

Lecture Notes in Computer Science 6570
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Cristian S. Calude Grzegorz Rozenberg
Arto Salomaa (Eds.)

Rainbow
of Computer Science
Dedicated to Hermann Maurer
on the Occasion of His 70th Birthday

13

Volume Editors

Cristian S. Calude
The University of Auckland, Department of Computer Science
38 Princes Street, Auckland 1142, New Zealand
E-mail: cristian@cs.auckland.ac.nz

Grzegorz Rozenberg
Leiden University, Leiden Center for Natural Computing
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenber@liacs.nl

Arto Salomaa
University of Turku, Turku Centre for Computer Science (TUCS)
Leminkäisenkatu 14, 20014 Turku, Finland
E-mail: asalomaa@utu.fi

The illustration appearing on the cover of this book is the work
of Daniel Rozenberg (DADARA).

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19390-3 e-ISBN 978-3-642-19391-0
DOI 10.1007/978-3-642-19391-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922265

CR Subject Classification (1998): F.1, F.4, F.3, F.2, H.5, I.2.6, K.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Hermann Maurer (picture by Sean Maguire, 2008)

Preface

This book is dedicated to Hermann Maurer on the occasion of his 70th birthday
in April 2011. The title word Rainbow reflects the beauty and variety of the
achievements of this outstanding scientist, as well as the diversity and depth of
current computer science. Hermann is a true Renaissance man, polymath, Homo
Universalis, but he still has kept most of his activities on his native Austrian
soil. He has been able to combine an exceptionally high level in scientific work
with remarkable successes in high administrative and organizational positions.
In computer science he has combined profound theory with high-level and unique
applications. The high admiration that Hermann enjoys in the scientific commu-
nity all over the world was witnessed by the enthusiastic response we received
to our request to contribute to this book.

Hermann’s studies took place in Vienna, where he also had his first positions.
After that he was an assistant and associate professor for computer science at the
University of Calgary during 1966–1971 and a full professor for applied computer
science at the University of Karlsruhe, 1971–1977. Then in 1978 he assumed his
main academic position, a full professorship at the Graz University of Technol-
ogy, where he was also the dean of studies and the dean of the new school of
computer science. He has also had long-term visiting positions at SMU (Dallas),
University of Brasilia (Brazil), the University of Waterloo and the University of
Auckland where he was also an honorary research fellow. Moreover, he has been
an adjunct professor at Denver University, advisor to the University of Malaysia
at Kuching (UNIMAS) since 1998 and a visiting researcher at Edith Cowan Uni-
versity (Perth, Australia). This list does not do any justice to Hermann’s work
because usually his stay at a university is not a normal visit but brings forward
important innovations.

Hermann’s career as a researcher and teacher is outstanding. He is the au-
thor of some 20 scientific books and approximately 650 papers in various jour-
nals and conference proceedings. He has supervised roughly 400 MSc theses
and some 50 PhD theses. He has visited extensively universities and research
institutes all over the world, and given invited or keynote lectures at numer-
ous international conferences. Hermann’s early pioneering research was in com-
piler design, formal languages, automata, algorithms and data-structures. His
current main research and project areas are networked multimedia/hypermedia
systems; electronic publishing and applications to university life, exhibitions and
museums; Web-based learning environments; languages and their applications;
data structures and their efficient use; telematic services, computer networks,
computer-supported new media, dynamic symbolic language, social implications
of computers, techniques to fight plagiarism and computers in science fiction.
Recently Hermann has been an outspoken critic of some data-mining activities
on the Web.

VIII Preface

Hermann is or has been the chairman or a member of steering and program
committees of numerous international conferences. Apart from his work on the
editorial boards of many journals, Hermann founded one of the very first elec-
tronic journals, Journal of Universal Computer Science. He still continues to be
the editor-in-chief of this very successful journal.

To show Hermann’s qualities in leadership and administration, we list the
following facts.

Hermann was the project manager of a number of pioneering multimillion-
dollar undertakings. They include a patent for optical storage device, the de-
velopment of a color-graphic microcomputer (MUPID), an electronic teaching
experiment COSTOC, multi-media projects such as Images of Austria (Expo’92
and Expo’93), various electronic publishing projects such as PC Library, Geothek
and Brockhaus Multimedial. He was responsible for the development of the first
second-generation Web-based information system Hyperwave and a modern net-
based teaching platform. Hermann organized the multimedia part of a num-
ber of museum projects, including Ars Electronica Center (Linz, Austria), the
Papa Tongarewa (Wellington, New Zealand), as well as the Odyseeum (Cologne)
opened in 2009. He also participated in or headed a number of EU projects.

Hermann was the director of the Research Institute for Applied Information
Processing of the Austrian Computer Society for 1983–1998, the chair or vice-
chair of the Institute for Information Systems and Computer Media since 1988,
the director of the Institute for Hypermedia Systems of Joanneum Research for
1987–2006, the director of the Austrian Web Application Center for 1997–2000,
the co-founder and chairman of the board of the Hyperwave AG Munich 1997–
2005, the vice-chairman of the same company since then, as well as the founder
and scientific advisor of the first research center on knowledge management in
Austria. Hermann’s enthusiastic leadership often brings forward remarkable re-
sults and innovations. Among the editors of this book, the expression Hermann
quality refers to a high level of excellence.

It is no wonder that Hermann is one of the most decorated computer sci-
entists. He has received a number of awards, among them the Prize for Merits
for Information Processing in Austria, the “Enter-Prize” (a play of words with
“enterprise”) of the Styrian Chamber of Commerce in 1999, the Integrata-Prize
(for Human Software) in 2000, and the “AACE Fellowship Award” of the As-
sociation for the Advancement of Computing in Education in 2003. Hermann
became a foreign member of the Finnish Academy of Sciences in 1996 and a
member of the Academia Europaea in 2000, where he was elected chairman of
the section “Informatics” in April 2009. His invigorating work in this position is
already visible in many ways, for instance, exceptionally good and useful Web
pages have been created for the whole academy. He is a life-long honorary mem-
ber of MCCA, Vienna, and of the Computer Engineering Society, Graz. In 2001
he was awarded the “Austrian Cross of Honours for Arts and Science Class I,” as
well as the “Large Medal of Honour of the Province of Styria.” He received the
Honorary Doctorate of the Polytechnical University of St. Petersburg in 1991,

Preface IX

of the University Karlsruhe, Germany in 2002, and of the University of Calgary
in 2007.

Apart from science, Hermann being Homo Universalis is clearly visible in his
extra-curricula life and hobbies. Desire to explore the world around us is one of
his basic characteristics. Space does not permit us to describe here in any detail
Hermann’s hobbies or family life. The latter includes trips all over the world, as
well as various other activities with his wife Ushi, children and grandchildren.
Hermann’s friends have the opportunity to learn every year interesting facts
about far-away lands and cultures, reading his well-known Christmas letters.

Hermann is a successful writer of science fiction. His novels dwell mostly in
the world of computers: future possibilities such as teleportation, but also the
dramatic consequences if the administration of the Web falls into wrong hands.
Hermann has always been very sportive—mountain climbing, scuba diving and
hiking belonging to his hobbies.

Each of the three editors of this book has a warm and close friendship with
Hermann, developed over many years. In particular, Cris is grateful to him for
being a role model and mentor, Grzegorz for so many years of reliable friendship,
and Arto for the happy and productive MSW decade around 1980. We wish
Hermann continuing success and satisfaction in science, leadership and life in
general, in the years to come.

January 2011 Cristian S. Calude
Grzegorz Rozenberg

Arto Salomaa

Table of Contents

Algorithmics

Improved Approximations for Hard Optimization Problems via
Problem Instance Classification . 3

Hans-Joachim Böckenhauer, Juraj Hromkovič, and Tobias Mömke

Covering and Packing with Spheres by Diagonal Distortion in Rn 20
Herbert Edelsbrunner and Michael Kerber

Counting Plane Graphs with Exponential Speed-Up 36
Andreas Razen and Emo Welzl

Formal Languages and Automata

Ancient Typefaces and Parametric Weighted Finite Automata 49
Jürgen Albert and German Tischler

On Language Decompositions and Primality . 63
Michael Domaratzki and Kai Salomaa

A Unifying Kleene Theorem for Weighted Finite Automata 76
Zoltán Ésik and Werner Kuich

Local Squares, Periodicity and Finite Automata . 90
Mari Huova, Juhani Karhumäki, Aleksi Saarela, and Kalle Saari

P and dP Automata: A Survey . 102
Gheorghe Păun and Mario J. Pérez-Jiménez

On the General Coloring Problem . 116
N.W. Sauer

Learning

Transdisciplinary Collaboration and Lifelong Learning: Fostering and
Supporting New Learning Opportunities . 129

Gitta Domik and Gerhard Fischer

Towards an Open Learning Infrastructure for Open Educational
Resources: Abundance as a Platform for Innovation 144

Erik Duval, Katrien Verbert, and Joris Klerkx

Why E-Learning as It Stands Is Not Enough . 157
Narayanan Kulathuramaiyer and Hermann Maurer

XII Table of Contents

The Practice of Informatics

Domains: Their Simulation, Monitoring and Control—A Divertimento
of Ideas and Suggestions . 167

Dines Bjørner

Roots and Stimuli to a New Perception of Informatics 184
Jozef Gruska

Towards a New Shape Description Paradigm Using the Generative
Modeling Language . 200

Sven Havemann and Dieter W. Fellner

Name Resolution by Rewriting in Dynamic Networks of Mobile
Entities . 215

Jan van Leeuwen and Jǐŕı Wiedermann

Maintaining the Personal Style and Flair of Handwriting in Presentation
Recordings . 228

Khaireel A. Mohamed and Thomas Ottmann

TGV-Fusion . 245
Thomas Pock, Lukas Zebedin, and Horst Bischof

Secure and Privacy-Preserving eGovernment—Best Practice Austria 259
Karl Christian Posch, Reinhard Posch, Arne Tauber,
Thomas Zefferer, and Bernd Zwattendorfer

The Quest for Uncertainty . 270
Jörg Zimmermann and Armin B. Cremers

Author Index . 285

Algorithmics

Improved Approximations for Hard
Optimization Problems via Problem Instance

Classification�

Hans-Joachim Böckenhauer, Juraj Hromkovič, and Tobias Mömke

Department of Computer Science, ETH Zurich, Switzerland
{hjb,juraj.hromkovic,tobias.moemke}@inf.ethz.ch

Abstract. Under the usual complexity-theoretic assumptions like P �=
NP , many practically relevant optimization problems are provably hard
to solve or even to approximate. But most of these hardness results are
derived for worst-case scenarios, and it is in many cases not clear whether
the actual problem instances arising in practical applications exhibit this
worst-case behaviour. Thus, a recent branch of algorithmic research aims
at a more fine-grained analysis of the hardness of optimization problems.
The main idea behind this analysis is to find some parameter according to
which one can classify the hardness of problem instances. This approach
does not only lead to new hardness results, but can also be used to design
improved approximation algorithms for practically relevant subclasses of
problem instances.

In this paper, we survey several different approaches for such improved
approximation results achieved by a fine-grained classification of problem
instances.

1 Introduction

Understanding and classifying the hardness of computational problems is one of
the most fundamental goals in computer science. The model of the Turing ma-
chine [44] together with the Church-Turing thesis gives us a precise formal model
of the class of problems that can be algorithmically solved and thus provides a
sharp border between algorithmically solvable and algorithmically unsolvable
problems. But every-day experience of the 1960s showed that many problems
that are algorithmically solvable in principle are intractable from a practical
point of view since all known algorithms are much too time-consuming.

This observation lead to the development of the fundamental concept of com-
putational complexity [31, 43]. But, in contrast to the theory of computability,
no formal model yielding a sharp border between “practically” solvable and un-
solvable problems has yet been identified.

Instead, the hardness of a problem is often analyzed in a worst-case scenario.
But this approach might yield misleading results for some practical applications
since, for many problems, only a very few instances of any given length are really
� This work was partially supported by SNF grant 200021-132510/1.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 3–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

as hard as the worst-case lower bound suggests. To overcome these difficulties,
sometimes an average-case analysis is used. But, besides usually being a very
challenging task, the results of any average-case analysis heavily depend on the
assumed probability distribution of problem instances. Since the distribution of
the actual inputs in a practical application usually is not known, this method can
often yield misleading results as well. Instead of these traditional approaches,
one would like to measure whether a given single problem instance is hard to
process. Unfortunately, a sound formal definition of this is unattainable since
the solution for a single instance can always be precomputed and integrated into
the algorithm, leading to a constant complexity in any case.

One possible way out of this dilemma is to partition the set of problem in-
stances into infinitely many infinitely large classes according to their hardness.
Proving membership in one of these classes then gives an upper bound on the
resources needed to process a specific instance. In a more general scope, the
partitioning enables a fine-grained analysis of the hardness of a problem, where
classes of tractable inputs can be identified.

One of the first approaches to establish such an infinite partitioning is called
parameterized complexity. One identifies a suitable parameter k of the input
and tries to bound the running time of the algorithm on an instance of length
n by O(f(k) · p(n)) where f is an arbitrary computable function and p is some
polynomial function. Intuitively speaking, such a bound on the time complexity
means that the running time is exponential only in the parameter, but not
in the input length. This parameterization of problem instances has proven to
be a very successful technique, see, e. g., the books by Downey and Fellows
[23] or Niedermeier [36] for an introduction. In this survey, we summarize some
more recent approaches of partitioning the set of problem instances also for
determining the hardness of computing approximate solutions for optimization
problems.

There are several possibilities for directly extending the concept of param-
eterized complexity to optimization problems, we give a survey of known ap-
proaches in Section 3. In Section 4, we discuss the related concept of stability
of approximation algorithms [7, 11]. Here, the idea is to allow only polynomial
running time, but to determine the approximation ratio as a function depend-
ing on a parameter of the input. This parameter is typically determined by the
distance of the considered problem instance from some set of easily solvable
instances.

In Section 5, we survey two recent approaches of instance-classifying algorithm
design. Hybrid algorithms find a partition of the problem instances such that, for
each input, either the best known approximation or the best known running time
of an exact algorithm can be significantly improved. For win/win approximation
algorithms, we are able to prove that, for each input, the approximation ratio
of at least one of two related problems can be improved. From another point
of view, this means to parameterize the instances of one problem according to
their approximability for the other problem.

Improved Approximations for Hard Optimization Problems 5

2 Basic Definitions

In this section, we briefly recall the basic definitions of approximation algorithms.
For a more detailed introduction to this topic, we refer to the books by Hromkovič
[33], Ausiello et al. [4], or Vazirani [46].

An optimization problem U can be described by a quadruple U = (L,M, cost ,
goal), where L denotes the set of problem instances, M(x) is the set of feasible
solutions for each problem instance x ∈ L, cost is a function measuring the cost
of any feasible solution for a given problem instance, and goal is the optimization
goal, i. e., minimization or maximization. An algorithm A is called consistent for U
if it computes a feasible solution A(x) ∈M(x) for every problem instance x ∈ L.

Let A be a consistent algorithm for an optimization problem U = (L,M, cost ,
goal). The approximation ratio RA(x) of A on the input x is defined as RA(x) =
max {cost(A(x))/OptU (x),OptU (x)/cost(A(x))}, where OptU (x) denotes the
cost of an optimal solution for x. This definition ensures that the approximation
ratio yields a value ≥ 1 for both minimization and maximization problems. For
δ > 1, we say that A is a δ-approximation algorithm for U if, for all x ∈ L,
RA(x) ≤ δ.

The definition can be generalized to describe also non-constant approximations
by defining RA(n) = max{RA(x) | x is input of size n}. For every function f :N→
R+, we call A an f(n)-approximation algorithm for U if RA(n) ≤ f(n), for every
n ∈ N.

When dealing with approximations, we usually restrict our attention to opti-
mization problems where (i) the problem instances are recognizable in polynomial
time, (ii) the size of any feasible solution is polynomially bounded by the size of
the input, (iii) the cost function is polynomial-time computable, and, (iv) for any
solution candidate, it can be tested in polynomial time if it is a feasible solution.
The class of problems satisfying these conditions is called NPO.

The class APX is the subclass of problems from NPO for which there exists a
δ-approximation algorithm, where δ ≥ 1 is a constant.

A consistent algorithm A for an optimization problem U is called a polynomial-
time approximation scheme (PTAS) for U if, for every input pair (x, ε) ∈ L ×
R+, A computes a feasible solution A(x) with an approximation ratio of at most
1 + ε within a time that is polynomial in the size of x. If the running time can
be bounded by a function that is polynomial both in the size of x and in ε−1,
we call A a fully polynomial-time approximation scheme (FPTAS). The classes
of problems from NPO admitting a PTAS or an FPTAS are called PTAS and
FPTAS, respectively.

3 Parameterized Approximation Algorithms

The idea behind parameterized algorithmics is the following: Consider some hard
(e. g.,NP-hard) computing problem. If we want to design an exact algorithm solv-
ing the problem, we cannot expect a polynomial running time on all problem in-
stances, unless P = NP . Nevertheless, the complexity of an algorithm might vary

6 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

a lot for different instances of the problem. Our goal now is to find a suitable pa-
rameterization of the set of inputs describing their hardness. In particular, we are
interested in finding a parameter k for any input such that the super-polynomial
part of the running time is tied to the value of the parameter only, but does not
depend on the size of the input.

This concept was introduced by Downey and Fellows [21,22,23]. It can be for-
malized as follows: Let U be a computing problem and let L be the set of all prob-
lem instances of U . We call any polynomial-time computable function κ: L → N
a parameterization of U if, for infinitely many k ∈ N, the set {x ∈ L | κ(x) = k}
is infinite. Intuitively speaking, a parameterization κ partitions the set of prob-
lem instances into infinitely many infinite subclasses. An algorithm A is called a
κ-parameterized polynomial-time algorithm for U if A solves U and if there exists a
polynomial function p and an arbitrary computable function f such that the run-
ning time of A on any problem instance x is bounded by f(κ(x)) ·p(|x|), where |x|
denotes the size of x. If there exists a κ-parameterized algorithm for U , we say that
the parameterized problem (U, κ) is fixed-parameter tractable. By FPT we denote
the class of all fixed-parameter tractable parameterized problems. If the param-
eterization is clear from the context, we call a κ-parameterized polynomial-time
algorithm simply an fpt-algorithm.

There are many different possibilities to choose such parameterizations. One
possibility is to use some natural parameter revealing some structure of the input
like the maximum vertex degree or the diameter in a graph, the maximum number
of occurrences of a variable in a Boolean formula, or the alphabet size in a string.
We call these structural parameterizations in the following.

Another possibility, which is often used in the existing literature for decision
problems, is to consider the size of the solution as a parameter. We call this the
solution-size parameterization, in the literature it can also be found under the
name of standard parametrization. A well-known example is the vertex cover prob-
lem: Given an undirected graph and a natural number k, it asks whether there
exists a set C of at most k vertices in the graph such that every edge is incident
to at least one vertex from C. This problem, parameterized with the desired size
of the vertex cover k as a parameter, is fixed-parameter tractable [21, 23]. Simi-
lar results have been proven for many other parameterized decision problems, for
an overview and a discussion of several design techniques for parameterized algo-
rithms see, e. g., the books by Downey and Fellows [23] or Niedermeier [36].

On the other hand, many parameterized problems are not fixed-parameter
tractable, unless P = NP . For proving such results, a full complexity theory
has been developed, based on the concept of the so-called W [1]-hardness. See the
books by Downey and Fellows [23] or Flum and Grohe [28] for an introduction to
parameterized complexity theory.

While parameterized algorithms and parameterized complexity were mainly
used for analyzing exact computations, there exist some approaches for extend-
ing their applicability to optimization problems and approximation. We will give
an overview of these approaches in this section, a further survey can be found
in [35].

Improved Approximations for Hard Optimization Problems 7

3.1 Efficient Polynomial-Time Approximation Schemes

Maybe the first attempt to connect parameterized algorithms and approximation
was to look at approximation schemes from the point of view of parameterization.
Only few optimization problems admit an FPTAS1, and the running time of many
known PTASs often is very high for any reasonable approximation ratio. Here, the
concept of parameterization can sometimes help to establish a more fine-grained
classification of PTASs. Remember that the input for a PTAS consists of an in-
stance x of the corresponding optimization problem U together with some ε > 0
describing the desired approximation ratio 1 + ε. We can view this as a param-
eterized problem by taking the desired approximation ratio as a parameter, i. e.,
by setting κ(x, ε) = 1/ε. A PTAS with a running time in O(f(1/ε) · p(|x|)) for
some computable function f and some polynomial function p (or, in other words,
an fpt-algorithm according to the parameter 1/ε) is called an efficient polynomial-
time approximation scheme (EPTAS). This notion was introduced by Cesati and
Trevisan [16].

One of the most prominent examples of an EPTAS is the one for the geometric
traveling salesman problem given by Arora [3]. Other EPTASs were designed, for
example, for scheduling on uniform processors [34], and for many so-called bidi-
mensional problems on planar graphs, including feedback vertex set, vertex cover,
minimum maximal matching, and a series of vertex-removal problems [19], see
also [20] for an overview of bidimensionality. All of these algorithms are techni-
cally too involved to present the details in this survey. Instead, we illustrate the
concept of EPTASs with a simple example taken from [9].

The Steiner tree problem in graphs (STP) is the following optimization prob-
lem: Given a complete edge-weighted graph G = (V, E, c) and a subset S ⊆ V of
terminal vertices, the goal is to find a minimum-weight subgraph of G spanning all
terminals. This problem is APX -hard even in the case when all edge weights are
taken from the set {1, 2, . . . , r} for some r ∈ N, i. e., it does not admit any PTAS,
unless P = NP [6]. We now consider the following reoptimization variant2 of this
problem: Assume that an optimal solution Optold is given for an STP instance
(G = (V, E, c), Sold), and we now want to compute a solution for a locally mod-
ified instance (G, Snew), where Snew is produced from Sold by adding a vertex to
it. We call this problem, where the edge costs are again restricted to {1, 2, . . . , r},
AddTerm-r-STP. It was shown in [9] that AddTerm-r-STP is NP-hard.

Theorem 1 (Böckenhauer et al. [9]). There exists an EPTAS for AddTerm-
r-STP.

Proof. Let G = (V, E, c) be an edge-weighted graph, where c: E → {1, . . . , r} for
some constant r ∈ N, let Sold, Snew ⊆ V be two terminal sets such that Snew =
Sold ∪ {v} for some v ∈ V − Sold, and let Optold be a minimum Steiner tree for

1 Only problems that are not strongly NP-hard, i. e., that become polynomial-time
solvable when the input is encoded in unary.

2 For a motivation and a detailed introduction to the concept of reoptimization, see for
instance [10].

8 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

(G, Sold). Let 1 + ε be the desired approximation ratio, for some ε > 0. Then
the following simple algorithm is an EPTAS for AddTerm-r-STP: Let k := �1/ε	.
If Snew contains at most r · k vertices, then compute an optimal solution using
the Dreyfus-Wagner STP algorithm [26]. Otherwise, take the given old optimal
solution and connect the new terminal v to it via an arbitrary edge.

We first analyze the approximation ratio in the second case of this algorithm.
Since |Snew| > k and every edge has cost at least 1, the cost of the optimal solution
for the new instance is at least r ·k. Adding one edge to Optold costs at most r, i.e.,
the cost of the computed solution TA can be estimated as c(TA) ≤ c(Optold) + r.
Thus, the approximation ratio is

c(TA)
c(Optnew)

≤ c(Optold) + r

c(Optnew)
≤ c(Optnew) + r

c(Optnew)
= 1+

r

c(Optnew)
≤ 1+

r

r · k ≤ 1+ε.

According to [26], the time complexity of calculating an optimal solution in the
first case of the algorithm is in O(n2 · 3r·k). The time complexity of the remaining
parts is negligible. Since r is a constant and k = �1/ε	, all requirements for an
EPTAS are satisfied.
�

There are close relations between EPTASs and fpt-algorithms. In particular, the
existence of an EPTAS is related to the fixed-parameter tractability according to
the solution-size parameterization.

Theorem 2 (Cesati and Trevisan [16]). If an optimization problem U admits
an EPTAS, then the solution-size parameterization of U is in FPT .
�

Corollary 1. If the solution-size parameterization of an optimization problem U
is W [1]-hard, then U does not admit an EPTAS, unless P = NP.
�

Corollary 1 directly implies that W [1]-hardness also rules out the possibility of an
FPTAS. Thus, the theory of parameterized complexity can also be used to prove
hardness results in classical approximation theory.

3.2 Structural Parameterizations

For using the approach of parameterization, many different structural parame-
ters of the input can be used. For example, for graph problems, one can consider
the maximum vertex degree, the diameter, the genus, the treewidth, etc. For sat-
isfiability problems, the maximum length of clauses or the maximum number of
occurrences of one variable are possible parameters.

Note that, strictly speaking, some parameters like the treewidth of a graph do
not lead to valid parameterizations in the sense of the definition at the beginning of
this section, since they are not computable in polynomial time. But there exists an
fpt-algorithm (in the strict sense of the definition) for determining the treewidth
of a graph. Thus, it is meaningful to use it as a parameter as well; indeed, the
treewidth parameterization is one of the most successful ones in parameterized
algorithmics.

Improved Approximations for Hard Optimization Problems 9

In this subsection, we give some examples where structural parameters help to
yield improved approximations. We start with a problem which has been shown
to be inapproximable as well as W [1]-hard, but for which we can design a simple
constant-factor approximation algorithm with fpt-running time.

The metric traveling salesman problem (Δ-TSP) asks for finding a shortest
Hamiltonian tour (i. e., a tour visiting each vertex exactly once) in a given edge-
weighted complete graph, where the edge-weight function c satisfies the triangle
inequality, i. e., for each three vertices u, v, w, we have c({u, v}) ≤ c({u, w}) +
c({w, v}). In the Δ-TSP with deadlines (Δ-DLTSP), we have additionally given
a start vertex s and a subset of deadline vertices with prescribed deadlines which
have to be visited by the tour before the cost of the tour exceeds these deadlines.
In other words, the partial tour from s to any deadline vertex x with deadline d(x)
has to have a length of at most d(x). It has been shown in [8] that the Δ-DLTSP
is not approximable within a ratio of ((1 − ε)/2)|V |, for any 0 < ε < 1, unless
P = NP , where V denotes the set of vertices in the input graph. The most natural
parameterization for this problem is the number of deadline vertices. But, accord-
ing to this parameterization, the problem is W [1]-hard since it was shown in [8]
that it is NP-hard even when restricted to instances with only two deadline ver-
tices. Thus, neither approximation nor parameterized algorithms alone can help
to solve this problem. But in the following we show that it is fruitful to combine
both approaches.

For this, we first extend the notion of fixed-parameter tractability to approx-
imation algorithms. A consistent algorithm A for a parameterized optimization
problem (U, κ) is called a δ-fpt-approximation algorithm for (U, κ) if A computes
an at most δ-approximative solution for every admissible input x for U with a run-
ning time bounded by f(κ(x)) · p(|x|) for some arbitrary computable function f
and some polynomial function p.

Theorem 3 (Böckenhauer et al. [8]). There exists a 2.5-fpt-approximation al-
gorithm for Δ-DLTSP, parameterized by the number of deadline vertices.

Proof. Consider a problem instance of Δ-DLTSP, consisting of a complete edge-
weighted graph G = (V, E, c) with metric edge-weight function c, a start vertex s,
a set D of deadline vertices and a deadline function d: D → N assigning a deadline
to each deadline vertex. Let k = |D| denote the number of deadline vertices.

We consider the following algorithm. It first computes a Hamiltonian tour HC

on all non-deadline vertices (but including the start vertex) using Christofides’
algorithm [18]. Then it checks every linear order π = (s, p1, . . . , pk) on the vertices
from D ∪ {s} and constructs the corresponding tour H(π) visiting these vertices
in this order. If this tour does not violate any deadline, the Christofides tour on
the remaining vertices is appended at the end. The algorithm outputs the best of
all tours constructed this way.

The running time of this algorithm can be estimated by O(|V |3 + k!k) since
there are k! possible orderings to be checked, the checking can be implemented to
run in O(k), and Christofides’ algorithm has a running time in O(|V |3) [37]. Thus,
this is an fpt-algorithm.

10 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

We now estimate the achieved approximation ratio. Consider an optimal so-
lution Opt and the order πOpt of the deadline in it. This order is checked by the
algorithm, and the corresponding partial tour H(πOpt) is no longer than Opt due
to the triangle inequality. On the other hand, HC is a 3/2-approximation on the
subinstance induced by the non-deadline vertices since Christofides’ algorithm is
3/2-approximative. Due to the triangle inequality, including more vertices into
this tour cannot decrease the cost, and thus c(HC) + c(H(πOpt) ≤ 3/2 · c(Opt) +
c(Opt) = 2.5 · c(Opt).
�

We can extend the notion of fpt-approximation algorithms also to approximation
schemes. An fpt-AS for a parameterized optimization problem (U, κ) is a consis-
tent algorithm for U which outputs, for a given instance x of U and a given ε > 0,
a (1 + ε)-approximate solution in time f(ε, κ(x)) · p(|x|) for some arbitrary com-
putable function f and some polynomial p. This obviously is a generalization of
the notion of an EPTAS because the super-polynomial part of the running time
does not only depend on the desired approximation ratio, but also on the param-
eter κ(x).

As an example for an fpt-AS, we mention an algorithm for the partial vertex
cover problem which was presented in [35]. This is the following optimization prob-
lem: Given an undirected graph G and an integer k, the goal is to cover as many
edges as possible with some subset of k vertices. This problem was shown to be
W [1]-hard with respect to the parameter k in [30] and to be APX -hard in [38].

Theorem 4 (Marx [35]).The partial vertex cover problem admits an fpt-ASwith
respect to the parameterization κ(G, k) = k.
�

3.3 Solution-Size Parameterizations

The solution-size parameterization is the most studied type of parameterization
for decision problems which seems to be quite natural in many cases and is also
related to the existence of EPTASs as already mentioned in Subsection 3.1. But it
is not trivial to extend this parameterization to optimization problems. The reason
is that, for a hard optimization problem, determining the size of the solution is in
most cases as hard as finding the optimal solution itself, but we expect a parameter
to be easily computable from the given input.

For overcoming this difficulty, three different, but quite similar approaches were
independently proposed in [15,17,24]. The main idea here is to add a parameter to
the input describing a range of solution sizes for which the algorithm is expected
to compute a good approximative solution. We present the definition from [17]
here.

Let U be a minimization problem. A solution-size δ-fpt-approximation algo-
rithm for U is a consistent algorithm for U that, given an input x for U and some
k ∈ N such that the value of the optimal solution Opt(x) satifies c(Opt(x)) ≤ k,
computes a δ-approximate solution in time O(f(k) · p(|x|)) for some computable
function f and some polynomial function p. For pairs (x, k) such that c(Opt(x)) >
k, the output of the algorithm can be arbitrary. The definition can be extended to
maximization problems in an analogous way.

Improved Approximations for Hard Optimization Problems 11

Not many applications of this concept are known, but some fpt-inapproxima-
bility results for the dominating set problem can be found in [25].

4 Stable Approximation Algorithms

In contrast to the parameterized approximation algorithms as described in the
preceding section, for stable approximation algorithms the parameter is used for
measuring the approximation ratio only, maintaining polynomial running time
for every problem instance. The main idea is that, for many hard-to-approximate
optimization problems, there exists a subset of relatively easily approximable in-
stances, and all other instances can be partitioned into infinitely many classes ac-
cording to their distance to this easy kernel of the problem, with respect to some
appropriate distance measure. Now the goal is to find an algorithm that is consis-
tent for all instances and achieves good approximations for the easy kernel, such
that the achieved approximation ratio depends on the distance from the kernel
only, but not on the size of the input. This concept of approximation stability was
introduced in [7], a detailed survey can be found, e. g., in [11].

More formally, approximation stability can be defined as follows. We start with
defining how to measure the distance between problem instances. Let U = (L,M,
cost , goal) be an optimization problem and let U = (LI ,M, cost , goal) be a sub-
problem of U , where LI � L. Any function hL: L → R+ satisfying hL(x) = 0 for
all x ∈ LI is called a distance function for U according to LI . For any r ∈ R+,
we define Ball r,hL(LI) = {w ∈ L | hL(w) ≤ r} to be the set of instances from L
which are at distance at most r from LI .

This definition now enables us to formally define stable approximation algo-
rithms. We consider an ε-approximation algorithm A for U for some ε ∈ R+ which
is consistent for U and some p ∈ R+. We say that A is p-stable according to hL

if, for every real number 0 ≤ r ≤ p, there exists some δr,ε ∈ R+ such that A is a
δr,ε-approximation algorithm on the subproblem of U restricted to the instances
in Ball r,hL(LI). The algorithm A is called stable according to hL if it is p-stable ac-
cording to hL for every p ∈ R+. If there exists a p > 0 such that A is not p-stable,
then A is called unstable.

As an example, let us consider the traveling salesman problem (TSP). For gen-
eral edge weights, the TSP is not approximable within p(n) for any polynomial
function p, where n denotes the number of vertices in the input graph. On the
other hand, if we restrict the problem to edge-weighted graphs satisfying the trian-
gle inequality, the resulting subproblem Δ-TSP admits a 1.5-approximation due
to Christofides’ algorithm [18]. The idea now is to take the Δ-TSP as the easy
problem kernel and to define some distance to metricity for all other TSP inputs.
This can be done by considering a relaxed triangle inequality. We say that an edge-
weighted graph G = (V, E, c) satisfies the β-triangle inequality for some β ≥ 1 if,
for all vertices u, v, w ∈ V , the inequality c({u, v}) ≤ β · (c(u, w) + c(w, v)) holds.
Now we can define a distance function hTSP measuring the distance from Δ-TSP
for every TSP instance G by hTSP(G) = βG − 1, where βG ≥ 1 is the minimum
value for β such that G satisfies the β-triangle inequality.

12 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

It has been shown in [7] that Christofides’ algorithm is unstable for hTSP, but
a modification of the algorithm can be shown to be stable. Other stable TSP al-
gorithms were developed in [2, 1, 5]; for an overview, see [11].

Theorem 5 (Böckenhauer et al. [7]). There exists a stable approximation for
TSP achieving an approximation ratio of 1.5·β2 on graphs satisfying the β-triangle
inequality.
�

5 Hybrid Algorithms and Win/Win Approximations

In the previous sections, we have discussed several ways to combine techniques
from parameterization and approximation. Another intriguing approach is to use
a single parameter for both exact computations and approximations such that, for
any value of the parameter, we obtain either an improved exact algorithm or an
improved approximation. Algorithms achieving this goal belong to the class of so-
called hybrid algorithmswhich originate from the algorithm selection problem [40],
the problem to select an appropriate algorithm for an input according to some
given selection criteria. A hybrid algorithm consists of a collection of algorithms
for a problem U and a selector S that decides which algorithm from the collection
is used for a given input. In the context of this survey, we are interested in those
hybrid algorithms that, for a set M of complexity measures, guarantee to compute
a good result for any given input with respect to at least one measure m ∈ M .

The set of complexity measures can contain, for example, the worst-case run-
ning time and the approximation ratio achievable in polynomial time. An example
of a selector S is to identify a parameter of the problem instance and to decide ac-
cordingly whether to compute an exact solution or an approximation. The goal is
that, according to the value of the parameter, we can either ensure an improved
running time or an improved approximation ratio. More precisely, in the case of
exact computations, the running time is parameterized with respect to the iden-
tified parameter and improves the best known fpt-algorithm for the problem. In
the case of approximation, we can ensure that the approximation ratio improves
over the best known worst-case approximation ratio, depending on the parameter,
similarly as in the case of stable approximation algorithms.

In the following, we give an example of a hybrid algorithm for the maximum cut
problem in unweighted graphs (MaxCut). Measured in the number of edges m, the
currently best exact algorithm solves MaxCut in time O(2m/5) [42]. The worst-
case approximation ratio is about 1.1383 using extensive computational power
[29]; the best algorithm that is not based on semidefinite programming is
2-approximative and runs in time O(n+m), where n is the number of vertices [41].

The notation O∗ denotes an asymptotic upper bound where polynomial factors
are omitted.

Theorem 6 (Vassilevska et al. [45]). For any ε > 0, there is a hybrid algorithm
for MaxCut that either computes an exact solution in time O∗(2εm) or an expected
(4/(2 + ε))-approximation in linear time.

Improved Approximations for Hard Optimization Problems 13

Proof. Given a graph G = (V, E) with |V | = n vertices and |E| = m edges, the
hybrid algorithm computes a maximal matching M in linear time, i. e., a matching
that contains at least one vertex of every edge from E. Now, the selector decides
whether to compute an optimal solution or an approximation depending on the
size of M . If |M | < εm/2, the algorithm computes an exact solution as follows.
Let VM be the set of vertices in M . For each partition of VM into two sets, the al-
gorithm distributes the vertices from G\M greedily, i. e., the vertices from G\M
are distributed one after the other such that each time the cut is maximized. Then
it takes the best solution obtained this way. It is clear that this algorithm runs in
time O∗(2εm), since there are 2εm possible partitions of εm > |VM | vertices. To
show that the outcome is an optimal solution, note that at least one of the tested
partitions, say (M1, M2), coincides with the partition defined by an optimal solu-
tion. Since M is a maximal matching, the vertices in G\M form an independent
set. Therefore, the optimal distribution of those vertices depends only on M1 and
M2 and thus greedily distributing the vertices is sufficient.

The remaining case is that |M | ≥ εm/2 and the selector chooses to compute
an approximate solution. In this case, the algorithm separately distributes the
vertices from M and those from G\M into two sets M1 and M2. For each edge
{u, v} in M , with probability 1/2 it puts u into M1 and v into M2 and with prob-
ability 1/2 it puts u into M2 and v into M1. This way, u and v are not in the
same set. The algorithm puts each of the remaining vertices with probability 1/2
to M1 and otherwise to M2. Now, the expectation is that half of the edges from
E not contained in M are in the cut. Additionally, all εm/2 edges from M are
in the cut. Therefore, the expectation of the total number of edges in the cut is
εm/2 + (m− εm/2)/2 = m/2 + εm/4.

Since the value of an optimal solution can be trivially bounded from above by m,
this results in the approximation ratio Opt/(m/2+εm/4) ≤ m/((2m+εm)/4) =
4/(2 + ε).
�
For ε < 1/5, the algorithm from Theorem 6 either improves over the best known
exact algorithm or over the best known linear-time approximation algorithm.

We continue with a related concept, the so-called win/win algorithms. A
win/win algorithm computes — similar to a hybrid algorithm — more than one
solution. In contrast to hybrid algorithms, however, win/win algorithms only use
a single complexity measure but for a collection of different problems that share
the same set of input instances. In other words, given one instance for two prob-
lems, a win/win algorithms guarantees to deliver a good solution for at least one
of the problems. The win/win approach originates from parameterized computa-
tions and is used there as a technique for kernelization. Kernelization is a prepro-
cessing that, for a parameterized problem with parameter k, transforms a given
problem instance into a new one such that the size of the transformed instance
only depends on k. Then it suffices to handle the transformed input instead of the
original one. In other words, a kernelization ensures us that we can either directly
decide the parameterized problem in polynomial time or we can perform the com-
putations on a smaller instance (possibly with a smaller parameter). An important

14 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

result in parameterized complexity is that a problem is in FPT if and only if it
has a kernelization. An overview on kernelization techniques can be found, e. g.,
in [36].

We now sketch an example from Prieto and Sloper [39] that shows how to use
win/win algorithms for kernelization. The k-vertex cover problem (k-VC) is to de-
cide whether there is a set of k vertices within a graph G = (V, E) such that each
edge e ∈ E is incident to at least one of the vertices. The win/win approach shows
that this problem is closely related to the problem of finding a spanning tree in G
that has at least k internal vertices (k-IST).

The relation is based on finding a spanning tree in G such that either its leaves
form an independent set in G or there are only two leaves. Note that, if there are
only two leaves, then the tree is a Hamiltonian path and thus an (n− 2)-internal
spanning tree in a graph with n vertices.

Lemma 1 (Prieto and Sloper [39]). Given a graph G, one can find in polyno-
mial time a spanning tree T in G such that either T is a Hamiltonian path or the
leaves of T form an independent set.

Proof. The main ingredient of the proof is to compute a spanning tree T ′ in G and
to transform T ′ into another spanning tree T that is either a Hamiltonian path or
a spanning tree, where the leaves form an independent set. The transformation is
done by successively searching for pairs of leaves u, v that are connected in G. By
adding the edge {u, v} to the spanning tree and removing an edge with at least
three incident neighbors from the unique path connecting u and v, we obtain a
new spanning tree, where the number of leaves is reduced by at least one. This
way, the transformation ends with a tree T such that either no vertex in T has a
degree higher than two (i. e., T is a Hamiltonian path) or there is no edge between
leaves of T (i. e., the leaves form an independent set).
�

If the leaves form an independent set, then the internal vertices form a vertex
cover. Therefore, using Lemma 1, we obtain the following win/win result.

Theorem 7 (Prieto and Sloper [39]). There is a polynomial-time algorithm
that, for a given graph G, either computes a vertex cover of at most k vertices or a
spanning tree with at least k internal vertices.
�

The stated result is interesting by its own, but additionally one can use it to obtain
a kernelization of k-IST.

Theorem 8 (Prieto and Sloper [39]). For any graph G, one can either find a k-
internal spanning tree T in polynomial time or G can be transformed in polynomial
time to a graph G′ with at most 2k3 +k2 +2k vertices such that G has a k-internal
spanning tree if and only G′ has.
�

The concept of win/win algorithms smoothly translates to approximation. As in
win/win algorithms in parameterized computations, we are given one input that
is a valid instance of two different problems. But instead of searching for an exact
solution, we want to find approximate solutions for these problems. We aim for

Improved Approximations for Hard Optimization Problems 15

algorithms that guarantee at least one of the solutions to be improved compared
to its known upper bounds on the worst-case approximation ratio. We can see the
win/win approximation as a type of parameterization, where the approximation
ratio achieved by one of the problems is the parameter for the other one.

An application of Lemma 1, presented in [27], relates the traveling salesman
problem with edge costs restricted to 1 and 2, (1, 2)-TSP, to the independent set
problem (IS). Given a set of edges E, let E1 be E restricted to the edges of cost 1.
The following lemma is a slightly strengthened version of a result from [27].

Lemma 2. Given a complete weighted graph G = (V, E, c) with edge costs re-
stricted to 1 and 2, one can compute a Hamiltonian path of length L in G and an in-
dependent set of size I in the unweighted graph G′ = (V, E1) such that L−I ≤ n−2,
where n = |V |.

Proof. We apply Lemma 1 to each connected component of G′. Then I is the size of
a maximal independent set composed of the leaves of all computed spanning trees
within all components. (Note that each such maximal independent set has the
same size: It includes all leaves except some of those that are part of a Hamiltonian
path within a component.) In particular, each component contributes at least one
vertex counted in I.

In order to form a Hamiltonian path of length L, we handle the components
of G′ separately. For each component C, let TC be the spanning tree computed
for C. We form a path PC in G by connecting the vertices of C in the order of a
depth-first search in TC starting from a leaf. Note that all edges of PC that are not
in TC contain at least one leaf of TC . Thus, we can assign each edge of cost 2 to a
leaf of TC . The leaf from which the depth-first search starts is not assigned to any
edge of cost 2. Therefore, for each component C, the number of vertices counted
in the independent set I is at least the number of edges of cost 2 in PC plus one.
Finally, we have to connect all paths PC to one Hamiltonian path in G using edges
of cost 2. The claim of the lemma follows immediately, since the number of such
edges is the number of components minus one.
�

With this preparation, the actual win/win result is not hard to obtain.

Theorem 9 (Eppstein [27]). Given a complete weighted graph G with edge
weights 1 or 2, there is a win/win approximation algorithm that, for any ε > 0,
either computes a (1+ ε)-approximative (1, 2)-TSP tour or a (1/ε)-approximative
independent set in G′, where G′ is defined as in Lemma 2.

Proof. Let L∗ be the length of an optimal Hamiltonian tour in G and let I∗ be
the size of a maximum independent set of G′. If L ≤ (1 + ε)(n− 1), then we are
done, because we are sure that L∗ ≥ n − 1. Otherwise, note that ε ≤ 1 holds.
Using Lemma 2, we get I ≥ L− n + 2 > (1 + ε)(n− 1)− (n− 1) + 1 ≥ εn. Since
I∗ ≤ n, the approximation ratio for the maximum independent set is I∗/I ≤
n/(εn)= 1/ε.
�

The idea of Theorem 9 was used as a technique to find a PTAS for a graph em-
bedding problem in [14].

16 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1 1.1 1.2 1.3 1.4 1.5

α

β

Fig. 1. Upper bound on the approximation ratio from Theorem 11. The horizontal line
displays the approximation ratio α ≤ 5/3 proven in [32].

For some pairs of problems, one can show that, unless P = NP , there are no
win/win algorithms that lead to improved approximation ratios.

Theorem 10 (Eppstein, [27]). For all ε > 0, unless P = NP, there is no
polynomial-time win/win approximation algorithm for IS and the maximum clique
problem that achieves an approximation ratio of n1−ε for either of the problems,
where n is the number of vertices.
�
The pairs of problems considered above for the positive results were related in a
way that has similarities with duality in linear programming in the sense that they
rely on the interaction of minimization and maximization. To show that this is not
a specific property of win/win, we present a win/win approximation from [12] that
relates two minimization problems, namely the metric Hamiltonian path problem
with prespecified start and end vertex (Δ-HPP2) and the Δ-TSP.

Currently, the algorithm of Christofides [18] has the best proven approxima-
tion ratio for the Δ-TSP, which is 1.5. A slight modification of that algorithm
was shown by Hoogeveen [32] to be 5/3-approximative for the Δ-HPP2. The two
problems are strongly related in the sense that, for any given metric graph, ei-
ther we are guaranteed to obtain an approximation ratio for Δ-TSP that is sig-
nificantly better than 1.5-approximative or we can solve the Δ-HPP2 better than
5/3-approximatively for any choice of end-vertices.

To this end, let us consider an algorithm A that works as follows. The input of
A is a complete edge-weighted metric graph G = (V, E, c) and two vertices u and
v. Then A runs both Christofides’ algorithm and Hoogeveen’s algorithm on the
input using the same minimum-cost spanning tree.

Let OptC and OptP denote the optimal solutions for the Δ-TSP and the
Δ-HPP2 given an input G, u, v and let HC and HP be the solutions computed
by A. Then we define α := c(HP)/c(OptP) to be the approximation ratio of the
computed Hamiltonian path and β := c(HC)/c(OptC) to be the approximation
ratio of the computed Hamiltonian tour.

Theorem 11 (Böckenhauer et al. [12]). The approximation ratio α is at most
1 + 1.5/(2β), independent of the choice of u and v. In particular, only pairs of
approximation ratios from or below the shaded area in Figure 1 are possible.
�

Improved Approximations for Hard Optimization Problems 17

6 Conclusion

This paper provides a survey of some currently used ways of classifying instances
of hard problems with respect to their computational hardness. On the one hand,
this kind of effort shows why some hard problems can be successfully solved in
practice. On the other hand, the presented approaches help to understand the
nature of the hardness of some algorithmic problems by specifying the properties
of the instances that lie in the hardest kernels of the considered problems.

References

1. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a
relaxed triangle inequality. Networks 38(2), 59–67 (2001)

2. Andreae, T., Bandelt, H.J.: Performance guarantees for approximation algorithms
depending on parameterized triangle inequalities. SIAM Journal on Discrete Math-
ematics 8, 1–16 (1995)

3. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation. Springer, Berlin (1999)

5. Bender, M., Chekuri, C.: Performance guarantees for TSP with a parametrized tri-
angle inequality. Information Processing Letters 73, 17–21 (2000)

6. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. In-
formation Processing Letters 32(4), 171–176 (1989)

7. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards
the notion of stability of approximation for hard optimization tasks and the travel-
ing salesman problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC
2000. LNCS, vol. 1767, pp. 72–86. Springer, Heidelberg (2000)

8. Böckenhauer, H.-J., Hromkovič, J., Kneis, J., Kupke, J.: The parameterized ap-
proximability of TSP with deadlines. Theory of Computing Systems 41(3), 431–444
(2007)

9. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Re-
optimization of Steiner trees: Changing the terminal set. Theoretical Computer Sci-
ence 410(36), 3428–3435 (2009)

10. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of
reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidel-
berg (2008)

11. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gon-
zalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, ch.
31. Chapman & Hall/CRC (2007)

12. Böckenhauer, H.-J., Klasing, R., Mömke, T., Steinová, M.: Improved approxima-
tions for TSP with simple precedence constraints. In: Calamoneri, T., Diaz, J. (eds.)
CIAC 2010. LNCS, vol. 6078, pp. 61–72. Springer, Heidelberg (2010)

13. Bodlaender, H.L., Langston, M.A. (eds.): IWPEC 2006. LNCS, vol. 4169. Springer,
Heidelberg (2006)

14. Cabello, S., Eppstein, D., Klavžar, S.: The Fibonacci dimension of a graph. CoRR
abs/0903.2507 (2009)

18 H.-J. Böckenhauer, J. Hromkovič, and T. Mömke

15. Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and ap-
proximability results. Algorithmica 57(2), 398–412 (2010)

16. Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation
schemes. Information Processing Letters 64(4), 165–171 (1997)

17. Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

18. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie-
Mellon University (1976)

19. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: New connections between FPT
algorithms and PTASs. In: Proc. of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2005), pp. 590–601. SIAM, Philadelphia (2005)

20. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. Computer Journal 51(3), 292–302 (2008)

21. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness i: Ba-
sic results. SIAM Journal on Computing 24(4), 873–921 (1995)

22. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness ii: On
completeness for W [1]. Theoretical Computer Science 141, 109–131 (1995)

23. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science. Springer, New York (1999)

24. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

25. Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized ap-
proximation of dominating set problems. Information Processing Letters 109(1),
68–70 (2008)

26. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207
(1971/1972)

27. Eppstein, D.: Paired approximation problems and incompatible inapproximabili-
ties. In: Charikar, M. (ed.) Proc. of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2010), pp. 1076–1086. SIAM, Philadelphia (2010)

28. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

29. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6), 1115–1145 (1995)

30. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover
variants. Theory of Computing Systems 41(3), 501–520 (2007)

31. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Transactions of the American Mathematical Society 117, 285–306 (1965)

32. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult
than cycles. Operations Research Letters 10(5), 291–295 (1991)

33. Hromkovič, J.: Algorithmics for Hard Problems. In: Introduction to Combinato-
rial Optimization, Randomization, Approximation, and Heuristics. Springer, Berlin
(2003)

34. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: Using an MILP
relaxation with a constant number of integral variables. SIAM Journal on Discrete
Mathematics 24(2), 457–485 (2010)

35. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

Improved Approximations for Hard Optimization Problems 19

36. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, USA (2006)

37. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs (1982)

38. Petrank, E.: The hardness of approximation: gap location. Computational Com-
plexity 4, 133–157 (1994)

39. Prieto, E., Sloper, C.: Either/or: using vertex cover structure in designing FPT-
algorithms—the case of k-Internal Spanning Tree. In: Dehne, F.K.H.A., Sack, J.R.,
Smid, M.H.M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidel-
berg (2003)

40. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

41. Sahni, S., Gonzalez, T.F.: P-complete approximation problems. Journal of the
ACM 23(3), 555–565 (1976)

42. Scott, A.D., Sorkin, G.B.: Faster algorithms for MAX CUT and MAX CSP, with
polynomial expected time for sparse instances. In: Arora, S., Jansen, K., Rolim,
J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp.
382–395. Springer, Heidelberg (2003)

43. Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited compu-
tations. In: Proc. of the 6th Annual Symposium on Switching and Automata Theory,
pp. 179–190. IEEE, Los Alamitos (1965)

44. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265
(1936)

45. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid
approach. In: Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2006), pp. 1–10. SIAM, New York (2006)

46. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)

Covering and Packing with Spheres
by Diagonal Distortion in Rn�

Herbert Edelsbrunner1,2 and Michael Kerber1

1 IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
2 Departments of Computer Science and of Mathematics, Duke University, Durham, North

Carolina, and Geomagic, Research Triangle Park, North Carolina, USA

Abstract. We address the problem of covering Rn with congruent balls, while
minimizing the number of balls that contain an average point. Considering the
1-parameter family of lattices defined by stretching or compressing the integer
grid in diagonal direction, we give a closed formula for the covering density
that depends on the distortion parameter. We observe that our family contains
the thinnest lattice coverings in dimensions 2 to 5. We also consider the prob-
lem of packing congruent balls in Rn, for which we give a closed formula for
the packing density as well. Again we observe that our family contains optimal
configurations, this time densest packings in dimensions 2 and 3.

Keywords: Packing, covering, spheres, balls, cubes, lattices, n-dimensional
Euclidean space.

1 Introduction

The starting point for the work described in this paper is a perturbation of the integer
grid designed to resolve ambiguities in the neighborhood relation of the cubes in an
n-dimensional image [7]. Generalizing the perturbation to a 1-parameter family of dis-
tortions, we noted its relation with some well-known lattices in the sphere covering and
packing literature; see Conway and Sloane [4], Fejes Tóth [8], and Rogers [16]. For
example, in R3, we get the body-centered cubic, or BCC lattice by compressing with
a factor 1/2, and we get the face-centered cubic, of FCC lattice by stretching with a
factor 2. We will explain the significance of these lattices for the covering and packing
of congruent balls shortly.

Background. In the Euclidean plane, there is a single lattice that gives the thinnest
covering of congruent disks as well as the densest packing of congruent disks. This is
the hexagonal lattice, which consists of all integer combinations of the vectors

v1 =
1

2
√

3

(
1 +

√
3

1−
√

3

)
, v2 =

1
2
√

3

(
1−

√
3

1 +
√

3

)
.

Placing disks of radius
√

2/3 centered at the lattice points, we get a covering, and
reducing the radius to 1/

√
6, we get a packing. Both are optimal in the sense that no

� This research is partially supported by DARPA under grant HR0011-09-0065 and NSF under
grant DBI-0820624.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 20–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Covering and Packing with Spheres by Diagonal Distortion in Rn 21

other covering achieves a smaller covering density (see Kershner [12]), and no other
packing achieves a larger packing density (see Thue [21]). Elegant proofs of both results
can be found in Fejes Tóth [8].

The situation gets more complicated already in R3, where the lattice that gives the
thinnest covering is different from the one that gives the densest packing. For covering,
the BCC lattice gives the smallest density of a lattice covering (see Bambah [1]), but
the existence of an even thinner non-lattice covering has not yet been contradicted. For
packing, the FCC lattice gives the highest density (see Gauß[10]), and the claim that no
non-lattice packing can be denser has become known as the Kepler Conjecture, one of
the foremost mathematical questions of our time [20]. Stated in 1611, the conjecture re-
mained open until Hales gave a computer-assisted proof confirming Kepler’s conjecture
in 2005 [11].

