to give a more computationally efficient algorithm.   
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Appendix 

Document 1 

सूयर् या िकसी अन्य तारे के चारों ओर पिरबमा करने वाले खगोल िपण्डों को मह कहते हैं। अंतरार्ष्टर्ीय खगोल संघ के 
अनुसार हमारे सौरमण्डल में आठ मह हैं - बुध, शुब, पथृ्वी, मंगल, बहृःपित, शिन, युरेनस और नेप्चून. इनके 
अितिरक्त तीन बौने मह और हैं - सीिरस, प्लूटो और एरीस। ूाचीन खगोलशािस्तर्यों ने तारों और महों के बीच में 
अन्तर इस तरह िकया- रात में आकाश में चमकने वाले अिधकतर िपण्ड हमेशा पूरब की िदशा से उठते हैं, एक 
िनिश्चत गित ूाप्त करते हैं और पिश्चम की िदशा में अःत होते हैं। इन िपण्डों का आपस में एक दसरेू  के सापेक्ष भी 
कोई पिरवतर्न नहीं होता है। इन िपण्डों को तारा कहा गया। पर कुछ ऐसे भी िपण्ड हैं जो बाकी िपण्डों के सापेक्ष में 
कभी आगे जाते थे और कभी पीछे - यानी िक वे घुमक्कड़ थे। Planet एक लैिटन का शब्द है, िजसका अथर् 
होता है इधर-उधर घूमने वाला। इसिलये इन िपण्डों का नाम Planet और िहन्दी में मह रख िदया गया।  

Document 2 

मंगल, सौरमंडल में सूयर् से चौथा मह है। पथृ्वी से देखने पर, इसको इसकी रिक्तम आभा के कारण " लाल मह " 
के रूप मे भी जाना जाता है। मंगल मह का धरातल ःथलीय और के वातावरण िवरल है। इसकी सतह देखने पर 
चंिमा के गतर् और पथृ्वी के ज्वालामुिखयों, घािटयों, रेिगःतान और ीुवीय बफीर्ली चोिटयों की याद िदलाती है। यह 
ःथान है ओलम्पस मोंस का जो हमारे सौरमंडल का सबसे अिधक ऊँचा पवर्त है साथ ही िवशालतम कैन्यन वलेैस 
मैरीनेिरस भी यहीं पर िःथत है। अपनी भौगोिलक िवशेषताओं के अलावा, मंगल का घूणर्न काल और मौसमी चब 
पथृ्वी के समान हैं। 

Document 3 

मह पीड़ा िनवारक टोटके- 
सूयर् 
१॰ सूयर् मह को बली बनाने के िलए व्यिक्त को ूातःकाल सूयोर्दय के समय उठकर लाल पूंप वाले  
  पौधों एव ंवकृ्षों को जल से सींचना चािहए। 
२॰ रािऽ में ताँबे के पाऽ में जल भरकर िसरहाने रख दें तथा दसरेू  िदन ूातःकाल उसे पीना      
  चािहए। 
३॰ ताँबे का कड़ा दािहने हाथ में धारण िकया जा सकता है। 
४॰ लाल गाय को रिववार के िदन दोपहर के समय दोनों हाथों में गेहूँ भरकर िखलाने  
  चािहए। गेहूँ को जमीन पर नहीं डालना चािहए। 
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Document 4 

कुछ िदनों पहले धरती जैसा एक मह िमलने की ख़बर से वैज्ञािनक जगत का रोमांच कम भी न हुआ था िक 
अचानक पता चला है िक उन दरू अंधेरों में तो कुछ और मह भटक रहे हैं िजनसे सिृष्ट की उत्पित्त के रहःय को 
समझने में बड़ी मदद िमलेगी. अमेिरकी ःपेस एजेंसी नासा की महादरबीनू  केपलर ने पांच नए महों का पता लगाया 
है. नए तलाशे गए महों के ज़ख़ीरे मे ये पांच मह हैं और बहतु  गरम हैं. यानी जीवन की कोई संभावना नहीं 
लगती. लेिकन एक संभावना इस बात की है िक ये मह उन अध्ययनों में बड़ी कारगर भूिमका िनभा सकते हैं जो 
इस बात को समझने के िलए दशकों से जारी हैं िक ॄह्मांड कैसे बना, सिृष्ट कैसे अिःतत्व में आई और महों नक्षऽों 
का िनमार्ण िकस तरह गैस और धूल से हआु  

Document 5 

इस वषर् की थीम का पयार्य "अनेकता में एकता" वाला है, समन्वय, पारःपिरक सदभाव, ूेम व सिहंणुता की बात है, जो खुद को औरों 
को अमन-चैन से जीने का मौका देने का सन्देश है!- क्योंिक वाःतिवक ःवरूप में हम सब एक धरती पर और एक जैसे तत्वों की 
सरंचना माऽ ही तो हैं। और एक ही पयार्वरण का िहःसा भी, हम शक्ल व सूरत में जुदा-जुदा होने के बावजूद भी एक धरती के बािसन्दें 
है और हम सब का भिवंय भी एक है। 
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Abstract. Kumauni language is one of the relatively understudied regional lan-
guages of India. Here, we have attempted to develop a parsing tool for use in 
Kumauni language studies, with the eventual aim of developing a technique for 
checking grammatical structures of sentences in Kumauni language. For this 
purpose, we have taken a set of pre-existing Kumauni sentences and derived 
rules of grammar from them, which have been converted to a mathematical 
model using Earley’s algorithm, suitably modified by us. The Mathematical 
model so developed has been verified by testing it on a separate set of pre-
existing Kumauni language sentences. This mathematical model can be used for 
parsing new Kumauni language sentences, thus providing researchers a new 
parsing tool. 

Keywords: Kumauni language, Context Free Grammar, Earley’s Algorithm, 
Natural Language Processing, Parsing. 

1   Introduction  

The first stage in parsing is Token Generation or lexical analysis, by which the input 
character stream is split into meaningful symbols defined by a grammar of regular 
expression. The next stage is Parsing or syntactic analysis, which involves checking 
that the tokens form an allowable expression. This is usually done with reference to 
a Context Free Grammar (CFG) that recursively defines components, which can make 
up an expression and the order in which they must appear. The final phase is Semantic 
Parsing or analysis, which requires working out the implications of the expression 
just validated and taking the appropriate action. In the case of a calculator or inter-
preter, the action is to evaluate the expression or program; a compiler, on the other 
hand, generates some kind of code. Attribute grammars can also be used to define 
these actions. Brian Roark (2001) presents a lexicalized probabilistic top-down parser, 
which performs very well both in terms of accuracy of returned parses and in terms of 
the efficiency with which they are found, relative to the best broad-coverage statistical 
parsers. 
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Top-down backtracking language processors have some advantages compared to 
other methods, i.e. 

1) They are general and can be used to implement ambiguous grammars. 
2) They are easy to implement in any language that supports recursion. 
3) They are highly modular, i.e. the structure of the code is closely related to the 

structure of the grammar of the language  to be processed. 
4) Associating semantic rules with the recursive functions that implement the 

syntactic productions rules of the grammar is straightforward in functional pro-
gramming,. 

Languages that cannot be described by CFG are called Context Sensitive Languages. 
Tanaka (1993) has developed an algorithm for CFG. An informal description of a new 
top-down parsing algorithm has been developed by Richard A. Frost et al (2006) that 
accommodates ambiguity and left recursion in polynomial time. Shiel (1976) noticed 
the relationship between top-down and chart parsing and developed an approach in 
which procedures corresponding to non-terminals are called with an extra parameter, 
indicating how many terminals they should read from the input. Fujisaki Tetsunosuke 
(1984) has tested a corpus to parse it using Stochastic Context Free Grammar and 
probability theory to make the parse tree. R. Frost et al (2007) presented a method by 
which parsers can be built as modular and efficient executable specifications of am-
biguous grammars containing unconstrained left recursion. In 2008, the same authors, 
R. Frost et al (2008), described a parser combinator as a tool that can be used to exe-
cute specifications of ambiguous grammar with constraints left recursion, which exe-
cute polynomial time and which generate compact polynomial sized representation of 
the potentiality.  

Devdatta Sharma (1985), a leading linguist, was the first to study Kumauni  
language linguistically. Carrying forward his initiative, we have taken Kumauni lan-
guage for information processing, i.e. to check the grammars of input sentences. Pars-
ing process makes use of two components; a parser, which is a procedural component 
and a grammar, which is declarative. The grammar changes depending on the lan-
guage to be parsed while the parser remains unchanged. Thus, by simply changing the 
grammar, a system would parse a different language. We have taken Earley’s Parsing 
Algorithm for parsing Kumauni sentences according to a grammar that we have de-
fined for Kumauni language, using a set of pre-existing Kumauni sentences. 

2   Earley’s Parsing Algorithm  

The task of the parser is essentially to determine if and how the grammar of a  
pre-existing sentence can be determined. This can be done in two ways, Top-down 
Parsing and Bottom-up parsing. 

Earley's algorithm is a top-down dynamic programming algorithm. We use Earley's 
dot notation: given a production X → xy, the notation X → x • y represents a condi-
tion in which x has already been parsed and y is expected. 

The state set at input position k is called S(k). The parser is seeded with S(0), con-
sisting of only the top-level rule. The parser then iteratively operates in three 
stages; prediction, scanning, and completion. 
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 Prediction: For every state in S (k) of the form (X → x • Y y, j) (where j is the ori-
gin position as above), add (Y → • z, k) to S (k) for every production in the 
grammar with Y on the left-hand side (Y → z). 

 Scanning: If a is the next symbol in the input stream, for every state in S(k) of the 
form (X → x • a y, j), add (X → x a • y, j) to S(k+1). 

 Completion: For every state in S(k) of the form (X → z •, j), find states in S(j) of 
the form (Y → x • X y, i) and add (Y → x X • y, i) to S(k) 

For example, let us take the input sentence, “You eat the food in the restaurant”. The 
following numeric key can be supplied to the words of this sentence: “0 You 1 eat 2 
the 3 food 4 in 5 the 6 restaurant 7”, where the numbers appearing between words are 
called position numbers. For CFG rule S →NP VP, we will have three types of dotted 
items: 

• [ S→ .NP VP, 0, 0 ]    • [ S→ NP.VP, 0, 1 ]   • [ S→ NP VP., 0, 4 ] 

Here,   S → Starting Symbol            NP → Noun Phrase VP → Verb Phrase 

i. The first item indicates that the input sentence shall be parsed applying the rule S   
→ NP VP from position 0. 

ii. The second item indicates the portion of the input sentence from the position num-
ber 0 to 1 that has been parsed as NP and the remainder left to be satisfied as VP. 

iii. The third item indicates that the portion of input sentence from position number 0 
to 4 has been parsed as NP VP and thus S is accomplished. 

3   Derivation of Kumauni Language Grammar and Modification 
of Earley’s Algorithm  

In this section, we have attempted to develop a grammar of Kumauni language. We 
have taken some pre-existing Kumauni language sentences randomly and tried to 
derive rules of grammar from them, as it is next to impossible to collect all types of 
sentences of any language. 

We see that a sentence can be written in different forms that have the same mean-
ing, i.e. positions of tags are not fixed. The grammar rules derived here may not apply 
to all the sentences in Kumauni language, since we have not considered all types of 
sentences possible in Kumauni language. Some sentences that have been used to 
make the rules of grammar for Kumauni language are given below: 

Let K be the set of all parts of speeches in Kumauni language K = (NP, PN, VP, 
ADV, ADJ, PP, ART, IND), where  

NP → Noun  PN → Pronoun  VP → Verb ADV → Adverb  

ADJ → Adjective PP →   Preposition ART → Article IND → Indeclinable 
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Table 1. 

In Kumauni In English Grammar 
kAn Je re? Where are you going? PP –VP 
Sab thEk Chan They all are fine  NP- ADJ- VP 
Ook byAh pichal sAl haigou he got married last year PN - ADJ- NP - VP 
theek cha pein ItvAr din milOn Well, see you on Sunday. ADVP- PP – NP - VP 
mein itvAr din Onake koshish 
karou 

I will try to come on Sun-
day 

PN- NP- ADV- VP 

main pushp vihar sAketak paas 
roo(n)chou 

I live in Pushp Vihar near 
Saket 

PN- NP- PP- VP 

Par jAno pein Good Night VP 
myAr bAbu fauj me naukari 
kareni 

My father is serving in  
Indian army 

NP- NP- PP- VP 

jaduk AshA, utuk haber jyAdA 
hainch 

It is more than expected NP- ADJ- VP 

champAwat bahute bhal jAg 
chuu 

Champawat is a very  
beautiful place 

NP- ADJ-VP 

makai wanki ligi bahut door 
chaln pado 

I have to go far for that 
place 

NP- PP- ADJ- VP 

ter much to nai buwAr jas 
chamakano 

Your face is shining like a 
new bride. 

NP -  PP- VP 

ab mee  jaa  Now I am going ADVP- PN- VP 

Formation of vector space for a language  
Using English language – since it has 8 parts of speeches – we can form a matrix 
(called connection matrix) of the order 8 x 8, where rows and columns are represented 
by parts of speeches. This matrix pertains to the FOLLOW relation. 

PREV (x) = {Set of all lexical categories that can precede x in a sentence} 
                 = {y: (Row y, Column x) is 1} 
FOLLOW (x) = {y: (Row x, Column y) is 1} 

For example, upon parsing the sentence “John is looking very smart” in parts of 
speech, it becomes “NP VP ADV NP”. Its connection matrix representation is  
depicted as: 

 

 NP PN VP ADV ADJ PP ART IND 

NP 0 0 1 0 0 0 0 0 

PN 0 0 0 0 0 0 0 0 

VP 0 0 0 2 0 0 0 0 

ADV 3 0 0 0 0 0 0 0 

ADJ 0 0 0 0 0 0 0 0 

PP 0 0 0 0 0 0 0 0 

ART 0 0 0 0 0 0 0 0 

IND 0 0 0 0 0 0 0 0 
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Using a text document, we get several sentences and each sentence can be repre-
sented by a connection matrix of the order 8 x 8. Thus, a set of all matrices of the 
order 8x8 forms a vector space V of dimension 64 over the field of integers under 
addition and usual multiplication. Therefore, in a text document each sentence is an 
element of this vector space. As each sentence has several parts of speech, it can be a 
subspace of the vector space generated for language. Similarly, parts of a sentence 
will also be a subspace of the sentence. 

To carry this argument further, we propose some linear transformations of sub-
spaces of Kumauni language sentence. In the following sequence: 

• T is linear transformation of Sentence subspace in Kumauni. 
• U is linear transformation of the Proposition-phase subspace in Kumauni. 
• W is the linear transformation of the Noun-phase subspace in Kumauni. 

Additionally, Identity transformation has also been used. 

Table 2. 

T: (S) U: (PP) W: (NP) 
T1: (S)= PP VP U1: (PP)= PN NP W1: (NP)= NP PP 
T2: (S) = PP U2: (PP)= NP PN W2: (NP)= PP NP 
 U3: (PP)= ADJ NP W3: (NP)= ADV NP 
 U4: (PP)= NP ADJ W4: (NP)= PP 
 U5: (PP)= NP W5: (NP)= ART NP 
 U6: (PP)= ADJ W6: (NP)= NP ART 
 U7: (PP)= IND NP W7: (NP)= IND PN 
 U8: (PP)= PN  W8: (NP)= PN IND 
 U9: (PP)= ADV NP W9: (NP)= VP 
 U10: (PP)= ADV  

4   Modification of Earley’s Algorithm for Kumauni Text Parsing 

We know that Earley’s algorithm uses three operations, Predictor, Scanner and Com-
pleter. We add Predictor and Completer in one phase and Scanner operation in  
another phase. 

Let x, y, z, PP, VP are sequence of terminal or non-terminal symbols and S, B are 
non terminal symbols: 

Phase 1: (Predictor + Completer) 
For an item of the form [S →x .By, i, j], create [S →x.zy, i, j] for each production of 
the [B→z]. Mathematically in phase 1 we apply the transformations suggested earlier. 

Phase 2: ( Scanner) 
For an item of the form [S→x.wy, i, j] create [S→xw.y, i, j+1], if w is a terminal 
symbol appeared in the input sentence between j and j+1. When the transformation is 
successfully applied, it allows us to move in to next position or transformation. 
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Our Algorithm 

Input: Tagged Kumauni Sentence  
Output: Parse Tree or Error message  
Step 1: If Verb is present in the sentence then [T: S→ .PP VP, 0, 0] then we use trans-
formation T1. Else [T: S→ .PP, 0, 0] then we use transformation T2. 
Step 2: Use the transformation U and W and do the following steps in a loop until 
there is a success or error 
Step 3: For each item of the form of [S→x.By, i, j], and we use transformations Ti, Ui, 
Wi. 
Step 4: For each item of the form of [S→ .xwy, i, j], apply phase 2 
Step 5: If we find an item of the form [S→x. , 0, n] i.e the transformations work suc-
cessfully, then we accept the sentence as success else error message, where n is the 
length of input sentence. And then come out from the loop. 
Step 6: Generate the parse trees for the successful sentences according to the used 
transformations.  A transformation is said to be successful if it same as any member 
of table 1. 

5   Parsing Kumauni, Using Proposed Grammar and Algorithm  

Let us take a Kumauni sentence,  (Mee tyar dagad bazAr 

joo). In English it means, “I will go to the market with you”. 
Here, the position number for words is assigned based on the sequence of their 

parsing. 

0 Mee 1 tyar 2 dagad 3 bazaar 4 joo 5 
In our sentence:     1. PN → “mee” 2. PN →“tyar”   3. PP →“dagad”  
4. NP→“bazaar” 5. VP → “joo” 

Now we use the transformation defined earlier (Table- 2). 
The parsing process will proceed as follows: 

Table 3. 

Sr. 
No 

Rule Phase ap-
plied 

1 [S → .PP VP ,  0, 0] by T1 Apply Phase 1 
2 [S → .NP VP, 0 , 0] by U5 Apply Phase 1 
3 [S → .PP NP VP, 0, 0] by W2 Apply Phase 1 
4 [S → .PN NP NP VP, 0, 0] by U1 Apply Phase 1 
5 [S →. “mee” NP NP VP, 0, 0]  Apply Phase 2 
6 [S →. “mee” .NP NP VP, 0, 1] by identity  transformation Apply Phase 1 
7 [S → “mee”  .PP NP VP, 0, 1] by W4  
8 [S → “mee” PN NP NP VP, 0, 1] by U1 Apply Phase 1 
9 [S → “mee”. “tyar” NP NP VP, 0, 1] Apply Phase 2 
10 [S → “mee”. “tyar” .NP NP VP, 0, 1] by identity 

transformation 
Apply Phase 1 
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Table 3. (continued) 

11 [S → “mai” “tyar” .PP  NP VP, 0, 2]  by W4 Apply Phase 1 
12 [S → “mee” “tyar”.“dagad” NP VP, 0, 2]  Apply Phase 2 
13 [S → “mee” “tyar” “dagad” .NP VP, 0, 3] by identity 

transformation 
Apply Phase 1 

14 [S → “mee” “tyar” “dagad”..“bazaar” VP, 0, 3] Apply Phase 2 
15 [S → “mee” “tyar” “dagad”..“bazaar”   .VP, 0, 4] by identity 

transformation  
Apply Phase 1 

16 [S → “mee” “tyar” “dagad”..“bazaar”   . “joo”, 0, 4] Apply Phase 2 
17 [S → “mee” “tyar” “dagad”..“bazaar”   . “joo”, 0, 5] Complete 

In the above example, we have shown only the steps which lead to the goal. The 
other steps are ignored. 

6   Stages of The Model  

In the model there are 3 stages: 

• Lexical Analysis  •        Syntax Analysis  •  Tree Generation 

In the Lexical Analysis stage, the programme finds the correct tag for each word in 
the sentence by searching the database. There are seven databases (NP, PN, VP, ADJ, 
ADV, PP, ART, IND) for tagging the words. 

In the Syntax Analysis stage, the program tries to analyze whether the given sen-
tence is grammatically correct or not. 

In the Tree Generation stage, the programme finds all the production rules that lead 
to success and generates parse tree for those rules. If there are more then one paths to 
success, this stage can generate more than one parse trees. It also displays the words 
of the sentences with proper tags. The following figure shows a parse tree generated 
by the model. The original parse tree for the above sentence is depicted in figure (1). 

7   Verification of Program 

After implementation of Earley’s algorithm using our proposed grammar, it has been 
seen that the algorithm can easily generate parse tree for a sentence if the sentence 
structure satisfies the grammar rules. For example, we take the following Kumauni 
sentence, (Mer nAma Kamal chh). The structure of the above sen-
tence is NP-NP-VP. This is a correct sentence according to Kumauni literature.  
According to our proposed grammar, a possible top down derivation for the above 
sentence is: 

1. S [Handle] 
2. >>PP VP     [T1: S→PP VP] 
3. >> NP VP     [U: PP→NP] 
4. >>NP PP VP    [W: NP→NP PP] 
5. >>NP NP VP    [U: PP → NP] 
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6. >>mer nAma NP VP   [W: NP → mer nAma] 
7. >>mer nAma  kamalVP   [W: NP→ Kamal] 
8. >>mer nAma kamal chh   [VP → chh] 

From the above derivation it is clear that the sentence analysed by the model is correct 
according to the proposed grammar, thus proving that our parsing model generates a 
parse tree successfully. The actual programme shall be as follows and the figurative 
representation is shown in figure (2)- 

Input sentence- Mer nAma Kamal chh. 
Sentence recognized 
Tree ----> 

1. S   2. [S --->(PP VP)] 3. [PP --->(NP)] VP 4. [NP --->(NP PP)]NP 
5. [NP ---> (np :Mer nAma)]PP VP 6. [PP]VP 7. [PP ---> (NP)]VP 
8. [NP ---> (np : Kamal)]VP 9. VP  10. [VP ---> (vp :chh)] 

  

                                      Fig. 1.                                                                  Fig. 2. 

This model tests only the sentence structure according to the proposed grammar 
rules. So, if the sentence structure satisfies the grammar rules and follows Earley’s 
algorithm, then the model will recognize the sentence as a correct sentence and gener-
ate a parse tree. Otherwise, it gives an error output. 

8   Conclusion and Future Work 

The project explained above has been conducted using everyday sentences, in order to 
make the result applicable widely. We have developed a context free grammar (CFG) 
for simple Kumauni sentences, studied the issues that arise in parsing Kumauni  
sentences and produced an algorithm suitable for those issues. This algorithm is a 
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modification of Earley’s Algorithm, which has proved to be simple and effective. In 
the traditional Earley’s algorithm there are many more steps in parsing than in our 
model. Thus, our model reduces the length of parsing. It has an added feature in the 
sense that whereas Earley’s algorithm contains three stages, our model works only in 
two steps. In this work, we have considered a limited number of Kumauni sentences 
for deriving the grammar rules. We have also considered only the seven main tags. In 
future work(s) related to the field of study covered in this paper, an attempt can be 
made to consider many more Kumauni sentences and more tags, for developing a 
more comprehensive set of grammar rules. 
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Abstract. A considerable amount of success has been achieved in developing 
monolingual OCR systems for Indian Scripts. But in a country like India, where 
many languages and scripts exist, it is more common that a single document 
contain words from more than one script. Therefore a script identification  
system is required to select the appropriate OCR. This paper presents a com-
parative analysis of two different feature extraction techniques for script identi-
fication of each word. In this work, for script identification discriminating and 
Gabor filter based features are computed of Punjabi words and English numer-
als. Extracted feature are simulated with Knn and SVM classifiers to identify 
the script and then recognition rates are compared. It has been observed that by 
selecting the appropriate value of k and appropriate kernel function with appro-
priate combination of feature extraction and classification scheme, there is  
significant drop in error rate.  

Keywords: Script Identification, Gabor Features, Discriminating Features, 
Support Vector Machines, Knn. 

1   Introduction 

For a multilingual country like India where the documents contain more than one  
language, to develop an OCR is a great challenge. Mostly, two different kinds of tech-
niques can be used to develop this type of system. One technique is combined data-
base approach [1].That is the database of reference characters has alphabets from all 
of its languages in which the document is printed. So database is larger at the recogni-
tion level of individual character. The second technique is based on the identification 
of the script of each character before taking the characters for recognition. This helps 
in reduced search in the database at the cost of script recognition task. A number of 
techniques for determining the script of printed/handwritten documents can be typi-
cally classified into four categories [2, 3]: a) connected component based Script Iden-
tification b)Script Identification at text block level  c) Script Identification at text line 
level d) Word level Script Identification. 
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Feature Extraction is an important phase for script identification system of a word. 
Feature Extraction has been defined as “Extracting from the raw data the information 
which most relevant for classification purposes, in the sense of minimizing the within-
class pattern variability while enhancing the between-class pattern variability” 
[4].There are a number of techniques available for feature extraction for script identi-
fication [5-15]. Selection of a feature extraction technique is the single most important 
factor in achieving high performance of script identification systems. Gabor filters 
[10-12] can be used as a directional feature extractor. Other types of features are dis-
criminating features [13-15] which means that every language can be identified based 
on its distinct visual appearance.  These features can be extracted by using morpho-
logical reconstruction of an image. This paper presents a comparison of these two 
methods for identification of Punjabi words and English numerals. 

The paper is organized as follows. The theory of Gabor filters and feature extrac-
tion using these is discussed in Section 2. Discriminating features of Punjabi words 
and English numerals have been described in Section 3. Section 4 deals with different 
classification techniques and finally Section 5 contains the experimental results and 
conclusion. 

2    Gabor Filters  

A Gabor Filter is a linear filter whose impulse response is defined by a harmonic func-
tion multiplied by a Gaussian function.  

                                     ( , ) ( , ) ( , )h x y g x y s x y=                                            (1) 

Where ),( yxs  is a complex sinusoid, known as carrier and ),( yxg is a Gaussian 

shaped function, known as envelope. Thus the 2-D Gabor filter can be written as 

              

2 2

2 2

1 ' '

2 2
, , ,

( )
.x y

x y

j fx
x y fh e eσ σ π

θ

− +

=                               (2) 

Where 
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σ  explain the spatial spread and are the standard deviations of the 

Gaussian envelope along x  and y  directions. 'x  and 'y  are the x  and y   

co-ordinates in the rotated rectangular co-ordinate system given as 

                                       ' cos sinx x yθ θ= +                                                 (3) 

                                               ' cos siny y xθ θ= −                                                   (4) 

Any combination of θ  and f, involves two filters, one corresponding to sine function 
and other corresponding to cosine function in exponential term in Equation 2. The co-
sine filter, also known as the real part of the filter function, is an even symmetric filter 
and acts like a low pass filter, while the sine part being odd-symmetric acts like a high 
pass filter.  

In the present work, multi-bank Gabor filters having five different values for Spa-
tial frequency (f = 0.0625, 0.125, 0.25, 0.5, 1.0) and six different values for orientation 
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( 0 ,30 ,60 ,90 ,120 ,150 ,180 )θ = o o o o o o o are chosen to give a total of 70 Gabor filters with 

a combination of 35 even and 35 odd filters. From the output of each Gabor filter mean 
and standard deviation are computed, which serves as Gabor features. Thus for each 
word we get a feature vector of 140 values given by 

1 1 1 1, 1 1............. 70 70[ , , , , , ]F μ σ μ σ μ σ μ σ=  

3   Discriminating Features of Punjabi Words and English 
Numerals 

Punjabi words and English numerals have a distinct visual appearance as shown in 
Fig. 1. 

 

Fig. 1. Sample image of Punjabi Word and English Numeral showing different Zones 

After a careful study of shapes of Punjabi words and English numerals, nine fea-
tures for automatic classification of English numerals and Punjabi words’ script are: 

F1: Average Aspect ratio (AAR): The average aspect ratio (AAR) is defined as: 
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Here N is the number of connected components of input word image. 

F2: Average Eccentricity (AE): The average eccentricity (AE) is defined as 
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Here N is the number of connected components of input word image. 

F3-F6:  Based on Stroke Density in a Direction (SD): Features F3, F4, F5 and F6 
are based on stroke densities in vertical, horizontal, left diagonal and right diagonal 
directions. The stroke density in a direction is computed as: 
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Here N is the number of strokes in that direction. 
To extract the stroke density in a direction, we have performed the morphological 

opening operation on the input binary word/numeral image with line structuring  
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element having length=k × Mean (Connected_components_Height) and angle depend-
ing on the direction. 

F7: Pixel Ratio after Filling Holes (PRFH): For fill holes, we choose the marker 
image, fm to be 0 everywhere except on the image border, where it is set to 1-f. Here f 
is the original image. 

1-f(x,y) if f(x,y)is on the border of f 
    

             fm(x y ) =                           otherwise  0.                                                         
                                                                                                                                                            (8)                                                     

PRFH is computed as: 
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F8: Vertical Inter Character Gap (VICG): To extract the value of this feature, ver-
tical projection histogram is taken of the image. If   any vertical projection profile 
value is equal to zero then that means there is a gap between two characters and the 
value of this feature is set to1 otherwise is set to 0. 

F9: Horizontal Break in Components (HBIC): To extract the value of this feature, 
horizontal projection histogram is taken of the image. If   any horizontal projection 
profile value is equal to zero then that means there is a gap between components of a 
word and the value of this feature is set to1 otherwise is set to 0. 

4    Classification 

The objective of classification is to identify the script of words taken form the test set. 
Features extracted from the words are sent to the Classifier.  

KNN (k nearest neighbor) Classification 

The k- nearest neighbor (k-nn) approach attempts to compute a classification function 
by examining the labeled training point sin n dimensional space. Then the Euclidean 
distance is calculated between the test point and all reference points q in order to find k 
nearest neighbors. A test sample is labeled with the same class label as the label of the 
majority of its K nearest neighbors. Nearest Neighbor is a special case of k-nn, where 
k=1. 

SVM (Support Vector Machines) Classification 

SVM is a kind of learning machine whose fundamental is statistics learning theory. For 
these, it finds the optimal hyper-plane which maximizes the distance, the margin, be-
tween the nearest examples of both classes, named support vectors (SVs). If the data is 
nonlinear, there arises the need of mapping the data to higher dimensional feature 
space by functionφ . So the linear classifier is extended to nonlinear classifier by com-
puting the dot product in the input space rather than in the feature space via  
constructing a kernel function. Variant learning machines are constructed according to 
different kernel functions and thus construct different hyper planes in the feature space. 
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Different types of kernel functions used in the reported work are: Linear, RBF,  
Polynomial and Sigmoid.  

5   Experimental Results and Discussion 

The experiments are done in Matlab 7.4(R2007a). In order to investigate the effec-
tiveness of each method, data set of 4505 words has been created form various docu-
ments. Documents are created in different fonts and printed from a laser printer. Then 
these documents are scanned. Fonts used are AnmolLipi and Anmol Kalmi for Pun-
jabi words and Times New Roman and Calibri for English Numerals. So from all 
these documents 4505 words are segmented, out of which 1900 and 2605 are English 
Numerals and Punjabi words.  

Fivefold defines the data set of 4505 words into five disjoint subsets each having 
901 words. Here, four subsets are used for training and one is used for testing. So this 
process is repeated five times leaving one different subset for evaluation each time. 
Then the average accuracy is calculated. 

Table 1 provides the details of recognition results for   different subsets with  
different kernel functions using SVM. 

Table 1. Script Identification Results Using SVM with Discriminating Features and Gabor 
Features 

Classification Accuracy with Different Kernel Functions in % 
Input Linear  

Kernel Polynomial Kernel RBF Kernel Sigmoid 
Kernel 

Discriminating Features 97.23 94.96 95.53 93.85 

Gabor Features 99.75 99.82 96.67 57.82 

Table 2 provides the details of recognition results for different subsets with Knn 
with different values of K.  

Table 2. Script Identification Results Using KNN with Discriminating Features and Gabor 
Features 

Classification Accuracy with Different Values of K 
Input 

K=1 K=-3 K=5 K=7 

Discriminating Features 99.02 99.13 98.98 98.93 

Gabor Features 97.62 97.11 96.91 96.40 

It has been observed that for discriminating features, KNN Classifier gives the 
better results and for Gabor features, SVM Classifier gives the better results. Again it 
has been observed that different kernel functions and different values of K, for each of 
features, give better results. However error rate is more for increasing the value of K 
beyond 7. None gives 100% accuracy. So a combination of these classifiers and these 
feature extraction techniques can be used to get more accurate results. 



 Comparative Analysis of Gabor and Discriminating Feature Extraction Techniques 179 

References 

1. Dhanya, D., Ramakrishnan, A.G.: Simultaneous Recognition of Tamil and Roman Scripts. 
In: The Proc. Tamil Internet, Kuala Lumpur, pp. 64–68 (2001) 

2. Rani, R., Dhir, R.: A Survey: Recognition of Scripts in Bi-Lingual/Multi-Lingual Indian 
Documents. National Journal of PIMT Journal of Research 2(1), 55–60 (2009) 

3. Abirami, S., Manjula, D.: A Survey of Script Identification Techniques for Multi-Script 
Document Images. international journal of Recent trends in Engineering 1(2), 246–249 
(2009) 

4. Devijver, P.A., Kittler, J.: Pattern Recognition: A statistical Approach. Prentice –Hall, 
London (1982) 

5. Wood, S., Yao, X., Krishnamurthi, K., Dang, L.: Language identification from for printrd 
trxt independent od fsegmentation. In: Proc of International Conference on Image 
Processing, pp. 428–431 (1995) 

6. Dhanya, D., Ramakrishnan, A.G., Pati, P.B.: Script identification in printed bilingual 
documents. Sadhana 27(part 1), 73–82 (2002) 

7. Pal, U., Sinha, S., Chaudhuri, B.B.: Word-wise Script identification from a document 
containing English,Devnagari and Telgu Text. In: The Proc. of NCDAR, pp. 213–220 
(2003) 

8. Padma, M.C., Vijya, P.A.: Language Identification of Kannada, Hindi and English Text 
Words through Visual Discriminating features. The International Journal of Computational 
Intelligence Systems 1(2), 116–126 (2008) 

9. Dhir, R., Singh, C., Lehal, G.S.: A Structural Feature Based Approach for Script 
Identification of Gurmukhi and Roman Character and Words. In: The proc. of 39th Annual 
National Convention of Computer Society of India (CSI) held at Mumbai, India (2004) 

10. Pati, P.B., Raju, S.S., Pati, N., Ramakrishnan, A.G.: Gabor filters for document analysis in 
Indian Bilingual Documents. In: The Proc. Of ICISIP, pp. 123–126 (2004) 

11. Pati, P.B., Ramakrishnan, A.G.: HVS inspired system for Script Identification in Indian 
Multi-Script Documents. In: Proc. of 7th International Workshop on Document Analysis 
System, Nelson Newland, pp. 380–389 (2006) 

12. Pati, P.B., Ramakrishnan, A.G.: Word level multi-script identification. The Pattern 
Recognition Letters 29, 1218–1219 (2008) 

13. Dhandra, B.V., Mallikarjun, H., Hegadi, R., Malemath, V.S.: Word-wise Script 
Identification from Bilingual Documents based on Morphological Reconstruction. In: The 
Proc. of First IEEE International Conference on Digital Information Management, pp. 
389–394 (2006) 

14. Dhandra, B.V., Mallikarjun, H., Hegadi, R., Malemath, V.S.: Word–wise Script 
Identification based on Morphological Reconstruction in Printed Bilingual Documents. In: 
The Proc. of IET International Conference on Vision Information Engineering VIE, 
Bangalore, pp. 389–393 (2006) 

15. Dhandra, B.V., Hangarge, M.: On Separation of English Numerals from Multilingual 
Document Images. The Journal of Multimedia 2(6), 26–33 (2007) 

 



C. Singh et al. (Eds.): ICISIL 2011, CCIS 139, pp. 180–184, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Automatic Word Aligning Algorithm for Hindi-Punjabi 
Parallel Text 

Karuna Jindal1,4, Vishal Goyal2,4, and Shikha Jindal3,5 

1 Student, 2 Assistant Professor, 3 Student 
Department of Computer Science 

4 Punjabi University, Patiala, 5 PEC University of Technology, Chandigarh 
jindal.karuna@yahoo.com, vishal.pup@gmail.com, 

er.shikhagoel@gamil.com 

Abstract. In this paper, an automatic alignment system for Hindi-Punjabi paral-
lel texts at the word level has been described. Automatic word alignment means 
that without the human interaction the parallel corpus should be aligned word 
by word with the machine accurately. Boundary-detection and minimum  
distance function approaches have been used to deal with multi-words. In the 
existing algorithm, only 1:1 partial word alignment had been done with very 
less accuracy. But for the multi-words alignment, no work had been imple-
mented. For removing this limitation in the existing system, Different  
techniques like Boundary-detection, Dictionary lookup and Scoring based Mini-
mum distance function for word alignment has been used in the present system. 
After implementing above mentioned techniques, the present system accuracy 
was found to be 99% for one-to-one word alignment and 83% accuracy for 
multi-word alignment. 

Keywords: Automatic word alignment, Automatic Hindi-Punjabi Dictionary 
generation, scoring, dictionary lookup, boundary-detection. 

1   Introduction 

A corpus is a collection of spoken or written utterances of natural language usually 
accessible in electronic form. A parallel corpus is a text in one language together with 
its translation in another language. Our research aim is to automatically align Hindi-
Punjabi parallel text word-wise. The words will be aligned such that the pair will be 
consisted of Hindi word and the corresponding translated Punjabi word. For this task, 
we need Hindi-Punjabi parallel corpus. Word alignment of Parallel corpus is the iden-
tification of the corresponding words in both halves of the parallel text. Thus, by us-
ing this algorithm, Hindi to Punjabi dictionary can be generated automatically for 
machine translation. 

2   Word Alignment 

Word alignment means deciding which pairs of words can be the translation of each 
other in source and target language. 
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For Example:           हमने वह िनशान िदखाया।                                           ਅਸ  ਉਹ ਿਨਸ਼ਾਨ ਵਖਾਇਆ ।  
                                   (Humne veh nishaan dikhaya)                                   (Asi oh nishaan dikhaya) 

Alignment algorithm will align every Hindi word with the corresponding Punjabi 
word. 

 

3   Related Work 

Most of the researchers have worked on non-Indian languages but very little work has 
been done for Indian languages. Gale and Church (1993) used estimate translation 
probabilities and used these probabilities to search for most probable word alignment. 
D.Wu, (1994) used Gale’s method for Chinese and English parallel text applying the 
length-based approach and further extended it to adding lexical cues. Mukda Suktara-
chan et al. (1997) used statistical alignment approach. Somboonphol et al. (2002) used 
Gale’s method along with threshold function for estimating word correspondences. 
Aswani et al. (2005) used simple sentence length approach for sentence alignment, 
dictionary lookup and nearest aligned neighbours approach to deal with many-to-
many word alignment for Hindi-English parallel text.  

4   Alignment Algorithm 

The algorithm works on the principle that a shorter sentence tends to translate into 
shorter sentence and a longer sentence tends to translate into a longer sentence. For 
this, we need the parallel corpus in which we have the source text and target text. 

 

    Parallel Text 

    Source Text      Target Text 

   Word Alignment 

     Words will be stored in the data base 

    Dictionary of Hindi-Punjabi 

                    

Start

    Get an aligned sentence

   Count the number of sentences 
       & words in both the text 

   Divide the source sentence &  
   target sentence into two halves

By using DL and MDF techniques,    the 
words will be aligned and will be stored 
in the database 

   End
 

 Fig. 1.                                                         Fig. 2.  
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4.1   Algorithm 

• Load sentence aligned Hindi and Punjabi parallel text files. 
• These files are processed through the align function that counts the number of 

sentences and words in the files. 
• Split the source sentences and target sentences into word order and create arrays of 

words in each sentence.  
• Then one by one, each sentence of source and target files is taken and words of 

these sentences are matched. The matching is based on Boundary-Detection [11], 
improved dictionary lookup and the scoring given by the minimum distance func-
tion [11]. It considers only 1:1, 1:2, 2:1, 1:3 and 3:1 type of words alignments.   

• The words are aligned and stored into the database. 

4.1.1   Improved Dictionary Lookup Approach 
In this approach, first and last word of the sentence are matched with dictionary 
(Hindi-Punjabi) of most common words and stored in database. In case, they not 
matched, matching of middle words of Hindi-Punjabi sentence is done. There may be 
a case the above matching results comes out to be false.  Then last word of first half 
and first word of second half is checked. If last word of first half and first word of 
second half of Hindi-Punjabi are found in the dictionary then they will be stored in the 
data base and the remaining unaligned words will be align according to minimum 
distance with scoring techniques. If they do not match with the dictionary, then di-
rectly we will apply the minimum distance technique. 

5   Comparison 

The existing [11] and improved algorithms are implemented using VB.NET with 
ASP.NET. The results of both algorithms are compared with accuracy of word align-
ment. It has been found that existing system is unable to align the multi-words like 
Hindi word ‘माता िपता’ with Punjabi word ‘ਮਾਪੇ’. This problem of alignment was re-

solved in improved algorithm.  

 

 

 
0

2 0

4 0

6 0

8 0

1 0 0

E x i s t i n g  Sy s t e m P r e s e n t  I mp r o v e d

Sy s t e m

1 : 1  W o r d  M a p p i n g

M u l t i  W o r d  M a p p i n g

% of Accuracy 

 

Fig. 3. Comparison of Existing and Present Improved System 

As we see in the graph, according to existing system, the accuracy of 1:1 word 
mapping is 67% and after implementing above techniques in present improved system 
explained in this paper, system accuracy was found to be 99% for one-to-one word 
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alignment. For the multi word mapping, no work has been done in the previous sys-
tem. But by using present improved algorithm, the accuracy for multi words is found 
to be 83%. 

6   Evaluation and Results 

The accuracy of the system is calculated by the following formula: 

Accuracy percentage = (No. of correctly aligned words/Total number of words)*100  
Hindi-Punjabi parallel corpus has been collected from resources like EMILLE corpus 
and others for the word alignment. Parallel Corpus was also developed using the ex-
isting Hindi to Punjabi Machine Translation System available online at website 
http://h2p.learnpunjabi.org. The Hindi text was downloaded from number of online 
Hindi newspaper websites like BBC Hindi, Dianik Jagram, Bhaskar etc. Hindi-
Punjabi parallel corpus used comprised of 50K sentences of variable lengths. An 
evaluation was performed based on parallel corpus from different fields.  We obtained 
99% accuracy for one-to-one word alignment and 83% accuracy for multi word 
alignment. We see that Hindi and Punjabi are close languages in term of length of 
sentences and also in words. The same approaches can be applied to other languages 
which are closely related by doing little modification. The model was motivated by 
the observation that the longer regions of text tend to have longer translations, and 
that the shorter regions of text tend to have shorter translations. 

7   Conclusion 

Most of the researchers have worked on non-Indian languages but very little work has 
been done for Indian languages. In the existing algorithm, only 1:1 partial word 
alignment had been done with very less accuracy. But for the multi-words alignment, 
no work had been implemented. For removing this limitation in the existing system, 
Different techniques like Boundary-detection, Dictionary lookup and Scoring based 
Minimum distance function for word alignment has been used in the present system. 
After implementing above mentioned techniques, the present system accuracy was 
found to be 99% for one-to-one word alignment and 83% accuracy for multi-word 
alignment. 
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Abstract. In this paper, a study of politeness in a translated parallel corpus of 
Hindi and English is done. It presents how politeness in a Hindi text is trans-
lated into English. A theoretical model (consisting of different situations that 
may arise while translating politeness from one language to another and differ-
ent consequences of these situations) has been developed to compare the polite-
ness value in the source and the translated text. The polite speech acts of Hindi 
which are most likely to be translated improperly into English are described. 
Based on this description, such rules will be developed which could be fed into 
the MT systems so that the problematic polite speech acts could be handled ef-
fectively and efficiently by the machine while translating. 

Keywords: Politeness, impoliteness, speech acts, structural model, machine 
translation. 

1   Introduction 

Polite (or, politic) behaviour has been defined as “socioculturally determined behav-
iour directed towards the goal of establishing and/or maintaining in a state of equilib-
rium the personal relationships between the individuals of a social group”. [1] Till 
now there has been no study related to the politeness divergence in translation as far 
as I know, even though it is very much expected because of 'sociocultutrally deter-
mined' nature of politeness. It is a first study of its kind to study a pragmatic aspect of 
the language like politeness from the point of view of machine translation. 

The ‘Structural Model of Politeness’ [2, 3] is being used for the formal description 
and classification of the data. In this paper, the kind of illocutionary speech acts that 
have been improperly or badly translated across different situations, are described, 
with an aim to incorporate the final results in the machine translation systems. The 
data for the present study is taken from the parallel translation corpus of 50,000 
tagged sentences in 12 Indian languages currently under preparation by the Special 
Centre for Sanskrit Studies, Jawaharlal Nehru University, New Delhi under the pro-
ject titled Indian Language Corpora Initiative (ILCI) [4,5]. For the purposes of trans-
lation, the rule of structural equivalence or structural parallelism (which implies that 
the translated texts are intended to have correspondence at lexical [one word is  
translated into one word and not multiple words and vice-versa] phrasal [one phrase is 
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translated into one phrase and not more than one and vice-versa] as well as clausal 
level [one clause being translated into only one clause, not more than one and vice-
versa] ) is given the prime importance in this project. This has a lot of implications for 
the present study. 

2   The Corpus and the Situations 

In the study done in Kumar and Jha [3] (taking into consideration 4000 sentences), the 
sentences in the corpus are divided into different kinds of speech acts based on the 
taxonomy of speech acts given by Searle [6]. Since the data in the corpus is taken 
from written texts, it has only two kinds of speech acts – the assertives and the direc-
tives. There is a possibility for other speech acts but they are yet not found.  

The above study shows that the maximum share is covered by the situation 2 (the 
structure of the source language (SL) is translated into the target language (TL) but 
not the politeness value)  while 41% sentences are properly translated (situation1,  
where both the structure and the politeness value of SL is properly carried over into 
TL, leading to 'consequence 1', which is the 'proper translation'). There are only three 
examples of situation 3 (politeness value of the SL is properly translated into TL but 
the structure is not preserved) and there are only 4% cases where situation 4 (neither 
the structure nor the politeness value of the SL is carried across in the TL) arises. 
Moreover there are only two instances of consequence 3 (polite or non-polite sentence 
in SL is translated into an impolite sentence in TL), as of now, but it cannot be ruled 
out completely. 

In the present paper a classification of the speech acts that occur in situations 2 and 
4, leading to the consequence 2 (polite sentence in SL is translated into a non-polite 
sentence in the TL) has been given. 

3   Classifying the Problematic Speech Acts 

The sentences whose politeness value could not be translated properly are defined as 
the problematic sentences or speech acts. It should be especially noted that these 
speech acts, for the present purposes, are problematic because while translating the 
sentences from Hindi to English (while following the principle of structural equiva-
lence), only the politeness value of the source text could not be preserved in the target 
text; no other criteria whatsoever is taken into consideration while deciding upon the 
problematic speech acts. The politeness value of a sentence is determined by a survey 
conducted among native or native-like speakers of Hindi (who speak English as a 
second language), where they are asked to give a politeness value to the Hindi sen-
tence and whether the translation given here maintains that value or not. 

The classification scheme given here is very tentative in the sense that it is based 
on the study of just around 3000 sentences and it is highly likely to be revised in some 
ways as more data from the corpus comes in. Moreover there is the need for more 
fine-grained classification that could be directly related to the structure of the sen-
tence since it is very necessary to identify the general structural cues in order to make 
the machine well-equipped to handle the situation. 
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3.1   Problematic Speech Acts in Situation 2 

The following illocutionary speech acts have been identified as problematic for situa-
tion 2. All the examples, along with their translations, cited in the paper are taken 
from the parallel corpus mentioned above. Since the corpus is still under preparation, 
some of the translations may look bad or concocted but they will be revised at a later 
stage. 

The directionals. The speech acts which are used to give direct instructions to 
someone to do something (as against the suggestives) are termed the directionals. In 
Hindi, politeness is explicitly expressed by the use of honorific forms of the verb and 
the second/third person pronouns. However in English the verbs and pronouns lack 
the information regarding the honorificity. For example, 

1. बच्चे को माँ का दधू अवँय िपलाएँ ।   

Certainly make the child drink mother's milk. 

The indirectionals. The indirectionals are the opposite of the directionals. Politeness 
is expressed by the indirectness, use of certain emphatic particles, etc. They are very 
rare occurrences in the corpus.  

2. कोिहमा पहँचनेु  का सबसे सहज उपाय कोलकाता से हवाई मागर् स ेजाना ही है । 
The easiest way to reach Kohima is go by airways from Kolkata. 

The suggestives. The speech acts which are used to direct someone to do something 
in the form of a suggestion are classified as suggestives. They are polite in the sense 
that instead of telling someone to do something directly, it presents it in the form of a 
suggestion, which the reader is not obliged to follow. However in English most of the 
times the modal 'should' is used which suggests some kind of mild compulsion. For 
example: 

3. इस बीच उसे और कोई उपाय दे देना चािहए ।  

Between this she should be given some other alternative. 

The conditionals. Conditionals are an extension of the suggestives. A condition of 
the form of 'if....then' is expressed. The factors producing impoliteness here are 
similar to that of suggestives. Some of the examples are as follows. 

4. यह उस औरत के िलए सही उपाय है िजसे बहतु  असरदार उपाय की चाहत हो । 
This is good alternative for that woman who has the desire for very effective way. 

5. इससे िदन में 2 गोली खानी पड़ेगी । 
By this two pills have to be eaten in a day. 
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Negative conditionals. Negative conditionals are an extended classification of 
conditionals. They are of the forms 'if not....then' or 'if.....then not'. The factors leading 
to the loss of politeness value in these are same as conditionals. For example 

6. लॉस एंिजल्स में आप ने अगर िडजनीलैंड नहीं देखा तो सच में पछताएँगे । 
If you did not see Disneyland in Los Angeles then you will truly repent. 

The explanatives. The explanatives could be related to the indirectionals. Like the 
indirectionals these are also the indirect statements intended to get some action done. 
However here an explanation or exposition of the reasons behind carrying out the 
action is given, unlike the indirectionals where just a statement is given to influence 
the reader. These are also quite rare in the corpus. Few examples are given here. 

7. इससे नमक में िमलाया गया आयोडीन शरीर के अनुपात में नहीं रहता। 
Because of this the iodine mixed in salt does not stay in the proportion to the body.  

The possibilatives. The speech acts which show the possibility of some event or 
achievment are termed as possibilatives. The politeness in Hindi sentence is generated 
by the fact that the author is not imposing his/her views on the author. It is also an 
instance of the fuzzy case.  For example, 

8. ऑटो - िरक्शा द्वारा िसंहगढ़ तक आसानी से पहँचाु  जा सकता है । 
One can easily reach Singhgarh through auto-rickshaw. 

3.2   Problematic Speech Acts in Situation 4 

The illocutionary speech acts that are improperly translated in situation 4, as far as 
politeness is concerned, are similar to those in situation 2. However the kind of struc-
tures associated with those speech acts are different from that in situation 4. The basic 
difference between the two situations is that in situation 2 the structures are translated 
(but not politeness) but here neither of these is translated. 

The directionals. In situation 4 the directionals include the use of causatives (not 
found in English as a productive strategy) and certain lexical items which could not 
be translated directly into English. For example, 

1. यौन रोगों से पीिड़त व्यिक् त को कंडोम उपलब्ध कराएँ  
Make condom available to the person suffering from sexual diseases. 

The conditionals. The conditionals in situation 4 also involve the use of causatives 
and passives of certain structures which cannot be passivised in English. For example, 

1. यिद अंजान बाजारू मिहला से यौन संबंधों से परहेज करें और िनरोध का 
इःतेमाल करें तो एड्स से बचा जा सकता है । 
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If you abstain from sexual relation with unknown female sex worker and use nirodh 
then you can be saved from AIDS. 

The explanatives. The explanatives are generally not found in situation 4. It again 

involves the use of passives in Hindi, which could not be translated. An example is 

given below. 

1. संतरे का िनयिमत सेवन करने से सामान्य सदीर् , जुकाम , खाँसी , 

इन्फ्लूएन्जा , रक् तॐाव आिद से बचाव होता है । 
By the regular consumption of orange one can be saved from common cold, running 
nose, cough, influenza, bleeding etc. 

The possibilatives. The possibilatives in situation 4 mainly have passives and 
lexically non-translatable items. For example, 

1. महायान बौद्ध मठ से आप पूरी तवांग घाटी का सुदंर नजारा ले सकते हैं । 
You can get a beautiful view of the whole Tawang valley Mahayana Buddhist mon-
astery. 

4   Conclusion and the Way Ahead 

The present paper gives an overview of the different kinds of speech acts and the pos-
sible structures associated with these speech acts that tend to get mistranslated in 
terms of politeness value while translating from Hindi to English. It shows that there 
are limited number of speech acts and limited number of structures associated with 
those speech acts that tend to get mistranslated in terms of politeness.  

Thus the future work would include the formalization of the findings of this study 
in terms of rules that could be included in the machine translation systems. 
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Abstract. This paper presents the application of BIS POS tagset for tagging 
Sanskrit. Traditionally, the number of grammatical categories for Sanskrit 
varies from one to five [3]. The language has been exhaustively described in the 
tradition. And this description is still prevalent in today’s grammar teaching. In 
such a situation, the application of this tagset, which is a new paradigm with 
respect to Sanskrit, is a challenge. In this paper, we explore how this tagset 
could be used in categorizing/describing the language. 
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1   Introduction 

Sanskrit is one of the well-studied languages of the world, having a sophisticated 
vocabulary, morphology, literature, research, scholarship and most importantly a rich 
grammatical tradition. Plenty of literature is available on its morphology and 
phonology describing it variously. However, its syntax has received least attention of 
linguists [8]. The language has been exhaustively described in the tradition mostly in 
terms of morphological categories and rarely in syntactic categories. POS tagging, 
however, is a mix of morphological and syntactic description of a language and 
rightly called morpho-syntactic tagging also. The morphological categories of 
Pāṇinian grammar [7, 8] are, however, very wide and less formal from syntactic point 
of view. Therefore, they need to be further categorized and described in terms of 
contemporary morpho-syntactic categories of linguistic description. This paper is an 
attempt to describe classical Sanskrit in terms of these commonly used categories as 
they are the label to label words in the current POS tagging scheme. 

2   Sanskrit POS Tagging 

2.1   Availability of Various POS Tagsets 

There are many tagsets available for tagging Sanskrit: JNU-Sanskrit tagset (JPOS), 
Sanskrit consortium tagset (CPOS), MSRI-Sanskrit tagset (IL-POSTS), IIIT 
Hyderabad tagset (ILMT POS) and CIIL Mysore tagset for the Linguistic Data 
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Consortium for Indian Languages (LDCIL) project (LDCPOS) [3]. The first two of 
these are Sanskrit specific, and the rests are common for all Indian languages. Barring 
IL-POSTS, all the tagsets are flat. The BIS tagset which is a national standard tagset 
for Indian languages is a hierarchical one and follows a layered approach for 
annotating various kinds of linguistic information available in a text. This tagset has 
11 categories at the top level (Noun, Pronoun, Demonstrative, Verb, Adjective, 
Adverb, Postposition, Conjunction, Particle, Quantifier and Residual). The categories 
at the top level have further subtype level 1 and subtype level 2. In this framework the 
granularity of the POS has been kept at a coarser level. Most of the categories of this 
tagset seem to have been adapted either from the MSRI or the ILMT tagset. For 
morphological analysis it will take help from morphological analyzers, so morpho-
syntactic features are not included in the tagset. 

The BIS scheme is comprehensive and extensible and can spawn tagsets for Indian 
languages based on individual applications. It captures appropriate linguistic 
information, and also ensures the sharing, interchangeability and reusability of 
linguistic resources. The Sanskrit specific tagsets are not compatible with other Indian 
languages and with the exception of the IL-POSTS, all other tagsets are flat and brittle  
and do not capture the various linguistic information. The IL-POSTS, an appreciable 
framework, captures various linguistic information in one go and this, according to 
the designers of the BIS tagset, makes the annotation task complex. And from 
machine learning perspective also it is not a good idea. So, the BIS tagset, as a middle 
path, is suitable for tagging all Indian languages. 

2.2   Tagging Sanskrit Using the BIS Tagset  

In the BIS scheme, the top level category of noun has four subtypes at level 1: 
common, proper, verbal and noun location.  The verbal noun is for languages such as 
Tamil and Malayalam. In our opinion it is equally applicable for Sanskrit also. The 
k dantas like āgamanam and hasanam could be tagged as verbal noun, as they are 
nominalised in a sentence. The indeclinables like agr   and pūrvam could be labeled 
as noun location. 

The pronoun category is divided in 5 subtypes: personal, reflexive, relative, 
reciprocal, and wh-word. The nominals like ātman, sva, svakīya etc. are tagged as 
reflexives. Among reciprocal pronouns are parasparam, itar taram, mitha  and 
anyonyam. 

The next top level category is of demonstrative. Demonstratives have the same 
form of the pronouns, but distributionally they are different from the pronouns as they 
are always followed by a noun, adjective or another pronoun. In this category, only 
deictic, relative and wh-word subtypes fall. Deictics are mainly personal pronouns. 
Sanskrit doesn’t differentiate between demonstrative pronouns and third person 
pronouns. 

The category of verb is somewhat complicated in this framework. It has main and 
auxiliary divisions under subtype level 1 and finite, non-finite, infinitive and gerund 
divisions under subtype level 2. Verb main does not seem to be an appropriate tag in 
case of Sanskrit. However, if anybody insists to use it, it can be utilized in tagging the  
 



 Tagging Sanskrit Corpus Using BIS POS Tagset 193 

verbs of present tense when followed by a sma and the kta and ktavat pratyayāntas 
when followed by an auxiliary, and in doing so the auxiliary verbs and sma have to 
retain their Auxiliary tags. 

The ti antas (inflections of as, ās, sthā, k , and bhū only) that follow a k danta to 
express its (k danta's) aspectual meaning, will be tagged with Auxiliary label and the 
indeclinable sma will also get the same tag when follows a verb in present tense and 
modifies the meaning of the associated verb. 

All the conjugations of the dhātus are finite verbs (VF).  However, when some of 
these forms will be used to express the aspectual meaning of the preceding k danta 
will be tagged as auxiliary, as is stated above. In addition, kta and ktavat pratyayāntas 
will also be tagged as VF when they are not followed by any auxiliary verb. As we do 
not have a separate tag for gerundives (like kāryam, kara īyam, kartavyam), VF tag 
could be applied for them as well. kta and ktavat pratyayāntas will be tagged as verb 
non-finite (VNF) when followed by an auxiliary and other k idantas like śat , śānac 
and kānac will also get the same tag. 

Sanskrit infinitives are different from other Indian languages and English. They 
correspond to the infinitive of purpose in English. Only tumun pratyayāntas will be 
tagged as VINF. In the literature [7, 8] ktvānta and lyabanta are described as gerund. 
So, these words will be labeled with verb non-finite gerund (VNG). 

Adjectives in Sanskrit are rarely realized as modifiers. Often they occur as 
substantives. However, there is no dearth of pure adjective usages in the language. 
When they are used with their modified item, should be tagged as adjectives 
otherwise as nouns. Only manner adverbs are to be tagged as Adverbs in this 
framework; thus uccai  (loudly), sukha  (happily) etc. will get the adverb tag. 

There is a top level category for Postpositions. Sanskrit does not have postposition 
as such. But we can tag the upapada (like saha, nama , abhita ) indeclinables as 
postpositions as they are indeed ambipositions and cause the assignment of a 
particular vibhakti in the concerned nominal. 

Conjunction is a major category in the tagset and has co-ordinator (ca etc.), 
subordinator (yat etc.) and quotative (iti etc.) as subtypes. We have to first enlist the 
conjunctions in these subcategories and then tag accordingly. 

Particle is a very important category for Sanskrit language, as they have many a 
role to play. Some of the indeclinables described as avyayas in the tradition fall in this 
category. In the tagset, there are default, classifier, interjection, intensifier and 
negation subtypes of the Particle category. The classifier tag is not applicable for 
Sanskrit. Words like bh śa  (very much), atitarā  (very much) etc. are intensifiers. 

The Quantifier category includes general, cardinal, and ordinal subtypes. These 
terms are equally applicable to both types of quantifiers: written in words (like five, 
fifth etc.) and in digits (like 5, 5th etc.). 

Residual as a major category in this tagset holds foreign word, symbol, 
punctuation, unknown and echo words as subtypes. In Sanskrit echo words are mainly 
reduplications of a variety of linguistic items. In this framework a word is considered 
a foreign one if it is written in a script other than Devanagari. The symbol subtype is 
for symbols like $, %, # etc. If a word does not fit in any of these categories, will be 
tagged unknown. 
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3   Conclusion 

In a linguistically rich country like India, having linguistic resource standards like BIS 
scheme is highly recommendable. Also, where various language technology tasks are 
based on tagged corpora, a policy of having a unified system can be efficient time and 
cost wise. The BIS scheme enables us to design tagged corpora which will be cross 
linguistically compatible, reusable and interoperable. The ILCI (Indian Languages 
Corpora Initiative) project at Jawaharlal Nehru University is trying to tag 12 Indian 
languages including English using this scheme.  
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Abstract. This paper describes about the transliteration of Manipuri from Ben-

gali Script to Meitei Mayek (Meitei script). So far no work of Manipuri transli-

teration is done and being an Eight Schedule Language of Indian Constitution 

we felt necessary to start through a rule based. A model and algorithm is being 

designed for transliterating Manipuri from Bengali script to Meitei Mayek 

(Meitei Script). Even though the model is a simple rule base approached but to 

our surprise the algorithm proved to come up with an accuracy of 86.28%. 

Keywords: Transliteration, Bengali Script, Meitei Mayek, Iyek. 

1   Introduction 

Transliteration is the process of mapping a word of a source language script to anoth-

er target language script.  

Manipuri (or Meiteilon) is a Tibeto-Burman (TB) language and also one of the 

Eight Scheduled languages of Indian Constitution. It is highly agglutinative in nature. 

Manipuri uses two scripts; the first one is purely of its own origin, Meitei Mayek 

while another one is a borrowed Bengali Script. The present design of algorithm is to 

transliterate Bengali Script to the Meitei Mayek. 

Transliteration of Indian language is found in the works of IT3 developed by IISc 

Bangalore, India and Carnegie Mellon [1]. Other transliteration works for Indian 

languages can be seen in [2], [3], [4], [5] and [6]. For other foreign languages works 

of European language in [7] and works on Asian language in [8]. So far upto the best 

of the authors’ knowledge no work of transliteration has been done and this is the first 

work of transliteration for Manipuri. 

The paper is organized with Section 2 giving the details about the Linguistic 

Transliterating Scheme, the model and algorithm in Section 3, the experimental result 

and evaluation in Section 4 and the conclusion is drawn in Section 5. 
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2   Linguistic Transliteration Scheme 

Bengali which has 52 consonants and 12 vowels is mapped to Meitei Mayek which 

has 27 (Twenty seven) alphabets (Iyek Ipee) and its supplements: vowels, Cheitap 

Iyek, Cheising Iyek and Lonsum Iyek [9] are shown in Tables 1,2,3,4 and 5.   

Table 1. Iyek Ipee characters in Meitei Mayek 

Iyek Ipee    

�->k (kok)            �(�,�,	)->s (Sam)    �->l (Lai)           ->m  (Mit)       
�->p (Pa) �->n (Na)             �->c (Chil) �(�)->t (Til) 

�->S (Khou) �-> z  (Ngou)         �(�)->H(Thou) �->w (Wai) 

�(�)->y (Yang) �->h (Huk)  �(�)->U(Un) �(�)->I(Ee) 

�->f (Pham)  ->A (Atia)      !->g (Gok)                              "->J (Jham) 

#->r (Rai) $->b (Ba)     %-> j (Jil) &(')->d(Dil) 

(->G (Ghou) )(*)->D(Dhou)  +->v(Bham)    

Table 2. Vowels of Meitei Mayek 

Vowel letters    

,->Aa(Aa) -->Ae(Ae) .-AE(Ei)  

/->Ao(o) 0->AE(Ou)         3->Ax(aAng)  

Table 3. Cheitap Iyek of Meitei Mayek 

Cheitap Iyek    

4◌6->o (ot nap) 7◌, ◌8-> i(inap) ◌6->a(aatap) 4◌-> e(yetnap) 

4◌9-> O (sounap) ◌: , ◌; -> u (unap)        <◌-> E(cheinap) ◌3-> x(nung) 

Table 4. Cheising Iyek or numerical figures of Meitei Mayek 

Cheising Iyek(Numeral figure) 

=->1(ama) >->2(ani)    ?->3(ahum) @->4(mari) 

A->5(manga) B->6(taruk) C->7(taret)    D->8(nipal) 

E->9(mapal) =F->10(tara)      

Table 5. Lonsum Iyek of Meitei Mayek 

Lonsum Iyek 

G-> K (kok lonsum) H-> L (lai lonsum) I->M (mit lonsum) J-> P(pa lonsum)  

K, L-> N (na lonsum) M,N-> T (til lonsum) O->Z(ngou lonsum)    �, �->I(ee lonsum) 
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Alphabets of Meitei Mayek are repeated uses of the same alphabet for different 

Bengali alphabet like�, �, 	, � in Bengali is transliterated to s in Meitei Mayek.  

In Meitei Mayek, Lonsum Iyek (in Table 5) is used when G is transliterated to K, 

O transliterate to Z, M transliterate to T etc. Apart from the above character set Meitei 

Mayek uses symbols like ‘>’ (Cheikhie) for ‘।’ (full stop in Bengali Script). For into-

nation we use ‘....’ (Lum Iyek) and ‘    ‘ B (Apun Iyek) for ligature. Other symbols are as 

internationally accepted symbols. 

3   Model and Algorithm  

In our model (Fig. 1) we used two mapped file for Bengali Characters and corres-

ponding Meitei Mayek Characters which are read and stored in the BArr and MMArr 

arrays respectively. A test file is used so that it can compare its index of mapping in 

the Bengali Characters List file which later on used to find the corresponding target 

transliterated Meitei Mayek Characters Combination. The transliterated Meitei Mayek 

Character Cuombination is stored on an output file. 

 

Fig. 1. Model of Transliteration Scheme used in Manipuri Bengali Script to Meitei Mayek 

Algorithm use for our model is as follows: 

Algorithm:transliteration(line, BCC, MMArr[], BArr[]) 

1. line : Bengali line read from document 

2. BCC : Total number of Bengali Character 

3. MMArr[] : Bengali Characters List array 

4. BArr[] : Meitei Mayek Character List array 

5. len : Length of line 

6. for m = 0 to len-1 do 

7.  tline=line.substring(m,m+1) 

8.  if tline equals blank space 

9.    Write a white space in the output file 

10.  end of if 

11.  else 

12.   for index=0 to BCC-1 

13.    if tline equals BArr[index] 

14.     pos = index 

Target  Meitei  Mayek  Character Combination 

Meitei Mayek Characters List 

Bengali Test File 

 Bengali Characters List 

Look up for Index 

Send Index and Find the Meitei Mayek Characters Combination 
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15.     break 

16.    end of if 

17.   end of for 

18.   Write the String MMArr[pos] in the output file 

19.  end of else 

20. end of for 

4   Experiment and Evaluation 

Manipuri is a less computerized language and collecting corpus is a hard task. The 

experiments of the systems are done with the corpus collected from a Manipuri local 

daily newspaper
1
. A corpus of 20,687 words is collected for testing of the system.  

In Evaluation of the result, the system shows an accuracy of 86.28%. Due to use of 

same character set of the Meitei Mayek relative to Bengali Script as mention in  

Section 3 we found a lower accuracy. 

5   Conclusion 

This model being the first model in Manipuri Transliteration it shows a good result. 