Even less is known in dimensions beyond 3. The generalization of the BCC lattice
gives thin coverings that are known to be optimal among lattice coverings in dimension
4 (see Delone and Ryskov [5]) and in dimension 5 (see Ryskov and Baranovskii [17]).
The thinnest known coverings in dimensions 6 to 24 can be found in [18,19] and the re-
lated website1. In contrast, the generalization of the FCC lattice fails to give the densest
packing already in dimension 4. Nevertheless, the densest lattice packings are known in
dimensions 4 and 5 (see Korkine and Zolotareff [13]), and in dimensions 6, 7 and 8 (see
Blichfeldt [2]). No further optimality results are available until dimension 24 in which
the Leech lattice, discovered independently by Witt in 1940 [22] and by Leech in 1965
[15], gives a surprisingly thin covering and dense packing. The optimality among the
lattice packings has recently been established by Cohn and Kumar [3].

Results. In this paper, we give a complete analysis of the coverings and packings gen-
erated by the lattices obtained by a diagonal distortion of the integer grid. Specifically,
we give closed-form expressions of the covering and packing densities as functions of
δ > 0, the distortion parameter. The complete analysis is possible because we get only
a small number of combinatorially different Delaunay complexes for the 1-parameter
family of lattices. For 0 < δ < 1, the distortion is a compression, and the Delaunay
complex consists of copies of the Freudenthal triangulation of the unit cube. Among
these lattices, we find the thinnest coverings for δ = 1/

√
n + 1, giving optimal cover-

ing densities among lattices for dimensions 2, 3, 4, and 5. For δ = 1, the distortion is
the identity, and the Delaunay complex consists of copies of the unit cube. For 1 < δ,
the distortion stretches the integer grid, and the Delaunay complex consists of distorted
diagonal slices of the unit cube. Among these lattices, we find the densest packings for
δ =

√
n + 1, giving optimal packing densities for dimensions 2 and 3.

Outline. Section 2 introduces two decompositions of the n-cube: the Freudenthal trian-
gulation and the slice decomposition. Section 3 explains how a lattice in Rn defines a
covering and a packing, and how we measure their densities. Section 4 gives a complete
analysis of the covering density as a function of the distortion. Section 5 does the same
for the packing density. Section 6 concludes the paper.

1 http://www.math.uni-magdeburg.de/lattice_geometry/

http://www.math.uni-magdeburg.de/lattice_geometry/

22 H. Edelsbrunner and M. Kerber

2 Decomposing the n-Cube

In this section, we introduce the two decompositions of the cube that are instrumental in
the analysis of the covering and packing densities of the 1-parameter family of lattices.

Freudenthal triangulation. We write [n] = {1, 2, . . . , n} for the set of coordinate direc-
tions in Rn and ei for the unit vector in the i-th coordinate direction. The n-dimensional
unit cube, Un = [0, 1]n, has 2n vertices uI , each corresponding to a subset I ⊆ [n] such
that uI =

∑
i∈I ei. We say uI precedes uJ if I ⊆ J and I = J . This defines a partial

order on the vertices, with a unique smallest vertex 0 = u∅, and a unique largest ver-
tex 1 = u[n]. A chain is a sequence of distinct vertices in which each vertex precedes
the next one. Its length is the number of vertices. Each chain of length k + 1 defines a
k-simplex, namely the convex hull of its k + 1 vertices. The Freudenthal triangulation
of the n-cube, denoted as Fn = F(Un), is the set of all simplices defined by chains
[9,14]; see Figure 1.

Define the silhouette of the n-cube as its projection along the diagonal direction,
which is an (n−1)-dimensional convex polytope. It is not difficult to see that all vertices
other than 0 and 1 project to vertices of the silhouette. The faces of the silhouette have
dimension between 0 and n− 2. We can triangulate these faces such that the join of the
preimage of every (k−2)-simplex with the edge connecting 0 with 1 gives a k-simplex
of the Freudenthal triangulation.

Slice decomposition. Let Ui be the subset of vertices uJ with cardJ = i, and let Hi

be the (n− 1)-dimensional hyperplane orthogonal to the diagonal direction that passes
through the vertices of Ui, for 0 ≤ i ≤ n. The n + 1 hyperplanes cut the n-cube into n
slices, each of width 1/

√
n. We call this the slice decomposition of the n-cube, denoted

at Sn = S(Un); see Figure 1. We note that for each edge of the n-cube, there is a
unique i such that its endpoints belong to Ui−1 and to Ui. In other words, the edge does
not cross any of the hyperplanes and therefore belongs to a unique slice. It follows that
the i-th slice is the convex hull of the points in Ui−1 ∪ Ui and that its number of vertices
is
(

n
i−1

)
+
(
n
i

)
. Furthermore, the i-th slice is the central reflection of the (n− i + 1)-st

slice whose vertices are the points in Un−i ∪ Un−i+1.

0

1

1

0

Fig. 1. Left: the Freudenthal triangulation of the 3-cube consisting of six tetrahedra sharing the
edge that connects 0 with 1. Right: the slice decomposition of the 3-cube consisting of two
tetrahedra sandwiching an octahedron.

Covering and Packing with Spheres by Diagonal Distortion in Rn 23

10

Fig. 2. The sliced circumsphere of the 3-cube in the middle, with its compressed and stretched
images on the left and the right

The hyperplanes can also be used to cut the circumscribed (n− 1)-sphere, S, of the
unit n-cube; see Figure 2. For 0 ≤ i ≤ n, let Si = S ∩ Hi and note that S0 = 0,
Sn = 1, and all other Si are (n−2)-dimensional spheres. The radius of S is

√
n/2. We

can therefore compute the radius of Si as

ri =

√
n

4
−
(√

n

2
− i√

n

)2

=

√
i− i2

n
. (1)

As n goes to infinity, the radius of S1 converges to 1, while the radius of Sn/2 is
√

n/2
and thus diverges. Remarkably, the points in U1 are nevertheless vertices of the silhou-
ette of the n-cube. Note that the ri are also the distances of the vertices of the silhouette
from its center.

1 (Silhouette Lemma) . Let sI and sJ be the projections of uI and uJ . Assuming
I, J = ∅, [n], both are vertices of the silhouette and ‖sI‖ ≤ ‖sJ‖ iff (card I − n

2)2 ≥
(cardJ − n

2)2.

This fact will be relevant in Section 5, where we analyze the packing density of a 1-
parameter family of lattices. Now consider compressing or stretching the cube and its
circumsphere along the diagonal direction. If we compress, we get an ellipsoid of pan-
cake type, and the Delaunay complex of the 2n points is the compressed Freudenthal
triangulation; see [7] for a proof. If we stretch, we get an ellipsoid of cigar type, and the
Delaunay complex of the 2n vertices is the stretched slice decomposition; see Figure 1.

3 Lattices

In this section, we introduce the 1-parameter family of lattices and explain how they
define packings and coverings. Writing Vn for the (n-dimensional) volume of the n-
dimensional unit ball, Bn = {x ∈ Rn | ‖x‖ ≤ 1}, we have

Vn =
{

π
n
2 /
(

n
2

)
! if n is even,

π
n−1

2 2
n+1
2 /n!! if n is odd,

where n!! = n · (n− 2) · . . . · 3 · 1 is the double factorial; see e.g. [4].

24 H. Edelsbrunner and M. Kerber

Covering and packing. A lattice in Rn consists of all integer combinations of n lin-
early independent vectors vi. Important numbers of a lattice L are its determinant, its
covering radius, and its packing radius:

detL = det[v1v2 . . . vn],
R(L) = max

x∈Rn
min
a∈L

‖x− a‖,

r(L) = min
0 �=a∈L

‖a‖/2.

Suppose we choose a radius r and replace each point a ∈ L by the ball of radius r
centered at a. The density of the resulting set of balls is the number of balls that contain
an average point:

	(r) =
Vnrn

detL . (2)

For r ≥ R(L), we get a covering in which the balls cover every point at least once.
The density is therefore greater than or equal to 1. For r ≤ r(L), we get a packing
in which the balls have disjoint interiors. The density is therefore less than or equal
to 1. Two lattices are isomorphic if they are related by a similarity. In this case, the
two lattices give the same densities. We are interested in finding the lattices that give
smallest possible covering density and the largest possible packing density.

The mother of all lattices is the integer grid, L = Zn. We have detL = 1, r(L) =
1/2, and R(L) =

√
n/2. The corresponding packing density is Vn/2n and the cor-

responding covering density is n
n
2 Vn/2n. For small values of n, these are given in

Table 1.

Table 1. From left to right: the volume of Bn, the covering density of the integer grid in Rn, and
the packing density of the same grid

n volume of unit ball covering density packing density

2 π = 3.141 . . . π/2 = 1.570 . . . π/4 = 0.785 . . .

3 4π/3 = 4.188 . . .
√

3π/2 = 2.720 . . . π/6 = 0.523 . . .
4 π2/2 = 4.934 . . . π2/2 = 4.934 . . . π2/32 = 0.308 . . .

5 8π2/15 = 5.263 . . . 5
√

5π2/12 = 9.195 . . . π2/60 = 0.164 . . .
6 π3/6 = 5.167 . . . 9π3/16 = 17.441 . . . π3/384 = 0.060 . . .

7 16π3/105 = 4.724 . . . 49
√

7π3/120 = 33.497 . . . π3/840 = 0.036 . . .
8 π4/24 = 4.058 . . . 2π4/3 = 64.939 . . . π4/6144 = 0.015 . . .

Distortion. To describe a 1-parameter family of distortions of the integer grid, we in-
troduce the diagonal height function, Δ : Rn → R, which maps every point x =
(x1, x2, . . . , xn) to Δ(x) = 〈x,1〉 =

∑n
i=1 xi. It is

√
n times the (signed) Euclidean

distance of x from the diagonal hyperplane, Δ−1(0). For each δ ∈ R, we construct a
lattice Lδ by mapping the i-th unit vector to ei + D · 1, where D = (δ − 1)/n. The
corresponding linear transformation, Tδ : Rn → Rn, is given by

Tδ(x) = x + DΔ(x) · 1. (3)

Covering and Packing with Spheres by Diagonal Distortion in Rn 25

G

1′′

1′

1
H

0

Fig. 3. Two similar right-angled triangles in Rn

Hence, Lδ = Tδ(Zn), and we note that L1 = Zn. For vanishing distortion parameter δ,
we get a set of points in Δ−1(0), which has only n− 1 dimensions. This set is again a
lattice and, more specifically, one in our 1-parameter family, as we now prove.

2 (Lattice Projection Lemma) . The diagonal projection of the n-dimensional integer
grid, T0(Zn), is isometric to Tδ(Zn−1), for δ = 1/

√
n.

Proof. Let L be the set of lines in Rn obtained by drawing a line in diagonal direction
through every point in Zn. Intersecting L with the hyperplane G spanned by the first
n−1 coordinate axes, we get Zn−1. Intersecting L with H = Δ−1(0), wet get T0(Zn).
Both are sets in n − 1 dimensions, and we can interpolate between them by rotating
the hyperplane around G ∩ H , from G to H . This interpolation is exactly the distortion
of Zn−1 defined above. It remains to show that H ∩ L is the distorted integer grid for
δ = 1/

√
n. To see this, we consider the two lines in L that pass through 1 and through

1′ = (1, . . . , 1, 0) in Rn. They intersect G in 0 and 1′ and they intersect H in 0 and 1′′,
the projection of 1′ onto H . The distance between 0 and 1′ is

√
n− 1. To compute the

distance between 0 and 1′′, we consider the triangles spanned by 0, 1, 1′ and by 0, 1′,
1′′; see Figure 3. The two triangles are similar, which implies that the distance between
the two intersection points in H is

‖0− 1′′‖ = ‖1− 1′‖ · ‖0− 1′‖
‖0− 1‖ =

√
1− 1

n
.

The distortion factor is the ratio of the distance between 0 and 1′′ in H and between 0
and 1′ in G, which is δ = 1/

√
n.

We will see shortly that the distortion of the (n − 1)-dimensional integer grid for δ =
1/
√

n provides the thinnest covering in the 1-parameter family we consider in this
paper.

Projected Freudenthal simplex. We are interested in the diagonal projection of an n-
dimensional Freudenthal simplex and the radius of its circumscribed sphere. Take the
n-simplex spanned by the points yi =

∑i
j=1 ej , for 0 ≤ i ≤ n, noting that y0 = 0 and

yn = 1. The projection of yi onto H = Δ−1(0) is xi = T0(yi), where

xi =
1
n

(n− i, . . . , n− i,−i, . . . ,−i)

26 H. Edelsbrunner and M. Kerber

is a point with i equal leading coordinates and n − i equal trailing coordinates. Since
x0 = xn, we get only n different points which span an (n − 1)-simplex in H , the
projection of the n-simplex. Perhaps surprisingly, it is not difficult to find the center
and radius of the circumsphere of the (n − 1)-simplex. For that purpose, we consider
the point

z =
1
n

(n− 1, n− 2, . . . , 1, 0)

and note that Δ(z) = 1
n

∑n−1
i=1 i = n−1

2 . The projection of z onto H is therefore
z′ = T0(z) = z − n−1

2n · 1, which gives

z′ =
1
2n

(n− 1, n− 3, . . . ,−n + 3,−n + 1).

To compute the distance between the two projected points, we write the vectors of 2nxi,
2nz′, and 2n(xi − z′):

(2n− 2i, . . . , 2n− 2i ; −2i, . . . ,−2i),
(n− 1, . . . , n− 2i + 1 ; n− 2i− 1, . . . ,−n + 1),
(n− 2i + 1, . . . , n− 1 ; −n + 1, . . . , n− 2i− 1),

showing the 1-st, i-th, (i + 1)-st, and n-th coordinates. We can read the difference as a
cyclic rotation of the vector (−n+1,−n+3, . . . , n− 1). In other words, all vectors of
the form xi−z′ are cyclic rotations of each other, which implies that the n+1 points xi

all have the same distance from z′. This distance is also the radius of the circumscribed
sphere of the (n− 1)-simplex:

R0 =

√
(n− 1)(n + 1)

12n
. (4)

We will use this radius in the analysis of the covering density in Section 4.

4 Covering

To compute the covering radius, we need to understand the Voronoi diagram of Lδ or,
equivalently, the Delaunay complex. Fortunately, there are only two types.

Radius of a slice. For δ > 1, the Delaunay complex consists of distorted copies of the
slice decomposition:

Del(Lδ) = Tδ(Sn + Zn).

We may restrict ourselves to the slices in the decomposition of the distorted unit cube.
The center of the circumsphere of every slice lies on the diagonal and between the two
delimiting hyperplanes. It follows that the circumradii of the slices increase toward the
middle, similar to the radii of the (n− 2)-spheres in the Silhouette Lemma. For odd n,

Covering and Packing with Spheres by Diagonal Distortion in Rn 27

we have a unique middle slice, and for even n, we have two symmetric slices separated
by the middle hyperplane.

Assume first that n is odd. The circumscribed (n − 1)-sphere of the middle slice
passes through two (n− 2)-spheres of radius

r =

√
n− 1

2
− (n− 1)2

4n
=

1
2

√
n− 1

n

and distance 2d = δ/
√

n from each other; see (1). The radius of the (n − 1)-sphere is
therefore

R(δ) =
√

r2 + d2 =
1

2
√

n

√
n2 − 1 + δ2. (5)

Now assume that n is even. The radii of the two (n − 2)-spheres defining a slice next
to the middle hyperplane are

r =

√
n− 2

2
− (n− 2)2

4n
=

1
2

√
n− 4

n

and
√

n/2; see again (1). The distance between the two supporting hyperplanes is d1 +
d2 = δ/

√
n. We compute d1 such that r2+d2

1 = n
4 +d2

2. This gives d1 = (δ2+1)/2δ
√

n
and d2 = (δ2 − 1)/2δ

√
n. The radius of the circumscribed (n− 1)-sphere is therefore

R(δ) =
√

n

4
+ d2

2 =
1

2
√

n

√
δ2 + n2 − 2 +

1
δ2 . (6)

Radius of a simplex. For 0 < δ < 1, the Delaunay complex consists of distorted copies
of the Freudenthal triangulation:

Del(Lδ) = Tδ(Fn + Zn).

All n-simplices are of the same type, and it suffices to compute the circumradius of the
one spanned by the images of the points yi =

∑i
j=1 ej , for 0 ≤ i ≤ n. At the beginning

of the distortion, when δ = 1, the circumsphere of the Freudenthal n-simplex has radius
half the length of the diagonal edge, and at the end, when δ = 0, the circumsphere has
a radius specified in (4). We will make use of the fact that the radius of any distorted
image of the n-simplex can be expressed in terms of δ and the radii at δ = 1 and at
δ = 0. To state the result formally, we let z(δ) and R(δ) be the center and the radius of
the n-simplex at distortion value 0 ≤ δ ≤ 1.

3 (Distortion Lemma) . The squared radius of the circumsphere of the distorted image
of the Freudenthal n-simplex satisfies R2(δ) = δ2R2

1 + (1− 2δ2 + δ4)R2
0.

A proof is given in Appendix A. Using R2
1 = n/4 and R2

0 = (n2 − 1)/(12n) from (4),
we get

R(δ) =

√
δ2n

4
+

(1 − 2δ2 + δ4)(n2 − 1)
12n

=

√
(n2 − 1) + (n2 + 2)δ2 + (n2 − 1)δ4

12n
. (7)

28 H. Edelsbrunner and M. Kerber

In summary, we have three different formulas for the covering radius: the one in (5) for
1 ≤ δ in odd dimension, the one in (6) for 1 ≤ δ in even dimension, and the one in (7)
for 0 ≤ δ ≤ 1.

Covering density. Given the radius R = R(δ), we get the corresponding covering
density as γ(δ) = VnRn/δ from (2). We show below that γ(δ) has two local minima:
one in the first interval at δ = 1/

√
n + 1, and the other in the second interval at δ =√

n + 1; see Figure 4. By comparing with the graphs for the packing density in the same
figure, we note that the minima for covering coincide with the maxima for packing.
We analyze γ, distinguishing between the three cases we encountered for the covering
radius.

CASE 1. 0 ≤ δ ≤ 1. Then

γ(δ) =
Vn

(12n)
n
2
· A

n
2

δ
, (8)

where A = (n2 − 1) + (n2 + 2)δ2 + (n2 − 1)δ4. We compute the derivative as

γ′(δ) =
Vn

(12n)
n
2
·

n
2 δA

n
2 −1A′ −A

n
2

δ2 =
Vn

(12n)
n
2
· An

2 −1 · a,

where a = (2n2 + n− 1)δ2 + (n2 + 2)− n+1
δ2 . The only factor that can vanish is

a, so we get γ′(δ) = 0 iff δ2 = 1
n+1 . This critical point can only be a minimum.

CASE 2.1. δ ≥ 1 and n is odd. Then

γ(δ) =
Vn

2nn
n
2
· B

n
2

δ
. (9)

where B = δ2 + n2 − 1. The derivative is

γ′(δ) =
Vn

2nn
n
2
·B n

2 −1 · b,

where b = (n − 1)(1 − n+1
δ2). The only factor that can vanish is b, so we have

γ′(δ) = 0 iff δ2 = n + 1. This can only be a minimum.
CASE 2.2. δ ≥ 1 and n is even. Then

γ(δ) =
Vn

2nn
n
2
· C

n
2

δ
. (10)

where C = δ2 + 1
δ2 + n2 − 2. As before, we compute the derivative and get

γ′(δ) =
Vn

2nn
n
2
· C n

2 −1 · c,

where c = n − n
δ4 − 1 − n2−2

δ2 . The last factor that can vanish is c, so we have
γ′(δ) = 0 iff δ2 = n + 1, as in Case 2.1. Again, this can only be a minimum.

Covering and Packing with Spheres by Diagonal Distortion in Rn 29

0.5 1 2 3 4 5

10

20

30

40

50
60

0.5 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4. Left, from bottom to top: the graphs of the covering density in dimensions 2 to 8. All
functions have two local minima, the lesser at δ =

√
n + 1 and the global minimum at δ =

1/
√

n + 1. Right, from top to bottom: the graphs of the packing density in dimensions 2 to 8.
All functions have two local maxima, the lesser at δ = 1/

√
n + 1 and the global maximum at

δ =
√

n + 1. Some of the axes use logarithmic scale for clarity.

Examples. In the plane, the minimum covering density is achieved by the hexagonal
lattice, with γ(1/

√
3) = γ(

√
3) = 1.209 More generally, we get

γ(δ) =
{

π
8

(
δ3 + 2δ + 1

δ

)
for 0 ≤ δ ≤ 1,

π
8

(
δ + 2

δ + 1
δ3

)
for 1 ≤ δ,

using the formulas (8) and (10) for n = 2; see the lowest graph in Figure 4 on the
left. Note the local maximum for the square lattice, with γ(1) = 1.570 We have
γ(δ) = γ(1/δ) for all δ > 0. In R3, we get the thinnest covering forL1/2, with covering
density γ(1

2) = 1.463 Compare this with γ(2) = 2.094 . . . for the FCC lattice and
with γ(1) = 2.720 . . . for the cubic lattice. More generally, we get

γ(δ) =

{
π(8+11δ2+8δ4)3/2

162δ for 0 ≤ δ ≤ 1,
π(8+δ2)3/2

18
√

3δ
for 1 ≤ δ;

see the second lowest graph in Figure 4 on the left. The lattice L1/2 is isomorphic to the
BCC lattice, which is commonly described as the set of integer points plus the integer
points shifted by (1

2 , 1
2 , 1

2).
Recall that for n = 2, the two local minima correspond to the same lattice and

thus give the same covering density. In contrast, for dimensions n ≥ 3, we get a
smaller density for δ = 1/

√
n + 1 than for δ =

√
n + 1. Using (4) and the Lattice

Projection Lemma, we get the corresponding covering radius as the square root of
(n2 + 2n)/(12n + 12). The best covering density within our 1-parameter family is
therefore

γ(1/
√

n + 1) = Vn

√
n + 1

(
n(n + 2)
12(n + 1)

)n
2

;

see the left half of Table 2.

30 H. Edelsbrunner and M. Kerber

Table 2. Left: the covering densities of Lδ for δ = 1/
√

n + 1 up to dimension n = 8, and the best
known covering densities for comparison. Right: the packing densities of Lδ for δ =

√
n + 1,

and the best known packing densities for comparison. Densities that are known to be optimal for
lattices are displayed in bold.

covering density packing density
n γ(1√

n+1
) best ϕ(

√
n + 1) best

2 1.209. . . 0.906. . .
3 1.463. . . 0.740. . .
4 1.765. . . 0.551. . . 0.616. . .
5 2.124. . . 0.379. . . 0.465. . .
6 2.551. . . 2.464. . . 0.244. . . 0.372. . .
7 3.059. . . 2.900. . . 0.147. . . 0.295. . .
8 3.665. . . 3.142. . . 0.084. . . 0.253. . .

5 Packing

In this section, we give a formula for the packing density as a function of the distortion
parameter.

Packing radius. To get the packing radius of Lδ , we consider the point 0 and find the
closest other lattice point. Using the Silhouette Lemma from Section 2, we observe that
there are only three possibilities:

Tδ(e1) = (1 + D, D, . . . , D),
Tδ(e1 − e2) = (1,−1, 0, . . . , 0),

Tδ(1) = (δ, δ, . . . , δ).

The distance to Tδ(e1 − e2) is
√

2, and that to Tδ(1) is δ
√

n. The distance to the image
of the first unit vector is

‖Tδ(e1)‖ =
√

(1 + D)2 + (n− 1)D2 =

√
1 +

δ2 − 1
n

.

Plugging δ2 = n + 1 into the formula, we get ‖Tδ(e1)‖ =
√

2, and plugging δ2 =
1/(n + 1) into it, we get ‖Tδ(e1)‖ = δ

√
n. We thus have three intervals in which the

packing radius has qualitatively different behavior:

r(Lδ) =

⎧⎪⎨⎪⎩
1
2δ
√

n for 0 ≤ δ ≤ 1√
n+1 ,

1
2

√
1 + δ2−1

n for 1√
n+1 ≤ δ ≤

√
n + 1,

1
2

√
2 for

√
n + 1 ≤ δ.

Packing density. Given the radius r = r(L), we get the corresponding packing density
as ϕ(δ) = Vnrn/δ from (2). In the first interval, the density grows like δn−1, and in

Covering and Packing with Spheres by Diagonal Distortion in Rn 31

the last interval, it shrinks like 1/δ. We now prove that in the middle interval, ϕ has a
single minimum, which it attains at δ = 1. Indeed, we have

ϕ(δ) =
Vn

2nn
n
2
· E

n
2

δ
, (11)

where E = δ2 + n− 1. The derivative with respect to the distortion parameter is

ϕ′(δ) =
Vn

2nn
n
2
·

n
2 δE

n
2 −1E′ − E

n
2

δ2 =
Vn

2nn
n
2
·E n

2 −1 · e,

where e = (n− 1)(1 − 1
δ2). The only factor that can vanish is e. Restricting ourselves

to non-negative values of the distortion parameter, we have ϕ′(δ) = 0 iff δ = 1. This
critical point can only be a minimum. In summary, the packing density has local maxima
at δ = 1/

√
n + 1 and δ =

√
n + 1, a local minimum at δ = 1, and goes to zero as δ

goes to 0 or to ∞; see the graphs in Figure 4.

Examples. In the plane, the maximum packing density is attained for δ = 1/
√

3 and
δ =

√
3. For both values of the distortion parameter, Lδ is isomorphic to the standard

hexagonal lattice, with packing density ϕ(1/
√

3) = ϕ(
√

3) = 0.906 More gener-
ally, we have ϕ(δ) = V2r

2/δ, where V2 = π and r = r(Lδ). Using the above formulas
for the radius, we thus have

ϕ(δ) =

⎧⎪⎨⎪⎩
πδ
2 for 0 ≤ δ ≤ 1√

3
,

π
8 (δ + 1

δ) for 1√
3
≤ δ ≤

√
3,

π
2δ for

√
3 ≤ δ;

see the highest graph in Figure 4 on the right. Note that ϕ(δ) = ϕ(1
δ) for all δ > 0

and that this function has a local minimum for the square lattice at ϕ(1) = 0.785 . . .;
compare this with the graph of the covering density in the plane. In R3, we get local
maxima at δ = 1/2 and δ = 2. More generally, we have

ϕ(δ) =

⎧⎪⎨⎪⎩
√

3πδ2

2 for 0 ≤ δ ≤ 1
2 ,

π(δ2+2)3/2

18
√

3δ
for 1

2 ≤ δ ≤ 2,
√

2π
3δ for 2 ≤ δ;

see the second highest graph in Figure 4 on the right. This function has a local minimum
for the cubic lattice at ϕ(1) = 0.523 In contrast to the plane, the values at the two
maxima are not the same and we get the higher density at ϕ(2) = 0.740 . . ., where L2
is isomorphic to the FCC lattice. Most commonly, that lattice is described as the set of
integer points for which the sum of coordinates is even. This lattice differs from L2 by
a rotation of 60◦ around the line that passes through 0 and 1.

Recall that for n = 2, the two local maxima correspond to the same lattice and
thus give the same packing density. In contrast, for dimensions n ≥ 3, we get a higher
density for δ =

√
n + 1 than for δ = 1/

√
n + 1. The best packing density within our

1-parameter family is therefore

ϕ(
√

n + 1) =
Vn

2n/2
√

n + 1
;

see the right half of Table 2.

32 H. Edelsbrunner and M. Kerber

6 Discussion

Our simple distortion of the integer grid in diagonal direction leads to a 1-parameter
family of lattices that contains optimal lattice coverings in dimensions 2, 3, 4, and 5 and
optimal packings in dimensions 2 ad 3. It misses the best lattices in dimensions higher
than listed. We therefore pose the question whether our approach can be extended to
include the other optimal lattice coverings and packings, in particular the lattices of
types D and E and the Leech lattice [4], or even discover lattices with better densities
than currently known. Can our 1-parameter analysis be broadened to allow for two or
more independent parameters? Alternatively, can we design new 1-parameter families
that are easy to analyze and explore the parameter space locally?

References

1. Bambah, R.P.: On lattice coverings by spheres. Proc. Natl. Inst. Sci. India 20, 25–52 (1954)
2. Blichfeldt, H.F.: The minimum values of quadratic forms in six, seven, and eight variables.

Math. Zeit. 39, 1–15 (1935)
3. Cohn, H., Kumar, A.: The densest lattice in twenty-four dimensions. Electronic Research

Announcements of the Amer. Math. Soc. 10, 58–67
4. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York

(1988)
5. Delone, B.N., Ryskov, S.S.: Solution of the problem of least dense lattice covering of a

four-dimensional space by equal spheres. Izvestiya Akademii Nauk SSSR, Seriya Matem-
aticheskaya 4, 1333–1334 (1963)

6. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Univ. Press,
Cambridge (2001)

7. Edelsbrunner, H., Kerber, M.: Dual complexes of cubical subdivisions of Rn. IST Austria,
Klosterneuburg, Austria (2010) (manuscript)

8. Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Grundlehren der
mathematischen Wissenschaften, vol. 65. Springer, Berlin (1953)

9. Freudenthal, H.: Simplizialzerlegung von beschränkter Flachheit. Ann. of Math. 43, 580–582
(1942)

10. Gauss, C.F.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen
Formen von Ludwig August Seeber. Göttingische Gelehrte Anzeigen (1831); reprinted in
Werke II, Königliche Gesellschaft der Wissenschaften, pp. 188–196 (1863)

11. Hales, T.: A proof of the Kepler conjecture. Ann. Math., Second Series 162, 1065–1185
(2005)

12. Kershner, R.: The number of circles covering a set. Amer. J. Math. 61, 665–671 (1939)
13. Korkine, A., Zolotareff, G.: Sur les formes quadratiques positives. Math. Ann. 11, 242–292

(1877)
14. Kuhn, H.W.: Some combinatorial lemmas in topology. IBM J. Res. Develop. 45, 518–524

(1960)
15. Leech, J.: Notes on sphere packings. Canad. J. Math. 19, 251–267 (1967)
16. Rogers, C.A.: Packing and Covering. Cambridge Tracts in Mathematics and Mathematical

Physics, vol. 54. Cambridge Univ. Press, Cambridge (1964)
17. Ryskov, S.S., Baranovskii, E.P.: Solution of the problem of least dense lattice covering of a

five-dimensional space by equal spheres. Doklady Akademii Nauk SSSR 222, 39–42 (1975)
18. Schürmann, A., Vallentin, F.: Local covering optimality of lattices: Leech lattice versus root

lattice E8. Int. Math. Res. Notices 32, 1937–1955 (2005)

Covering and Packing with Spheres by Diagonal Distortion in Rn 33

19. Schürmann, A., Vallentin, F.: Computational approaches to lattice packing and covering
problems. Discrete Comput. Geom. 35, 73–116 (2006)

20. Szpiro, G.G.: Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve
One of the Oldest Math Problems in the World. Wiley, Hoboken (2003)

21. Thue, A.: Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene.
Norske Vid. Selsk. Skr. 1, 1–9 (1910)

22. Witt, E.: Collected Papers. Gesammelte Abhandlungen. Springer, Berlin (1998)

Appendix A

In this appendix, we give a proof of the Distortion Lemma, which is instrumental in the
analysis of the covering radius. We begin with a review of weighted points and their
polar representation as hyperplanes and points; see e.g. [6].

Weighted points. We construct a convenient framework to express distance relations by
generalizing spheres to allow for imaginary radii. A weighted point in n−1 dimensions
is a point xi ∈ Rn−1 together with a weight wi ∈ R. The power distance of a point
z ∈ Rn−1 from the weighted point (xi, wi) is �i(z) = ‖z − xi‖2 −wi. Two weighted
points are orthogonal if

‖xi − xj‖2 = wi + wj . (12)

If wi and wj are both positive then (12) characterizes the situation in which the spheres
with centers xi and xj and radii

√
wi and

√
wj intersect each other in a right angle.

Let now H be a hyperplane in Rn, z a point in H , yi a point in Rn, xi the orthogonal
projection of yi onto H , and wi = −‖xi − yi‖2 the negative of the squared distance
of yi from H . Then it is easy to see that the square of the distance between z and yi

equals the power distance of z from the point xi with weight wi in H : ‖z − yi‖2 =
�i(z). Letting w = ‖z − yi‖2, we can rewrite this relation as ‖z − xi‖2 = wi + w.
In words, the weighted points (xi, wi) and (z, w) in H are orthogonal. We will use
this observation to reduce the n-dimensional problem of computing the circumscribed
sphere of an n-simplex to the (n− 1)-dimensional problem of computing the weighted
point that is simultaneously orthogonal to n other weighted points.

Lifting and polarity. It will be convenient to recast the relation between weighted points
in Rn−1 in terms of hyperplanes (graphs of affine functions) and points in Rn. Given a
point xi ∈ Rn−1 with weight wi ∈ R, we introduce the affine function hi : Rn−1 → R
via hi(x) = 2〈xi, x〉 − ‖xi‖2 + wi. Starting with two orthogonal weighted points in
Rn−1, we thus get

‖xi − xj‖2 = wi + wj iff

‖xi‖2 − 2〈xi, xj〉 − wi = −‖xj‖2 + wj iff

hi(xj) = ‖xj‖2 − wj .

This motivates us to introduce the point pj = (xj , ‖xj‖2 − wj) ∈ Rn. Traditionally,
this point and the hyperplane graph(hj) in Rn are said to be polar to each other. We
now express what we just proved in terms of these hyperplanes and points.

34 H. Edelsbrunner and M. Kerber

4 (Ortho-dence Lemma) . The points xi, xj ∈ Rn−1 with weights wi, wj ∈ R are
orthogonal iff pi ∈ graph(hj) iff pj ∈ graph(hi).

Proof of Distortion Lemma. We are now ready to formulate the proof of the Distortion
Lemma stated in Section 4. Recall that this result concerns the Freudenthal n-simplex
with vertices

∑i
j=1 ej , for 0 ≤ i ≤ n, and its distorted images under the linear transfor-

mations Tδ : Rn → Rn, for 0 ≤ δ ≤ 1. It will be convenient to translate the n-simplex
so it is cut in half by the hyperplane of fixed points, H = Δ−1(0). We thus define
yi = v − 1

21 +
∑i

j=1 ej , with v · 1 = 0, for 0 ≤ i ≤ n, and we let Y be the n-
simplex spanned by the yi. This translation does not affect our analysis because Tδ(Y)
is a translate of the distorted original n-simplex, for every δ.

Let z(δ) be the center and R(δ) the radius of the circumscribed (n − 1)-sphere of
Tδ(Y). A benefit of the translation is that z(δ) ∈ H for all δ. Indeed, z(δ) is equally
far from the distorted images of y0 and yn and therefore lies in the bisector of the two
points, which is H . We will see that the set of points z(δ) is the line segment with
endpoints z1 = z(1) and z0 = z(0). To show this, we replace each vertex Tδ(yi) of
the n-simplex by the weighted point (xi, wi(δ)), where xi = T0(yi) is the orthogonal
projection onto H , and wi(δ) = −δ2Δ2(yi)/n is the negative of the squared distance
of Tδ(yi) from H . By what we said above, the point z(δ) ∈ H with weight R2(δ) is
orthogonal to (xi, wi(δ)), for all 0 ≤ i ≤ n. Note that in Rn−1, we have a common
orthogonal weighted point for every generic collection of n weighted points. Here there
are n + 1 weighted points, but two are the same, namely (x0, w0(δ)) = (xn, wn(δ)).

In the next step, we replace each (xi, wi(δ)) by the affine function hi(δ), and we re-
place each point z(δ) ∈ Rn−1 with weight R2(δ) by the point p(δ) = (z(δ), ‖z(δ)‖2−
R2(δ)) in Rn. Since (z(δ), R2(δ)) is orthogonal to all (xi, wi(δ)), the point p(δ) lies
on all hyperplanes of the form graph(hi(δ)) in Rn. Now observe what happens when δ
changes continuously from 1 to 0. It is convenient to parametrize this motion by λ = δ2,
which also goes from 1 to 0. Writing down the formula for the affine map:

hi(δ)(x) = 2〈xi, x〉 − ‖x‖2 − Δ2(yi)
n

· λ,

we note that changing λ corresponds to an affine vertical translation of each hyperplane.
It follows that the common intersection, the point p(δ), traces out the line segment from
p1 = p(1) to p0 = p(0) and, more specifically,

p(λ) = λp1 + (1− λ)p0. (13)

It follows that the projection to the first n−1 coordinates satisfies the same relationship,
namely z(λ) = λz1 + (1 − λ)z0. Similarly, we have the same relationship for the
n-th coordinate. After some rearrangements, we get the squared radius as the linear
interpolation of the squared radii at the extremes plus a correction term:

R2(λ) = λR2
1 + (1− λ)R2

0 + C, with

C = ‖z(λ)‖2 − λ‖z1‖2 − (1− λ)‖z0‖2.

To simplify the remaining computations, we now choose the vector in the initial trans-
lation of the n-simplex as v = −(z1 + z0)/2. With this choice, the midpoint between

Covering and Packing with Spheres by Diagonal Distortion in Rn 35

the two centers is the origin so that z1 = −z0 and we can write d2 = ‖z1‖2 = ‖z0‖2.
Furthermore, ‖z(λ)‖2 = 4(λ2 − 1

2)2d2 and therefore C = 4λ(λ − 1)d2. On the other
hand, the distance between z1 and z0 is 2d = R0, so we get C = λ(1 − λ)R2

0. Adding
things up, we get

R2(λ) = λR2
1 + (1 − 2λ + λ2)R2

0.

Substituting δ2 for λ, we get the equation claimed in the Distortion Lemma.

Counting Plane Graphs with Exponential
Speed-Up�

Andreas Razen and Emo Welzl

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{razen,emo}@inf.ethz.ch

Abstract. We show that one can count the number of crossing-free
geometric graphs on a given planar point set exponentially faster than
enumerating them. More precisely, given a set P of n points in general
position in the plane, we can compute pg(P), the number of crossing-
free graphs on P , in time at most poly(n)√

8
n · pg(P). No similar statements

are known for other graph classes like triangulations, spanning trees or
perfect matchings.

The exponential speed-up is obtained by enumerating the set of all
triangulations and then counting subgraphs in the triangulations without
repetition. For a set P of n points with triangular convex hull we further
improve the base

√
8 ≈ 2.8284 of the exponential to 3.347. As a main

ingredient for that we show that there is a constant α > 0 such that a
triangulation on P , drawn uniformly at random from all triangulations
on P , contains, in expectation, at least n/α non-flippable edges. The best
value for α we obtain is 37/18.

Keywords: Counting, crossing-free configurations, plane graphs, trian-
gulations, constrained Delaunay triangulation, edge flips.

1 Introduction

Let P be a finite set of at least three points in the plane. We assume that P is in
general position, i.e. no three points are collinear and no four points cocircular.
A geometric graph on P is a graph defined on the vertex set P whose edges are
straight segments connecting the corresponding endpoints. Such a straight-line
embedded graph is crossing-free if no pair of its edges shares any point except
for, possibly, a common endpoint. A crossing-free graph which is maximal, i.e.
no edge can be added without incurring a crossing, is called triangulation.

We are interested in the number of crossing-free geometric graphs that can
be defined on P which we denote by pg(P). This quantity never exceeds a fixed
exponential in |P |, a result first established by Ajtai et al. [2] with 1013 as base
of the exponential. The set of all triangulations of P is denoted by T (P), and

� Both authors acknowledge support by SNF project 200021-116741. These results
were first presented at the Symposium “Significant Advances in Computer Science”
(SACS’07) celebrating 30 years Computer Science at Graz University of Technology,
Austria, November 6, 2007.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 36–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Counting with Exponential Speed-Up 37

(a) (b) (c)

Fig. 1. Flippable edges in (a) and (b); non-flippable edge in (c)

we will write tr(P) := |T (P)| for its cardinality. The best-known upper bound
for tr(P) is 30n [8,11,9], where n := |P |. While clearly upper bounds for the
total number of crossing-free geometric graphs on a point set P also apply to
specific classes of plane graphs (e.g. spanning connected graph, polygonizations,
perfect matchings, and spanning trees, to name just a few), better bounds for
these classes are known [1,10].

In this paper we will show that there is an absolute constant c > 1 such
that for any set P of n points in general position pg(P) ≥ cn · tr(P), while we
are still able to compute pg(P) in time necessary to enumerate T (P) times a
small polynomial factor in n. The best value for the constant c we obtain is√

8. Such an enumeration for the set of triangulations is obtained by applying
the reverse search technique due to Avis and Fukuda [3]. The fastest algorithm
for this enumeration is by Bespamyatnikh [4] and needs time O(log log n) per
output triangulation.

Recently and independently, Katoh and Tanigawa [6] proposed an idea for
enumerating crossing-free geometric graph classes relatively similar to our ap-
proach by introducing a lexicographic order on the set of triangulations.

In the following assume that the underlying point set P is fixed and write
n := n(P) = |P | for its cardinality. Furthermore, let k := k(P) denote the
number of points on the boundary of the convex hull of P , thus n ≥ k ≥ 3. By
Euler’s polyhedral formula any triangulation contains exactly M := 3n− k − 3
edges, which we will further distinguish as follows. An edge in a triangulation T
is called flippable if it is contained in the boundary of two triangles of T whose
union is a convex quadrilateral, see Figures 1(a) and (b); otherwise the edge is
called non-flippable, see Figure 1(c). We write fl(T) for the number of flippable
edges in T , and similarly nfl(T) for the number of non-flippable edges. Note that
for any triangulation T , clearly, fl(T) + nfl(T) = M and nfl(T) ≥ k since edges
on the boundary of the convex hull of P are always non-flippable.

Moreover, a flippable edge in T is called Lawson edge if the circumcircle of
each boundary triangle also contains the respective other boundary triangle in
its interior, see the dashed line segment in Figure 1(b). Observe that this notion
is well-defined since we assumed general position. We denote by L(T) the set of
Lawson edges in T , and by �(T) its cardinality.

We recall a few definitions and facts about constrained Delaunay triangula-
tions (introduced by Lee and Lin [7]). Given a crossing-free geometric graph G
on P , then two points p, q ∈ P are visible from each other if the line segment

38 A. Razen and E. Welzl

pq does not intersect the interior of any edge in G. The constrained Delaunay
triangulation T ∗(G) of G is a triangulation containing the edges of G which has
the additional property that the circumcircle of each triangle in T ∗(G) does not
contain any other point which is visible from all three vertices of the triangle. Lee
and Lin showed that for any graph G the constrained Delaunay triangulation
T ∗(G) exists and is unique if P is in general position. Furthermore, they proved
that T ∗(G) is obtained from any triangulation containing E(G) by repeatedly
flipping a Lawson edge distinct from E(G) as long as possible. Observe that this
implies that the procedure terminates with the triangulation T = T ∗(G) if and
only if L(T) ⊆ E(G) ⊆ E(T).

2 Counting with Exponential Speed-Up

The following theorem is the key to counting and estimating the number of
crossing-free graphs in terms of the number of triangulations of a point set P .
The basic ingredient is to partition the set of all crossing-free geometric graphs
by associating each graph with its constrained Delaunay triangulation. Then the
theorem suggests an algorithm for computing pg(P) in time O(poly(n) · tr(P))
by enumerating tr(P) where we apply the reverse search method [3]. We will
also show that there is a constant c > 1 such that pg(P) ≥ cn · tr(P), implying
that one may count pg(P) exponentially faster than enumerating all graphs.

Theorem 1. For any set P of n ≥ 3 points in the plane in general position we
have

pg(P) =
∑

T∈T (P)

2M−�(T). (1)

(Recall that �(T) denotes the number of Lawson edges in T .)

Proof. Consider the following partition of the set of crossing-free geometric
graphs on P . For every triangulation T on P there is a partition class con-
sisting of all crossing-free subgraphs G of T that contain the set of Lawson edges
of T , i.e., for which

L(T) ⊆ E(G) ⊆ E(T). (2)

Indeed this defines a partition due to the existence and uniqueness of the con-
strained Delaunay triangulation. The partition class associated with a triangula-
tion T contains exactly 2M−�(T) crossing-free geometric graphs. Now, summing
over all triangulations yields the statement. �

Consider the set P6 of six points in general position as in Figure 2; with four
points on the convex hull every triangulation of P6 has M = 11 edges. It can
easily be checked that there are exactly six triangulations on P6 as they are
depicted in Figure 2, the Lawson edges are drawn as dashed line segments.
Along Theorem 1 we can easily derive that pg(P6) = 6656.

Actually, from the proof of Theorem 1 we obtain counting algorithms for
any graph class (for instance perfect matchings or spanning-trees). We sim-
ply iterate over the set of all triangulations of P and for a triangulation T we

Counting with Exponential Speed-Up 39

211

210

210

29

210

210

pg(P6) = 211 + 210 + 210 + 210 + 29 + 210 = 6656

T (P6):

Fig. 2. Counting crossing-free graphs on a set of 6 points

count the members G of the desired graph class that fulfill the edge containment
property (2). In the following we will show that for counting all crossing-free
geometric graphs this algorithm yields an exponential speed-up compared to
enumerating all graphs (note that computing �(T) can be done in polynomial
time). As far as perfect matchings are concerned this procedure does not result
in a similar speed-up since the number of triangulations can be exponentially
larger than the number of perfect matchings (n points in convex position, with
n even, have Cn−2 ≈ 4n triangulations but only Cn/2 ≈ 2n perfect matchings,
where Cn = 1

n+1

(2n
n

)
denotes the n-th Catalan number). For spanning-trees it is

open whether every point set allows for more spanning-trees than triangulations,
perhaps even exponentially more.

Dividing Identity (1) from Theorem 1 by the total number of triangulations on
P , using Jensen’s inequality for the (convex) exponential function and linearity
of expectation we obtain

pg(P)
tr(P)

=
∑

T∈T (P)

2M−�(T) · 1
tr(P) = E

[
2M−�(T)

]
≥ 2E[M−�(T)] = 2M−E[�(T)], (3)

where the expectation of the random variables 2M−�(T), M − �(T) and �(T),
respectively, is understood with respect to the uniform distribution over all tri-
angulations on P . Hence, by providing an upper bound for E [�(T)], i.e. the
expected number of Lawson edges in a uniformly at random chosen triangula-
tion on P , we obtain a lower bound for the fraction of the number of crossing-free
geometric graphs on P versus the number of triangulations of P .

Lemma 1. For any point set P it holds that

2 · E [�(T)] = E [fl(T)] .

Proof. Let S be the set of pairs (e, T) with T a triangulation on P and e a
flippable edge in T . Consider an element (e, T) of this set and let e′ be the other

40 A. Razen and E. Welzl

diagonal of the convex quadrilateral consisting of the boundary triangles of e in
T . When flipping e in T , i.e. replacing e by e′, we obtain a new triangulation
T ′. Clearly, (e′, T ′) ∈ S and flipping e′ in T ′ yields T again. Hence, there is a
(canonical) perfect matching between the elements of S. Note that by definition
either e or e′ is a Lawson edge of its respective triangulation. Therefore,

|S| =
∑

T∈T (P)

fl(T) = E [fl(T)] · tr(P)

|S|
2

=
∑

T∈T (P)

�(T) = E [�(T)] · tr(P),

which proves the statement. �

Recall that fl(T) + nfl(T) = M . Hence, with Lemma 1, this shows E [�(T)] =
1
2 ·(M−E [nfl(T)]) using linearity of expectation. Plugging this into Inequality (3)
we obtain the following estimate.

Theorem 2. For any set P of n ≥ 3 points in the plane in general position

pg(P) ≥ 2(M+E[nfl(T)])/2 · tr(P). (4)

Recall that for any triangulation T we have nfl(T) ≥ k implying that M +
E [nfl(T)] ≥ 3n− 3.

Corollary 1. For any set P of n ≥ 3 points in the plane in general position it
holds that

pg(P) ≥
√

8
n−1 · tr(P), (5)

which is tight for n = 3, and one may count pg(P) in time at most poly(n)√
8n ·pg(P).

At this point let us treat the special case of P being in convex position, that is
when k = n. Note that in any triangulation of such a point set there are exactly
n non-flippable edges, the edges on the boundary of the convex hull of P , and the
remaining n− 3 edges, the diagonals of the convex n-gon, are flippable. Hence,
E [nfl(T)] = n = k and we cannot improve over the statement of Corollary 1
using Theorem 2. However, note that

√
8 ≈ 2.8284, and for P in convex position

it is known that pg(P)
tr(P) = Θ

(
(3
2 +

√
2)n
)
, where 3

2 +
√

2 ≈ 2.9142, see [5].
It remains open to show whether the convex n-gon actually minimizes the

fraction pg(P)
tr(P) over all sets P of n points in general position. In the next section

we propose a framework for deriving stronger lower bounds on E [nfl(T)], when
the underlying point set is not in convex position.

3 Expected Number of Non-flippable Edges

In the following assume that P has a triangular convex hull (actually, the same
arguments also work for point sets where k ≤ 6). The basic idea for proving
a lower bound on the expected number of non-flippable edges is similar to the

Counting with Exponential Speed-Up 41

method in [11] for estimating the number of degree-3 vertices in a random trian-
gulation. There, every vertex receives an initial charge which it then discharges
to vertices of degree 3. Here, however, we want to have each vertex in any tri-
angulation ultimately charge non-flippable edges. If every vertex discharges at
least 1 on average and each non-flippable edge receives a charge of at most c,
then E [nfl(T)] is at least the c-th fraction of the total number of vertices.

To make this more precise denote by P ◦ the set of points in P except for the
three extreme points of its convex hull. Then the ground set for our consider-
ations is P ◦ × T (P) whose elements are called vints (vertex-in-triangulation).
The degree of a vint (p, T) is the degree of the vertex p in the triangulation T .
For i ∈ N, a vint of degree i is called i-vint, and given a fixed triangulation T
we denote by vi = vi(T) the number of i-vints in P ◦×{T }. Observe that in any
triangulation v1 = v2 = 0 and

∑
i≥3 vi = |P ◦| = n− 3. A proof of the following

lemma can be found in [11] (apply the Handshaking Lemma when summing up
all degrees in T).

Lemma 2. Let T be a fixed triangulation and place a charge of 7 − i at every
i-vint, for i ≥ 3. Then the weighted sum of charges over all corresponding vints
in P ◦ × {T } is at least |P ◦|.

Note that i-vints with i ≥ 7 do not receive a positive charge. Hence, it suffices
to focus on distributing the charges of 3-, 4-, 5-, and 6-vints. For this we define
a relation on the set of vints as in [11]. Let u = (pu, Tu) and v = (pv, Tv) be
vints, then we say u → v if pu = pv and there is a flippable edge incident to pu

in Tu such that flipping this edge results in the triangulation Tv. Clearly, u is
an (i + 1)-vint and v an i-vint, for some i ≥ 3. We denote by →∗ the transitive,
reflexive closure of →. If u →∗ v we say that u may be flipped down to v.

When discharging we allow every vint to distribute its charge both to lower-
degree vints it can be flipped down to and to non-flippable edges. Hereby, a vint
(p, T) may only discharge to a non-flippable edge in E(T) that is incident to p
or to an edge qr ∈ E(T) where pqr is a triangle in T . We call such an edge qr a
non-flippable boundary edge of p. With slight abuse of notation we will also refer
to the (non-flippable) incident and boundary edges of the vint (p, T).

The discharging will be done in such a way that finally there is no positive
charge left on any vint. Thus, the sum of charges over all vints in P ◦ × T (P)
which has been distributed among the non-flippable edges is at least |P ◦| · tr(P)
by Lemma 2. If we can show that during this process a non-flippable edge re-
ceives a charge of at most c, then the total number of non-flippable edges in all
triangulations of T (P) is at least 1

c |P ◦| · tr(P). Hence,

E [nfl(T)] ≥ |P ◦|
c

. (6)

Note that for an edge the property of being non-flippable is by definition equiv-
alent to being incident to a vertex at a (after deleting the edge) reflex angle.
In the following we assume the non-flippable edges of the triangulations to be
directed towards their endpoint with the reflex angle. Observe that by doing this

42 A. Razen and E. Welzl

every non-flippable edge (except for the edges on the boundary of the convex
hull) gets directed in a unique way.

3.1 A Simple Charging Scheme

As an instructive example we will now discuss a simple charging scheme by
explicitly stating the distribution of the charges from i-vints to non-flippable
edges and other vints. This will result in a first non-trivial lower bound for
E [nfl(T)].

Consider a 3-vint with an initial charge of 4. Since we assumed general position
all three incident edges are non-flippable and directed towards the 3-vint, see
Figure 3(a). Hence, this vint may discharge by equally distributing one third
of its charge to the incident non-flippable edges. Note, however, that the 3-vint
might still receive charge from higher-degree vints, hence at this point we cannot
yet explicitly state its maximum possible charge to the incoming edges.

Observe that a 4-vint is always incident to exactly two non-flippable incoming
edges since one of the angles between two non-neighboring edges is always reflex,
see Figure 3(b). To each of these edges we equally distribute half of the 4-vint’s
initial charge of 3. In this simple scheme no other vint will discharge to a 4-vint.

When devising the charging scheme for higher-degree vints we further distin-
guish them according to the number of non-flippable incoming edges. A 5-vint
with an initial charge of 2 may occur with two, one or no non-flippable incoming
edges, see Figure 4. If the 5-vint is incident to at least one non-flippable edge
we equally distribute the vint’s charge to all such edges. Note that otherwise all
five incident edges are not directed towards the 5-vint but some could still be
non-flippable, and we cannot directly discharge as we did in the cases before.
However, we may obtain a 3-vint if we can flip two non-neighboring edges when
passing the edges in clockwise order around the vint. It is always possible to
choose two such flippable edges since the boundary edges of the vint define a
5-gon which has at least three convex angles, hence the corresponding edges are
flippable. We give the whole charge of the 5-vint to the resulting 3-vint.

It is crucial to note that a 3-vint may receive such a charge from at most
one 5-vint without non-flippable incoming edges. In order to see this recall that
we flipped two non-neighboring edges incident to the 5-vint resulting in two of
the three boundary edges of the 3-vint. Assume that two 5-vints flip down to
the same 3-vint then one boundary edge is obtained in both flips. Reversing
the flip of the common boundary edge results in a 4-vint with two non-flippable

(a) (b)

Fig. 3. Discharging 3-vints in (a) and 4-vints in (b)

Counting with Exponential Speed-Up 43

Fig. 4. Discharging 5-vints with two, one or no non-flippable incident edges

Fig. 5. Discharging 6-vints with at least one non-flippable incident or boundary edge

Fig. 6. Discharging 6-vints with neither non-flippable incident nor boundary edges

incoming edges. If this vint is obtained from a 5-vint without non-flippable edges
it is necessary (but not sufficient) to flip the edge of the triangle containing both
non-flippable edges of the 4-vint. Hence, there was at most one such 5-vint. In this
scheme a 3-vint will not be charged by any other higher-degree vint, therefore it
may end up with a total charge of at most 4+2 = 6. It then discharges uniformly
to its three non-flippable incoming edges.