So far other techniques are not yet tried, so plans of implementing other techniques to 

increment the performance are the future work direction.  
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Abstract. Online handwriting recognition refers to machine recognition of 
handwriting captured in the form of pen trajectories. This paper describes a 
trainable online handwriting recognition system for Malayalam using elastic 
matching technique. Each character/stroke is subjected to a feature extraction 
procedure. The extracted features forms input to a nearest neighborhood classi-
fier which returns the label having the minimum distance. The recognized char-
acters are assigned their corresponding Unicode code points and are displayed 
using appropriate fonts. With a database containing 8389 handwritten samples, 
we get an average word recognition rate of 82%. 
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1   Introduction 

Handwriting Recognition can be split into two viz. Offline and Online, depending on the 
form in which data is presented to the system. In the first system, the handwritten 
document is converted into an image using a scanner and this is input to the system. In 
Online handwriting recognition a machine is made to recognize the writing as a user 
writes on a special digitizer or PDA with a stylus. Here the parameters related to the pen 
tip like position, velocity, acceleration and sometimes pressure (on the writing surface) 
are available to the data acquisition system. In both the systems, the ultimate objective is 
to convert handwritten sentences or phrases in analog form into digital form. 

The established procedures to recognize online handwritten characters include data 
collection & analysis, pre-processing, feature extraction, classification & recognition 
and post-processing. In this paper we begin with an overview of Malayalam script and 
the challenges involved. We then present the different procedures that were involved 
in developing the system. The result of the work done is summarized at the end of the 
paper. 

There are many online character recognizers available in different languages. Works 
have been reported in Latin, Chinese, English, Arabic, Thai, Urdu, Turkish and Indic 
scripts namely Gurmukhi, Tamil, Telugu etc. Online Urdu character recognizer makes 
use of the ligature based approach instead of character based identification [2]. For 
classifying handwritten Tamil characters DTW and HMM have been reported [3].  
Support Vector Machines have been observed to achieve reasonable generalization 
accuracy, especially in implementations of handwritten digit recognition and character 
recognition in Roman, Thai, Arabic and Indic scripts such as Devnagari and Telugu [4]. 
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2   Malayalam Script 

Malayalam is one of the four major languages of the Dravidian language family and is 
spoken by about forty five million people. Like most of the other Indian languages, 
Malayalam has its origin from the ancient Brahmi script. 

 

Fig. 1. Malayalam character set 

The basic Malayalam character set is given in Figure 1. 

3   Challenges 

The Online Handwriting recognition for Malayalam script is a greater challenge com-
pared to the recognition of Western scripts because of the following reasons: 

• Presence of large number of characters 
• Different writing styles & writing speed 
• Complexity of the characters & Similarity in character shapes 
• Poor reliability of extracted stroke features due to variance in handwriting 

4   Data Collection and Analysis 

The data was collected from 29 informants, including male and female in the age 
group 25 to 35, using Wacom Intuos3 tablet with a resolution of 200 lines/inch and 
with a sampling rate of 200 points/sec. Each and every informant is directed to write a 
total of 417 Malayalam words (including Latin numbers) which is extracted with help 
of experts in the Malayalam linguistic domain. Data collected can be used for the 
analysis of the possible features of each character/stroke and also for the study of the 
different writing styles of Malayalam characters. 
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5   Pre-processing 

Preprocessing is required to remove irregularities present in the input stroke captured 
by the digitizing tablet. We performed several pre-processing operations, including 
dehooking, size normalization, resampling, smoothing and removal of duplicate 
points.  

6   Feature Extraction 

A character can be represented by a set of features. The features can be based on the 
static properties of the characters, dynamic properties, or both. Computational com-
plexity of classification problem can also be reduced if suitable features are selected. 
For Malayalam, we have considered the following features  

• Geometric features - Loop, Intersection, Cusp 
• Ink related features - Point density, Stoke Length 
• Directional features - Start angle, End angle, Start-End angle 
• Global features - Start position, End position, Start-End position 
• Local features - Pre-processed X-Y coordinates, quantized slope, dominant points 

7   Classification and Recognition 

Classification of characters is an efficient way to break a large vocabulary into several 
smaller groups/classes. We have adopted a two-stage classification scheme using 
nearest neighbour classifier. The first stage which employs a 3 level classification 
filters the templates based on the features from the test sample identified during the 
feature extraction phase and the second stage computes the more expensive Dynamic 
Time Warping (DTW) [1] distance from the shortlisted templates. The label of the 
nearest template is assigned to the test sample. 

DTW Algorithm: Dynamic Time Warping is a technique that matches two trajecto-
ries (handwritten characters) and calculates a distance from this matching. DTW algo-
rithm compares handwritten samples in a way that has results similar to the human 
handwriting comparing system. It is based on linear matching, but has three condi-
tions or constraints that need to be satisfied. These conditions are as follows 

• Continuity condition 
• Boundary condition and  
• Monotonicity condition 

Continuity condition: The continuity condition decides how much the matching is 
allowed to differ from linear matching. This condition is the core of the Dynamic 
Time Warping and thus is not optional. If N1 and N2 are the number of points in the 
first and second curve respectively, the ith points of the first curve and the jth points of 
the second curve can be matched if (note that the other conditions can bypass this if 
statement) 
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(1)

The parameter ‘c’ determines the amount that the matching is allowed to differ from 
linear matching. 

Boundary condition: The boundary condition, if turned on, forces a match between 
the first points of the curves and a match between the last points of the curves.  

Monotonicity condition: This prevents the matching from going back in time. If at 
some point in the matching process it is decided that the ith point of the first curve 
matches with the jth point of the second curve, it is not possible for any point of the 
first curve with index > i to match with a point of the second curve with index < j and 
for any point on the first curve with index < i to match with any point on the second 
curve with index > j. 

Decision Algorithm: From the selected characters/prototypes, the decision algorithm 
makes a list of the characters occurring in the top N number of prototypes and decides 
a weight for each of those characters. Here N is a user specified value that decides 
how many of the prototypes (counting from the one with the smallest distance to the 
query) are used by the algorithm. The character with the highest weight is returned as 
the recognized output. 

8   Post Processing 

The function of this module is to correct the errors that occurred during the recogni-
tion stage, thereby improving the accuracy of the recognized output. The processes 
performed under post processing were 1) Stroke correction 2) Stroke concatenation 3) 
Linguistic rules. The post processing stage also makes use of a spellchecker to iden-
tify the word written is valid or not. For invalid words, suggestions from the diction-
ary are provided. 

9   Results 

The data after analysis was reduced in size by selecting an appropriate subset as pro-
totypes, achieved using the prototype selection method ‘Growing of the prototype set’ 
discussed in [5]. With the final database consisting of 8389 character prototypes, 
DTW- classifier and spellchecker, we have an average recognition rate of 94% at 
character level and 82% at word level. 

Acknowledgements. The authors would like to thank all the people who had helped 
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Abstract. This paper describes the development of optimized multiunit speech 
database for a high quality concatenative TTS System. The core engine used for 
the development of Text to speech is the open source FESTIVAL engine and is 
tested for Malayalam language. The optimal text selection algorithm selects the 
optimal text, ensuring the maximum coverage of units without discarding entire 
low frequency units. In this work we created a multiunit database with syllable 
as the highest unit, ensuring the coverage of all CV-VC units, and phones.  

Keywords: Concatenation, Clustering, FESTIVAL, HMM Labeling, Letter to 
sound rules, Mean opinion score, optimal text selection, Text to speech, Unit 
selection. 

1   Introduction 

A Text to speech system is the software which allows the transformation of a string of 
phonetic and prosodic symbols into synthetic speech. Among the different speech 
synthesis methods concatenative synthesis is a widely accepted approach because of 
its good quality output. Higher the units selected for concatenation, better the quality 
of speech output. Concatenative unit selection requires a large database of a single 
speaker, which contains multiple realizations of different units with varied prosodic 
and spectral characteristics to get more natural-sounding synthesized speech.  

The quality of a TTS system is measured by the intelligibility and naturalness of 
the speech output. The factors which affect the quality of synthesized speech are the 
quality of database, accuracy of labels, text-pronunciation mapping, and units selected 
for concatenation. Even though there exist good quality TTS for other languages, 
comparable quality TTS is not available for Malayalam. In this work we developed a 
Malayalam TTS using unit selection method.  

This paper briefs the development of a multi unit database for TTS and the speech 
quality improvement achieved by using optimized speech database. We have done the 
work for Malayalam, which is one of the four major Dravidian languages and is the 
official language of the state of Kerala and the Indian Union territory of  Lakshad-
weep. It is spoken by around 35 million people.. The database is created for female  
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voice, with 6 hour data covering 9K syllables. Label files are created using HMM and 
this improved the accuracy of labels.. The mean opinion score (MOS) for the TTS 
using this multiunit database is found to be 3.2.  The Functional Block Diagram of a 
multi unit based TTS is given in Fig. 1 below. 

Multi unit Labels

Festvox 

Feature extraction &
Clustering

Multi unit
Speech Database

Training 

UTF8 Text processing

Handling exceptions and
applying LTS rules

FESTIVAL 
Unit Selection

Concatenation & Smoothing

Missing unit replacement

Synthesis 

 

Fig. 1. Functional Block Diagram of TTS 

2   Multi Unit Speech Database Creation 

The speech database creation for a TTS requires text corpus and speech corpus.  This 
involves collection and selection of text corpus, selection of informant satisfying the 
requirements and recording of the text in an acoustically treated room. Even though 
the corpus based TTS requires large database, the sentences/words/phrases selected to 
train the system must not be too large. It must be the minimum text ensuring the cov-
erage of the units selected for concatenation. This text is recorded, with a good quality 
voice in a noise free environment by taking care of the syllable rate. 

2.1   Corpus Collection and Processing  

Text Corpus is collected by crawling web, stories and few contents were manually 
prepared to ensure the coverage of all syllables.. Text normalization, number suffix 
pattern handling and sentence wise segmentation is done on the collected corpus.  
Handling of number suffix pattern is done after normalization. For example ‘10-നാണ്‘  
is replaced with പt്-നാണ് and then joined with the suffix to get പtിനാണ്.  42 
number suffix patterns were identified in the collected corpus.  

2.2   Letter to Sound Rules (LTS Rules)  

Even though Indian languages are phonetic in nature, there exist pronunciation excep-
tions. For a good quality speech synthesis the use of proper pronunciation is inevita-
ble and this must be considered while selecting text for the database.  

The conversion of sentences, to pronunciation is done using the letter to sound 
rules and dictionary look up for exceptions [3]. The exception list is prepared auto-
matically using the exception patterns. Scoring of sentences is done based on the 
syllable coverage. Syllable wise segmented sentences and scores are given as the 
input for optimal text selection.  
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In addition to the letter to sound rules mentioned in [3], pronunciation variation for 
/k/ gemination is also incorporated. Taking care of such variations in /k/ gemination in 
optimal text selection ensures the availability of proper and sufficient units for /k/ 
gemination in the speech database, and ensures the improvement in the quality of 
synthesized speech. 

2.3   Optimal Text Selection 

Selecting text to cover the entire syllables found in the corpus is not possible. Among 
the 13K syllables, 14% with frequency >=50, 42% with frequency 1, 11% with  
frequency 2, 6% with frequency 3 and 27% within the frequency range 4-50. Text 
selection is done to cover maximum high frequent syllables, lower units of the low 
frequency syllables and the low frequency syllables whose lower units are not available 
in the corpus. The optimal text selection tool fixes the threshold frequency for the low 
frequency syllable and checks for the presence of lower syllables and removes all low-
er syllables for which the next lower syllables are available. Fixing of threshold fre-
quency is done on a trail and error basis and also depends on the planned size of the 
optimal text. 2 to 3 iterations (changing the threshold value) are done on the collected 
0.3 million sentence corpus, to optimize the corpus to 7K sentence covering 9K syl-
lables. The advantage of this method is that it ensures the availability of all high fre-
quency units and low frequency units which cannot be replaced with lower syllable and 
phone combination. The syllable patterns found in corpus are CVC*, C*V, C*VC, VC, 
CVC, CV and the pattern C*VC* normally in foreign words.  

2.4   Speech Database 

The optimal text thus selected is recorded to build the speech corpus. The recording is 
done with a good quality voice, in a noise free environment at a low speaking rate (5-
8 syllables per second). Low syllable rate is enforced to attain clarity of each phone in 
the utterance. Audio specification of 16bit, 16 KHz mono, in PCM format is used. 

2.5   Multi Unit Label for Speech Database 

The highest unit selected for concatenation is syllable. The multiunit label is generated 
from the phone labels. Since labeling using festival is time consuming and the  
 

HMM based semi automatic   
labeling Tool 

(Phone list, dictionary, and text corpus)

Export to festival 
Format 

Multi unit label 
Generation 

Label data for syllables

Phone labels

Syllabification rules 
Phone list 
CV-VC list 

 

Fig. 2. Semi-automatic tool for multi unit labeling 
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accuracy depends on the silence duration, we used a HMM [4] based semiautomatic 
labeling for creating phone level label for the multiunit database.  

The multi-units modeled in this database are syllables, all CV-VC not in modeled 
syllable list and phones. Syllabification rules [2], list of CV-VC units not covered in 
syllables are given as the input for the multi unit label generator. 

3   Building Voice and Synthesis  

Festival [1] offers language independent modules for building synthetic voices. The 
basic steps for building voice are followed. Unit definitions, Letter to Sound rules and 
syllabification rules were added by modifying the in the required Festival files. The 
initial, final and medial syllables are clustered separately.   

During synthesis, the unit selection algorithm in Festival selects an appropriate  
decision tree and searches for a suitable realization of the unit which is close to its 
cluster center and optimizes the cost of joining two adjacent units. At the time of 
synthesis it uses the NLP module to handle the basic text normalization and UTF8 to 
phoneme conversion. 

The missing syllables are handled by incorporating the missing unit handler. Dur-
ing synthesis, the untrained syllable is replaced with a combination of trained lower 
syllable and consonant. MOS test gave a score of 3.2, for 50 synthesized sentences 
with 15 native speakers.  

4   Conclusions 

Current multi unit database showed a good coverage of syllables for the text input 
selected from online sources. Remarkable quality improvement in synthesized speech 
was achieved by incorporating additional rules and exception patterns, HMM labels 
and by implementing lower unit replacement, which replaces the missing syllables in 
the synthesis input.  In addition to these the HMM based labeling requires less than 
25% of the time taken for EHMM based labeling.   

Further improvement in quality of speech can be obtained by manually correcting 
the labels. We also plan to increase the syllable coverage, by covering the missing 
syllables with words. 
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Abstract. Statistical analysis of a language is a vital part of natural language 
processing. In this paper, the statistical analysis of printed Hindi text is per-
formed and then its comparison is done with the analysis already available with 
printed Punjabi text. Besides analysis of the characters frequency and word 
length analysis, a more useful unigram, bigram analysis is done.  Miscellaneous 
analysis like Percentage occurrence of various grouped characters and number 
of distinct words and their coverage in Hindi and Punjabi Corpus is studied. 
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1   Introduction 

Computational Analysis and Processing of Natural Languages are conducted in dif-
ferent parts of Europe and America. In all these languages, a tremendous progress has 
been made for different applications like Speech synthesis, Lexicography, Handwrit-
ten recognition, text summarization, translation between human languages, natural 
language database and query answering etc. A little research has been done for Indian 
languages to achieve the goals of these applications. A statistical analysis of lan-
guages is must and in this paper, corpus based statistical analysis of the Hindi lan-
guage (Devnagri) and its comparison with Punjabi language [5] is done. 

2   Statistical Analysis 

Statistical analysis of different languages is the foremost requirement to have a com-
prehensive database for all languages. In the present study, quantitative analysis of 
printed Hindi text has been carried out and then the comparative study with printed 
Punjabi text is done. The quantitative analysis allows us to discover which phenom-
ena are likely to be genuine reflections of the behavior of a language or variety, and 
which are merely chance occurrences. Frequency is the main consideration with 
which the normality and abnormality of a particular phenomena is checked. 

A Hindi corpus of size 15.26 MB developed by TDIL, DOE is taken for the  
research purpose is analyzed statistically to calculate the frequencies and commulative 
frequencies of different words with different length and characters (unigrams and  
bigrams).  
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3   Results and Discussions 

The Corpus contained about 2562577 words and 10501382 characters. A comparison 
of top 5 most frequently used words in Devnagri and Punjabi corpus[1] is shown in 
the following table.  

Table 1. Comparison of top 5 most frequently used words in Devnagri and Punjabi corpus 

 

S. No. Hindi Words Freq. Comm. Freq. Punjabi Words Freq. Comm. Freq. 

 1 3.877519 3.877519 2.51 2.51 

 2 3.242188 7.119707 2.24 4.75 

 3 2.972633 10.092340 1.85 6.60 

 4 2.534420 12.626760 1.82 8.42 

 5 1.810668 14.437428 1.74 10.16 
 

3.1   Word Length Analysis 

Word Length analysis is very useful in the area like information storage and retrieval. 
The graphs shown below is the comparison of word length frequency of Punjabi and 
Hindi Text and the cumulative frequency v/s words length of Hindi text. 
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Table 2. Contribution of top 15 words of different lengths in Hindi ad Punjabi Text 
 

Word Length Comm. Frequency of Top 15 
words of Hindi Text 

Comm. Frequency of Top 15 
words of Punjabi Text 

2 73.42 76.75 
3 50.27 40.98 
4 20.87 22.75 
5 10.72 15.19 

3.2   Unigram Analysis 

Finding the frequency of characters is useful in the areas of cryptography, keyboard 
design, character recognition etc. The table below gives the frequency and cumulative 
frequency of top 10 characters in Hindi. When compared, top 10 characters of Hindi 
Text cover 33.82% irrespective of 31.57% of Punjabi text. 
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Table 3. The frequency and cumulative frequency of different characters in Hindi 
 

Rank Character Freq. Comm. Rank Character Freq. Com
1  ◌ा 9.263247 9.26325 6 

 न 

4.244041 38.072
42 

 क 

7.073192 16.3364 7 
 त 

4.083662 42.156
13 

 र 

6.314587 22.6510 8  ि◌ 

3.978209 46.134
34 ◌ै 5.846335 28.4973 9 

 स 

3.956022 50.090
35  ◌े 5.331031 33.8283 

 

10  ◌ी 3.894782 53.985

3.2.1   Positional Unigram Analysis 
Positional occurrences of top 10 characters (characters that are most commonly used) 

is analyzed. The most commonly used characters are:  ◌ा क  र  ◌े  ◌्  न  त  ि◌  स  ◌ी     

Following graphs show top 4 characters according to their position in the word. ◌ा 
is most frequently used character and its most common position in the word is 2nd.  
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Graph showing positional frequency of ◌ा         Graph showing positional frequency of क 
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Graph showing positional frequency of र            Graph showing positional frequency of ◌ े

3.3   Bigram Analysis 

Bigram Analysis when compared with Punjabi corpus, top 50 bigrams of Punjabi text 
covers about 40.65% whereas top 50 bigrams cover 38% of total bigrams in respec-
tive languages. Top 10 bigrams of Devnagri Script are shown in the following table: 
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Table 4. Top 25 bigrams in Devnagri Script 

Rank Bigram Freq. Comm. Freq. Rank Bigram Freq. Comm. Freq. 
1 1.573613 1.573613 6 1.262139 8.50083 

2 1.52093 3.094543 7 1.175083 9.675913 

3 1.432667 4.52721 8 1.095725 10.77164 

4 1.430364 5.957574 9 1.091329 11.86297 

5 1.281117 7.238691 10 1.019507 12.88247  

3.4   Miscellaneous Analysis 

Some more results that are very useful in various applications like Linguistics, speech 
recognition and optical character recognition, are analyzed here. Various analysis are 
shown in the table below in terms of percentage of total number of characters. 

Table 5. Percentage occurrence of various grouped characters 

Character Set Character Symbol Percentage
O

Vowels 4.37 

Vowel Symbols 34.48 

Consonants 33.50 

Vowels 4.37 

Vowel Symbols 32.22 

Mukta 2.11 

Semi Vowel 13.49 

Sibilants 9.27 

Halant 5.33 

Nasals 3.42 
 

From the word frequency list coverage can be easily found out. Coverage means 
how many words covers the particular percentage of the corpus. First 10% of the cor-
pus in Punjabi is covered by 5 words and in Hindi only 3 characters cover the 10% of 
the whole corpus. 

4   Conclusion 

The comparative analysis shows that these two languages Hindi and Punjabi are 
closely related languages. In both the languages top 15 words occupy more than 20% 
of the whole corpus. Top 15 words of word length 2 occupy more than 70 % of the 
whole corpus in both the languages. Kanna is the most frequent character covering 
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more than 10% of whole text and its most common position in the word is second. 
Top 50 bigrams in both Punjabi and a Hindi language covers about 40% of whole 
corpus. Vowels in Hindi language cover more than half of the corpus whereas in Pun-
jabi the vowels cover only 42% of the whole corpus. In the nutshell, the Hindi and 
Punjabi languages are closely related languages with most of the similarities. 
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Abstract. In this paper, we discuss the participle type of English sentences in 
our English to Sanskrit machine translation (EST) system. Our EST system is 
an integrated model of a rule based machine translation (RBMT) with artificial 
neural network (ANN) model which translates an English sentence into equiva-
lent Sanskrit sentence. We use feed forward ANN for the selection of Sanskrit 
word like noun, verb, object, adjective etc from English to Sanskrit user data 
vector (UDV). Our system uses only morphological markings to identify vari-
ous part of speech (POS) as well as participle type of sentences.  

Keywords: Sanskrit, participles, machine translation, English to Sanskrit  
machine translation, ANN, participles in machine translation, RBMT. 

1   Introduction 

There have been many MT systems for English to other foreign languages as well as 
to Indian languages but none for English to Sanskrit MT. Some works on Sanskrit 
parser and morphological analyzers have done earlier which are as follows. Ramanu-
jan, P. (1992) has developed a Sanskrit parser ‘DESIKA’, which is Paninian grammar 
based analysis program. Huet (2003) has developed a grammatical analyzer system, 
which tags NPs (Noun Phrases) by analyzing sandhi, samasa and sup affixation. Jha 
et.al (2006) has developed karaka Analyzer, verb analyzer, NP gender agreement, 
POS tagging of Sanskrit, online Multilingual amarakosa, online Mahabharata index-
ing and a model of Sanskrit Analysis System.  

We have developed a prototype model of English to Sanskrit machine translation 
(EST) system using ANN model and rule based approach. ANN model gives match-
ing of equivalent Sanskrit word of English word which handles noun and verb. The 
rule based model generates verb form and noun form for Sanskrit and produce San-
skrit translation of the given input English sentence.  

We have divided our work into the following sections. Section 2 presents partici-
ples in English and Sanskrit that describe the rules for forming words of participles in 
Sanskrit which are based on Panini grammar. Section 3 describes the system model of 
our EST system. Section 4 presents implementation and the result of the translation in 
GUI form. The conclusions and scope for future work are mentioned in section 5. 
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2   Participles in English and Sanskrit  

In English, the participles are formed from verbs and acts as an adjectives or verbs in 
a sentence. There are three types of participles in English such as present participles, 
past participles and future participle. In English, present participles are usually formed 
by adding “-ing” to a verb. For example, “glowing” and “being” are present partici-
ples. Past participles are usually formed by adding “-ed” or “-en” to a verb. For ex-
ample, “satisfied” and “spoken” are past participles. In Sanskrit, there are many types 
of participles (called kradanta by Panini) such as present active, present middle, pre-
sent passive, future active, future middle, future passive (gerundive), past active, past 
passive, perfect active, perfect middle, gerund and infinitive. In Sanskrit, the partici-
ples take krt endings viz. primary nominal endings (Egenes, 2000). In Panini gram-
mar, the rule for past passive particle (PPP) is as follows. 

Rule: Kridtind |3|1|93|| (Nautiyal, 1997) 

In ta (or ita or na), the suffix used for forming the past passive particle from simple 
verb is ta. As an illustration, consider the following example of English sentence (ES) 
and their corresponding translation in Sanskrit sentence (SS) that is obtained from our 
EST system.  

ES: Ram went to the forest. 
SS: Raamah vanam gatah. 

3   System Model of Our EST System 

We have developed English to Sanskrit MT (EST) model that comprised the combi-
nation of two approaches: rule based model and the dictionary matching by ANN 
model (Mishra, Vimal and Mishra, R. B., 2010a; 2010b). In this paper, we show the 
handing of participles in our EST model. In our system, the sentence tokenizer  
module split the English sentences into tokens (words). The outputs of the sentence 
tokenizer module are given to POS Tagger module. In POS Tagger module, the part–
of-speech (POS) tagging is done on each word in the input English sentence. The 
output of POS tagger module is given to rule base engine. The GNP detection module 
detects the gender, number and person of the noun in English sentence. The tense, 
structure, form and type of English sentence is determined by using rules in the tense 
and sentence detection module. The noun and object detection module gives noun for 
Sanskrit of the equivalent English noun using ANN method. The adaptation rules are 
used to generate the word form. The root dhaatu detection module gives verb for 
Sanskrit of the equivalent English verb using ANN method. We apply adaptation 
rules to generate the required dhaatu form. The San_Tr_Rule Detection module gives 
the number of modules that is used in the Sanskrit translation. In this, we make input 
data and corresponding output data. The input data has structure, form and type of 
English sentence in the decimal coded form. We have stored fifty adverbs for Sanskrit 
of the equivalent English adverb in a database file.  

In the ANN based model, we use feed forward ANN for the selection of equivalent 
Sanskrit word such as noun (subject or object) and verb of English sentence. In feed 
forward ANN, the information moves in only one direction: forward; from the input 
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nodes, through the hidden nodes (if any) and to the output nodes. The use of feed 
forward ANN overcomes the output vector limitation (Thrun, S.B., 1991). Our moti-
vation behind use of feed forward ANN in language processing tasks are work of  
Nemec, Peter (2003) and Khalilov, Maxim et al. (2008). We basically perform three 
steps in ANN based system such as encoding User Data Vector (UDV), input-output 
generation of UDV and decoding of UDV. The name of our data sets have called 
UDV here, which is used in feed forward ANN for the selection of equivalent San-
skrit word such as noun (subject or object) and verb of English sentence. English 
alphabet consists of twenty-six characters which can be represented by five bit binary 
(25 =32, it ranges from 00000 to 11111). First, we write alphabet (a-z) into five bit 
binary in which alphabet “a” as 00001, to avoid the problem of divide by zero and 
alphabet “z” as 11010. For the training into ANN system, we make the alphabet to 
decimal coded form which is obtained by dividing each to thirty-two. In the Encoding 
of UDV, we provide the data values to the noun (subject or object) and verb. In input-
output generation of UDV, we prepare UDV of noun (subject or object) and verb. 
After preparing the UDV, we train the UDV through feed forward ANN and then test 
the UDV. We get the output of Sanskrit word in the UDV form. The output given by 
ANN model is in decimal coded form. From the verb table, each values of a data set is 
compared with the values of English alphabet, one by one and the values with mini-
mum difference is taken with its corresponding alphabet from English alphabet. We 
have generated verb form and word form using rules. 

4   Implementation and Results 

Our EST system has been implemented on windows platform using Java. The ANN 
model is implemented using MATLAB 7.1 neural Networks tool. We use feed for-
ward ANN that gives matching of equivalent Sanskrit word of English word which 
handles noun and verb. We have a data set of 250 input-output pair for verb. The 
input, hidden and output values for verb is taken 5, 38 and 6. For the noun, we have 
250 input-output pair in which the input, hidden and output values are taken 5, 15 and 
7.  The result from our EST system for participle type of English sentence is shown in 
figure 1.  

 

Fig. 1. Participle Type of English Sentence with their Sanskrit translation 
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First, English sentence is split up into tokens and tokens are matched with Sanskrit 
word using ANN. We check the gender, number and person (GNP) of the noun,  
adjective and preposition. According to suffixes of the words, we generate corre-
sponding word form. Then, verb form is generated that depends upon the number and 
person of the noun. We arrange subject, adverb adjective, preposition and verb, in 
order to obtain the desired translation into Sanskrit language.  

5   Conclusions and Future Scope 

Our paper describes the handling of participles in English to Sanskrit MT that uses 
rule based model and the dictionary matching of equivalent Sanskrit word of English 
word which handles noun and verb by ANN model. The rule based model enhances 
the adaptation process. For the further scope of research in this direction, this inte-
grated model would be utilized to other pair of languages for MT approach and the 
integration of RBMT and ANN may be utilized for EBMT.  
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Abstract. Text in Hindi on the web has come of age since the advent of Unicode 
standards in Indic languages. The Hindi content has been growing by leaps and 
bounds and is now easily accessible on the web at large. For linguists and Natu-
ral Language Processing practitioners this could serve as a great corpus to con-
duct studies. This paper describes how good a manually collected corpus from 
the web could be. I start with my observations on finding the Hindi text and cre-
ating a representative corpus out of it. I compare this corpus with another stan-
dard corpus crafted manually and draw conclusions as to what needs to be done 
with such a web corpus to make it more useful for studies in linguistics. 

Keywords: Web Corpus, Hindi Corpora, Hindi corpora for linguistic analysis. 

1   Introduction 

Since the advent of Unicode in Hindi and its use by the common people, the online 
content in Hindi has increased many folds. There was time when creating a corpus of 
Hindi text was an uphill task in itself. Thanks to the web, collecting text in Hindi is 
now easier and a sizeable text corpus of Hindi can be built in a matter of days 
[1][3][7]. However, this corpus then needs to be worked upon to be cleaned of inher-
ent noise coming in from a public source such as the internet. The present paper is 
based on the author’s personal experience of dealing with creating such a corpus and 
cleaning it for the purpose of extracting a lexicon and context information out of it 
and then comparing it with another corpus, created manually and offline from authen-
tic sources such as books and magazines, to find out how good a web corpus can be in 
linguistic studies of languages like Hindi which still comparatively has scarce pres-
ence on the web. 

Besides the Hindi newspapers and portals, a great lot of content is also generated 
through blog posts and comments made by the users. This content is most of the time full 
of noises. This noise reflects in different forms and at different levels. For any use of such 
a corpus for linguistic analysis, it has to be representative. Considering the different crite-
rion as discussed in [4][5], an evaluation of such a web corpus is yet to be done. 

2   Encoding of Hindi Content 

Hindi on the web is encoded in several ways. Before the advent of Unicode in Hindi, 
it was the era of legacy fonts and image files. There are hundreds of such fonts  
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available for the Devanagari script used in Hindi and several other Indo-Aryan lan-
guages. All the early contents published in Hindi or other Indian languages were cre-
ated using these fonts. Most of this content has vanished from the web by now and the 
Unicode version has now taken over for good. 

Even though Unicode is there, the problem of encoding remains at the user’s end. 
Many people who would prefer to write in their own language and script do not know 
how to do that because the keyboard is Roman by default. Even when the Indian key-
boards1 have been introduced, it is mostly limited to some professionals. Translitera-
tion mechanisms such as iTrans2 standards are rarely followed and remain out of the 
knowledge of common users. In such a scenario, the default keyboard for common 
users remain English and if a user must need to write things on a digital platform, 
such as personal computers (PCs) or mobile sets, s/he has the default option of writing 
in Roman only. 

2.1   “Hinglish” 

For long since the advent of electronic communication for the common people, Hindi 
and other non-English languages were encoded in Roman itself. So much so that 
Hindi encoded in Roman and not Devanagari, the official script of the language, has 
earned a character of its own and has contributed much to what is now being termed 
as “Hinglish” [2]. 

The web has a lot of Hindi content written in Roman. This material has come natu-
rally from individual users and reflects more spontaneous data in Hindi. It could be of 
much use for linguistic research in the coming days and warrants attention of both the 
linguists and other disciplinarians. 

This paper however focuses more on the officially recognized Hindi, i.e. Hindi en-
coded in Devanagari. The observations made in other sections are for this Hindi. 
However, if someone wants these ‘Hinglish’ texts to be included into such a Hindi 
corpus, these would need to get back-transliterated into Devanagari encoded Hindi 
which is a separate task in itself. Over the years, Hinglish has attained some charac-
teristics of its own, very distinct from Hindi, and many people have already started 
calling it a language in the making3 and there are corporate initiatives4 that have been 

                                                           
1 A case of InSCRIPT Hindi layout can be pointed out here. This is the standard recommended 

by the DoE, GOI. However, it requires that one learns typing in Hindi in this particular way 
which is not a small for users who most of the time shifts to the comparatively easier way of 
transliteration instead. 

2 ITRANS (version 5.31) http://www.aczoom.com/itrans/ 
3 Use of snippets of Hindi sentences has been quite old for writers in Indian English. Examples 

include the likes of Rushdie, Shobha De etc and a now a whole book (Mahal, 2006). How-
ever, now the reverse turn has started becoming trendy. Mainstream news papers like the Nav 
Bharat Times (Delhi edition) regularly use English words, that too in Roman, in the midst of 
news stories and headlines. 

4 There are companies who have been offering handsets with a dictionary of ‘Hinglish’ to cre-
ate messages over the mobile quickly. This comes as a surprise as Hindi with its Devanagari 
script is lagging behind while Hinglish (with the grammatical skeleton of Hindi and heavy 
lexical borrowings from English along with snippets of English phrases and sentences) is be-
ing promoted by the likes of mobile companies such as Motorola (viz. its model Motovuya 
W180) to attract the young users. 
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promoting it. So, including Hinglish in a corpus of Hindi can be a separate subject of 
study. 

2.2   Transliterated Texts 

Because the users cannot type Hindi or other Indian languages using the English key-
board, the demand for transliteration has been huge. This demand has been met by 
several online and offline tools. Offline input method editors like Baraha5, Micro-
soft’s Indic IME6, Google’s Transliteration IME7 for Hindi etc. have provided the 
much needed support for encoding Hindi on PCs. However, few such methods are 
available on mobile phones and these platforms either miss such a tool or have a tool 
that is rarely used by the users. 