Finally, we have to consider the 6-vints with an initial charge of 1. In case
such a vint has at least one non-flippable incoming edge we handle it like we
did a 5-vint and equally distribute its charge to all those edges. Otherwise we
consider the non-flippable boundary edges of the 6-vint and equally distribute
the charge to them, see Figure 5.

If, however, a 6-vint neither has non-flippable incoming edges nor non-flippable
boundary edges we let it charge a higher-degree vint for an exception. We flip
all boundary edges to obtain a 12-vint of initial charge −5 to which we pass
the whole charge of the 6-vint, see Figure 6. Notice that after all 6-vints have
discharged any 12-vint still has a negative charge since it may only be charged
by at most two 6-vints. To see this note that in order to flip a 12-vint down to
a 6-vint from which it received a charge no two neighboring incident edges may
be flipped.

Since i-vints with i ≥ 7 do not have positive charge the average initial charge
of 1 per vint has now been discharged onto the non-flippable edges in the tri-
angulations. Let us estimate the maximum charge to such a non-flippable edge.
Recall that every non-flippable edge was directed towards a unique vint from

44 A. Razen and E. Welzl

which it may be charged, and 6-vints with all incident edges being flippable
were the only vints that possibly charge non-flippable boundary edges. Hence,
an edge might only receive charge from the one endpoint it is directed to and
from at most two 6-vints for which the edge is a non-flippable boundary edge.

In the following we summarize the cases discussed above and list the corre-
sponding maximum charges to an edge depending on the i-vint it is directed
towards:

– 3-vint: charge ≤ 1/3 · 6 + 2 = 4
– 4-vint: charge ≤ 1/2 · 3 + 2 = 3.5
– 5-vint with two non-flippable edges: charge ≤ 1/2 · 2 + 2 = 3
– 5-vint with one non-flippable edge: charge ≤ 2 + 2 = 4
– 6-vint with two non-flippable edges: charge ≤ 1/2 · 1 + 2 = 2.5
– 6-vint with one non-flippable edge: charge ≤ 1 + 2 = 3
– i-vint with i ≥ 7: charge ≤ 2 = 2.

Therefore, during the discharging of the vints any non-flippable edge received a
charge of at most 4 implying that E [nfl(T)] ≥ n−3

4 because of (6). By Theorem 2
we have

pg(P) ≥ 2
3n−6+(n−3)/4

2 · tr(P) = Ω(213n/8) · tr(P) = Ω(3.08n) · tr(P),

for a set P of n points with triangular convex hull.

3.2 A More Elaborate Charging Scheme

In the following we will improve on the results of the previous section. Note that
so far we only allowed 5-vints without non-flippable incoming edges to discharge
to a (lower-degree) 3-vint, but we did not yet take into account that we also
could have split its charge to 4-vints it can be flipped down to. Also 6-vints may
be flipped down to lower-degree vints and charge them.

Furthermore, recall that a 6-vint with no non-flippable incoming edge charged
its non-flippable boundary edges crucially. In the worst case an edge might re-
ceive an additional charge of 2 from such 6-vints. However, for instance it is clear
that such an edge cannot be directed towards a 3-vint, hence we overestimated
the corresponding maximum charge. This shows that there is some potential to
improve on the bounds we derived in the discussion above.

In order to generalize the approach for obtaining lower bounds on E [nfl(T)]
note that we actually solved a linear program in the previous section when
determining the way and the amount a vint discharges to non-flippable edges
and other vints, and hence also the value of the maximum charge. Indeed we
want to find the smallest value α that is larger than every possible charge to a
non-flippable edge, such that there is an initial charge of 7− i at every i-vint and
after the discharging there is no vint with positive charge left. The corresponding
linear program looks as follows.

Counting with Exponential Speed-Up 45

minimize α
s.t. α ≥ {c3, c4, c52 , c51 , c62 , c61}+ 2 · b60

out3 ≤ 3 · c3 in3 ≥ c50→3 out3 ≥ 4 + in3
out4 ≤ 2 · c4 in12 ≥ 2 · c60→12 out4 ≥ 3 + in4

out52 ≤ 2 · c52 out52 ≥ 2 + in52
out51 ≤ c51 out51 ≥ 2 + in51
out50 ≤ c50→3 out50 ≥ 2 + in50
out62 ≤ 2 · c62 out62 ≥ 1 + in62
out61 ≤ c61 out61 ≥ 1 + in61
out60 ≤ {b60 , c60→12} out60 ≥ 1 + in60
out12 ≤ 0 out12 ≥ −5 + in12

all variables ≥ 0

The objective is to compute the smallest α larger than every possible charge
to an edge. Sets indicated by curly brackets {. . . , . . .} in the list of constraints
are understood as several inequalities of the same form each time replacing one
element from the set. The variables ci (cij , resp.) represent the charges to an
incoming edge of an i-vint (with j non-flippable incoming edges), b60 represents
the charge of a 6-vint to a non-flippable boundary edge, and c50→3 (c60→12)
the charge of a 5-vint (6-vint) with no non-flippable incoming edge to a 3-vint
(12-vint).

Then we distinguish three types of constraints. First, in the left-most column
of constraints for every i-vint (with j non-flippable incoming edges) there is a
variable outi (outij) that represents the amount of charge that leaves such a vint
during the discharging. This amount is upper-bounded by the minimum over all
the vint’s possibilities to discharge. Then, in the middle column of constraints
there is a variable ini (inij) for every i-vint (with j non-flippable incoming edges)
that represents the charge received from higher- or lower-degree vints. This ad-
ditional charge to an i-vint is lower-bounded by the maximum over all possible
charges from other vints. Note that in the charging scheme from the previous
section there are only charges to 3- and 12-vints, therefore the inequalities for
4-, 5-, and 6-vints are not needed since all variables are non-negative. Finally,
the right-most column of constraints incorporates the initial charges of 7− i at
an i-vint and ensures that after discharging there is no positive charge left.

In a more detailed case distinction which we skip here for brevity we distin-
guish between i-vints with j non-flippable incoming edges and k non-flippable
boundary edges, where 3 ≤ i ≤ 12, and j, k ∈ {0, 1, 2}. As described before,
a vint may discharge to non-flippable incoming or boundary edges or to other
vints. The latter case causes more tedious analyses how many lower- and higher-
degree vints may actually charge a certain vint. Similarly to above we obtain a
linear program that solves to 37

18 as optimum value.

Corollary 2. For any set P of n ≥ 3 points in the plane in general position
with triangular convex hull, E [nfl(T)] ≥ 18(n−3)

37 . This implies

pg(P) ≥ Ω(2129n/74) · tr(P) = Ω(3.347n) · tr(P).

46 A. Razen and E. Welzl

The lower bound Ω(3.347n) on the fraction pg(P)
tr(P) from Corollary 2 compares to

O(4.86n) which is obtained for the so-called double zig-zag chain Dn introduced
by Aichholzer et al. [1], with pg(Dn) = O(41.19n) and tr(Dn) = Ω(8.48n).
Actually, the convex hull of Dn is a quadrilateral but the point set may be slightly
altered in order to have triangular convex hull while keeping the asymptotic
behavior of the number of crossing-free graphs and triangulations (assume very
flat chains and rotate the upper chain clockwise and the lower chain counter-
clockwise without changing the point configuration; then add an additional point
very far to the right extending both chains in a convex way, i.e. points on the
convex hull of a single chain remain on the hull when adding the point).

References

1. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.:
On the Number of Plane Geometric Graphs. Graphs and Combinatorics 23, 67–84
(2007)

2. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-Free Subgraphs.
Annals Discrete Math. 12, 9–12 (1982)

3. Avis, D., Fukuda, K.: Reverse Search for Enumeration. Discrete Appl. Math. 65,
21–46 (1996)

4. Bespamyatnikh, S.: An Efficient Algorithm for Enumeration of Triangulations.
Comput. Geom. Theory Appl. 23, 271–279 (2002)

5. Flajolet, P., Noy, M.: Analytic Combinatorics of Non-Crossing Configurations.
Discrete Math. 204, 203–229 (1999)

6. Katoh, N., Tanigawa, S.: Fast Enumeration Algorithms for Non-Crossing Geomet-
ric Graphs. In: Proc. 24th Ann. Symp. on Comput. Geom., pp. 328–337 (2008)

7. Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs.
Discrete Comput. Geom. 1, 210–217 (1986)

8. Santos, F., Seidel, R.: A Better Upper Bound on the Number of Triangulations of
a Planar Point Set. J. Comb. Theory, Ser. A 102, 186–193 (2003)

9. Sharir, M., Sheffer, A.: Counting Triangulations of Planar Point Sets (2010),
http://arxiv.org/abs/0911.3352

10. Sharir, M., Welzl, E.: On the Number of Crossing-Free Matchings, Cycles, and
Partitions. SIAM J. Comput. 36, 695–720 (2006)

11. Sharir, M., Welzl, E.: Random Triangulations of Planar Point Sets. In: Proc. 22nd
Ann. ACM Symp. on Comput. Geom., pp. 273–281 (2006)

http://arxiv.org/abs/0911.3352

Formal Languages
and Automata

Ancient Typefaces and Parametric Weighted
Finite Automata

Jürgen Albert1 and German Tischler2

1 Dept. of Computer Science, University of Würzburg, Germany
albert@informatik.uni-wuerzburg.de

2 Newton Fellow, Dept. of Informatics, King’s College London, WC2R 2LS, UK
german.tischler@kcl.ac.uk

Abstract. Generalizations of weighted finite automata where real-valu-
ed weights are assigned to all transitions and d-dimensional vectors of
real values belong to the states (PWFA) have been studied w.r.t. com-
pact representations of glyphs from ancient fonts, especially from the
ubiquitous fraktur-families. It is well-known, that polynomials of arbi-
trary degree over the unit interval can be generated by simple weighted
finite automata in an elegant and compact manner. This result carries
over nicely to the representation of typefaces. There it is first applied to
the outlines of the glyphs and then to their interiors. Finally, we show
that even animated writing, i.e. video-clips of drawing glyphs with a pen
as if by a human hand, can be modeled by PWFA.

1 Introduction

There has been a revived interest for computer generated typefaces – beyond D.
Knuth’s METAFONT or TEX – motivated by recent retrodigitization problems.
Those became apparent in celebrated projects like the ,,Million Book Project”
initiated at Carnegie Mellon University or ,,Google Books”, where reportedly in
summer 2010 the number of scanned books passed the mark of 12 million. It was
announced that some 130 million unique books will be digitized world-wide by
the end of the decade.

Frequently, the accessibility of old books’ content suffers from bad physi-
cal condition of the original book and/or missing scan-quality or font-families,
uncommon nowadays like fraktur which can turn automated optical character
recognition into a mission impossible. Fraktur fonts had been popular especially
in Scandinavia, Germany and Austria from the 16th century till just after World
War II, so there exists an extraordinary wealth of published material without
copyright infringements. Figure 1 illustrates typical raw scan data.

We will assume here an extended form of retrodigitization, where not only
a searchable plain text results from the OCR processing but instead a mark-
up representation together with the necessary fonts to produce a high-quality
reprint as a kind of ,,cleaned facsimile”. In general, the obtained format will
be an XML-document coded in say UTF-8 and TEI-P5 (cf. [18]) accompagnied
by suitable style-sheets and vector fonts. Rendering this text again for printing

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 49–62, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 J. Albert and G. Tischler

Fig. 1. Fraktur typeface samples from ,,Matthaeus Merian: Topographia Franco-
niae, 1648/1656” and ,,Johann Kaspar Bundschuh: Geographisch Statistisch-Topo-
graphisches Lexikon von Franken, 1799-1804” [21].

on paper or display at a monitor can be regarded as a decoding process after
applying a ,,lossy” image compression method before. In fact, the size of the
generated XML-documents and all their style-sheets and font-specifications will
usually be much smaller than that for the set of corresponding scans.

Thus, it is not too far-fetched to exploite finite automata with weights; those
have shown an amazing efficiency for lossy image compression, and even for
video sequences ([7], [8], [12]). The extensions to Parametric Weighted Finite
Automata (PWFA) have also been studied w.r.t. representations of polynomially
defined curves. A recent overview of weighted automata and variety of applica-
tions is found in [9].

Here our topic will mainly be splines, a family of functions that are piece-wise
defined by polynomials of low degrees. As the set of PWFA computable sets is
effectively closed under set union and invertible affine transformation for each
dimension d ∈ N+ (cf. [20]), any piece-wise defined polynomial curves can be
represented effectively by PWFA. A good overview over splines is given in [10]
and a general introduction to classical 2D computer graphics can be found in
[15]. Basic constructions of PWFA for single spline curves were first presented
in [19].

2 Definitions

In a very general setup weighted finite automata (WFA) are finite automata com-
puting functions over semirings, introduced in [16]. Parametric weighted finite
automata (PWFA) are multi-dimensional generalizations of WFA first studied
in [4]. Here we will only consider PWFA over the field of real numbers.

Definition 1. A Parametric Weighte Finite Automaton (PWFA) of dimension
d ∈ N+ is a quintuple Z = (Q, Σ, W , I, F), where

– Q = {0, . . . , n− 1}, n ∈ N+ is a finite non-empty set of states,
– Σ = {0, . . . , l− 1}, l ∈ N+ is a finite non-empty alphabet,
– W = (W0, . . . , Wl−1) are the weight matrices, where each Wi ∈ Rn×n is a

matrix of weighted transitions for the input-symbol i ∈ Σ,

Ancient Typefaces and Parametric Weighted Finite Automata 51

– I = (I0, . . . , Id−1), each Ij ∈ R1×n is an initial distribution, so the Ij are
the rows of the matrix I and

– F ∈ Rn×1 is the final distribution.

The function f : Σ∗ �→ Rd computed by the PWFA Z is defined as

f(w) = IWa1 . . . Wak
F = I

k∏
i=1

WaiF

for each w = a1 . . .ak ∈ Σ∗ and the set S(Z) computed by Z is given by

S(Z) =
∞⋂

n=0

Tn(Z)

where

Tn(Z) =
∞⋃

i=n

{f(w)| w ∈ Σi} .

Here the overline operator denotes the topological closure, i.e. all accumulation
points are included in Tn(Z) as well. We will frequently use T (Z) = T0(Z) as
an abbreviation. And QZ , ΣZ , etc. will denote in the following the set of states
of the automaton Z, the alphabet of Z, etc. where needed in the constructions.

3 Bézier Curves

Bézier curves are based on the Bernstein polynomials, which in most applications
are considered only over the unit interval [0, 1].

A Bernstein polynomial bn
i (t) (cf. [10]) is given by

bn
i (t) =

(
n

i

)
ti(1− t)n−i

where
(
n
i

)
= n!

i!(n−i)! if 0 ≤ i ≤ n and 0 otherwise.
A Bézier curve of degree n is then a real function given by

Bn(t) =
n∑

i=0

bn
i (t)Pi,

where the Pi are real numbers, called the control points of the curve. Each curve
Bn(t) is a real-valued polynomial restricted to the unit interval [0, 1]. Thus, it is
easy to construct a PWFA computing a Bézier curve, as PWFA can represent
polynomials compactly and to arbitrary precision (cf. [6]). The control point
sequence is often written as a vector, i.e. S = (P0, P1, . . . , Pn).

Example 1. Let n = 3 and S = (0, 0, − 1
3 , 0). Then the polynomial obtained is

p(t) = −1
3
b3
2 = −1

3
(3t2 − 3t3) = t3 − t2 .

52 J. Albert and G. Tischler

In [6] it was shown that any polynomial of degree k requires at most k+1 states
in a corresponding WFA and this was extended to polynomially defined curves
resulting in a PWFA with at most k + 1 states, if the maximal degree of the
polynomials involved is k [4].

A Bézier curve Bn(t) of degree n can be split into two Bézier curves Cn(t)
and Dn(t) of degree n at each point t0 ∈ (0, 1) such that

Bn(t) =
{

Cn(t
t0

) for t ∈ [0, t0)
Dn(t−t0

1−t0
) for t ∈ [t0, 1] .

This property can be used to draw approximations of Bézier curves with arbi-
trary precision. Any given curve is split into halves recursively until each obtained
curve-segment sufficiently resembles a straight line. These straight lines are then
rendered.

Parametric curves can be obtained by substituting the real numbers found in
a control point vector by vectors taken from a higher dimensional real space. A
parametric 2D curve of degree n = 3 is e.g. given by some control point vector
S = ((x0, y0), (x1, y1), (x2, y2), (x3, y3)).

In applications we mostly encounter cubic Bézier curves, curves of degree
n = 3, which can be found in the descriptions of font outlines or the modelling
of smooth 3D objects. Cubic Bézier curves have an additional very intuitive
property describing how the two non-end-points influence the represented curve.
If we determine the tangents of a cubic Bézier curve at the points t = 0 and
t = 1, we see that the tangent at P0 points to P1 and the tangent at P3 points
to P2.

Example 2. Consider the control point vector for a cubic Bézier curve S = ((0,
0), (0, − 1

3), (− 1
3 , − 1

3), (0, 0)), for which we obtain the parametric curve C(t) =
(t3 − t2, t2 − t), t ∈ [0, 1], which starts and ends at the origin. The two tangents
intersect the points (0, − 1

3) and (− 1
3 , − 1

3) respectively. It is computed by the
PWFA shown in Figure 2.

Our next example is about the best approximation of circles and arcs by cubic
Bézier curves, as it is often used in fonts.

Example 3. Assume we want to approximate the top right quarter of the circle
of unit radius using a cubic Bézier curve. The choice of the points P0 = (1, 0)

Fig. 2. PWFA computing the set of points
{
(t3 − t2, t2 − t)|t ∈ [0, 1]

}

Ancient Typefaces and Parametric Weighted Finite Automata 53

and P3 = (0, 1) is straightforward and the tangent at P0 should be vertical
whereas the tangent at P3 should be horizontal. This implies that P1 = (1, k1)
and P2 = (k2, 1) for some real numbers k1 and k2. For symmetry reasons it is
obvious that k1 = k2 = k, so P = ((1, 0), (1, k), (k, 1), (0, 1). Thus, we have to
find a number k such that the curve is an optimal approximation of the circle
sector. The derivation of k can be found in [13,17]. This optimal value is

k = 4
√

2− 1
3

≈ 0.552 .

In practice, a given curve is first partitioned into segments and then each seg-
ment is approximated by a separate Bézier curve that is shifted into the right
position (remember that all Bézier curves are defined on [0, 1]). This can be sim-
ulated easily by PWFA, because there are effective algorithms for set union and
invertible affine transformation operations (cf. [20]). As all curve segments are
based on polynomials, we can obtain very compact automata. Assume we want
to approximate a continuous curve c(t) by some PWFA defined on the interval
[0, 2q] for some natural number q. We partition the curve into a set of segments
ci(t) such that

ci(t) =

⎧⎨⎩
c(t + i) for 0 ≤ t < 1 and i < 2q − 1
c(t + i) for 0 ≤ t ≤ 1 and i = 2q − 1
0 otherwise

for i = 0, . . . , 2q − 1. Then we obtain

c(t) =
2q−1∑
i=0

ci(t− i) .

Thus, to represent the complete curve, we can use the construction

c = {(t,
∑2q−1

i=0 ci(t− i))|t ∈ [0, 2q − 1]}

=
⋃2q−2

i=0 {(t + i, ci(t))|t ∈ [0, 1)} ∪ {(t + 2q − 1, c2q−1(t))|t ∈ [0, 1]}

=
⋃2q−1

i=0 {(t + i, ci(t))|t ∈ [0, 1]}

where the last step is valid because c is continuous. Now assume, each curve
segment ci(t) is approximated by a Bézier curve of degree n, i.e.

ci(t) ≈ pi(t) =
n∑

j=0

Pi, jb
n
j (t) =

n∑
j=0

P ′
i, jx

j

for i = 0, . . . , 2q − 1 such that

p(t) =
2q−1∑
i=0

pi(t− i)

54 J. Albert and G. Tischler

is a continuous function. Then we can construct a PWFA X computing p(t) as
the set

p =
2q−1⋃
i=0

{(t + i, pi(t))|t ∈ [0, 1]}

using
|QX | = 2

(q

2
+

q

4
+ . . . + 1

)
+ max{(n + 1), 2}

states. X uses max{n+1, 2} states to represent a PWFA defined polynomial. This
maximum will usually be n + 1. For sake of completeness, we have also included
the case of n = 0 (i.e. approximation by piece-wise constant functions). If n = 0
we have to introduce an additional state, because we require a linear function for
the computation of the first component of the result vectors. The geometric sum
stems from a set union construction which yields a tree structured automaton
for each of the two components of the result vectors. If the number of sections is
not a power of 2, then we can substitute unused intervals by repeating existing
intervals. Assume for instance we want to represent the curve c(t) defined on
[0, 3] and have decomposed it as

c(t) = c0(t− 0) + c1(t− 1) + c2(t− 2)

which we compute as

c = {(t+0, c0(t))|t ∈ [0, 1]}∪{(t+1, c1(t))|t ∈ [0, 1]}∪{(t+ 2, c2(t))|t ∈ [0, 1]} .

Then we can repeat the interval [0, 1] for the unused interval [3, 4] by

c = {(t + 0, c0(t))|t ∈ [0, 1]}︸ ︷︷ ︸
prefix 11

∪{(t + 1, c1(t))|t ∈ [0, 1]}︸ ︷︷ ︸
prefix 12

∪

{(t + 2, c2(t))|t ∈ [0, 1]}︸ ︷︷ ︸
prefix 21

∪{(t + 0, c0(t))|t ∈ [0, 1]}︸ ︷︷ ︸
prefix 22

.

Example 4. Any curve c(t) defined on [0, 3] and built from three Bézier curves
can be represented by a PWFA with only ten states. The image computed by
the automaton is shown in Figure 3.

For an example let us consider the polynomials

– (0, 0, 11
3 , 4) ∼= −7x3 + 11x2 for [0, 1],

– (4, 13
3 , 13

6 , 2) ∼= 4.5x3 − 7.5x2 + x + 4 for [1, 2] and
– (2, 11

6 , 3, 3) ∼= −2.5x3 + 4x2 − 0.5x + 2 for [2, 3].

representing a spline in three pieces. As we allow polynomials up to degree 3,
we need 4 states representing a polynomial construction. This is identical to the
states of the automaton shown in Figure 2. Six more states are required for the
set union construction glueing the polynomials together, three for each of the
two dimensions, respectively. The number of polynomials is not a power of two,
thus we just use the construction described above.

Ancient Typefaces and Parametric Weighted Finite Automata 55

Fig. 3. Function computed on [0, 3] by the PWFA from Example 4

4 Spline Applications

Splines have numerous applications ranging from computer generated fonts over
computer aided design (CAD) as used in architecture, engineering, etc. to 3D
modelling for animated movies. We will present some examples in this section.

4.1 Scalable Vector Graphics Path Outlines

We will show how an outline of a Scalable Vector Graphics (SVG, cf. [11]) path
element can be represented by a real-valued PWFA of dimension 2, where the
necessary graphical primitives can either be reproduced exactly or approximated
to arbitrary precision.

An SVG path is based on the following primitive instructions (we only provide
informal descriptions here, precise definitions can be found in e.g. [11]):

– M: move the pen to a new location and start a new path
– Z: close the current path by drawing a straight line from the current position

to the starting point of the path
– L: draw a straight line from the current point to a given point
– H: draw a straight horizontal line from the current point up to a certain

horizontal coordinate
– V: draw a straight vertical line from the current point up to a certain vertical

coordinate
– C: draw a cubic Bézier curve from the current point to some endpoint, where

two control points in between are given
– S: draw a cubic Bézier curve from the current point to some endpoint, where

one control point in between is given and the other is computed from the
previous curve segment such that the curve is smooth (meaning the curve is
continuous and the first derivative exists) at the current point

– Q: draw a quadratic Bézier curve from the current point to some endpoint,
where one control point in between are given

– T: draw a quadratic Bézier curve from the current point to some endpoint,
where the control point between the end points is computed from the previ-
ous curve segment such that the curve is smooth at the current point

– A: draw an elliptical arc from the current point to some point

56 J. Albert and G. Tischler

Actually, each such instruction exists in two variants, namely for absolute and
relative coordinates as parameters, resp. We will restrict ourselves to the instruc-
tion set for absolute coordinates.

An example of a path according to the SVG 1.1 specifications is:

M0, 0 C0, − 0.333 − 0.333, 0.333 0, 0

The path describes the cubic Bézier curve represented by the PWFA shown in
Figure 2. The pen is first moved to the position (0, 0) and then a cubic Bézier
curve is drawn to the endpoint (0, 0). The control points between the endpoints
are (approximately) (0, − 1

3) and (− 1
3 , − 1

3).
We will now reduce the number of instruction types since each drawing in-

struction can be substituted either by a cubic Bézier curve or an elliptical arc,
where only absolute coordinates are used. We use the following steps:

– Trivially, each instruction for relative coordinates can be converted into one
that uses absolute coordinates, i.e. we only have to consider paths using
instructions M,Z,H,V,L,C,S,Q,T or A.

– The Z, H and V instructions are only convenient notions of the L instruction
that have some implicit parameters. Thus, we can assume without loss of
generality that each path we are provided with contains only the instructions
M,L,C,S,Q,T and A.

– The spline variants S and T can be substituted by the more general variants
C and Q respectively by explicitly inserting the implicit control point. This
leaves the instructions M,L,C,Q and A.

– Bézier curves have the degree elevation property, i.e. each quadratic Bézier
curve can be transformed into an equivalent cubic Bézier curve. More pre-
cisely, if a quadratic Bézier curve is given by the control points P0, P1 and P2,
then the cubic Bézier curve defined by the control points P0, (P0 + 2P1)/3,
(2P1 +P2)/3, P2 defines the same curve. The remaining instruction types are
M,L,C and A.

– A straight line going from P0 to P1 can be represented as a cubic Bézier
curve using the control points P0, (P0 + P1)/2, (P0 + P1)/2, P1. Thus, the
instructions M,C and A remain.

The instruction set M,C,A is minimal in the sense that no instruction can be
simulated exactly by combinations of the other two. We can however approxi-
mate any A instruction as a sequence of C instructions at arbitrary precision.
As C instructions can be represented exactly by PWFA, we assume that each
encountered A instruction is replaced by a suitable sequence of C instructions
and only the instructions M and C remain.

In practice we may skip some of the steps above, e.g. representing a straight
line by a cubic Bézier curve is not necessary, as both can be computed by PWFA
and the line can be implemented using a smaller amount of resources (states and
edges) than the curve. As shown above, a PWFA can represent any finite set
of Bézier curves. Thus, each SVG path outline can be computed by some real-
valued PWFA of dimension 2.

Ancient Typefaces and Parametric Weighted Finite Automata 57

4.2 Fonts

A typeface, which is also commonly called a font in computer based applications,
mainly contains a function of non-empty words over a certain alphabet to a set
of shapes. The shapes are called glyphs. Usually, each single alphabet letter is
assigned a different glyph. Some fonts also contain glyphs describing words of
a length greater than one, e.g. some fonts have a glyph for the word fi. Such
glyphs for multi-letter words are called ligatures. They are used, if the rendering
of a word using two successive single glyphs does not look satisfactory. A font
as a whole is in general endowed with some information describing the set of all
contained glyphs. This information is called the font metrics. It contains values
like baseline, ascent, descent, etc. (cf. [5]).

Each glyph is defined as a relation on the Euclidean plane. When we set a
line of text in a certain font, then we have to shift the rendered glyphs to their
respective places on the line. This can be understood as a shift along the x
axis for each rendered glyph. The shift between two adjacent glyphs a and b
rendered consecutively in one line is given by the horizontal advance parameter
of the glyph a. In some cases the sole usage of the horizontal advance parameter
produces bad looking results, because two adjacent letters appear too close or
too far apart. In this case the shift between pairs of glyphs can be changed by
adding a so called kerning value.

The glyphs in most computer fonts are either stored as bitmaps or outlines.
Bitmap fonts have low rendering complexity and can be optimised for a certain
resolution, however they are in general not scalable. Outline fonts (which are
sometimes also called vector fonts) store only glyph outlines, which have to be
filled by the rendering algorithm. In contrast to bitmap fonts they in general are
scalable, but the rendering requires much more complex algorithms. In particu-
lar, the rasterization of mathematically defined curves is a non-trivial task.

Clearly, we can use PWFA for typesetting, if the single glyphs of a font can be
represented using PWFA. Bitmap fonts can be rendered using ordinary WFA,
as they are in fact nothing more than greyscale images. Thus, we will put our
emphasis on outline fonts, where we will use PWFA to represent glyph outlines
as polynomial relations. We will not discuss the rasterization of such relations,
but only the representation of the underlying curves in terms of PWFA.

There is a large variety of font file formats. The two most important formats
in applications are the TrueType (cf. [14]) and Adobe PostScript type 1 (cf. [1])
font file formats. The TrueType format is the most common font format in Mac
OS and Microsoft Windows. PostScript type 1 fonts, can be found in Adobe’s
PostScript and Portable Document Format ([2], [3]).

The outlines in a TrueType font are stored as quadratic B-splines. We can
either transform them directly to a PWFA or first transform the B-spline repre-
sentation to a Bézier curve representation and then transform the Bézier curve
representation into a PWFA (cf. [19]). The drawing primitives allowed in the
PostScript type 1 format are straight lines and cubic Bézier curves. Both can
easily be transformed to PWFA form.

58 J. Albert and G. Tischler

Fig. 4. Left: outline of letter S of a fraktur font by cubic Bézier curves in the image.
The control points are depicted as little circles, the tangents as lines. Right: resulting
glyph for S.

Figure 4 shows a glyph outline consisting of cubic Bézier curves and straight
lines on the left. In practice a convenient way to transform a glyph outline of
a TrueType or PostScript type 1 font into a PWFA is to use a font editor like
FontForge (cf. [22]). First convert the font to an SVG font, which uses SVG
paths to describe outlines, and then transform the resulting path into a PWFA.

If we only represent the spline curves defining some glyph by a PWFA, then
the description is incomplete, as the interior is missing. The following results
show that PWFA can also be used to represent filled outlines defined by glyphs
in PostScript type 1 or TrueType fonts.

Lemma 1. Let X be a PWFA of dimension d such that S(X) = T (X). Then
there exists a PWFA Y of dimension d computing the set

S(Y) =
⋃

a, b∈S(X)

{xa + (1− x)b|x ∈ [0, 1]},

which is nothing but the convex hull of S(X).

Proof. Assume that QX = {1, . . . , n} for some n ∈ N+ and ΣX = {1, . . . , l} for
some l ∈ N+. Furthermore, assume without loss of generality that FX [n] = 1
and FX [i] = 0 for 1 ≤ i < n. Let Uk denote the identity matrix in Rk×k for
each positive natural number k. Let further Ok, m denote the zero matrix in
Rk×m for each pair (k, m) of positive natural numbers. Consider the PWFA Y ′

of dimension 2d such that

– the state set QY ′ = {1, . . . , 2n},
– the input alphabet ΣY ′ = {1, . . . , 2l},
– the transition matrix AY ′

i
is given by

AY ′
i

=

⎧⎪⎪⎨⎪⎪⎩
(

AXi On, n

On, n Un

)
if 1 ≤ i ≤ l(

Un On, n

On, n AXi−l

)
if l + 1 ≤ i ≤ 2l

Ancient Typefaces and Parametric Weighted Finite Automata 59

for i = 1, . . . , 2l,
– the initial matrix IY ′ is

IY ′ =
(

IX Od,n
Od, n IX

)
and

– the final vector FY ′ is FY ′ = (FT
X FT

X)T .

Let p(fY ′(w)) denote the projection of the vector fY ′(w) to the components
1, . . . , l for each w ∈ Σ∗

Y ′ and let q(fY ′(w)) denote the projection of the vector
fY ′(w) to the components l + 1, . . . , 2l for each w ∈ Σ∗

Y ′ . Then the set P given
by

P =
⋃

w∈Σ∗
Y ′

{(p(fY ′(w)), q(fY ′(w)))}

is the set of all pairs (a, b) such that a, b ∈ T (X). S(Y) can be expressed as

S(Y) =
⋃

w∈Σ∗
Y ′

{p(fY ′(w)) + x(q(fY ′(w)) − p(fY ′(w)))|x ∈ [0, 1]} .

Thus, Y can be obtained from Y ′ using the following steps:

1. Add two states 2n + 1 and 2n + 2 representing the real function f(x) = x
(cf. [6]). We assume that the state representing the linear function is state
2n + 1 and the state representing the constant function is 2n + 2.

2. Set the final vector to 1 for state 2n + 2 and to zero for each other state.
3. Let c ∈ T (X) (such a point exists, because S(X) = T (X) implies that

S(X) is not empty). Choose IY = (IX IX Od, 1 c) to halve the number of
dimensions.

4. Insert a new label 2l + 1 and assign the transition matrix

AY2l+2 =

⎛⎝ Un On, n −1n 1n

On, n Un 1n On, 1
O2, 2n+2

⎞⎠
to it, where 1n ∈ Rn is 1 in component n and 0 otherwise.

Let h(w) : Σ∗
Y �→ Σ∗

Y ′ denote the homomorphism erasing 2l + 1 and maps any
other symbol to itself. When Y reads the symbol 2l + 1 after it has read some
word w ∈ Σ∗

Y ′ , then it configures the states computing the linear function to
produce a line between the points p(fY ′(h(w))) and q(fY ′(h(w))). Thus, Y is
the set of all lines between pairs of (a, b) of points such that a, b ∈ T (X).

It is easy to see that Lemma 1 can be generalized to the following theorem.

Theorem 1. Let X and Z be PWFA of dimension d such that S(X) = T (X)
and S(Z) = T (Z). Then there is a PWFA Y of dimension d computing the set

S(Y) =
⋃

a∈S(X), b∈S(Z)

{xa + (1 − x)b|x ∈ [0, 1]} .

60 J. Albert and G. Tischler

Proof. We do not construct the automaton Y ′ as in the proof of Lemma 1 using
two copies of X but just one copy of X and one copy of Z. The rest of the
construction is analogous.

Applying Theorem 1 to obtain filled glyphs defined by PostScript type 1 or
TrueType fonts via PWFA works as follows. TrueType fonts can usually be
exactly converted to a PostScript type 1 font. So we assume w.l.o.g. that each
used primitive component is a cubic Bézier curve. Furthermore, we can assume
as well that there is exactly one connected area to be filled on the glyph. If there
are multiple, we will handle them consecutively.

The PostScript type 1 format does not allow outline paths to cross each other.
This means each area to be filled is defined by one path describing the outer bor-
der and a finite number of paths describing inner borders. We can approximate
each glyph outline path from the inside of the glyph at arbitrary precision using
polygons. By ,,from the inside” we mean that each polygon vertex is on the
glyph and no polygon edge crosses any glyph outline. We assume that no poly-
gon approximating any outline path crosses itself or a polygon approximating
any other outline path. If such a crossing exists, then this can be remedied by
using more precise approximations.

An example of such an approximation is shown in Figure 5. The depicted glyph
has one outer and one inner border. The area between the polygons approximating
the outer border and inner border can be tessellated using filled triangles. A filled
triangle is the convex hull of any two edges of the triangle. This leaves the areas
between the polygons and the glyph outlines. We have a closer look at how we
obtain polygons approximating a glyph outline path from the inside. Observe the
outline path shown in the second part of Figure 5. We want to approximate the
curve C1 by a polygon inside the area delimited by C1, C2 and C3. Assume C1
is given as C1(t), where C1(0) denotes the lower end of C1 and C1(1) the upper
end in the figure. Let N1(t) denote the unit normal vector of C1 at t, which points
in the direction of the glyph inside. One such vector is depicted in the figure. We
define the polygon P1, k(δ) approximating C1 as the sequence of vectors

Fig. 5. First a glyph is approximated from the inside using polygons, depicted as dashed
lines. Then we take care filling the interior step by step. Herer an outline path consisting
of three cubic Bézier curves C1, C2 and C3 is shown. The arrow depicts a normal vector
of some point on the curve C1 pointing to the interior of the glyph.

Ancient Typefaces and Parametric Weighted Finite Automata 61

Fig. 6. Text Gratia Styriae rendered from a PWFA

P1, k(δ) = C1(0), C1

(
1
k

)
+ δN1

(
1
k

)
, . . . , C1

(
k − 1

k

)
+ δN1

(
k − 1

k

)
, C1(1)

for k ≥ 2 and δ > 0. If P1, k(δ) crosses C1, then this can be remedied by increasing
k, as C1 is a polynomial and has only finitely many turning points. If we choose
k sufficiently large and δ sufficiently small, then there are also no intersections
between P1, k(δ) and C2 or C3. We can find a suitable pair of numbers (k, δ)
algorithmically by trying each pair (2i, 2−i) for i = 1, 2, . . . until P1, 2i(2−i)
no longer crosses C1, C2 and C3. Note that only crossings are forbidden, the
approximating polygon is allowed to touch each curve.

Assume we have found a suitable pair (k, δ). Then the sequence P1, k(δ) has
length k + 1. We have seen above that each Bézier curve b(t) can be split into
two curves b1(t) and b2(t) at any point t ∈ (0, 1). Let C1, 1, . . . , C1, k denote the
sequence of cubic Bézier curves obtained by splitting C1 at the points 1

k , . . . ,
k−1

k . Let further L1, 1, . . . , L1, k denote the sequence of straight lines between
the pairs (P1, k(δ)1, P1, k(δ)2), . . . (P1, k(δ)k, P1, k(δ)k+1). Then we can obtain the
area between the curve C1 and the polygon P1, k(δ) by filling the areas between
each pair (C1, i, L1, i) of delimiting curves using the construction of Theorem 1.
Using the toolkit we now have at hand, we can render complete texts by PWFA.
An example is shown in Figure 6. As all delimiting curves we use are cubic
Bézier curves, we can partition each represented text into an arbitrary finite
amount of fragments. When we assign these fragments to time steps, we can
construct a PWFA which produces the fragments incrementally according to a
timeline. Thus, we can render movies showing the drawing of letters as it would
be performed by a human hand using PWFA.

Currently, there are experiments underway at our institute, to extend this
automata-theoretic kind of representation of glyphs to early medieval manu-
scripts written in Insular and Carolingian minuscule. One of the goals is to
identify individual schools or even single writers by their ”typical” glyphs, i.e.
by their associated representations of control point vectors and PWFA.

References

1. Adobe Systems Inc: Adobe Type 1 Font Format, 2nd edn. Addison Wesley, Reading
(1990)

2. Adobe Systems Inc: PostScript Language Reference, 3rd edn. Addison-Wesley,
Reading (1999)

3. Adobe Systems Inc: PDF Reference Version 1.6, 5th edn. Adobe Press (2004)

62 J. Albert and G. Tischler

4. Albert, J., Kari, J.: Parametric weighted finite automata and iterated function
systems. In: Proceedings of the Conference Fractals in Engineering, Delft, pp. 248–
255 (1999)

5. Anonymous. English Wikipedia article ”Typeface” (2010),
http://en.wikipedia.org/wiki/Typeface

6. Culik II, K., Karhumäki, J.: Finite automata computing real functions. SIAM
Journal on Computing 23(4), 789–814 (1994)

7. Culik II, K., Kari, J.: Image compression using weighted finite automata. Comput-
ers & Graphics 17(3), 305–314 (1993)

8. Culik II, K., Kari, J.: Image-data compression using edge-optimizing algorithm for
WFA inference. Information Processing and Management 30(6), 829–838 (1994)

9. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Heidelberg (2009)

10. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, London (1990)

11. Ferraiolo, J., Fujisawa, J., Jackson, D.: Scalable vector graphics (SVG) 1.1 spec-
ification. World Wide Web Consortium, Recommendation REC-SVG11-20030114
(2003)

12. Hafner, U., Albert, J., Frank, S., Unger, M.: Weighted finite automata for video
compression. IEEE Journal on selected areas in communication 16, 108–119 (1998)

13. Maisonobe, L.: Drawing an elliptical arc using polylines, quadratic or cubic Bézier
curves (2010), http://www.spaceroots.org/documents/ellipse/index.html

14. Microsoft Corporation. Truetype specifications (2003),
http://www.microsoft.com/typography/specs/default.htm

15. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science
Press (1982)

16. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4(2-3), 245–270 (1961)

17. Stanislav, G.A.: Drawing a circle with Bézier curves (2010),
http://www.whizkidtech.redprince.net/bezier/circle/

18. Text Encoding Initiative (TEI) Consortium. TEI: P5 Guidelines (2010),
http://www.tei-c.org/Guidelines/P5/

19. Tischler, G.: Parametric weighted finite automata for figure drawing. In: Do-
maratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317,
pp. 259–268. Springer, Heidelberg (2005)

20. Tischler, G.: Properties and applications of parametric weighted finite automata.
Journal of Automata, Languages and Combinatorics 10(2/3), 347–365 (2005)

21. University Library of Würzburg. Topographia Franconiae (2010),
http://franconica.uni-wuerzburg.de/Franconica/ortsregister.html

22. Williams, G.: FontForge (2010), http://fontforge.sourceforge.net/

http://en.wikipedia.org/wiki/Typeface
http://www.spaceroots.org/documents/ellipse/index.html
http://www.microsoft.com/typography/specs/default.htm
http://www.whizkidtech.redprince.net/bezier/circle/
http://www.tei-c.org/Guidelines/P5/
http://franconica.uni-wuerzburg.de/Franconica/ortsregister.html
http://fontforge.sourceforge.net/

On Language Decompositions and Primality

Michael Domaratzki1 and Kai Salomaa2

1 Department of Computer Science, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada

mdomarat@cs.umanitoba.ca
2 School of Computing, Queen’s University, Kingston,

Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. Concatenation of strings and languages is a fundamental op-
eration on formal languages. Here we consider the inverse operation of
language decomposition, where we want to represent a given language
as a non-trivial concatenation of two languages. The associated notions
of prime languages and prime decompositions have been originally intro-
duced by Mateescu, A. Salomaa and Yu. We consider also extensions of
the decomposability problem with respect to orthogonal concatenation,
as well as, more general operations defined by sets of trajectories.

1 Introduction

Concatenation is one of the basic operations on strings and languages. Products
or concatenations of languages, viewed as subsets of the free monoid, are used in
many applications. However, many apparently simple questions, like the ques-
tion of determining when two languages commute, turn out to be surprisingly
challenging [21,26].

Here we discuss the operation that can be viewed as the inverse of concate-
nation, that is, we consider the question of decomposing a language L as a
concatenation of component languages. We are interested in particular in cases
where L is regular. It is known already from Conway [4] (see also [25,29,36])
that it is decidable whether or not a given regular language has a non-trivial
decomposition. However, there was no known efficient algorithm for this prob-
lem and, recently, the decomposability of regular languages was shown to be
PSPACE-complete [27].

Languages that do not have any non-trivial decomposition with respect to con-
catenation are called prime languages. It turns out that a prime decomposition
of a language L, that is, a representation of L as a product of prime languages,
need not be unique and some languages, in fact, have no prime decomposition.
The notion of prime languages was introduced and prime decompositions were
first systematically studied by Mateescu, A. Salomaa and Yu [29,36].

The question whether a language L has a decomposition is represented in a
natural way as a two-variable equation L = X · Y . We will consider existence
of solutions for such equations and their variants where one of the variables

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 63–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

64 M. Domaratzki and K. Salomaa

X or Y is a fixed language or where the concatenation is replaced by some
other operation. Language equations have been extensively studied and have
applications in many areas of computer science. More information on language
equations, in general, can be found in [23,25,26,31] and their references.

It should be noted that even the decidability status of the decomposition
problem for regular languages with respect to, for example, orthogonal concate-
nation or shuffle remains open. The shuffle decomposition problem for regular
languages has been studied in [2,18].

We consider a general class of operations defined by shuffle along trajectories
that generalize the operations of concatenation, (unrestricted) shuffle and a large
class of other language operations. Trajectory-based operations were originally
introduced by Mateescu, Rozenberg and A. Salomaa [28]. We discuss conditions
on the sets of trajectories that guarantee that the corresponding decomposition
problem for regular languages remains effectively solvable.

We assume that the reader is familiar with the basics of formal languages and,
in particular, with the notions of regular languages and finite automata, for more
information see e.g. [37,38]. The set of all strings over a finite alphabet Σ is Σ∗

and a language is any subset of Σ∗. The empty string is ε. The concatenation of
languages L1 and L2 is defined as L1 ·L2 = {w1w2 | wi ∈ Li, i = 1, 2}. We denote
a nondeterministic finite automaton, or NFA, as a tuple A = (Q, Σ, δ, q0, QF),
where Q is the finite set of states, Σ is the input alphabet, δ : (Q × Σ) → 2Q

is the multivalued transition function, q0 ∈ Q is the start state and QF ⊆ Q is
the set of accepting states. The language recognized by A is denoted L(A). The
automaton A is deterministic, or a DFA, if for all q ∈ Q and σ ∈ Σ, |δ(q, σ)| ≤ 1.

2 Language Primality and Prime Decompositions

If L = L1 · . . . · Lk, k ≥ 2, we say that the languages Li, 1 ≤ i ≤ k, are factors
of L and L1 · . . . · Lk is a decomposition of index k for L. The decomposition is
non-trivial if Li = {ε}, i = 1, . . . , k.

Note that any language L has the trivial decompositions L ·{ε} and {ε}·L. In
the following, unless otherwise mentioned, by a decomposition we always mean
a non-trivial decomposition.

A non-empty language L = {ε} is said to be prime if L has no decompositions
of index 2. Clearly a language L has decomposition of index k for some k ≥ 2 if
and only if L has a decomposition of index 2.

In [14] a language L is termed indecomposable if the equation L = L1 · L2
implies that L = L1 or L = L2. Clearly a prime language is always indecompos-
able, and it can be verified that any indecomposable language distinct from ∅
and {ε} is also prime [35].

In [29,36] the following method to decide primality of a regular language was
given. Let A = (Q, Σ, δ, q0, QF) be a DFA. We say that P ⊆ Q is a decomposition
set of A if L(A) = RP

1 RP
2 , where

RP
1 = {w ∈ Σ∗ | δ(q0, w) ∈ P}, RP

2 =
⋂
p∈P

{w ∈ Σ∗ | δ(p, w) ∈ QF }.

On Language Decompositions and Primality 65

Proposition 1. [29] Let L be a regular language recognized by a DFA A =
(Q, Σ, δ, q0, QF). For any decomposition L = L1 ·L2 there exists a decomposition
set P of A such that Li ⊆ RP

i , i = 1, 2.

Thus, the factors of an arbitrary decomposition (of index 2) of a regular lan-
guage L are included in factors of a maximal decomposition that is defined by a
decomposition set of the minimal DFA for L.

Corollary 1. If a regular language L has a decomposition, it has a decomposi-
tion where the components are regular.

With notations as in Proposition 1, for a given DFA A and P ⊆ Q we can
construct in polynomial time a DFA for RP

2 and an NFA for the concatenation
RP

1 RP
2 . Since equivalence of NFA’s can be decided in PSPACE [38], Proposition 1

gives a PSPACE algorithm to decide whether or not the language recognized by
a DFA is prime. However, the complexity of the primality problem was left open
in [29], see also [15].

Recently, DFA primality was shown to be PSPACE-hard by Martens, Niew-
erth and Schwentick [27]. Interestingly, the primality problem for regular lan-
guages is closely connected with typing problems for XML schemas, and the
authors of [27] were motivated by applications in distributed XML documents.

Below, using a construction appearing already in [29] we give an alternative
proof for PSPACE-hardness of deciding whether an NFA recognizes a prime
language (which is a weaker result).

Proposition 2. Given an NFA A it is PSPACE-hard to decide whether or not
L(A) is prime.

Proof. We use a reduction from the PSPACE-hard problem of deciding NFA
universality [30]. Our reduction is similar to the one used originally in [29] for
showing that primality of a context-free language in undecidable.

Let Σ be the input alphabet for A and denote Ω = Σ ∪ {a, b} where a and b
are new symbols not occurring in Σ. We define

L0 = aL(A)ba + aΣ∗bb + bΣ∗aa + bΣ∗ab.

Given A as input, it is easy to construct (in polynomial time) an NFA B for the
language L0.

We claim that L0 is prime if and only if L(A) = Σ∗. For the “only if” direction
we note that if L(A) = Σ∗, then L0 = (aΣ∗b + bΣ∗a)(a + b).

For the “if” direction, suppose that L(A) = Σ∗ and consider an arbitrary
decomposition L0 = M1 ·M2 of L0, where M1 = {ε} = M2.

We observe that since L0 is prefix-free and suffix-free,

Mi cannot contain a complete word of L0, i = 1, 2. (1)

Now suppose that M2 contains a word of length at least two, w = w′xy, w′ ∈ Ω∗,
x, y ∈ {a, b}. (Since L0 ⊆ {a, b}Σ∗{a, b}2, the last two symbols of w must be in
{a, b}.)

66 M. Domaratzki and K. Salomaa

Since, by (1), M2 cannot contain a complete word of L0, the language M1
must have a word wz beginning with z, both for z = a and z = b. This leads
to a contradiction for all choices of x, y ∈ {a, b}, because, for any v ∈ Σ∗,
wavaa, wavab ∈ L0 and wbvba, wbvbb ∈ L0.

Hence we can conclude that any word of M2 has length at most one. Now (1)
implies that ε ∈ M2. Since L0 contains strings ending with a and strings ending
with b the only possibility is that M2 = {a, b}.

Since L(A) = Σ∗, we can choose u ∈ Σ∗ − L(A). Now aubb ∈ L0 which
implies aub ∈ M1. Since a ∈ M2, we get auba ∈ M1 · M2 = L0, which is a
contradiction.

Thus, already based on the work by Mateescu, A. Salomaa and Yu [29] it could
be shown that NFA primality is PSPACE-hard, although this was not explic-
itly mentioned in [29]. In order to establish the stronger result for DFA’s, [27]
uses a different construction and a reduction from DFA concatenation universal-
ity [20], that is, the problem of deciding whether the concatenation of languages
recognized by two given DFA’s equals Σ∗.

Theorem 1. [27] The problem of deciding primality of L(A) for a given DFA
A is PSPACE-complete.

Next we consider the question of representing a (regular) language as a product
of prime languages. A prime decomposition of a language L is a decomposition
of L, where each of the factors is a prime language.

Clearly, every finite language has a prime decomposition, however, a prime
decomposition for a finite language need not be unique even if we disregard the
order of factors in the product [29]. For example,

(ε + a2)(ε + a2 + a3 + a4) = (ε + a2 + a3)2,

where both factors on both sides of the equation are prime.
There exist infinite languages without any prime decomposition. An example

given in [15] is the language

H = ε + { ai1bi1ai2bi2 · · · airbir | r ≥ 1, 1 ≤ i1 < i2 < · · · < ir }.

This means that in any decomposition of H as a product M1 · . . . · Mk, one
of the languages Mi, 1 ≤ i ≤ k, can be further decomposed in a non-trivial
way, and the process can be continued to yield a decomposition of an arbitrary
index. However, all known examples of languages that provably have the above
property are non-regular, and even non-context-free [15].

Open problem 2.1. Do all regular languages have a prime decomposition?

The situation is essentially different if we restrict consideration to prefix-free lan-
guages since it is known that the monoid of prefix codes is a free monoid [32]. Any
prefix-free regular language has a unique prime decomposition if it is addition-
ally required that the components are regular and prefix-free [5]. Interestingly,
the analogous property does not hold for infix-free regular languages [16].

On Language Decompositions and Primality 67

Note that, because languages can be decomposed in various ways, simply the
existence of a prime decomposition for L does not imply any upper bound for the
index of possible decompositions of L. A language L is said to be strongly prime
decomposable[15] if the maximum index of any decomposition of L is bounded by
a constant. If L is strongly prime decomposable, any refinement of an arbitrary
decomposition of L has to result in a prime decomposition in a finite number of
steps. The condition guarantees the existence of a prime decomposition but not
its uniqueness.

Using techniques based on Proposition 1, [15] gives an effective characteriza-
tion of strongly prime decomposable regular languages and using the character-
ization establishes that all unary regular languages have a prime decomposition.

Theorem 2. [15] Every regular language over a unary alphabet has a prime
decomposition.

There exist non-regular unary languages that provably have no prime decomposi-
tion [15,34]. Recently, more general types of (prime) decompositions of languages,
including infinitary decompositions, have been studied in [35].

2.1 Orthogonal Concatenation

The question of decomposability of languages becomes more involved if we con-
sider the operation of non-ambiguous, or orthogonal, concatenation [6]. We
say that L is the orthogonal concatenation of languages L1 and L2, denoted,
L = L1 �⊥ L2, if for every string w ∈ L there exist unique strings w1 ∈ L1
and w2 ∈ L2 such that w = w1 · w2. We say that L is ⊥-prime if L has only
trivial decompositions (where one of the components is {ε}) as the orthogonal
concatenation of two languages.

Note that the orthogonal product of given languages L1 and L2 need not be
defined. If we define the product of L1 and L2 to consist of those words that
have a unique representation as the concatenation of strings in L1 and L2 we get
the related, but different, operation of unique concatenation considered in [33].

Techniques such as the one used for Proposition 1 fall apart when trying to
determine, for a given regular language L, whether or not L has a non-trivial
orthogonal factorization. Thus, we do not know whether for regular languages
the existence of an orthogonal decomposition is even decidable. Note that given
regular languages L1 and L2 we can effectively decide whether or not L1 �⊥ L2
is defined and, in the positive case, construct a DFA for L1 �⊥ L2. However, a
simple brute-force search seems not sufficient to decide ⊥-primality for regular
languages (even in the case where the components are required to be regular)
because there is no known state complexity upper bound for regular solutions
for X and Y in an equation L = X �⊥ Y [6].

Open problem 2.2. Is ⊥-primality decidable for regular languages?

It has been shown by Anselmo and Restivo [1] that existence of solutions for
one-variable equations involving orthogonal concatenation and regular constant
languages is decidable. Their proof relies on power series techniques.

68 M. Domaratzki and K. Salomaa

Theorem 3. [1] For given regular languages L1 and L2, it is decidable whether
or not the equation L1 = L2 �⊥ X has a solution for X. A possible solution is
unique and has an effective construction.

It seems conceivable that the analogy of Corollary 1 would not hold for orthog-
onal concatenation [6], that is, there could be regular languages L such that
L = M1 �⊥ M2 where M1 and M2 are non-regular while L has only trivial
representations as the orthogonal product of regular languages.