Online transliteration mechanisms have also been contributing its bit on the Hindi 
content creation over the web. Tools such as Google’s Transliterate8 and Quillpad9 
have been in popular use. These tools are made to provide an easy interface to the 
users to write in their own language and script. However, it is not always easy to 
manipulate these tools and users are left with little creativity of their own. For exam-
ple, if one uses the Google’s transliterate system and types words that are not in its 
dictionary (from where it suggests the words as it is not an encoding system), there 
will be no way to input those words and the user often resorts to tricks to get the de-

sired character (e.g. writing a colon ‘:’ instead of visarga ‘◌ः’). This results in un-
avoidable wrong encodings on the user’s part and wrong rendering on the part of the 
tool being used. Here, consistency of text encoding becomes a concern. 

2.3   Machine-Translated Text 

With the advent of free machine translation (MT) tools such as Google Translate, a 
new trend on the web started. There are websites offering content in several languages 
most of which come translated through MT tools. 

This kind of content though can bring preliminary understanding of a foreign page, 
it is barely worth going into a corpus of any kind (except for the test of the translation 
tool). As is evident, the machine translation in and out of Indian languages has to go a 
long way. The mechanically translated text is often misleading and if this gets in-
cluded into a corpus, it will only cause depreciation in quality in the corpus. 

3   Collection Method 

Depending on the requirement of the corpus under creation, Hindi text can be col-
lected from the web by some automatic tools or manually. Manual collection of Hindi 
text over the web is extremely labor intensive and time consuming. However, manual 
collection is of great value for a language like Hindi if one wants a quality corpus 
with the required specification such as meeting a particular domain representation. 
                                                           
5 Baraha – Free Indian Language Software. http://www.baraha.com 
6 Microsoft Indic Language Input Tool: Hindi. http://specials.msn.co.in/ilit/Hindi.aspx 
7 Google Transliteration Input Method.  http://www.google.com/ime/transliteration/index.html 
8 Google Transliteration. www.google.com/transliterate 
9 Quillpad Editor – www.quillpad.in 
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For the purposes of this paper, the author collected a corpus manually for the obvi-
ous reasons of avoiding any unwanted chunk of text coming from the web. Manual 
collection also ensured that only those documents from the web were taken that can be 
said to be representative Hindi (and not snippets inserted in between). Manual collec-
tion also ensured that the text selected from the web represented standard Hindi and 
did not deviate much from what is recommended in encoding it (i.e. had less spelling 
errors and largely followed the standards by the Central Hindi Directorate [8]). 

4   Text Variety 

The variety of Hindi text on the web is yet to diversify. The most available variety of 
Hindi on the web is in the form of news reports, thanks to the online edition of the 
several news portals. The second most type of available content on the web in Hindi 
is in the form of blog posts, forums and comments on the blog posts or on articles 
related to news. All the other domains of text on the web are very scarce on the web. 
For example, if one looks for text in the health domain, there are only a few portals 
that caters to this in Hindi and that also is too few and limited. Similar is the case with 
the texts in the domains of laws and legalities, business and almost all of the academic 
disciplines. One can say this scarceness is in fact a reflection of the poverty of such 
literature in the language itself. But to a greater extent that would not hold true be-
cause those types of text are available off the web.  

5   Text Quality 

The quality in terms of lesser noise (spelling errors, foreign words/characters etc) of 
the text collected online depends on the source from where the text has been taken. As 
a rule, the text quality over the web is going to be of lower quality than that of those 
that are taken from other authentic sources like that of publishers’ copies or e-books. 
The quality then goes down as one moves to collect text from the blogs and comments 
sections of the web pages because these are mostly unedited texts and might have 
problems like spelling errors etc. 

An Experiment to Test the Quality of the Text on the Web 

The author had manually collected text from the web and created a representative 
corpus to extract a basic lexicon of Hindi. The corpus had the following domain 
breakup to reflect the representation of different types of text. Table 1 summarizes the 
domain representation of this online corpus. 

This corpus had an overall size of 4.2 megabytes and the total number of words it 
had was 415372. Total unique number of words in this corpus was 37088, including 
numbers, both in Arabic and Nagari notation and foreign words which included Eng-
lish words written in Roman and a few words of other languages in their own script. 
After removing these ‘noise’ words and a few notation issues e.g. wrong placement of 
nuktas, done easily through a simple sort method, we embarked upon selecting the  
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valid words out of it. Over a period of three months of editing and proof reading, we 
came up with a total number of valid words at 24154 without numerical words and 
26222 with numerical words. This could have been done if there were a spell checker 
available that could validate these words. But, unfortunately, we could not find any 
such tool for Hindi that can be counted. 

Table 1. Domain-wise break-up of the online corpus 

Domain Size (in KBs) Domain Size (in KBs) 
Legal 216 Science & Technology 419 
Trade & Business 229 Culture, Art & History 430 
Music & Film 300 Geography 517 
Sports 323 Literature 594 
Politics & Economics 406 Others: fashion, food, hobby etc. 870 

We compared this with another corpus that was created manually by selecting text 
from various sources barring the internet. This was a corpus created by the Hindi team 
of Indian Languages Corpora Initiative (ILCI) [6] team. Out of the two domains of 
health and tourism covered comprehensively, I have taken the domain of health to 
compare with corpus created through content from the web. This ILCI corpus created 
manually for the purpose of parallel corpora in 12 Indian languages is supposed to 
have 0% noise because all the text taken in this corpus is from authenticated source 
and is further validated by the language editors and linguists. 

Table 2. A comparison of the corpus collected from the web and a manual corpus 

 Example % of Total 
Words 

% of Unique 
Words 

 C1 C 2 C1 C2 C1 C2 
Total Number of Words 415372 419420 - - - - 
Total Number of Unique Words 37088 21466 8.92 5.11 - - 
Valid Words (Without numerals) 24154 20576 5.81 4.90 65.12 95.85 
Valid Words (With Numerals) 26222 20968 6.31 4.99 70.70 97.68 
Valid Numerals 2068 392 0.49 0.09 5.57 1.82 
Words in English (Roman)10 1380 496 0.33 0.11 3.72 2.31 

As shown in Table 2 above, we find that unique number of words extracted  
from the web corpus (C1) is much greater in number than that of the manual corpus 
which is our standard here (C2). However, this unfortunately, does not mean that the 
corpus is rich in terms of diversity. In fact it only increases the job by warranting the 
validation of each of the words if one is supposed to extract a word list out of it.  
If one is to put this web corpus to some other use like that of doing some sort of  
                                                           
10 The English words are not verified whether they are correct or not. It includes any words that 

constitutes of Roman character. The English words in the Health domain data of the ILCI are 
basically words that come in the original text and it is a common practice to include the Eng-
lish words in brackets after their Hindi equivalents. Inclusion of English words (in Roman 
script) seems to be inevitable even in a high standard supervised corpus like that of ILCI. 
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linguistic analysis or making it as a source for parallel corpora creation, such a kind of 
corpus will undergo heavy editing as the error rate with regard to words is about 26% 
which is pretty high for an ideal corpus. 

6   Conclusions 

In this paper I have tried to show that though Hindi now has a fair presence on the 
web, the content taken inadvertently from the web needs heavy editing before the 
language in such a corpus can be said to be representative. 

Acknowledgments. Thanks a lot to the ILCI Hindi Team at JNU who prepared the 
comprehensive Hindi corpora in two domains and to Dr. Girish Nath Jha for allowing 
me to use the corpora even before it has been formally released. 
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Abstract. In this paper, we proposed a new approach for Hindi character rec-
ognition using digital curvelet transform. Curvelet transform well approximate 
the curved singularities of images therefore very useful for feature extraction to 
character images. A Devanagari script contains more than 49 characters (13 
vowels and 33 consonants) and all the characters are rich in curve information. 
The input image is segmented first then curvelet features are obtained by calcu-
lating statistics of thick and thin images by applying curvelet transform. The 
system is trained with K-Nearest Neighbor classifier. The experiments are 
evaluated with in-house dataset containing 200 images of character set (each 
image contains all Hindi characters). The results obtained are very promising 
with more than 90% recognition accuracy.  

Keywords: Hindi Character Recognition, Curvelet Transforms, K-Nearest 
Neighbor (K-NN). 

1   Introduction 

Natural language is the prime mode of communication for Human beings. Current 
technologies have more emphasis on the better human-computer interaction. It is 
convenient for human being to work with their native language. India is multi-lingual 
country comprises many languages like Hindi, Bengali, Gujarati, Malayalam, Tamil, 
Telugu, Urdu and so on. Hindi character recognition has been draw attention to the 
researchers in last few decades due to its various application potentials. There are 
twenty two languages in India and eleven scripts are used to write these languages. 
Hindi is the most popular language in India. This paper proposed a novel approach for 
hand-written Hindi character recognition using curvelet transform. Nowadays 
Curvelet transform is used due to its multiple scale analysis property in various pat-
tern recognition problems i.e. Face recognition, finger print recognition, signature 
recognition etc. The K-NN is a method for classifying objects based on closest train-
ing examples in the feature space, has been used here to classify Hindi characters. 

Various character recognition approaches has been employed in recent years such 
as Neural Network [1], Hidden Markov Model and Fuzzy Model Based Recognition 
of Handwritten Hindi Characters [2]. S.Abirami and Dr. D.Manjula [3] proposed two 
categories namely global and local approach for script identification. 
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2   Devanagari Script Characteristics 

Many Indian languages such as Hindi, Nepali, Sanskrit and Marathi are based on 
Devanagari script. Devanagari script contains 13 vowels and 33 consonants make it 
different from other scripts. The complexity of Devanagari scipt is due to many iso-
lated dots which are vowel modifiers such as “anushwar”, “visharga” and “chandra 
bindu”. Devanagari script has following characteristics. 

• A very scientific script. Read and written from left to right 
• Developed in medieval India from ancient brahmi script. 
• One symbol having one sound (syllable) and vise-versa. Only slight and mi-

nor exceptions 

3   Proposed Approach 

We implement the system using curvelet features obtained form curvelet coefficients 
of character images. The character recognition process comprises the following steps. 
Step1: Pre-processing of the character image. This step includes normalization, noise 
removal and gray scale conversion. 

Step2: the hand written character image is segmented into single character by seg-
mentation process. Step3: the thinning and thickening of the characters is done in this  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. Proposed system block diagram 
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step. Step4: digital curvelet transform is applied over thick and thin image in order to 
obtain curvelet coefficients. Step5: fusion of the curvelet coefficients and feature 
extraction by applying general statistics. Step6: train the features using KNN classi-
fier. Step7: obtain result based on similarity matching between features of input char-
acter image and set of reference image. The block diagram of the proposed system is 
illustrated in figure1. 

3.1   The Curvelet Transform 

Curvelet transform is extension of the wavelet concept. The discrete curvelet trans-
form can be applied using two algorithms namely Unequispaced FFT transform and 
Wrapping transform. In unequispaced Fast Fourier transform, the curvelet coefficients 
are formed by irregularly sampling the Fourier coefficients of the image. In wrapping 
algorithm, curvelet coefficients are formed by using a series of translations and a 
wraparound technique. The performance of wrapping based algorithm is fast in com-
putation and more robust as compare to USFFT however both algorithms give the 
same output [4]. Figure 2 shows curvelets in frequency as well as spatial domain. The 
shaded area is one of the wedges, formed by dividing the frequency plane into differ-
ent partitions and the spatial plane is divided in respect to θ (angular division). The 
angular division divides each subband image into different angles. 

 

 
 

Fig. 2. Curvelets in frequency domain (left) and spatial domain (Right) 

3.2   Feature Extraction Algorithm 

Algorithm for finding the curvelet features are as follows: 

STEP1: Take the Fourier transform of the character image 
STEP2: Divide the frequency plain into polar wedges  
STEP3: Find the curvelet coefficients at a particular 
scale (j) and angle (θ) by taking the inverse FFT of each 
wedge at scale j and oriented at angle θ. 
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Here DC is digital curvelet transform. j is scale, l is 

orientation and( 21 , kk )are location parameters.  
STEP4: apply the common statistics at each subband to  
obtain the curvelet features. 
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4   Experimental Results and Discussion 

We have generated In-House Hindi character database for experiments. The Hindi 
characters were written by hundred individual authors twice in their own hand writ-
ing. The written characters are scanned and saved in jpeg format then segmented to 
extract single character from scanned image. We applied fast discrete curvelet trans-
form on each images to extract the curvelet coefficients. 4th and 6th level decomposi-
tion performed using Curvelab-2.1.2 [5]. All the experiments were performed on 
MATLAB 7.6.0 (R2008a). 

Given an image, both the image and the curvelet are transformed into Fourier do-
main, and then the convolution of the curvelet with the image in spatial domain be-
comes the product in FD. Finally the curvelet coefficients are obtained by applying 
inverse Fourier transform on the spectral product. Once the curvelet coefficients have 
been obtained, the mean and standard deviation are computed to obtain curvelet fea-
tures. The similarity matching among query feature and set of reference features are 
done using Euclidean distance through K-NN classifier. The classification accuracy is 
shown in table 1. Our results are better than other shape based technique [6] for 
handwritten character recognition. 

Table 1. Classification accuracy 

No. of characters 10 20 30 40 
6 level curvelet 84 84 88 90.2 Recognition 

Accuracy (%) 4 level curvelet 84 81 82.6 86.5 

5   Conclusion and Future Work 

A Curvelet transform based Hindi character recognition approach is proposed in this 
paper. The discrete curvelet transform is used to extract the curvelet coefficients for 
feature extraction. KNN classifier has been used for pattern classification in this 
study. The experiments result shows more than 90% accuracy. 
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Abstract. In this paper the authors present ongoing research on Sanskrit Text-
to-Speech (TTS) system called ‘Samvachak’ at Special Centre for Sanskrit 
Studies, JNU. No TTS for Sanskrit has been developed so far. After reviewing 
the related research work, the paper focuses on the development of different 
modules of TTS System and possible challenges. The research for the TTS can 
be divided into two categories – TTS independent linguistic study, TTS related 
Research and Development (R&D). The TTS development is based on the Fes-
tival Speech Synthesis Engine. 

Keywords: TTS, Speech Synthesis, Festival, normalization, word recognition, 
sentence recognition, phonotactics, POS, annotation, speech database. 

1   Introduction 

Sanskrit’s heritage status requires that we develop digital libraries which can be ‘read’ 
by the machine. So far, no speech synthesizer system has been developed for Sanskrit. 
Among the obvious user groups for a Sanskrit TTS, we can count the visually chal-
lenged, children and elderly and spiritual with difficulty in reading. One can convert 
books into sound files to be accessed through music devices. It can be used for e-
learning of pronunciations. Besides, any research for TTS – phonotactics, annotated 
speech database etc., can be put to use in further research in Sanskrit. 

2   TTS for Other Indian Languages 

A Text-to-Speech system for Hindi was developed at HP Labs India. It was developed 
on the Festival framework under Local Language Speech Technology Initiative pro-
ject. [1][12] C-DAC Kolkata is developing two synthesis systems – Bangla Vani for 
Bengali and Nepali Boli for Nepali language. For the Nepali Boli, they are using  
ESNOLA based indigenous technology. [4] IIIT-Hyderabad and Sanskrit Academy, 
Osmania University are developing a prototype Sanskrit TTS using Festvox. 

Dhvani, an ambitious umbrella project for Indian languages TTS started from IISc 
Bangalore. [6] It currently supports 10 Indian languages (Bengali, Gujarati, Hindi, 
Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil and Telugu) and Pushto. [7] 
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Government of India has sponsored a consortia project on Text to Speech for In-
dian Languages (TTS-IL) with IIT Chennai as the leader. The languages covered in 
this project are – Hindi, Bengali, Marathi, Tamil, Telugu and Malayalam. [8] 

3   Requirements for the Sanskrit TTS 

The proposed Sanskrit TTS will be developed in the Festival environment. [2][3] It is 
a free multilingual speech synthesis workbench, developed by the University of Edin-
burgh and CMU that runs on multiple-platforms. It offers a TTS system as well as an 
open architecture for research in speech synthesis. Though other engines for TTS are 
available but none of them provides a research framework like Festival. 

Developing a TTS for a new language requires language specific modules. There 
has been fewer research activity directly oriented to Sanskrit speech technology. This 
research in fact depends upon various researches, some of which are richly worked 
and some very less. These can be classified into two categories- 

 
a) Linguistic research which requires text pre-processing, normalization, phono-

tactics, word/sentence recognition, study of prosody patterns, morphology 
analysis, and light processing - POS tagging and sandhi analysis. 

b) TTS specific R&D which will require the following – (i) phone listing and 
Grapheme-to-Phoneme (G2P) rules (phonology and phonotactics); (ii) pro-
sodic phrase recognition; (iii) text preparation for recording; (iv) recording the 
sound and to annotate the sound database.  

3.1   Text Processing, Normalization and Word/Sentence Recognition 

Text processing includes the task of recognizing the readable text - cleaning of non-
linguistic information, language recognition/script recognition. The input for the pro-
posed TTS will be UTF-8 encoded. For wide usability of the system a script converter 
to Devanagari Unicode will also be required. Text normalization is to convert all non-
words like numbers, dates, acronyms, quotes, abbreviations etc. into word form. In 
the case of number in Sanskrit, for example, 2116 can be pronounced in two ways - 
‘ o aśottaraikaśatottaradvisahasram’ and ‘dvisahasraikaśata o aśa’. 

Word recognition, a basic requirement for the TTS, cannot rely upon space as the 
tokenizer in Sanskrit. Words are conjugated with sandhi, and in many places, where 
there is no sandhi, the words are written continuously, like – ahamapi, tatkimiva. 
Even for reading conjugated words in sandhi condition, word recognition is must for 
putting appropriate pauses or utterance boundary. In human practice, the sound is 
lowered down on meaningful boundaries, for example, ‘rūparasagandhasparśa.....’ 
the listing of 24 gu as of Nyāya philosophy. [6] This will obviously need sandhi and 
morph analyses. Prosodic phrase recognition also depends on this word recognition. 

Sentence demarcation is also important for a TTS. Sandhi and morph and kāraka 
analysis have an additional role in sentence recognition if it cannot be recognized with 
the punctuations as word order is not a dependable phenomenon. Many of these tasks 
are certainly not new challenges as they have been done by various other applications 
done for Sanskrit. [9][10][11] 
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3.2   Phonotactics and Prosody 

For TTS, a list of phones and phonotactic combinations – all possible or permissible 
phoneme sequences – is required. Generally, in Sanskrit, no two vowels occur con-
tinuously in a word but there are exceptions, for example, cases of prakṛtibhāva (P. 
6.1.115-128) and other sandhi, as, sa eva, amū atra. This also includes syllable struc-
ture. Sanskrit permits a maximum of five consonants in a cluster, as in kārtsnyena, 
where the first two consonants are the coda of the first syllable and remaining three 
are the onset of the second. 

There are very few people in India who have Sanskrit as mother tongue. Sanskrit is 
not a naturally spoken language in major society. Therefore finding a Sanskrit speaker 
who is authentic for the prosody of speech is difficult. Sanskrit śāstras discuss a lot 
about the prosody of poetry but not much on the prosody of prose utterance. 

Vedic Sanskrit has the tradition of supra-segmental features of vowels (vowels cor-
respond to syllables), high, low and circumflex. These are different from the stress 
and tone. In the course of time, these supra-segmental features lost their phonemic 
status and their use in the language became less prevalent. In the grammar of laukika 
Sanskrit, these are defined with a very short description (P 1.2.29-31). A thorough 
investigation in the prosodic models of Sanskrit would involve study of prātiśākhya 
tradition, fieldwork, and observation from speech of Sanskrit speakers. 

3.3   Grapheme-to-Phoneme (G2P) Rules 

The script of Sanskrit corresponds to its pronunciation more than other languages, but 
its character sequence is not parallel to the phoneme sequence. Prototype Sanskrit 
TTS at IIIT Hyderabad uses G2P rules developed for Hindi TTS. That is not useful 
for Sanskrit TTS as pronunciation habit and syllable structure of Sanskrit are different 
from Hindi.  Phoneme splitter used in sandhi analysis at JNU (of which an example is 
given below) will be useful only after some modification. After that ASCII characters 
need to be assigned to each of the phonemes because the proposed platform – Festival 
– accepts only ASCII characters. The example of phoneme splitter is following. 

Input: युिधि�र�तु 	वरयित  

Output: य् उ ध् इ ष् ठ् इ र् अ स् त् उ   त् व् अ र् अ य् अ त ्इ     

3.4   Text Preparation, Sound Recording and Annotation 

The speech database should have coverage of all linguistic entities at all levels – all 
the phones, all phonotactic combinations, all tonal and intonation patterns, all kinds of 
sentences, etc. So, before recording the sound, a text has to be prepared which covers 
all of these. Imaginary nonsense words and sentences are not good for this purpose. It 
is ideal if the database contains 2-5 tokens of each sound combination, phrase and 
sentence model. Most of this text will consist of Pa–catantra and include some text of 
Kādambarī and Daśakumāracaritam to cover the rare phoneme sequences. This pre-
pared text will be useful for developing a different TTS for Sanskrit. 

For recording, first task is to find a speaker who speaks Sanskrit naturally and also 
his/her voice is fit for TTS. For naturality and consistency in sound, the person to 
record voice should be trained and all recording should be done in studio environment 
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with similar speaker conditions. Sanskrit being a less spoken language, a natural and 
professional speaker is relatively difficult to find.  

The entire database has to be annotated on three levels- phonetic, word, and pros-
ody. Utmost care has to be taken while annotating speech on phonetic level. The 
phone boundaries should be exact or almost exact, because if it gets the colour of the 
neighbouring sounds, then on adding other sounds, it may sound corrupted.  

4   Conclusion 

The authors of the paper are developing a Sanskrit TTS in Festival environment. De-
veloping a TTS in itself is a challenging task. We have pointed out some Sanskrit 
specific challenges for the TTS. Most important of them are –finding a natural and 
professional speaker, modelling prosody and linguistic analysis for word and sentence 
recognition. Also some basic research for the language like study of accents in lin-
guistic environment, intonation study, and phonotactic study is not easily available. 
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Abstract. Generally, gradient based learning algorithms have showed reasona-
ble performance in the training of multi layer feed forward neural networks; but 
they are still relatively slow in learning.  In this context, a hybrid learning  
algorithm is used by combining differential evolution (DE) algorithm and 
Moore-Penrose (MP) generalized inverse to classify handwritten Malayalam 
characters.  DE is used to select the input weights and biases in a single layer 
feed forward neural network (SLFN), and the output weights are analytically 
determined with MP inverse.  A new set of features known as division point 
distance from centroid (DPDC) is used to generate patterns for the classifier.  
The system could provide overall recognition accuracy 83.98% by spending  
only 184 seconds for training. 

Keywords: Differential evolution, MP generalized inverse, Division point  
feature, Neural network. 

1   Introduction 

This research work on hybrid learning is a combination of differential evolution (DE) 
algorithm and Moore-Penrose (MP) generalized inverse.  DE is one of the most po-
werful stochastic real parameter optimization algorithms in current use.  It operates 
through similar computational steps as employed by a standard evolutionary algo-
rithm (EA).  However, unlike traditional EAs, DE employs difference of the parame-
ter vectors to explore the objective function landscape.  It is applicable to multi  
objective, constrained, large scale, and unconstrained optimization problems.  On non 
separable objective functions, the gross performance of DE in terms of accuracy, con-
vergence speed, and robustness make it attractive for various applications where find-
ing an appropriate solution in reasonable amount of computational time is much 
weighted.  The space complexity of DE is low when compared to some other  
real parameter optimizers like covariance matrix adaptation evolution strategies 
(CMA-ES).  Compared to other EAs, DE is simple and straight forward to implement.  
The number of control parameters in DE is also very few (CR, F, and NP only) [3]. 

This paper deals with recognition of handwritten Malayalam characters using a hybr-
id learning algorithm.  In the literature, a variety of network architectures have been 
tried for hybrid handwriting recognition, including multilayer perceptrons, time delay 
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neural networks, and recurrent neural networks.  A more successful of these approaches 
has been to combine neural networks with hidden markov models [1].  Hybrid learning 
approach involving MP inverse method tends to obtain good generalization performance 
with dramatically increased learning speed.  This classifier uses a feature vector known 
as division point distance from centroid (DPDC), which is generated by dividing the 
character image into sub images so that each sub image contains approximately same 
amount of foreground pixels.  Section 2 describes this feature extraction method.  The 
hybrid learning algorithm is explained in section 3.  Experimental results are presented 
in section 4, and the paper concluded in last section. 

2   Division Point Distance Feature 

The idea of recursive subdivision of character image is used to find the DPDC feature.  
This process is applied on a size normalized (N x N) and binarized image.  The feature 
extraction method is based on different levels of granularity. At the first iteration step, 
the binary image is divided into four sub images using a vertical and a horizontal line.  
A vertical line is initially drawn that minimizes the absolute difference of the number 
of foreground pixels in the two sub images to its left and to its right.  Subsequently, a 
horizontal line is drawn which minimizes the absolute difference of the number of 
foreground pixels in the two sub images above and below.  The pixel at the intersec-
tion of these lines is referred to as the division point (DP).  At further iteration steps, 
each sub image obtained at the previous step is further divided into four sub images 
using the same procedure [5]. Once the process is finished, the distance of each divi-
sion point in the last level is measured from the centroid of the image.  This will con-
stitute the DPDC feature vector to be used in the classification stage. 

3   Hybrid Learning Algorithm 

In this section, a hybrid learning approach is introduced by combining DE and MP 
generalized inverse.  Initially, the population is randomly generated.  Each individual 
in the population is composed of a set of input weights and hidden biases: 

θ = [w11, w12, …., w1N, w21, w22, …, w2N, …., wn1, wn2, …., wnN, b1, b2, …., bN] 

where N and n are the number of hidden nodes and input parameters respectively [4].  
All wij and bj are randomly initialized within the range [-1, 1]. 

Next, the output weights of each set of input weights and biases are analytically de-
termined using MP generalized inverse.  Consider a set of M distinct samples (xi, yi) 
with xi ∈  and yi ∈ .  Then, an SLFN with N hidden neurons is modeled as: ∑ if(wixj + bi), 1 ≤ j ≤ M   (1) 

with f being the activation function, wi, the input weights, bi the biases, and βi, the 
output weights.  If SLFN perfectly approximates the data, the errors between esti-
mated outputs i and actual outputs yi are zero and the relation is ∑ if(wixj + bi) = yi              (2) 
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which writes compactly as Hβ = Y,  

β = H†Y     (3) 

where 

H = 
…: : :…        (4) 

and β = ( , …, )T, Y = ( , … , )T and H† is the MP generalized inverse of ma-
trix H.  Equation (3) is the minimum norm least square (LS) solution to the linear 
system Hβ = Y.  Minimum training error can be reached with this solution [2]. 

Finally, calculate the fitness (validation error) of all individuals in the population 
and apply mutation, crossover and selection of DE.  During selection, the mutated 
vectors are compared with the original ones, and the vectors with better fitness values 
are retained to the next generation.  Generally, neural networks show good perfor-
mance with smaller weights.  To incorporate this, one more criteria is added to the 
selection – the norm of output weights, .  If the difference of the fitness between 
different individuals is small, the one resulting in smaller  is selected [4].   

4   Experiment 

In order to attain the reasonable recognition accuracy (RA), several experiments have 
been conducted and found the suitable size of the character image, number of hidden 
neurons and the mutation method. The offline character used in our experiments con-
sists of grayscale images scanned from handwritten forms with a scanning resolution 
of 300 dpi and a gray-scale bit depth of eight. The preprocessing begins with image 
size normalization.  It is found that an image of size 128 x 128 pixels can give good 
feature vector to the classifier.  These normalized images are further undergone a 
process known as thresholding.  DPDC features are then extracted from these size 
normalized binary images.  The process is gone up to level 3, and generated 16 divi-
sion points.  The distance of each point from the centroid is measured and formed the 
feature vector.  DPDC in other levels shown less accuracy due to lack of discrimina-
tive features (less than level 3) or ran out of memory as the number of hidden neurons 
increase (beyond level 3). 

A lot of research work has been undertaken to improve the performance of DE by 
turning its control parameters.  A good initial choice of scalar number F is 0.5, and 
the effective range is usually between 0.4 and 1.  No single mutation method is turned 
out to be the best for all problems.  The parameter CR (crossover rate) controls how 
many parameters in expectation are changed in a population member.  With this view, 
controls parameters are tuned and selected as F=1, CR=0.8 and the mutation scheme 
DE/rand/1 with exponential crossover.  In addition, classifier is trained with different 
number of neurons in the hidden layer, and the result thus obtained is shown in  
Table 1. We have used 13200 characters of 44 different classes for this experimenta-
tion.  This character set is divided into training and test set in the ratio 3 to 2. 
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Table 1. Recognition accuracy of handwritten Malayalam characters 

Learning algorithm Hidden neurons Training time (sec) RA (%) 

Hybrid learning 

500 79 80.12 
600 119 81.88 
700 156 83.24 
750 184 83.98 

BP 10 2403 73.75 

The experimental results show that the highest RA of 83.98% is obtained when the 
network is trained with 750 neurons in the hidden layer.  Beyond this limit, the algo-
rithm ran out of memory.  The result is also compared with that of the network trained 
with back propagation (BP) algorithm. The latter case could produce only 73.75% 
accuracy by spending more time in training. We have also obtained more RA 
(82.35%) than an ANFIS based work reported in 44 class handwritten Malayalam 
character recognition [6]. 

5   Conclusion 

The work on handwritten character recognition has achieved a great success in reduc-
ing training time of the classifier. This is mainly due to the hybrid approached adapted 
in the classification process.  Even though the algorithm was fast, it is necessary to 
take further steps to improve the RA. 

References 

1. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A Nov-
el Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions 
on Pattern Analysis and Machine Intelligence 31(5), 855–868 (2009) 

2. Miche, Y., Sorjamma, A., Bas, P., Simula, O.: OP-ELM: Optimally Pruned Extreme Learn-
ing Machine. IEEE Transactions on Neural Networks 21(1), 158–162 (2010) 

3. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art. IEEE 
Transactions on Evolutionary Computation, doi:10.1109/TEVC.2010.2059031 

4. Zhu, Q.-Y., Qin, A.K., Suganthan, P.N., Huang, G.-B.: Evolutionary Extreme Learning 
Machine. Pattern Recognition 38, 1759–1763 (2005) 

5. Vamvakas, G., Gatos, B., Perantonis, S.J.: Handwritten character recognition through two 
stage foreground sub sampling. Pattern Recognition 43, 2807–2816 (2010) 

6. Lajish, V.L.: Adaptive Neuro-Fuzzy Inference Based Pattern Recognition Studies on 
Handwritten Character Images. Ph.D thesis, University of Calicut, India (2007) 

 



C. Singh et al. (Eds.): ICISIL 2011, CCIS 139, pp. 236–241, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Hindi to Punjabi Machine Translation System 

Vishal Goyal and Gurpreet Singh Lehal 

Department of Computer Science, Punjabi University, Patiala 
{vishal.pup,gslehal}@gmail.com 

Abstract. Hindi-Punjabi being closely related language pair, Hybrid Machine 
Translation approach has been used for developing Hindi to Punjabi Machine 
Translation System. Non-availability of lexical resources, spelling variations in 
the source language text, source text ambiguous words, named entity recogni-
tion and collocations are the major challenges faced while developing this 
syetm. The key activities involved during translation process are preprocessing, 
translation engine and post processing. Lookup algorithms, pattern matching al-
gorithms etc formed the basis for solving these issues. The system accuracy has 
been evaluated using intelligibility test, accuracy test and BLEU score. The  
hybrid syatem is found to perform better than the constituent systems. 

Keywords: Machine Translation, Computational Linguistics, Natural Lang- 
uage Processing, Hindi, Punjabi. Translate Hindi to Punjabi, Closely related  
languages. 

1   System Architecture 

Hindi-Punjabi Language pair being closely related language pair[1] and on the basis of 
related works[2,7,8,9], Hybrid (direct and rule based) approach has been used for de-
veloping Machine translation System for this language pair. The System Architecture 
of this machine translation includes Pre Processing Phase, Translation Engine and Post 
Processing Phase. Pre Processing Phase is a collection of operations that are applied 
on input data to make it processable by the translation engine. Here, various activities 
incorporated include text normalization [3], replacing collocations and replacing proper 
nouns. Tokenizers (also known as lexical analyzers or word segmenters) segment a 
stream of characters into meaningful units called tokens. The tokenizer takes the text 
generated by pre processing phase as input. This module, using space, a punctuation 
mark, as delimiter, extracts tokens (word) one by one from the text and gives it to 
translation engine for analysis till the complete input text is read and processed. 