3 Trajectory-Based Operations

Shuffle on trajectories is a system for defining a class of language operations in a
uniform way. In particular, a binary language is given which specifies the shuffling
operations which are allowed. The operations defined by shuffle on trajectories
can then only interleave the characters in the input words, preserving their order,
but can not delete them. In particular, each trajectory t ∈ {0, 1}∗ with |t|0 = n
and |t|1 = m specifies the manner in which we can form the shuffle on trajectories
of two words of length n (as the left input word) and m (as the right input word).
The word resulting from the shuffle along t will have a letter from the left input
word in position i if the i-th symbol of t is 0, and a letter from the right input
word in position i if the i-th symbol of t is 1.

By using shuffle on trajectories, we can examine the sets of trajectories and
their effect on different language equations. Here, we focus on decompositions,
but other language equations can be examined (see the first author [10] for a
survey of shuffle on trajectories which includes results on language equations).

3.1 Shuffle on Trajectories

The original definition of shuffle on trajectories is due to Mateescu et al. [28]. We
first define the shuffle of two words x and y over an alphabet Σ on a trajectory
t, a word over {0, 1}. We denote the shuffle of x and y on trajectory t by x t y.

If x = ax′, y = by′ (with a, b ∈ Σ) and t = et′ (with e ∈ {0, 1}), then

x et′ y =
{

a(x′
t′ by′) if e = 0;

b(ax′
t′ y′) if e = 1.

If x = ax′ (a ∈ Σ), y = ε and t = et′ (e ∈ {0, 1}), then

x et′ ε =
{

a(x′
t′ ε) if e = 0;

∅ otherwise.

If x = ε, y = by′ (b ∈ Σ) and t = et′ (e ∈ {0, 1}), then

ε et′ y =
{

b(ε t′ y′) if e = 1;
∅ otherwise.

We let x ε y = ∅ if {x, y} = {ε}. Finally, if x = y = ε, then ε t ε = ε if t = ε
and ∅ otherwise.

On Language Decompositions and Primality 69

00...0011...1100...0011...11 00...0011...11t

Fig. 1. Illustration of shuffle on trajectories

Alternatively, we can see that if t =
∏n

k=1 0ik1jk for some n ≥ 0 and ik, jk ≥ 0
for all 1 ≤ k ≤ n, then

x t y ={
n∏

k=1

xkyk : x =
n∏

k=1

xk, y =
n∏

k=1

yk,

with |xk| = ik, |yk| = jk for all 1 ≤ k ≤ n}

if |x| = |t|0 and |y| = |t|1. On the other hand, x t y = ∅ if |x| = |t|0 or |y| = |t|1.
This alternative definition of shuffle on trajectories is illustrated graphically in
Figure 1: for each block of 0s in the trajectory the next block from the left
operand (x) is added to the result (w), while if the block contains 1s, the right
operand (y) is used.

To illustrate the concept more concretely, we note that if x = abaac, y = ccab,
t1 = 011001100 and t2 = 010000111 then

x t1 y = accbaabac,

x t2 y = acbaaccab.

We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃
t∈T

x t y.

Further, for L1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

We can see that if T = 0∗1∗, we have that L1 T L2 = L1L2, i.e., T = 0∗1∗

gives the concatenation operation. If T = (0 + 1)∗, then L1 T L2 = L1 L2,

70 M. Domaratzki and K. Salomaa

i.e., T = {0, 1}∗ gives the shuffle operation. See Mateescu et al. [28] for the
fundamental study of shuffle on trajectories.

3.2 Deletion along Trajectories

We now consider deletion on trajectories, which serves as an inverse for shuffle on
trajectories. This inverse is important for solving language equations involving
shuffle on trajectories. The concept of deletion along trajectories was indepen-
dently introduced by Domaratzki [8,9] and Kari and Sośık [24]. Deletion on
trajectories uses trajectories in a similar manner as in shuffle on trajectories.
The trajectories model language operations which delete an occurrence of the
right argument from the left argument in a controlled, scattered way.

Let x, y ∈ Σ∗ be words with x = ax′, y = by′ (a, b ∈ Σ). Let t be a word over
{0, 1} such that t = et′ with e ∈ {0, 1}. Then we define x �t y, the deletion of
y from x along trajectory t, as follows:

x �t y =

⎧⎨⎩
a(x′ �t′ by′) if e = 0;
x′ �t′ y′ if e = 1 and a = b;
∅ otherwise.

Also, if x = ax′ (a ∈ Σ) and t = et′ (e ∈ {0, 1}), then

x �t ε =
{

a(x′ �t′ ε) if e = 0;
∅ otherwise.

If x = ε, then x �ε y = ∅. Further, ε �t y = ε if t = y = ε. Otherwise,
ε �t y = ∅.

Let T ⊆ {0, 1}∗. Then

x �T y =
⋃
t∈T

x �t y.

We extend this to languages as expected: Let L1, L2 ⊆ Σ∗ and T ⊆ {0, 1}∗.
Then

L1 �T L2 =
⋃

x∈L1
y∈L2

x �T y.

For example, if T = 0∗1∗, then �T is the right-quotient operation. If T = 1∗0∗,
then �T is the left-quotient operation, while if T = (0 + 1)∗, then �T is the
scattered deletion operation (see, e.g., Ito et al. [19]).

The main motivation for the introduction of �T is that it serves as an inverse
to T in the sense of Kari [22]. Thus, we note that by using these inverses,
language equations such as, for example,

X T R1 = R2

or
R1 �T X = R2

are solvable if R1, R2 and T are regular languages. We refer the reader to the
survey [10] for pointers to results on one-variable language equations involving
shuffle and deletion along trajectories.

On Language Decompositions and Primality 71

3.3 Language Decomposition Involving Trajectories

We now consider language equations with two variables involving shuffle on
trajectories. In particular, we are interested in the equation

L = X1 T X2.

where L is a constant language and X1, X2 are unknowns. We are interested in
the effect of the complexity of L and T on the decidability of the existence of
solutions to this equation.

For example, if T = 0∗1∗, then we get the equation

L = X1X2 (2)

where L is a fixed language and X1, X2 are unknown. This is the language
equation corresponding to the decomposition problem studied in Section 2.

It is known that if L is a regular language, we can determine if a solution to
(2) exists. Furthermore, as seen in Section 2, we know that if a solution X1, X2
exists, there exists a maximal regular solution; i.e., there exists R1, R2 such that
Xi ⊆ Ri for i = 1, 2 and L = R1R2.

To contrast equation (2), we note that if T = {0, 1}∗, then the equation
obtained is

L = X1 X2. (3)

The problem of, given L, do non-trivial X1 and X2 exist satisfying equation (3) is
an open problem, despite a significant amount of attention. The problem appears
to first have been considered by Mateescu, and was studied by Câmpeanu et
al. [2] and Ito [18].

With the problem (3) in mind, it is clear that no general result, applicable
to all T , is known about the equation L = X1 T X2. It is an open problem
to determine necessary and sufficient conditions on a set of trajectories T such
that it is decidable whether a nontrivial decomposition of an input language L
exists. Here, we recall results which are applicable to a class of trajectories which
ensures decidability [12,9].

Recall that a language L ⊆ Σ∗ is bounded if there exist w1, w2, . . . , wn ∈ Σ∗

such that L ⊆ w∗
1w∗

2 · · ·w∗
n. We further say that L is letter-bounded if we can

choose wi ∈ Σ for all 1 ≤ i ≤ n; that is, if L ⊆ a∗
1a

∗
2 · · ·a∗

n for ai ∈ Σ for
1 ≤ i ≤ n. Thus, for example, the set T = 0∗1∗0∗ is letter-bounded, while
T = (01)∗ is bounded (but not letter-bounded) while it is known that T = (0+1)∗

is not bounded. The following result is due to the authors [12,9].

Theorem 4. Let T ⊆ {0, 1}∗ be a letter-bounded regular set of trajectories.
Then given a regular language R, it is decidable whether there exist X1, X2 such
that X1 T X2 = R.

The main tool for proving Theorem 4 is the following lemma [12]:

Lemma 1. Let T ⊆ {0, 1}∗ be a letter-bounded regular set of trajectories. Then
for all regular languages R, there are only finitely many regular languages L′

72 M. Domaratzki and K. Salomaa

such that L′ = R �T L for some language L. Furthermore, given effective
constructions for T and R, we can effectively construct a finite set S of regular
languages such that if L′ = R �T L for some language L, then L′ ∈ S.

Thus, if we are provided a regular language R and a set of trajectories T , and
wish to determine if there exist X1 and X2 such that R = X1 T X2, Lemma 1
shows that there are only finitely many choices for each X1 and X2. As we have
mentioned, Theorem 4 was known for catenation, T = 0∗1∗. However, it also
holds for, e.g., the following operations: insertion (0∗1∗0∗), k-insertion (0∗1∗0≤k

for fixed k ≥ 0), and bi-catenation (1∗0∗+0∗1∗), which were previously unknown.
We also note that if the equation X1 T X2 = R has a solution, where R

is a regular language and T is a letter-bounded regular set of trajectories, then
the equation also has solution Y1 T Y2 = R where Y1, Y2 are regular languages.
This result is well-known for T = 0∗1∗ (see, e.g., Choffrut and Karhumäki [3]).

We recall that, as mentioned, for T = (0+1)∗, the two-variable decomposition
problem is open [2]:

Open problem 3.1. Given a regular language R, is it decidable whether there
exist X1, X2 (with X1, X2 = {ε}) such that R = X1 X2?

We now turn to another class of trajectories for which we can give positive decid-
ability results about the shuffle decomposition problem. Recall that a language
L is k-thin if |L ∩ Σn| ≤ k for all n ≥ 0. The authors [13] have shown that
if T ⊆ {0, 1}∗ is a 1-thin set of trajectories, given a regular language R, it is
decidable whether there exist X1 and X2 such that R = X1 T X2. However,
even for 2-thin sets of trajectories, the problem remains open [13]:

Open problem 3.2. Given a k-thin (k ≥ 2) set of trajectories T ⊆ {0, 1}∗, is
it decidable, given a regular language R, whether R has a shuffle decomposition
with respect to T?

3.4 Unary Languages

For unary languages, the class of sets of trajectories for which the decomposition
problem is decidable is much enlarged compared to binary alphabets, due to the
fact that sets of trajectories are equivalent with respect to unary languages if and
only if their commutative images are equal [13]. Let Ψ be the Parikh mapping.
We say that two sets of trajectories T1 and T2 are letter-equivalent if and only
if Ψ(T1) = Ψ(T2). The following result [13] shows that letter-equivalence is suf-
ficient to decide the shuffle decomposition problem for unary regular languages:

Theorem 5. Let T1 and T2 be letter-equivalent sets of trajectories. If T1 is
letter-bounded, then given a unary regular language R, it is decidable whether
there exist X1,X2 such that R = X1 T2 X2.

Note that T2 is not required to be regular in this theorem. However, this result
is not enough to characterize the sets of trajectories for which the unary version
of the shuffle decomposition problem is decidable:

On Language Decompositions and Primality 73

Open problem 3.3. Given a regular set of trajectories T ⊆ {0, 1}∗:
(a) can we decide whether T is letter equivalent to a letter-bounded regular set

of trajectories?
(b) if so, can we effectively find such a letter-bounded regular set of trajectories?

3.5 Undecidability of Decomposition Problems

We now turn to undecidability. It has been shown [2] that it is undecidable
whether a context-free language has a nontrivial shuffle decomposition with re-
spect to the set of trajectories {0, 1}∗. This result can be extended for arbitrary
complete regular sets trajectories [12]. (Note that if T is a complete set of tra-
jectories, then any language L has decompositions L T {ε} and {ε} T L. Below
we exclude these trivial decompositions; all other decompositions of L are said
to be nontrivial.)

Theorem 6. Let T be any fixed complete regular set of trajectories. For a given
context-free language L it is undecidable whether or not there exist languages
X1, X2 = {ε} such that L = X1 T X2.

3.6 Open Problems

Without trying to be exhaustive, we note some open problems related to shuffle
decomposition. These problems are in addition to those noted above (in partic-
ular, the shuffle decomposition problem for arbitrary shuffle and for 2-thin sets
of trajectories).

The first open problem arises from a result of the authors [13]:

Theorem 7. There exists a fixed linear context-free set of trajectories T0 such
that it is undecidable whether L = R1 T0 X has a solution X for given regular
languages L, R1 over a given alphabet Σ.

This result is interesting as it provides a rare example of a problem whose inputs
are regular languages, but which is undecidable (another example is given by
Hinz and Dassow [17]). However, the related shuffle decomposition problem is
open:

Open problem 3.4. Is it possible to construct a fixed context-free set of trajec-
tories T such that for a given regular language L it is undecidable whether there
exist languages X1, X2 = {ε} such that L = X1 T X2?

Also open are other forms of language equations more general than we have
considered above. We mention only two here:

Open problem 3.5. Find necessary and sufficient conditions on sets of trajec-
tories T1, T2 so that, given a regular language R, it is decidable whether there
exist nontrivial languages X1, X2, X3 satisfying (X1 T1 X2) T2 X3 = R.

Open problem 3.6. Given regular languages R1, R2, is it decidable whether
there exists nontrivial languages X1, T (with T ⊆ {0, 1}∗) such that X1 T R1 =
R2 or R1 T X1 = R2?

74 M. Domaratzki and K. Salomaa

References

1. Anselmo, M., Restivo, A.: On languages factorizing the free monoid. Internat. J.
Algebra and Computation 6, 413–427 (1996)

2. Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle decompositions of regular lan-
guages. Internat. J. Foundations of Computer Science 13, 799–816 (2002)

3. Choffrut, C., Karhumäki, J.: Fatou properties of rational languages. In: Martin-
Vide, C., Mitrana, V. (eds.) Where Mathematics, Computer Science, Linguistics
and Biology Meet, pp. 227–235 (2000)

4. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca
Raton (1971)

5. Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-time prime decomposition
of regular prefix codes. Internat. J. Foundations of Computer Science 14, 1019–1031
(2003)

6. Daley, M., Domaratzki, M., Salomaa, K.: Orthogonal concatenation: Language
equations and state complexity. J. Universal Comput. Sci. 16, 653–675 (2010)

7. Domaratzki, M.: Semantic shuffle on and deletion along trajectories. In: Calude,
C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 163–174.
Springer, Heidelberg (2004)

8. Domaratzki, M.: Deletion along trajectories. Theoret. Comput. Sci. 320, 293–313
(2004)

9. Domaratzki, M.: Trajectory-Based Operations. PhD thesis, Queen’s University
(2004)

10. Domaratzki, M.: More Words on Trajectories. Formal Language Theory Column,
Bull. Eur. Assoc. Theor. Comp. Sci. 86, 107–145 (2005)

11. Domaratzki, M., Rozenberg, G., Salomaa, K.: Interpreted trajectories. Fundamenta
Informaticae 73, 182–193 (2006)

12. Domaratzki, M., Salomaa, K.: Decidability of trajectory-based equations. Theoret.
Comput. Sci. 345, 304–330 (2005)

13. Domaratzki, M., Salomaa, K.: Restricted sets of trajectories and decidability of
shuffle decompositions. Internat. J. Foundations of Computer Science 16, 897–912
(2005)

14. Frid, A.: Commutation of binary factorial languages. In: Harju, T., Karhumäki, J.,
Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 193–204. Springer, Heidelberg
(2007)

15. Han, Y.-S., Salomaa, A., Salomaa, K., Wood, D., Yu, S.: On the existence of prime
decompositions. Theoret. Comput. Sci. 376, 60–69 (2007)

16. Han, Y.-S., Wang, Y., Wood, D.: Infix-free regular expressions and languages.
Internat. J. Found. Comput. Sci. 17, 379–393 (2006)

17. Hinz, F., Dassow, J.: An undecidability result for regular languages and its appli-
cation to regulated rewriting. Bulletin of the EATCS 38, 168–174 (1989)

18. Ito, M.: Shuffle decomposition of regular languages. J. Universal Comput. Sci. 8,
257–259 (2002)

19. Ito, M., Kari, L., Thierrin, G.: Shuffle and scattered deletion closure of languages.
Theor. Comp. Sci. 245, 115–133 (2000)

20. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22,
1117–1141 (1993)

21. Karhumäki, J., Petre, I.: Two problems on commutation of languages. In: Current
Trends in Theoretical Computer Science– The Challenge of the New Century, vol. 2,
pp. 477–494. World Scientific, Singapore (2004)

On Language Decompositions and Primality 75

22. Kari, L.: On language equations with invertible operations. Theor. Comp. Sci. 132,
129–150 (1994)

23. Kari, L., Konstantinidis, S.: Language equations, maximality and error-detection.
J. Comput. System Sci. 70, 157–178 (2005)

24. Kari, L., Sośık, P.: Aspects of shuffle and deletion on trajectories. Theoret. Comput.
Sci. 332, 47–61 (2005)

25. Kari, L., Thierrin, G.: Maximal and minimal solutions to language equations. J.
Comput. System Sci. 53, 487–496 (1996)

26. Kunc, M.: What do we know about language equations? In: Harju, T., Karhumäki,
J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer, Heidelberg
(2007)

27. Martens, W., Niewerth, M., Schwentick, T.: Schema design for XML repositories:
Complexity and tractability. In: Proceedings of ACM Symposium on Principles of
Database Systems, PODS 2010, June 6–11 (2010)

28. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: Syntactic con-
straints. Theoret. Comput. Sci. 197, 1–56 (1998)

29. Mateescu, A., Salomaa, A., Yu, S.: Factorizations of languages and commutativity
conditions. Acta Cybernetica 15, 339–351 (2002)

30. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential time. In: Symposium on Switching and Au-
tomata Theory, SWAT 1972, pp. 125–129. IEEE Society Press, Los Alamitos (1972)

31. Okhotin, A.: Decision problems for language equations. J. Comput. System Sci. 76,
251–266 (2010)

32. Perrin, D.: Codes conjugués. Inform. and Control 20, 221–231 (1972)
33. Rampersad, N., Ravikumar, B., Santean, N., Shallit, J.: State complexity of unique

rational operations. Theoret. Comput. Sci. 410, 2431–2441 (2009)
34. Rampersad, N., Shallit, J.: Private communication (2006)
35. Salomaa, A., Salomaa, K., Yu, S.: Variants of codes and indecomposable languages.

Information and Computation 207, 1340–1349 (2009)
36. Salomaa, A., Yu, S.: On the decomposition of finite languages. In: Proc. Devel-

opments in Language Theory, DLT 1999, pp. 22–31. World Scientific Publ. Co.,
Singapore (2000)

37. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

38. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

A Unifying Kleene Theorem for Weighted Finite
Automata

Zoltán Ésik1,� and Werner Kuich2,��

1 Dept. of Computer Science, University of Szeged, Hungary
2 Institut für Diskrete Mathematik und Geometrie,

Technische Universität Wien, Austria

Abstract. We state two variants of the Theorem of Kleene-
Schützenberger: one for arbitrary semirings and proper finite automata;
the other for Conway semirings and arbitrary finite automata. Consid-
ering finite automata over partial Conway semirings over an ideal, we
show that these two variants are special cases of a unifying theorem.

1 Introduction

In this paper we develop the theory of weighted finite automata by an alge-
braic treatment using semirings, formal power series and matrices. By the use
of these mathematical constructs, definitions, constructions, and proofs are ob-
tained that are very satisfactory from a mathematical point of view. The use of
these mathematical constructs yields the following advantages:

(i) The constructions needed in the proofs are mainly the usual ones.
(ii) The proofs are separated from the constructions and do not need the intu-

itive contents of the constructions. Often they are shorter than the usual
proofs.

(iii) The results are more general than the usual ones. Depending on the semi-
ring used, the results are valid for classical finite automata, finite automata
with ambiguity considerations, probabilistic finite automata, etc.

The reader is assumed to have some basic knowledge of finite automata (see
Maurer [15], Hopcroft, Ullman [10], Salomaa [16]).

The paper consists of this and three more sections.
In Section 2 we introduce the algebraic structures needed: partial Conway

semirings over an ideal, and power series and matrices over these semirings.
Finite automata are introduced in Section 3. Starting with the classical nonde-

terministic finite automaton and Kleene’s Theorem we generalize to (weighted)

� Partially supported by the TÁMOP-4.2.1/B-09/1/KONV-2010-0005 program of Na-
tional Development Agency of Hungary, the Austrian-Hungarian Action Foundation,
grant 77öu9, and the National Foundation of Hungary for Scientific Research, grant
no. K 75249.

�� Partially supported by the Austrian-Hungarian Action Foundation, grant 77öu9.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 76–89, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Unifying Kleene Theorem for Weighted Finite Automata 77

finite automata over a semiring with two variants of the Theorem of Kleene-
Schützenberger.

In the last section, we generalize again and prove a Kleene type theorem
unifying these two variants of the Theorem of Kleene-Schützenberger.

2 Preliminaries

By a semiring we mean a set S together with two binary operations + and · and
two constant elements 0 and 1 such that

(i) 〈S, +, 0〉 is a commutative monoid,
(ii) 〈S, ·, 1〉 is a monoid,
(iii) the distributivity laws s1 · (s2 + s3) = s1 · s2 + s1 · s3 and (s1 + s2) · s3 =

s1 · s3 + s2 · s3 hold for every s1, s2, s3 ∈ S,
(iv) 0 · s = s · 0 = 0 for every s ∈ S.

If the operations and the constant elements of S are understood then we denote
the semiring simply by S. Otherwise, we use the notation 〈S, +, ·, 0, 1〉. In the
sequel, S will denote a semiring.

Intuitively, a semiring is a ring (with unity) without subtraction. A typical
example is the semiring of nonnegative integers N. A very important semiring
in connection with language theory is the Boolean semiring B = {0, 1} where
1+1 = 1 ·1 = 1. Clearly, all rings (with unity), as well as all fields, are semirings,
e. g., integers Z, rationals Q, reals R, complex numbers C etc.

Let N∞ = N ∪ {∞}. Then 〈N∞, +, ·, 0, 1〉 and 〈N∞, min, +,∞, 0〉, where +, ·
and min are defined in the obvious fashion (observe that 0 · ∞ = ∞· 0 = 0), are
semirings.

Let R+ = {a ∈ R | a ≥ 0} and R∞
+ = R+ ∪ {∞}. Then 〈R+, +, ·, 0, 1〉,

〈R∞
+ , +, ·, 0, 1〉 and 〈R∞

+ , min, +,∞, 0〉 are all semirings. Moreover, the semirings
〈N∞

+ , min, +,∞, 0〉, 〈R∞
+ , min, +,∞, 0〉 are called tropical semirings. A further

example is provided by the semiring 〈[0, 1], max, ·, 0, 1〉, where max has its usual
meaning.

Let Σ be a finite alphabet and denote by Σ∗ the free monoid of all words over
Σ including the empty word ε. Then each subset of Σ∗ is called formal language
over Σ. We define, for formal languages L1, L2 ⊆ Σ∗, the product of L1 and L2
by

L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.
Then 〈2Σ∗

,∪, ·, ∅, {ε}〉 is a semiring, called the semiring of formal languages over
Σ. Here 2U denotes the power set of the set U and ∅ denotes the empty set.

If U is a set, 2U×U is the set of binary relations over U . Define, for two relations
R1 and R2, the product R1 ·R2 ⊆ U × U by

R1 ·R2 = {(u1, u2) |
(u1, u) ∈ R1 and (u, u2) ∈ R2}
there exists an u ∈ U such that

and, furthermore, define
Δ = {(u, u) | u ∈ U}.

78 Z. Ésik and W. Kuich

Then 〈2U×U ,∪, ·, ∅, Δ〉 is a semiring, called the semiring of binary relations over
U .

We will call a star semiring any semiring equipped with an additional unary
operation ∗.

A semiring (S, +, ·, 0, 1) is called complete if it has sums for all families (si |
i ∈ I) of elements of S, where I is an arbitrary index set, such that the following
conditions are satisfied:

(i)
∑

i∈∅ si = 0,
∑

i∈{j} si = sj ,
∑

i∈{j,k} si = sj + sk, for j = k,
(ii)

∑
j∈J (

∑
i∈Ij

si) =
∑

i∈I si, if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j = j′,

(iii)
∑

i∈I(s · si) = s ·
(∑

i∈I si

)
,
∑

i∈I(si · s) =
(∑

i∈I si

)
· s.

This means that a semiring S is complete if it is possible to define “infinite
sums” (i) that are an extension of the finite sums, (ii) that are associative and
commutative and (iii) that satisfy the distributivity laws (see Bloom, Ésik [2],
Conway [4], Eilenberg [6], Kuich [13]).

Recall that in formal language theory, the Kleene-iteration L∗ of a language
L ⊆ Σ∗ is defined by L∗ =

⋃
n≥0 Ln. Analogously, in complete semirings for

each element s we can define the star s∗ of s by

s∗ =
∑
j≥0

sj ,

where s0 = 1 and sj+1 = s · sj = sj · s for j ≥ 0. Hence, with this star operation,
each complete semiring is a star semiring called a complete star semiring.

The following semirings are complete star semirings:

(i) The Boolean semiring 〈B, +, ·, ∗, 0, 1〉 with 0∗ = 1∗ = 1.
(ii) The semiring 〈N∞, +, ·, ∗, 0, 1〉 with 0∗ = 1 and a∗ = ∞ for a = 0.
(iii) The semiring 〈R∞

+ , +, ·, ∗, 0, 1〉 with a∗ = 1/(1 − a) for 0 ≤ a < 1 and
a∗ = ∞ for a ≥ 1.

(iv) The tropical semirings 〈R∞
+ , min, +, ∗,∞, 0〉 and 〈N∞, min, +, ∗,∞, 0〉 with

a∗ = 0 for all a ∈ R∞
+ resp. all a ∈ N∞.

(v) The semiring 〈2Σ∗
,∪, ·, ∗, ∅, {ε}〉 of formal languages over a finite alphabet

Σ with L∗ =
⋃

n≥0 Ln for all L ⊆ Σ∗.
(vi) The semiring 〈2U×U ,∪, ·, ∗, ∅, Δ〉 of binary relations over U with star op-

eration defined by R∗ =
⋃

n≥0 Rn for all R ⊆ U × U . The relation R∗ is
called the reflexive and transitive closure of R, i. e., the smallest reflexive
and transitive binary relation over U containing R.

We now define formal power series (see Kuich, Salomaa [14]). Let Σ be a (finite)
alphabet. Mappings r from Σ∗ into S are called (formal) power series. The
values of r are denoted by (r, w), where w ∈ Σ∗, and r itself is written as a
formal sum

r =
∑

w∈Σ∗
(r, w)w.

A Unifying Kleene Theorem for Weighted Finite Automata 79

The values (r, w) are also referred to as the coefficients of the series. The collec-
tion of all power series r as defined above is denoted by S〈〈Σ∗〉〉.

Given r ∈ S〈〈Σ∗〉〉, the subset of Σ∗ defined by

{w | (r, w) = 0}

is termed the support of r and denoted by supp(r). The subset of S〈〈Σ∗〉〉 con-
sisting of all series with a finite support is denoted by S〈Σ∗〉. Series of S〈Σ∗〉
are referred to as polynomials.

Examples of polynomials belonging to S〈Σ∗〉 for every S are 0, w, sw, s ∈ S,
w ∈ Σ∗, defined by:

(0, w) = 0 for all w,
(w, w) = 1 and (w, w′) = 0 for w = w′,
(sw, w) = s and (sw, w′) = 0 for w = w′.

Note that w equals 1w.
We introduce two operations inducing a semiring structure to power series.

For r1, r2 ∈ S〈〈Σ∗〉〉, we define the sum r1 + r2 ∈ S〈〈Σ∗〉〉 by (r1 + r2, w) =
(r1, w) + (r2, w) for all w ∈ Σ∗. For r1, r2 ∈ S〈〈Σ∗〉〉, we define the (Cauchy)
product r1r2 ∈ S〈〈Σ∗〉〉 by (r1r2, w) =

∑
w1w2=w(r1, w1)(r2, w2) for all w ∈ Σ∗.

Clearly, 〈S〈〈Σ∗〉〉, +, ·, 0, ε〉 and 〈S〈Σ∗〉, +, ·, 0, ε〉 are semirings.
For s ∈ S, r ∈ S〈〈Σ∗〉〉, we define the scalar products sr, rs ∈ S〈〈Σ∗〉〉 by

(sr, w) = s(r, w) and (rs, w) = (r, w)s for all w ∈ Σ∗. Observe that sr = (sε)r
and rs = r(sε).

A series r ∈ S〈〈Σ∗〉〉, where every coefficient equals 0 or 1, is termed the
characteristic series of its support L, in symbols, r = char(L).

It will be convenient to use the notations S〈Σ ∪ {ε}〉, S〈Σ〉 and S〈{ε}〉 for
the collection of polynomials having their supports in Σ ∪ {ε}, Σ and {ε}, re-
spectively.

Let ri ∈ S〈〈Σ∗〉〉, i ∈ I, where I is an arbitrary index set. Then, for w ∈ Σ∗

let Iw = {i | (ri, w) = 0}. Assume now that for all w ∈ Σ∗, Iw is finite. Then
we call the family of power series {ri | i ∈ I} locally finite. In this case we can
define the sum

∑
i∈I ri by

(
∑
i∈I

ri, w) =
∑
i∈Iw

(ri, w)

for all w ∈ Σ∗.
A power series r ∈ S〈〈Σ∗〉〉 is called proper if (r, ε) = 0. The star r∗ of a

proper power series r ∈ S〈〈Σ∗〉〉 is defined by

r∗ =
∑
n≥0

rn .

Since r is proper we infer (rn, w) = 0 for each n > |w|. Hence, {rn | n ≥ 0} is
locally finite, (r∗, w) =

∑
0≤n≤|w|(r

n, w), and the star of a proper power series
is well-defined.

80 Z. Ésik and W. Kuich

We now introduce matrices. Let m, n ≥ 1. Mappings A from {1, . . . , m} ×
{1, . . . , n} into a semiring S are called matrices over S. The values of A are
denoted by Aij , where 1 ≤ i ≤ m, 1 ≤ j ≤ n. The values Aij are also referred
to as the entries of the matrix A. In particular, Aij is called the (i, j)-entry of
A. The collection of all matrices as defined above is denoted by Sm×n. If m = 1
or n = 1 then A is called row or column vector, respecively.

We introduce some operations and special matrices inducing a monoid or
semiring structure to matrices. For A1, A2 ∈ Sm×n we define the sum A1 +
A2 ∈ Sm×n by (A1 + A2)ij = (A1)ij + (A2)ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Furthermore, we introduce the zero matrix 0 ∈ Sm×n. All entries of the zero
matrix 0 are 0. By these definitions, 〈Sm×n, +, 0〉 is a commutative monoid.

For A1 ∈ Sm×n and A2 ∈ Sn×p we define the product A1A2 ∈ Sm×p by

(A1A2)i1i3
=
∑

1≤i2≤n

(A1)i1i2
(A2)i2i3

for all 1 ≤ i1 ≤ m, 1 ≤ i3 ≤ p.

Furthermore, we introduce the matrix of unity E ∈ Sn×n. The diagonal entries
Eii of E are equal to 1, the off-diagonal entries Ei1i2 , i1 = i2, of E are equal to
0, 1 ≤ i, i1, i2 ≤ n.

It is easily shown that matrix multiplication is associative, the distributivity
laws are valid for matrix addition and multiplication, E is a multiplicative unit
and 0 is a multiplicative zero. So we infer that 〈Sn×n, +, ·, 0, E〉 is a semiring for
each n ≥ 1.

Suppose that S is a semiring and I is an ideal of S, so that 0 ∈ I, I + I ⊆ I
and IS ∪ SI ⊆ I. Observe that I = S iff 1 ∈ I. A partial star semiring S over
the ideal I is a semiring S equipped with a star operation ∗ : I → S.

If S is a partial star semiring over the ideal I, we define, for r ∈ S〈〈Σ∗〉〉 with
(r, ε) ∈ I, the star r∗ ∈ S〈〈Σ∗〉〉 of r inductively as follows:

(r∗, ε) = (r, ε)∗, (r∗, w) = (r, ε)∗
∑

uv=w, u�=ε

(r, u)(r∗, v), w ∈ Σ∗, w = ε .

(See Theorem 3.5 of Kuich, Salomaa [14] and Bloom, Ésik [2].) If 〈S, +, ·, ∗, 0, 1〉 is
a star semiring then the star operation in the star semiring 〈S〈〈Σ∗〉〉, +, ·, ∗, 0, ε〉
will be always defined as above.

Let S be a partial star semiring over the ideal I. Then for A ∈ In×n we define
A∗ ∈ Sn×n inductively as follows:

(i) For n = 1 and A = (a), a ∈ I, we define A∗ = (a∗).

(ii) For n > 1 we partition A into blocks A =
(

a b
c d

)
with a ∈ I1×1, b ∈

I1×(n−1), c ∈ I(n−1)×1, d ∈ I(n−1)×(n−1), and define A∗ =
(

α β
γ δ

)
with

α ∈ S1×1, β ∈ S1×(n−1), γ ∈ S(n−1)×1, δ ∈ S(n−1)×(n−1), by

α = (a + bd∗c)∗, β = αbd∗, γ = δca∗, δ = (d + ca∗b)∗ .

A Unifying Kleene Theorem for Weighted Finite Automata 81

(See Theorem 3.3 of Conway [4], Theorem 4.21 of Kuich, Salomaa [14], Bloom,
Ésik [2] and Theorem 2.5 of Kuich [13].) If 〈S, +, ·, ∗, 0, 1〉 is a star semiring then
the star operation in the star semiring 〈Sn×n, +, ·, ∗, 0, E〉 will always be defined
as above.

In Bloom, Ésik, Kuich [3], a partial Conway semiring S over the ideal I is
defined as a partial star semiring S over I satisfying the following two axioms:

1. Sum star identity:
(a + b)∗ = a∗(ba∗)∗

for all a, b ∈ I.
2. Product star identity:

(ab)∗ = 1 + a(ba)∗b

for all a, b ∈ S such that a ∈ I or b ∈ I.

A Conway semiring is a partial Conway semiring S which is a star semiring (i.e.,
I = S).

When a ∈ I we will denote aa∗ = a∗a by a+ and call + the plus operation.

Example. Let S be a semiring and Σ be an alphabet. Clearly, the collection of
proper power series of S〈〈Σ∗〉〉 forms an ideal I = {r ∈ S〈〈Σ∗〉〉 | (r, ε) = 0}.
Moreover, S〈〈Σ∗〉〉 is a partial star semiring over I that is also a partial Conway
semiring over I (see Droste, Kuich [5]).

It is known (Conway [4], Bloom, Ésik [2], Ésik, Kuich [8]) that when S is
a Conway semiring then S〈〈Σ∗〉〉, Σ an alphabet, and Sn×n, n ≥ 1, are again
Conway semirings. More generally, but with the same proofs, we have:

Theorem 1. Suppose that S is a partial Conway semiring over the ideal I.
Then

(i) S〈〈Σ∗〉〉, Σ an alphabet, is a partial Conway semiring over the ideal {r ∈
S〈〈Σ∗〉〉 | (r, ε) ∈ I};

(ii) Sn×n, n ≥ 1, is a partial Conway semiring over the ideal In×n. Moreover,
the matrix star identity holds in Sn×n:(

a b
c d

)∗
=
(

α β
γ δ

)
for all possible decompositions of a sqare matrix in In×n into a, b, c, d. Here
α, β, γ, δ are as in the definition of the star of a matrix.

For later use, we state the following theorem.

Theorem 2. Suppose that S is a partial Conway semiring over the ideal I. If

A =
(

a b
c d

)
∈ In×n

then

A+ =
(

(a + bd∗c)+ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)+

)
∈ In×n.

82 Z. Ésik and W. Kuich

If 〈S, +, ·, 0, 1〉 is a complete semiring, then so are 〈S〈〈Σ∗〉〉, +, ·, 0, ε〉 and
〈Sn×n, +, ·, 0, E〉 by the following definitions:
If ri ∈ S〈〈Σ∗〉〉 for i ∈ J , then

∑
i∈J ri =

∑
w∈Σ∗

(∑
i∈J (ri, w)

)
w;

if Ai ∈ Sn×n for i ∈ J , then
(∑

i∈J Ai

)
kj

=
∑

i∈J (Ai)kj for 1 ≤ k, j ≤ n.

Here J is an arbitrary index set. Moreover, each complete star semiring is a
Conway semiring (see Conway [4], Bloom, Ésik [2], Kuich [12], Hebisch [9]) and
the star operation in the complete semirings S〈〈Σ∗〉〉 and Sn×n is the same as the
star operation in the Conway semirings S〈〈Σ∗〉〉 and Sn×n, respectively. Hence,
the semirings (i)–(vi) are all Conway semirings.

3 Finite Automata

Usually, a nondeterministic finite automaton without ε-moves is defined as fol-
lows (see Maurer [15], Hopcroft, Ullman [10]). A nondeterministic finite auto-
maton (in the classical sense)

A = (Q, Σ, δ, q1, F)

is given by

(i) a finite nonempty set of states Q,
(ii) an input alphabet Σ,
(iii) a transition function δ : Q×Σ → 2Q,
(iv) an initial state q1 ∈ Q,
(v) a set of final states F ⊆ Q.

The transition function δ is extended to a mapping δ̂ : Q×Σ∗ → 2Q by

δ̂(q, ε) = {q}, δ̂(q, wx) = {p | p ∈ δ(r, x) for some r ∈ δ̂(q, w)} ,

for q ∈ Q, w ∈ Σ∗ and x ∈ Σ.
A word w ∈ Σ∗ is accepted by A if δ̂(q1, w)∩F = ∅. The language |A| accepted

by A, is defined by

|A| = {w ∈ Σ∗ | δ̂(q1, w) ∩ F = ∅} .

Kleene [11] introduced regular expressions to characterize the languages accepted
by finite automata (see also Salomaa [16]). Assume that Σ and U = {∪, ∗, ∅, [,]}
are disjoint alphabets. A word E over Σ ∪ U is a regular expression over Σ if

(i) E is the symbol ∅,
(ii) E is a symbol of Σ, or else
(iii) E is of one of the forms [E1 ∪ E2], [E1E2], or E∗

1 , where E1 and E2 are
regular expressions over Σ.

Each regular expression E over Σ denotes a language |E| over Σ according to
the following conventions:

A Unifying Kleene Theorem for Weighted Finite Automata 83

(i) The language denoted by ∅ is the empty language.
(ii) The language denoted by a ∈ Σ consists of the word a.
(iii) For regular expressions E1 and E2 over Σ, |[E1 ∪ E2]| = |E1| ∪ |E2|,

|[E1E2]| = |E1||E2|, |E∗
1 | = |E1|∗.

Theorem 3. (Kleene’s Theorem [11]) Let Σ be an alphabet and let L be a formal
language over Σ. Then the following statements are equivalent:

(i) L is accepted by a nondeterministic finite automaton with input alphabet Σ;
(ii) L is denoted by a regular expression over Σ.

Observe that a language over Σ is denoted by a regular expression over Σ iff it
is an element of the sub-star semiring of 2Σ∗

generated by the sets {a}, a ∈ Σ.
Hence, we can reformulate Theorem 3 to

Corollary 1. Let Σ be an alphabet and let L be a formal language over Σ. Then
the following statements are equivalent:

(i) L is accepted by a nondeterministic finite automaton with input alphabet Σ;
(ii) L is an element of the sub-star semiring of 2Σ∗

generated by the singleton
sets corresponding to the elements of Σ.

It is this formulation of Kleene’s Theorem which we will generalize. In a first
step we define finite automata over a semiring S and an alphabet Σ.

A finite automaton (of dimension n ≥ 0 over the semiring S and the alphabet
Σ)

A = (α, A, β)

is given by

(i) an initial vector α ∈ (S〈{ε}〉)1×n,
(ii) a transition matrix A ∈ (S〈Σ ∪ {ε}〉)n×n,
(iii) a final vector β ∈ (S〈{ε}〉)n×1.

It is called proper if A ∈ (S〈Σ〉)n×n. If S is a star semiring or A is proper then
A∗ is defined and the behavior of A is

|A| =
∑

1≤i,j≤n

αi(A∗)ijβj = αA∗β .

The (directed) graph of a proper finite automaton A = (α, A, β) of dimension n
is constructed in the usual manner. It has nodes 1, . . . , n and an edge from node
i to node j if Aij = 0. The weight of this edge is Aij ∈ S〈Σ〉. The initial (resp.
final) weight of a node i is given by αi (resp. βi). A node is called initial (resp.
final) if its initial (resp. final) weight is unequal to 0. The weight of a path is
the product of the weigths of its edges. It is easily shown that (Ak)ij is the sum
of the weights of paths of length k from node i to node j. When S is complete,
since (A∗)ij =

∑
k≥0(A

k)ij , (A∗)ij is the sum of the weights of the paths from
node i to node j. Hence, αi(A∗)ijβj is this sum for nodes i and j, multiplied on
the left and right by the initial weight of node i and the final weight of node

84 Z. Ésik and W. Kuich

j, respectively. Eventually, the behavior of A is the sum of all these terms with
summation over all initial states i and all final states j.

Assume that A = (α, A, β) is a proper finite automaton of dimension n over
the semiring 2Σ∗

and the alphabet Σ and A = (Q, Σ, δ, q1, F) is a nondetermin-
istic finite automaton. Then A and A correspond to each other if the following
conditions are satisfied:

(i) |Q| = n; so we may assume Q = {q1, . . . , qn}, where i corresponds to qi,
1 ≤ i ≤ n.

(ii) a ∈ Aij ⇔ qj ∈ δ(qi, a), 1 ≤ i, j ≤ n, a ∈ Σ.
(iii) α1 = {ε}, αi = ∅, 2 ≤ i ≤ n.
(iv) βi = {ε} ⇔ qi ∈ F , βi = ∅ ⇔ qi /∈ F .

It is easily seen that |A| = |A| if A and A correspond to each other. This is due
to the fact that

w ∈ (Ak)ij ⇔ qj ∈ δ̂(qi, w), 1 ≤ i, j ≤ n, k ≥ 0, w ∈ Σ∗, |w| = k ,

and
w ∈ (A∗)ij ⇔ qj ∈ δ̂(qi, w), 1 ≤ i, j ≤ n, w ∈ Σ∗ .

(In the complete star semiring (2Σ∗
)n×n we have A∗ =

⋃
k≥0 Ak.) Hence,

|A| = αA∗β =
⋃

1≤i,j≤n αi(A∗)ijβj =
⋃

qj∈F (A∗)1j =⋃
qj∈F {w | qj ∈ δ̂(q1, w)} = {w | δ̂(q1, w) ∩ F = ∅} = |A| .

This shows that finite automata over a semiring S and an alphabet Σ are really
generalizing nondeterministic finite automata with input alphabet Σ.

Kleene’s Theorem, Theorem 3, can be generalized in two variants to the The-
orem of Kleene-Schützenberger (See Schützenberger [18], and Conway [4], Eilen-
berg [6], Salomaa, Soittola [17], Kuich, Salomaa [14], Bloom, Ésik [2], Kuich [13],
Berstel, Reutenauer [1], Ésik, Kuich [7]). The first variant considers proper finite
automata over arbitrary semirings, the second variant arbitrary finite automata
over Conway semirings.

Theorem 4. Let S be a semiring, Σ be an alphabet and r be a power series in
S〈〈Σ∗〉〉. Then the following two statements are equivalent.

(i) r is the behavior of a proper finite automaton over S and Σ;
(ii) r can be obtained from S〈{ε}〉∪Σ by finitely many applications of the oper-

ations sum, product and star, where the star is applied only to proper power
series.

Theorem 5. Let S be a Conway semiring, Σ be an alphabet and r be a power
series in S〈〈Σ∗〉〉. Then the following two statements are equivalent.

(i) r is the behavior of a finite automaton over S and Σ;
(ii) r can be obtained from S〈{ε}〉∪Σ by finitely many applications of the oper-

ations sum, product and star.

A Unifying Kleene Theorem for Weighted Finite Automata 85

As before, Theorem 5 can be reformulated to

Corollary 2. Let S be a Conway semiring, Σ be an alphabet and r be a power
series in S〈〈Σ∗〉〉. Then the following two statements are equivalent.

(i) r is the behavior of a finite automaton over S and Σ;
(ii) r is an element of the sub-star semiring of S〈〈Σ∗〉〉 generated by S〈{ε}〉∪Σ.

The next theorem shows that, in case S is a Conway semiring, the sets of power
series characterized by Theorems 4 and 5 coincide.

Theorem 6. Let S be a Conway semiring and Σ be an alphabet. Then for each
finite automaton A over S and Σ a proper finite automaton A′ over S and Σ
can be constructed such that |A| = |A′|.

Proof. Let A = (α, A, β) be of dimension n with A0 = (A, ε)ε and A1 =∑
a∈Σ(A, a)a. Then we construct A′ = (α′, A′, β′) of dimension n by α′ = α,

A′ = A∗
0A1, β′ = A∗

0β and obtain

|A′| = α(A∗
0A1)∗A∗

0β = α(A0 + A1)∗β = αA∗β = |A| .

The power series characterized by Theorem 4 are called rational power series.
This set of rational power series is usually denoted by Srat〈〈Σ∗〉〉.

4 A Unifying Kleene Theorem

In this section we establish a Kleene theorem for partial Conway semirings. To
this end, we define a general notion of (finite) automaton in partial Conway
semirings (see Bloom, Ésik, Kuich [3]).

Throughout this section, S denotes a partial Conway semiring over an ideal
I of S, S0 a subsemiring of S and Σ a subset of I.

Suppose that S is a partial Conway semiring over I, S0 is a subsemiring of
S and Σ is a subset of I. An automaton over (S0, Σ) is a triplet A = (α, A, β)
consisting of an initial vector α ∈ S1×n

0 , a transition matrix A ∈ (S0〈Σ〉)n×n,
where S0〈Σ〉 is the set of all finite sums of terms sa, s ∈ S0, a ∈ Σ, and a final
vector β ∈ Sn×1

0 . The integer n is called the dimension of A. The behavior of A
is |A| = αA∗β. (Since A ∈ In×n, A∗ exists.)

We say that s ∈ S is recognizable over (S0, Σ) if s is the behavior of some
automaton over (S0, Σ). We let RecS,I(S0, Σ) denote the set of all elements of
S which are recognizable over (S0, Σ).

Next we define rational elements. Suppose that S is a partial Conway semiring
over I, S0 is a subsemiring of S and Σ is a subset of I. The set of rational elements
over (S0, I), RatS,I(S0, Σ), is the least set containing S0 ∪ Σ and closed under
the rational operations +, ·, ∗, where ∗ is only applied to elements of I.

In the proof of our Kleene theorem, we will make use of the following fact.

Lemma 1. Suppose that each entry of the n×n matrix A is in RatS,I(S0, Σ)∩I.
Then the same holds for the matrix A+.

86 Z. Ésik and W. Kuich

Proof. We prove this fact by induction on n. When n = 1, our claim is clear.

Assuming that n > 1 write A =
(

a b
c d

)
, where a is 1× 1, d is (n− 1)× (n− 1).

Then A+ is given by Theorem 2. We only show that each entry of the submatrix
(a+bd∗c)+ is in RatS,I(S0, Σ)∩I. But a+bd∗c = a+bc+bd+c. By the induction
hypothesis, each entry of d+ is in RatS,I(S0, Σ) ∩ I. Since RatS,I(S0, Σ) is
closed under sum and product, and since each entry of a, b or c is also in this
set, it follows that each entry of a + bd∗c is in RatS,I(S0, Σ) ∩ I. Thus, using
the induction hypothesis again, it follows that each entry of (a + bd∗c)+ is in
RatS,I(S0, Σ) ∩ I.

Theorem 7. Suppose that S is a partial Conway semiring over I, S0 is a sub-
semiring of S and Σ is a subset of I. Then RecS,I(S0, Σ) ⊆ RatS,I(S0, Σ).

Proof. Let A = (α, A, β) be an automaton over (S0, Σ). Then |A| = αA∗β =
αβ + αA+β. Clearly, αβ ∈ S0. By the previous lemma, A+ ∈ RatS,I(S0, Σ).
Since S0 ⊆ RatS,I(S0, Σ) and since RatS,I(S0, Σ) is closed under sum and
product, it follows that αA∗β is in RatS,I(S0, Σ).

We now prove a certain converse of the previous proposition.

Theorem 8. Suppose that S is a partial Conway semiring over I, S0 is a sub-
semiring of S and Σ is a subset of I. Moreover, assume that

(i) 1 ∈ I, or
(ii) if s + a ∈ I, for s ∈ S0, a ∈ I, then s = 0.

Then RatS,I(S0, Σ) ⊆ RecS,I(S0, Σ).

Proof. Suppose that s ∈ RatS,I(S0, Σ). We have to show that there is an auto-
maton A over (S0, Σ) whose behavior is s. In case of assumption (i) we show
additionally: This automaton A over (S0, Σ) has the property that the product
of the initial and final vector of A is 0.

Assume that s = a for some a ∈ Σ. Then define the following automaton Aa

of dimension 2:

Aa =
((

1 0
)
,

(
0 a
0 0

)
,

(
0
1

))
.

We have

|Aa| =
(
1 0
)(1 a

0 1

)(
0
1

)
= a.

Next, let s ∈ S0. Then in case of assumption (i) define the following automaton
As of dimension 2:

As =
((

s 0
)
,

(
0 1
0 0

)
,

(
0
1

))
We have

|As| =
(
s 0
)(1 1

0 1

)(
0
1

)
= s .

A Unifying Kleene Theorem for Weighted Finite Automata 87

In case of assumption (ii) define the following automaton As of dimension 1:

As = (s, 0, 1)

We have
|As| = s · 0∗ · 1 = s .

In the induction step there are three cases to consider. Suppose that s = s1 + s2
or s = s1s2 such that there exist automata Ai = (αi, Ai, βi) over (S0, Σ) with
|Ai| = si, satisfying in case of assumption (i) αiβi = 0, i = 1, 2. We construct
automata A1 + A2, A1 ·A2 defining s1 + s2 and s1s2, respectively. Let

A1 + A2 =
((

α1 α2
)
,

(
A1 0
0 A2

)
,

(
β1
β2

))
and

A1 ·A2 =
((

α1 0
)
,

(
A1 β1α2A2
0 A2

)
,

(
β1α2β2

β2

))
.

Then

|A1 + A2| =
(
α1 α2

)(A∗
1 0

0 A∗
2

)(
β1
β2

)
= α1A

∗
1β1 + α2A

∗
2β2

= |A1|+ |A2|,

and

|A1 ·A2| =
(
α1 0

)(A∗
1 A∗

1β1α2A
+
2

0 A∗
2

)(
β1α2β2

β2

)
= α1A

∗
1β1α2β2 + α1A

∗
1β1α2A

+
2 β2

= α1A
∗
1β1α2A

∗
2β2

= |A1| · |A2|.

Also, in case of assumption (i)(
α1 α2

) (
β1 β2

)T = α1β1 + α2β2 = 0

and (
α1 0

) (
β1α2β2 β2

)T = α1β1α2β2 = 0.

Next, we show that when s = r+ for some r ∈ I which is the behavior of
an automaton A = (α, A, β) over (S0, Σ), satisfying in case of assumption (i)
αβ = 0, then s is the behavior of an automaton A+. Since

r = |A| = αA∗β = αβ + αA+β ∈ I ,

we infer for both assumptions |A| = αA+β. Now let

A+ = (α, A + βαA, β).

88 Z. Ésik and W. Kuich

By (A + βαA)∗ = A∗(βαA+)∗, we have

|A+| = αA∗(βαA+)∗β = αA+β(αA+β)∗ = (αA+β)+ = |A|+ = s.

Moreover, we have that αβ = 0 in case of assumption (i).
Finally, when s = r∗ and |A| = r, then |A+ + A1| = r∗ = s.

Remark. Note that the assumption (ii) in the above theorem holds whenever
each t ∈ S has at most one representation t = s + a with s ∈ S0 and a ∈ I. This
happens when S is the direct sum of S0 and I.

We have proved:

Theorem 9. Suppose that S is a partial Conway semiring over I, S0 is a sub-
semiring of S and Σ is a subset of I. Moreover, assume that

(i) 1 ∈ I, or
(ii) s + a ∈ I, s ∈ S0, a ∈ I, implies s = 0.

Then RatS,I(S0, Σ) = RecS,I(S0, Σ).

If the basic semiring is S〈〈Σ∗〉〉 and S0 = S〈{ε}〉, our Theorem 9 unifies Theo-
rems 4 and 5.

If S is a Conway semiring, choose assumption (i): S〈〈Σ∗〉〉 is again a Conway
semiring, I = S〈〈Σ∗〉〉 and ε ∈ I.

If S is an arbitrary semiring and the finite automata are proper, choose as-
sumption (ii): I is now the set of proper power series; and sε + r ∈ I, s ∈ S,
r ∈ I implies s = 0.

References

1. Berstel, J., Reutenauer, C.: Les séries rationelles et leurs langages. Masson (1984);
English translation: Rational Series and Their Languages. EATCS Monographs on
Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)

2. Bloom, S.L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1993)

3. Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration semirings. Fund.
Inform. 86, 19–40 (2008)

4. Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall, Boca Raton
(1971)

5. Droste, M., Kuich, W.: Semirings and formal power series. In: Droste, M., Kuich,
W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs on
Theoretical Computer Science, pp. 3–28. Springer, Heidelberg (2009)

6. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London
(1974)

7. Ésik, Z., Kuich, W.: Inductive ∗-semirings. Theoretical Computer Science 324, 3–33
(2004)

8. Ésik, Z., Kuich, W.: Modern Automata Theory,
http://www.dmg.tuwien.ac.at/kuich

9. Hebisch, U.: The Kleene theorem in countably complete semirings. Bayreuther
Mathematische Schriften 31, 55–66 (1990)

http://www.dmg.tuwien.ac.at/kuich

A Unifying Kleene Theorem for Weighted Finite Automata 89

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

11. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

12. Kuich, W.: The Kleene and the Parikh theorem in complete semirings. In:
Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 212–225. Springer, Heidelberg
(1987)

13. Kuich, W.: Semirings and formal power series: Their relevance to formal languages
and automata theory. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, ch. 9, vol. 1, pp. 609–677. Springer, Heidelberg (1997)

14. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, vol. 5. Springer, Heidelberg (1986)

15. Maurer, H.: Theoretische Grundlagen der Programmiersprachen. B.I. Wis-
senschaftsverlag (1969)

16. Salomaa, A.: Formal Languages. Academic Press, London (1973)
17. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.

Springer, Heidelberg (1978)
18. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4,

245–270 (1961)

Local Squares, Periodicity and
Finite Automata�

Mari Huova, Juhani Karhumäki, Aleksi Saarela, and Kalle Saari

Department of Mathematics and Turku Centre for Computer Science TUCS
University of Turku, FI-20014 Turku, Finland
{mahuov,karhumak,amsaar,kasaar}@utu.fi

Abstract. We consider the general problem when local regularity im-
plies the global one in the setting where local regularity means the exis-
tence of a square of certain length in every position of an infinite word.
The square can occur as centered or to the left or to the right from each
position. In each case there are three variants of the problem depending
on whether the square is that of words, that of abelian words or, as an in
between case, that of so called k-abelian words. The above nine variants
of the problem are completely solved, and some open problems are ad-
dressed in the k-abelian case. Finally, an amazing unavoidability result
for 2-abelian squares is obtained.