Translation Engine Phase of the system involves various sub phases that includes 
Identifying titles, Identifying surnames, word-to-word translation using lexicon 
lookup, Word sense disambiguation and handling out-of-vocabulary words. All the 
modules have equal importance in improving the accuracy of the system. Identifying 
Titles locates proper nouns where titles are present as their previous word like �ी 
(shrī), �ीमान (shrīmān), �ीमती (shrīmtī) etc. There is one special character ‘॰’ in 
Devanagari script to mark the symbols like डा॰, 	ो॰. If tokenizer found this symbol 
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Fig. 1. Overview of Hindi-Punjabi Machine Translation System 

during reading the text, the word containing it, will be marked as title and thus will be 
transliterated not translated. The title database consists of 14 entries.  This database 
can be extended at any time to allow new titles to be added.  Identifying Surnames 
locates proper names having surnames. If found, the word previous to the surname is 
transliterated. Thus, this module plays an important role in translation. The surnames 
database consists of 654 entries. Word-to-Word translation using lexicon look up 
phase searches Hindi to Punjabi lexicon for translating Hindi word to Punjabi directly. 
The HPDictionary database consists of 54,127 entries. If not found in lexicon, it is 
sent to Word Sense Disambiguation module using N-gram Approach[4]. If the word 
is not an ambiguous word, it is considered to be Out-of-Vocabulary word. In 
linguistics, a suffix (also sometimes called a postfix or ending) is an affix which is 
placed after the stem of a word. Common examples are case endings, which indicate 
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the grammatical case of nouns or adjectives, and verb endings. Hindi is a (relatively) 
free word-order and highly inflectional language.  Because of same origin, both lan-
guages have very similar structure and grammar. The difference is only in words and in 
pronunciation e.g. in Hindi it is लड़का and in Punjabi the word for boy is ਮੁੰਡਾ and even 
sometimes that is also not there like घर (ghar) and ਘਰ (ghar). The inflection forms of 
both these words in Hindi and Punjabi are also similar. In this activity, inflectional 
analysis without using morphology has been performed for all those tokens that are not 
processed in the previous activities of pre -processing and translation engine phases. 
Thus, for performing inflectional analysis, rule based approach has been followed. 
When the token is passed to this sub phase for inflectional analysis, If any pattern of 
the regular expression (inflection rule) matches with this token, that rule is applied on 
the token and its equivalent translation in Punjabi is generated based on the matched 
rule(s). There is also a check on the generated word for its correctness. We are using 
correct Punjabi words database for testing the correctness of the generated word. This 
generated Punjabi word is matched with some entry in punjabiUnigrams database. The 
database punjabiUnigrams is a collection of about 2,00,000 Punjabi words from large 
Punjabi corpus analysis. Punjabi corpus has been collected from various resources like 
online Punjabi newspapers, blogs, articles etc. If there is a match, the generated Pun-
jabi word is considered a valid Punjabi word. If there is no match, this input token is 
forwarded to the transliteration activity.  

The advantage of using punjabiUnigrams database is that ingenuine Punjabi words 
will not become the part of translation. If the wrong words are generated by inflec-
tional analysis module, it will not be passed to translation rather it will be treated as 
out-of vocabulary and will be transliterated.  It has been analyzed that when this mod-
ule was tested on the Hindi corpus of about 50,000 words, approx. 10,000 distinct 
words passed through this phase. And out of these 10,000 words, approx. 7,000 words 
were correctly generated and even accepted by Punjabi unigrams database. But rest 
was either generated wrong and was simply transliterated [5]. 

Post-Processing phase includes Grammar Corrections. In spite of the great similarity 
between Hindi and Punjabi languages, there are still a number of important grammati-
cal divergences: gender and number divergences which affect agreement. The 
grammar is incorrect or the relation of words in their reference to other words, or their 
dependence according to the sense is incorrect and needs to be adjusted. In other 
words, it can be said that it is a system of correction for ill-formed sentences. The 
output generated by the translation engine phase becomes the input for post-
processing phase. This phase will correct the grammatical errors based on the rules 
implemented in the form of regular expressions.  

For example: In a typical Punjabi sentence, within verb phrase, all the verbs must 
agree in gender and number. 

Incorrect: ਿਨਰਮਲਾ ਦੀ ਅਵਾਜ ਸੁਣਦ ੇਹੀ ਭੱਜਦੀ ਹਨ।  
       (nirmalā dī avāj suṇdē hī bhajjdī han.) 

Correct: ਿਨਰਮਲਾ ਦੀ ਅਵਾਜ ਸੁਣਦ ੇਹੀ ਭੱਜਦੀਆ ਂਹਨ।  
    (nirmalā dī avāj suṇdē hī bhajjdīāṃ han.) 

We have formulated 28 regular expressions for correcting such grammatical errors. 
Following table shows the distribution of regular expressions on the basis of error 
categories discussed above: 
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Table 1. Grammatical Error Category wise Regular Expression Distribution 

S.No. Grammatical Error  
Category 

Regular 
Expression 
Count 

1. Within Verb Phrase  
agreement 

12 

2. Noun’s Oblique Form before 
Postpositions 

02 

3. Subject Verb Agreement 13 
4. Verb Object noun phrase 

agreement if there is ਚਾਹੀਦਾ 
(cāhīdā) in verb phrase 

01 

The analysis was done on a document consisting of 35500 words. It was found that 
6.197% of the output text has been corrected grammatically using these regular  
expressions. Following table shows the contributions of various regular expression 
categories in correcting the grammatical errors: 

Table 2. % Contribution of Regular Expressions on the basis of Grammatical Error Categories 

S.No. Grammatical Error 
Category 

Regular 
Expression 
Count 

1. Within Verb Phrase 
agreement 

38.67% 

2. Noun’s Oblique Form before 
Postpositions 

3.20% 

3. Subject Verb Agreement 35.63% 
4. Verb Object noun phrase 

agreement if there is ਚਾਹੀਦਾ 
(cāhīdā) in verb phrase 

9.84% 

2   Evaluation and Results 

The evaluation [6]  of the system shows that the accuracy percentage for the system is 
found out to be 87.60%. Further investigations reveal that out of 13.40%: 

• 80.6 % sentences achieve a match between 50 to 99% 
• 17.2 % of remaining sentences were marked with less than 50% match 

against the correct sentences. 
• Only 2.2 % sentences are those which are found unfaithful. 
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A match of lower 50% does not mean that the sentences are not usable. Intelligibility 
percentage of the system comes out to be 94%. After some post editing, they can fit 
properly in the translated text.  As there is no Hindi –Parallel Corpus was available, 
thus for testing the system automatically, we generated Hindi-Parallel Corpus of about 
10K Sentences. The BLEU score comes out to be 0.7801. 

3   Comparison with Other Existing Systems 

The accuracy score is comparable with other similar systems: 

Table 3. Comparative analysis of %age accuracy 

MT SYSTEM Accuracy Test Used 
RUSLAN 40% correct 40% 

with minor 
errors. 20% with 
major error. 

Intelligibility Test 

CESILKO (Czech-to- 
Slovak) 

90% Intelligibility Test 

Czech-to-Polish 71.4% Accuracy Test 

Czech-to-Lithuanian 69% Accuracy Test 

Punjabi-to-Hindi 92% Intelligibility Test 

Hindi-to-Punjabi 
(http://sampark.iiit.ac.in) 

70% 
50% 

Intelligibility Test 
Accuracy Test 

Hindi-to-Punjabi(Our 
 System) 

94% 
90.84% 

Intelligibility Test 
Accuracy Test 

4   Conclusion 

In this paper, a hybrid translation approach for translating the text from Hindi to Punjabi 
has been presented. The architecture used has shown extremely good results, Hence, 
This MT systems between closely related language pairs may follow this approach. 
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Abstract. This paper describes the styling issues in Punjabi Websites using 
Cascading Style Sheets (CSS) in various web browsers. Seven different styling 
issues for Indian Languages have been identified by other researchers. It has 
been noted that most Punjabi websites make use of only underline and hyper-
links for styling the web content. To test all the styling issues, we developed our 
own testing website for Punjabi with the use of CSS. We have checked all the 
styling issues in six different browsers. The results of comparative study in  
different browsers are presented in this paper. 

Keywords: Cascading Style Sheets, Styling Issues. 

1   Introduction 

The websites make use of Cascading Style Sheets (CSS) for styling the web content. 
This paper presents a comparative study of various CSS styling issues in displaying 
the Punjabi Language text in different browsers. A style sheet simply holds a collec-
tion of rules that we define to enable us to manipulate our web pages [4], [5]. It is 
worth mentioning that CSS styling issues are designed according to English Lan-
guage. It does not support number of issues which are applicable in Indian Languages. 
We have worked on these issues regarding Punjabi Language which may be applica-
ble in all other Indian Languages as well. This paper contains three sections. In  
Section 2, we have presented the analysis of these issues when explored with different 
websites using different browsers. Section 3 concludes our findings and presents the 
future work to be done. 

2   Analysis of Different Styling Issues 

We have tested ten different Punjabi websites to analyze different styling issues. It 
has been found that most Punjabi websites do not use first letter styling, over lining, 
line through of characters and horizontal spacing between characters features. So, in 
order to test all these issues we have designed testing website for Punjabi Language 
using CSS.  We have tested these websites along with testing website in six browsers, 
namely, Google Chrome, Mozilla Firefox, Netscape Navigator, Safari, Internet  
Explorer and Opera [4], [5]. These issues have been discussed below. 
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2.1   Styling of First Letter  

When some styling feature is applied to the starting character, then it should be  
applied to either single character, conjunct character or a syllable [3], [5]. Table 1 
depicts first letter styling in Punjabi Language for example browsers. It is worth men-
tioning that only Mozilla Firefox browser displayed the correct output and applied  
the styling to conjunct characters. All other browsers applied the styling to single 
character only. 

2.2   Underlining of the Characters 

It has been found that during underlining of characters in a Punjabi website, the ma-
tras like  Aunkar and Dulanukar become unreadable due to its overlap with under-
line. It creates problem in reading the information correctly. All the browsers had this 
problem in reading matras. Table 1 shows the underlining issue. 

2.3   Link Displayed While Mouse Over 

In Punjabi websites, the information is not clearly readable when we hyperlink the 
text because some modifiers (matras) are cut and the line overlaps with matras as 
shown in Table 1.  

2.4   Over Lining of the Characters in Different Browsers   

It has been found that no Punjabi Website uses this feature. As such, we have tested 
this issue on our testing website. When we use the CSS text decoration for over  
lining, the line overlaps the matras, like sia(h)ri, bia(h)ri, la(n), Dulai(n),  
HoRa and kAnauRa in Punjabi Language. Table 1 shows the results of various 
browsers. It has been noted that, in Internet Explorer the line is distorted and overlaps 
with each character individually.  

2.5   Line-through of the Characters 

It has been found that most Punjabi websites do not use line-through feature. We 
again analyzed this feature on our test website and the results for this are shown  
in Table 1. It has been noted that in Mozilla, the line is not exactly in the center  
and for Internet Explorer the line is thicker than in other browser, thus reducing the 
readability of letters. 

2.6   Horizontal Spacing  

The Horizontal spacing is used to give the space between each character [1], [5]. In 
case of Punjabi language the space has not be given in every character but after some 
portion of the character sequence. Table 1 shows horizontal spacing for our test web-
site in different browsers. It has been noted that for most browsers the vowel gets 
separated from the letter. The horizontal spacing was better in Internet Explorer and 
the best in case of Mozilla Firefox. 
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2.7   Title Bar Display for Punjabi Letters 

If a website has a title in Punjabi it should be displayed in Punjabi. But it has been 
found that, few browsers do not support this feature as indicated in Table 1. The  
Punjabi letters are not recognized by the browsers.  

The results of our analysis are given in Table 1. Here, “YES” indicates that the  
corresponding issue has a display problem with corresponding browser and “NO” 
indicates that the issue is not having any display problem with the mentioned browser. 

Table 1. Comparative study: Styling Issue Vs. Web Browser 

Issues Google 
Chrome 
 

Mozilla 
Firefox 
 

Netscape 
Navigator 
 

Safari 
 

Internet 
Explorer 
7.0 or 
above 

Opera 
 

Styling First 
letter 

YES

 

NO

 

YES

 

YES

 

YES

 

YES

 
Underlining 
of Character 

YES

 

YES YES
 

YES YES
 

YES
 

Link while 
mouse over 

YES

 

NO NO
 

YES NO
 

YES 

 
Over lining of 
Characters 

NO

 

NO NO

 

NO

 

YES

 

NO

 
Line through 
Characters 

NO

 

YES NO

 

NO

 

YES

 

NO

 
Horizontal 
spacing  
between 
characters 

YES

 

NO YES

 

YES YES YES

Title bar  
display for 
Punjabi letters 

YES

 

NO NO

 

NO YES NO

 

The problem of styling issues for Punjabi language with respect to percentage of 
browsers is presented in Figure 1. The issues are ordered in accordane with the 
percentage of browsers that has problems in display. We have also analyzed the use-
fulness of different browsers vis-à-vis the issues discussed in this paper. The findings 
are presented in Figure 2. One can note from this figure that Mozilla Firefox is proba-
bly the browser that we should use for browsing Punjabi websites. In our study, we 
have noted that Internet Explorer has the least performance, when we consider the 
issues discussed in this paper, for browsing Punjabi websites.  
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Fig. 1. Bar Graph for Styling Issues problems 
v/s the percentage of browsers having that 
problem 

Fig. 2. Bar Graph to indicate the percentage of 
styling issue problems in each browser  

3   Conclusion and Future Work 

It has been noted that, most of the Punjabi websites do not make use of CSS for  
styling. Most sites only use underlining, link while mouse over and Title bar display 
characteristics. To identify more styling issues we have designed a test website in 
Punjabi using CSS. It has been found that, the problem of underlining of characters is 
present in all browsers. First letter and horizontal spacing problem is present in 83% 
of browsers. Over lining problem is only present in Internet Explorer. It has also been 
found that Mozilla Firefox has resolved a number of issues for browsing of Punjabi 
websites. There is a need to modify the CSS standards to accommodate Indian  
Languages as they are designed only for English. This has been recommended by us 
to W3C India. Because not all browsers comply identically with CSS code, a coding 
technique [6] known as a CSS filter can be used to show or hide parts of the CSS to 
different browsers, either by exploiting CSS-handling quirks or bugs in the browser, 
or by taking advantage of lack of support for parts of the CSS specifications.  
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Abstract. The paper attempts to describe how a word like se of Hindi can be  
a challenging task to a Machine Translation (MT) system. In most of the litera-
ture of Hindi and Urdu, a noun marked with se is assigned instrumental or  
ablative case. So it is called instrumental and ablative case marker. But a close 
look at its distribution shows that apart from instrumental and ablative case 
function, it denotes other functions also and in each of these types, it is  
translated differently in Tamil.  

Keywords: Case, Hindi, Tamil, Machine Translation, Rule Based Approach. 

1   Introduction 

The Indian languages Hindi and Tamil follow postpositional method to assign a case 
system. Sinha et al [5] discussed about case transfer and its divergence from English 
to Hindi and vice-versa.  Pralayankar et al [3] discussed about the case transfer pattern 
from Hindi to Tamil MT system. Sobha et al [6] have worked on the nominal transfer 
from Tamil to Hindi. In this paper we consider se, one of the case markers in Hindi 
and how it transfers into Tamil in a MT system following a rule based approach. 

2   Case Marking Pattern in Hindi and Tamil 

Table (1) shows a comparative list of Hindi and Tamil case markers. se denotes  
instrumental/ablative case in Hindi but Tamil has –aal and koNtu for instrumental and 
–ilirunthu and -itamirunthu for ablative.  

Table 1. Hindi-Tamil case markers [1,2,4] 

 Nom. Erg. Dative Acc. Ins. Abl. Loc. Genitive  
Hindi  Ø      ne ke liye ko se se meN,par kaa,ke,kii 
Tamil  Ø  Ø -kku -ai -aal, koNtu -ilirunthu ,itamirunthu -il, itam -in, athu,  

3   Distribution of se in Hindi 

In most of the literature of Hindi, we find that the noun marked with case marker se is 
assigned instrumental or ablative case but a closer look at its distribution shows that it 
is more versatile than any other postpositions of Hindi. This can be seen as below:  
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Instrumental se. The inanimate noun gets instrumental case se in simple and causa-
tive constructions (Ex.1). In (1) the grammatical function assigned to this instrumental 
case is of adjunct. This will be translated to instrumental –aal in Tamil.  
1. vah   kalam  se   likhegaa    (H) 
 avan   peenaavaal   ezuthuvaan   (T) 
 ‘He will write with pen.’  

Ablative se. In Ex. (2), se is used with noun as source. In Tamil, the ablative marker -
ilirunthu is used with inanimate noun (Ex. 2a) and -itamirunthu is used with animate 
nouns. Ex.2b is exception to this generalization where the noun is animate, but still 
takes –ilirunthu. This happens only in case with se-tak (from-to) construction. 
2. a. kitaab/pitaajii  se   paDho     (H) 

puththakaththilirunthu/appaavitamirunthu  pati   (T) 
 ‘Read/learn from the book/father.’ 

b. aanand  se  ravi  tak  sab ko   bulaao  (H) 
 aanantilirunthu  ravi  varai  ellaaraiyum  kuuppiut  (T) 

 ‘Call everyone from Anand to Ravi.’  

Agent se. The animate noun marked with case marker se is assigned agent case and 
occupies subject position in the verb’s argument structure in the passive voice (Ex. 3).  
3.  ritaa  se  gaanaa   nahiN   gayaa   jaataa  (H)
 riittaav.aal paattu   paata iyalavillai  (T)  

‘Rita is not able to sing song.’      
Agentive form of animate noun with case marker se is also found in the argument 
structure of causative sentences in Hindi as in (4a-b).  
4.  a.    mai-ne  raaju  se  peDa              kata-aa-yii  (H) 

naan  raajuvai    maraththai   vettaceytheen (T)
 ‘I made Raju cut a tree.’  
    b.    maaN ne      shikSaka se        raaju ko paatha   paDa-waa-yaa (H)          
 ammaa  aaciriyaraik  koNtu raajuuviRku paatam kaRpikka ceythaaL   (T)  

 ‘Mother caused the teacher to teach lesson to Raju.’  
If SUB2 shikSaka in Ex. (4b) is replaced with chamaccha (spoon), it will get instru-
mental role rather than the agent role taken by shikSaka se because ‘spoon’ cannot be 
the agent, performing the action on its own. The mother is the actual performer of the 
action. The spoon is used as an instrument to perform the action.  

Temporal se. If se follows a temporal noun denoting specific point of time, it is trans-
lated to the ablative marker -ilirunthu in Tamil. But if the temporal noun denotes a 
period of time, it is translated to adverbial marker –aaka in Ex. (5).  
5.   rimmi  do dinoN/mangalvaar  se bimmar hai (H)   

rimmikku iraNtu naatkaLaaka/cevvaayilirunthu utalnilai cariyillai (T)  
 ‘Rimmi is sick since two days/Tuesday.’  

Mutual se. se is also used to mark animate nouns at object position, which are experi-
encers of the action involved (Ex. 6). Such verbs denote action performed mutually 
between two animate nouns; subject and object and so are called ‘mutual’. 
6.  manohar  ne nikki  se   baat         kii  (H)  

manokar  nikkiyitam   pecinaan  (T)  
‘Manohar talked to Nikki.’ 
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Movement se. When path or vehicle or spatial nouns are used with a motion verb to 
denote movement (Ex. 7), they are marked with case marker se. Such se is translated 
to locative –il in Tamil.  
7. ritaa   car se kochi   jaaegii    (H)  

riitaa   kaaril   kocci   celvaaL  (T)  
‘Ritaa will go to Kochi by car.’  

Comparative se. se when used for comparison between two nouns (Ex. 8) is trans-
lated to accusative marker –ai followed by postposition vita in Tamil.   
8.  rimmi  se  riyaa   adhika   sundar  hai  (H)  

rimmiyai  vita  riyaa   mikavum azakaanavaL  (T)  
‘Riyaa is more beautiful than Rimmi.’ 

When infinitive verb uses se in Hindi (Ex. 9), it is translated to dative case in Tamil. 
9.  richaa   kahane  se Darati  hai.   (H)  

riccaa   colvathaRku   payappatukiRaaL  (T)  
‘Richa is afraid of saying.’ 

Adverbial se. When conceptual nouns take case marker se (Ex. 10), it is translated to 
adverbial marker –aaka. 
10.  riyaa   jor se  haNsane  lagii  (H) 

riyaa   caththamaaka  ciriththaaL  (T)  
‘Riya started laughing loudly.’  

Clausal se. If se comes after jab and tab, which is considered as a clause marker, this 
is clausal se (Ex.11). Here both the se are translated to one ablative -ilirunthu and 
other structural transfer takes place [7].   
11. jab se  mai chennai aayaa huN tab se  tumko  jaantaa huN  (H)  

naan  cennai  vanthathilirunthu unnai aRiveen   (T)     
‘Ever since I came to Chennai, I know you.’  

4   Rules for Disambiguation of se 

The rules for the disambiguation of discussed various types of se are as follows: 

1.  Instrumental/Agent se:  a. NP se …V -> NP aal… V, where NP is an inanimate 
direct object, V is in/ditransitive Verb (Ex. 1) 
b. NP se …Vp -> NP aal …Vp, where NP is animate noun in agentive role, located at 
subject position, and Vp is Passive verb (Ex 3) 
c. NP se…VC-> NPai …VC, where NP is animate noun , VC is causative verb (Ex 4)   
2. Temporal se: NP se -> NP aaka, where NP is temporal noun (Ex 5) 
3. Mutual se: NPs NP1 se -> NPs NP1il, where NPs and NP1 are subject and object 
noun phrases respectively (Ex. 6)  
4. Movement se:  NP se…V -> NP il... V, where V is finite verb of motion, NP is an 
inanimate noun (Ex. 7) 
5. Comparative se: a. NP1 se NP2 INT/ADJ -> NP1 ai  vita NP2 INT/ADJ, where 
NP1 and NP2 are noun phrases, INT is Intensifier, ADJ is adjective (Ex. 8)  
b. VP1 se VP2 -> VP1 ai vita VP2, where VP1 and VP2 are nonfinite verb (Ex.9) 
6. Adverbial se: ADV se -> N aaka,   where ADV is adverb, N is noun (Ex. 10) 
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7. Clausal se: (Ex 11)   jabse… tab se -> -iliruntu,                                                                                             
8. Default se: NP se ->NP1 -iliruntu  (or) NP2 –itamirunthu,  where NP is noun 
phrase,  NP1and NP2 are inanimate and animate noun phrases respectively. 

5   Results and Discussion 

After implementation of the above rules we noticed a significant improvement regard-
ing the transfer of se in a MT system, where earlier [3] it was considered that se is 
either instrumental or ablative in Hindi. But later we got many types of se, which 
forced us to do further study and implement the new rule for this. But still in certain 
cases like maine Daaka se patra bhejaa hai (I have sent a letter through post), the 
system is transferring se into locative –il because the verb in the sentence is motion 
verb but in real this should be transferred to –aal and postposition mulam.  

6   Conclusion  

The paper presents a micro study of se and rules for how to disambiguate different 
types of se for a MT system following rule based approach. We are testing the system 
with large number of sentences and getting more types of distribution like, locative se 
(vah divaal se lagakar khaDaa hai), but its distribution is very less. 
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Abstract. Punjabi Text Summarization is the process of condensing the source 
Punjabi text into a shorter version, preserving its information content and over-
all meaning. It comprises two phases:   1) Pre Processing   2) Processing.  Pre 
Processing is structured representation of the Punjabi text. This paper concen-
trates on Pre processing phase of Punjabi Text summarization.  Various sub 
phases of pre processing are: Punjabi words boundary identification, Punjabi 
language stop words elimination, Punjabi language noun stemming, finding 
Common English Punjabi noun words, finding Punjabi language proper nouns, 
Punjabi sentence boundary identification, and identification of Punjabi language 
Cue phrase in a sentence. 

Keywords: Punjabi text summarization, Pre Processing, Punjabi Noun stemmer. 

1   Introduction to Text Summarization 

Text Summarization[1][2] is the process of selecting important sentences, paragraphs 
etc. from the original document and concatenating them into shorter form. Abstractive 
Text Summarization is understanding the original text and retelling it in fewer words. 
Extractive summary deals with selection of important sentences from the original text. 
The importance of sentences is decided based on statistical and linguistic features of 
sentences. Text Summarization Process can be divided into two phases: 1) Pre Proc-
essing phase [2] is structured representation of the original text. Various features 
influencing the relevance of sentences are calculated. 2)In Processing [3][4][12] 
phase, final score of each sentence is determined using feature-weight equation.   Top 
ranked sentences are selected for final summary. This paper concentrates on Pre proc-
essing phase, which has been implemented in VB.NET at front end and MS Access at 
back end using Unicode characters [5]. 

2   Pre Processing Phase of Punjabi Text Summarization 

2.1   Punjabi Language Stop Word Elimination 

Punjabi language Stop words are frequently occurring words in Punjabi text. We have 
to eliminate these words from original text, otherwise, sentences containing them can 
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get influence unnecessarily. We have made a list of Punjabi language stop words by 
creating a frequency list from a Punjabi corpus. Analysis of Punjabi corpus taken 
from popular Punjabi newspapers has been done. This corpus contains around 11.29 
million words and 2.03 lakh unique words. We manually analyzed unique words and 
identified 615 stop words. In corpus of 11.29 million words, the frequency count of 
stop words is 5.267 million, which covers 46.64% of the corpus. Some commonly 
occurring stop words are ਦੀ dī, ਤ tōṃ, ਿਕ ki ,ਅਤੇ atē, ਹੈ hai, ਨੇ  nē etc. 

2.2   Punjabi Language Noun Stemming 

The purpose of stemming [6][7] is to obtain the stem or radix of those words which 
are not found in dictionary. If stemmed word is present in dictionary, then that is a 
genuine word, otherwise it may be proper name or some invalid word.  In Punjabi 
language noun stemming[9][10][13], an attempt is made to obtain stem or radix of a 
Punjabi word and then stem or radix is checked against Punjabi dictionary [8], if word 
is found in the dictionary, then the word’s part of speech is checked to see if the 
stemmed word is noun. An in depth analysis of corpus was made and various possible 
noun suffixes were identified like ◌ੀਆਂ īāṃ, ਿ◌ਆਂ iāṃ, ◌ੂਆਂ ūāṃ, ◌ਾ◌ਂ āṃ, ◌ੀਏ īē etc. 

and the various rules for noun stemming have been generated. Some rules of Punjabi 
noun stemmer are ਫੁੱਲਾਂ phullāṃ  ਫੁੱਲ phull with suffix ◌ਾ◌ਂ āṃ, ਲੜਕੀਆਂ laṛkīāṃ  

ਲੜਕੀ laṛkī with suffix ◌ੀਆਂ īāṃ, ਮੰੁਡੇ muṇḍē  ਮੰੁਡਾ muṇḍā with suffix ◌ੇ ē etc.  

An In depth analysis of output is done over 50 Punjabi documents. The efficiency 
of Punjabi language noun stemmer is 82.6%.  The accuracy percentage of correct 
words detected under various rules of stemmer are: ◌ੀਆਂ īāṃ rule1 86.81%, ਿ◌ਆਂ iāṃ 

rule2 95.91%, ◌ੂਆਂ ūāṃ rule3 94.44%,◌ਾ◌ਂ āṃ rule4 92.55%, ◌ੇ ē rule5 57.43%, ◌ੀ◌ਂ 

īṃ rule6 100%,  ◌ੋ◌ਂ ōṃ rule7 100% and ਵਾਂ vāṃ rule8 79.16%. Errors are due to rules 

violation or dictionary errors or due to syntax mistakes. Dictionary errors are those 
errors in which, after noun stemming, stem word is not present in noun dictionary, but 
actually it is noun. Syntax errors are those errors, in which input Punjabi word is hav-
ing some syntax mistake, but actually that word falls under any of stemming rules. 
Overall error % age, due to rules voilation is 9.78%, due to dictionary mistakes is 
5.97%  and due to spelling mistakes is 1.63%.  

Graph1 depicts the percentage usage of the stemming 
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2.3   Finding Common English-Punjabi Noun Words from Punjabi Corpus 

Some English words are now commonly being used in Punjabi. Consider a sentence 
such as ਟੈਕਨਾਲੋਜੀ ਦੇ ਯੁੱਗ ਿਵਚ ਮੋਬਾਈਲ Technology de yug vich mobile. It contains 

ਟੈਕਨਾਲੋਜੀ Technology and ਮੋਬਾਈਲ mobile as English-Punjabi nouns. These should 

obviously not be coming in Punjabi dictionary. These are helpful in deciding sentence 
importance. After analysis of Punjabi corpus, 18245 common English-Punjabi noun 
words have been identified. The percentage of Common English-Punjabi noun words 
in the Punjabi Corpus is about 6.44 %. Some of Common English Punjabi noun words 
are ਟੀਮ team, ਬੋਰਡ board, ਪਰ੍ੈੱਸ press etc. 

2.4   Finding Punjabi Language Proper Nouns from Punjabi Corpus 

Proper nouns are the names of person, place and concept etc. not occurring in diction-
ary. Proper Nouns play important role in deciding a sentence’s importance. From the 
Punjabi corpus, 17598 words have identified as proper nouns. The percentage of these 
proper noun words in the Punjabi corpus is about 13.84 %. Some of Punjabi language 
proper nouns are ਅਕਾਲੀ akālī, ਅਜੀਤ ajīt, ਭਾਜਪਾ bhājapā etc.  

2.5   Identification of Cue Phrase in a Sentence 

Cue Phrases [11] are certain keywords like In Conclusion, Summary and Finally etc. 
These are very much helpful in deciding sentence importance. Those sentences which 
are beginning with cue phrases or which contain these cue phrases are generally more 
important than others Some of commonly used cue phrases are ਅੰਤ ਿਵੱਚ/ ਅੰਤ ਿਵਚ ant 

vicc/ant vic, ਿਕਉਕੀ Kiukī, ਿਸੱਟਾ siṭṭā, ਨਤੀਜਾ/ਨਤੀਜੇ natījā/natījē etc. 

3   Pre Processing Algorithm for Punjabi Text Summarization 

Pre Processing phase algorithm proceeds by segmenting the source Punjabi text into 
sentences and words. Set the scores of each sentence as 0.  For each word of every 
sentence follow following steps:  

• Step1: If current Punjabi word is stop word then delete all the occurrences of 
it from current sentence. 

• Step2:If Punjabi word is noun then increment the score of that sentence by 1. 
• Step3: Else If current Punjabi word is common English-Punjabi noun like 

ਹਾਊਸ house then increment the score of current sentence by 1 

• Step4: Else If current Punjabi word is proper noun like ਜਲੰਧਰ jalandhar then 

increment the score of current sentence by 1.  
• Step5: Else Apply Punjabi Noun Stemmer for current word and go to step 2.   

Sample input sentence is ਿਤੰਨਾਂ ਸ਼ਰਤਾਂ ਤੇ ਜੋ ਪੂਰਾ ਉਤਰਦਾ ਹੈ ਉਸ ਨੰੂ ਹੀ ਵੋਟ ਿਦੱਤਾ ਜਾਣਾ 
ਚਾਹੀਦਾ ਹੈ। tinnāṃ shartāṃ 'tē jō pūrā utradā hai us nūṃ hī vōṭ dittā jāṇā cāhīdā hai. 
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Sample output sentence is ਿਤੰਨ ਸ਼ਰਤ ਉਤਰਦਾ ਵੋਟ  ਚਾਹੀਦਾ  tinn sharat utradā vōṭ   
cāhīdā  with Sentence Score is 2 as it contains two noun words.  

4   Conclusions 

In this paper, we have discussed the various pre-processing operations for a  Punjabi 
Text Summarization System. Most of the lexical resources used in pre-processing 
such as Punjabi stemmer, Punjabi proper name list, English-Punjabi noun list etc. had 
to be developed from scratch as no work had been done in that direction. For 
developing these resources an indepth analyis of Punjabi corpus, Punjabi dictionary 
and Punjabi morph had to be carried out using manual and automatic tools.  

This the first time some of these resources have been developed for Punjabi and 
they can be beneficial for developing other NLP applications in Punjabi.  
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Abstract. Statistical Machine Translation model take the view that every sen-
tence in the target language is a translation of the source language sentence with 
some probability. The best translation, of course, is the sentence that has the 
highest probability. A large sample of human translated text (parallel corpus) is 
examined by the SMT algorithms for automatic learning of translation parame-
ters. SMT has undergone tremendous development in last two decades. A large 
number of tools has been developed for SMT and put to work on different lan-
guage pairs with fair accuracy. This paper will give brief introduction to Statis-
tical Machine Translation; tools available for developing Statistical Machine 
Translation systems based on Statistical approach and their comparative study. 
This paper will help researcher in finding the information about SMT tools at 
one place.  

Keywords: Statistical Machine Translation, SMT Tools, MOSES, EGYPT, 
PHARAOH, Whittle, Thot, Systran, GIZA, GIZA++, SLMT, YASMET, 
MALLET, MARIE, SRILM, IRSTLM, CMU-SLM, Joshua, ReWrite Decoder, 
MOOD, RAMSES, CARMEL, CAIRO, OpenNLP. 

1   Introduction to SMT 

Statistical approach to Machine Translation was first introduced by Warren Weaver in 
1949 taking ideas from information theory. In recent year IBM’s Thomas J. Watson 
Research Center contributed significantly to SMT [W1].  

Basic idea behind SMT is that if we want to translate a sentence f in source lan-
guage F to a sentence e in the target language E, then it is translated according to  
the probability distribution P(e|f). One approach to find P(e|f) is to apply Baye’s  
Theorem, that is 

P(e|f) ∞ P(f|e)*P(e)                                              (1) 

Where P(e) and  P(f|e) are termed as Language model and Translation Model respec-
tively.  [P1] More detail about Statistical Machine translation can be found at 
http://www.statmt.org/ 
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2   Steps in Statistical Machine Translation 

Basic steps involved in the development of Statistical Machine Translation System 
are (1) development, cleaning and alignment of parallel corpus in the required lan-
guage pair.  (2) Find the probability P(e) using a Language modeling toolkit like 
SRILM, SLMT, MALLET, YASMET, IRSTLM (3) Find the probability P(f|e) using 
Translation modeling toolkit like GIZA, GIZA++, cairo and cairoize. (4) Use decoder 
to convert source language sentence to target language using Language Model and 
Translation Model. The resultant translation can be evaluated using evaluation tools 
like BLEU. 

3   Overview of Available Tools for Developing Statistical Machine 
Translation System 

3.1   Complete Toolkits 

These toolkits contain multiple tools used in different phases of translation process. 
Moses, EGYPT, PHARAOH, Thot, MOOD and OpenNLP tools are common toolkits.  

Moses[P3][W2] was developed in C++ for Linux and Intel MAC by Hieu Hoang and 
Philipp Koehn at the University of Edinburgh. It is licensed under the LGPL (Lesser 
General Public License). Tools used in this toolkit are GIZA++, SRILM and 
IRSTLM.The tool has been successfully used for translating English to {French, 
Spanish, German, Russian} [W3] Czech to English [W3], English to Bangla [P2] etc.    