1 Introduction

Questions when local properties imply global ones are of fundamental importance
in many area of mathematics. Among the most well known problems of this type
is Burnside Problem [3]. It asks whether a finitely generated group, where each
of its subgroups generated by a single element is finite, is necessarily finite as
well. A remarkable paper of Adian and Novikov [1] shows that the answer to this
question is “no” – that is we do not have the above desired implication. In the
case of free semigroups the situation is the same, only the proof is much simpler
application of avoidability properties of words, see [14] or [11].

Positive results of the above nature are recently discovered and studied in
connection with infinite words. Here the local regularity is described, e.g., as a
property that the word contains a certain repetition everywhere, and the global
one as the requirement that the word is (ultimately) periodic. A remarkable re-
sult here is the characterization of [13] stating that a one-way infinite word is
ultimately periodic if and only if each of its long enough prefixes ends up with a
repetition of a word of order at least ϕ + 1, where ϕ is the golden ratio. Conse-
quently, the local regularity “having always a square” does not imply the global
one while “having always a cube” does so. The analysis of [13] was refined in
[8], see also [10], by restricting the length of the repetition in the local regularity
condition. A general treatment of these questions can be found in Chapter 8
of [12].
� Supported by the Academy of Finland under grants 121419 and 134190 and by the

Väisälä Foundation.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 90–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Local Squares, Periodicity and Finite Automata 91

In this note we define the local regularity as the existence of a square at
each position of the word. We obtain three variants of the problem depending
on whether the square is centered, to the left or to the right of each position,
respectively. In addition, in each case we obtain three subproblems corresponding
to the cases where squares are those of ordinary words, those of abelian words
or, as an in between case, those of so-called k-abelian words described in a
moment. We parameterize all of these nine problems by adding a restriction on
the length of the square. With this setting we completely characterize when the
local regularity, i.e. having a square of certain length everywhere, implies the
global periodicity, i.e. being ultimately periodic.

The method used here is that from [8]. Namely, for a fixed length n we can
construct a finite automaton accepting, as infinite runs, exactly those words
which obey a given local regularity constrain. Then the existence of intersecting
loops characterizes whether a nonperiodic word of the required form can exist.
It follows from the method that whenever a non-ultimately periodic word is
found, actually nondenumerably many of those are constructed. Despite of the
simplicity of the approach, computer verifications are crucial for our results. The
above is easily modified for two-way infinite words.

Our results have another interesting interpretation. Let us consider a one-way
infinite word as a dynamical process where it is defined step by step. Assume
further that in this process we preserve a given local regularity property. Then
our results have identified the exact borderlines, with respect to the length of
squares, of predictable vs chaotic behavior in all of our nine problems. In the
predictable case we obtain only periodic words while in the chaotic case we
obtain nondenumerably many (nonperiodic) words in our process.

We conclude this introduction by defining informally the notion of k-abelian
equivalence. For a natural number k two words are k-abelian equivalent if they
possess common prefixes and suffixes of length k − 1, respectively, and each
factor of length k occurs equally many times in these words. The value k = 1
corresponds to the abelian equivalence. The condition for prefixes and suffixes is
introduced in order to locate the k-abelian equivalence properly in between the
ordinary equivalence (equality) and the abelian equivalence. Finally, a k-abelian
square is a word of the form uv where u and v are k-abelian equivalent.

Our last section analyzes some basic properties of the k-abelian equivalence,
as well as points out some intriguing open questions. More precisely, we charac-
terize in the binary alphabet the 2-abelian and 3-abelian equivalence classes, as
well as analyze the numbers of these equivalence classes of words of length n. In
the case k = 2 we obtain an exact quadratic formula, while in the case k = 3
we obtain an estimate Ω(n4). In general, we obtain a polynomial upper bound,
although the degree of the polynomial is exponential in k. We conclude by con-
sidering avoidability questions for k-abelian powers. More precisely, we ask what
is the smallest alphabet size when 2-abelian cubes (resp. 2-abelian squares) can
be avoided in infinite words. Obviously, these values are in between the corre-
sponding values for word- and abelian repetitions, that is either 2 or 3, and 3
or 4, respectively, see [11] and [5]. For cubes we check by a computer that there

92 M. Huova et al.

exist binary words of length 100000, avoiding 2-abelian cubes. This makes us to
conjecture that 2-abelian cubes can be avoided in the binary alphabet, exactly as
ordinary cubes. On the other hand 2-abelian squares – quite surprisingly – can
not be avoided in a ternary alphabet. The longest word avoiding such squares is
of length 537. Hence the smallest alphabet they can be avoided in is quartic.

2 Preliminaries

In this section we fix our terminology, and in particular define our crucial notions.
For words we refer to [12] and for automata to [7].

We denote by Σ a finite alphabet and Σ+ and Σω the sets of nonempty finite
words and one-way infinite words over Σ, respectively. An element w ∈ Σω is
ultimately periodic if it can be written in the form w = uvv · · · = uvω for some
finite words u and v. This notion extends in a natural way to two-way infinite
words: two-way infinite word w is ultimately periodic to the right if it can be
written in the form w = uv where u is one-way infinite word to the left and v is
ultimately periodic word in Σω. Similarly, we define two-way ultimately periodic
words to both directions. In our considerations, words of these forms are viewed
as globally regular words. Local regularity is defined in our considerations as a
repetition such as a square, a cube etc.

We consider three types of equivalence relations on Σ+: the ordinary equal-
ity of words, the abelian (or commutative) equivalence of words, and, as an in
between case, so-called k-abelian equivalence of words. The last one is defined
as follows. Let k be a natural number. Two finite words u and v are k-abelian
equivalent if and only if

– prefk−1(u) = prefk−1(v) and sufk−1(u) = sufk−1(v)
– for all x ∈ Σk, #(x, u) = #(x, v),

where prefk−1 (resp. sufk−1) refers to the maximal prefix (resp. suffix) of length
at most k − 1 and # counts the number of (possibly overlapping) occurrences
of x in the word. Let us denote this equivalence relation by ≡a,k. Then, clearly,
≡a,1 coincides with ≡a, the usual abelian equivalence relation on words.

The first condition is introduced in order to have the following relations, which
are straightforward to conclude:

u = v ⇒ u ≡a,k v ⇒ u ≡a v, for all k.

Indeed, for words u = 1101 and v = 0110 we have u ≡a v while u and v satisfy
the second condition above for k = 2. The notion of abelian and k-abelian
repetitions are now defined in a natural way. For example, word w is k-abelian
square if it can be written as w = uv where u ≡a,k v. It follows that we can talk
about words avoiding, e.g., 2-abelian squares.

3 Local Squares vs. Periodicity

We examine the following problem: for a given number n, if a binary right-infinite
word contains at every position a square of a word of length at most n, is the
word necessarily ultimately periodic?

Local Squares, Periodicity and Finite Automata 93

To make this question precise, we must define what having a square at every
position means. We give three different definitions, which lead to three variations
of the problem.

A word w contains everywhere a

– left square of length at most n, if every factor of w of length 2n has a
nonempty square as a suffix,

– right square of length at most n, if every factor of w of length 2n has a
nonempty square as a prefix,

– centered square of length at most n, if every factor of w of length 2n has
a nonempty square exactly in the middle, i.e. is of the form uxxv, where
|u| = |v| and x = 1.

In addition to ordinary squares, we can give similar definitions for k-abelian
squares. We will study the cases k = 1 and k = 2, i.e. abelian and 2-abelian
equivalences. This gives a total of nine variations of the problem.

We begin by giving a method to solve the following problem: for a number
n, if a binary right-infinite word contains everywhere a left square of length at
most n, is the word necessarily ultimately periodic? This method can then be
modified for the other eight variations of the problem.

We define an automaton as follows: the set of states is Σ2n−1, where Σ =
{a, b}. If c, d ∈ Σ, u ∈ Σ2n−2 and cud has a nonempty square as a suffix, then
the value of the transition function at (cu, d) is defined as δ(cu, d) = ud; otherwise
δ is undefined. All states are initial and final. The automaton is deterministic,
except that there are many initial states.

The following theorems give a way to solve our problem.

Theorem 1. Let w = uv, where u ∈ Σ2n−1 and v ∈ Σω. The word w contains
a left square of length at most n everywhere if and only if the above automaton
accepts every prefix of v starting from the state u.

Proof. Follows from the definition of the automaton.
�

Theorem 2. There exists a binary aperiodic right-infinite word that contains a
left square of length at most n everywhere if and only if the above automaton
has two intersecting cycles.

Proof. If the automaton has two intersecting cycles, then there is a state u and
words s, t such that δ(u, as) = u = δ(u, bt). Now every word in {as, bt}ω contains
a left square of length at most n everywhere, and there are aperiodic words in
this set.

If there are no intersecting cycles and uv ∈ Σω is such that δ(u, t) is defined
for every prefix t of v, then there must be a cycle such that δ(u, t) is in that
cycle for every long enough prefix t. Then v must be ultimately periodic.
�

If the automaton does not have intersecting cycles, then there are only ultimately
periodic words that contain a left square of length at most n everywhere. The
number of these words can be countably infinite. For example, for every m the

94 M. Huova et al.

word (ab)maω has a left square of length at most two everywhere. However, there
are only finitely many possible periodic parts, because the automaton has only
finitely many cycles. Thus the situation is very structured.

On the other hand, if the automaton has two intersecting cycles, then there
are aperiodic words that contain a left square of length at most n everywhere.
Moreover, the number of such words is uncountable, and the situation can be
viewed as chaotic.

The existence of intersecting cycles is fairly easy to check algorithmically:
we determine the strongly connected components (for example with Tarjan’s
algorithm) and check whether in some component there is a state from which
there are two transitions into the same component.

Using this method we can see that the smallest value of n for which there
is an aperiodic word containing a left square of length at most n everywhere is
n = 5. This was already proved in [8]. The automaton has two strongly connected
components that contain intersecting cycles. A representation of one of them is
in Fig. 1; the other component can be obtained by exchanging the letters. Here
we have omitted those states, which have only one transition coming to them
and only one transition leaving from them. In addition to these two components,
there are also components consisting of a single cycle, and components consisting
of a single state. Every cycle generates ultimately periodic words and single states
may generate prefixes of infinite words, but only intersecting cycles can generate
aperiodic infinite words.

We can use the same method for k-abelian squares: in the definition of the
transition function we simply require cud to have a suffix that is a k-abelian
square instead of an ordinary square. For 2-abelian left squares the smallest
possible value is also n = 5; the automaton still has two strongly connected
components that contain intersecting cycles, but they are slightly more compli-
cated, see Fig. 2. For abelian left squares the smallest possible value is n = 3.
The automaton has two strongly connected components that contain intersect-
ing cycles, which have sizes 18 and 12, and two one-state cycles. There are so
many transitions that it would be difficult to draw a clear picture. In fact, the
automaton is almost the whole De Bruijn graph; there are only eight states from
which there is only one transition.

The method can also be modified for right squares: in the definition of the
transition function we require cud to have a prefix that is a square. If δL, δR are
the transition functions for left and right squares, then δL(cu, d) = ud if and
only if δR(duR, c) = uRc, where uR is the reverse of u. Thus the automaton

abaabaaba
baa ��

aba

��
abaababaa

ba

��
aababaaba

aba

�������������
baa

��

Fig. 1. A component of the automaton for left squares of length n = 5

Local Squares, Periodicity and Finite Automata 95

abaabaaba
ba ��

aba

��
aabaababa

a ��

b

��
abaababaa

ba

��

babaababa
b ��a�� abaababab

aaba

��
ababaabaa

ba

�������������
aababaabaa

��
b

�� ababaabab

a

		

bababaaba
b

��

a

Fig. 2. A component of the automaton for left 2-abelian squares of length n = 5

for right squares is obtained from the automaton for left squares by reversing
transitions and relabeling states and transitions. It follows that the automaton
for left squares has two intersecting cycles if and only if the automaton for right
squares has.

Finally, we can define a similar automaton for centered squares. It turns out
that in this case the ultimate periodicity is harder to avoid: in the abelian case
the smallest value of n for which there is an aperiodic word containing a cen-
tered abelian square of length at most n everywhere is n = 8. The automaton
has one strongly connected component that contains intersecting cycles. This
component has 148 states. In the 2-abelian case the smallest possible value is
n = 12. The automaton has two strongly connected components that contain
intersecting cycles. Both components have 222 states. Small parts of these two
automata are represented in Fig. 3. These parts are sufficient to generate some
examples of aperiodic words that satisfy the conditions. The automata contain
also many other intersecting cycles, which are not represented here. Abelian
squares (left, right and centered) were studied in [2]. In particular there it was
proved that there are some connections with the Thue-Morse morphism and its
generalizations.

For ordinary centered squares the situation changes completely: no finite value
of n is large enough. This can be proved using the Critical Factorization Theorem
(see [4]). The first part of the next theorem is Theorem 8.3.5 in [12].

Theorem 3. If there is an n such that w ∈ Σω has a centered square of length
at most n everywhere, then w is ultimately periodic. On the other hand, there
are aperiodic two-way infinite words that have centered squares everywhere.

Proof. From the existence of such a number n it follows that the local period of
w is at most n at every position. By the Critical Factorization Theorem, also the

abbaabbaabbaabb

a

��

aababaaababaaababaaabab

aa

��
bbaabbaabbaabba

abb

��

baababbaabbaabbaabb

��

babaaababaaababaaababaa

abab

��

baaabaababaaababaaababaaabab

Fig. 3. Small parts of the automata for centered abelian and 2-abelian squares of
lengths n = 8 and n = 12

96 M. Huova et al.

global period of every prefix of w is bounded by n. Now w must be ultimately
periodic by the theorem of Fine and Wilf.

Suppose that a finite word w does not have a centered square at some position,
say w = uv, where no suffix of u is a prefix of v. Now w can be extended to
both directions so that it has a centered square at this position: vtuvtu is a
proper extension for every word t. We can repeat this for other positions, and
as a limit we get a two-way infinite word that has a centered square everywhere.
The t-words can be chosen easily so that the infinite word is aperiodic.
�

Above we have studied one-way infinite words. The same questions can be asked
also for two-way infinite words. In this case the answers are the same as for
one-way infinite words.

Theorem 4. There is a binary aperiodic right-infinite word containing an or-
dinary (2-abelian, abelian) left (right, centered) square of length at most n ev-
erywhere if and only if there is such a two-way infinite word.

Proof. If there is an aperiodic right-infinite word, then the automaton has two
intersecting cycles, say δ(u, as) = u = δ(u, bt) for some state u and words s, t.
Now every two-way infinite word formed of as and bt satisfies the conditions,
and there are aperiodic such words.

On the other hand, if there is an aperiodic two-way infinite word, then it
is aperiodic to the left or to the right. If it is aperiodic to the right, then the
automaton has two intersecting cycles. If it is aperiodic to the left, then the
automaton, where all transitions are reversed, has two intersecting cycles. But
then also the original automaton has two intersecting cycles.
�

We summarize the results obtained in this section by presenting in Table 1 the
minimal values of n for which there are aperiodic right-infinite words containing
an ordinary (or 2-abelian or abelian) left (or right or centered) square of length
at most n everywhere.

We conclude this section with two remarks on general k-abelian case. First, for
left and right squares the values of Table 1 would remain as 5; the k-abelian case
is in between of those of words and 2-abelian cases. For the centered variant of the
problem the exact borderline for k-abelian repetitions when k ≥ 3 is unknown.
It looks that our straightforward computations might easily be infeasible.

Table 1. Optimal values for local regularity which does not imply global regularity in
our problems

words 2-abelian abelian
left 5 5 3
right 5 5 3
centered ∞ 12 8

Local Squares, Periodicity and Finite Automata 97

4 k-Abelian Equivalence: Observations and Open
Problems

In this section we give characterizations of the equivalence classes of 2-abelian
and 3-abelian words over a binary alphabet. We count the number of the equiva-
lence classes of 2-abelian words over a binary alphabet and the size of each such
an equivalence class. We examine the number of the equivalence classes also in
general and give an open problem of the subject. In addition, we formulate an
open problem concerning avoidability of 2-abelian repetitions. We then end this
section by a discussion that indicates that 2-abelian words sometimes behave
like ordinary words and sometimes like abelian words.

First we give characterizations for the equivalence classes for 2- and 3-abelian
words over binary alphabet by which we mean that we define a representative
for each equivalence class.

Example 1. In a binary alphabet Σ = {a, b} the characterization of the equiva-
lence classes of 2-abelian words can be given in the form:

aakbl(ab)man or bbkal(ba)mbn,

where k, l, m ≥ 0 and n ∈ {0, 1}. So, we have in the beginning of the word all
the factors of form aa and bb.

We remark that the above characterization is not unambiguous in a few cases, for
example if there does not exist the factor bb but aa exists. Then we may express
the same class in two different ways, aakb1(ab)man or aak−1b0(ab)m+1an. The
following characterization of the equivalence classes of 3-abelian words is not
unambiguous either in some cases. The equivalence class of a word depends in
fact on the number of factors of the form aaa, bbb and 3-letter factors containing
aa or bb. Clearly, the length of the word and the first and the last two letters
are significant, too.

Example 2. In the alphabet Σ = {a, b} the characterization of the equivalence
classes of 3-abelian words can be given in the following form containing eight
possible combinations:

aaakbl(aabb)m

bbbkal(aabb)m

abbkal(aabb)m

baakbl(aabb)m

or

⎫⎪⎪⎬⎪⎪⎭ ∗ connected with ∗
{

(aab)g(ab)hbiaj or
(abb)g(ab)hbiaj ,

where k, l, m, g, h ≥ 0 , i ∈ {0, 1} and j ∈ {0, . . . , 2− i}. If we restrict to classes
with k > 1 and l > 2, the given representation is unambiguous.

Now we can count the number of the equivalence classes of 2-abelian words in
the binary alphabet Σ = {a, b}.

Example 3. If the length of the word is one there exist two equivalence classes,
namely a and b. If the length is two there exist four equivalence classes aa, ab,
ba and bb.

98 M. Huova et al.

We consider next the words of length n > 2 and containing k a-letters and hence
n−k b-letters. We have a correspondence between the number of different letters
and the number of the equivalence classes:

number of a-letters number of classes
k = 0 ∨ k = n ⇒ 1
k = 1 ∨ k = n− 1 ⇒ 3
1 < k < n− 1 ⇒ 2min(k,n− k) + min(k − 1,n− k) + min(k,n− k − 1)

From these we obtain the number of the equivalence classes of words with length
n > 2:{

8 +
∑n−2

k=2 (4min(k, n− k)− 1), if 2 � n

6 + 2n +
∑n

2 −1
k=2 (4min(k, n− k)− 1) +

∑n−2
k= n

2 +1(4min(k, n− k)− 1), if 2|n

If we count the given sums we get as a conclusion the following theorem.

Theorem 5. The number of 2-abelian equivalence classes consisting of words
of length n over a binary alphabet is n2 − n + 2 and thus the number is Θ(n2),
where n > 0 is the length of words and alphabet is binary.

We can also examine the sizes of the equivalence classes in the case of binary
alphabet and 2-abelian equivalence. Consider the words beginning with a, ending
with b and containing factors of the form aa, ab, ba and bb k-, (k − 1)-, l-
and m-times, respectively. Then the equivalence class contains

(
l+k−1
k−1

)(
m+k−1

k−1

)
such words. Similarly, there exist

(
l+k
k

)(
m+k−1

k−1

)
words in the equivalence class

containing words beginning and ending with a and having factors of the form
aa, ab, ba and bb k-, k-, l- and m-times, respectively. Results for words beginning
with b are similar and these four cases cover all the possible 2-abelian words over
binary alphabet.

From the characterization of the equivalence classes of 3-abelian words in
example 2 we see that the number of the equivalence classes in this case is Ω(n4).
We have five independent variables, k, l, m, g and h, and if we restrict k > 1 and
l > 2, each combination of these five values gives a different equivalence class. If
we now fix the length of the words to be n we obtain a relation

k + l + 4m + 3g + 2h + α = n,

where α ∈ {2, 3, 4} depending on i and j. We may restrict to analyze words long
enough and to subsets of the equivalence classes and hence the equation can be
modified to the form:

12k′ + 12l′ + 4(3m′) + 3(4g′) + 2(6h′) = 12n′.

Now we may count the number of solutions of equation
∑5

i=1 xi = N , where
xi > 0 for all i ∈ {1, . . . , 5} and N is fixed. The number of solutions is Θ(N4)
which implies that the number of 3-abelian equivalence classes of words of length
n is Ω(n4).

Local Squares, Periodicity and Finite Automata 99

Contrary to the 2-abelian case the exact formula for the number of the 3-
abelian equivalence classes is not a polynomial. This can be concluded from the
list of the equivalence classes for small values of n, see [6].

Theorem 6. The number of k-abelian equivalence classes overΣn is O(n|Σ|k−1).

Proof. An equivalence class over Σn with a representative u ∈ Σn is uniquely
determined by the |Σ|k nonnegative integers |u|z, where z ∈ Σk, and the prefix
and suffix of u of length k− 1. Since the number of length-k factors in a word of
length n is n− k + 1, counting multiplicities, the number of distinct equivalence
classes is at most

|Σ|2(k−1) ·
∣∣∣{(i1, i2, . . . , i|Σ|k) | ij ≥ 0 and i1 + · · ·+ i|Σ|k = n− k + 1

}∣∣∣
= |Σ|2(k−1) ·

(
n− k + |Σ|k
|Σ|k − 1

)
= O(n|Σ|k−1).

�
It is likely that the real upper bound is smaller than the given one and hence we
can state an open problem:

Open problem 1: Give a better estimate to the number of the equivalence
classes of k-abelian words.

Finally, we give an open problem concerning k-abelian repetitions. It is known
that cubes are avoidable over the binary alphabet, for example the infinite word
of Thue-Morse accomplishes this property, see [11]. On the other hand, it is easy
to see that abelian cubes are not avoidable. Though, for abelian words over bi-
nary alphabet the repetitions of fourth order are avoidable (see [5]) and so in
k-abelian case the order of repetition that can be avoided in a binary alphabet
is either three or four. We formulate this in the case of 2-abelian words as an
open problem:

Open problem 2: Does there exist an infinite binary word that avoids 2-abelian
cubes?

The analysis we made with computers reveals that there exist cube-free 2-abelian
words longer than 100 000 letters. This does not prove the existence of such an
infinite word but supports the assumption that cubes would be avoidable for
2-abelian words over binary alphabet, exactly as in the case of words.

The problem could also be expressed in terms of the size of an alphabet in
which cubes can be avoided. The size of the alphabet is now two or three because
abelian cubes are avoidable over ternary alphabet, see [5].

A similar question can be asked for 2-abelian squares. Already squares are
avoidable for words over 3-letter alphabet (see [11]) but for abelian words over
ternary alphabet the maximal length of a word avoiding squares is seven, as can

100 M. Huova et al.

be easily checked. It is known, although this is not easy to prove, that there
exists an infinite abelian word avoiding squares over 4-letter alphabet, see [9].
This indicates that for k-abelian words avoiding squares the size of a smallest
alphabet is at least three and at most four. In the case k = 2 we discovered the
following result:

Theorem 7. The smallest alphabet in which the 2-abelian squares can be
avoided is a 4-letter alphabet.

We executed with a computer a similar construction of square-free 2-abelian
words over ternary alphabet than in the case of cube-free 2-abelian words over
binary alphabet. The maximal length of square-free 2-abelian words that could
be constructed is 537 letters and every longer word over ternary alphabet con-
tains a 2-abelian square. The constructed word of this maximal length 537 is
given in example 4. This word is unique up to the permutations of the alpha-
bet. With earlier results mentioned above this shows that the alphabet to avoid
squares have to contain at least four letters, and this is, indeed, enough. The
behavior of 2-abelian words is in this situation similar with abelian words.

Example 4. The word of length 537 over ternary alphabet Σ = {a, b, c} that
avoids 2-abelian squares:

abcbabcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbabcacbcabcba
bcabacbabcbacbcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacab
acbcabacabcacbcabcbacbcacbacabacbabcbacbcacbabcacbcabcbabcabacbabcbacb
cacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacabacbcabacabcacb
cabcbabcabacabcacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbca
cbabcacbcabcbabcabacabcacbcabcbacbcacbacabacbcabacabcacbcabcbabcabacab
cacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbcacbabcacbcabcba
bcabacabcacbacabacbabcbacabcbabcabacabcacbabcba.

References

1. Adian, S.I., Novikov, P.S.: Infinite periodic groups I, II, III. Izv. Akad. Nauk SSSR.
Ser. Mat. 32(1,2,3), 212–244, 251–524, 709–731 (1968)

2. Avgustinovich, S., Karhumäki, J., Puzynina, S.: On abelian versions of Critical
Factorization Theorem. In: Proceedings of the 13th Mons. Theoretical Computer
Science Days (2010)

3. Burnside, W.: On an unsettled question in the theory of discontinuous groups.
Quart. J. Pure and Appl. Math. 33, 230–238 (1902)

4. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, vol. 1, pp. 329–438. Springer, Heidelberg
(1997)

5. Dekking, F.M.: Strongly nonrepetitive sequences and progression-free sets. J. Com-
bin. Theory Ser. A 27(2), 181–185 (1979)

6. Harmaala, E.: Private communication
7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)

Local Squares, Periodicity and Finite Automata 101

8. Karhumäki, J., Lepistö, A., Plandowski, W.: Locally periodic versus globally peri-
odic infinite words. J. Combin. Theory Ser. A 100(2), 250–264 (2002)

9. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

10. Lepistö, A.: On Relations between Local and Global Periodicity. PhD thesis, Uni-
versity of Turku (2002)

11. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
12. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,

Cambridge (2002)
13. Mignosi, F., Restivo, A., Salemi, S.: Periodicity and the golden ratio. Theoret.

Comput. Sci. 204(1-2), 153–167 (1998)
14. Morse, M., Hedlund, G.A.: Unending chess, symbolic dynamics and a problem in

semigroups. Duke Math. J. 11, 1–7 (1944)

P and dP Automata: A Survey

Gheorghe Păun1,2 and Mario J. Pérez-Jiménez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

2 Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Abstract. This is a quick survey of basic notions and results related
to P automata (P systems with symport/antiport rules working in the
accepting mode), with some emphasis on the recently introduced dP
automata (a distributed version of the standard P automata), ending
with some open problems and research topics which we find of interest
in this area.

1 Introduction

Membrane computing is a branch of natural computing aiming to abstract com-
puting models from the structure and the functioning of the biological cell; the
basic model of this research area (usually called a P system) consists of a hierar-
chical arrangement of membranes which delimit compartments where multisets
of objects evolve according to given rules inspired by biology. Some rules are
mimicking the biochemical reactions, other rules correspond to processes spe-
cific to cells, such as the selective passage of chemicals across membranes, in the
form of symport and antiport operations (couples of molecules pass together, in
the same direction in the case of symport and in opposite directions in the case
of antiport, through specific protein channels). This is the framework where the
present paper is placed: cell-like models, with the multisets of objects processed
by communication only (moving them across membranes), using symport and
antiport rules. Such systems were initially used in the generative manner (one
starts from an initial configuration and one proceeds by a maximally parallel use
of rules until reaching a halting configuration, one where no rule can be applied;
the contents of a designated membrane in the halting configuration is considered
as the result of the computation).

Many variations of this basic model can be found in the membrane computing
literature. We mention only the much investigated classes of tissue-like P systems
and of spiking neural P systems. The reader is refereed to [15], [17], and to the
domain website [21] for details.

The idea of using a P system in the accepting mode has appeared already
“from the old times”: start a computation by introducing a multiset in a speci-
fied membrane and, if (and only if) the computation halts, then this multiset is

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 102–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

P and dP Automata: A Survey 103

accepted. In the systems using only communication rules, such as those based
on symport/antiport rules, a string can also be accepted in a natural way: just
arrange in a sequence the objects (described by symbols) taken from the environ-
ment by the system during a halting computation. This idea was followed first
in [6] (the paper was presented during the Workshop on Membrane Computing,
Curtea de Argeş, 2002) and, almost concomitantly, in [10].

The devices introduced in the first paper are called P automata. They are
usual P systems with symport/antiport rules supplemented with certain features:
a set of accepting configurations (called “states” in [6]) is given and a mapping
which associates a string with a multiset. The computation proceeds as usual
in a P system with symport/antiport rules and it is considered successful only
if it halts in an accepting state. In each step, the system takes some objects
from the environment, hence a sequence of multisets can be associated with
a successful computation. This sequence is “translated” into a string by the
mapping mentioned above. Several papers were devoted to these devices (in
particular, characterizations of regular, context-free, and recursively enumerable
languages were obtained, and complexity investigations were carried out); we
refer to [5] for details, including references.

A simplified version of P automata was considered in [10]: successful compu-
tations are defined by halting only, and the mapping which passes from multisets
(of objects introduced in the system) to strings is very simple – either all sym-
bols are introduced in the accepted string (if several symbols are taken in the
same step, then any permutation of them is introduced in the string, hence a set
of strings can be associated with one computation), or only the objects from a
given set, which is like in Chomsky grammars and Lindenmayer systems, where
terminal and non-terminal symbols are considered and the strings in a language
consists of only terminals.

From now on we will work only with P automata in the sense of [10]. We call
extended the automata which consider terminal symbols (hence they discard the
non-terminal ones). We will give precise definitions in the next section.

Note that any P system is a distributed parallel device, with several com-
partments/membranes working simultaneously, but the input (in the case of P
automata) is taken from the environment only by the skin region. Looking for
a computing model which can take parts of a global input and introduce them
as “local” inputs in different components and then process these inputs sepa-
rately in order to answer a “global question”, so-called dP systems were recently
introduced in [16]. In the general case, such systems consist of a given number
of components in the form of a usual P system, of any type, which can have
their separate inputs and communicate from skin to skin membranes by means
of antiport rules like in tissue-like P systems. In this framework, communication
complexity issues can be investigated, as in [12]. (Some previous proposals to-
wards a communication complexity of P systems were made in [1], but mainly
related to the communication effort in terms of symport/antiport rules in a
usual P system, not an explicitly distributed one.) The case of P automata was
considered in some details – and this leads to the notion of dP automata. The

104 G. Păun and M.J. Pérez-Jiménez

possibility of accepting languages of various types in Chomsky hierarchy in a
distributed way, using a bounded number of communication rules and also with
some (linear) speed-up was proven.

The study of dP automata was continued in [9], by comparing their power
with that of usual P automata and with families of languages in the Chomsky
hierarchy. As expected, due to the distribution (and synchronization), dP au-
tomata are strictly more powerful than P automata. Also expected is the fact
that each regular languages can be recognized by a P automaton.

In the present note, we recall the results from [16] and [9]. A theorem from [9]
gives a representation of recursively enumerable (RE) languages starting from
languages recognized by dP automata, similar to the representation of RE lan-
guages in terms of context-sensitive languages; it is not shown in [9] whether
this new representation is non-trivial, in the sense that the relation between
the family of languages recognized by dP automata and the family of context-
sensitive languages is not settled (the inclusion is obvious, but it is not shown
to be proper). We clarify here this point, by finding a context-sensitive language
which cannot be accepted by a dP automaton. Along the paper as well as in the
end of it, we formulate a series of open problems and research topics (especially
about dP automata) which we find of interest.

2 dP Automata

We directly introduce the dP automata, by whose particularization we get the
notion of a P automaton.

The reader is assumed to be familiar with basics of membrane computing,
e.g., from [15], [17], and of formal language theory, e.g., from [19], [20].

In what follows, V ∗ is the free monoid generated by the alphabet V , λ is
the empty word, V + = V ∗ − {λ}, and |x| denotes the length of the string
x ∈ V ∗. REG, LIN, CF, CS, RE denote the families of regular, linear, context-
free, context-sensitive, and recursively enumerable languages, respectively. As
usual in membrane computing, the multisets over an alphabet V are represented
by strings in V ∗; a string and all its permutations correspond to the same mul-
tiset, with the number of occurrences of a symbol in a string representing the
multiplicity of that object in the multiset. (We work here only with multisets of
finite multiplicity.) The terms “symbol” and “object” are used interchangeably,
all objects are here represented by symbols.

A dP automaton (of degree n ≥ 1) is a construct

Δ = (O, E, Π1, . . . , Πn, R),

where:

(1) O is an alphabet (of objects);
(2) E ⊆ O (the objects available in arbitrarily many copies in the environment);

P and dP Automata: A Survey 105

(3) Πi = (O, μi, wi,1, . . . , wi,ki , E, Ri,1, . . . , Ri,ki) is a symport/antiport P sys-
tem of degree ki (O is the alphabet of objects, μi is a membrane structure
of degree ki, wi,1, . . . , wi,ki are the multisets of objects present in the mem-
branes of μi in the beginning of the computation, E is the alphabet of objects
present – in arbitrarily many copies – in the environment, and Ri,1, . . . , Ri,ki

are finite sets of symport/antiport rules associated with the membranes of
μi; the symport rules are of the form (u, in), (u, out), where u ∈ O∗, and the
antiport rules are of the form (u, out; v, in), where u, v ∈ O∗; note that we
do not have an output membrane), with the skin membrane labeled with
(i, 1) = si, for all i = 1, 2, . . . , n;

(4) R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i = j,
and u, v ∈ O∗, uv = λ.

The systems Π1, . . . , Πn are called components of Δ and the rules in R are called
communication rules. For a rule (si, u/v, sj), |uv| is the weight of this rule.

Each component can take an input, work on it, and communicate with other
components. The communication is done by means of rules in R, but, because the
environment is common, the components can also communicate, in two steps,
through the environment. In the constructions involved in the proofs of the
results recalled below this latter possibility is systematically avoided, but from
a formal point of view this raises already a research topic: Is any difference
between the power and/or the efficiency of dP systems whose components are
allowed and those whose components are not allowed to communicate through
the environment? How this communication can be avoided? (Some suggestions
are given in [16], e.g., to consider a “local environment” for each component, not
accessible to other components.)

A halting computation with respect to Δ accepts the string x = x1x2 . . . xn

over O if the components Π1, . . . , Πn, starting from their initial configurations,
using the symport/antiport rules as well as the inter-components communication
rules, in the non-deterministic maximally parallel way, bring from the environ-
ment the substrings x1, . . . , xn, respectively, and eventually halts.

The dP automata are synchronized devices, a universal clock exists for all
components, marking the time in the same way for the whole dP automaton.

Three communication complexity measures were defined in [16], following [1],
counting the number of communication steps (parameter ComN), of communi-
cation rules (ComR), or the total weight of communication rules (ComW) used
during a computation. Based on these measures, the notions of weak paralleliz-
ability and of efficient parallelizability are introduced. For instance, a language
L ⊆ V ∗ is said to be (n, m)-weakly ComX parallelizable, for some n ≥ 2, m ≥ 1,
and X ∈ {N, R, W}, if there is a dP automaton Δ with n components and there
is a finite subset FΔ of L such that each string x ∈ L − FΔ can be written as
x = x1x2 . . . xn, with ||xi| − |xj || ≤ 1 for all 1 ≤ i, j ≤ n, each component Πi of
Δ takes as input the string xi, 1 ≤ i ≤ n, and the string x is accepted by Δ by
a halting computation δ such that ComX(δ) ≤ m. A language L is said to be
weakly ComX parallelizable if it is (n, m)-weakly ComX parallelizable for some
n ≥ 2, m ≥ 1.

106 G. Păun and M.J. Pérez-Jiménez

Note that (i) the string is distributed in equal parts, modulo one symbol,
to the components of the dP automaton (like in communication complexity
area, [12]; one says that the string is distributed in a balanced way) and (ii)
the communication complexity, in the sense of measure ComX , is bounded by
the constant m. It is said nothing about the length of the computation, that
is why a stronger version of parallelizability is introduced, the efficient one. In
what follows, we allow the dP system to perform communications of an arbitrary
complexity, while the length of the computation is not taken into consideration,
hence we ignore these aspects.

Specifically, for a dP automaton Δ of degree n we define the language L(Δ), of
all strings x ∈ O∗ such that we can write x = x1x2 . . .xn, with ||xi|−|xj || ≤ 1 for
all 1 ≤ i, j ≤ n, each component Πi of Δ takes as input the string xi, 1 ≤ i ≤ n,
and the computation halts.

Note again that, like in the communication complexity area, the string is
distributed in equal parts, modulo one symbol, to the components of the dP
automaton. This acts like a strong restriction for our devices. If this condition
is not imposed, hence any decomposition of the string x can be considered,
then a superlanguage of L(Δ) is obtained. Like in [16], [9], in what follows we
only consider the balanced distribution case; the study of the unbalanced case
remains a topic for future research (we will mention this question again in the
last section).

We denote by LdPn the family of languages L(Δ), for Δ of degree at most n.
A dP automaton of degree 1 is a usual P automaton – of a non-extended type:
all symbols are introduced in the accepted string. If a terminal set of objects is
considered, then we obtain an extended P automaton (formally, we have a device
Π = (O, T, μ, w1, . . . , wm, E, R1, . . . , Rm), with T ⊆ O, working as a usual P
automaton and considering only the symbols from T in the accepted strings and
ignoring those from O−T). We denote by LP the family of languages recognized
by non-extended P automata (hence LP = LdP1) and by ELP the family of
languages recognized by extended P automata. (Note that we ignore the weight
of symport and antiport rules, but these parameters, usual when investigating
symport/antiport P systems, can be considered also here.) If the subscript n in
LdPn is arbitrary, then we replace it by ∗.

A terminal alphabet can be considered also for dP automata, but this is not
of much interest: ELdP1 = ELP , which is known to equals RE.

3 On the Power of P Automata

Extended P automata were proved already in [10] to be computationally
universal:

Theorem 1. ELP = RE.

Actually, rather simple P automata (e.g., with only one membrane), also working
in the deterministic way, are shown to be able to simulate language accepting
register machines. In turn, because in the non-extended case the number of

P and dP Automata: A Survey 107

objects present in the system is comparable with the number of objects taken
from the environment (the initial multisets are fixed), hence with the length of
the accepted string, we immediately have:

Theorem 2. LP ⊆ CS.

However, we know no other result about non-extended P automata reported
before the introduction of dP automata, which is somehow strange, because the
power of non-extended P automata raise interesting (and intuitively non-trivial)
problems.

Some of these problems were addressed in [9]; we will recall the respective
results, after recalling an example, which can illustrate the way a P automaton
works. The automaton (with six membranes) is given first formally and then in
Figure 1, represented as usual in membrane computing (with the rules near the
membranes with which they are associated).

Π = (O, μ, w1, w2, w3, w4, w5, w6, E, R1, R2, R3, R4, R5, R6),
O = {a, b, c, d, e, f, g,#},
μ = [[[]3[]4]2[]5[]6]1,

w1 = c,

w2 = de,

w3 = λ,

w4 = #,

w5 = fgg,

w6 = #,

E = {a, b, c, d},
R1 = {(c, out; aa, in), (a, out; c, in), (d, out; bb, in), (b, out; d, in)},
R2 = {(e, out), (ae, in), (d, out; fe, in), (be, in), (g, in), (#, in), (#, out)},
R3 = {(gab, in), (g, out)},
R4 = {(#, out; ga, in), (#, out; gb, in)},
R5 = {(f, out; c, in), (gg, out; d, in)},
R6 = {(#, out; e, in), (eg, in)}.

This automaton recognizes the non-regular language L(Π) = {(a2c)s(b2d)s | s ≥
1} – we denote it by L1, for a later reference.

We start by bringing the object e out of membrane 2, at the same time with
introducing two copies of a from the environment. If e will enter membrane 6,
then the computation never halts, hence the object e should be “kept busy”
by means of a copy of object a, which brings e back to membrane 2 (while the
other copy of a exits, in exchange with one copy of object c). This process is
repeated for a number of times and then, instead of going out, the object c enters
membrane 5, releasing from here the object f . Together with e, object f enters
membrane 2, releasing d. From now on, d plays the same role as c before and b

108 G. Păun and M.J. Pérez-Jiménez

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

1

2

3

4

5

6

#

fgg

#

c

de
(e, out)
(ae, in)

(d, out; fe, in)

(be, in)

(g, in)

(#, in)

(#, out)

(gab, in)

(g, out)

(#, out; ga, in)

(#, out; gb, in)

(f, out; c, in)

(gg, out; d, in)

(#, out; e, in)

(eg, in)

(c, out; aa, in)

(a, out; c, in)

(d, out; bb, in)

(b, out; d, in)

Fig. 1. A P automaton recognizing the language L1

plays the role of a, hence we bring inside a string of the form (bbd)s, s ≥ 1. After
a while, also d enters membrane 5, releasing the two copies of g. One is used
for moving the object e inside membrane 6 without releasing the trap object #,
while the other copy of g enters membrane 2, and start here checking whether
the number of copies of a and b stored here are equal. If this is not the case, then
g together with exceeding a or with an exceeding b enters membrane 4, and the
trap object # is brought to region 2, hence the computation never stops.

Therefore, we have L1 ∈ LP . The idea of the system in Figure 1 can be
extended so that we can check the equality of three blocks of repeated symbols,
hence also non-context-free languages can be obtained. We summarize these
remarks as:

Theorem 3. LP contains linear non-regular, as well as non-context-free lan-
guages.

Thus, the non-extended P automata can recognize “complex” languages – but
they fail to recognize other “simple” languages. Here are two necessary conditions
for a language to be in LP proved in [9].

P and dP Automata: A Survey 109

We start with an easy result, refuting however many languages.

Lemma 1. For every language L ⊆ V ∗, L ∈ LP , which is not regular there
is a string w ∈ L which can be written in the form w = w1abw2, for some
w1, w2 ∈ V ∗ and a, b ∈ V (not necessarily distinct) such that w1baw2 ∈ L.

This lemma implies, for instance, that the linear language

L2 = {(ab)n(ac)n | n ≥ 1}

is not in LP . Actually, a more general consequence of Lemma 1 is drawn in [9]:

Theorem 4. All families of languages which include strictly the family of reg-
ular languages and are closed under λ-free morphisms contain languages which
are not in LP.

We pass now to the second necessary condition for a language to be in LP .

Lemma 2. Let V be an alphabet with at least two elements and f : V ∗ −→ V ∗

an injective mapping. The language Lf = {wf(w) | w ∈ V ∗} is not in the family
LP .

The proof is based on the observation that the number of configurations of a P
automaton which has brought inside m symbols is bounded by a polynomial in
m, but there are more than 2m different strings of length m over an alphabet with
more than two symbols (hence exponentially many), which makes impossible the
matching between the two halves of the strings. We will extend this proof idea
to dP automata in the next section.

As a consequence of the previous lemma, for instance, the context-sensitive
language, L3 = {wf(w) | w ∈ {a, b}∗} for f(a) = a′, f(b) = b′, is not in LP .

Pleasantly enough (and somewhat expected), P automata can recognize all
regular languages:

Theorem 5. REG ⊂ LP.

4 On the Power of dP Automata

Let us first note that the language L2 is in LdP2 and the same is true for L3;
this language is recognized by the dP automaton (of degree 2, with arbitrarily
many communications) indicated in Figure 2, hence we have

Theorem 6. LdPn − LP = ∅ for all n ≥ 2.

The following theorem is classic in formal language theory – see, e.g., [20]:

Theorem 7. For every language L ∈ RE, L ⊆ V ∗, there is a language L′ ∈ CS
and two symbols a, c /∈ V such that: (i) L′ ⊆ L{c}a∗, (ii) for each w ∈ L there
is i ≥ 0 such that wcai ∈ L′.

110 G. Păun and M.J. Pérez-Jiménez

�

�

�

�

�

�

�

�

s1

c

s2

(s1, a/λ, s2)
(s1, b/λ, s2)

(s1, λ/a′, s2)

(s1, λ/b′, s2)
(a, out; a′, in)

(b, out; b′, in)

(c, out; a, in)

(c, out; b, in)

(a′, out; a, in)

(a′, out; b, in)

(b′, out; a, in)

(b′, out; b, in)

(a′, out)

(b′, out)

Fig. 2. A dP automaton accepting the language L3

Otherwise stated, the two languages are “the same” up to a tail of arbitrary
length added to strings in L.

Because the initial configuration of a dP automaton is given and the objects
brought into the system from the environment are part of the recognized string,
the workspace of the automaton is linearly bounded with respect to the string,
hence Theorem 2 can be extended to:

Theorem 8. LdP∗ ⊆ CS.

In [9] it is conjectured that the above inclusion is proper. We confirm here this
hypothesis:

Lemma 3. The language L4 = {(ww′)s | w ∈ {a, b}+, s ≥ 2}, where w′ is
obtained from w by priming the symbols a and b, is not in the family LdP∗.

Proof. Assume that L4 = L(Δ) for some dP automaton Δ with n components,
Π1, . . . , Πn, n ≥ 2. Consider the sublanguage Hn of L4 consisting of strings with
n blocks ww′, i.e.,

Hn = {(ww′)n | w ∈ {a, b}+} ⊂ L4.

Because of the balanced distribution of inputs to the n components of Δ, each Πi

has to take from the environment a string ww′. Consider the strings w of length
m, for some arbitrarily large m, and examine the state of the dP automaton in
the moment when component Π1 has “read” from the environment the symbols
of w. (There is a step when exactly the symbols of w were introduced in Π1: the
next symbol is primed and, if it enters the system at the same time with a symbol

P and dP Automata: A Survey 111

from w, which is not primed, then a substring c′d can appear, c, d ∈ {a, b}, which
is contradictory.)

At this moment, the whole dP automaton contains a number of symbols
bounded from above by t0 + m + 2m(n − 1), where t0 is the number of ob-
jects present in the initial configuration, m objects are introduced by Π1 and
each of the other n − 1 components have introduced at most 2m objects each.
If these objects were identical, then they are distributed in the regions of the
system – assume that their number is k – in a number of ways which is bounded
from above by (t0 +m+2m(n−1))k. Here we have four objects a, b, a′, b′, as well
as some possibly different objects present in the initial configuration. In total,
a fixed number, let us say r. Thus, all these objects can be distributed in the
k regions of Δ in a number of ways which is at most (t0 + m + 2m(n − 1))kr .
Consequently, there are polynomially many configurations of Δ reached after
having the string w read by Π1.

However, there are 2m strings of length m over {a, b}, hence, for a large enough
m, there are strings w1, w2 ∈ {a, b}+ of length m such that w1 = w2, but the dP
automaton reaches the same configuration after reading w1 or w2. This means
that after reading w1, Π1 can continue by reading w′

2 and the computation stops
like when Π1 started by reading w2, hence a string w1w

′
2z is accepted (we do

not care about the form of z), which is not in L4, a contradiction.
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

REG

LIN

CF

CS

LP

LdP∗

L1

L2

L3

L5

L4

Fig. 3. The place of the families LP and LdP in Chomsky hierarchy

112 G. Păun and M.J. Pérez-Jiménez

Therefore, the following counterpart of Theorem 7, proved in [9], is of interest:

Theorem 9. For every language L ∈ RE, L ⊆ V ∗, there is a language L′ ∈
LdP2, X ∈ {N, R, W}, and an alphabet U disjoint of V such that: (i) L′ ⊆ LU∗,
(ii) for each w ∈ L there is y ∈ U∗ such that wy ∈ L′.

We believe that a similar result is valid also for languages recognized by P
automata, but this time with the “tail” placed in the left hand of the string.
Specifically, a result of the following form is conjectured in [9]:

For every language L ∈ RE, L ⊆ V ∗, there is a language L′ ∈ LP, and an
alphabet U disjoint of V as well as c, e /∈ V ∪ U such that: (i) L′ ⊆ U∗{c}L{e},
(ii) for each w ∈ L there is y ∈ U∗ such that ycwe ∈ L′.

Moreover, it is conjectured that

L5 = {w mi(w) | w ∈ {a, b}∗} /∈ LdP∗,

hence, actually, there are linear languages which cannot be accepted by dP au-
tomata (mi(x) denotes the mirror image of the string x).

The results from the previous two sections are synthesized in the diagram
from Figure 3, based on a similar diagram from [9]; the languages L1, L2, L3, L4
are specified above and L5 is only conjectured.

5 Further Research Topics

Of course, many problems and research topics remain to be considered. Several
were mentioned in [16] and [9], many others can be imagined.

We recall first some questions from [16]. For instance, we mentioned the no-
tions of parallelizability (recognizing the strings of a language by using a finite
number of communication steps) and of efficient parallelizability (to also speed-
up the computation, in comparison with a non-distributed automaton). These
problems make sense both for the case of the balanced distribution of the string
(which is taken as an hypothesis in communication complexity area) and for the
arbitrary distribution (which makes sense from the computational complexity
point of view). Is it a difference between the two cases? (Anyway, the speed-
up obtained by distribution on a given number of “processors” cannot be more
than linear, but this is still of interest in some practical cases.) In general, it is
of interest to transfer to dP systems, in particular, to dP automata, notions and
techniques currently used in communication complexity area, [12].

Then, focusing on P and dP automata as language accepting devices, there
are many problems of a classic language theory type which are natural to be
raised. For instance, the properties of the language families LP, LdP∗, and
LdPn, n ≥ 2 (e.g., closure, decidability, descriptional complexity) are of in-
terest (especially because they are not equal to families in Chomsky hierar-
chy). A related issue is to compare these families with other language families,
such as Lindenmayer languages [18], Marcus contextual languages [14], fami-
lies from the regulated rewriting area [7], etc. Does the number of components

P and dP Automata: A Survey 113

induce an infinite hierarchy of the recognized languages? (We only know that
LP = LdP1 ⊂ LdP2 ⊆ LdP3 ⊆ . . . ⊆ LdP∗.) Are there languages which can be
recognized by a dP automaton of degree n but not by an automaton of a greater
degree? (The problem makes sense only for the balanced case.)

A large research area appears if we want to accept multisets instead of strings,
and the problems appear already from the definition. We recall from [9] some
hints in this respect.

One way to accept multisets is to reduce this case to accepting strings,
taking into account that a multiset can be represented as a string. However,
several questions appear in this framework. Consider an alphabet of objects,
A = {a1, a2, . . . , an} and a multiset M : A −→ N over A. Any string w ∈ A∗

such that ΨA(w) = (M(a1), . . . , M(an)) represents the multiset M (ΨA is the
Parikh mapping associated with A). Otherwise stated, all permutations of such
a string w represent the same multiset. Is the permutation we choose significant
from the point of view of accepting it by means of a dP automaton? A way
to decrease this wildness of equivalent representations is to look for specified
permutations of a string. In particular, we can take the canonical representation
of M , that is wA(M) = a

M(a1)
1 . . .a

M(an)
n , hence based on the given ordering of

the elements of A. However, we can take any other ordering of A as initially
given, and the multiset is the same, but then the canonical representation will
be different. Is this important from the point of view of accepting a multiset, by
means of a string representation of it, by a dP automaton? A different way of
using a P automaton, hence also a dP automaton, in order to recognize a mul-
tiset is to start by introducing the multiset in a specified region – to be closer
to the case of string recognition, let us assume that this is the skin region –
and to accept it if the computation halts. The question now is how to distribute
the multiset among the components of the dP automaton, and again we have
the two possibilities mentioned above: distributing the objects in the ordering
imposed by a given ordering of the alphabet A, and distributing the objects of
the multiset in an arbitrary manner – again with two cases for each possibility:
a balanced distribution or an arbitrary distribution. (Balanced here is defined in
terms of the cardinality of multisets, which is consistent with the definition of a
balanced distribution for strings.)

A similarly large panoply of research issues can be based on using different
ingredients and features in the considered automata. For instance, what about
working in the asynchronous manner or with other types of parallelism, different
from the maximal one considered above? What about taking some suggestions
from [2], and consider dP automata with identical (or similar, e.g., of the same
degree) components, maybe surrounded by separate environments? Then, we can
add further tools for controlling the computations, such as promoters, inhibitors,
channel states (for the inter-components communication rules), and so on. The
use of promoters/inhibitors is particularly attractive, because they can help in
easily halting the computations.

For instance, the “difficult” language L6 = {anb2n | n ≥ 1} (it is non-
semilinear) can be recognized by a dP automaton of degree 2 as that in

114 G. Păun and M.J. Pérez-Jiménez

�

�

�

�

s1 s2

a bc

(s1, a/c, s2)

(a, out; a, in) (b, out; bb, in)|c

Fig. 4. A simple dP automaton with promoters

Figure 4, where (b, out; bb, in)|c means that c is a promoter of the antiport rule
(b, out; bb, in), the rule can be applied only if (at least one occurrenceof) c is present
in the membrane; the promoter is not involved in the rule (is not “consumed”, it
can promote at the same time any number of different rules). The automaton takes
the input in a non-balanced way: an is read by the first component and b2n

by the
second one. The computation stops when the promoter c goes to the first compo-
nent, in exchange of the unique object a present here.

The power of the promoter is visible. We do not know whether this feature
can be removed, or whether the input can be read in a balanced way (probably
not, hence this can be an example of a language which can be recognized only
in the non-balanced way); note also that we perform only one communication.

Instead of using c as a promoter, we can use a as an inhibitor of the rule
(b, out; bb, in) and the work of the system is similar.

There also are several research issues related to the computational complexity
of P and dP automata (for P automata, such investigations were already done,
e.g., in [4]), or dealing with infinite strings or infinite alphabets (some references
for P automata are [11], [8]). And, of course, we can also take into consideration
the descriptional complexity, especially the weight of symport and antiport rules.

Like in [9], we conclude with the belief that P and dP automata deserve
further research efforts.