EGYPT [W4] was developed by the Statistical Machine Translation team during the 
summer workshop in 1999 at the Center for Language and Speech Processing at 
Johns-Hopkins University (CLSP/JHU). The kit includes the following tools: Whittle 
(A tool for preparing and splitting bilingual corpora into training and testing sets),  

GIZA (Training program that learns statistical translation models from bilingual 
corpora.), cairo (Word alignment visualization tool) and cairoize (A tool for generat-
ing alignments files). The toolkit is tested for English-French [W4] translation. 

PHARAOH [P4] was developed by Philipp Koehn as part of his PhD thesis at the 
University Of Southern California and Information Sciences Institute. It is written for 
Linux.  It requires some additional tools like Parallel corpus, SRILM (to train Lan-
guage Model), Carmel (Finite State Toolkit for the generation of word lattices and n-
best list). The use of product for Non Commercial use is allowed under agreement 
with University of Southern California.  A training system is required to generate 
translation model that is not available in the toolkit and need to written. 

Thot toolkit for SMT [W6][P5] was developed in C++ by Daniel Ortiz at the Pattern 
Recognition and Human Language Technology (PRHLT) research group of the  
Universidad Politécnica de Valencia (UPV) and the Intelligent Systems and Data 
Mining (SIMD) research group of the Universidad de Castilla-La-Mancha (UCLM). 
The main purpose of the toolkit is to provide an easy, effective, and useful way to 
train phrase-based statistical translation models to be used as part of a statistical  
machine translation system, or for other different NLP related tasks.  
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MOOD [P6] stands for Modular Object-Oriented Decoder. It is implemented in C++ 
programming language and is licensed under the GNU General Public License (GPL). 
Two major goals of the design of this toolkit are: offering open source, state of- the-
art decoders and providing architecture to easily build these decoders.  

OpenNLP [W5]: It is a collection of natural language processing tools. It is devel-
oped by Organizational Center for Open Source Projects related to Natural Language 
Processing. OpenNLP hosts a variety of java-based NLP tools which perform sen-
tence detection, tokenization, pos-tagging, chunking and parsing, named-entity detec-
tion, and co-references. The objective of OpenNLP project is to bring NLP research 
community on to a common platform. The OpenNLP machine learning package is 
Maxent. It is Java based package for training and using maximum entropy models. 

3.2   Language Modeling Tools 

Statistical Language Modeling Toolkit (SLMT) [W7]: SLMT is a suite of UNIX 
based software tools to facilitate the construction and testing of statistical language 
models. This toolkit provides support for n-grams of arbitrary size. In addition the 
toolkit is used to count word n-grams, vocabulary n-grams and id n-grams. It is  
written with the objective to increase the speed of operation.  

SRILM [W8][P7]: SRI Language Modeling Toolkit is mainly used in speech recogni-
tion, statistical tagging, segmentation, and machine translation. It has been under 
development in the ‘SRI Speech Technology and Research Laboratory’ since 1995. 
SRILM is freely available for noncommercial purposes. It is used as part of Moses 
and Pharaoh for language modeling. 

IRST LM Toolkit [W9]: It is a tool for the estimation, representation, and computa-
tion of statistical language models. It has been integrated with Moses, and is compati-
ble with language models created with SRILM. 

YASMET [W10]: YASMET stands for Yet Another Small MaxEnt Toolkit. This is a 
tiny toolkit for performing training of maximum entropy models. YASMET is free 
software under the ‘GNU Public License’ and is distributed without any warranty. 
Complete information about this tool is not available.  

MALLET [W11][P8]: MALLET stands for Machine Learning for Language Toolkit. 
It is a Java-based package based on statistical approach for natural language process-
ing, document classification, clustering, topic modeling, information extraction, and 
other machine learning applications.  

CMU-SLM [W12] [P9]: The CMU Statistical Modeling toolkit was written by Roni 
Rosenfeld at Carnegie Mellon University and released in 1994 in order to facilitate 
the construction and testing of bigram and trigram language models.  

3.3   Translation Modeling Tools 

GIZA++ [W13]: This tool is the extension of the program GIZA. GIZA++ has a lot 
of features such as support for Model 4, Model 5 and Alignment models depending on 
word classes. It implements the HMM alignment model: (Baum-Welch training,  
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Forward-Backward algorithm, empty word, dependency on word classes, transfer to 
fertility models). This tool is used as part of Moses and Egypt for the training of trans-
lation model.  

CARMEL: [W14] Carmel is a finite-state transducer package written in C++ by 
Jonathan Graehl at USC/ISI. The tool is used to develop translation model for PHA-
RAOH. The supporting software requires for its working are GNU Make (at least 
version 3.8), or Microsoft Visual C++ and .NET. The product can be used for  
research purpose under license agreement with University of Southern California.  

3.4   Decoders 

ReWrite Decoder [W15][P11]: ReWrite decoder use the Translation Model Trained 
using GIZA++. It takes input in XML format, plain text is not supported. While  
performing swapping It takes care of phrase boundaries.  

MARIE [P10]: It is N-gram-based Statistical Machine Translation decoder [P8]. It 
has been developed at the TALP Research Center of the Universitat Politècnica de 
Catalunya (UPC) by Josep M. Crego as part of his PhD thesis, with the aid of Adrià 
de Gispert and under the advice of Professor José B. Mariño. It was specially design 
to deal with tuples (bilingual translation units) and a translation model trained as a 
typical N-gram language model (N-gram-based SMT). In addition, MARIE can use 
phrases (bilingual translation units) and behave as a typical phrase-based decoder 
(phrase-based SMT). In order to perform better translations, the MARIE decoder can 
make use of a target language model, a reordering model, a word penalty and any 
additional translation models.  

Joshua [W16]: It is an open source decoder for statistical translation models based on 
synchronous context free grammars. Joshua Decoder was released on June 12 2009 by 
Chris Callison Burch. Joshua uses the synchronous context free grammar (SCFG) 
formalism in its approach to statistical machine translation. 

RAMSES [P6]: RAMSES is a clone of PHARAOH developed as part of MOOD. The 
main goal behind the development of RAMSES was to develop a decoder similar to 
PHARAOH and make it freely available to the research community.  

Phramer [W17]: Is an Open-Source Statistical Phrase-Based Machine Translation 
Decoder. Version 1.1 was released on July 5, 2009. It is available at 
http://www.phramer.org 

3.5   Evaluation Tools 

BLEU [P12][P13][P14]: BLEU (Bilingual Evaluation Understudy) is an algorithm 
for evaluating the quality of text which has been machine-translated from one natural 
language to another. Quality is considered to be the correspondence between a ma-
chine's output and that of a human: "the closer a machine translation is to a profes-
sional human translation, the better it is" [P2]. BLEU was one of the first metrics to 
achieve a high correlation with human judgments of quality [P13,P14] and remains 
one of the most popular evaluation tool.  
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4   Comparison of Some of the Available Toolkits 

Tool Kit Language OS License Source 
Code 
Availa 
bility 

Downloadable from 

Moses C++ LINUX, 
Intel  
Mac 

OSL 
under 
LGPL 

Yes http://www.statmt.org/moses/ 

EGYPT C, C++, 
java, Perl 

LINUX OSS Yes http://www.clsp.jhu.edu/ws99/ 
projects/mt/toolkit/ 

SLMT C UNIX OSS Yes http://svr-
www.eng.cam.ac.uk/~prc14/ 
toolkit.html 

MALLET Java Any OSS Yes http://mallet.cs.umass.edu/index
.php 

IRST LM C++ LINUX OSS Yes http://sourceforge.net/projects/ 
irstlm/ 

YASMET C UNIX GNU 
GPL 

Yes http://www.fjoch.com/YASME
T.html 

SRILM C++ LINUX OSS Yes http://www.speech.sri.com/proj
ects/srilm/ 

OpenNLP Java Any OSS Yes http://maxent.sourceforge.net/ 
PHAROH C++ LINUX Under 

License 
Agree-
ment 

No http://www.isi.edu/publications/
licensed-sw/pharaoh/ 

Thot C++ LINUX OSS Yes http://www.info-
ab.uclm.es/simd/software/thot 

MOOD C++ LINUX 
Windows 

Under 
License 
Agree-
ment 

Yes http://smtmood.sourceforge.net. 

OSS: Open Source Software.  LGPL: Lesser General Public License. 
GNU GPL: GNU General Public License. 

5   Conclusion 

Most of the tools studied in this paper are developed using C++ language for UNIX 
and LINUX operating systems. Source code of all the tools except PHARAOH and 
MOOD is available for use and modification under Open Source Software License 
agreement. The use of MOOD and PHARAOH is under License agreement with de-
veloping organizations. It has been found that Moses is the most widely used SMT 
tool. MALLET and OpenNLP are Java based tools and can be used on any platform 
under OSS. It is also found that a number of tools are available for developing Lan-
guage Model (GIZA, GIZA++, cairo and cairoize), Translations Model (SRILM, 
SLMT, MALLET, YASMET, IRSTLM). These models are used by specific decoder 
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(PHARAOH, ReWrite Decoder, MARIE, Phramer, Ramses, Joshua) for language 
translation. We are not able to search any system in Indian languages using these 
tools. Only one system has been developed using Moses for English to Bangla Trans-
lation by Md. Zahurul Islam in August 2009. A lot of work needs to be done on  
Statistical Machine Translation in Indian languages.  
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Abstract. For the last two decades, research in the field of automatic speech 
recognition (ASR) has been intensively carried out worldwide, motivated by the 
advances in signal processing techniques, pattern recognition algorithms, 
computational resources and storage capability. Most state-of–the–art speech 
recognition systems are based on the principles of statistical pattern recognition. 
In such systems, the speech signal is captured and preprocessed at front-end for 
feature extraction and evaluated at back-end using continuous density hidden 
Markov model (CDHMM). Maximum likelihood estimation (MLE) and several 
discriminative training methods have been used to train the ASR, based on 
European languages such as English. This paper reviews the existing 
discriminative techniques like maximum mutual information estimation 
(MMIE), minimum classification error (MCE), and minimum phone error 
(MPE), and presents a comparative study in the context of Hindi language ASR.  
The system is speaker independent and works with medium size vocabulary in 
typical field conditions. 

Keywords: ASR, HMM, discriminative techniques, MFCC. 

1   Introduction 

Speech is the most natural and comfortable means of communication for humans. To 
communicate with computer machines man still requires interfaces like keyboard, 
mouse, screen and printer, operated by sophisticated languages and software. A 
simple solution of this problem would be possible if machine could simulate the 
human production and understanding of speech. To realize this, speech technology 
has come into existence over the last four decades. The key components of this 
technology are automatic speech recognition (ASR), text to speech conversion (TTS) 
and speaker and language identification. Among them ASR is the most difficult task 
having a variety of applications such as interactive voice response system and 
applications for physically challenged persons [1]. 

The two main components, normally used in ASR, are signal processing 
component at front end and pattern matching component at back end. We have used 
Mel frequency cepstral coefficient (MFCC) [2] and continuous density hidden 
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Markov model at front-end and back-end respectively [3]. Markov models are 
generally trained with the help of tagged databases using the maximum likelihood 
estimation (MLE) [4] or discriminative training techniques [5]. 

For European languages such as English, standard databases like TIMIT and ATIS 
are available [6] but the major hurdle in speech research for Hindi or any other Indian 
language is the deficiency in resources like speech and text corpora. We have 
prepared our own database with the help of EMILLE text corpus [7]. 

This paper presents a comparative study of the conventional MLE technique and 
the recently proposed discriminative techniques [8] such as maximum mutual 
information estimation (MMIE), minimum classification error (MCE), and minimum 
phone error (MPE) for the design and development of Hindi speech recognition 
system. Rest of the paper is organized as follows: section 2 presents the architecture 
and functioning of proposed ASR. Statistical discriminative techniques are covered in 
section 3. Section 4 shows the experimental results with brief analysis. Finally 
conclusions are drawn in section 5. 

2   Working of ASR 

ASR operates in five phases: feature extraction, acoustic modeling (i.e. HMM), 
pronunciation modeling (i.e. lexicon), language modeling and decoding as shown in 
Fig. 1. As a first step, the speech signal is parameterized by the feature extraction 
block. Features are normally derived on a frame by frame basis using the filter bank 
approach. Using a rate of roughly 100 frames/sec, Hamming speech windows of  
20-30 milliseconds are processed to extract cepstral features, which are augmented 
with their first and second order derivatives to form observation vectors [9]. 
 

 
 

Fig. 1. Block Diagram of Automatic Speech Recognition System 
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These feature vectors are decoded into linguistic units like word, syllable, and 
phones [10]. For large vocabulary task, it is impractical to create a separate acoustic 
model for every possible word since it requires too much training data to measure the 
variability in every possible context. A word model is formed by concatenating the 
models for the constituent subword sounds in the word, as defined in a word lexicon 
or dictionary. Similarly sentences are built by concatenating word models. 

Speech recognition is a pattern classification problem which requires training and 
testing of the system. At the time of training, acoustic and language models are 
generated which are used as knowledge sources during decoding [11]. The main role 
of acoustic model is the mapping from each sub word units to acoustic observations. 
In language model rules are introduced to follow the linguistic restrictions present in 
the language and to allow redemption of possible invalid phoneme sequences [3]. 

3   Discriminative Techniques in Statistical Framework 

3.1   Analysis of Conventional Statistical Methods 

Among the various acoustic models, HMM is so far the most widely used technique 
due to its efficient algorithm for training and recognition. It is a statistical model for an 
ordered sequence of symbols, acting as a stochastic finite state machine which is 
assumed to be built up from a finite set of possible states [12].  Traditionally, the 
parameters of Markov models  are estimated from speech corpora using the maximum 
likelihood estimation (MLE) [4], which maximizes the joint likelihood over utterances, 
namely, acoustic features extracted from speech signals and their transcriptions (words 
or phonemes) in the training data. MLE is based on Expectation-Maximization (EM) 
algorithm [13] and is very appealing in practice due to its simplicity and efficiency, 
especially in case of large vocabulary where it is required to manage thousands of 
hours of acoustic data. Mathematically it can be expressed as:   ∑ ;    .                                  (1) 

Where is the  training utterance with transcription  and  refers to the 
model parameters. However, ML-based learning relies on the assumptions [4]: 

• The correct functional form of the joint probability between the data and the 
class categories is known. 

• There are sufficient amount of representative training data. 

Which are not often realistic in practice and limits the performance of ASR.  

3.2   Discriminative Techniques 

Noting the weakness of MLE, many researchers have proposed discriminative 
techniques as an alternate solution. These are maximum mutual information 
estimation (MMIE), minimum classification error (MCE), and minimum phone error/ 
minimum word error (MPE/MWE). The aim of MMI criterion is to maximize the 
mutual information between the word sequence, and the information extracted by a 
recognizer with parameters  from the associated observation sequence,  [14]. The 



264 R.K. Aggarwal and M. Dave 

conventional MCE has been based on the generalized probabilistic descent (or 
gradient descent) method, in which we define the objective function for optimization 
that is closely related to the empirical classified errors [15]. The MPE criterion is a 
smoothed approximation to the phone transcription accuracy measured on the output 
of a word recognition system given the training data. The objective function in MPE, 
which is to be maximized, is:  ∑ ∑ | ,     .                                (2) 

Where  represents the HMM parameters; |  is defined as the scaled posterior 
probability of the sentence  being the correct one (given the model) and formulated 
by: | |  ∑ |                                           (3) 

Where  is the scaling factor typically less than one,  is the speech data for  
training sentence; and ,  is the raw phone transcription accuracy of the sentence 

 given the reference , which equals the number of reference phones minus the 
number of errors [16]. 

4   Experimental Results 

The input speech was sampled at 12 kHz, and then processed at 10 ms frame rate 
(i.e.120 samples/frame) with a Hamming window of 25 milliseconds to obtain the 39 
MFCC acoustic features. For speech signal parameterization, 24 filters were used to 
get 12 basic features. Thirteen static features (12 basic and one energy) were 
augmented with 13 delta and 13 delta delta features, thus forming a 39 dimensional 
standard MFCC feature vector. For word model 7-states HMM per word and for 
phone model 3-states HMM per phone, along with dummy initial and final nodes 
were used. The experiments were performed on a set of speech data consisting of five 
hundred words of Hindi language recorded by 10 male and 10 female speakers using 
an open source tool Sphinx4 [17] with Fedora 9. For recording a sound treated room 
was used and microphone was kept at a distance of about 10 cm from the lips of the 
speaker. Each time model was trained using various utterances of each word. Testing 
of randomly chosen hundred words spoken by different speakers is made and 
recognition rate (i.e. accuracy) is calculated, where  

Recognition rate = Successfully detected words / Number of words in test set. 
Using the frame synchronous CDHMM the following results were analyzed:  

• Variation in the recognition rate with different discriminative techniques.  
• Variation in the recognition rate with different modeling units.  

4.1   Experiment with Discriminative Techniques 

Experiments were performed for MLE-based and discriminative based HMMs with 
another parameter speaker dependent (SD), independent (SI) and MLLR based 
speaker adaptation (SA)[18] as given in Table 1. Two to five percent more accuracy 
was achieved by the advanced models proposed in literature in comparison to the 
standard HMM. 
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Table 1. Accuracy with Estimation Techniques 

Estimation Techniques SD SI SA 
Conventional MLE 93% 86.9% 88.2% 

Discriminative MMI 93.8% 88% 89.3% 
Discriminative MCE 94.5% 89.2% 90.2% 
Discriminative MPE 95% 90.4% 91.3% 

4.2   Experiment with Modeling Units 

Whole word model and context independent phoneme model of standard HMM with 
linear left-right topology was used to compute the score against a sequence of features 
for their phonetic transcription. In phoneme based HMM, total 48 Hindi language 
based phone models were used [19]. For small vocabulary the word model is enough, 
but as the vocabulary size increases phone model is required to achieve optimum 
results as shown in Fig. 2.  

 
Fig. 2. Accuracy with Modeling Units 

5   Conclusion 

In a developing country like India, there lies vast potential and immense possibility to 
use speech effectively as a medium of communication between Man and Machine, to 
enable the common man to reap the benefits of information and communication 
technologies. Motivated by this, we have compared different types of statistical 
techniques in the context of medium size (vocabulary) Hindi speech recognition 
system to achieve the best results. With the help of our results we observed a 
significant improvement in the performance of Hindi ASR by using discriminative 
MPE technique with speaker adaptation. Further the results showed that the word 
recognition accuracy of whole word models decreases more rapidly than that of sub 
word models with large vocabularies.  We conclude that the discriminative 
approaches presented in this paper outperform the traditional model for domain 
specific Hindi speech recognition system in typical field conditions and can be useful 
in real time environment. 
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Abstract. India is a multilingual, linguistically dense and diverse country with 
rich resources of information. In this paper we describe the heuristics in a pre-
processor layer to an existing anaphora resolution approaches in Hindi language 
and tested with an experiment. The experiment was conducted on pronouns and 
presented the results as observations.  

Keywords: Anaphora resolution, Syntactico-semantic Knowledge, Natural 
Language Processing, pre-processor, hybrid approach, heuristics. 

1   Introduction 

In recent years the Natural Language Processing (NLP) applications have increasingly 
demonstrated the importance of anaphora or coreference resolutions. In fact, that the 
successful identification of anaphoric or coreferential links is vital to a number of 
applications such as machine translation, automatic abstracting, dialogue systems, 
question answering system and information extraction [3],[6].  

In Indian languages, research in the development of computational solutions to 
automatic anaphora resolution (AR) is not much as in English and in other European 
languages. Hobb’s algorithm is built-up on syntactic information. It is considered to 
be computationally an economical algorithm. Though Hirst has reported limitations of 
this algorithm, the suitability of the application of Hobb’s algorithm has explored for 
pronominal anaphoric reference for Hindi language texts [2]. For Indian languages, 
various experiments has been presented on Hindi language using rule based approach, 
a comparative system between Malayalam and Hindi, corpus based studies using 
centering theory and s-list algorithm. In fact we have seen Hobb's Naive algorithm 
being used for Turkish, similarly a machine learning based algorithm being suggested 
for Tamil [3], [5], [6], [7], [9]. However, have seen considerable advances in the field 
of AR, still a number of outstanding issues that either remain need further attention 
and, as a consequence, represent major challenges to the further investigation is how 
far the performance of AR algorithms can go and what are the limitations of 
knowledge-of poor methods. In particular, more research should be carried out into 
the factors influencing the performance of existing algorithms. Another significant 
problem for automatic AR systems is that the accuracy of the processing is still too 
low and as a result the performance of such systems remains far from ideal. 
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We aim to come up with some heuristics which may be used to quickly decypher 
anaphora. Functionally, we took Hindi treebank corpus as inputs (i.e. manually 
annotated data for verify the experiment), apply on it created heuristics, and through 
these heuristics identify maximum number of anaphora. Those anaphoras that miss 
this heuristic filter may further be identified through conventional process means 
which are currently available for knowledge poor and then knowledge rich methods. 
This is an attempt to present a framework of anaphora resolution that is based on 
combination of heuristics and knowledge poor and rich methods to be applied for 
Hindi only. The type of anaphora to be incorporated is pronominal anaphora. The 
refined aim then is to investigate natural language processing techniques that are 
applicable to pronominal AR in Hindi. 

2   Experiment and Methodology 

Our approach will be a hybrid– it will consider the previous approaches but be be-
yond them, we intend to involve heuristics. The plan is to pre-process the data with 
heuristics before feeding them to an existing AR approaches, like in Fig. 1.  

2.1   Architecture of Framework  

We hypothesize that by early pre-processing we are able to not only identify more 
anaphora in a discourse, but also be able to increase the efficiency of an overall pro-
posed AR system Fig. 1. Therefore, we propose in this paper that we only conduct the 
experiment and establishing the possibility of a heuristics in a pre-processor layer. It 
would be up-to the follow-up - incorporate a complementary layers, and to fine tune 
the overall hybrid framework to increase resolution efficiencies. 

 

Fig. 1. Hybrid approach framework for Indian language AR system 
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2.2   Data for Experiment 

Corpus. We have used the corpus which was collected from various reliable web 
resources specifically on health and tourism domains. This data have been cleaned 
and parsed through Hindi shallow parser [4]. The parsed data will be in Shakti  
Standard Format (SSF) [1], [4]. This data have been verified by language editors. For 
testing and evaluation, we used this parsed Hindi corpus. 

2.3   Methodology and Procedure 

We have chosen to use a heuristics in a pre-processor layer of AR system. We wanted 
to experiment with how such a system would be conceived, devised and developed. 
For this sake we choose to start with toy-sentences, come up with heuristics based on 
syntactico-semantic knowledge of human-beings, and tested with one sample heuris-
tic with pronoun “apne” on standard test data, which is manually verified corpus. 
Choosing only one heuristic was that we wanted to see the entire process from begin-
ning to end and resolve the system level issues first before choosing and implement-
ing multiple heuristics. We did develop 10 heuristics but in this paper presented the 
results of only one [8].  

We have implemented an algorithm to test heuristics. In the pre-processor layer–
the given input data has parsed through parser and it has extracted features from  
output of parser which is in SSF. Resulted data process through given heuristics and 
verified the conditions if get satisfies sent to output layer, else iterate. Finally,  
compare the results against those that manually identified anaphora results on  
test data. The results of comparison, analysis was presented in observations and con-
clusions section. 

3   Observations and Conclusions 

We have implemented a heuristic on “apne” pronoun in given test data i.e. 10 stories 
for this experiment. Test data contains total 12 number of “apne” pronoun according 
to definition. Manually identified testing anaphors as baseline are 10. After successful 
implementation, the heuristic has identified 11 anaphors from the same test data i.e. 
92% recall. The outputs have been verified manually and removed the errors, finally 
the precision has reported as 71%. This reported result properly tracked at first itera-
tion of the heuristic on “apne” pronoun.  

In this process overall 29% of errors were occurred due limitations are not working 
with a cataphora, not working with antecedent chaining and not going beyond current 
sentence for an “apne” pronoun resolution. This experiment was simultaneously 
challenging, interesting and insightful.  

We faced many challenges with preparation of heuristics, execution of algorithm, 
collection and cleaning of Hindi text data, handling of old and new versions, etc. Our 
learning has been that toy grammar and sentences are one thing, and real-life sen-
tences are another. Toy resources are good for conceptual understanding in human 
beings, but not for designing “industrial grade” algorithms or solutions. 

We feel that the ultimate desired solution is currently only being asymptotically 
reached by today's popular strategies. Though lot of work has already been done on 
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anaphora resolution (both for English and other languages), there is still lot of new 
work to be done for Indian languages. It is indeed an ocean for the interested linguists 
and researchers. 

4   Future Work 

We emphasize the need for the extending this work for further research into the  
refinement of other heuristics and integration with S-list based approach according to 
the proposed framework. And work with more data towards value adds. Finally, build 
a web interface for the proposed framework as a complete AR system to Indian  
languages in multilingual context. 
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Abstract. Automated learning systems used to extract information from images 
play a major role in document analysis. Optical character recognition or OCR 
has been widely used to automatically segment and index the documents from a 
wide space. Most of the methods used for OCR recognition and extraction like 
HMM’s, Neural etc, mentioned in literature have errors which require human 
operators to be rectified and fail to extract images with blur as well as illumina-
tion variance. This paper explains proposes an enhancement supported thresh-
old based pre-processing methodology for word spotting in Marathi printed  
bimodal images using image segmentation. The methodology makes use of an 
enhanced image obtained by histogram equalization followed by followed by 
age segmentation using a specific threshold. The threshold can be obtained us-
ing genetic algorithms. GA based segmentation technique is codified as an  
optimization problem used efficiently to search maxima and minima from the 
histogram of the image to obtain the threshold for segmentation. The system  
described is capable of extracting normal as well as blurred images and images 
for different lighting conditions. The same inputs are tested for a standard GA 
based methodology and the results are compared with the proposed method. 
The paper further elaborates the limitations of the method.   

Keywords: OCR, Genetic Algorithm, Bimodal, Blur, Illumination. 

1   Introduction 

Optical character recognition (OCR) is a mature field, born in 1950’s initially prac-
ticed with electronic and electro-mechanical methods aimed towards machine printing 
while limited to fixed-format applications. A typical OCR system is widely used for 
character segmentation, segment reconstruction, character recognition, and word and 
phrase construction without human intervention or human correction. The basic step 
before all the application mentioned above is image enhancement and segmentations, 
hence the paper focuses on the same. 

According to literature survey, a number of methods have been proposed for image 
enhancement and segmentation of OCR but the in ability of these systems to work 
together for different experimental conditions is a major drawback in document 
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analysis. Besides the poor quality of images, illumination changing conditions also 
makes OCR recognition a daunting task. The error incurred is corrected using a hu-
man support system which is a time consuming as well as a costly proposal. This 
paper proposes an OCR system which makes use of histogram equalization to extract 
images blur as well as illumination varying conditions simultaneously. The histogram 
used by the mentioned algorithm is bimodal in nature hence it can be divided into two 
classes. Genetic algorithm is further used to select the threshold from the histogram 
for extracting the object from the background. The capabilities of the system are 
tested on images with blur, noise and change in illumination.  

The paper is divided into five sections. The next section elaborates the related work 
to OCR enhancement and recognition developed over the past few years. Third  
section explains the standard and proposed methodology used in the paper to enhance 
and extract the characters followed by the results obtained from the simulations in  
the fourth section. A brief summary of the paper is presented in the last section of  
the paper.  

 

Fig. 1. (a) The input RGB image further converted into gray scale, the results along with the 
histogram obtained from standard algorithm  (b The input blur image, the corresponding results 
along with the respective histograms obtained from standard algorithm (c) The input illumina-
tion variant image, the results along with the respective histograms obtained from standard 
algorithm 

2   Related Work 

In case of bimodal images, the histogram has a deep and sharp valley between two 
peaks representing objects and back ground respectively which can be used to select 
the threshold representing the bottom of this valley. Khankasikam et. al [1], [6] pro-
posed the valley sharpening techniques which restricts the histogram to the pixels 
with large absolute values of derivatives where as S. Watanable et. al. [2], [7]  
proposed the difference histogram method, which selects threshold at the gray level 
with the maximal amount of difference. These techniques utilize the information 
concerning neighboring pixels or edges in the original picture to modify the histogram 
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so as to make it useful for thresholding. Another class of methods deal directly with 
the grey level histogram by parametric techniques. The histogram is approximated in 
the least square sense by a sum of Gaussian distributions, and statistical decision 
procedures are applied [8]. However, such methods are tedious and involve high 
computational power. In Di Gesu [3], [8] the idea of using both intensities and spatial 
information has been considered to take into account local information used in human 
perception. A number of new strategies and methodologies have been proposed over 
the last couple of years to detect the global as well as local solutions in a nonlinear 
multimodal function optimization [4], [5], [9]. Multiple peaks can be maintained in 
multimodal optimization problem with the help of crowding. Crowding method is 
extremely efficient in detecting in detecting the two peaks on a bimodal histogram. 
Further, GA can be applied to discover the valley bottom between these peaks which 
can be used as the threshold for extracting the information from the background.  

3   Algorithm 

The section discusses the standard GA based algorithm being used for information 
extraction. In the second section, a novel histogram based methodology which can  
be efficiently used to extract information from bimodal images is presented. The  
algorithms are explained in detail below. 

3.1   Standard GA Based Algorithm 

The algorithm is a histogram based approach effectively used to extract useful infor-
mation from bimodal images. The histogram of the digital image is a plot or graph of 
the frequency of occurrence of each gray level in the image across gray scale values. 
Genetic algorithm is applied on the histogram of the bimodal image to extract the 
useful information from the background. A random population of size N  is initial-
ized where the element acquire the value between 0 to 255. The crossover and muta-
tion operations are carried out on the randomly chosen two parents. Appropriate value 

of crossover probability ( cP ) and mutation probability ( mP ) is fixed. The winner of 

each tournament (the one with the best fitness) is selected. After computing the fitness 
value of the off-springs, Tournament selection strategy is used to allow off- springs to 
compete with the parents. It involves running a competition among two individuals  
 

 

Fig. 2. (a) The input image and the corresponding enhanced image (b) The equalized histogram 
of the resultant enhanced image 
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chosen at random from the population. The fittest between both is selected. This is the 
method used in Genetic algorithm for selection of individual from the population. 
Here two parents and two-off springs compete to give two best individuals as result. 
The resulting selected elements are located in their respective classes. The methodol-
ogy used is termed as Crowding Method. This method basically replaces the older 
elements in the population by the fittest elements in the resulting generation which 
helps to reduce replacement error. The repetition performed for all the elements re-
sults into convergence. This converged value is the gray value corresponding to the 
minima between two peaks. Then this gray value is used as threshold value and the 
image is segmented. 

 

Fig. 3. (a) The input, enhanced and resultant image for illumination changes for proposed  
algorithm (b) The input, enhanced and resultant image for blur for proposed algorithm 
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3.1   Proposed Algorithm  

The paper proposes a new method which gives better results under blur as well as 
illumination varying conditions as compared to the standard GA based method. The 
method is divided into two steps. In the first step, the histogram of the image is equal-
ized which results into the redistribution of the intensities in the histogram as shown 
in fig. 2 (a). The normalized histogram for the reference input is shown in fig. 2 (b), 
which shows the redistribution of pixel intensities. It results into an increase in the 
intensities of the pixels which are low in grayscale while performs a decrement for 
high intensity valued pixels. The intensities with lower intensity value are upgraded to 
higher values and vice versa. These changes in the intensity values results into the 
enhancement of the bimodal image. With the enhancement in the histogram, the in-
tensity values increase as well as decrease for every pixel due to redistribution of the 
histogram. This leads to an enhancement in the gray values of the class which is has 
gray scale values near to the upper band (129 to 255). This operation helps the pixels 
belonging to upper band to move towards upper band. Further genetic algorithm is 
applied on the equalized histogram in order to extract the threshold. The threshold 
selected in this case will be higher as compared to the previous methodology due to 
the increase in the pixel intensities because of which a higher threshold will be re-
quired to extract the lower class pixels from the higher class pixels. On applying the 
threshold, the pixels values corresponding to the upper class can be easily separated 
from the pixels of the lower band as the histogram equalization already moved the 
pixels which were lower in value but belonged to the upper band towards the higher 
value. The method is highly efficient and can be effectively used to extract the infor-
mation from the image with different conditions. The technique used doesn’t oblige 
any valley sharpening techniques.  

4   Results  

The results obtained from the simulation enable us to explain the capabilities of the 
methodology applied to bimodal images. The robustness of the method is also further 
tested on blurred as well as images with varying illumination on an Intel Core 2 Duo 
2.20 GHz machine. The section compares the results on image with blur and illumina-
tion variance for the standard method with the proposed method. In the first phase the 
experimentation is performed for the standard method. Later the simulations are  
performed for the proposed method and the results are compared. 

A RGB image of Marathi language of image size 256 by 256 as shown in Fig. 1(a) 
is given as input to the standard GA based method system. Selection of a global 
threshold now reduces to determine a suitable gray value in between the peaks of the 
histogram. The two peaks in the histogram are obtained using crowding. The parame-
ters of the algorithm are selected as (i) number of population elements “ N ” is 20 (ii) 

crossover probability cP  =0.9 (iii) mutation probability mP  decreases trailing an 

exponential rate with starting value 0.05. Fig. 1(a) shows the maxima’s or detected 
peaks along with the minima’s obtained using genetic algorithm. Two peaks or 
maxima’s computed using genetic algorithm shown in fig. 1(a), form the basis of  
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image segmentation. The peaks are obtained at gray values 48 and 129 while the val-
ley is obtained at 92. Using the gray value 117 as threshold value segmentation of the 
original image is carried out and the resultant image is shown in Fig. 1 (a). The seg-
mentation of the object from the background is clearly visible using the threshold 
corresponding to the valley as shown in fig. 1 (a). The modes are clearly visible, sepa-
rated by a long valley which can be further used to segment the image.  