Acknowledgements

Work supported by Proyecto de Excelencia con Investigador de Reconocida
Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. Adorna, H., Păun, G., Pérez-Jiménez, M.J.: On communication complexity in
evolution-communication P systems. In: Proc. 8th Brainstorming Week on Mem-
brane Computing, Sevilla, and Romanian J. Information Theory and Applications
(February 2010) (to appear)

2. Colomer, M.A., Lav́ın, S., Marco, I., Margalida, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D., Serrano, E., Valencia-Cabrera, L.: Studying the evo-
lution of Pyrenean Chamois by using P systems. In: Pre-proc. Conf. on Membrane
Computing, CMC11, Jena, Germany (August 2010)

3. Csuhaj-Varjú, E.: P automata. In: Mauri, G., et al. (eds.) WMC 2004. LNCS,
vol. 3365, pp. 19–35. Springer, Heidelberg (2005)

P and dP Automata: A Survey 115

4. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P
automata. Natural Computing 5, 109–126 (2006)

5. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: [17], ch. 6, pp. 144–167
6. Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P

systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002.
LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)

7. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

8. Dassow, J., Vaszil, G.: P finite automata and regular languages over countably
infinite alphabets. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) WMC 2006. LNCS, vol. 4361, pp. 367–381. Springer, Heidelberg (2006)

9. Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and
dP automata. In: Annals of Bucharest University. Mathematics-Informatics Series
(2010) (in press)

10. Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the
EATCS 79, 231–236 (2002)

11. Freund, R., Oswald, M., Staiger, L.: ω-P automata with communication rules. In:
Martin-Vide, C., et al. (eds.) WMC 2003. LNCS, vol. 2933, pp. 203–217. Springer,
Heidelberg (2004)

12. Hromkovic, J.: Communication Complexity and Parallel Computing: The Applica-
tion of Communication Complexity in Parallel Computing. Springer, Berlin (1997)

13. Oswald, M.: P Automata. PhD Thesis, TU Vienna (2003)
14. Păun, G.: Marcus Contextual Grammars. Kluwer, Dordrecht (1997)
15. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
16. Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control 5(2),
238–252 (2010)

17. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.
Oxford University Press, Oxford (2010)

18. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press, New York (1980)

19. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumes.
Springer, Berlin (1998)

20. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
21. The P Systems Website, http://ppage.psystems.eu

 http://ppage.psystems.eu

On the General Coloring Problem�

N.W. Sauer��

University of Calgary and Technische Universität Wien
nsauer@ucalgary.ca

Abstract. Generalizing relational structures and formal languages to
structures whose relations are evaluated by elements of a lattice, we
show that such structure classes form a Heyting algebra if and only
if the evaluation lattice is a Heyting algebra. Hence various new and
some older results obtained for Heyting algebras can be applied to such
structure classes.

Keywords: Generalized homomorphisms, Heyting algebras.

1 Introduction

In between 1980 and 1986 H. Maurer published together with various collabo-
rators, A. Salomaa, I.H. Sudborough, E. Welzl, D. Wood, a substantial volume
of work concerning interpretations, colorings, complexity of graphs and gram-
matical language families. For some of this work see [1], [2], [3], [4]. Many of
the questions addressed fall into the area now called constrained satisfaction
problems and or deal with gaps and dualities within, as is now recognized, the
general setting of Heyting algebras. In this paper we will provide a very general
frame within which questions asked in the early Maurer papers can be addressed
and show that in this context, elements from Heyting algebras are sufficient and
necessary for the labelling values. Then we will point to the beautiful theory on
gaps and dualities completed in recent years. Nevertheless some of the direct
constructions for special cases given in the Maurer papers are still of interest.
No attempt has been made to relate those new results to grammatical families.
See [10] for grammatical families which form a Heyting algebra and for which
then the general theory of gaps and duals applies as well.

2 Heyting Categories and Heyting Algebras

A Heyting algebra H is a bounded lattice such that for all a, b ∈ H there is a
largest element x ∈ H , called the relative complement of a with respect to b,
so that a ∧ x ≤ b. We will denote this largest element by ba. In particular then
a∧ba ≤ b and and b ≤ ba and hence a∧ba = a∧b. Hence a relative complement of
� 2000 Mathematics Subject Classification. Primary: 03E02. Secondary: 22F05, 05C55,

05D10, 22A05, 51F99.
�� Supported by NSERC of Canada Grant # 691325.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 116–126, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the General Coloring Problem 117

a with respect to b is unique. In discussions of applications of Heyting algebras to
intuitionistic logic this largest element is denoted by a → b. As we wish to reserve
the → arrow for indicating functions and in particular homomorphisms and ba

satisfies many standard laws of arithmetic we prefer to use ba. (ba+c = ba × bc,
(ba)c = ba×b etc., see [5] for a complete discussion of that arithmetic). With +
for ∨ and × for ∧.) If a bounded lattice L is given we will denote by 1 the largest
and by 0 the smallest element of L. It is known that every Heyting algebra is
distributive and hence that a finite lattice is a Heyting algebra if and only if it
is distributive. Every Boolean algebra is a Heyting algebra. See [6], [7], [8], [9].

3 Examples

For two graphs G and H a function f : V (G) → V (H) is a homomorphism if
(f(x), f(y)) ∈ E(H) whenever (x, y) ∈ E(G). Changing notation slightly we may
consider a graph to consist of a set G together with a labelling σ of the pairs in
G2 with 0 and 1. Then f : G → H is a homomorphism if: σG(x, y) = 1 implies
σH(f(x), f(y)) = 1. That is we have a labelling in the two element Boolean
lattice {1,0} and homomorphisms map pairs labelled 1 to pairs labelled 1.
(Pairs labelled 0 maybe mapped to pairs labelled 0 or 1.)

Let GTOP be the set of oriented graphs whose edges are labeled by open
subsets of the Euclidean plane. That is we wish to express the fact that two
points are related by being in some common open subset of R2. (Or fix a topology
T and use the open sets of T as labels.) A function f : V (G) → V (H) is a
homomorphism of G ∈ GTOP to H ∈ GTOP if for every edge (a, b) ∈ E(G)
the label of (a, b) is a subset of the label of (f(a)), f(b)), that is the open sets
containing the points become smaller. It is not difficult to check that the open
subsets of a topology T form a Heyting algebra under ⊆ with BA = interior(Ā∪
B) for Ā the complement of A in T .

Let N be the set of natural numbers and ω = {0}∪N. Let G be a graph with
V (G) = G which has two types of edges, say red and blue edges. We stipulate
that homomorphisms have to map red to red and blue to blue edges. More
formally we may say that there are two binary relations R and B on G which
have to be preserved under homomorphisms. Or, there are two labelings σ and
μ, of the pairs in G2 with 0 and 1 and homomorphisms are functions which
do not increase the labels in either of the two labelings. A condition which can
easily be extending to labels out of a lattice. Of course we might have infinitely
many labelings. In order to include even more general cases we could express that
situation as follows. Given is a set I of pairwise disjoint two element sets. The
structures under consideration consist of a finite set A and a function σ which
assigns to every w ∈

⋃
I∈I AI a value in {0,1}. This provides a cryptomorphic

version for the class of all finite directed graphs with |I| many different edge
types.

Similar to above we can of course represent more general relational structures
and sets of words, languages. We will define the operations of + and × and an
exponentiation of such structures. Of course when interested in a special category

118 N.W. Sauer

of structures one has then to check that those operations preserve the category,
or class of structures of interest. This is quite easily seen for relational structures
but represents difficulties for grammatical languages. Some information on that
has been obtained in [10] and has also been discussed in the papers [1], [2],[3]
and [4].

4 Labelling with Elements of a Heyting Algebra

Let A = ∅ be a set, thought of as an alphabet, and I a set of pairwise disjoint
non empty index sets and L a bounded lattice and σ a function which assigns
to every element w ∈

⋃
I∈I AI a lattice element σ(w) ∈ L. Such a quadruple

(A; I, L, σ) will be called a function structure with base set A. We will denote
by 0 the zero element of L and by 1 the one element of L. The meet in L will
be denoted by ∧ and the join by ∨. For w ∈

⋃
I∈I AI we will often write wi for

w(i). For I ∈ I and w ∈ AI we can then represent the function w by the “word”
(wi; i ∈ I), which is even more suggestive if I is ordered. Let F(I, L) be the class
of function structures of the form (A; I, L, σ). The elements of F(I, L) will be
called (I, L)-structures.

Let A = (A; I, L, σA) ∈ F(I, L) and B = (B; I, L, σB) ∈ F(I, L). We extend
functions f : A → B to functions from

⋃
I∈I AI to

⋃
I∈I BI via, for every I ∈ I:

f(w)(i) = f(w(i)) for all i ∈ I, that is f(w) = f ◦ w.

The function f : A → B is a homomorphism of A to B if:

σA(w) ≤ σB(f(w)) for all w ∈
⋃
I∈I

AI . (1)

Note that this notion of homomorphism specializes to the standard one for graphs
and relational structures in case L is the two element Boolean lattice.

We write A → B if there is a homomorphism of A to B and A ∼ B if A → B
and B → A. Note that the relation → is transitive and that the relation ∼
is an equivalence relation on F(I, L). A homomorphism is an isomorphism if
it is bijective and the inverse is a homomorphism. It follows that if f is an
isomorphism then equality holds in Inequality 1. For A ∈ F(I, L) let Ã denote
the ∼ equivalence class of F(I, L) containing the structure A. Let L(I, L) be the
set, and as we will see the lattice, of ∼ equivalence classes of F(I, L).

Note that for I ∈ I:

(A×B)I = {((wi, vi); i ∈ I) | with wi ∈ A and vi ∈ B for all i ∈ I}.

Then A× B is the (I, L)-structure (A×B; I, L, σA×B) so that for I ∈ I:

σA×B((wi, vi); i ∈ I) = σA(wi; i ∈ I) ∧ σB(vi; i ∈ I).

Note that A×B → A via πA : A×B → A with πA((wi, vi); i ∈ I) = {wi | i ∈ I}
for all I ∈ I and similar for πB : A × B → B. If A′ → A and B′ → B then

On the General Coloring Problem 119

A′ ×B′ → A×B. Hence if A′ ∼ A and B′ ∼ B then A′ ×B′ ∼ A×B. If C → A
via a homomorphism ϕA and C → B via a homomorphism ϕB then C → A×B
via ϕ : C → A × B with ϕ(ui; i ∈ I) = ((ϕA(ui), ϕB(ui); i ∈ I) for all I ∈ I,
implying that × is the categorical product of the homomorphism category on
F(I, L).

More generally, if L is complete, let (Aj ; j ∈ J) be structures in F(I, L). Then∏
j∈J Aj is the (I, L)-structure (

∏
j∈J Aj ; I, L, σ∏

j∈J Aj
) so that

σ∏
j∈J Aj

((wj,i; j ∈ J); i ∈ I) =
∧
j∈J

σAj (wj,i; i ∈ I).

Then
∏

j∈J Aj → Aj for every j ∈ J and if A′
j → Aj for every j ∈ J then∏

j∈J A′
j →

∏
j∈J Aj and hence if A′

j ∼ Aj for every j ∈ J then
∏

j∈J A′
j ∼∏

j∈J Aj . If C → Aj for every j ∈ J then C →
∏

j∈J Aj .
Let 2 be the Boolean 2-element lattice and I = {{x, y}}. Then an (I, 2)-

structure G = (G; I, 2, σG) has an obvious interpretation as an ordinary graph
without loops if for all v, w ∈ G{x,y} we have σG(v) = σG(w) if w(x) = v(y)
and w(y) = v(x) and if σG(v) = 0 if v(x) = v(y). Let H = (H ; I, 2, σH) be
another graph. The product of G with H contains two element subsets of the
form {(a, c), (b, c)} with a, b ∈ G and c ∈ H . Let v(x) = a and v(y) = b and
w(x) = w(y) = c. Then σG×H((vx, wx), (vy , wy)) = σG(v) ∧ σH(w) = 0. Hence
the usual product of graphs and more generally relational structures agrees with
the definition given above.

For A∩B = ∅ let A+B = (A∪B; I, L, σA+B) be the function structure with:

σA+B(w) =

⎧⎪⎨⎪⎩
σA(w) if {w(i) | i ∈ I} ⊆ A,

σB(w) if {w(i) | i ∈ I} ⊆ B,

0 otherwise.

If A ∩ B = ∅ let B′ = (B′; I, L, σB′) be isomorphic to B and then let A + B be
equal to A + B′, effectively defining A + B for isomorphism classes. Note that
A′ → A and B′ → B implies A′ + B′ → A + B and if A′ ∼ A and B′ ∼ B
then A′ + B′ ∼ A + B. Note that A → A + B and B → A + B and if A → C
and B → C then A + B → C implying that + is the categorical sum of the
homomorphism category on F(I, L). Of course, if L is complete, the notion of +
for two (I, L)-structures can be extended in an obvious way to

∑
j∈J Aj .

The fact that A′ ∼ A and B′ ∼ B implies A′×B′ ∼ A×B and A′+B′ ∼ A+B
and if A′ → B′ then A → B makes it possible to extend the notions of × and +
and → for F(I, L) structures to the ∼ equivalence classes of F(I, L).

The reader only interested in finite structures can restrict the class of struc-
tures A = (A; I, L, σ) in F(I, L) to those for which A is finite and every I ∈ I is
finite and disregard any mention of infinite cardinals. The class of such structures
is denoted by Ffin(I, L).

Given an infinite cardinal κ let Fκ(I, L) be the class of (I, L) structures
whose base set has cardinality less than κ. Obviously Fκ(I, L) is closed under
the operations of + and ×. Let Lκ(I, L) denote the lattice of ∼ equivalence

120 N.W. Sauer

classes in (Fκ(I, L). We will usually tacitly assume that κ is understood, that is
given in the preamble like, we are considering finite graphs only, and often just
write L(I, L) and F(I, L). If L is complete then × and + can be extended to
infinite products and sums, but with the possibility of increasing the cardinality
of the set of (I, L) structures under consideration. In many instances we also
wish to restrict the arity of the functions in

⋃
I∈I AI , say finite graphs with ℵω

many different edge types. So, for a cardinal λ let F〈κ,λ〉(I, L) be the class of
structures A = (A; I, L, σA) in Fκ(I, L) for which the cardinality of the index
sets I ∈ I is less than λ. Again, the class F〈κ,λ〉(I, L) is closed under + and
× and hence we obtain the corresponding lattice L〈κ,λ〉(I, L). There may be
other understood restrictions leading to a sublattice of L(I, L). For example the
evaluation functions σ should not change under certain permutations of some of
the index sets I.

Lemma 1. The structure consisting of L(I, L) as base set and + as join and
× as meet and → for the order relation ≤ is a bounded lattice. (For the infinite
case replace L(I, L) by L〈κ,λ〉(I, L).)

Proof. The relation → is transitive and hence it follows easily that (L(I, L);≤)
is a partial order. The facts that if C → A and C → B then C → A × B and if
A → D and B → D then A + B → D imply that (L(I, L);≤, +,×) is a lattice.

The one element of L(I, L) is the ∼ equivalence class containing a structure
whose base is a singleton set, say {x}, with σ(v) = 1 for all I ∈ I and v ∈ {x}I .
(That is, v is the constant map to x.) The zero element of L(I, L) is the ∼
equivalence class containing a structure whose base is a singleton set, say {y},
with σ(v) = 0 for all I ∈ I and v ∈ {y}I .
�

If the lattice L(I, L) is a Heyting algebra then it is distributive. In general, even
if L is not a Heyting algebra:

Lemma 2. The lattice L(I, L) is distributive.

Proof. Let (I, L)-structures A, B, C be given with the base sets A of A and B
of B and C of C with A and B disjoint. Then the base set of Dl := C× (A + B),
say Dl, is the set of pairs {(c, x) | c ∈ C and x ∈ A ∪B}. The base set of
Dr := (C × A) + C × B, say Dr, is the set of all pairs of the form {(c, x) | c ∈
C and x ∈ A} ∪ {(c, x) | c ∈ C and x ∈ B}. Then Dl = Dr := D. For a given
string s := {(ci, xi) | i ∈ I} let c = σC(ci; i ∈ I). If xi ∈ A for all i ∈ I then:

σDl
(s) = c ∧ σA(xi; i ∈ I) = σDr (s)

and similar if xi ∈ B for all i ∈ I. Note that C × A and C × B are disjoint. If
there is an i ∈ I with xi ∈ A and a j ∈ I with xj ∈ B then (ci, xi) ∈ C ×A and
(cj , xj) ∈ C ×B and hence

σDl
(s) = c ∧ σA(xi; i ∈ I) = c ∧ 0 = 0 = σDr (s).

It follows that the identity map is an isomorphism of C× (A + B) to (C×A) +
(C× B).
�

On the General Coloring Problem 121

Definition 1. Let A, B be structures in F(I, L) and L a Heyting algebra. Let
f = (fi; i ∈ I ∈ I) be functions of A into B and a = (ai; i ∈ I) ∈ AI then

f(a) = (fi(ai); i ∈ I) ∈ BI .

Let BA be the function structure (BA; I, L, σBA) so that for I ∈ I and f = (fi |
i ∈ I) with fi a function from A to B for all i ∈ I:

σBA(f) =
∧

a∈AI

(
σB(f(a))

)σA(a)
. (2)

The power on the right hand side of (2) is exponentiation in the Heyting
algebra L.

There are of course conditions on the lattice L and the class of structures un-
der consideration to ensure that Definition 1 is viable. One is that the meet in
Equality (2) exists in L and the other that the cardinality of BA is not larger
than or equal to κ when considering structures in Fκ(I, L). Both conditions will
be satisfied if κ = ℵ0 and I is finite for every I ∈ I. That is, if considering finite
structures with finite signature, or considering finite structures and a complete
lattice L. Or the case where κ is a strong limit cardinal and L is κ-meet com-
plete. (That is if L is closed under the infimum of fewer than κ elements.) More
precisely, if κ is a strong limit cardinal and λ ≤ κ and L is λ-meet complete then
the class F〈κ,λ〉(I, L) is closed under exponentiation.

Lemma 3. Let A, B be structures in F(I, L). Then X → BA for every X ∈
F(I, L) with A×X → B.

Proof. Let X = (X ; I, L, σX) be an (I, L) structure and h a homomorphism of
A × X into B. For x ∈ X let fx : A → B be the function with fx(a) = h(a, x).
For I ∈ I let a = (ai; i ∈ I) ∈ AI and x = (xi; i ∈ I) ∈ XI and f = (fxi | i ∈ I)
then:

σA(a) ∧ σX(x) = σA×B((ai, xi); i ∈ I) ≤
σB(h(ai, xi); i ∈ I) = σB(fxi(ai); i ∈ I) = σB(f(a)),

implying that σX(x) ≤
(
σB(f(a))

)σA(a) for every word (ai | i ∈ I). Hence:

σX(x) ≤
∧

a∈AI

(
σB(f(a))

)σA(a) = σBA(f).

It follows that the function ϕ : X → BA with ϕ(x) = fx for x ∈ X is a
homomorphism of X into BA.
�

Then B → BA because A× B → B.

122 N.W. Sauer

Lemma 4. Let A, B be structures in F(I, L). Then A× BA → B.

Proof. Let e : A× BA → B be the function with e(a, f) = f(a), the evaluation
function. We will show that e is a homomorphism of A× BA into B.

σA×BA((ai, fi); i ∈ I) = σA(ai; i ∈ I) ∧ σBA(fi; i ∈ I) ≤
σA(ai; i ∈ I) ∧ σB(fi(ai); i ∈ I)σA(ai;i∈I) ≤
σB(fi(ai); i ∈ I) = σB(e(ai, fi); i ∈ I).
�

Lemma 5. Let A0, B0, A1, B1, be structures in F(I, L). If B0 → B1 and A1 →
A0 then BA0

0 → BA1
1 . If B0 ∼ B1 and A1 ∼ A0 then BA0

0 ∼ BA1
1 .

Proof. As the second assertion follows from the first we will prove the first. Let
A0, B0, A1, B1, be structures in F(I, L). Let B0 → B1 and A1 → A0.

Using Lemma 3 we get for i ∈ 2: A0 × BA0
i → Bi implying A1 × BA0

i → Bi

implying BA0
i → BA1

i . Ai × BAi
0 → B0 → B1 implying BAi

0 → BAi
1 . Hence:

BA0
0 → BA1

0 → BA1
1 .
�

It follows from Lemma 5 that the exponentiation of structures can be carried
to exponentiation of the elements of L(I, L) via: For two elements Ã and B̃ in
L(I, L) let B̃Ã be the element in L(I, L) containing the structure AB.

The exponentiation given in Definition 1 has the property that the cardinality
of the base set of BA is equal to the cardinality of the base set of B power the
cardinality of the base set of A. The lattice L(I, L) has natural exponentiation
if it does have exponentiation and for all Ã and B̃ in L(I, L) there exists an
element C ∈ B̃Ã for which the cardinality of its base set is less than or equal to
the cardinality of the base set of B power the base set of A. Remember that if
an exponentiation, that is relative complements, exist then they are unique.

Theorem 1. Let κ be a strong limit cardinal and λ ≤ κ and L be λ-meet com-
plete. Then L〈κ,λ〉(I, L) is a Heyting algebra with natural exponentiation if L is
a Heyting algebra and if L〈κ,λ〉(I, L) is a Heyting algebra with natural exponen-
tiation hen L is a Heyting algebra.

Proof. Let L be a Heyting algebra. Then L〈κ,λ〉(I, L) is a bounded lattice accord-
ing to Lemma 1. It follows from Lemma 3 and Lemma 4 that for two elements
a and b in L(I, L) the element ba is the maximum of all elements x ∈ L(I, L)
with a× x → b. Hence L〈κ,λ〉(I, L) is a Heyting algebra.

Let L〈κ,λ〉(I, L) be a Heyting algebra with natural exponentiation. Denote
the constant function from I ∈ I to 0 by cI. For a ∈ L let a be the struc-
ture in F〈κ,λ〉(I, L) with base set {0} and σa(cI) = a for every I ∈ I. Then
a ≤ b in L if and only if a → b in F〈κ,λ〉(I, L). Let a,b ∈ L. The exponen-
tiation in L〈κ,λ〉(I, L) is natural and hence there exists a singleton structure E
in ba. We may assume without loss that this singleton is the number 0, say
E = ({0}, I, L, σE). For I ∈ I let c(I) = σE(cI).

Let x ∈ L with a ∧ x ≤ b. Then a× x → b which in turn implies x ≤ σE(cI)
for all I ∈ I. Hence, because relative complements are unique, σE(cI) = σE(cJ)
for all I, J ∈ I and σE(cI) is the relative complement of a with respect to b.
�

On the General Coloring Problem 123

As ℵ0 is a strong limit cardinal we obtain for F〈ℵ0,ℵ0〉(I, L) = Ffin(I, L):

Corollary 1. Lfin(I, L) is a Heyting algebra with natural exponentiation if and
only if L is a Heyting algebra with natural exponentiation.

5 Meet Irreducible Elements

An element c in a lattice L is meet irreducible if a∧ b = c implies a = c or b = c.
The question of whether the complete graphs are meet irreducible in the homo-
morphism lattice of graphs is equivalent to the seemingly intractable Hedetniemi
conjecture. See [11], [12], [13]. A structure A = (A; I, L, σ) ∈ F(I, L) is finite
if its base set A is finite. As most of the interest in Hedetniemi’s conjecture
concerns finite structures we will restrict to finite structures in this section.

Let A = (A; I, L, σA) ∈ F(I, L) be finite. Then there exists a smallest number
n so that A has a homomorphism f into A with |f(A)| = n. It is easy to see
that any two homomorphic images of A to A with this minimal number n of
elements in the base set are isomorphic. Such minimal images are called core of
A. Let B = (B; I, L, σB) be a core of A then every homomorphism of B into B
is an isomorphism and there exists a homomorphism of A into B which is the
identity on B, hence B is a retract of A. A structure A ∈ F(I, L) is a core if
every homomorphism of A to A is an isomorphism. Every ∼ equivalence class
with at least one finite structure in it, contains up to isomorphism a unique core
which is the core of every element in that ∼ equivalence class.

For the lattice L(I, L) the following necessary condition exists for meet
irreducibility.

Theorem 2. Let C = (C; I, L, σC) ∈ F(I, L) be a finite core and a = c = b
three elements in L with a∧b = c and J ∈ I and a word w ∈ AJ with σC(w) = c.

Then there exist finite structures A0 and B0 in F(I, L) with A0 ∼ C ∼ B0 so
that A0 × B0 ∼ C.

Proof. Let A = (C; I, σA) with σA(v) = σC(v) for all v ∈
⋃

I∈I AI with v = w
and let σA(w) = a. Let B = (C; I, σB) with σB(v) = σC(v) for all v ∈

⋃
J �=I∈I BI

and let σB(v) = c for all v ∈ AJ with v = w and let σB(w) = b. The first
coordinate projection π1 is a homomorphism of A× B to C, because:

For v, u ∈ CI and v = w we have π1((vi, ui); i ∈ I) = (vi; i ∈ I) and
σA×B((vi, ui); i ∈ I) = σA(vi; i ∈ I) ∧ σB(ui; i ∈ I) = σC(vi; i ∈ I) ∧ σB(ui; i ∈
I) ≤ σC(vi; i ∈ I). For v = w and u = w we have u, v ∈ AJ and π1((wi, ui);
i ∈ I) = (wi; i ∈ I) and σA×B((vi, ui); i ∈ I) = σA(wi; i ∈ I) ∧ σB(ui; i ∈ I) =
σA(wi; i ∈ I) ∧ c ≤ c = σC(wi; i ∈ I). For v = w and u = w we have w ∈ AJ

and π1((wi, wi); i ∈ I) = (wi; i ∈ I) and σA×B((vi, ui); i ∈ I) = σA(wi; i ∈
I) ∧ σB(ui; i ∈ I) = a ∧ b = c = σC(wi; i ∈ I).

Assume for a contradiction that A → C via a homomorphism, say f . The
function f is an endomorphism of C into C because σA(w) = a > c = σC(w).
Because C is a core, f is one-to-one and an automorphism of C and hence has

124 N.W. Sauer

an inverse f−1. But σC(f ◦w) ≥ a and σC(w) = c < a and f−1 ◦ (f ◦w) = w, a
contradiction. Hence A → C and similarly B → C.

Let A0 = A + C and B0 = B + C.
�

Hedetniemi’s conjecture says that the complete graphs are meet irreducible
within the homomorphism lattice of graphs, or equivalently if the chromatic
number of two graphs having chromatic number n is equal to n. Given a lattice
L and a single two element index set I the obvious choice for complete graphs
is to assign a value a ∈ L to all of the vertices and another value b to all of the
two element subsets to obtain the analogue of complete ordinary graphs without
loops. Of course in order to avoid trivial cases we have to choose b ≤ a and
because of Theorem 2 both a and b irreducible in L. Which in many cases ex-
cludes the choice of a = 0. Let G(L) be the class of graphs whose vertices and
edges are labeled by elements of the lattice L, and by misuse of notation also
the resulting ∼ equivalence classes. For a,b meet irreducible elements of L with
b ≤ a denote by Kn,L,a,b ∈ G(L) the structure on n vertices labeled by a and
the two element subsets labelled by b, called complete structures of G(L).

Then considering for example the lattice L = {1,0, a,b} on four elements
with a ≤ b ≤ a there are three types of complete structures. Labelling the
points with a or b and the edges then with b or a respectively, or with 1. It is
not difficult, but requires a few case distinctions, to show that any one of those
complete structures will be meet irreducible if and only if the corresponding
complete graph on the same number of vertices is meet irreducible.

Problem 1. Is it the case that for all Heyting algebras L the generalized complete
graphs Kn,L,a,b are meet irreducible in G(L) if and only if the ordinary complete
graph on n vertices is meet irreducible? If not, is there a good characterization
of lattices and pairs of elements in them for which this is the case?

6 Gaps, Dualities and Trees

The topics of gaps, dualities, trees and related notions have recently, after many
years of development mainly by Nešetřil and Tardif, found a very beautiful res-
olution in the general context of Heyting algebras, see [14], [15], [16], [17] to
mention just a few papers of their very substantial work. The references of the
indicated papers will lead to other related work. This section contains only a
very brief and incomplete outline of their work, relating it to L(I, L)-structures.

Let L be a lattice. An element c ∈ L is connected if c ≤ a ∨ b implies c ≤ a
or c ≤ b. The lattice L has finite connected decomposition if for every c ∈ L
there is a finite set F of connected elements in L with c =

∨
F . The structures

in Lfin(I, L) have finite connected decomposition. In addition the elements in
Ffin(I, L) have a core, as remarked on earlier. A duality pair (l, r) in L is a pair
of elements in L so that for all x ∈ L: l ≤ x if and only if x ≤ r. A pair of
elements (a,b) of L is a gap if a < b and a ≤ c ≤ b implies a = c or c = b. The
following theorem is a very special case of the general results in [14]:

On the General Coloring Problem 125

Theorem 3. The gaps in a Heyting algebra L with connected decompositions
are exactly the pairs (a,b) such that for some duality (l, r),

l ∧ r ≤ a ≤ r and b = a ∨ l.

Let L be a Heyting algebra. Then Lfin(I, L) is a Heyting algebra with connected
decompositions and hence we obtain from Theorem 3:

Corollary 2. The gaps in a Lfin(I, L) with L a Heyting algebra are exactly the
pairs (Ã, B̃) such that for some duality (L̃, R̃),

L̃× R̃ → Ã → R̃ and B̃ = Ã + L̃.

Let (L̃, R̃) be a duality in Lfin(I, L). Then for all X̃ ∈ L:

L̃ → X̃ if and only if X̃ → R̃.

That is, given R, the constraint satisfaction problem to determine the structures
X with X → R has the solution that there is a structure L such that those X will
have a homomorphism into R for which L does not have a homomorphism into
X. Of course then replacing R and or L by finitely many structures is an obvious
next question. An answer to this and related question can be found in [14].

For which structures A is there a structure B so that (A, B) is a gap and how
to calculate the structure B has been answered in [17]. A gap can only be under
a “tree like structure”. The definitions in [17] of circle and tree generalize in an
obvious way to Ffin(I, L) structures.

References

1. Maurer, H.A., Sudborough, J.H., Welzl, E.: On the complexity of the general col-
oring problem. Inform. and Control 51, 123–145 (1981)

2. Maurer, H.A., Salomaa, A., Wood, D.: Colorings and interpretations: a connection
between graphs and grammar forms. Discrete Appl. Math. 3, 119–135 (1981)

3. Maurer, H.A., Salomaa, A., Wood, D.: Dense hierarchies of grammatical families.
J. ACM 29(1), 118–126 (1982)

4. Maurer, H.A., Salomaa, A., Wood, D.: Dense hierarchies of grammatical families.
J. Assoc. Comput. Mach. 29(1), 118–126 (1982)

5. Duffus, D., Sauer, N.: Lattices arising in categorical investigations of Hedetniemi’s
conjecture. Discrete Math. 152, 125–139 (1996)

6. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press,
Columbia (1974)

7. Birkhoff, G.: Generalized arithmetic. Duke Math. J. 12, 283–302 (1942)
8. Rutherford, D.E.: Introduction to Lattice Theory. Oliver and Boyd (1965)
9. Gierz, G., Hoffmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.:

Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applica-
tions 93 (2003)

10. Kuich, W., Sauer, N., Urbanek, F.: Heyting Algebras and Formal Languages. J. of
Universal Computer Science 8(7), 722–736 (2002)

126 N.W. Sauer

11. Tardif, C.: Hedetniemi’s conjecture, 40 years later. Graph Theory Notes of New
York LIV, pp. 46–57. New York Academy of Sciences (2008)

12. Zhu, X.: A survey on Hedetniemi’s conjecture. Taiwanese Journal of Mathemat-
ics 2(1), 1–24 (1998)

13. Sauer, N.: Hedetniemis Conjecture–a survey. Combinatorics, graph theory, algo-
rithms and applications. Discrete Math. 229(1-3), 261–292 (2001)

14. Foniok, J., Nešetřil, J., Pultr, A., Tardif, C.: Dualities and Dual Pairs in Heyting
Algebras. Order. arXiv:0908.0428v1 (July 16, 2010)

15. Foniok, J., Nešetřil, J., Tardif, C.: Generalised dualities and maximal finite an-
tichains in the homomorphism order of relational structures. European J. Com-
bin. 29(4), 881–899 (2008)

16. Nešetřil, J., Pultr, A., Tardif, C.: Gaps and dualities in Heyting categories. Com-
ment. Math. Univ. Carolin. 48(1), 9–23 (2007)

17. Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps
and good characterisations). J. Combin. Theory Ser. B 80(1), 80–97 (2000)

Learning

Transdisciplinary Collaboration and Lifelong
Learning: Fostering and Supporting New

Learning Opportunities

Gitta Domik1 and Gerhard Fischer2

1 University of Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
2 University of Colorado at Boulder, Boulder, CO. 80301-0430, USA

Abstract. The contexts provided by the world of the 21st century re-
quire that our societies rethink and reinvent learning, teaching, working,
and collaboration. A first basic challenge insufficiently addressed by prior
research and practice is that almost all of the significant problems of to-
morrow will be systemic problems, which cannot be addressed by any one
specialty. These problems require transdisciplinary collaboration that fo-
cuses on opportunities for knowledge workers to work in teams, commu-
nities, and organizations that encompass multiple ways of knowing and
collaborating. A second basic challenge is that learning can no longer be
dichotomized into a place and time to acquire knowledge (school) and a
place and time to apply knowledge (the workplace). To educate students
today requires that we provide them with opportunities and soft skills
to become lifelong learners.

This paper (1) discusses the conceptual frameworks that we have de-
veloped to address these challenges; (2) describes our implementation
and experience teaching a one semester graduate course based on our
framework; and (3) discusses implications and future opportunities.

Keywords: 21st century competencies, systemic problems, transdisci-
plinary collaboration, lifelong learning, self-directed learning, learning on
demand, computer science education, breadth-first teaching, Long Tail
learning, reflective communities.

1 Introduction

Many real-world problems have become too complex to solve for a single ex-
pert out of one discipline. The knowledge relevant to solve complex problems
is increasingly distributed among many people requiring socio-technical envi-
ronments [1] that bring together people with different, complementary, and
often-controversial points of view to form a community. Despite these widely
accepted attributes, contemporary higher education is primarily characterized
by receiving knowledge out of one single department (usually synonymous with
one single discipline), therefore forming specialists with depth in unidisciplinary
knowledge and discipline-dependent characteristics (“stereotype”). We support
“tribal behaviour” in our departments, creating “artists”, “computer scientists”

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 129–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

130 G. Domik and G. Fischer

and “urban planners”, each group harmonizing their own world and suffering
from Groupthink [2].

Another major challenge facing our educational system is that the body of
knowledge to be taught in a Computer Science (CS) curriculum expands con-
tinuously as testified by the changes in the Computing Curricula recommen-
dations by ACM and IEEE ([3], [4]). Even after our students graduate, the
body of knowledge will expand and they will be responsible to acquire knowl-
edge without extrinsic motivation (e.g. mandated assessments) both within their
own discipline, but in collaboration with others coming not only from their own
discipline.

To respond to these challenges, we are engaged in research activities and edu-
cational innovations focused on fostering and supporting new learning opportuni-
ties based on inter- and transdisciplinary collaboration and lifelong learning that
are aimed at (1) having students practice meaningful collaboration with other
disciplines, and (2) transforming students from being educational consumers to
become socially competent, responsible, self-directed learners.

This paper first defines and explores transdisciplinary collaboration and life-
long learning. We postulate two strategies in a framework, namely breadth-first
and Long Tail, that aid in the learning process, before we describe our imple-
mentation and experience teaching a one semester graduate course based on our
framework. Finally, we discuss implications and future opportunities.

2 Transdisciplinary Collaboration

Transdisciplinary collaboration is a group process between individuals educated
and knowledgeable in different disciplines (such as: computer scientists,
biologists, designers of new media, urban planners, etc.). In exploring these col-
laborations, researchers and educators use the terms multidisciplinarity, interdis-
ciplinarity, and transdisciplinarity, often without clearly distinguishing among
them, though these terms are well defined and distinguished by e.g. Klein [5],
Rosenfield [6] and Nicolescu [7]. In short,

– multidisciplinarity means that several disciplines are being involved either
in a sequential or juxtaposed mode;

– interdisciplinarity implies integration or blending of knowledge from different
disciplines;

– transdisciplinarity places the highest demand with the objective to form new
knowledge from available unidisciplinary awareness.

Transdisciplinarity in education requiring the creation of new organizational
framework for knowledge out of separate disciplines demands collaboration of
researchers and faculty from different disciplines. Therefore, in most standard
university courses, interdisciplinary collaboration (feasible with a single educa-
tor) will be used to prepare for later transdisciplinary or interdisciplinary col-
laboration among various disciplines.

Providing students with opportunities in inter- and transdisciplinary educa-
tion as a preparation for engaging later in transdisciplinary collaboration raises

Transdisciplinary Collaboration and Lifelong Learning 131

Table 1. Demands for Transdisciplinary Collaboration in Science Transferred to
Education

Demand by Stokols [9] How educators can be of support:

support members‘ strong commitment to
achieving transdisciplinary goals and out-
comes

support students in

– finding unique topics they feel pas-
sionate about;

– team building process

establish common conceptual ground and
informal social ties

establish common language and help es-
tablish social ties

schedule frequent face-to-face meetings
for brain-storming of ideas

encourage and enforce face-to-face meet-
ings; give help with structure of these
meetings

establish electronic linkages among par-
ticipants

encourage the use of free electronic link-
ages, e.g, Wikis, Skype, or ICQ addition-
ally to Email

constrain unrealistic expectations and
ambiguity about shared goals and prod-
ucts; constrain conflicts among alterna-
tive disciplinary views of science

participate in selected face-to-face meet-
ings to constrain “tribal behaviour”
through own interpersonal and interdis-
ciplinary skills

the issues at what educational level will students be mature enough to blend
knowledge or to form new knowledge? Derry and Fischer [8] specifically argue
for a transdisciplinary education at the graduate level. Rosenfield [6] also places
transdisciplinary training at the early graduate level, because a solid grounding
in their own discipline, respect for the contributions that other disciplines can
make, and the sensitivity to cooperative endeavour is a prerequisite to perform
transdisciplinary research.

Stokols [9] observes in his scientific collaborations the following factors sup-
porting productive and rewarding collaboration between disciplines:

– members‘ strong commitment to achieving transdisciplinary goals and out-
comes;

– interpersonal skills of team leaders;
– history of prior collaboration among team members;
– spatial proximity of team members‘ offices and laboratories;
– schedule frequent face-to-face meetings for brain-storming of ideas;
– establish electronic linkages among participants;
– foster institutional supports for these objectives.

In addition, he articulates the following factors constraining transdisciplinary
collaboration:

– substantial time required to establish common conceptual ground and infor-
mal social ties;

– unrealistic expectations and ambiguity about shared goals and products;

132 G. Domik and G. Fischer

– conflicts among alternative disciplinary views of science; and
– bureaucratic impediments to cross-departmental collaboration.

Stokols research is grounded in an analysis of scientific collaborations (to im-
prove understanding of nicotine addiction), our research activities transferred
these indicators into educational settings. Table 1 transfers educationally rele-
vant indicators to a constructive condition in education.

From Table 1 we can derive two issues that are paramount: (1) students
need to find a common ground for their communication as early in the course
as possible [10]; (2) students need projects that they feel committed to out of
personal interest. Once these concerns are solved, the other issues (e.g. team
building process, enforcing meaningful group meetings and electronic linkage)
will be easier to solve.

3 Lifelong Learning

In the 21st century, learning can no longer be dichotomized into a place and
time to acquire knowledge (school) and a place and time to apply knowledge
(the workplace). Todays citizens are flooded with more information than they
can handle, and tomorrows workers will need to know far more than they can
learn today in school.

Lifelong learning is an essential challenge for inventing the future of our soci-
eties; it is a necessity rather than a possibility or a luxury to be considered. It
complements and transforms industrial-age with knowledge-age approaches (see
Table 2). Lifelong learning is more than adult education and/or training [11]:
it is a mindset and a habit for people to acquire. Lifelong learning creates the
challenge to understand, explore, and support new essential dimensions of learn-
ing such as: (1) self-directed learning, (2) learning on demand, (3) collaborative
learning, and (4) organizational learning. These approaches need new media and
innovative technologies to be adequately supported.

A significant weakness of current educational systems is that they do not
deliberately educate for lifelong learning. Rather, current systems require that
at a certain point in their development, learners in all walks of life leave school
in which they were mostly consumers of educational material and throw a “big
switch” to become socially competent, responsible, self-directed learners who
successfully use tools and technologies to enrich their personal and working lives
and who collaborate with one another to solve local and global problems. Yet
little of their previous educational experiences have prepared them to do any of
this.

To enrich the cultures of work and learning and the personal lives of learners by
cultivating mindsets and skills for lifelong learning, students must be prepared,
not only to excel in traditional academic settings, but to contribute knowledge
and effort to a world characterized by change, uncertainty and pressing trans-
disciplinary problems that will require new forms of scholarship, publication,
communication and participation.

Transdisciplinary Collaboration and Lifelong Learning 133

Table 2. Contrasting Industrial-Age and Knowledge-Age Approaches

Industrial-Age Approaches Knowledge-Age Approaches

there is a “scientific”, best way to learn
and to work (programmed instruction,
computer-assisted instruction, produc-
tion lines, waterfall models)

⇒ real problems are ill-defined and wicked;
design is argumentative, characterized
by a symmetry of ignorance among
stakeholders

separation of thinking, doing, and learn-
ing

⇒ integration of thinking, doing, and
learning

task domains can be completely under-
stood

⇒ understanding is partial; coverage is im-
possible

objective ways to decompose problems
into standardizable actions

⇒ subjective, situated personal interests;
need for iterative explorations

all relevant knowledge can be explicitly
articulated

⇒ much knowledge is tacit and relies on
tacit skills

teacher / manager as oracle ⇒ teacher / manager as facilitator or coach
operational environment: mass markets,
simple products and processes, slow
change, certainty

⇒ customer orientation, complex products
and processes, rapid and substantial
change, uncertainty and conflicts

Against this background, we have articulated the following credo for trans-
disciplinary collaboration and lifelong learning that grounds the research and
education activities discussed in this paper:

“If the world of working and living relies on collaboration, creativity, definition
and framing of complex problems and if it requires dealing with uncertainty,
change, and intelligence that is distributed across cultures, disciplines, and tools
— then education should foster transdisciplinary competencies and mindsets that
prepare students for having meaningful and productive lives in such a world.”

4 Innovative Teaching and Learning Strategies:
Breadth-First and Long Tail

4.1 Teaching Different Disciplines Out of the CS Department

Computer science students are expected to be firmly grounded in their own
discipline and possess depth in the body of knowledge as described by the Com-
puting Curricula 2001[3]. Soft skills, as necessary as they are for the success of
our graduates in the later work place, are not defined in [3] as a core or optional
topic. Nevertheless, computer science students must and will learn essential soft
skills during their years at the university: e.g. communication skills (in speech, in
writing, visual), or working in teams. “[Soft] skills should not be seen as separate
but should instead be fully incorporated into the computer science curriculum
and its requirements” as requested in [3]: Educators teach communication skills
while giving a seminar or advising a bachelor or master thesis; or use software
projects to teach team work in software engineering.

We have to aim at teaching transdiciplinary collaboration and lifelong learn-
ing in a similar mode: focusing on the content of our CS curriculum but at the

134 G. Domik and G. Fischer

same time preparing students for that important competency. While a seminar
is better than a lecture course in teaching the competency of oral presenta-
tion, we can identify in [3] areas of knowledge that will hold that promise for
transdisciplinary collaboration, e.g. the area of Graphics and Visual Computing,
where courses on visualization, augmented reality, animation, or (more recently)
game development, deepen the knowledge of graphics architecture or rendering
algorithms, but at the same time gain from the presence of students of other
disciplines (e.g. media sciences, architecture, physics).

Technical competency is ranked high in the job market, so students of other
disciplines are showing sufficient interest in joining computer science courses if
the prerequisites are manageable [12]. While an electrical engineering student
might be interested in OpenGL programming to better utilize her knowledge on
signal processing, a media design student might have interest in Flash scripting
or a student of journalism to set up a Wiki.

Acquiring skills in a successful course of mixed disciplines (at the graduate
level, as recommended earlier in this paper) will need an appropriate balanc-
ing of breadth and depth of participating students. In a suitable project for a
visualization course for computer science and physics students using air flow
data, computer science students will gain depth in developing and implementing
real-time flow visualization algorithms, while physics student will only acquire
breadth knowledge in that area. (With a joint lecturer of the physics department
involved, computer science students can acquire breadth knowledge of modelling
air flows while physics students can deepen their previously theoretical knowl-
edge in fluid dynamics.) There should be no need to take Physics 101 for CS
students, or for Physics students to take the CS introductory course to C++, to
work jointly on projects.

Sometimes CS educators complain about how long it takes to teach non-
technical students the skills of programming before “real” work on joint projects
can start, when they should concentrate on developing a common ground [10]
for all students so they could work together on a solution, each grounded in the
skills of their own discipline and extending into the other discipline only to build
necessary overlaps.

4.2 Breadth-First: Finding a Common Language between
Disciplines

Stokols [9] demands to establish a common conceptual ground and informal
social ties early on in the project, so that the time left to work together is maxi-
mized. Finding a common conceptual ground means bridging spatial, temporal,
technological, and disciplinary distances [13]. The major issue in a course will
be to first empower students of diverse disciplines to communicate with each
other. We propose to use a breadth-first strategy, where we start with a holistic
view of each topic to teach (breadth) and undermine it with an application;
then use depth to the level the students are ready for. The first part (breadth)
provides overall understanding of the topic on an entry level. The application
should give extra motivation to learn more about this topic. The second part

Transdisciplinary Collaboration and Lifelong Learning 135

(depth) will built up through sophisticated layers and is designed for a specific
discipline. If a topic is prepared breadth-first, then the breadth part of the course
can be simultaneously taught to students of various disciplines. Advantages for
a breadth-first approach are [14]:

– CS students get a holistic view of a topic before they learn about more
complicated details;

– CS students can then move on to any depth-level;
– students of other disciplines learn of the importance of a topic through the

goal of the application;
– students of different backgrounds can be taught together at the breadth-

level;
– all students are being taught the same “language” to describe problems on

and solutions to the topic;
– application oriented approaches are motivational to both men and women.

The result of this approach is that breadth-first leaves students of different disci-
plines with a common language that they can use to discuss goals and strategies
for joint projects.

Let us assume that students of diverse disciplines work together in groups on
a visualization project. Language differences will become obvious when students
discuss the quality of a visual representation and call it “an effective picture”. In
the mind of an art major this might mean “aesthetic” picture, a computer scien-
tist will think of a (cost) efficient representation. Introducing the terms “expres-
sive” and “effective” [15] to clearly define quality criteria for visual presentations
during the first lectures will later be helpful when students discuss their project
goals. “Expressive” and “effective” will then replace their discipline-dependent
quality descriptors.

This common language is essentially the most important ingredient for trans-
disciplinary collaboration, because without it the door stays open for misun-
derstandings, unrealistic expectations and ambiguity about shared goals. It also
opens the opportunity to provide additional depth to CS students either by (1)
using learning tools providing breadth in the upper levels, and depth in the lower
levels; (2) individually helping CS students find references for depth-topics; or (3)
offering a seminar (only for CS students) parallel to an interdisciplinary course.

4.3 Long Tail: Passion-Based and Self-motivated Learning

One of the major roles for new media and new technology from a transdisci-
plinary collaboration and lifelong learning perspective is not to deliver predi-
gested information to individuals, but to provide the opportunity and resources
for engaging them in authentic activities, for participating in social debates
and discussions, for creating shared understanding among diverse stakeholders,
and for framing and solving personally meaningful problems. Our research is
grounded in the fundamental belief that all humans (1) have interest and knowl-
edge in one or more niche domains and (2) are eager to actively contribute in

136 G. Domik and G. Fischer

Table 3. Long Tail Concepts in Business and in Learning and Education

Web-Based Businesses Learning and Education

unlimited shelf-space unlimited knowledge
megahits (head) core curriculum (head)
niche markets (tail) passion for unique topics (tail)
hybrid model of distribution hybrid model of learning and discovery
many interesting books, movies, songs
will not enter the traditional marketplace

many interesting topics and ideas will not
be taught in traditional learning environ-
ments

personally meaningful activities [16]. The richness of these interests and the pas-
sion of the humans involved in them leads to the Long Tail [17] of distributed
knowledge [18]. The fundamental transformation of a Long Tail perspective refers
to at least two aspects: (1) learning and discovery about exotic, but important
topics outside the mainstream education curriculum, and (2) the opportunity
to communicate with people who share similar niche interests anywhere in the
world on a regular basis.

The Long Tail theory explores how our economy and culture is shifting from
mass markets to million of niches. It analyzes the effect of technologies that
have made it easier for consumers to find and buy niche products based on
the “infinite shelf-space effect” supported by new distribution mechanisms that
eliminate the bottlenecks of broadcast and traditional bricks-and-mortar retail.

The concept of the Long Tail (as developed in business environments) [17]
postulates that our culture and economy are increasingly shifting away from a
focus on a relatively small number of products and markets at the head of the
popularity curve toward a huge number of niches in the tail. The research in
our Center for Life Learning & Design (L3D) reinterprets and explores the Long
Tail business environments for transforming learning and education [18, 19] as
seen in Table 3.

Assessing passion-based, self-motivated learning based on the Long Tail per-
spective requires fundamentally different assessment approaches compared to
what standard educational testing can offer [20]. L3D is currently researching to
understand the benefits to the kinds of education that this approach can afford,
such as the ability of learners to pursue those topics of interest to them and to
take responsibility for their own education (examples of courses can be found at
http://l3d.cs.colorado.edu/~gerhard/courses/). By focusing on the tail
of the Long Tail, we will not ignore the head but we will create a synergy be-
tween the two. Interest driven activities are boundary crossing: they move across
settings of home, school, work, community, and online. In the context to enhance
the competency of transdisciplinary collaboration and education this means that
the Long Tail approach will be grounded in the following assumptions [21]:

– The activities of the head are the course topics that computer science stu-
dents will improve their depth in, and students of other disciplines will learn
to understand on a breadth level. The motivation for participation is mostly

http://l3d.cs.colorado.edu/~gerhard/courses/

Transdisciplinary Collaboration and Lifelong Learning 137

determined by extrinsic motivation (e.g. for credits; to improve job market
value).

– The activities of the tail (the major contribution of Long Tail learning)
should be focused on interest and passion allowing learners of all disciplines
to pursue personally meaningful problems. The motivation for participation
is mostly determined by intrinsic motivation. Learning and discovery are
facilitated by passion-based participation on niche topics.

In the following chapter the here presented strategies have been applied at the
University of Paderborn to a one semester graduate computer science course
with 48 participating students representing three different groups of disciplines:
computer science, business information systems and non-technical students (e.g.
from media science or the German language department).

5 Implementation and Assessment of our Framework in a
Graduate Course

Setting of the course. The University of Paderborn has 14.000 students and
is divided into five faculties. The course “Data and Information Visualization”
is offered in the CS graduate program as part of a computer graphics module.
For the Summer Term 2009 it was opened to graduate students of all disci-
plines and thus gained 48 participants from three different faculties: 29 CS stu-
dents (Faculty of Computer Science, Mathematics and Electrical Engineering),
14 business information systems students (Faculty of Business Administration
and Economics), 5 non-technical students (media science students and literature
students – all from the Faculty of Arts and Humanities). CS students have to be
at graduate level, and completed at least a basic computer graphics course and
one advanced rendering course. The visualization course included 90 minutes of
lecture and 45 minutes of lab time per week over a period of 15 weeks. Students
received 4 ECTS (European Credit Transfer and Accumulation System) for the
course, which translates to an expected effort of 100-120 hours of work on the
students side. In the lectures students learn methods and techniques to visual-
ize information and data in an expressive and effective way. Lab time is being
used to practice concepts and techniques. Starting in week 4, students worked
on interdisciplinary projects of their choice in teams of their choice (with the
restriction that each team had to hold a sufficient disciplinary mix).

Breadth-First: finding a Common Ground. Computer-generated visual-
ization (including visualization of data derived from scientific measurements or
scientific computing, or collected by humans or machines) holds multitudes of ex-
amples useful for teaching. Most of these are multidisciplinary, owing the context
to an application outside CS, while the interactive graphics is clearly of interest
to our CS students. Additionally, perception, design, and other areas of disci-
plines outside CS, play an important role in computer-generated visualization.
The core topics to teach computer-generated visualization are: definitions; data;

138 G. Domik and G. Fischer

user and tasks; mapping from data parameters to visual attributes; represen-
tation techniques; interaction issues; concepts of the visualization process; and
systems and tools. These eight core topics constitute the head of the knowledge to
be conveyed in a visualization course [22]. Using a “Breadth-First” learning tool
(the top levels constitute the breadth that is comprehensible for students of any
discipline, [14]) these core topics were taught during lectures. Of the typically
four levels for each core topic (increasing level meaning increasing depth) level
one and two were presented in class, suitable for all disciplines. This strategy
helps both to teach the content of visualization to all students, but also to remove
misunderstandings in the communication by providing a common language.

Long-Tail: finding topics of personal interest. Starting in the first lecture,
each core topic and concept was enforced by visualization examples in an applica-
tion context. This aided both the breath-first approach in teaching as well as the
later search for unique project topics for students. Examples given included: visu-
alization of large, multivariate environmental data; software visualization (e.g.
algorithm animation, visualization of large code parts), augmented reality to
support surgery; visualization of large information spaces, such as demographic
data, etc. In each of these cases visualizations aid in the interpretation of com-
plex data for a specific context (often outside CS), but are only possible through
special visualization techniques: e.g. animation, flow visualization, GPU-based
volume rendering, etc. These visualizations constituted the tail of visualization
knowledge.

In week 3 (out of 15 course weeks), students had each to submit a complex
data set they desired to visualize as their semester project. They were asked to
describe the data in a conceptual form (something they learned to do in the
previous lecture), set visualization goals, suggest visualization techniques, and
describe possible users. This, we hoped, would bring out the topics that the
students personally cared about. The received project proposition brought to
light many individual interests (e.g. visualization of 20.000 auctions from the
on-line game World-of-Warcraft; visualization of web search results or of traffic
analyses) but also of some “hot spots”, e.g. visualization of medical, weather
or ecological data, that were suggested by several students, but for individually
different data sets. In a group effort between all tutors, 7 projects that seemed
representative (and interesting) of the 48 data sets were selected: visualizing
orthopaedic data on human striding styles utilizing a game engine; visualizing
indicators of the very large OECD education data base; visualizing data of the
European pollutant emission register; visualizing data of over 70 runs of one
student in preparation for a marathon; network performance visualization; flow
visualization of a hurricane; and medical volume visualization. Basic knowledge
on visualization (by all students) and good graphics programming capabilities
(by CS students) were available, but knowledge of new algorithms and/or new
Application Programming Interfaces would need to be acquired and design de-
cisions to be made to succeed in the projects.

Transdisciplinary Collaboration and Lifelong Learning 139

Supporting the team building process. One major obstacle in interdisci-
plinary courses is that of building project teams over the first weeks of a course,
while students of different disciplines are still unfamiliar with each other. So ad-
ditionally to providing a common language, the goal was to also facilitate social
ties to help in the team building process. While the use of social networks to get
to know each other seems a good idea, the practical side of it makes it useless for
a one semester course: Once each of the 48 students have become “friends” on a
social network, they will slowly get to know each other. This process being too
slow, we solved the problem by an early lab assignment, requesting to fill out a
“private profile”. The form contained information such as “my abilities for the
project group”, “degree program of student”, “former high school”, “member-
ships in clubs or associations”, or “favourite films/books”. Students were also
asked for 1-2 personal pictures (this was not mandatory) and their first name.
Every one of 48 students submitted this “private profile”. The resulting docu-
ment was made available on the web (password secured).