Further, the capabilities of the standard GA based system is tested on images with 
blur as shown in fig. 1(b). The histogram of the blur image is plotted as shown in  
fig. 1 (b). The peaks are obtained at gray values 47 and 88 while gray value 69 is used 
as threshold value for segmentation of the original blurred image from the back-
ground as shown in Fig. 1 (b). The same system is also tested on images with differ-
ent illumination and lighting conditions as shown in fig 1(c). The histogram of the 
image was plotted as shown in fig. 1 (c). The peaks are obtained at gray values 67 and 
129 while gray value 128 is used as threshold value for segmentation of the original 
image with illumination from the background as shown in Fig. 1 (c). The method is 
unable to extract the information from the background in case of both cases as shown 
in fig. 1 (a) and fig. 1(b) respectively.  

The section further explains the simulations obtained for proposed method on the 
same inputs as for the standard GA method. The image given input to the system is 
enhanced by histogram equalization as show in fig 2(a). The equalized histogram is 
shown in fig 2(b). It is observed that the intensity of the white boundary bounding 
pixels are increased along with the black pixels. The image becomes much brighter as 
compared to the original image hence the pixels which are suppose to be in the upper 
band move to a higher intensity. In the second and final step, image segmentation is 
performed using the GA based approach described above in the paper. The initial 
population, the crossover as well as the mutation probabilities assigned for the current 
methodology use the same values as specified in the previous method. The threshold 
value is obtained using genetic algorithm. The threshold value for the enhanced image 
is 210, which is much higher as compared to the threshold obtained in the case of 
normal image, as the overall intensity values have been enhanced in the histogram. 
The results obtained from the proposed methodology are much better as compared to 
the results obtained from the previous methodology mentioned above. The previous 
methodology mentioned in the paper failed to extract the useful information from the 
blurred images and images affected by illumination variations while the proposed 
method effectively extracts the information from the background efficiently as shown 
in fig. 3(a) and fig. 3(b) respectively.  

5   Conclusion 

The section presents a brief summary and a comparison of the algorithms discussed in 
this paper. Image segmentation for bimodal documents is the primary focus of this 
paper.  The problem triggers down to determine the threshold using histogram of the 
given image. Both the methodologies take support of genetic algorithm in order to 
decide the threshold while the preprocessing step is different for both the techniques. 
The proposed algorithm applies GA on an equalized histogram where as the standard 
method uses unchanged histogram of the image for the threshold determination. It is 
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observed that the standard GA based algorithm mentioned in the paper is incapable of 
extracting the images with blur and illumination variations while the proposed algo-
rithm efficiently separates the background from the useful data. The proposed method 
is extremely efficient to extract all kinds of bimodal images including blur and illumi-
nation but fails for images having histograms with multi-modal features. Currently, 
attempts are made to address two class images with noises and images requiring  
multiple thresholds. Attempts have been made to overcome this problem.  
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Abstract. A multilingual Indic keyboard interface is an Input Method that can 
be used to input text in any Indic language. The input can follow the phonetic 
style making use of the standard QWERTY layout along with support for popu-
lar keyboard and typewriter layouts [1] of Indic languages using overlays. 
Indic-keyboards provides a simple and clean interface supporting multiple lan-
guages and multiple styles of input working on multiple platforms. XML based 
processing makes it possible to add new layouts or new languages on the fly. 
These features, along with the provision to change key maps in real time make 
this input method suitable for most, if not all text editing purposes. Since Uni-
code is used to represent text, the input method works with most applications. 
This is available for free download and free use by individuals or commercial 
organizations, on code.google.com under Apache 2.0 license. 

Keywords: Input Method, IM, Indic, Localization, Internationalization (i18n), 
FOSS, Unicode, Panmozhi vaayil, Vishwa vaangmukha. 

1   Introduction 

Input method editors (IME) provide a way in which text can be input in a desired 
language other than English. Latin based languages are represented by the combina-
tion of a limited set of characters, and most languages have a one-to-one correspon-
dence of each character to a given key on a keyboard. When it comes to East Asian 
languages (Chinese, Japanese, Korean, Vietnamese etc.) and Indic languages (Tamil, 
Hindi, Kannada, Bangla etc.), the number of key strokes to represent an akshara can 
be more than one, which makes using one-to-one character to key mapping impracti-
cal. To allow for users to input these characters, several input methods have been 
devised to create Input Method Editors. 

2   Objective 

The focus has been to develop an Indic multilingual input method editor, with a  
minimalistic interface providing options to configure and select various language 
layouts. Configurability is inclusive of addition of new layouts or languages. Inputs 
can be based on popular keyboard layouts or using a phonetic style [1]. We call it 
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Panmozhi Vaayil in Tamil and Vishwa Vaangmukha: in Sanskrit, both meaning en-
trance for many languages. It is known by the generic name, Indic Keyboard IM in 
English and is available for download from http://code.google.com/p/indic-keyboards/ 

3   Motivation 

Some of the main reasons for developing Indic-keyboards are: 

1. To ease inputting of any Indian language under any platform. 
2. To facilitate increased use of Indian languages on the computer and internet. 
3. To provide a free interface with an unrestricted license. 
4. Support phonetic and other popular layouts in a single package. 
5. Need for a unified multiplatform input method. 
6. Ease of configurability and customizability. 

3.1   Existing Works and What They Offer 

Some of the existing, popular, easy, flexible input methods are: 
 

• Baraha IME – Provides phonetic support for a fixed number of languages 
and designed for use on Microsoft Windows platform [2]. 

• Aksharamala – Similar to BarahaIME with support for MS Windows [3]. 
• Smart Common Input Method (SCIM) – Designed to work on Linux with 

phonetic style of input [4]. 

3.2   What Indic-Keyboards (Panmozhi Vaayil) Offers 

The distinguishing features of our input method editor are: 
  

• Phonetic as well as popular keyboard layouts. 
• Dynamic module enabling the addition of new keyboard layouts by users. 
• Both on Linux platform and Microsoft Windows. 
• Phonetic key maps can be changed to meet user's requirements. 
• No installation hassles. 
• Open source. 
• Available under Apache 2.0 License, which means even commercial 

companies can use our code to develop products, after acknowledging us. 

4   Design 

Figure 1 shows the architecture. The design can be broadly categorized into the 
following modules: 

(1) User interface and the shell extension. (2) Capturing the keyboard events. (3) XML 
based Unicode processing. (4) Rendering the Unicode. 
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Fig. 1. System architecture of Panmozhi Vaayil showing the modules and their interaction 

4.1   User Interface and Shell Extension 

The User interface is a shell extension which sits in the system tray/Notification area. 
The main purpose of this is to allow users to interact with the input method. This 
mainly involves selection of the language and the particular keyboard layout. It also 
helps in enabling and disabling the input method, accessing help and to display the 
image of the keyboard layout currently selected. Apart from these, the menu also has 
provision for addition of new keyboard layouts. 

4.2   Capturing the Keyboard Events 

The input method is designed to operate globally. That is, once the input method is 
enabled, further key strokes will result in characters of the particular language se-
lected being rendered system wide. This requires the capture of the key presses sys-
tem wide across all processes. A keyboard hook installed in the kernel space will 
enable this. This module is, therefore, platform specific. 

4.3   XML Based Unicode Processing 

Finite Automata exists for each language and for every keyboard layout. It has been 
designed as XML files, where every XML file corresponds to a kBD layout. XML 
based processing makes it possible to add new layouts or new languages dynamically. 
The input key pattern is matched with the XML file to see if the pattern matched is a 
vowel or a consonant. For the input pattern, a sequence of Unicode(s) is returned. The 
structure of the XML file is as follows: 
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<pattern> 
 <char>A</char> 
 <unicode>0C86</unicode> 
 <consonant>0</consonant> 
 <uni2>0CBE</uni2> 
</pattern>  

The above XML block indicates that for the key press “A”, the corresponding Uni-
code is 0C86. The consonant tag tells us whether it is a vowel or consonant. If it is a 
vowel, a second tag gives the Unicode of the associated dependent vowel (if any). 

Two algorithms have been designed, one for phonetic style input and the other for 
keyboard layouts. Both are generic, i.e. same algorithm is used for keyboard layouts 
of all languages and one algorithm for phonetic input in any language. The XML key 
maps can be changed on the fly and the changes are reflected instantly. 

4.4   Unicode Rendering 

Once the key is pressed, simple grammar rules are applied to determine whether the 
output has to be a consonant, an independent vowel or a dependent vowel. The XML 
file is parsed and the corresponding Unicode is fetched. The Unicode is sent back to 
the process, where the keypress event took place and is rendered if any editable text 
area is present. The rendering of Unicode is platform specific. 

5   Implementation 

The following tools and languages have been used to implement the input method: 
 

1)Java SE – This is used to implement the main language processing module to get 
easy portability. Up to 80% of the code has remained common across platforms. 
2)Eclipse SWT – Used to implement the user interface. Eclipse SWT, which uses 
Java SWT, is preferred over other toolkits to get a native look and feel.. 
3)XML – Finite automata exists for every language (layout) and XML has been used 
to design it. Simple API for XML Parsing (SAX) has been used to parse the XML. 
4)Win32 libraries: Windows API, is Microsoft's core set of application programming 
interfaces (APIs) available for MS Windows platform. Almost all Windows programs 
(eg. SAPI, Tablet PC SDK, Microsoft Surface) interact with the Windows API. 
Platform specific portions have been implemented to run on Microsoft Windows 
variants using the Microsoft Win32 libraries. Both keystroke capturing and Unicode 
rendering have been accomplished using Win32 libraries. The steps involved are: 

a. Syshook.dll : Install a keyboard hook in the operating system. The hook is set up 
for the keyboard to listen to key presses. The Windows API used is SetWindow-
sHookEx() and the library accessed is user32.dll. (See Fig. 2) 

b. opChars.dll : Responsible for putting the character on to the current active win-
dow. Sends a message to the input event queue using the Windows API SendInput(). 
The library accessed is user32.dll 
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Fig. 2. JNI-Native code and keyboard hook procedure 

5)Evdev - Also known as the user input device event interface/Linux USB subsystem. 
Used to capture keystrokes in GNU/Linux. This provides a clean interface to handle 
keyboard, mouse, joystick etc. in the userspace in Linux. This involves the following: 

a. Open file descriptor to the input device using the open() API with suitable pa-
rameters. Use ioctl() to identify the device. 

b. Using the open file descriptor, continuously read bytes from the input device 
(can be key press/release, mouse movements) using the read() API. 
6)Xlib – Used for Unicode rendering in GNU/Linux. The steps involved are:  

a. Identify the current active window using XGetInputFocus() 
b. Make the window listen to all keypress events using XSelectInput() 
c. Using the keycodes obtained for every keypress/release event from evdev, using 

a mapping table to map the keycode to the keysym. Output the Unicode to the active 
window using XSendEvent() API. 
7)Java Native Interface – Also known as JNI in short. The JNI enables the 
integration of code written in the Java programming language with code written in 
other languages such as C and C++. The write once, run anywhere concept arises 
from the fact that Java acts as an abstraction layer on top of the native 
implementation. All the API java provides have been natively implemented and the 
Java code allows the same APIs to be used across platforms. 

The native code is usually packaged as a DLL or a Shared Object. The Java 
method which accesses the native code is created with a keyword "native". Header 
files need to be created for the classes which contain these methods. At run-time, java 
code interacts with the native libraries using predefined interfaces. The native meth-
ods can also call Java methods. This mechanism is known as JNI callback. 

6   Performance and Conclusion 

The languages and keyboard layouts currently supported are listed in Table 1. An 
easy-to-use user interface has been provided to add new layouts which are Inscript  
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Table 1. Languages and layouts currently supported by Panmozhi Vaayil 

Language Phonetic Layouts 

Tamil Yes Inscript, Tamil99, Remington 

Kannada Yes Inscript, KaGaPa 

Telugu, Gujarati Yes Inscript 

Bengali, Malayalam, Oriya, Gurumukhi No Inscript 

Hindi, Marathi Yes Inscript, Remington 
 

 
like. Additional phonetic or other layouts can be added based on the existing layouts 
by creating new XML files and following the prescribed structure. Existing layouts 
can be changed/customized to suit the user’s needs. In phonetic layouts, a single key 
press to vowel mapping is used to ensure lesser key presses for the completion of the 
CV combination. Ex : k (�) + Y (ை◌) = ைக instead of k + ae/ai. 

The input method is multithreaded and the following runtime statistics have been 
obtained. Java Monitoring and Management console has been used to profile. 
(1) Average Heap Memory usage : 4.0 MB (maximum : 5.0 MB).  (2) CPU usage : 
0.2% – 0.3%  (3) Garbage Collector: Average time for one sweep – 0.05s. Average 
heap space freed up – 1 MB.  (4) Number of threads: Peak – 15. Average live threads 
– 13 (2 threads are spawned by the input method). 

The flexibility of adding new Indic languages on the fly, modification of the exist-
ing layouts, changing the keypress - Unicode input combination for phonetic input 
makes it easy to use. Thus, we have abstained from modifying any system files and 
relieved the user of all installation hassles. It is fast and light on system resources. The 
user can run it through a pen drive, CD, DVD, hard disk or any portable media. Being 
open source and licensed under the Apache 2.0 License, developers and users alike 
can modify, recompile, or rewrite the source and can also make these appendages 
closed source. The license also allows developers to sell the modified code. Thus, a 
dynamic, flexible, easy to use, multiplatform, multilingual,.clean, unrestrictive input 
method has been designed. 
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Abstract. Window theory always an active topic of research in digital signal 
processing. It is mainly used for leakage reduction in spectral analysis. In this 
paper, the effect of windowing in power spectral density estimation of Tamil 
speech signal is analyzed. Four different window functions are implemented 
and their performances are evaluated based on the parameters such as sidelobe 
level, fall off and gain. Based on the experiments it is found that the effect of 
applying hamming window best suites for the Tamil speech signal. It can re-
duce the spectral discontinuities of the signal and this effect of hamming win-
dow is given as the potent metric for estimating the spectral power of Tamil 
speech signal. Here Power Spectral Density (PSD) estimation is computed by 
using parametric and non-parametric methods. The reduction of noise ratio in 
PSD is considered as the parameter and it is estimated through crest factor. Fi-
nally the paper concludes with the need of best windowing method for PSD par-
ticularly in parametric techniques. Evaluation is handled both objectively and 
subjectively for Tamil speech datasets. 

Keywords: Power Spectral Density, Hamming, Yule Walker, Crest factor, 
Tamil Speech. 

1   Introduction 

Window choice is an important task in any digital signal processing applications. 
Among the different types of windows, hamming window best suites for speech sig-
nal processing. Hence its potent advantage is used for the estimation of PSD [1] of 
Tamil voice signal. Especially, if the signals contain a non-stationary component 
which is randomly distributed among the data. Since speech is non-stationary to in-
vestigate these frequency characteristics, the PSD estimation [1] is done for various 
Tamil spoken words. For above process, two types of PSD methods are implemented 
namely parametric [5] and Non-parametric in which Tamil speech signals are taken as 
input data.  

The paper is organized as follows. Section 2 explains the subjective evaluation of 
windowing methods. Section 3 deals with various PSD techniques and its perform-
ance in Tamil speech signal. Section 4 explores the performance evaluation. Finally, 
the conclusion is summarized in section 5 with future work. 
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2   Evaluation of Windowing Methods 

Window choice [4] is crucial for separation of spectral components, where one com-
ponent is much smaller than another. For this research work four different types of 
windows are used namely Blackman, Bartlett, Triangular and Hamming. To evaluate 
the effect of these windows, various characteristics are considered such as sidelobe 
level, environmental bandwidth etc and they are explained in section 4. The best win-
dowing method should have minimum value for the above properties and it is clear 
from the figure1 hamming window gives better results than any other windows. 
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Fig. 1. (c) Performance of Triangular window     Fig. 1. (d) Performance of Hamming windows 

3   PSD Estimation for Tamil Speech Signal 

The process of estimating PSD is a very useful tool when analyzing the amplitude of a 
signal. This is done to avoid problems due to truncation of the signal [7]. In this pa-
per, Welch method of nonparametric and Yule-Walker AR [3] of parametric method 
is implemented.  

3.1   Non Parametric Welch Method 

Non-parametric methods estimates the PSD directly from the signal [9] itself. One of 
the popular methods of this type is Welch’s method [9], which consists of dividing the 
time series data into segments, and then averaging the PSD estimates. By default, the 
data is divided into four segments with 50% overlap between them. Although overlap 
between segments tends to introduce redundant information, this effect is diminished 
by the use of a hamming window, which reduces the importance or weight given to 
the end samples of segments (the samples that overlap).  
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3.2   Parametric Yule-Walker AR 

Parametric methods [5] can yield higher resolution than non-parametric methods in 
cases where the signal length is short. Instead of estimating the PSD directly from the 
data, they model the data as the output of a linear system driven by white noise [6] [7] 
(an adaptive filter), and then attempt to estimate the parameters of that linear system. 
The output of such a system for white noise [7] [8] input is an autoregressive (AR) 
process. These methods are sometimes referred to as AR methods. All AR methods 
yield a PSD estimate given by 
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The different AR methods estimate the AR parameters ap(k) slightly differ yielding 
different PSD estimates. This formulation leads to the Yule-Walker equations, which 
are solved by the Levinson-Durbin recursion. Only this method applies window [4] to 
data. Since parametric method [5] gives input the adaptive filter, the accurate PSD can 
be obtained without noise [6] [7]. It is clear form the experiments the Yule-Walker 
AR spectrum is smoother than Welch method especially in the start and end frame of 
a signal because of the simple underlying all-pole model. The subjective evaluation of 
these methods is shown in section 4. 

4   Performance Evaluation 

Performance evaluation is done for both windowing [4] and PSD methods separately. 
It is clear form the section 3, the performance of hamming window is best when com-
pared with other windows. It is done based on the following characteristics.  

1. Sidelobe Level: To minimize the effects of spectral leakage, a window function's 
FFT should have low amplitude sidelobes away from the centre, and the fall off to the 
low sidelobes should be rapid.  
2. Worst case processing loss: It is defined as the sum of scalloping loss and process-
ing Loss. This is a measure of the reduction of output signal to noise ratio resulting 
from the combination of the window function and the worst case frequency location. 
3. Equivalent noise bandwidth: A given FFT bin includes contributions from other 
frequencies including accumulated broadband noise. To detect a narrow band signal 
in the presence of noise, the noise should be minimized. This can be done by using a 
narrow bandwidth window function. 

Based on these characteristics it is clear that the hamming window satisfies all the 
above parameters. It has low amplitude sidelobes, has minimum worst case process-
ing loss and has less Equivalent noise bandwidth.  

For this implementation ten different Tamil speech signals are used. The Figure 2 
presents the performance evaluation of different windows.  
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Noise reduction in PSD is considered as a parameter for evaluating the performance 
of PSD. Pink noise [6] [7] is a signal or process with the PSD is inversely proportional 
to the frequency. It is used little more loosely to refer to any noise with a PSD of the 
form   where ƒ is frequency and 0 < α < 2, with α usually close to 1. 
One parameter of noise, the crest factor, is important for testing purposes, such as for 
amplifier and loudspeaker capabilities. So it is considered as a parameter for evaluation. 
The crest factor is reduced with using Yule Walker (AR) method. It gives minimum 
crest factor than Welch method. The figure 3 shows the performance evaluation of two 
PSD methods and its crest factor reduction for 5 speech samples. 

5   Conclusion 

Speech recognition problems use spectrum analysis as a preliminary measurement to 
perform speech bandwidth reduction and further acoustic processing. This paper in-
vestigates the use of possible window functions that minimize some of the difficulties 
encountered with default rectangular function based on empirical evaluation. The best 
window was selected from which it improves the power spectral estimation of speech 
signal which is also investigated. Based on smoothness of power spectral density 
estimation curve and crest factor reduction, it is observed that the Yulear Walker-AR 
method of parametric estimation works better for Tamil speech recognition system.  
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Abstract. Sanskrit and Hindi are considered structurally close owing to genea-
logical relations. However, on a closer look, Hindi appears to have diverged 
significantly more in terms of structure than in lexical ingenuities. Gender, 
number distinctions, ergative, postposition, verb group, double causative, echo 
are some (among many) remarkable structural innovations that Hindi has gone 
through over the ages.  While the structure of Sanskrit vibhakti was fairly or-
ganized, the same may not be true for Hindi. The present paper is a study in 
mapping Sanskrit Noun Phrase (NP) case markers with Hindi for Machine 
Translation (MT) purposes with a view to evolve cross-linguistic model for  
Indian languages. 

Keywords: case, case marker, vibhakti, divergence, transfer, contrastive study. 

1   Introduction 

It is a well-known fact that Machine Translation (MT) is one of the most difficult areas 
under computational Linguistics (CL). While translating from Source Language (SL) to 
Target Language (TL), a human translator may try to translate sentences as close  
to the meaning of source language and the structure of the target language as possible 
but the machines have a hard time translating these structures. A machine has to be 
taught the grammars of the two languages and the significant differences as well for the 
output to be as close to the input as possible. Though Hindi has descended from Sanskrit 
and has been heavily influenced by Sanskrit in many ways, yet there are significant 
differences between them in the structure and behavior of noun phrases. For example, if  
(1) bālikā āmra  khādati is translated into Hindi then the accusative marker am is not 
realized in Hindi (2) bālikā ām khātī hai. In another example a  in  v k a  (3) vānara  
v k a  ārohati, translates to par in Hindi. Similarly the am in g ha  (4) sa  g ha  
adhiti hati translates to me in Hindi translation. It is therefore important to study these 
comprehensively and evolve a reasonable Transfer Grammar (TG).  

2   Nature of Sanskrit and Hindi 

Sanskrit and Hindi belong to the Indo-Aryan family – Sanskrit belongs to and is also 
referred to as the ‘Old Indo-Aryan (OIA)’ and Hindi is a Modern Indo-Aryan (MIA) 
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language. Sanskrit has a well defined grammar thanks to Pa ini (7th BCE). According 
to Sanskrit grammar, a pada is defined as supti anta  pada  i.e a word with inflec-
tional suffix subanta or ti anta is pada. Subanta is a noun phrase and ti anta is the 
verb phrase. According to ek ti  vākya , a sentence may have only a verb phrase. 
Due to gender, number mismatches between Sanskrit and Hindi, the translation from 
the former into the latter needs significant structural alignments. The neuter in San-
skrit got arbitrarily assigned to masculine or feminine in Hindi. For example, agni is 
masculine in Sanskrit but feminine in Hindi.  Sanskrit has three numbers including the 
dual while Hindi has only two. As a result, the duals in Sanskrit got assigned to plu-
rals in Hindi. For example dvau aśvau is marked for dual number but in Hindi do 
gho e is marked for plural. There are more structural differences between the two at 
the level of verb forms like compound/complex verb forms, verb groups, and also at 
the level of NPs in terms of ergative, postpositions among many others.  

The syntactic and semantic functions of noun phrases are expressed by case-
suffixes, postpositions and various derivational and inflectional processes. There are 
two cases in Hindi: direct and oblique.  The direct case is used for nouns and is not 
followed by any postposition. The oblique case is used for nouns followed by a postpo-
sition. Adjectives qualifying nouns in the oblique case in the same phrase will inflect in 
the same manner. Case-suffixes and postpositions are used to express syntactico-
semantic roles. Case suffixes are bound morphemes and are added only to the noun 
phrases. The NPs in Hindi become oblique when followed by postpositions. The voca-
tive address forms may be preceded by the vocative morphemes o/he/are. Except for 
ergative, dative and passive subjects, the default case marker is null. Ergative marker 
ne is used with subject in perfective aspect with transitive verbs. When ne follows a 
noun, it is written separately and when it follows a pronoun, it is written as one word. 
ko case marker is used in a larger context in Hindi. It is generally assumed as karma 
kāraka (accusative) when verb is in k danta (primary derived noun) and shows 
anivāryatā (necessity) of the verb. The ko may be used  in many cases like agentive (5) 
rām ko ghar jānā hai, accusative (6) pitā putra ko dekh rahā hai, dative (7) mohan rām 
ko pustak detā hai, locative (8) somvār ko pa hāī hogī. In imperative, there is no case 
marker with agent as in  āp bai hiye, tum pānī lāo. etc. But in the sense of ‘cāhiye’, 
there must be ‘ko’ case marker in the imperative sentence as in (9) bālak ko pa hanā 
cāhiye. etc.  The se is used with instrumental and ablative case  frequently but it is also 
used in other cases like agentive (10) ram se ab uthā nahī jātā hai which is sāmarthya-
bodhaka. With accusative, instrumental, ablative, locative, in the sense of eating with 
subsidiary items (11) sonu ca anī se ro ī khātā hai, with negligence (12) tū mat pa h, 
merī balā se, with direction (13) ayodhyā se Mithilā gayā, with attention (14) dhyān se 
suntā hai, with time (15) tumhen kitane samay se hūn ha rahā hūn. The marker ke 
dvārā is used in passive sentences (16) rām ke dvārā rāva  mārā gayā.The marker ke 
liye is used with dative case (17) bālak ke liye pāni  lao. The markers kā, ke, kī, nā, ne, 
nī, rā re, rī are genitive case markers (Vajpeyee, 1976). 

3   Contrast between Sanskrit and Hindi Case Marking 

NPs in Sanskrit have sup suffixes as bound morphs while in Hindi they are repre-
sented as free morphs and therefore are assigned many roles in the language leading 
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to ambiguities. For example, in Hindi, ¿/ko/se case markers are used in other cases as 
well. Similarly in Sanskrit, kāraka may have karma-samj–ā in seven senses - desired, 
undesired, gambling, locative (adhi upasarga with √śī , √sthā and √ās, abhi + ni + 
√viś , up/anu/adhi/ā +√vas), akathita kāraka (by akathita  ca), motion etc (by 
Pā ini 1.4.52), anger etc (by Pā ini 1.4.38). In these senses, Hindi may have 
ko/me/se/par/¿ case markers. 

As Sanskrit is inflectional in nature, sup pratyaya (suffix) handles these Hindi 
postpositions without any ambiguity. Here, in each action, the vibhaktis, are assigned 
by specific rules from the A ādhyāyī. Therefore, one vibhakti may be used to show 
other kāraka (case marker) in Hindi. Examples of accusative in Sanskrit are (18) 
āmra  khādati, (19) v k a  ārohati, (20) sītā  pari ināya, (21) grāma  
adhiti hati, (22) grāma  gacchati, (23) krośa  gacchati, (24) āvā  krī ā  
paśyāma  etc. A vibhakti in Sanskrit may realize as multiple postpositions in Hindi. 
In above examples (18-21), āmra , v k a , sītā  and grāma  have dvitīyā vibhakti 
(accusative), but in Hindi, the meaning is ām+¿ (khātā hai), v k a par (ca hatā hai), 
sītā se (vivāha karatā hai) and grām me(rahatā hai) respectively.  In sentences (22) 
and (23), grāma  and krośa  have also the same case marker and verb gacchati is 
also the same but their translation g v jātā hai  and koś bhar jātā hai  have different 
sentence structures and meanings. Here bhar is inserted with  koś to denote the dis-
tance.  In (24), the accusative has no case marker (hamdono  khel  dekhte hain).  

Generally for accusative in Hindi, ko case marker is used. But ko case marker de-
pends on semantic conditions like the object being animate and whether specificity is 
being intended. ko will not be used if the object is in-animate or non specific marking 
is intended.  For example in (25) grāma  gacchati ( g v jātā hai), g v  is in-animate 
and non-specific.  

In Sanskrit, the 3rd case is used for subject and instrument and se or ke dvārā case 
marker comes with them. But in the following  example  (26) gu ai  ātmasad śī  
kanyā  udvahe (gu  me apne samān kanyā se tū vivāh kar), gu ai   (t tīyā vibhakti) 
is used in the sense of me  case marker in Hindi translation instead of saptamī case  
gu e u. When  4th case in Sanskrit is translated into Hindi, ko/ke liye case marker is 
assigned in Hindi. But translating the same vibhakti which is used in a particular sense 
of action or verb, it may have different case marker in Hindi. For example (27) 
bālakāya phala  dadāti (bālaka ko phal detā hai) and (28) v trāy vajra  prāharat 
(v tra par vajra phenkā). In both, the 4th case is used with bālaka and v tra in San-
skrit, but Hindi translation has ko and par postpositions respectively. Sentences with 
genitive case in Sanskrit take kā/ke/kī/nā/ne/nī/rā/re/rī case markers in Hindi sen-
tences. But in the example (29) nai a bhāro mama (yah mere liye bojh nahī hai), 
mama is śa hī and its translation is mere liye which appears to be dative in Hindi. In 
another example (30) nūtana e a puru āvatāro yasya bhagavān bh gunandano’pi na 
vīra   (ye koī nayā hī puru  kā avatār hai jisake liye bhagavān bh gunandan bhī vīr 
nahīn hain), translation of yasya is jiske liye in Hindi, whereas literal meaning of 
yasya is jisakā. Here k te pada is assumed in Sanskrit. 

Generally locative in Hindi has me and par case markers, but in this example (31) 
v k aśākhāsvabala bante yatīnā  vāsā si (v k  kī śākhā se muniyon  ke vastr la ake 
hain) śākhā is locative and 7th case  is used in Sanskrit and its translation  has se case 
marker in Hindi. 
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These are some contrastive properties in case mapping between Sanskrit and Hindi. 
Some other contrastive properties are given below in the table1. 

Table 1. Contrastive property of Sanskrit and Hindi language 

Sanskrit Hindi 

Inflectional Post positional 

Three numbers two numbers: singular & plural 

Three genders: masculine, feminine & neuter. Two genders: masculine and feminine. 

No explicator compound verb Explicator compound verb  

Relatively free word order Less free word order 

No ergative  Ergative as special feature 

No verb groups  Verb groups (jātā hai or jā rahā hai) 

No echo Echo 

No double causatives  Have double causatives 

No Subject-Verb agreement for gender Have gender agreement at the level of verbs 

Two vibhaktis cannot come together Two vibhaktis can come together (usme se) 

karma-pravacanīya can come after or before 
a word 

karma-pravacanīya can come only  after a 
word. 

Many vibhaktis with upapada Only genitive case with upapada 

Conjunct ca  at the end Conjunct in between words 

Adjectives and nouns both have same case 
markers 

Only noun has case marker (except oblique  
cases) 

Accusative is used in multiple kārakas ko case marker is used only in accusative and 
dative 

4   Conclusion 

For Sanskrit scholars, who know Hindi syntax and different kinds of Hindi usages, 
case handling may be a matter of common sense, but for computational linguists, 
making a compatible MT System is a tough task because of problems discussed 
above. A careful study of case systems of both the languages can be useful in map-
ping the differences at the transfer grammar level.  Tagged lexicons with semantic 
information like animate/inanimate and verb valency will be needed. Without this, 
machine will have difficulty in translating sentences like g ha  gacchati (ghar jātā 
hai) and Rāma  āhvayati (Rām ko bulātā hai). As we find the usage of anugacchati 
in different contexts, it is clear that different upasargas with the same verb-root 
plays an important role in case marking in Hindi translation. It can also be found in 
the use of nipāta.  For correct output, machine must understand the category and the 
usage of the words in different senses. After such detailed studies only, transfer 
grammar rules (rules for structural transfer) can be written for Sanskrit Hindi  
Machine Translation. 
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Abstract. The BLEU score compares various n-grams of words of a MT soft-
ware with an ideal or reference translation of a sentence. We suggest a 
Weighted BLEU (WBLEU) which is probably more suitable for translation sys-
tem for English into an Indian language. Weights are obtained so that the corre-
lation between the weighted BLEU scores and a human evaluator’s scores is 
maximum.  
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1   Introduction 

It is customary to use Bilingual Evaluation Understudy (BLUE) scores (cf. Papineni, 
K. et al (2002)) for judging performance of a Machine Translation Software (MTS). A 
BLUE score is based on comparing various n-grams (i.e., a set of n consecutive 
words) in an output of MTS with those in a reference translation, assumed to be an 
ideal translation. Frequently, the MTS is initially being developed for a corpus which 
includes translations of sentences already available from various sources.   

Limitations of the BLUE scores have been noted in the literature; see, for example, 
Koehn (2010), p. 229. The BLUE scoring system has been particularly found to have 
further limitations when applied to MTS translations from English into an Indian lan-
guage (Ananthakumar et al (2007)). This is so for many reasons. Firstly, a sequence 
of patterns of words in a target Indian language is very much different than the se-
quence of the same words in English. In the simplest case, the SVO (Subject-Verb-
Object) pattern in English leads to the SOV pattern into Hindi, Marathi and a number 
of Indian languages. Secondly, Indian languages have a high rate of inflexions, for 
example, changes in a noun to be made in view of prepositions. A minor mistake in 
such inflexions leads to an incorrect word in the BLEU system and thus at least two 
incorrect 2-grams. As we illustrate, a BLEU score with equal weights to n-grams, 
seems to be a rather harsh critique of the MTS. Ananthakumar et al (2007) also note 
possibility of a poor correlation of BLEU scores with human scores, whereas 
Coughlin (2003), based on a study involving multiple languages, concludes that the 
BLEU scores are highly correlated with human scores. Other scoring systems such as 
METEOR can be used, however they are quite complicated to apply, cf. Koehn 
(2010), p. 228.   
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A BLEU score typically gives equal weights to the various n-grams. Though dif-
ferent weights for different n-grams have been mentioned in the literature, it is not 
clear how to choose the various weights. Here, we propose to choose differential 
weights for various n-grams. We suggest that the weights be chosen, so that the 
weighted BLEU score is, on an average, nearest to human scores of sentences. This is 
equivalent to choosing weights which maximize correlation between the weighted 
BLEU scores and HS (human scores) for a group of sentences/corpus for which refer-
ence translations are available. It needs to be pointed out that an evaluator of MT 
translations need not be a linguistic expert. It is enough that such a person is in a posi-
tion to see whether meaning of a sentence in the source language has been conveyed 
adequately and whether the flavor of the target language has been reasonably main-
tained. In our experiment below, the set of reference translations were not made avail-
able to the human examiner.  

Though this is a rather limited study, we believe that it throws some light on the 
mechanism of the human scoring system.  

2   Modifications to a BLEU Score 

A simple BLEU score can sometimes result in a heavy penalty for a simple mistake. 
Consider the following three examples. A full-stop is included in computing BLEU 
scores.  
(i) English sentence: She wound the thread around the pencil. 