When choosing teams in week 4, it was a requirement that students built
teams by selecting team members from all three faculties. This ensured a dis-
tribution of similar core curriculum knowledge in each team. Students who had
submitted the selected 7 projects started the team building process. Support for
the selection process was also provided through the “private profiles” collected
from all students.

To help students in starting up the communication process in their team, the
assignment for the first group meeting included a brainstorming session on the
group project. This brainstorming session was a guided role play that made sure
that each of the students had a communicative role in the discussion process.
This assignment intended to dampen unrealistic expectations of team members,
let everyone voice their understanding of the joint project and “break the ice”
in their communication. After the first meeting, each team had to meet at least
once a week and keep meeting notes using a strict protocol. Meeting notes were
also sent to tutors and lecturer. Team members present, action items for the
week to come, and the date of the next meetings were obligatory items in the
notes. Instructor or tutors would show up at the meetings without notice — both
to help on the content of the project and with interpersonal problems, should
any arise.

Qualitative and quantitative assessment of course. Admittedly, not every
one of the 48 students found the topic with their personal strongest passion be-
cause, in order to build teams with different disciplines involved, we reduced the
amount of projects from 48 to 7. In all cases but one the team members became
personal friends, sometimes even to the point that they would alter personal
characteristics as in the case of the “Jogging Group”: One runner had suggested
providing data tracking over 70 of his runs via cell phone and tracker software,
including running length, speed, altitude, temperature, etc. All members of the
project group became runners (and very good friends) by the time the project
ended. Only in one project (out of seven) the group worked incoherently, splitting
into two groups, separating not disciplines but cultures.

140 G. Domik and G. Fischer

A voluntary assessment of students, handed out in the sixth of fifteen weeks,
reveals more about the course. Of 48 students, 30 students returned the survey:
18 computer science students; 9 business information systems students; and 3
non-technical students (two media science students and one literature student).

The survey revealed that only 33% of the students had previously participated
in interdisciplinary courses at their university, 67% had not. The percentage of
computer science students with experience in interdisciplinarity was lower than
the average experience in this group. The desire of all students to later work in
interdisciplinary teams was up at 90%.

Students were also asked what they would like to know about each other before
teaming up in a project group: they showed a strong preference (53%) for “the
abilities this person brings to the project” rather than “private information”
(10%) or “project interest” (4%).

The number of actual face-to-face meetings for each team was one per week
during the first weeks (the obligatory group meeting they had to report about)
and 2, 3, or more meetings per week between week 9 and 15. Students used
cell phones, Email, ICQ, SVN (a version control system), Wiki, and Skype to
communicate between meetings.

The “private profiles” were used by 67% of the students to look up private
information of course mates. Business information system and non-technical stu-
dents used it to a higher percentage than computer science students.

After the project presentations (last week of course), each student was asked to
fill out an additional survey (resulting in 46 responses). In one of those questions
the percentage of contribution to the project of each individual team member
was requested. This was the last chance for students to emphasize their own
contribution to the project and thus boost their grade, or to point out failures
of other team members in order to find a scapegoat for goals that had not
worked out in the project. The closer knit the group had become, the closer
these numbers matched. Some groups equally divided the effort by the number
of team members, among those the “jogging group”. Only one group had widely
mismatching numbers — the only group who had turned their project in late
and experienced problems throughout the project because of a cultural split as
already pointed out above.

In this same — final — survey the question on their desire for interdisciplinary
work was repeated. Of the 46 responding students 41 confirmed their desire
to later work with interdisciplinary teams — leaving the desire in the same
percentage level as before.

Examples of projects for this course and previous interdisciplinary visualiza-
tion courses can be found in [23].

Did we succeed in preparing students for transdisciplinary collabora-
tion and lifelong learning? The survey shows that students are interested in
collaboration with other disciplines, but hardly get a chance to do so in the course
of their CS studies. Several indicators (their agreement over individual achieve-
ment of team members, interest in personal profiles of other students, stating the
desire to work on interdisciplinary teams while and after the interdisciplinary

Transdisciplinary Collaboration and Lifelong Learning 141

experience, and personal observation) attest to a good collaboration and inter-
est in each other. The strategies employed (personal profiles, early team selec-
tion, common language, enforced - but supported - weekly meetings of all team
members) gave students much opportunity for face-to-face meetings. Indication
for miscommunication was only present in one group out of seven.

Passion for the projects was strongest visible with the “jogging group”, but
also with a group using a game engine to visually present their data, as well as
the groups visualizing education indicators, hurricane data and medical data.
In each of these groups people with personal interests on relevant visualization
goals were present and could transport their enthusiasm to others on the team.
Each team had to acquire new knowledge to succeed in their project. The quality
and quantity of all but one of the resulting projects were very pleasing from the
subjective standpoint of the educator.

6 Implications and Future Opportunities

In their later work lives, university graduates will need competencies in transdis-
ciplinary collaboration and self-directed learning to cope with the complexity of
real-world problems. However, many educational programs in computer science
are still dominated by curriculum-driven learning (where educators set the goals
and determine the content) and curricula excluding work with other disciplines
(supporting tribal behaviour) rather than providing students with the opportu-
nity to become reflective professionals allowing them to acquire the capacity for
lifelong learning and respect and ability to work with the perspectives of many,
formerly separate disciplines. Opening the curriculum for course work coaching
students in educational experiences where they are taught how to collaborate
with other disciplines, improvise, innovate, and learn when the answer is not
known, is a challenge for the 21st century. In this paper we presented breadth-
first and long tail as strategies to use in graduate courses to make our students
more creative, imaginative, innovative, and curious beyond their own discipline
by teaming up with students of other disciplines to work on a project they feel
committed to out of personal interest. The authors are convinced that the com-
petency of transdisciplinary collaboration and self-directed learning, awakened
in our students, will support a new climate of problem solving in this century.

Acknowledgments. The themes of this paper reflect some of the many interest
and achievements of Hermann Maurer: (1) he has been one of the pioneers to
transcend the narrow boundaries of specific disciplines (to name one prominent
example: he has been the leading person behind the “The Journal of Universal
Computer Science (J.UCS)”, a high-quality open access electronic publication
dealing with all aspects of computer science); and (2) he has been a prime
example of a lifelong learner himself by always being at the forefront of exploring
new research topics.

Gitta Domik thanks Hermann Maurer for his inspiring lectures during her
studies and being a lifelong mentor thereafter. Gerhard Fischer thanks Hermann

142 G. Domik and G. Fischer

Maurer for numerous interesting discussions during the last decade in which he
learnt many new ideas.

Both authors thank the members of the Center for LifeLong Learning & De-
sign (L3D) at the University of Colorado at Boulder for providing background
information and inspiring debates about the content of this paper. Gerhard Fis-
chers ideas and understanding about transdisciplinary collaboration and educa-
tion have greatly benefited from collaboration with Sharon Derry (University
of Wisconsin) and David Redmiles (University of California at Irvine). Gitta
Domik‘s work was inspired by a research semester at L3D in 2007/2008.

References

1. Mumford, E.: A Socio-Technical Approach to Systems Design. Requirements En-
gineering 5(2), 59–77 (2000)

2. Janis, I.: Victims of Groupthink. Houghton Mifflin, Boston (1972)
3. Computing Curricula 2001 (2001),

http://www.acm.org/education/curric_vols/cc2001.pdf

4. Computing Curricula 1991. CACM 34(6), 69–84 (June 1991)
5. Klein, J.T.: A Platform for a Shared Discourse of Interdisciplinary Education.

Journal of Social Science Education 5(2), 10–18 (2006), www.jsse.org ISSN 1618-
5293,

6. Rosenfield, P.L.: The potential of transdisciplinary research for sustaining and
extending likages between the health and social sciences. Social Sciences and
Medicine 35, 1343–1357 (1992)

7. Nicolescu, B.: The transdisciplinary evolution of learning (1999),
http://www.unesco.org/education/educprog/lwf/dl/nicolescu_f.pdf

8. Derry, S., Fischer, G.: Toward a Model and Theory for Transdisciplinary Grad-
uate Education. Paper presented at 2005 AERA Annual Meeting, Symposium,
“Sociotechnical Design for Lifelong Learning: A Crucial Role for Graduate Edu-
cation”, Montreal (April 2005), http://l3d.cs.colorado.edu/~gerhard/papers/
aera-montreal.pdf

9. Stokols, D.: Towards a Science of Transdisciplinary Action Research. American
Journal of Community Psychology 38, 63–77 (2006)

10. Clark, H.H., Brennan, S.E.: Grounding in Communication. In: Resnick, L.B.,
Levine, J.M., Teasley, S.D. (eds.) Perspectives on Socially Shared Cognition, Amer-
ican Psychological Association, pp. 127–149 (1991)

11. Fischer, G.: Lifelong Learning - More Than Training. Journal of Interactive Learn-
ing Research, Special Issue on Intelligent Systems/Tools In Training and Life-Long
Learning (Mizoguchi, R., Kommers, P.A.M.(eds.)) 11(3/4), 265–294 (2000)

12. Rushmeier, H.: IEEE Workshop on Visualization Education for Non-Technical
Majors: Post Workshop Materials (2006), http://graphics.cs.yale.edu/holly/
vis2006/vis-non-tech.html

13. Fischer, G.: Distances and Diversity: Sources for Social Creativity. In: Proceedings
of Creativity & Cognition, pp. 128–136. ACM, London (2005)

14. Domik, G., Goetz, F.: A Breadth-First Approach for Teaching Computer Graphics.
Education Papers. In: Proceedings of Eurographics 2006, Vienna, Austria, Septem-
ber 4-8, pp. 1–5 (2006)

15. Mackinlay, J.: Automating the Design of Graphical Presentations of Relational
Information. ACM Trans. on Graphics 5(2), 110–141 (1986)

http://www.acm.org/education/curric_vols/cc2001.pdf
www.jsse.org
http://www.unesco.org/education/educprog/lwf/dl/nicolescu_f.pdf
http://l3d.cs.colorado.edu/~gerhard/papers/aera-montreal.pdf
http://l3d.cs.colorado.edu/~gerhard/papers/aera-montreal.pdf
http://graphics.cs.yale.edu/holly/vis2006/vis-non-tech.html
http://graphics.cs.yale.edu/holly/vis2006/vis-non-tech.html

Transdisciplinary Collaboration and Lifelong Learning 143

16. Fischer, G.: Beyond ’Couch Potatoes: From Consumers to Designers and Active
Contributors. In Firstmonday (Peer-Reviewed Journal on the Internet) (2002),
http://firstmonday.org/issues/issue7_12/fischer/

17. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More.
Publisher Hyperion 2006 (2006) ISBN 1401302378

18. Brown, J.S., Adler, R.P.: Minds on Fire: Open Education, the Long Tail, and
Learning 2.0 (2008), http://www.educause.edu/ir/library/pdf/ERM0811.pdf

19. Fischer, G.: Cultures of Participation and Social Computing: Rethinking and Rein-
venting Learning and Education. In: Proceedings of the International Conference
on Advanced Learning Technologies (ICALT), pp. 1–5. IEEE Press, Riga (2009)

20. National-Research-Council: Beyond Productivity: Information Technology, Inno-
vation, and Creativity. National Academy Press, Washington, DC (2003)

21. Collins, A., Fischer, G., Barron, B., Liu, C., Spada, H.: Long-Tail Learning: A
Unique Opportunity for CSCL? In: Proceedings of CSCL 2009: 8th International
Conference on Computer Supported Collaborative Learning, University of the
Aegean, Rhodes, Greece, vol. 2, pp. 22–24 (2009)

22. Domik, G.: Do We Need Formal Education in Visualization? Visualization View-
point. IEEE Computer Graphics and Applications 20(4) (2000)

23. Domik, G.: Interdisciplinary Collaboration in a Visualization Course, Informatics
Education Europe IV, November 5-9, Freiburg, Germany (2009)

http://firstmonday.org/issues/issue7_12/fischer/
http://www.educause.edu/ir/library/pdf/ERM0811.pdf

Towards an Open Learning Infrastructure for
Open Educational Resources:

Abundance as a Platform for Innovation

Erik Duval, Katrien Verbert, and Joris Klerkx

Dept. Computerwetenschappen, K.U.Leuven, B3000 Leuven, Belgium
{Erik.Duval,Katrien.Verbert,Joris.Klerkx}@cs.kuleuven.be

Abstract. This paper explains how we have contributed to the develop-
ment of an open learning infrastructure that manages and makes avail-
able Open Educational Resources. By removing friction between people
and resources, we can leverage the long tail of learning resources, so that
the abundance of learning resources will act as a platform for innovation.

Keywords: open educational resources, learning technology standards.

1 Introduction

This paper briefly presents some of the main outcomes of our work on learning
objects, metadata and interoperability. The basic idea is that we are beginning
to realize our early vision of an open learning infrastructure that enables scal-
ing up technical facilities for Technology Enhanced Learning (TEL) to a global
scale [22].

Our focus for the last 15 years has been on providing easy access to all learning
resources, for all teachers and for all students [10]. In a life-long learning context:
this means for all of us. Obviously, there are some basic challenges in terms of
internet connectivity, but as access to the network proliferates, so will access to
digital learning resources. Our vision is very similar to what Hermann Maurer
presented in [14].

Making more content and other resources more easily available will not solve
all the problems related to education, training and learning in general. However,
we do believe that the abundance thus created will act as a motor for innovation,
much in the same way that ubiquitous access to music has profoundly changed
the way consumers interact with music and, as a consequence, the music industry.

Indeed, there is an assumption underlying much of our work that, at some
point, more is not just more, but creates a qualitative tipping point as well. One
of the reasons why we pursue global access to all learning resources for everyone
is because we believe that there will be a long tail effect [7] of learning material:
basically, there may be few students and teachers of more specialized topics like
Egyptian hieroglyphs; but on a global scale, there are sufficient people interested
in this topic from a learning perspective to create a sustainable community for
share and reuse.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 144–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abundance as a Platform for Innovation 145

In fact, abundance not only creates new opportunities, but can also create
new problems, such as the Paradox of choice [18] that arises when the cognitive
and emotional overhead of dealing with abundance overshadows the benefits of
a larger number of options. We consider such problems as drivers for innovation,
as they encourage us to research novel ways to enable interested parties to find
or be alerted about relevant resources in appropriate ways [15].

Since almost 15 years now, we pursue this goal of share and reuse in the
ARIADNE Foundation that has developed a network of repositories of learning
materials, with associated tools for harvesting and search [2]. More recently, we
created a world-wide alliance of similar organizations, a network of networks of
repositories: Globe [3] that interconnects about a dozen such networks, using the
ARIADNE technology as its technical backbone infrastructure.

This paper is structured as follows: section 2 presents how we are evolving
towards an open learning infrastructure. Section 3 illustrates how the resulting
abundance is beginning to act as a motor for innovation. Section 4 presents some
ongoing and future work. We then present our conclusion and list bibliographical
references.

2 Background: Towards an Open Learning Infrastructure

2.1 Introduction

In order to realize an open learning infrastructure, we have contributed to the
development of a number of open standards, that enable the interconnection
between different infrastructures, or even the development of an integrated in-
frastructure from heterogeneous independently developed building blocks [13].

The main relevant standards include:

– IEEE LTSC Learning Object Metadata (LOM) [5]: a hierarchical structure of
some 70 metadata elements that can be used to describe learning resources;

– CEN WSLT Simple Query Interface (SQI) [6]: a conceptual protocol for
searching in repositories with LOM descriptions;

– CEN WSLT Simple Publishing Interface (SPI) [21]: a language for ingesting
new metadata and/or resources into a learning object repository;

– Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) [23]:
a protocol for periodically retrieving all updated or new metadata from a
repository.

Most of these standards are conceptual: this means that they are abstract and
can be bound to a specific representation, for instance as a SOAP or REST
interface for the interfaces or protocols, or as JSON or XML for LOM. The
main idea is that they would thus be more resilient to change of technology
bindings, an important aspect as the standards are intended to remain relevant
for a decade or longer.

146 E. Duval, K. Verbert, and J. Klerkx

2.2 The ARIADNE Infrastructure

The main design principle in ARIADNE is to make everything disappear but
the benefits by removing friction when one wants to share and reuse learning
resources. For that reason, we have built an infrastructure to make this happen.
Figure 1 illustrates the ARIADNE infrastructure.

Fig. 1. The layered ARIADNE infrastructure

Basically, the infrastructure is composed of three layers:

1. The Tool layer hides protocols and standards for end users in a toolset that
provides access to learning material through web applications, information
visualization, mobile information devices, multi-touch displays and mash-up
applications (see also below). A more administration oriented application is

Abundance as a Platform for Innovation 147

the ARIADNE harvester that is able to harvest metadata with OAI-PMH
from a content provider into the ARIADNE storage layer.

2. The Middle Layer offers persistent management of learning objects and meta-
data through a set of services, such as:
– the repository services that allow for the management of learning objects,

relying on standards such as IEEE LTSC LOM [5], CEN WSLT SQI [6],
CEN WSLT SPI [21] and OAI-PMH [23];

– the registry services that manage information on learning object reposi-
tories, including the information necessary for other infrastructure com-
ponents to select protocols supported by a given repository;

– an identifier service for providing unique identifiers for learning objects
managed in the infrastructure,

– a validation service that checks both the syntactic and semantic validity
of metadata instances against multiple standards, specifications and their
application profiles,

– a transformation service that converts metadata from one format, for
instance Dublin Core, into another format, for instance the ARIADNE
LOM application profile.

3. The Storage Layer allows for storing both content and metadata in diverse
repositories depending on the choice of the administrator who deploys the
ARIADNE infrastructure.

Detailed information about these services has been published in [13]. In the
following section, we show how these services and tools can be orchestrated to
add new repositories to the ARIADNE network.

2.3 Adding New Repositories

Figure 2 illustrates how ARIADNE services and tools can be orchestrated to
connect the repositories of content providers X (left side of figure) and Y (upper
right side) with the ARIADNE network. As an example, we explain how we
recently integrated the JorumOpen repository [19] in the ARIADNE network.
All resources from JorumOpen are described in the Dublin Core (DC) metadata
schema. JorumOpen had already implemented an OAI-PMH target on top of the
repository. To connect to ARIADNE, this OAI-PMH target is registered into the
ARIADNE Registry (step 1a) where administrative and technical information
is added about the repository, such as the title, description, contact person,
supported protocols used in his repository (OAI-PMH and DC metadata), etc.
The registry uses an RSS feed to alert all (step 1.2) of its client tools about the
new repository that has been added.

In response to this alert, the ARIADNE harvester tool issues a query (step 2)
to the registry to obtain all relevant information about this repository. In step
3, the harvester performs the following steps:

– The Dublin Core metadata is harvested from JorumOpen using the OAI-
PMH protocol (step 3.1).

148 E. Duval, K. Verbert, and J. Klerkx

Fig. 2. Adding new repositories

– From experience in various projects, we have learned that we cannot rely
on the identifiers that are added by content providers because duplicates
may arise. That is why the harvester calls the Identifier service (step 3.2)
to generate a unique identifier, which is added to the metadata instances of
provider JorumOpen.

– A call to the transform service takes care of the conversion from Dublin Core
to the ARIADNE LOM Application Profile (step 3.3).

– Faulty metadata instances often result in errors or inconsistencies in tools
and user interfaces. All metadata instances are therefore validated against
the validation scheme (step 3.4), and invalid instances are discarded. Map-
ping metadata from a local metadata scheme to a global one typically hap-
pens either by manually editing one record at the time, or in batch with a
script written specifically for this mapping. Our experience has shown that
both of these methods make this a very error-prone process. For example,

Abundance as a Platform for Innovation 149

in the eContentplus project MELT, 90% of the original metadata from con-
tent providers resulted in validation errors. The reports of the ARIADNE
validation service helped the content providers to dramatically decrease this
number to less than 5%.

– The harvester uses the Simple Publishing Interface (SPI) specification to
publish the harvested and validated metadata into the ARIADNE target
that is registered as well in the registry. All content from JorumOpen can
thus be found in ARIADNE (step 3.5) after the harvester has completed the
cycle from steps 3.1 to 3.5.

It is very important to emphasize the semi-automated nature of this process:
all that is required is the registration of some administrative and technical data
in the registry. From there on, there may be alerts for manual intervention if
metadata does not validate or if the services are not available, but otherwise the
process proceeds automatically. This is very important if we want to make this
infrastructure scale world-wide.

2.4 From ARIADNE to the Rest of the World

Through various projects over the years, the ARIADNE infrastructure has
proven to be capable of providing flexible, effective and efficient access to large-
scale collections of learning resources. At the time of writing, the ARIADNE
registry contains information about 79 repositories that enables access to more
than a million learning resources.

In fact, the ARIADNE resources are also available outside of the strict context
of the ARIADNE network itself. The registry is interoperable with third-party
registries, so that all information added in one registry is automatically synchro-
nized to the other registries. In this way, content that is collected by ARIADNE
can automatically be found in other networks as well. This also works the other
way around. If another content provider Y is added to the LACLO registry
[4], this information is synchronized with the ARIADNE registry. Cycle 3.1 to
3.5 described in the previous section then starts all over again, such that those
resources become available for ARIADNE users as well.

All harvested metadata is accessible and open to the world:

1. First of all, the complete LOM/XML dataset can be harvested through the
OAI-PMH protocol.

2. Secondly, the LOM/XML dataset can be queried through a SOAP binding
that implements the Simple Query Interface (SQI) that supports many types
of search technologies.

3. Thirdly, a REST API with a JSON binding of LOM allows you to specify
queries and aspects of the result format (like resultListSize, resultformat,
languages, etc.). Results can be returned in both XML and JSON result
formats.

4. Finally, and a bit more experimental in nature, we have also made available
the same data as a SPARQL target on top of an RDF binding of LOM.

150 E. Duval, K. Verbert, and J. Klerkx

2.5 Search and Find

The ARIADNE infrastructure has enabled us to collect more than a million
learning resources. To enable efficient and fast search on top of this collection,
we make use of the open source Apache Lucene and SOLR frameworks that
provide powerful, accurate, efficient and facetted search algorithms.

Because search performance is really essential for a satisfactory user expe-
rience, we frequently run a series of benchmarking tests on top of our search
services. At the time of writing, we achieve an average 15ms response time dur-
ing stress testing our services. These stress tests are performed with the help
of Apache Jmeter, a Java desktop application designed to load test functional
behavior and measure performance of web applications. Although these results
are very acceptable, we are currently investigating multiple alternatives for fur-
ther improving these results when we scale up the number of resources in our
network. Options we are currently exploring include:

– In-memory loading of the complete search index,
– Reducing index size by only including a subset of the metadata elements,
– Distributed search over multiple servers.

The ARIADNEFinder is our state-of-the-art web tool for querying: the screen-
shot in figure 3 shows how we deployed this in the context of GLOBE. The
tool enables the end user to issue a keyword search in the top middle part of
the interface. The left pane supports facetted search on the results, by selecting

Fig. 3. ARIADNE Finder deployed for GLOBE

Abundance as a Platform for Innovation 151

facets and values to include relevant results or to exclude results that are of less
importance. On the right pane, one can simultaneously issue a query to exter-
nal sources of material. Typically, for those targets, it does not make sense to
harvest all of their resources. In the wikipedia case for example, the resources
are very volatile so instead of harvesting those resources every day, we prefer to
use their open search API to issue queries to them and federate the results back
into the overall search interface.

3 Abundance as a Platform for Innovation
3.1 Introduction

As we mentioned in the introduction, an open learning infrastructure will replace
the older problem of scarcity of learning resources by a situation of abundance,
so that more effective and efficient ways to make use of that abundance will be
required.

We see at least three ways to achieve this goal:

1. integration: rather than providing an external, extra tool for teachers or
learners to find relevant resources, we can integrate with their mainstream
authoring or teaching or learning workflow and suggest relevant material
when appropriate (section 3.2);

2. visualization: in order to provide more sophisticated interaction with learning
resources, rich visualizations can be developed where learners and teachers
navigate an information space, potentially making use of novel interaction
techniques provided by multi-touch large scale displays (section 3.3);

3. analytics: through a careful analysis of detailed tracking of what teachers
and learners do, we can obtain a clearer idea of what the user is trying to
do and how well he is achieving his goal, which opens up opportunities for
advanced user support (section 3.4).

No doubt, there will be other approaches that leverage the emergent abundance
in other ways...

3.2 Integration

As mentioned above, teachers and learners can leverage the abundance of learn-
ing content in much more flexible ways if we can integrate access to these re-
sources in more subtle ways in their existing workflows, rather than sending
them to a dedicated web site or tool.

A successful example of this approach is the component that we have inte-
grated into the Moodle Learning Management System (LMS) [9]. As illustrated
by figure 4, when users want to upload a document in their course, our software
enables them to search in ARIADNE from within Moodle. In addition to remov-
ing friction from the user experience, this also provides us with opportunities
to enrich the typical keyword search from the teacher with background knowl-
edge about the course he is working on, including the topic, the student target
audience, the technical requirements, etc.

152 E. Duval, K. Verbert, and J. Klerkx

Fig. 4. Searching ARIADNE from within Moodle

Fig. 5. Inserting resources in Moodle and ARIADNE

Similarly, we also enable a teacher to upload a new resource not only in a
Moodle course, but also in the ARIADNE repository, without any additional
effort or without leaving the familiar learning environment. This is illustrated
in figure 5. In this case, we can make use of the contextual information that the
LMS provides to enrich the automatic generation of metadata that accompany
the resource in the repository.

We have developed similar interfaces from within the Blackboard learning
environment, Microsoft Powerpoint and the LAMS authoring tool. A widget for
integration into a Personal Learning Environment (PLE) is under development.

3.3 Visualization

When teachers and learners do want to interact explicitly with the abundance
of resources available to them, we can use information visualization techniques
to provide them with a rich environment for exploration and discussion.

Abundance as a Platform for Innovation 153

Fig. 6. The Maeve table

A successful example of this approach is the maeve table that provides a
large reactable for exploring learning resources about architects, architectural
styles, building techniques, etc. [16] - see figure 6. Learners and teachers can
manipulate cards that represent the information and put them on an interactive
surface to display associated concepts and relations to other information. In this
way, learners and teachers can explore a rich information space.

An alternative, more conventional access paradigm is the web portal, shown
in figure 6, which uses information visualization techniques such as elastic lists
[20], that allows for browsing multi-facetted data structures.

3.4 Analytics

In recent years, researchers are focusing increasingly on the need for better mea-
surement, tracking, analysis and visualization of data about learners. Research
on learning analytics [1] evolved that describes the set of activities to help un-
derstand and optimize learning and the environments in which it occurs.

The capturing of user activities is often researched as a basis to gather and
analyze behavior of learners [11][8]. Several models have been elaborated to track
user interactions with tools and resources, such as read and write actions on
documents or even keystrokes. Examples of models that are used in a Technology
Enhanced Learning context are the Contextualized Attention Metadata [24] and

154 E. Duval, K. Verbert, and J. Klerkx

Fig. 7. The Student Activity Meter (SAM)

the UICO [17] models. Both models enable the capturing of user actions within
an application, and potentially additional information about her current context,
such as location or task related information.

The analysis of such data is a key enabler to gain insights into learning ef-
fects achieved and potential impact of technologies on learning. In addition, the
visualization of such data has been researched extensively as a basis to support
self-reflection, awareness and collaboration among learners or teachers [19]. One
of our applications, SAM (Student Activity Meter), visualizes the time learners
spent on learning activities [12]. Figure 7 shows some of the visualizations that
SAM provides:

– The line chart (vis. A in figure 7) shows a line for every student, connecting
all the timestamps when she was working with the cumulative amount of
time spent. The inclination of the line shows the effort of the student. A
steep line means an intensive working period. A flat line shows inactivity.

– Statistics of global time spent and document use are shown in box 2 in
figure 7. Next to the actual numbers, a graphical view is presented with color
coding of the minimum, maximum and average time spent and documents
used, to give the user a visual comparison. Upon selection of a user in the
visualization in box 1, her statistics are also shown.

– The recommendation pane in box 3 allows to navigate through the most
used and the most time spent on resources.

Abundance as a Platform for Innovation 155

Evaluation results indicate that such visualizations can be used successfully to
increase awareness for teachers, i.e. of what and how students are doing. Re-
source usage can show teachers popular learning materials and enables resource
discovery.

4 Conclusion

In this paper, we have argued that we are evolving towards an open learning
infrastructure, much as originally envisioned in [14]. This evolution will make
available an abundance of learning resources that will act as a motor of innova-
tion. In this way, it will help to push further a research interest that permeates
much of Hermann Maurers research.

Acknowledgments. Katrien Verbert is a Postdoctoral Fellow of the Research
Foundation Flanders - FWO. The research leading to these results has received
funding from the European Community Seventh Framework Programme
(FP7/2007-2013)under grant agreement no 231396 (ROLE). The work presented
in this paper is partially supported by the European Commission eContentplus
programme - projects ASPECT (ECP-2007-EDU-417008) and ICOPER (ECP-
2007-EDU-417007). The research leading to these results has received funding
from the EuropeanCommunity Seventh FrameworkProgramme (FP7/2007-2013)
under grant agreements no 231396 (ROLE) and no 257566 (iTEC).

References

1. 1st International Conference on Learning Analytics and Knowledge 2011 (2011)
2. Ariadne Foundation, http://www.ariadne-eu.org
3. GLOBE, http://globe-info.org/
4. LACLO: Latin-American Community of Learning Objects,

http://www.laclo.org/

5. IEEE 1484.12.1-2000 Standard for Learning Object Metadata (2000)
6. CEN Workshop Agreement CWA 15454 - A Simple Query Interface Specification

for Learning Repositories (2005), ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/
WS-LT/CWA15454-00-2005-Nov.pdf

7. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion (2006)

8. Butoianu, V., Vidal, P., Verbert, K., Duval, E., Broisin, J.: User context and per-
sonalized learning: a federation of Contextualized Attention Metadata. Journal of
Universal Computer Science (2010)

9. Dougiamas, M., Taylor, P.: Moodle: Using Learning Communities to Create an
Open Source Course Management System. In: Lassner, D., McNaught, C. (eds.)
Proceedings of World Conference on Educational Multimedia, Hypermedia and
Telecommunications 2003, pp. 171–178. AACE, Honolulu (2003),
http://www.editlib.org/p/13739

10. Duval, E., Forte, E., Cardinaels, K., Verhoeven, B., Durm, R.V., Hendrikx, K.,
Wentland-Forte, M., Ebel, N., Macowicz, M., Warkentyne, K., Haenni, F.: The
ARIADNE knowledge pool system. Communications of the ACM 44(5), 72–78
(2001), http://portal.acm.org/citation.cfm?id=374308.374346

http://www.ariadne-eu.org
http://globe-info.org/
http://www.laclo.org/
ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/WS-LT/CWA15454-00-2005-Nov.pdf
ftp://ftp.cenorm.be/PUBLIC/CWAs/e-Europe/WS-LT/CWA15454-00-2005-Nov.pdf
http://www.editlib.org/p/13739
http://portal.acm.org/citation.cfm?id=374308.374346

156 E. Duval, K. Verbert, and J. Klerkx

11. Fox, S., Karnawat, K., Mydland, M., Dumais, S., White, T.: Evaluating implicit
measures to improve web search. ACM Trans. Inf. Syst. 23(2), 147–168 (2005),
http://doi.acm.org/10.1145/1059981.1059982

12. Govaerts, S., Verbert, K., Klerkx, J., Duval, E.: Visualizing Activities for Self-
reflection and Awareness. In: Luo, X., Spaniol, M., Wang, L., Li, Q., Nejdl, W.,
Zhang, W. (eds.) ICWL 2010. LNCS, vol. 6483, pp. 91–100. Springer, Heidelberg
(2010)

13. Klerkx, J., Vandeputte, B., Parra Chico, G., Santos Odriozola, J.L., Van Assche,
F., Duval, E.: How to share and reuse learning resources: the Ariadne experience.
In: Wolpers, M., Kirschner, P.A., Scheffel, M., Lindstaedt, S., Dimitrova, V. (eds.)
EC-TEL 2010. LNCS, vol. 6383, pp. 183–196. Springer, Heidelberg (2010),
https://lirias.kuleuven.be/handle/123456789/280116

14. Marchionini, G., Maurer, H.: The roles of digital libraries in teaching and learning.
Communications of the ACM 38(4) (1995),
http://portal.acm.org/citation.cfm?id=205345

15. Morville, P.: Ambient Findability, vol. 11. O’Reilly Media, Inc., Sebastopol (2005),
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&

path=ASIN/0596007655
16. Nagel, T., Pschetz, L., Stefaner, M., Halkia, M., Müller, B.: mæve – An Interactive

Tabletop Installation for Exploring Background Information in Exhibitions. In:
Jacko, J.A. (ed.) HCI International 2009. LNCS, vol. 5612, pp. 483–491. Springer,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02580-8_53

17. Rath, A.S., Devaurs, D., Lindstaedt, S.N.: UICO: an ontology-based user inter-
action context model for automatic task detection on the computer desktop. In:
Proceedings of the 1st Workshop on Context, Information and Ontologies,CIAO
2009, pp. 8:1–8:10. ACM, New York (2009),
http://doi.acm.org/10.1145/1552262.1552270

18. Schwartz, B.: The paradox of choice why more is less. HarperCollins e-books (2007),
http://books.google.com/books?id=zutxr7rGc_QC&printsec=frontcover

19. Soller, A., Mart́ınez, A., Jermann, P., Muehlenbrock, M.: From Mirroring to Guid-
ing: A Review of State of the Art Technology for Supporting Collaborative Learn-
ing. Int. J. Artif. Intell. Ed. 15(4), 261–290 (2005),
http://portal.acm.org/citation.cfm?id=1434935.1434937

20. Stefaner, M., Muller, B.: Elastic lists for facet browsers. In: Wagner, R., Revell, N.,
Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 217–221. Springer, Heidelberg
(2007)

21. Ternier, S., Massart, D., Assche, F.V., Smith, N., Simon, B., Duval, E.: A Sim-
ple Publishing Interface For Learning Object Repositories. In: Proceedings of
World Conference on Educational Multimedia, Hypermedia and Telecommunica-
tions 2008, Chesapeake, VA, pp. 1840–1845 (2008),
http://go.editlib.org/p/28625

22. Ternier, S., Verbert, K., Parra, G., Vandeputte, B., Klerkx, J., Duval, E., Ordonez,
V., Ochoa, X.: The Ariadne Infrastructure for Managing and Storing Metadata.
IEEE Internet Computing 13(4), 18–25 (2009),
http://www.computer.org/portal/web/csdl/doi/10.1109/MIC.2009.90

23. Van de Sompel, H., Nelson, M.L., Lagoze, C., Warner, S.: Resource Harvesting
within the OAI-PMH Framework. D-Lib Magazine 10(12) (2004),
http://www.dlib.org/dlib/december04/vandesompel/12vandesompel.html

24. Wolpers, M., Najjar, J., Verbert, K., Duval, E.: Tracking actual usage: the attention
metadata approach. Educational Technology and Society 10(3), 106–121 (2007),
https://lirias.kuleuven.be/handle/123456789/158649

http://doi.acm.org/10.1145/1059981.1059982
https://lirias.kuleuven.be/handle/123456789/280116
http://portal.acm.org/citation.cfm?id=205345
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0596007655
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0596007655
http://dx.doi.org/10.1007/978-3-642-02580-8_53
http://doi.acm.org/10.1145/1552262.1552270
http://books.google.com/books?id=zutxr7rGc_QC&printsec=frontcover
http://portal.acm.org/citation.cfm?id=1434935.1434937
http://go.editlib.org/p/28625
http://www.computer.org/portal/web/csdl/doi/10.1109/MIC.2009.90
http://www.dlib.org/dlib/december04/vandesompel/12vandesompel.html
https://lirias.kuleuven.be/handle/123456789/158649

Why E-Learning as It Stands Is Not Enough

Narayanan Kulathuramaiyer1,� and Hermann Maurer2

1 Faculty of Computer Science and Information Technology,
Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

nara@fit.unimas.my
2 Institute for Information Systems and Computer Media,

Graz University of Technology, Graz, Austria
hmaurer@iicm.edu

Abstract. E-Learning today has become widely accepted as a means of
information and knowledge access and sharing for many learning appli-
cations. Despite the extensive growth E-learning systems and contents,
it has to be noted that there are still many shortcomings that has led us
to ask the question: Is E-Learning as it stands enough? E-Learning as
it stands today is far from being assimilated fully into everything that
we do. To make things worse, the age of Google is further challenging
E-Learning, through the emergence of phenomena such as Google Copy
Paste Syndrome, the flattening of expertise, short-spanned learner focus
and the emerging culture of mediocrity. The full symbolic power of the
emerging Web dragons together with emerging social trends is expected
to challenge E-Learning much more in future. This paper then highlights
the extent of influence of global Data Mining companies on the current
and future E-Learning. A personalized localized control scenario is given
to serve as an ideal for making E-Learning to become enough for its
envisaged purpose.

1 Introduction

E-Learning has brought about anytime and anywhere learning capability to reach
out to people all over the world. At the same time it has been widely adopted in
institutions across the world by millions of educators. As an example, MOODLE
has around 50,000 sites in 210 countries with over 3.8 million courses, 37 million
users and a growing content repository of 33 million resources and 60 million
quiz questions [1]. This staggering growth and explosive development of learning
contents in a bottom-up fashion may be construed a major success. However, the
question that we pose here is: is this all that we have expected of E-Learning?

E-Learning has been anticipated to become a means to bring about widespread
transformation in empowering citizens to work collaboratively towards a
knowledge-based society. E-Learning as it stands today is however far from be-
ing assimilated fully into everything that we do, in order to attempt to achieve
this. To make things worse, the age of Google is further challenging E-Learning,

� Corresponding author.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 157–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

158 N. Kulathuramaiyer and H. Maurer

through the emergence of phenomena such as Google Copy Paste Syndrome, the
flattening of expertise, short-spanned focus, culture of mediocrity, etc. The term
‘age of Google’ is used to describe the era of the Web data mining information
supply power houses with extensive highly personal data mining powers. These
power houses also cover other big information supply engines such as Microsoft’s
social networking tools, Facebook and Twitter.

A large number of distributed rationalization agents that make the best sense
of available material to suit a particular task will be needed. Although research
in this direction has been on the way, a coherent solution consolidating and
exploiting available learning resources is far from a reality. Even if these tools
emerge, the question of who will have control over such vast resources can also
be a major concern. Until an effective organization, rationalization and filtering
capability becomes available, E-Learning will continue to expand as isolated
bottom up content development for specific purposes.

E-Learning to a large extent is still viewed as an alternative mode of learning;
it has not yet matured to take up its anticipated role. For one thing, E-learning
cannot be expected to just happen by the mixing of modalities or the mere
provision of learning content coupled with multiple easy-to-use communications
channels. For E-Learning to remain relevant and play its role effectively it has
then to become the mainstream helper for students in their quest for knowledge
and life-long learning. This becomes exceedingly important in the emerging mo-
bile learning era.

The difficulty in determining if E-Learning has actually taken place can be
illustrated via the following scenario. In a remote, rural, connected E-Learning fa-
cility meant to support learning activities, we found computers merely being used
for watching recorded TV programmes via CD ROMs. The important lessons
learnt were that, without efforts in guiding a learning community adequately
and ensuring the proper utilization and application of technology, E-Learning
just cannot be expected to happen. There is thus a need to effectively engage a
learning community by integrating E-Learning within the local context. Apart
from this, there is also a need to integrate mechanisms for the close monitoring
of learning activities. The packaging of E-Learning should also duly consider the
background of learners (considering capability and needs), their literacy levels
and creating opportunities for them to assimilate and apply the knowledge within
a local context. There is also a need for human-centred metrics that can help
ascertain and keep track of actual learning outcomes. Until E-Learning system
can address these concerns effectively, E-Learning cannot become fully assim-
ilated personal learning assistant. The lessons from this scenario are reflective
not only of community learning but also of the main stream E-Learning.

2 Challenges to E-Learning

E-learning is faced with numerous challenges that make student learning difficult.
Among these are developments associated with the age of Google which have
totally undermined the role and relevance of E-Learning. These developments
will be discussed here.

Why E-Learning as It Stands Is Not Enough 159

2.1 Short Spanned Focus

Anyone can become an instant celebrity in this participative era by creating a
popular video; being able to gain even more attention than even a noble prize
winner. In the age of Google and Facebook, attention seeking individuals require
much less efforts to become note-worthy or even to become recognized as an
expert. This of course to a large extent influences learner behavior and their
approach to learning.

Emerging cultures includes short message exchanges, integrated environment
with aggregated feeds from multiple sources, real-time alerts, indiscriminately
competing interrupts, media-rich environment causes a need to constantly stay
connected at all times. The packaging of buzz has been neatly assimilated with
all forms of contents and information; creating an irresistible charm whereby
the younger generation (digitally more native) are getting fully immersed and
absorbed within a highly interconnected virtual world. This world then poses
great challenges for learners to remain focused and continuously engage in rigor-
ous learning activities. The new media has reduced student focus as Email and
emerging communicational means tend to be far too distracting [2]. Another
emerging development, as pointed out by [3], is the emergence of a Youtubian
generation which would believe a 30 second clip more than a text book. The
thinking and questioning ability of people are thus seen as being eroded and
compromised.

2.2 Collective Intelligence or Consensus on Ignorance

The web has brought about an environment for ‘rapid generation of publications’
mainly through the instantaneous access to myriad sources of information. The
web, according to Andrew Keen in his book the “Cult of the Amateur”[3] has
brought about “less culture, less reliable news and a chaos of useless informa-
tion”. Instead of the promised increase in truth it has filled us with an overload
of information of doubtful reliability. Keen points out that we are bogged down
by superficial observations rather than deep analysis and shrill opinion rather
than considerate judgement. In his words, the internet is being transformed into
the sheer noise of 100 million bloggers. When even the keeping track of blogs
has in itself become a major challenge, checking for validity will definitely be
insurmountable.

This has posed several problems in the actual quality of information from
the Web. As Keen puts it, on the internet where everyone has the same voice,
the words of a wise man, counts for no more than the mutterings of a fool.
This has also been alluded to by Tara Brabazon who calls this phenomenon as
the flattening of expertise [4]. Her main concern has been regarding the shallow
information acquired from the Web. Brabazon, a professor of media studies in
the University of Brighton, describes Google (this includes Wikipedia and other
sources) as the “white bread for the mind”, whereby the internet is producing a
generation of students who survive on a diet of unreliable information. According
to her, Google is providing easy answers to difficult questions. Unfortunately

160 N. Kulathuramaiyer and H. Maurer

students do not pay enough attention to the validity and authenticity of source,
and as a result are not able to distinguish between superficial surfing, shallow
ideas and well researched serious work.

2.3 Poor Information, Poor Minds

The Web is currently expanding at such a rapid pace, that it becomes a challenge
to check the creative expression of learners and to establish the novelty of con-
tents and artifacts created by them. Web contents are being created, exchanged
and transferred at lighting speeds making it difficult to determine the degree of
originality of efforts.

Students are always on the constant lookout for easier ways of doing things in
order to get away with a minimal-effort learning. For example the citation process
is being seen as a major chore or painstaking task, where many students don’t
see the point in complying with such rigorous academic writing practices [5].

Many students tend to take plagiarism lightly and consider a varying degree
of copying to be acceptable. This also highlights the lack of responsibility on the
part of students who tend to resort to the easiest means of getting work done,
without even considering the legibility of their actions. To make the situation
worst, there exist numerous readily available sources of information explicitly
supporting students in preparation of term papers [5].

The ‘Google Copy Paste Syndrome’ (GCPS), describes a common activity of
performing fast, easy and usually “not diligently researched” copying, through
the abduction of passages in text [2]. Acquiring insights is thus performed by
‘conveniently searching’ as opposed to a rigorous process of learning through
scientific discovery. Information on the Web is often used without even consid-
ering the validity of source. This syndrome thus endangers creative writing and
thinking.

Mediocrity in produced creative works is promoted, as a result of the lack of
due deliberation and insightful internalization. This has been aptly summarized
by Weber in his words “as the global brain takes shape by providing answers to
all queries, a ‘text culture without brains’ [2] emerges.

2.4 Emerging Models of Dominance that Influence E-Learning

The previous section has described the various challenges to E-learning due
to emerging social patterns. Current leading plagiarism detection tools mainly
perform shallow similarity check leaving us left with no helpers in effectively
dealing with infringements by students. The best plagiarism detection software
has also been found to be not as good as Google as shown in [6]. We are thus
faced with challenges in the effective control over E-Learning in an age where
the best plagiarism software is now owned by global search engines [5].

As people become more and more dependent on the Web and become fully
trusting to whatever it says, large search engines will then have the absolute
power to influence the views of millions. This form of power is referred to as

Why E-Learning as It Stands Is Not Enough 161

Fig. 1. Model of dominance over information gateways

symbolic power [7], which relates to the ability to manipulate symbols to in-
fluence individual life. Web Mining has thus put in the hands of a few large
companies the power to affect the lives of millions by their control over the
universe of information [8].

Despite the fact that arbitrary results are presented by web search engines,
users take their results to be Gospel truth. Users have also shown to be overly
trusting and often rather nave [9]. Typical user behavior also shows that, simple
and efficient search facilitated by search engines is preferred to tedious searches
through libraries or other media.

Reality can be distorted to favour some web sites as opposed to others [10].
Also reality as represented by large information supply companies can be changed
whenever they change their search ranking algorithm. They also have the power
to alter the recording of historical events [9] and to decide on the ‘account of
truth’ which could well be restricted or product-biased [8]. Having the power to
restrict and manipulate users’ perception of reality will then result in the power
to influence lives of people [8]. The full potential of these powers is however yet
to be seen.

The reality presented by the Web is becoming taken to be a substitute for the
hours that would otherwise be spent in inquiry and rationalisation. Weber [2]
aptly states that, ‘we are in the process of creating reality by googeling’. This
statement emphasizes the utmost reliance on information supply engines such
as Google and Wikipedia that many of us, particularly the younger generation
subject ourselves to.

We describe a model that characterizes the control and influence of data
mining power houses. The model is shown in Figure 1, where the power of
affecting what the masses see enables symbolic power. This power is expected
to be much more than what television has done in the past.

This could then lead to the establishment of de facto gateways enabling control
and authority over vital information resource. Having such a control can over
time bring about cultural shifts in the population, making them even more reliant
on the services of the de facto arbiter of online memory [10].

As illustrated in Figure 1, an influential information supply powerhouse can,
as a result, affect areas of E-Learning as follows:

162 N. Kulathuramaiyer and H. Maurer

– Control of the media in determining what learners see at any point in time.
– Control over the memory of the past. Events that do not add value to such

a company can be de-emphasized or kept out of user attention.
– Become the “defacto arbiters of knowledge”: learners will argue to defend

these undisputable authoritative sources.
– Capture and control global consciousness in shaping trends and social norms
– Promote a culture where learners need not concern themselves with memo-

rizing of facts, keeping track of important events, organising documents or
even having to make plans about what to do.

– Continuously distract individuals with information, advertisement, ‘useful
suggestions’, etc.

– Influence the life of millions by helping them decide what is ‘important’ and
what is not as important.

3 Scenario for Future

To conclude this paper, we present a teaching scenario from the past that will
serve as an ideal for technology-based learning.

A teacher deals with a small class of not more than 15 students (the number
here can vary, but has to be small enough to emphasize the personal touch),
where the teacher is constantly in touch, personally knowing each and every stu-
dent. The teacher constantly watches out for the misinterpretation of concepts,
lapses in background, absorption levels and uses this information in fine-tuning
lesson plans. Distraction and destructive elements are easily noticed and isolated
from causing distractions to the learning process. In carrying out the overall
learning, the careful direction of ensuring learning goals are met by all students
is the main consideration. Learning is not restricted to classroom activities, but
also involves guided sessions where informal learning is allowed to take place,
assessed and monitored. In measuring student learning, a variety of factors are
used; this includes the expert judgment on final submission. Implicit measures
of the level of learning then considers the abilities to assimilate and apply con-
cepts and to express ideas on particular issues. Classroom activities would also
incorporate remedial activities for ensuring proper learning takes place on a
continuous basis.

When technology can become used for enabling such a learning environment
E-Learning will definitely be enough. Otherwise, the expected role of E-Learning
is bringing about transformation and serving as a useful means will just not
happen.

The control over Web Search and its unlimited mining capabilities puts at
the hands of few, the power to represent and characterize reality to influence the
lives of millions. The immense impact of the Web and a resulting culture poses
many more dangers than foreseeable.

The external influence needs to be neutralized, enabling better ways of check-
ing on learning, while supporting learners on the job. As learners become more
adept in technology, there is a need to put the knowledge provider in command.

Why E-Learning as It Stands Is Not Enough 163

These include the emerging powers and dangers of Data Mining technology and
the widening scope of Web search and their expanding influence.

Based on a detailed description of these issues, institutional solutions have
been proposed. There has to be a definitive strategic approach by governments
and institutions to curb the potential dangers of the control of vital technologies
by individual companies. Even if it will be difficult to compete with large mining
powers, there is a need to take control over internal data repositories and a need
to harness powerful technologies within highly focused localized environments.

At a personal level, the only way to avoid being overpowered by these global
search engines is by not over-emphasizing their generic results (could be shal-
low). Users need to be guided on the importance of seeking reliable sources of
information, where search engines are only considered as only a single alterna-
tive. The superficial intent mining of search engines should in no way be treated
as Gospel truth.

Learner centered metrics need to be specifically defined for E-Learning sys-
tems to provide a more humanistic learning. Currently adopted metrics to a
large extent tends to be business related or relates to organizational learning
efforts. Beyond such measurements, human centered metrics need to be devised.

These measures will thus need to lead towards the enforcing of care into
the education process. Without measuring the actual learning efforts, it will be
difficult to determine the exact learning needs of learners. These measures need
to be modelled in the effective assessment of personal learner efforts.

4 Conclusion

This paper has presented a thought provoking view describing the current state of
E-Learning. There is much to be desired in shaping E-Learning to take on the role
it has been envisaged to. As ubiquitous learning becomes widely adopted, there is
a need to determine exactly what needs to be taught. By having a powerful handy
assistant, the need to memorize large amounts of facts is drastically reduced. As
such, we do not need to fill the heads of students with unlimited amounts of
facts.

It then becomes more important to teach students the art of insightful schol-
arship, in a quest for knowledge within a dynamic changing world. As such what
needs to be taught needs to be evaluated and ratified. In truly supporting life-
long learning, regular upgrade of knowledge (refreshing) should be made com-
pulsory for every learner throughout their life. We will then have to move away
fully from just-in-case learning to an effectively just-in-time learning lifelong.

References

1. Moodle.org, http://moodle.org
2. Weber, S.: The Google-Copy-Paste-Syndrome. Telepolis/Hannover, Heise (2007)
3. Keen, A.: The Cult of the Ametuer: How Today’s Internet is Killing Our Culture.

Doubleday/Currency, New York (2007)

http://moodle.org

164 N. Kulathuramaiyer and H. Maurer

4. Brabazon, T.: The google effect: Googling, blogging, wikis and the flattening of
expertise. Libri 56, 157–167 (2006)

5. Maurer, H., Kappe, F., Zaka, B.: Plagiarism: a survey. Journal of Universal Com-
puter Science 12, 1050–1084 (2006)

6. Cont, G.: Googling considered harmful. US Military Academy West Point (2007)
7. Couldry, N.: Media and symbolic power: Extending the range of Bourdieu’s field

theory. Media@lse Electronic Working Papers, Department of Media and Commu-
nications, LSE (2003)

8. Kulathuramaiyer, N., Balke, W.T.: Restricting the view and connecting the dots:
Dangers of a web search engine monopoly. Journal of Universal Computer Sci-
ence 12, 1731–1740 (2006)

9. Kulathuramaiyer, N., Maurer, H.: Addressing Copy-Paste with ICARE. Journal of
Research in Innovative Teaching 1, 1–24 (2008)

10. Witten, I.H., Gori, M., Numerico, T.: Web Dragons, Inside the Myths of Search
Engine Technology. Morgan Kaufmann, San Francisco (2007)

The Practice of Informatics

Domains: Their Simulation, Monitoring and
Control—A Divertimento of Ideas and

Suggestions

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark
bjorner@gmail.com

Abstract. This divertimento – on the occasion of the 70th anniver-
sary of Prof., Dr Hermann Maurer – sketches some observations over the
concepts of domain, requirements and modelling – where abstract in-
terpretations of these models cover both a priori, a posteriori and real-
time aspects of the domain as well as 1–1, microscopic and macroscopic
simulations, real-time monitoring and real-time monitoring & control of
that domain. The reference frame for these concepts are domain models:
carefully narrated and formally described domains. I survey more-or-less
standard ideas of verifiable development and conjecture product families
of demos, simulators, monitors and monitors & controllers – but now
these “standard ideas” are recast in the context of core requirements
prescriptions being “derived” from domain descriptions.

A Laudatio: This paper is dedicated to Hermann Maurer and is presented on the
occasion of his 70th birthday. Hermann and I both spent years at the legendary IBM
Labor in Vienna, Austria. Hermann in the 1960s, I in the early 1970s. Hermann went
on to do other things than what the Labor became famous for – and contributed
significantly to his chosen, foundational and theoretical science — and then, suddenly,
Hermann changed somewhat: into highly applications-oriented and almost exclusively
technology-oriented work. Again with very significant contributions and now also with
decisive industrial and societal impact. I was deeply influenced – and remain so since
my days in the early 1970s – by the Vienna work: formal semantics, first of languages,
later of systems understood through the languages they exhibit. I take pride and have
joy in developing and presenting, to others, the careful English narration and the
formalisation the professional languages, i.e., one, crucial aspect of the domains of
air traffic, banking, commodities exchange, container lines, the market, railways, etc.,
etc. Maurer, I am sure, likewise takes pride in the wonderful universes he and his co-
workers create for us inside and on the surface of the computing machine, interacting
in sometimes unforeseen but always exciting ways. Congratulation Hermann. We never
met at Vienna. But I have enjoyed all the many times that we’ve met since Vienna –
across several continents.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 167–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 D. Bjørner

1 Introduction

A background setting for this paper is the concern for professionally developing
the right software, i.e., software which satisfies users expectations, and software
that is right: i.e., software which is correct with respect to user requirements and
thus has no “bugs”, no “blue screens”.

The present paper must be seen on the background of the main line of experi-
mental research around the topics of domain engineering, requirements engineer-
ing and their relation. For details I refer to (6, Chaps. 9–16: Domain Engineering,
Chaps. 17-24: Requirements Engineering).

The aims of this paper is to present (1) some ideas about software that (1a)
“demo”, (1b) simulate, (1c) monitor and (1d) monitor & control domains; (2)
some ideas about “time scaling”: demo and simulation time versus domain time;
and (3) how these kinds of software relate.