Output translation: ितने पेिन्सलभोवती दोरा गुंडाळला.     /tine pensilabhovatI doraa 

guMDaaLalaa. 

Reference translation: ितने पेिन्सलीभोवती दोरा गुंडाळला.      /tine pensilIbhovatI doraa 

guMDaaLalaa. 
There is an incorrect inflexion in the output translation for the words ”around the 

pencil”.  The 1-gram, 2-gram and 3-gram scores are respectively given by 4/5, 2/4 and 
1/3. The BLEU score given by ln(BLEU) = 1/3ln( 0.80 * 0.50 * 0.33) (where ln refers 
to the natural logarithm) and equals 0.51. We notice that the weights for logarithms of 
1-gram, 2-gram and 3-gram are the same and equal to 1/3. 
(ii) English sentence: Ram killed Ravan. 

Output translation:  रावणाला रामाने मारल.े  / raavaNaalaa raamaane maaraLe. 

Reference translation:  रामाने रावणाला मारल.े / raamaane raavaNaalaa maaraLe. 
Here, the 1-gram and 2-grams are 1 and 1/3 respectively. The BLEU score is 0.5772. 
Actually, the meaning has been clearly conveyed, thanks to the inflexions, which 
clearly identifies the subject and the object of the verb “to kill”. 
(iii) English sentence: Complete this work in fifteen minutes. 

Output translation: ह ेकाम पंधरा िमिनटात पूण� कर/करा. / he kaama paMdharaa mini-

Taata pUrNa kara/karaa. 

Reference translation:    ह ेकाम पंधरा िमिनटांत पूण� कर/करा. / he kaama paMdharaa 

miniTaaMta pUrNa kara/karaa. 
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Here, there is a single incorrect word wherein a single letter is incorrect.  This is so 
since the Devanaagari script for Marathi indicates plural of “minute” in Marathi as 
given in the reference translation. The scores are: 1-gram=6/7, 2-gram= 4/6 and 3-
gram=2/5 and the BLEU is 0.6114. A human expert would probably assign a very 
high score for the output translation.   

To overcome such problems, we suggest weights which are calculated so as to 
minimize the distance between the SME score and weighted BLEU score. This is an 
objective choice of weights. The WBLEU (Weighted BLEU) is defined by  

ln(WBLEU)= w(1)lnG(1) + w(2)lnG(2)+… + w(r) lnG(r), 
where G(i) is the i-gram score, w(i) is the associated weight, i=1,2,…,r  and r is the 
chosen maximum length of a gram. The sum w(1)+w(2)+…W(r) equals 1.The 
weights w(i)’s are obtained so that the Karl Pearson product moment correlation coef-
ficients between the WBLEU scores and human expert’s scores for N sentences in a 
corpus is maximum. For a BLEU score, w(i)= 1/r for all i. Further, if a MT perfectly 
matches with the reference translation of a sentence, the BLEU coincides with 
WBLEU. 

3   An Experiment Involving Saakava, an English-Marathi 
Machine Software  

Saakava, a system for English into Marathi Machine translation, can be accessed from 
www.saakava.com. For the present study, we consider the book “My First English-
Marathi Dictionary”(2005),  published by the Maharashtra Textbook Bureau. It is not 
only a dictionary; but also illustrates various meanings of a word by giving sentences 
involving such words and their translations into Marathi. The sentences have been 
translated so as a student with Marathi mother-tongue can easily see the meaning of 
the words involved and also how they are to be used in English. This set of transla-
tions naturally gives us a set of reference translations of N=2224 sentences. Thus, the 
number is moderately large. Moreover, the book is at an introductory level. The set is 
thus ideal for a MTS group to pick up at the entry level.  

An individual was asked to score these sentences.  She has a good command over 
English and Marathi both though she is not a linguist. The Mean HS is 0.65 whereas 
the mean BLEU is 0.50. (Performance of Saakava at this stage may not seem to be 
satisfactory.) The BLEU score is quite lower than the HS.  

To compute WBLEU, the optimal weights w(i)’s are computed as follows. We first 
fix a set of w(i)’s and compute the correlation coefficient. We then allow w(i)’s to 
vary over a grid in the simplex (a set of non-negative numbers whose total is one). 
The value of r is the length of an English sentence. For the corpse of sentences dis-
cussed above, we get following table which gives optimal weights for each gram for a 
given sentence length r=1,2,…,7. 

It seems that the human evaluator is assigning more weights for 1-grams, which 
implies that one is satisfied if each word has been correctly outputted and that the 
appropriate sequencing is not so important. Further, there are groups of sentences, 
where 2-grams carry significant weights. The importance of 2-gram matching is well 
reflected in the new BLEU system. But, for longer sentences, there is a certain shift to 
the entire sentence itself.   
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Table 1. Optimal weights for each gram 

Sentence 
Length(r) 1gram 2gram 3gram 4gram 5gram 6gram 7gram 

2 0.77 0.23      

3 0.77 0.1 0.13     

4 0.48 0.52 0 0    

5 0.69 0.31 0 0 0   

6 0.89 0 0 0 0 0.11  

7 0 0 0 1 0 0 0 

 
The WBLEU score is 0.59 thus closer to the HS (0.65). The three correlation coef-

ficients (Cor) between the scores are as given below. They indicate the strength of 
linear relationship between the various scores. We have Cor (BLEU, HS) = 0.586, 
Cor (BLEU, WBLEU) = 0.925 and Cor (WBLEU, HS) =0.634. 

The correlation between the WBLEU and HS (though higher than the correlation 
between BLEU and HS) is not very satisfactory, particularly if we wish to take such a 
score as a reference point. We discuss this point in the next section. 

Using the weights as obtained above, we now compute the WBLEU for the three 
sentences given in the Section 2. For example, for the first sentence, the weights as 
read from the Table 1, are w(1)=0.77, w(2)= 0.1 and w(3)=0.13 and the WBELU is. 
0.6811. For the second sentences, the optimal weights are 1-gram=0.77 and 2-gram= 
0.23 and the WBLEU is 0.7767. The third sentence has the same weights as the first 
sentence and the WBLEU is 0.7570. All the WBLEU scores are higher than the 
BLEU and probably describe the reality in a better manner. 

4   Concluding Remarks 

We have demonstrated that a system of non-uniform weights can result in a better 
association between BLEU scores with unequal weights for various grams and scores 
of a human evaluator. Though more studies are needed, the present study indicates 
that for shorter sentences, 1-grams and 2-grams are more important. However, both 
the BLEU and WBLEU are much less than the HS. We discuss now why this is so.   

Firstly, if there is a mistake in a single letter of a word (see examples 1 and 3 
above), both the BLEU and WBELU assign a zero score for the 1-gram.This results in 
a further reduction in the 2-grams, 3-grams etc. A human evaluator seems to regard 
such an error as less serious than the two machine scoring systems. We suggest that, 
as we compare sentences based on n-grams, we may compare a word based on the 
various n-letter-grams. Thus, instead of a zero score, in the second word of the Exam-
ple 1, the score can be taken to be 5/6, indicating that only one letter has been incor-
rectly produced by the MT. This may increase the correlation. Work in this direction 
is in progress. 

Secondly, in some situations, there are two equivalent words in Marathi. For exam-
ple, the word ‘door‘ has two equivalent words in Marathi : ‘daara‘ and ‘daravaajaa‘. If 
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the MT uses a word different than the one in the reference translation, this results in a 
substantially low score for the MT. The human evaluator sees no loss in the meaning 
of a sentence and gives a perfect score. We need to modify the BLEU (and WBLEU) 
to deal with such a situation. Koehn(2010), p. 227 suggests that we need to have multi-
ple translations and should be willing to give a high or perfect score, if a MT matches 
with one of the multiple translations. As is well known, even for simple sentences, two 
or more individuals can come up with different translations, though all convey exactly 
the same and can be regarded as correct. We are also in the process of developing 
methods to deal with a situation where there are two or more different words in the 
target language for a word in the source language. Problem regarding translation the 
word “you” and its versions (“your”, “(to) you”) pose similar problems in Hindi and 
Marathi: a MT may use “tumhI”, whereas a reference translation may use “tu” ( or vice 
versa).  
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Abstract. Handwriting recognition is the task of transforming a language repre-
sented in its spatial form of graphical marks into its symbolic representation. 
There are two type of handwriting recognition, offline and online. In offline 
handwriting recognition, the user writes on the paper which is digitized by the 
scanner. The output of the scanner is presented as an image to the system which 
recognizes the writing. In contrast, the online handwriting recognition requires 
that the user’s writing is captured through digitizer pen and tablet before recog-
nition.  Online handwriting recognition assumes importance as it is still much 
more convenient to write with pen as compared to typing on the keyboard. Sec-
ondly, these days so many PDAs and handheld devices are used where it is eas-
ier to work with stylus then using keyboard. This has motivated research in 
online handwriting recognition in different languages of the world including 
Indic scripts such as Tamil, Telgu, Kannada, Devanagari and Gurmukhi. In our 
work, a system for recognition of Gurmukhi Script is presented. In this work, 
the input of the user’s handwriting is taken as a sequence of packets captured 
through the movement of stylus or pen on the surface of the tablet. The packet 
consists of x,y position of the stylus, button(tip of stylus), pressure of the stylus 
and the time of each packet. The user’s writing is preprocessed and is seg-
mented into meaniningful shapes. The segmented shapes are processed to ex-
tract features which are Distributed Directional Feature. The feature data is fed 
to the recognition engine which is a Nearest Neighbor Classifier. The average 
recognition accuracy is 76% approximately. The block diagram of the system 
for Online Gurmukhi Script recognition is shown in Fig 1 below. The main 
strengths of this system is that it takes complete word for segmentation and  
recognition. 
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Fig. 1. Block Diagram showing recognition of Online Gurmukhi Script 
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Abstract. This research work is to develop a speech recognition system for 
speaker dependent, real time, isolated words of Punjabi language. The methods 
used for speech recognition have since been developed and improved with 
increasing accuracy and efficiency leading to a better human machine interface. 
In this work, I have developed a speech recognition system, which has a 
medium size dictionary of isolated words of Punjabi language. The study 
involved the detailed learning of the various phases of the signal modeling 
process like preprocessing and feature extraction as well as the study of 
multimedia API (Application Programming Interface) implemented in 
Windows 98/95 or above. Visual C++ has been used to program sound blaster 
using MCI (Media Control Interface) commands. In this system the input 
speech can be captured with the help of microphone. I have used MCI 
commands and record speech. The sampling frequency is 16 kHz, sample size 
is 8 bits, and mono channels. The Vector Quantization and Dynamic Time 
Warping (DTW) have been used for the recognition system and some 
modifications have been proposed to noise detection, word detection 
algorithms. In this work, vector quantization codebook of size 256 is used. This 
size selection is based on the experimental results. The experiments were 
performed with different size of the codebook (8, 16, 32, 64, 128, and 256). In 
DTW, there are two modes: one is training mode and other is testing mode. In 
training mode the database of the features (LPC Coefficients or LPC derived 
coefficients) of the training data is created. In testing mode, the test pattern 
(features of the test token) is compared with each reference pattern using 
dynamic time warp alignment that simultaneously provides a distance score 
associated with the alignment. The distance scores for all the reference patterns 
are sent to a decision rule, which gives the word with least distance as 
recognized word. Symmetrical DTW algorithm is used in the implementation of 
this work. The system with small isolated word vocabulary on Punjabi language 
gives 94.0% accuracy. System can recognize 20 – 24 words per minute of 
interactive nature with recording time 3 – 2.5 seconds respectively. 

Keywords: dynamic time warp (DTW), linear predictive coding (LPC), Punjabi 
language, vector quantization (VQ), application programming interface (API), 
media control interface (MCI). 
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Abstract. A Text-To-Speech (TTS) synthesis system has been developed for 
Punjabi text written in Gurmukhi script. Concatenative method has been used to 
develop this TTS system. Syllables have been reported as good choice of 
speech unit for speech databases of many languages. Since Punjabi is a syllabic 
language, so syllables has been selected as the basic speech unit for this TTS 
system, which preserves within unit co-articulation effects. The working of this 
Punjabi TTS system can be divided into two modules: Online Process and Off-
line Process. Online process is responsible for pre-processing of the input text, 
schwa deletion, syllabification and then searching the syllables in the speech 
database. Pre-processing involves the expansion of abbreviations, numeric fig-
ures and special symbols etc. Schwa deletion is an important step for the devel-
opment of a high quality Text-To-Speech synthesis system. Phonetically, schwa 
is a very short neutral vowel sound, and like all vowels, its precise quality var-
ies depending on the adjacent consonants. During utterance of words not every 
schwa following a consonant is pronounced. In order to determine the proper 
pronunciation of words, it is necessary to identify which schwas are to be de-
leted and which are to be retained. Grammar rules, inflectional rules and mor-
photactics of language play important role for identification of schwa those are 
to be deleted. A rule based schwa deletion algorithm has been developed for 
Punjabi having accuracy of about 98.27%. Syllabification of the words of input 
text is also a challenging task. Defining a syllable in a language is a complex 
task. There are many theories available in phonetics and phonology to define a 
syllable. In phonetics, syllables are defined based upon the articulation. How-
ever in phonological approach, syllables are defined by the different sequences 
of the phonemes. In every language, certain sequences of phonemes are recog-
nized. In Punjabi seven types of syllables are recognized – V, VC, CV, VCC, 
CVC, CVCC and CCVC (where V and C represents vowel and consonant re-
spectively), which combine in turn to produce words. A syllabification algo-
rithm for Punjabi has been developed having accuracy of about 96.7%, which 
works on the output of the schwa deletion algorithm.  

The Offline process of this TTS system involved the development of the 
Punjabi speech database. In order to minimize the size of speech database, ef-
fort has been made to select a minimal set of syllables covering almost whole 
Punjabi word set. To accomplish this all Punjabi syllables have been statisti-
cally analyzed on the Punjabi corpus having more than 104 million words. In-
teresting and very important results have been obtained from this analysis those 
helps to select a relatively smaller syllable set (about first ten thousand syllables 
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(0.86% of total syllables)) of most frequently occurring syllables having cumu-
lative frequency of occurrence less than 99.81%, out of 1156740 total available 
syllables. The developed Punjabi speech database stores the starting and end 
positions of the selected syllable-sounds labeled carefully in a wave file of re-
corded words. As the syllable sound varies depending upon its position (start-
ing, middle or end) in the word, so separate entries for these three positions has 
been made in the database for each syllable. An algorithm has been developed 
based on the set covering problem for selecting the minimum number of words 
containing above selected syllables for recording of sound file in which syllable 
positions are marked.  

The syllables of the input text are first searched in the speech database for 
corresponding syllable-sound positions in recorded wave file and then these syl-
lable sounds are concatenated. Normalisation of the synthesized Punjabi sound 
is done in order to remove the discontinuities at the concatenation points and 
hence producing smooth, natural sound. A good quality sound is being pro-
duced by this TTS system for Punjabi language. 
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Abstract. A form processing system improves efficiency of data entry and 
analyses in offices using state-of-the-art technology. It typically consists of sev-
eral sequential tasks or functional components viz. form designing, form tem-
plate registration, field isolation, bounding box removal or colour dropout, 
field-image extraction, segmentation, feature-extraction from the field-image, 
field-recognition. The major challenges for a form processing system are large 
quantity of forms and large variety of writing styles of different individuals. 

Some of the Indian scripts have very complex structures e.g. Gurmukhi, 
Devnagri and Bengali etc. Use of head line, appearance of vowels, parts of 
vowel or half characters over headline and below the normal characters (in foot) 
and compound characters makes the segmentation and consequently recognition 
tasks very difficult.  

The present system is a pioneering effort for developing a form processing 
system for any of the Indian languages. The system covers form template gen-
eration, form image scanning and digitization, pre-processing, feature extrac-
tion, classification and post-processing. Pre-processing covers form level skew 
detection, field data extraction by field frame boundary removal, field segmen-
tation, word level skew correction, word segmentation, character level slant cor-
rection and size normalization. For feature extraction Zoning, DDD and Gabor 
filter have been use and for for classification, kNN and SVM have been put to 
use. A new method has been developed for post processing based on the shape 
similarity of handwritten characters. 

The results of using kNN classifier for different values of k with all features 
combined are 72.64 percent for alphabets and 93.00 percent for digits. With 
SVM as classifier and all the features combined, the results improve marginally 
(73.63 percent for alphabets and 94.83 percent for digits).  In this demo we shall 
demonstrate the working of the whole system. 

Keywords: Hand-filled form processing system, form processing system,  
Gurmukhi script, OCR. 
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Abstract. In spoken form Hindi and Urdu are mutually comprehensible lan-
guages but they are written in mutually incomprehensible scripts. This research 
work aims to bring the Urdu and Hindi speaking people closer by developing a 
transliteration tool for the two languages. Even though the language is same, 
but still developing a high accuracy transliteration system is not a trivial job. 
The accuracies of statistical and rule based Urdu-Hindi and reverse translitera-
tion systems are 97.12% and 99.46% at word level. 

1   About the System  

South Asia is one of those unique parts of the world where single languages are written 
in different scripts. This is the case for example with Urdu and Hindi spoken by more 
than 600 million people, but written in India (500 million) in Devnagri script (a Left to 
Right script) and in Pakistan (80 million), it is written in Urdu (a Right to Left script 
based on Arabic). This research work aims to bring the Urdu and Hindi speaking peo-
ple closer by developing a transliteration tool for the two languages. Even though the 
language is same, but still developing a high accuracy transliteration system is not a 
trivial job. The main challenges, in transliteration from Urdu to Hindi and reverse are: 

• Missing short vowels and diacritic marks in Urdu text  
• One Urdu character can correspond to multiple Devnagri characters. 
• No half characters in Urdu corresponding to Devnagri. 
• Multiple Hindi words for an Urdu word. 
• Word segmentation issues in Urdu including broken and merged words. 
• Many combinations of Urdu words are written as a multi-word expression in 

Hindi. 
• Many Urdu words from foreign language particularly English are frequently 

used, for which separate dictionaries had to be developed. 
• No exact equivalent mappings in Hindi for some Urdu Characters. 
• Decrease in use of  Nukta  Symbols in Hindi Text 
• Difference between Pronunciation and Orthography 
• Transliteration of Proper Nouns 
• Special rules for handling nasalized sound characters 

To meet these challenges, for the first time a hybrid statistical and rule based Urdu-
Hindi and reverse transliteration system has been developed. The systems makes use 
of Hindi and Urdu Corpus, Hindi-Urdu and reverse dictionaries, bigram, trigram  
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tables, Urdu/Hindi/English Morphological analysis, Urdu-Hindi character and word 
lookup tables and rule bases for resolving character and word ambiguity and handling 
Urdu word segmentation problems. The Urdu to Hindi system has been tested on 
more than 150 pages of text taken from newspapers and Urdu articles. A translitera-
tion accuracy of more than 97.12% has been achieved, which to the best of our 
knowledge is the best accuracy achieved so far. The reverse transliteration system has 
been tested on about 100 pages of text and has 99.46% accuracy at word level.  
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Fig. 1. Urdu-Hindi (B) and Hindi-Urdu (A) Systems Architecture 

The main features of the system (http://uh.learnpunjabi.org) are: 
1. Direct support for Urdu InPage files, Urdu and Hindi Unicode typing interface 

with Romanized, Remington, phonetic keyboards and mouse driven typing facility 
2. Tool tip support for difficult or complex Urdu word meaning in Hindi text 
3. Sending e-mails in Hindi or Urdu Script before or after transliteration 
4. Urdu/Hindi Unicode web page transliteration support 
The authors will like to acknowledge the support provided by ISIF grants for carrying 
out this research work. 
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iPlugin is an Indian Language web application development software tool. iPlugin 
allows user to type in Indian Languages in web pages over the internet. iPlugin soft-
ware helps to develop unique interactive applications for users in Indian languages. 
iPlugin is ideal for creating interactive applications such as online chat, localize data-
base query applications, type blogs in your language, feedback and e-mail in Indian 
languages, reports or any other such application which requires support of typing in 
Indian Languages over Web. iPlugin helps in creation of Indian language web content 
for front end and back end of internet and intranet portal solutions. 

iPlugin software allows user to type in browser in various languages of India such 
as Assamese, Bengali, Bodo, Dogri, Gujarati, Hindi, Kannada, Konkani, Malayalam, 
Marathi, Maithali, Manipuri (Bengali), Nepali, Oriya, Punjabi (Gurumukhi/Panjabi), 
Santali, Sanskrit, Tamil and Telugu with download of Indian language tools on client 
system. All the client side components are digitally signed and hence safe for 
download. 

iPlugin software provides INSCRIPT (DoE), EasyPhonetic (transliteration), Pho-
netic and Typewriter Keyboard Layouts for user to type Indian languages in web 
browsers such as IE, FireFox. Client user can type on OS such as Win9x, WinXP, 
Vista, Windows 7 irrespective of whether they are language enabled. 

Design Time controls of iPlugin for ASP, .Net and JSP tag libraries reduce devel-
opment efforts. Server side support for conversion and storing Indian language data in 
ISCII as well as in UNICODE on various platforms is possible.  

Strengths of iPlugin 

• iPlugin supports IE6,E7, IE8, Firefox.  
• iPlugin supports 19 Indian lauguages.  
• Support for Enhanced INSCRIPT : 4 layer keyboard with UNICODE 5.1 

characters.   
• Light weight digitally signed components safe for download. 
• Phonetic Assistant (Transliteration). 
• Semi Transparent On-screen Keyboard. 
• Advertisement support in iPlugin Toolbar. 
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• XPI based tools for Firefox on Windows. 
• Support for Indian Rupee symbol in Inscript keyboard layout. 
• Support UNICODE and ISCII base storage at database.  
• Design time controls in JSP, .Net for faster web application development. 
• Works with internet and intranet applications. 

Limitation  

Components needs to be downloaded once for enabling particular Indian language. 

Comparison  

 

iPlugin Other 

Keyboard layout supported Inscript,  
phonetic, easy phonetic, typewriter. 

Phonetic or Inscript layout is given. 

Supports 19 Indian language Supports Less number of Indian  
language. 

Organized keyboard for old as well as 
advanced user. 

Phonetic or Inscript keyboard support 
is provided. 

Design time controls for web application 
development with major technology. 

No such design time controls are  
provided. 

Toolbar is provided for ease of use. No toolbar is provided. 
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An OCR System for Printed Indic Scripts 

Tushar Patnaik  

CDAC  Noida 

 
 

 
The project ‘Development of Robust document Analysis and Recognition for printed 
Indian Scripts’ is a Department of Information Technology sponsored project to de-
velop OCR for printed Indian scripts. A consortia led by IIT Delhi has completed the 
phase –I in OCR .The consortia members include 

 1. IIT Delhi 
 2. IISC Bangalore 
 3. ISI Kolkatta 
 4. IIIT Hyderabad 
 5. Central University ,Hyderabad 
 6. Punjabi University,Patiala 
 7. MS University,Baroda 
 8. Utkal University,Bhubaneswar 
 9. CDAC Noida 
10. CDAC Pune 
 

Different consortia members are responsible for different language OCRs like Punjabi 
University has contributed. Gurumukhi OCR ,IIIT Hyderabad for Malalayam OCR 
etc.CDAC Noida has done the integration of OCRs with pre processings. 

OCR System is developed for printed Indian scripts, which can deliver desired per-
formance for possible conversion of legacy, printed documents into electronically 
accessible format and handle seven Indian scripts (Devanagari, Gurumukhi, Malaya-
lam, Tamil, Telugu, Kannada, Bangla). 

The GUI provides various options for the user to play with the integrated system 

• Basic image enhancement and editing tools (cropping, rotation, zoom in/zoom 
out, orientation, binarization, noise   

   removal etc.). 
• Running individual modules successively for obtaining final OCR output. 
• End-to-End OCR. 
• Workflows for different combination of pre processing routines. 
• Text editing tool coupled with dictionary. 
 
Strengths:- 

1) OCR System Supports Seven Indian Scripts. 
2) Character level accuracy of OCRs is above 95% 
3) Block Segmentation and Layout retention Engine 
4) User Interactive  
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Limitations:- 

1) Works only on single column text documents. 
2) OCR accuracy varies with font size,broken characters,local skew . 

 

 
 

OCR Graphical User Interface 
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Gujarati Text – To – Speech System 

Samyak Bhuta and S. Rama Mohan 

The M S University of Baroda, Vadodara, Gujarat, India 
 
 
 
 
 
 
 

The need for text-to-speech systems in various languages is obvious with the current 
fast paced technology development in information and communication technology. 
Keeping the Gujarati language, intimately used by 55 odd million people in India and 
abroad, abreast with technology development is not just logical but heartfelt.  

The Gujarati Text-to-speech system should be an apparatus that should take arbi-
trary Gujarati text as input and should produce the equivalent speech sounds keeping 
the phonetic and prosodic concerns intact. The quality of the generated sound output 
should be determined by two parameters viz., intelligibility and naturalness.  

With these objectives in mind, a Gujarati Text-to-Speech system has been devel-
oped at the Resource Center for Indian Language Technologies for Gujarati at The M. 
S. University of Baroda, Vadodara with financial support from the Ministry of Com-
munications and Information Technology of Government of India.  

The approach used in synthesizing the speech is that of concatenation of segments 
of pre-recorded speech sound. The system's core engine has been developed to oper-
ate with any type of concatenation unit i.e., partneme, diphone, disyllable etc. ( or mix 
of them ) to form a desired output. It is to be noted that the speech engine has been 
developed from the ground level instead of borrowing an existing engine, for the sake 
of  greater flexibility that it would provide. 

The engine is designed to take the speech input in International Phonetic Alphabet. 
This also helps in  achieving the separation of concerns with respect to the language 
independent aspects of the system from those of the language dependent parts. In our 
experiments we have  found that working on the disyllable level as  concatenation 
units provides better results than working with the  partneme or diphoneme as the 
concatenation units. This happens since most of  the concatenations  occur at the mid-
points of the vowel sounds.  

Results of the output sound from the Gujarati TTS system are encouraging, being 
both intelligible and natural to a good extent. The system also takes care of common 
abbreviations and pronouncing numbers by pre-processing. But the database of disyl-
lables is still short of being complete. Efforts to complete the data base are continuing.  

Many improvements can be brought to the system in addition to completing the 
data base of disyllables. These include making system more efficient from computa-
tional point of view. Another direction in which the quality of synthesized speech can 
be significantly improved is the introduction of prosodic inputs that could be garnered 
by studying the Gujarati phonology. 
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Large Web Corpora for Indian Languages 

Adam Kilgarriff and Girish Duvuru 

Lexical Computing Ltd., 
Brighton, UK 

Abstract. A crucial resource for language technology development is a corpus.  
It should, if possible, be large and varied: otherwise it may well simply fail to 
cover all the core phenomena of the language, so tools based on it will some-
times fail because they are encountering something which was not encountered 
in the development corpus.  They are critical for the development of morpho-
logical analysers because they show a good sample of all the words, in all their 
forms, that the analyser might be expected to handle. Since the advent of the 
web, corpora development has become much easier: now, for many languages, 
of many text types, vast quantities of text are available by mouse-click (Kilgar-
riff and Grefenstette 2003).   

‘Corpora for all’ is our company’s mission.  We want to encourage corpus 
use for linguists, language learners and language technologists in all sorts of 
contexts.  To that end we have set up a ‘Corpus Factory’ which quickly and ef-
ficiently creates general corpora, from the web, for any widely-spoken lan-
guages (Kilgarriff et al 2010).  To start with we addressed the large languages 
of Europe and East Asia: now we have large corpora for all of those and have 
moved on to the many large languages (Hindi, Bengali, Malayalam, Telugu, 
Kannada, Urdu, Gujarati, Tamil etc) of the subcontinent.  At time of writing, we 
have corpora that are all multi-million-word. We believe these corpora are lar-
ger and more varied than any others available for the languages in question. 

Once we have created a corpus, we load it into the Sketch Engine corpus 
query system (Kilgarriff et al 2004) and make them available through the web 
service at http://www.sketchengine.co.uk.  (Sign up for a free trial; all the cor-
pora listed above, and more as the months proceed, will be available for you to 
explore.) 

The Sketch Engine is a web-based Corpus Query System, which takes as its 
input a corpus of any language with an appropriate level of linguistic mark-up 
and offers a number of language-analysis functions like Concordance, word 
sketches, distributional thesaurus and sketch difference. Concordance is display 
of all occurrences from the corpus for a given query. This system accepts sim-
ple queries (lemma) as well as complex queries in CQL [4] format.  A Word 
Sketch is a corpus-based summary of a word's grammatical and collocational 
behaviour.  This also checks to see which words occur with the same collocates 
as other words, and on the basis of this data it generates a "distributional thesau-
rus". A distributional thesaurus is an automatically produced "thesaurus" which 
finds words that tend to occur in similar contexts as the target word. And finally 
Sketch Difference is a neat way of comparing two very similar words: it shows 
those patterns and combinations that the two items have in common, and also 
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those patterns and combinations that are more typical of, or unique to, one word 
rather than the other.  Ideally, prior to loading into the Sketch Engine, we lem-
matise and part-of-speech-tag the data and we can then prepare word sketches, 
distributional thesaurus and also sketch differences. 

We are currently looking for collaborators with expertise in lemmatisers and 
taggers for one or more of the Indian languages, so we can jointly prepare world 
class resources for Indian languages to match those for European and East 
Asian ones. 
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Abstract. The increase of cross-cultural communication triggered by the Inter-
net and the diverse language distribution of Internet users intensifies the needs 
for the globalization of the online intelligent system The Extended Hierarchical 
Censored Production Rules (EHCPRs) system might act as a generalized intel-
ligent agent which takes care of context sensitivity in its reasoning. Efforts are 
to make the EHCPRs system online which can be localized as per the require-
ment of any specific multilingual domain of users.  

Keywords: Localization, Internationalization, Context, EHCPRs System. 

1   System Architecture 

An Extended Hierarchical Censored Production Rule (EHCPR) is a unit of knowledge 
for representation in the EHCPRs based intelligent system. Any concept or object can 
be represented by employing the same uniform structure of an EHCPR. In an EHCPR, 
there are various operators to define different relations or dependencies of the objects 
with other objects. The opera-
tors are filled with fillers, which 
can be either atomic values or 
link to other EHCPRs. The 
EHCPRs System has two major 
components (figure 1): Declara-
tive knowledge and procedural 
knowledge. The knowledge 
base consists of all the EHCPRs 
representing rules, definitions, 
or structures. The database 
stores all the instances of the 
concepts or objects that the 
system has come across till date 
in the form of EHCPRs. 

Declarative Knowledge 

P
rocedural 

Knowledge Base     Data Base 
(Set of EHCPRs)     (Set of Data Items) 
 
    
 
 

Learni Reasoning 

User 
Interface 

Maintenance

Recognition 
Inheritance 

General 
Control 
Scheme 

Fig. 1. Components of EHCPRs System 
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Every EHCPR in the knowledge base is an instance of the class EHCPR defined in 
programming language Java as follows: 

 

class EHCPR  {String concept; 
LinkedList preConditions; 
EHCPR generality; 
LinkedList specificity; 
LinkedList censors; 
LinkedList hasPart; 
LinkedList hasProperty; 
LinkedList hasInstance;    } 

2   System Working 

The EHCPRs System has been developed in India as a Ph.D. work without any finan-
cial help and is very widely published [ref. 1 - 3]. A prototype of the EHCPRs system 
is prepared to be deployed on the Internet for the online use by the multilingual global 
community of its users. 

The EHCPRs system exhibit changes in precision of the decision with changes in 
constraint of amount of resources, i.e., more time, more precise answer. Also it acts 
with the different level of precision with change in context of time, place, or emotions 
(i.e., state) of the subject, system or both. The EHCPRs system is helpful for answer-
ing queries of the type: “What is X doing” [ref. 2], and is given in Table1.  

1. Display: The EHCPRs System exhibits the characteristics of logic, Production 
Rule, Semantic Network, Frame, Neural Network etc., in representation, and re-
fer the Figure 2, as a snapshot of the system generated Semantic Network.  

2. Reasoning: 
Question Answering: If user asks the system “What is Dolly Doing”. The 

system provides a context sensitive answer, Table 1. 
Recognition: If user looks at an flying object and asks the system about it, 

then the system may reply that either it is a Crow, or Kite.  
 

Table 1. Variable Precise Reply with Change in Context 
 

Context (Fuzzy Priority) Output with different Specificity and Certainty  
Very Low Priority User  Specificity Level is 0 "Dolly is in city Delhi" with  

certainty 0.476 
Low Priority User  Specificity Level is 0"Dolly is in city Delhi" with certainty 

0.7917 
Medium Priority User  "Dolly is at home" with certainty 0.624 
High Priority User Specificity Level is 0 "Dolly is in city Delhi" with certainty 

0.7546 Specificity Level is 1 "Dolly is outdoor" with certainty 
0.6324000000000001Specificity Level is 1. "Dolly is working 
outdoor" with certainty 0.5565120000000001 

Very High Priority User Specificity Level is 0 "Dolly is in city Delhi" with certainty 
0.8623999999999999 Specificity Level is 1 "Dolly is outdoor" 
with certainty 0.7812 Specificity Level is 2 "Dolly is working 
outdoor" with certainty 0.7343280000000001 
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3. Search Engine to support the question answering   with inheritance and recognition 
4. Learning: The system has a Knowledge base (KB) and a database (DB). KB 

contains knowledge in the form of EHCPRs. Lot many EHCPRs have been hard 
coded. More will be learned through the interaction of the EHCPRs System with 
the users [ref. 3].  

5. User Interface employing the Natural language processing, Vision and so on. 
 

 

 
 

Fig. 2. A Snapshot of the semantic network extracted from the EHCPRs System 

3   Conclusion 

Efforts are to develop the EHCPRs system as a machine tool which can be localized 
as per the requirement of any specific domain of users. The first step is internationali-
zation, i.e., separating the locale dependencies from the source code, and then comes 
localization, i.e., adapting to the needs of a given locale. 
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