The paper is exploratory. There will be no theorems and therefore there will
be no proofs. We are presenting what might eventually emerge into (α) a theory
of domains, i.e., a domain science (7; 17; 10; 15), and (β) a software development
theory of domain engineering versus requirements engineering (16; 9; 11; 14).

The paper is not a “standard” research paper: it does not compare its claimed
achievements with corresponding or related achievements of other researchers –
simply because we do not claim “achievements” which have been fully, or at
least reasonably well theorised – etcetera. But I would suggest that you might
find some of the ideas of the paper (in Sect. 3) worthwhile publishing. Hence the
“divertimento” suffix to the paper title.

The structure of the paper is as follows.
In Sect. 2 we discuss what a domain description is. Appendix A gives an

example.
In Sect. 3 we then outline a series of interpretations of domain descriptions.

These arise, when developed in an orderly, professional manner, from require-
ments prescriptions which are themselves orderly developed from the domain
description1. The essence of Sect. 3 is (i) the (albeit informal) presentation of
such tightly related notions as demos (Sect. 3.1), simulators (Sect. 3.2), mon-
itors (Sect. 3.3) and monitors & controllers (Sect. 3.3) (these notions can be
formalised), and (ii) the conjectures on a product family of domain-based soft-
ware developments (Sect. 3.5). A notion of script-based simulation extends de-
mos and is the basis for monitor and controller developments and uses. The
script used in our example here is related to time, but one can define non-
temporal scripts – so the “carrying idea” of Sect. 3 extends to a widest va-
riety of software. We claim that Sect. 3 thus brings these new ideas: a tightly
related software engineering concept of demo-simulator-monitor-controller
machines, and an extended notion of reference models for requirements and
specifications (22).

1 We do not show such orderly “derivations” but outline their basics in Sect. 3.4.

Domains: Their Simulation, Monitoring and Control 169

2 Domain Descriptions

By a domain description we shall mean a combined narrative, that is, precise,
but informal, and a formal description of the application domain as it is: no
reference to any possible requirements let alone software that is desired for that
domain. (Thus a requirements prescription is a likewise combined narrative,
that is, precise, but informal, and a formal prescription of what we expect from
a machine (hardware + software) that is to support simple entities, actions,
events and behaviours of a possibly business process re-engineering application
domain. Requirements expresses a domain as we would like ti to be.)

We bring in Appendix A an example domain description.
We further refer to the literature for examples: (4, railways (2000)), (5, the

’market’ (2000)), (11, public government, IT security, hospitals (2006) chapters
8–10), (9, transport nets (2008)) and (14, pipelines (2010)). On the net you may
find technical reports (8) covering “larger” domain descriptions. Recent papers
on the concept of domain descriptions are (14; 15; 12; 17; 9; 7; 13).

To emphasize: domain descriptions describe domains as they are with no
reference to (requirements to) possibly desired software. Domain descriptions do
not necessarily describe computable objects. They relate to the described domain
in a way similar to the way in which mathematical descriptions of physical
phenomena stand to “the physical world”.

3 Interpretations

3.1 What Is a Domain-Based Demo?

A domain-based demo is a software system which “present” (1) simple enti-
ties, (2) actions, (3) events and (4) behaviours of a domain. The “presentation”
abstracts these phenomena and their related concepts in various computer gen-
erated forms: visual, acoustic, etc.

Examples. A domain description might, as that of Appendix A, be of transport
nets (of hubs [street intersections, train stations, harbours, airports] and links
[road segments, rail tracks, shipping lanes, air-lanes]), their development, traffic
[of vehicles, trains, ships and aircraft], etc. We shall assume such a transport
domain description below.

(1) Simple entities are, for example, presented as follows: (a) transport nets
by two dimensional (2D) road, railway or airline maps, (b) hubs and links by
highlighting parts of 2D maps and by related photos – and their unique identifiers
by labelling hubs and links, (c) routes by highlighting sequences of paths (hubs
and links) on a 2D map, (d) buses by photographs and by dots at hubs or on
links of a 2D map, and (e) bus timetables by, well, indeed, by showing a 2D bus
timetable.

(2) Actions are, for example, presented as follows: (f) The insertion or removal
of a hub or a link by showing “instantaneous” triplets of “before”, “during” and
“after” animation sequences. (g) The start or end of a bus ride by showing

170 D. Bjørner

flashing animations of the appearance, respectively the flashing disappearance
of a bus (dot) at the origin, respectively the destination bus stops.

(3) Events are, for example, presented as follows: (h) A mudslide [or fire in a
road tunnel, or collapse of a bridge] along a (road) link by showing an animation
of part of a (road) map with an instantaneous sequence of (α) the present link
, (β) a gap somewhere on the link, (γ) and the appearance of two (“symbolic”)
hubs “on either side of the gap”. (i) The congestion of road traffic “grinding
to a halt” at, for example, a hub, by showing an animation of part of a (road)
map with an instantaneous sequence of the massive accumulation of vehicle dots
moving (instantaneously) from two or more links into a hub.

(4) Behaviours are, for example, presented as follows: (k) A bus tour: from its
start, on time, or “thereabouts”, from its bus stop of origin, via (all) intermediate
stops, with or without delays or advances in times of arrivals and departures, to
the bus stop of destination (�) The composite behaviour of “all bus tours”, meeting
or missing connection times, with sporadic delays, with cancellation of some bus
tours, etc. – by showing the sequence of states of all the buses on the net.

We say that behaviours (3(j)–4(�)) are script-based in that they (try to)
satisfy a bus timetable (1(e)).

Towards a Theory of Visualisation and Acoustic Manifestation. The
above examples shall serve to highlight the general problem of visualisation and
acoustic manifestation. Just as we need sciences of visualising scientific data and
of diagrammatic logics, so we need more serious studies of visualisation
and acoustic manifestation — so amply, but, this author thinks, in-
consistently demonstrated by current uses of interactive computing
media.

3.2 Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act
of simulating something generally entails representing certain key characteristics
or behaviours of a selected physical or abstract system” [Wikipedia] for the
purposes of testing some hypotheses usually stated in terms of the model being
simulated and pairs of statistical data and expected outcomes.

Explication of Figure 1. Figure 1 attempts to indicate four things: (i) Left
top: the rounded edge rectangle labelled “The Domain” alludes to some specific
domain (“out there”). (ii) Left middle: the small rounded rectangle labelled “A
Domain Description” alludes to some document which narrates and formalises
a description of “the domain”. (iii) Left bottom: the medium sized rectangle
labelled “A Domain Demo based on the Domain Description” (for short “Demo”)
alludes to a software system that, in some sense (to be made clear later) “simu-
lates” “The Domain.” (iv) Right: the large rectangle (a) shows a horisontal time
axis which basically “divides” that large rectangle into two parts: (b) Above the
time axis the “fat” rounded edge rectangle alludes to the time-wise behaviour,
a domain trace, of “The Domain” (i.e., the actual, or real, domain). (c) Below

Domains: Their Simulation, Monitoring and Control 171

t eb

β ε

based on the
Domain Description

Description
A Domain

The Domain

A Behaviour, a Trace of the Domain

Simulation Traces

Time

S5

S4

S2S1
εβ

S7

S3 S6

S8

Legend: A development; S1, S2, S3, S4, S5, S6, S7, S8: "runs" of the Domain Simulation

Domain Demo/Simulator

Fig. 1. Simulations

the time axis there are eight “thin” rectangles. These are labels S1, S2, S3,
S4, S5, S6, S7 and S8. (d) Each of these denote a “run”, i.e., a time-stamped
“execution”, a program trace, of the “Demo”. Their “relationship” to the time
axis is this: their execution takes place in the real time as related to that of “The
Domain” behaviour.

A trace (whether a domain or a program execution trace) is a time-stamped
sequence of states: domain states, respectively demo, simulator, monitor and
monitor& control states.

From Fig. 1 and the above explication we can conclude that “executions” S4
and S5 each share exactly one time point, t, at which “The Domain” and “The
Simulation” “share” time, that is, the time-stamped execution S4 and S5 reflect
a “Simulation” state which at time t should reflect (some abstraction of) “The
Domain” state.

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the sim-
ulation trace, or, vice-versa (cf. Fig. 1[S4,S5]), is there a “shared” time. Only if
the ‘begin’ and ‘end’ times of the domain behaviour are identical to the ‘start’
and ‘finish’ times of the simulation trace, is there an infinity of shared 1–1
times.

In Fig 2 we show “the same” “Domain Behaviour” (three times) and a (1) sim-
ulation, a (2) monitoring and a (3) monitoring & control, all of whose ‘begin/start’
(b/β) and ‘end/finish’ (e/ε) times coincide. In such cases the “Demo/Simulation”
takes place in real-time throughout the ‘begin· · · · · · end’ interval.

Let β and ε be the ‘start’ and ‘finish’ times of either S4 or S5. Then the
relationship between t, β, ε, b and e is t−b

e-t = t−β
ε−t — which leads to a sec-

ond degree polynomial in t which can then be solved in the usual, high school
manner.

Script-based Simulation. A script-based simulation is the behaviour, i.e., an
execution, of, basically, a demo which, step-by-step, follows a script: that is a
prescription for highlighting simple entities, actions, events and behaviours.

Script-based simulations where the script embodies a notion of time, like a
bus timetable, and unlike a route, can be thought of as the execution of a demos

172 D. Bjørner

where “chunks” of demo operations take place in accordance with “chunks”2

of script prescriptions. The latter (i.e., the script prescriptions) can be said to
represent simulated (i.e., domain) time in contrast to “actual computer” time.
The actual times in which the script-based simulation takes place relate to do-
main times as shown in Simulations S1 to S8 in Fig. 1 and in Fig. 2(1–3). Traces
Fig. 2(1–3) and S8 Fig. 1 are said to be real-time: there is a one-to-one mapping
between computer time and domain time. S1 and S4 Fig. 1 are said to be micro-
scopic: disjoint computer time intervals map into distinct domain times. S2, S3,
S5, S6 and S7 are said to be macroscopic: disjoint domain time intervals map
into distinct computer times.

In order to concretise the above “vague” statements let us take the example of
simulating bus traffic as based on a bus timetable script. A simulation scenario
could be as follows. Initially, not relating to any domain time, the simulation “de-
mos” a net, available buses and a bus timetable. The person(s) who are request-
ing the simulation are asked to decide on the ratio of the domain time interval
to simulation time interval. If the ratio is 1 a real-time simulation has been re-
quested. If the ratio is less than 1 a microscopic simulation has been requested.
If the ratio is larger than 1 a microscopic simulation has been requested. A cho-
sen ratio of, say 48 to 1 means that a 24 hour bus traffic is to be simulated in 30
minutes of elapsed simulation time. Then the person(s) who are requesting the
simulation are asked to decide on the starting domain time, say 6:00am, and the
domain time interval of simulation, say 4 hours – in which case the simulation of
bus traffic from 6am till 10am is to be shown in 5 minutes (300 seconds) of elapsed
simulation time. The person(s) who are requesting the simulation are then asked
to decide on the “sampling times” or “time intervals”: If ‘sampling times’ 6:00 am,
6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30am and 10:00 am are chosen, then the
simulation is stopped at corresponding simulation times: 0 sec., 37.5 sec., 75 sec.,
150 sec., 225 sec., 262.5 sec. and 300 sec. The simulation then shows the state of
selected entities and actions at these domain times. If ‘sampling time interval’ is
chosen and is set to every 5min., then the simulation shows the state of selected en-
tities and actions at corresponding domain times. The simulation is resumed when
the person(s) who are requesting the simulation so indicates, say by a “resume”
icon click. The time interval between adjacent simulation stops and resumptions
contribute with 0 time to elapsed simulation time – which in this case was set to 5
minutes. Finally the requestor provides some statistical data such as numbers of
potential and actual bus passengers, etc.

Then two clocks are started: a domain time clock and a simulation time clock.
The simulation proceeds as driven by, in this case, the bus time table. To in-
clude “unforeseen” events, such as the wreckage of a bus (which is then unable
to complete a bus tour), we allow any number of such events to be randomly
scheduled. Actually scheduled events “interrupts” the “programmed” simulation
and leads to thus unscheduled stops (and resumptions) where the unscheduled
stop now focuses on showing the event.

2 We deliberately leave the notion of chunk vague so as to allow as wide an spectrum
of simulations.

Domains: Their Simulation, Monitoring and Control 173

q

p p

q

mi mj mi mj mk

r r

cx cy

mk

p
q
r

Real−time
Simulation

(1)

p

q
r

p
r
q

Real−time
Monitoring

(2) Real−time
Monitoring & Control

(3)

Legend: mi,mj,...,mk: monitorings; cx,...,cy: controls

Fig. 2. Simulation, Monitoring and Monitoring & Control

The Development Arrow. The arrow, , between a pair of boxes (of Fig. 1)
denote a step of development: (i) from the domain box to the domain description
box it denotes the development of a domain description based on studies and
analyses of the domain; (ii) from the domain description box to the domain demo
box it denotes the development of a software system — where that development
assumes an intermediate requirements box which has not been show; (iii) from
the domain demo box to either of a simulation traces it denotes the development
of a simulator as the related demo software system, again depending on whichever
special requirements have been put to the simulator.

3.3 Monitoring and Control

Figure 2 shows three different kinds of uses of software systems (where (2)
[Monitoring] and (3) [Monitoring & Control] represent further) developments from
the demo or simulation software system mentioned in Sect. 3.1 and Sect. 3.2.

We have added some (three) horisontal and labelled (p, q and r) lines to
Fig. 2(1,2,3) (with respect to the traces of Fig. 1). They each denote a trace of
a simple entity, an action or an event, that is, they are traces of values of these
phenomena or concepts. A (named) action value could, for example, be the pair
of the before and after states of the action and some description of the function
(“insertion of a link”, “start of a bus tour”) involved in the action. A (named)
event value could, for example, be a pair of the before and after states of the
entities causing, respectively being effected by the event and some description of
the predicate (“mudslide”, “break-down of a bus”) involved in the event. A cross
section, such as designated by the vertical lines (one for the domain trace, one
for the “corresponding” program trace) of Fig. 2(1) denotes a state: a domain,
respectively a program state.

Figure 2(1) attempts to show a real-time demo or simulation for the chosen
domain. Figure 2(2) purports to show the deployment of real-time software for

174 D. Bjørner

monitoring (chosen aspects of) the chosen domain. Figure 2(3) purports to show
the deployment of real-time software for monitoring as well as controlling (chosen
aspects of) the chosen domain.

Monitoring. By domain monitoring we mean “to be aware of the state of a
domain”, its simple entities, actions, events and behaviour. Domain monitoring
is thus a process, typically within a distributed system for collecting and storing
state data. In this process “observation” points — i.e., simple entities, actions
and where events may occur — are identified in the domain, cf. points p, q and r
of Fig. 2. Sensors are inserted at these points. The “downward” pointing vertical
arrows of Figs. 2(2–3), from “the domain behaviour” to the “monitoring” and the
“monitoring & control” traces express communication of what has been sensed
(measured, photographed, etc.) [as directed by and] as input data (etc.) to these
monitors. The monitor (being “executed”) may store these “sensings” for future
analysis.

Control. By domain control we mean “the ability to change the value” of simple
entities and the course of actions and hence behaviours, including prevention
of events of the domain. Domain control is thus based on domain monitoring.
Actuators are inserted in the domain “at or near” monitoring points or at points
related to these, viz. points p and r of Fig. 2(3). The “upward” pointing vertical
arrows of Fig. 2(3), from the “monitoring & control” traces to the “domain
behaviour” express communication, to the domain, of what has been computed
by the controller as a proper control reaction in response to the monitoring.

3.4 Machine Development

Machines. By a machine we shall understand a combination of hardware and
software. For demos and simulators the machine is “mostly” software with the
hardware typically being graphic display units with tactile instruments. For mon-
itors the “main” machine, besides the hardware and software of demos and sim-
ulators, additionally includes sensors distributed throughout the domain and
the technological machine means of communicating monitored signals from the
sensors to the “main” machine and the processing of these signals by the main
machine. For monitors & controllers the machine, besides the monitor machine,
further includes actuators placed in the domain and the machine means of com-
puting and communicating control signals to the actuators.

Requirements Development. Essential parts of Requirements to a Machine
can be systematically “derived” from a Domain description. These essential parts
are the domain requirements and the interface requirements. Domain require-
ments are those requirements which can be expressed, say in narrative form,
by mentioning technical terms only of the domain. These technical terms cover
only phenomena and concepts (simple entities, actions, events and behaviours) of
the domain. Some domain requirements are projected, instantiated, made more
deterministic and extended3.
3 We omit consideration of fitting.

Domains: Their Simulation, Monitoring and Control 175

(a) By domain projection we mean a sub-setting of the domain description:
parts are left out which the requirements stake-holders, collaborating with the
requirements engineer, decide is of no relevance to the requirements. For our
example it could be that our domain description had contained models of road
net attributes such as “the wear & tear” of road surfaces, the length of links,
states of hubs and links (that is, [dis]allowable directions of traffic through hubs
and along links), etc. Projection might then omit these attributes.

(b) By domain instantiation we mean a specialisation of entities (simple, ac-
tions, events and behaviours), refining them from abstract simple entities to more
concrete such, etc. For our example it could be that we only model freeways or
only model road-pricing nets – or any one or more other aspects.

(c) By domain determination we mean that of making the domain description
cum domain requirements prescription less non-deterministic, i.e., more deter-
ministic (or even the other way around !). For our example it could be that we
had domain-described states of street intersections as not controlled by traffic
signals – where the determination is now that of introducing an abstract notion
of traffic signals which allow only certain states (of red, yellow and green).

(d) By domain extension we basically mean that of extending the domain with
phenomena and concepts that were not feasible without information technology.
For our examples we could extend the domain with bus mounted GPS gadgets
that record and communicate (to, say a central bus traffic computer) the more-
or-less exact positions of buses – thereby enabling the observation of bus traffic.

Interface requirements are those requirements which can be expressed, say in
narrative form, by mentioning technical terms both of the domain and of the
machine. These technical terms thus cover shared phenomena and concepts, that
is, phenomena and concepts of the domain which are, in some sense, also (to be)
represented by the machine. Interface requirements represent (i) the initialisa-
tion and “on-the-fly” update of simple machine entities on the basis of shared
domain entities; (ii) the interaction between the machine and the domain while
the machine is carrying out a (previous domain) action; (iii) machine responses,
if any, to domain events — or domain responses, if any, to machine events cum
“outputs”; and (iv) machine monitoring and machine control of domain phe-
nomena. Each of these four (i–iv) interface requirement facets themselves involve
projection, instantiation, determination, extension and fitting.

Machine requirements are those requirements which can be expressed, say in
narrative form, by mentioning technical terms only of the machine. (An example
is: visual display units).

3.5 Verifiable Software Development

An Example Set of Conjectures. (A) From a domain, D, one can develop
a domain description D. D cannot be verified. It can at most be validated. In-
dividual properties, PD, of the domain description D and hence, purportedly, of
the domain, D, can be expressed and possibly proved

176 D. Bjørner

D |= PD

and these may be validated to be properties of D by observations in (or of) that
domain.

(B) From a domain description, D, one can develop requirements, Rde, for,
and from Rde one can develop a domain demo machine specification Mde such
that

D, Mde |= Rde.

The formula D, M |= R can be read as follows: in order to prove that the
Machine satisfies the Requirements, assumptions about the Domain must often
be made explicit in steps of the proof.

(C) From a domain description, D, and a domain demo machine specification,
Sde, one can develop requirements, Rsi, for, and from such a Rsi one can develop
a domain simulator machine specification Msi such that

(D; Mde), Msi |= Rsi.

We have “lumped” (D; Mde) as the two constitute the extended domain for which
we, in this case of development, suggest the next stage requirements and machine
development to take place.

(D) From a domain description, D, and a domain simulator machine specifi-
cation, Msi, one can develop requirements, Rmo, for, and from such a Rmo one
can develop a domain monitor machine specification Mmo such that

(D; Msi), Mmo |= Rmo.

(E) From a domain description, D, and a domain monitor machine specifica-
tion, Mmo, one can develop requirements, Rmc, for, and from such a Rmc one can
develop a domain monitor & controller machine specification Mmc such that

(D; Mmo), Mmc |= Rmc.

Chains of Verifiable Developments. The above illustrated just one chain of
development. There are others. All are shown in Fig. 3. The above development
is shown as the longest horizontal chain (third row).

Figure 3 can also be interpreted as prescribing a widest possible range of ma-
chine cum software products (18; 25) for a given domain. One domain may give
rise to many different kinds of demo machines, simulators, monitors and monitor
& controllers (the unprimed versions of the Mt machines (where t ranges over
de, si, mo, mc)). For each of these there are similarly, “exponentially” many
variants of successor machines (the primed versions of the Mt machines).

What does it mean that a machine is a primed version? Well, here it means,
for example, that M′

si embodies facets of the demo machine Mde, and that M′′′
mc

embodies facets of the demo machine Mde, of the simulator M′
si, and the monitor

M′′
mo. Whether such requirements are desirable is left to product customers and

their software providers (18; 25) to decide.

Domains: Their Simulation, Monitoring and Control 177

R′′′′′
mc R′′′′′

mc

R′′′
mo M′′′

mo R′′′′
mc M′′′′

mc

D Rde Mde R′
si M′

si R′′
mo M′′

mo R′′′
mc M′′′

mc� � � � � � � �

� Rsi Msi R′
mo M′

mo R′′
mc M′′

mc� � � � �

�

� Rmo Mmo R′
mc

Rmc

M′
mc

Mmc

R′′′′′′
mc M′′′′′′

mc�

�

� � �

�

� � �

�

�

�

�
� � �

�
�
�
�

�

�

�

�

�

�

�

�

�

�
�
�
�
�

Legend: D domain, R requirements, M machine
de:demo, si: simulator, mo: monitor, mc: monitor & controller

Fig. 3. Chains of Verifiable Developments

4 Conclusion

Our divertimento is almost over. It is time to conclude.

4.1 Discussion

The D, M |= R (‘correctness’ of) development relation appears to have been first
indicated in the Computational Logic Inc. Stack (1; 21) and the EU ESPRIT
ProCoS (2; 3) projects; (22) presents this same idea with a purpose much like
ours, but with more technical details and full discussion.

The term ‘domain engineering’ appears to have at least two meanings: the one
used here (7; 13) and one (23; 20; 19) emerging out of the Software Engineering
Institute at CMU where it is also called product line engineering4. Our meaning,
is, in a sense, more narrow, but then it seems to also be more highly specialised
(with detailed description and formalisation principles and techniques). Fig. 3
illustrates, in capsule form, what we think is the CMU/SEI meaning. The re-
lationship between, say Fig. 3 and model-based software development seems
obvious but need be explored.

What Have We Achieved. We have characterised a spectrum of strongly
domain-related as well as strongly inter-related (cf. Fig. 3) software product
families: demos, simulators, monitors and monitor & controllers. We have indi-
cated varieties of these: simulators based on demos, monitors based on simula-
tors, monitor & controllers based on monitors, in fact any of the latter ones in
the software product family list as based on any of the earlier ones. We have
sketched temporal relations between simulation traces and domain behaviours:

4 http://en.wikipedia.org/wiki/Domain engineering

178 D. Bjørner

a priori, a posteriori, macroscopic and microscopic, and we have identified the
real-time cases which lead on to monitors and monitor & controllers.

What Have We Not Achieved — Some Conjectures. We have not char-
acterised the software product family relations other than by the D, M |= R and
(D; Mxyz), M |= R clauses. That is, we should like to prove conjectured type
theoretic inclusion relations like:

℘([[Mxmod ext.
]]) # ℘([[M′...′

xmod ext.
]]), ℘([[M′...′

xmod ext.
]]) # ℘([[M′′....′

xmod ext.
]])

where x and y range appropriately, where [[M]] expresses the meaning of M,
where ℘([[M]]) denote the space of all machine meanings and where ℘([[Mxmod ext.

]])
is intended to denote that space modulo (“free of”) the y facet (here ext., for
extension).

That is, it is conjectured that the set of more specialised, i.e., n primed,
machines of kind x is type theoretically “contained” in the set of m primed
(unprimed) x machines (0 ≤ m < n).

There are undoubtedly many such interesting relations between the demo,
simulator, monitor and monitor & controller machines, unprimed and
primed.

What Should We Do Next. This paper has the subtitle: A Divertimento
of Ideas and Suggestions. It is not a proper theoretical paper. It tries to throw
some light on families and varieties of software, i.e., their relations, and. It fo-
cuses, in particular, on so-called demo, simulator, monitor and monitor
& controller software and their relation to the “originating” domain, i.e.,
that in which such software is to serve, and hence that which is being extended
by such software, cf. the compounded ‘domain’ (D; Mi) of in (D; Mi), Mj |= D.
These notions should be studied formally. All of these notions: requirements pro-
jection, instantiation, determination and extension can be formalised; and the
specification language, in the form used here (without CSP processes, (24)) has a
formal semantics and a proof system — so the various notions of development,
(D; Mi), Mj |= R and ℘(M) can be formalised.

References

[1] Bevier, W.R., Hunt Jr., W.A., Strother Moore, J., Young, W.D.: An approach to
system verification. Journal of Automated Reasoning 5(4), 411–428 (1989); Special
Issue on System Verification

[2] Bjørner, D.: A ProCoS Project Description. Published in two slightly different ver-
sions: (1) EATCS Bulletin (October 1989), (2) Plander, I.(ed.): Proceedings: Intl.
Conf. on AI & Robotics, Strebske Pleso, Slovakia, November 5-9. North-Holland,
Publ., Amsterdam (1989), Dept. of Computer Science, Technical University of
Denmark (October 1989)

[3] Bjørner, D.: Trustworthy Computing Systems: The ProCoS Experience. In: 14th
ICSE: Intl. Conf. on Software Eng., Melbourne, Australia, May 11-15, pp. 15–34.
ACM Press, New York (1992)

Domains: Their Simulation, Monitoring and Control 179

[4] Bjørner, D.: Formal Software Techniques in Railway Systems. In: Schnieder, E.
(ed.) 9th IFAC Symposium on Control in Transportation Systems, Technical
University, Braunschweig, Germany, June 13-15, pp. 1–12 (2000); VDI/VDE-
Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug–
und Verkehrstechnik (invited talk)

[5] Bjørner, D.: Domain Models of ”The Market” — in Preparation for E–Transaction
Systems. In: Kilov, H., Baclawski, K. (eds.) Practical Foundations of Business
and System Specifications, The Netherlands. Kluwer Academic Press, Dordrecht
(2002)

[6] Bjørner, D.: Software Engineering, vol. 3: Domains, Requirements and Soft-
ware Design. Texts in Theoretical Computer Science, the EATCS Series, vol. 3.
Springer, Heidelberg (2006)

[7] Bjørner, D.: Domain Theory: Practice and Theories, Discussion of Possible Re-
search Topics. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS,
vol. 4711, pp. 1–17. Springer, Heidelberg (2007)

[8] Bjørner, D.: Domain Descriptions (technical reports):
1. On Development of Web-based Software. A Divertimento of Ideas and Sug-

gestions, http://www2.imm.dtu.dk/~db/wfdftp.pdf
2. XVSM: A Narrative and a Formalisation,

http://www2.imm.dtu.dk/~db/xvsm-p.pdf

3. The Tokyo Stock Exchange, http://www2.imm.dtu.dk/~db/todai/tse-1.

pdf and http://www2.imm.dtu.dk/~db/todai/tse-2.pdf

4. What is Logistics, http://www2.imm.dtu.dk/~db/logistics.pdf
5. A Domain Model of Oil Pipelines,

http://www2.imm.dtu.dk/~db/pipeline.pdf

6. A Container Line Industry Domain,
http://www2.imm.dtu.dk/~db/container-paper.pdf

7. A Railway Systems Domain, http://www.railwaydomain.org/PDF/tb.pdf
8. CoMet: Comparative Methodology, A Technical Note. Transport Systems,

http://www2.imm.dtu.dk/~db/comet/comet1.pdf

R&D Experiments, Bjørner, Fredsvej 11, DK-2840 Holte, Denmark (2007-2010)
[9] Bjørner, D.: From Domains to Requirements. In: Degano, P., De Nicola, R.,

Bevilacqua, V. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp.
1–30. Springer, Heidelberg (2008)

[10] Bjørner, D.: An Emerging Domain Science – A Rôle for Stanis�law Leśniewski’s
Mereology and Bertrand Russell’s Philosophy of Logical Atomism. Higher-order
and Symbolic Computation (2009)

[11] Bjørner, D.: Domain Engineering: Technology Management, Research and Engi-
neering. Research Monograph (# 4); JAIST Press, 1-1, Asahidai, Nomi, Ishikawa
923-1292 Japan (2009); This Research Monograph contains the following main
chapters:
1. On Domains and On Domain Engineering – Prerequisites for Trustworthy

Software – A Necessity for Believable Management, pp. 3–38
2. Possible Collaborative Domain Projects – A Management Brief, pp. 39–56
3. The Rôle of Domain Engineering in Software Development, pp. 57–72
4. Verified Software for Ubiquitous Computing – A VSTTE Ubiquitous Com-

puting Project Proposal, pp. 73–106
5. The Triptych Process Model – Process Assessment and Improvement, pp.

107–138

http://www2.imm.dtu.dk/~db/wfdftp.pdf
http://www2.imm.dtu.dk/~db/xvsm-p.pdf
http://www2.imm.dtu.dk/~db/todai/tse-1.pdf
http://www2.imm.dtu.dk/~db/todai/tse-1.pdf
http://www2.imm.dtu.dk/~db/todai/tse-2.pdf
http://www2.imm.dtu.dk/~db/logistics.pdf
http://www2.imm.dtu.dk/~db/pipeline.pdf
http://www2.imm.dtu.dk/~db/container-paper.pdf
http://www.railwaydomain.org/PDF/tb.pdf
http://www2.imm.dtu.dk/~db/comet/comet1.pdf

180 D. Bjørner

6. Domains and Problem Frames – The Triptych Dogma and M.A.Jackson’s PF
Paradigm, pp. 139–175

7. Documents – A Rough Sketch Domain Analysis, pp. 179–200
8. Public Government – A Rough Sketch Domain Analysis, pp. 201–222
9. Towards a Model of IT Security — – The ISO Information Security Code of

Practice – An Incomplete Rough Sketch Analysis, pp. 223–282
10. Towards a Family of Script Languages – – Licenses and Contracts – An In-

complete Sketch, pp. 283–328
Bjørner will post this 507 page soft cover book (with 77 fine photos of “all things
Japanese”, in full colours, taken by Dines in 2006) to you provided you e-mail
your name and address and post international reply postage coupons, in the total
amount of: Denmark 60.50 Kr., Europe 126.00 Kr., elsewhere 209.00 Kr,
http://en.wikipedia.org/wiki/International_reply_coupon

[12] Bjørner, D.: On Mereologies in Computing Science. In: Roscoe, B. (ed.) Festschrift
for Tony Hoare, London, UK. History of Computing, Springer, Heidelberg (2009)

[13] Bjørner, D.: Domain Engineering. In: Boca, P., Bowen, J. (eds.) BCS FACS Sem-
inars, London, UK. LNCS (the BCS FAC Series), pp. 1–42. Springer, Heidelberg
(2010)

[14] Bjørner, D.: Domain Science & Engineering – From Computer Science to The
Sciences of Informatics, Part I of II: The Engineering Part. Kibernetika i sistemny
analiz (2) (May 2010)

[15] Bjørner, D.: Domain Science & Engineering – From Computer Science to The
Sciences of Informatics Part II of II: The Science Part. Kibernetika i sistemny
analiz (2) (May 2010)

[16] Bjørner, D.: Believable Software Management. Encyclopedia of Software Engineer-
ing 1(1), 1–32 (2011)

[17] Bjørner, D., Eir, A.: Compositionality: Ontology and Mereology of Domains. In:
Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality, and
Correctness. LNCS, vol. 5930, pp. 22–59. Springer, Heidelberg (2010)

[18] Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach. ACM Press/Addison-Wesley, New York/NY (2000)

[19] Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture: On Patterns and Pattern Languages. John Wiley & Sons Ltd., England
(2007)

[20] Falbo, R., Guizzardi, G., Duarte, K.C.: An Ontological Approach to Domain En-
gineering. In: Proceedings of the 14th International Conference on Software En-
gineering and Knowledge Engineering, SEKE 2002, Ischia, Italy, July 15-19, pp.
351–358. ACM, New York (2002)

[21] Good, D.I., Young, W.D.: Mathematical Methods for Digital Systems Develop-
ment. In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, pp. 406–430.
Springer, Heidelberg (1991)

[22] Gunter, C.A., Gunter, E.L., Jackson, M.A., Zave, P.: A Reference Model for Re-
quirements and Specifications. IEEE Software 17(3), 37–43 (2000)

[23] Harsu, M.: A Survey on Domain Engineering. Review, Institute of Software Sys-
tems, Tampere University of Technology, Finland (December 2002)

[24] Hoare, C.A.R.: Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, Englewood Cliffs (2004); Published
electronically: http://www.usingcsp.com/cspbook.pdf (2004)

[25] Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering.
Springer, Heidelberg (2005)

http://en.wikipedia.org/wiki/International_reply_coupon
http://www.usingcsp.com/cspbook.pdf

Domains: Their Simulation, Monitoring and Control 181

A An Example Domain
Description

A domain description is a specification of the domain
as it is, without any reference to requirements, let
alone required software.

A.1 Nets
We first describe abstraction of nets, hubs (street
intersections, train stations, airports, harbours) and
links (street segments, rail tracks, air lanes, sea
lanes):

Hubs and Links
1. There are nets, hubs and links.
2. A net contains zero, one or more hubs.
3. A net contains zero, one or more links.

type
1. N, H, L

value
2. obs Hs: N → H-set
3. obs Ls: N → L-set

axiom
2. ∀ n:N • card obs Hs(n) ≥ 0
3. ∀ n:N • card obs Ls(n) ≥ 0

Hub and Link Identifiers
To express the mereology (12): how parts compose
into a whole, the connections of hubs and links,
we introduce the abstract concepts of hub and link
identifiers.

4. There are hub identifiers and there are link
identifiers.

5. Hubs of a net have unique hub identifiers.
6. Links of a net have unique link identifiers.

type
4. HI, LI

value
5. obs HI: H → HI
6. obs LI: H → LI

axiom
5. ∀ n:N, h,h′:H • {h,h′}⊆obs Hs(n) ∧ h
=h′ ⇒

obs HI(h)
=obs HI(h′)
6. ∀ n:N, l,l′:L • {l,l′}⊆obs Ls(n) ∧ l
=l′ ⇒

obs LI(l)
=obs LI(l′)

Observability of Hub and Link
Identifiers
We postulate reasonable observer functions: such
which a person with a reasonably good sight could
“implement”.

7. From every hub (of a net) we can observe the
identifiers of the zero, one or more distinct links
(of that net) that the hub is connected to.

8. From every link (of a net) we can observe the
identifiers of the exactly two (distinct) hubs (of
that net) that the link is connected to.

value
7. obs LIs: H → LI-set

axiom
7. ∀ n:N,h:H•h ∈ obs Hs(n) ⇒ ∀ li:LI•li ∈

obs HIs(l) ⇒ L exists(li)(n)
value

8. obs HIs: L → HI-set
axiom

8. ∀ n:N,l:L•l ∈ obs Ls(n) ⇒
8. card obs HIs(l)=2 ∧ ∀ hi:HI•hi ∈

obs HIs(l) ⇒ H exists(hi)(n)

value
L exists: LI → N → Bool
L exists(li)(n) ≡ ∃ l:L•l ∈ obs Ls(n)∧obs LI(l)=li
H exists: HI → N → Bool
H exists(hi)(n) ≡ ∃ h:H•h ∈ obs Hs(n)∧obs HI(h)=hi

If we had chosen an ability to observe from a hub its con-
nected links and from a link it connected hubs, then it
would follow that from any hub (or any link), without
“moving” one could observe the entire net; we find that
kind of “observability” to be problematic and to, poten-
tially leading to inconsistencies.

Net Descriptors
9. A net descriptor, ND, associates to each hub identifier

10. a possibly empty link-to-hub identifier map, LHIM,
from the identifier of a link emanating from a hub
to the identifier of the connected hub.

type
9. ND = HI →m LHIM
10. LHIM = LI →m HI

The hub identifiers of the definition set of net descriptors
are called the defining occurrences of hub identifiers. The
hub identifiers of the range of link-to-hub identifier map are
called the using occurrences of hub identifiers.

11. Wellformedness of a net descriptor is simple.
a) The set of using occurrences of hub identifiers

must be a subset of he set of defining occur-
rences of hub identifiers.

b) If in nd:ND an hi maps into some li which in turn
maps into hi′, then in nd:ND hi′, amongst other
link identifiers maps into li which in turn maps
into hi.

value
11. wf ND: ND > Bool
11. wf ND(nd) ≡
11a. {(nd(hi))(li)|hi:HI,li:LI•hi ∈ dom nd∧li

∈ dom nd(hi)}⊆dom nd
11b. ∧ ∀ hi,hi′:HI,li:LI • hi ∈ dom nd ∧ nd(hi)=li ⇒
11b. (nd(hi))(li)=hi′ ⇒ (nd(hi′))(li)=hi

12. From a net one can extract its net descriptor.

value
12. xtr ND: N → ND
12. xtr ND(n) ≡
12. [hi �→[li �→hi′]|l:L,li,li′:LI,hi,hi′:HI•
12. l ∈ obs Ls(n)∧li=obs LI(l)∧{hi,hi′}

=obs HIs(l)]
12. ∪ [hi �→[]|h:H•h ∈ obs Hs(n)∧obs LIs(h)={}]

Routes
We first define a concept of paths.

13. A path is a triple:
a) a hub identifier, hi, a link identifier, lj , and

another hub identifier, hk, distinct from hi,
b) such that there is a link � with identifier lj in a

net n such that {hi, hk} are the hub identifiers
that can be observed from �.

type
13. Pth = HI × LI × HI
axiom
13a. ∀ (hi,li,hi′):Pth • ∃ n:N,l:L • l ∈ obs Ls(n) ⇒
13b. obs LI(l)=li ∧ obs HIs(l)={hi,hi′}

182 D. Bjørner

14. From a net one can extract all its paths:
a) if l is a link of the net,
b) lj its identifier and
c) {hi, hk} the identifiers of its connected hubs,
d) then (hi, lj , hk) and (hk, lj , hj) are paths of

the net.

value
14. paths: N → Pth-set
14a. paths(n) ≡
14d. {(hi,lj,hk),(hk,lj,hi)|l:L,lj:LI,hi,hk:HI•l ∈
14b. obs Ls(n) ∧ lj=obs LI(l) ∧
14c. {hi,hk}=obs HIs(l)}

15. From a net descriptor one can (likewise) extract all
its paths:

a) Let hi, hk be any two distinct hub identifiers
of the net descriptor (definition set),

b) such that they both map into a link identifier
lj ,

c) then (hi, lj , hk) and (hk, lj , hj) are paths of
the net.

value
14. paths: ND → Pth-set
14. paths(nd) ≡
15a. {(hi,lj,hk),(hk,lj,hi)|hi,hk:HI,lj:LI • hi
=hk ∧
15b. {hi,hk}⊆dom nd ⇒ lj ∈ dom nd(hi)∩ dom nd(hk)}

Now we can define routes.

16. A route of a net is a sequence of zero, one or more
paths such that

a) all paths of a route are paths of the net and
b) adjacent paths in the sequence “share” hub

identifiers.

type
16. R = Pth∗
axiom
16. ∀ r:R, ∃ n:N •
16a. elems r ⊆ paths(n) ∧
16b. ∀ i:Nat • {i,i+1}⊆inds r ⇒
16b. let (, ,hi)=r(i), (hi′, ,)=r(i+1) in hi=hi′ end

17. From a net, n, we can generate the possibly infinite
set of finite and possibly infinite routes:

a) <> is a route (basis clause 1);
b) if p is a path of n then < p > is a route of n

(basis clause 2);
c) if r and r′ are non-empty routes of n
d) and the last hi of r is the same as the first hj

of r′ then the concatenation of r and r′ is a
route (induction clause).

e) Only such routes which can be formed by a (fi-
nite, respectively infinite) application of basis
clauses Items 17a and 17b and induction clause
Items 17c–17d are routes (extremal clause).

value
17. routes: N|ND → R-infset
17. routes(nond) ≡
17a. let rs = {〈〉} ∪
17b. {〈p〉|p:Pth•p ∈ paths(nond)} ∪
17c. {r̂ r′|r,r′:R•{r,r′}⊆rs ∧
17d. ∃ hi,hi′,hi′′,hi′′′:H,li:LI,r′′,r′′′:R •

{r′′,r′′′}⊆rs ∧
17d. r=r′′̂ 〈(hi,li,hi′)〉∧r′=〈(hi′′,li′,hi′′′)〉̂ r′′′

∧ hi′=hi′′} in
17e. rs end

A.2 Buses, Bus Stops and Bus
Schedules

Buses
We now consider buses and routes and schedules related
to buses.

18. Buses have unique identifiers and are further
undefined.

19. Bus identifiers can be observed from buses.

type
18. B, BI
value
19. obs BI: B → BI

Bus Stops
20. A link bus stop indicates the link (by its identi-

fier), the from and to hub identifiers of the link,
21. and the fraction “down the link” (from the hub

of the from to the hub of the to hub identifiers)
of the bus stop position.

type
20. BS = mkL BS(sel fhi:HI,sel li:LI,sel f:F,sel thi:HI)
20. F = {|f:Real•0<f<1|}

Bus Stop Lists and Routes
22. A bus stop list is a sequence of two or more bus

stops, bsl.
23. A bus route, br, is a pair of a net route, r, and

a bus stop list, bsl, such that route r is a route
of n and such that bsl is embedded in r.

24. bsl is embedded in r if
a) there exists an index list, il, of ascending

indices of the route r and of the length of
bsl

b) such that the ith path of r
c) share from and to hub identifiers and link

identifier with the il(i)th bus stop of bsl.
25. We must allow for two or more stops along a bus

route to be adjacent on the same link — in which
case the corresponding fractions must likewise be
ascending.

value
n:N

type
22. BSL = {|bsl:BS∗•len bsl≥2|}
23. BR = {|(r,bsl):(R×BSL)•r ∈

routes(n)∧is embedded in(r,bsl)|}
value
24. is embedded in: BR → Bool
24. is embedded in(r,bsl)(n) ≡
24a. ∃ il:Nat∗ • len il=len bsl ∧
24a. inds il⊆inds r ∧ ascending(il) ⇒
24b. ∀ i:Nat • i ∈ inds il ⇒
24b. let (hi,lj,hk) = r(il(i)),
24c. (hi′,lj′,f,hk′) = bsl(i) in
24c. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ end ∧
25. ∀ i:Nat • {i,i+1}⊆inds il ⇒
25. let (hi,lj,f,hk)=bsl(i), (hi′,lj′,f′,hk′)

=bsl(i+1) in
25. hi=hi′ ∧ lj=lj′ ∧ hk=hk′ ⇒ f<f′ end

24a. ascending: Nat∗ → Bool
24a. ascending(il) ≡ ∀ i:Nat•{i,i+1}⊆inds il ⇒

il(i)<il(i+1)

Bus Schedules
26. Let us introduce a net. It is referred to in some

subsequent wellformedness predicates.
27. A timed bus stop is a pair of a time and a bus

stop.
28. A timed bus stop list is a sequence of timed bus

stops.
29. A bus schedule is a pair of a route and an em-

bedded timed bus stop list where
30. position-wise “earlier” bus stops occur at earlier

times that Position-wise “later” bus stops.

Domains: Their Simulation, Monitoring and Control 183

value
26. n:N
type
27. TBS :: sel T:T sel bs:BS
28. TBSL = TBS∗
29. BusSched = {|(r,tbsl):(R×TBSL)•r ∈

routes(n)∧wf BusSched(r,tbsl)|}
30. SimBusSched = {|tbsl:TBSL•wf TBSL(tbsl)|}
value
29. wf BusSched: BusSched → Bool
29. wf BusSched(r,tbsl) ≡
29. is embedded in(r,〈sel BS(tbsl(i))|i:[1..len tbsl]〉) ∧
30. wf SimpleBusSched(tbsl)

30. wf SimpleBusSched: TBSL → Bool
30. wf SimpleBusSched(tbsl) ≡
30. ∀ i:Nat•{i,i+1}⊆inds tbsl ⇒

sel T(tbsl(i))<sel T(tbsl(i+1))

A.3 Timetables
31. A bus b that plies a bus schedule starting at time t

has a unique bus number, bt; colloquially it is bus b
at departure time t, or, even more colloquially: the t
o’clock bus b — but henceforth we do not “encode”
such bus “numbers”.

32. A [time]table maps bus numbers to bus schedules.
33. A bus timetable is a pair of a net descriptor and a

table.

type
31. BNo
32. TBL = BNo →m BusSched
33. BTT = ND × TBL

Denotations
What are routes and bus timetables scripting (i.e., pre-
scribing) ? Routes (lists of connected link traversal desig-
nations) script that one may transport people or freight
along the sequence of designated links. Bus timetable
scripts denote (at least) two things: the set of bus traffics
on the net which satisfy the bus timetable, and informa-
tion that potential and actual bus passengers may, within
some measure of statistics (and probability), rely upon for
their bus transport. Here, we shall now develop the idea
of bus timetables denoting certain traffics.

A.4 Bus Traffic
34. Bus traffic is here considered a discrete function

from time into bus positions on the net.
35. From (such) a bus we can observe its bus number.
36. A bus is at any time positioned either at a hub or

a fraction of a distance along a link.
37. Fractions are reals in the open interval between 0

and 1.
38. We shall not define necessary bus traffic wellformed-

ness conditions.

type
34. BTF = T →m (B →m BP)
35. BP == atH(hi:HI) | onL(li:LI,f:F,li′:LI)
37. F = {|f:Real•0<f<1|}
value
36. obs BNo: B → BNo
38. wf BTF: BTF → Bool

Bus Traffic versus Bus Timetable
In expressing generation of bus traffics and whether a bus
traffic satisfies a bus timetable, we shall make the follow-
ing assumptions: buses must not depart from a bus stop
earlier than its scheduled time; and buses, when “late”
must not be “too late”, that is, must not be further away
than the nearest previous hub or approaching the bus
stop along its link. These assumptions are encoded by the
“multiplier” and “fraction increment” constants m and δ
introduced now.

39. Let m be a positive natural number (a time interval
multiplier, say, of value 2,3,4).

40. Let δ be a “tiny” (position) fraction increment.
41. Satisfaction of a bus traffic with respect to a bus

timetable is expressed in terms of
a) a predicate over buses, represented by their bus

numbers bn;
b) we consider only the timed bus schedule;
c) for all bus stops we express a predicate over

bus traffic positions;
d) namely that there exists a time, t′, of the traf-

fic which is equal to or some small time interval
before the time of the scheduled stop,

e) at which time (t′) some buses have traffic po-
sitions bp such that

f) the bus being considered, namely bn, is
recorded in the traffic,

g) among those bus positions as having
h) being either at the previous hub or
i) on the appropriate link, either at the bus stop

(f′ = f) or shortly before that bus stop (f′−δ).

value
39. m:Nat, axiom 0<m≤5
40. δ:Real, axiom 0<δ�1
41. satisfy: BTF × BTT → Bool
41. satisfy(btf,btt:(nd,tbl)) ≡
41a. ∀ bn:BNo•bn ∈ dom tbl ⇒
41b. let (,tbsl) = tbl(bn) in
41c. ∀ (t,bs:mkL BS(hi′,li′,f′,hi′′)):TBS•(t,bs)∈
> elems tbsl ⇒
41d. ∃ t′:T•t′ ∈ dom btf∧t−m∗ti<t′≤t∧
41e. let bp = btf(t′) in
41f. bn ∈ dom bp ∧
41g. case bp(bn) of
41h. atH(hi) → hi=hi′,
41i. onL(hi,li,f,li′) → li=li′∧hi=hi′∧f′−δ≤f≤f′
41. end end end

In the above satisfaction relation we do not consider
where the buses are at times properly “between” bus
stop times (other than when very “close” – as expressed
by the proposition t−m∗ti<t′≤t).

Roots and Stimuli to a New Perception of
Informatics

Jozef Gruska�

Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

gruska@fi.muni.cz

When you reach for the stars you
may not get one, but you won’t come
up with a handful of mud either.

Leo Burnett

If men cease to believe that they will
one day become gods then they will
surely become worms.

Henry Miller

Abstract. In the recent paper, “A perception of Informatics” [9],a new
view of Informatics, visionary and philosophical in the essence, has been
presented in quite general terms and ways1. This new perception of In-
formatics has been then illustrated and put more “down to earth” in
[9] through the presentation of some of the grand challenges of “new
Informatics”.

In the present paper some of the main impulses/needs or drives for and
roads towards such a new perception of Informatics are summarized and
discussed in more details. To see them well is also of large importance for
a full understanding and acceptance of such a new view of Informatics.
All of them are also closely related to some of the major problems of
current science and technology.

� Support of the grant MSM0021622419 is to be acknowledged.
1 One should note that the new perception of Informatics, as presented and discussed

in [9], could have been emerged already quite a few years ago because it is, in
some sense, a natural deduction from and generalisation of various views already
cautiously, more or less, indicated some years ago, here and there, by several vision-
aries. However, until quite recently, there have not been really sufficiently strong
reasons explicitly visible to see well that such a maximal (total) upper bound on
the perception of Informatics could be not only proper, but also much needed and
prosperous, for both the discipline and society.

Three events had started to change much the situation. The first one was the
development of an understanding that (quantum) information processing processes
are, and have always been, the driving forces in our physical, biological and social
worlds. The second one, due to the existence of so powerful internet and web, was an
understanding that the field drives from a concentration on information processing
(computation) through a concentration on information transmission to a concen-
tration on information management. The third one was an understanding that the
Informatics based methodology extends much, in depth and scope, the Mathematics
based methodology. To perceive the scope and aims of Informatics in much deeper
and broader sense started to be therefore inevitable.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 184–199, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Roots and Stimuli to a New Perception of Informatics 185

1 A New Perception of Informatics

Imagination is more important than knowledge.
Albert Einstein

One of the basic standpoints leading to a new perception of Informatics, in [9],
has been that the overall development of science, technology, medicine, economy
and practically of all major areas of the activities of mankind, much depends on
the progress in Informatics, provided this field is sufficiently deeply and broadly
understood and developed. Therefore, it has to be much in the interest not only of
Informatics itself, but actually of the whole society, that this discipline is perceived,
supported, developed, and also projected into all levels and forms of education, in a
way that leads to its proper development, largest outcomes and broadest impacts.

This new perception of Informatics sees Informatics as the oldest technology
and science discipline consisting of four very closely interrelated components:
scientific, engineering, methodological and application.

As a scientific discipline, Informatics is seen as being both a deeply fundamental
and a broadly applied science. The most fundamental goals of the scientific Infor-
matics are to discover and explore the principles, laws, limitations, phenomena
and processes of information processing worlds and, in particular, to develop an
information processing understanding of the universe, evolution, life, brain, mind,
intelligence, complexity and security, as well as to develop a deep scientific under-
standing of the problems related to the specification, design, validation, reliability,
security, structure, analysis and efficiency of huge and complex information man-
aging, processing, communication and imaging tools and systems2.

Current computation, communication and imaging revolution is seen, at this
perception, only as one of the very important milestones in the development of
both scientific and engineering Informatics, as well as of the Informatics-driven
methodology. However, the scientific goals of Informatics go far beyond what this
technology developments and its applications do and are expected to motivate,
imply and require.

As a scientific discipline, Informatics is seen as being, in some sense, cur-
rently the leading scientific discipline - due to its enormous impacts on all other
academic disciplines, as discussed below, and far beyond that3.

2 Systems that are of crucial importance for functioning of society and may be even
global from one point of view and up to the exascale from another point of view.

3 Sciences used to have a “Queen of science”, guiding and serving other sciences, with
very broad impacts on the overall development of sciences and also on education at
all levels. This role was played, for example, see [5] by Medicine in Padua and at the
same time Theology in Paris in 17th century; by Philology during the Renaissance;
by Mathematics after Galileo’s time due to its methodological impacts and partly
also by Physics in the 20th century, mainly due its involvements with very basic
elements of the nature as well as its impacts on the industrial revolution. Informatics
is quite fast replacing (expanding/extending) Mathematics (that is seen here as
being one of the grounding stones of scientific Informatics, and the same holds for
Logic) in its Queen/servant or servant/Queen role with respect to other scientific
and technological disciplines.

186 J. Gruska

To achieve its scientific goals, Informatics has to develop a huge variety of
paradigms, principles, concepts, models, theories, methods and tools. Some of
them are very abstract and may seem to be far from the needs of the narrowly
seen computer science. However, most of them have very deep goals, though
curiosity may be sometimes seen as the main or the only driving force of them.
They are, however, in most of the cases actually much needed in order to develop
powerful concepts, paradigms, theories and tools to deal with basic problems of
the understanding of principles, laws, limitations, phenomena and processes of
information processing worlds, as well as for the development of powerful infor-
mation processing and transmitting systems designing and processing methods
and tools.

As an engineering discipline, Informatics concentrates on the development
of paradigms, principles, concepts, models, methods and tools for specification,
design, validation, analysis and maintenance of natural and especially human-
made (hardware) devices and (software) systems used for acquiring, mining,
structuring, storing, processing, imaging and transmitting data, information and
knowledge, as well as for the development of tools and methods (for example,
operating systems, data bases, specification and programming languages and
corresponding methodologies and so on) to make efficient use of such devices and
systems. To increase much power, intelligence, reliability, robustness and security
of information processing, communication and imaging tools are some of the big
tasks of engineering informatics. Low-energy systems and miniaturization - to
move to nano- atto- and quantum-levels - is one way to go to enable long life for
the Moore law and to have systems with more than petaflops performance and
exabytes data stores.

Engineering Informatics concentrates also much on the design of intelligent
information processing systems and robots that could either simulate or even
outperform those of living beings and especially of humans in various (espe-
cially brain and behavioural) activities. The goal is not only to have powerful
and intelligent collaborators, but also to use designs and performance of such
artifacts to get a deeper understanding of the nature and human/brain/mind
activities. Cell-, bio- and brain-inspired computing is one of its grand challenges
with already amazing partial achievements.

As an engineering discipline, Informatics is seen as the leading engineering
discipline with enormous impacts on all other engineering disciplines, as well as
on humanities and liberal art, especially on their methodologies and tools, as
the very powerful servant of all of them.

Scientific and engineering Informatics create and develop also the basis for a
new and very powerful, Informatics-driven, methodology for science, engineer-
ing and mankind in general. The methodology that puts also two basic old
methodologies, experimental and theoretical, to new heights. The Informatics-
driven methodology can also be seen as extending much mathematics-driven
methodology and creating platforms for a successful application of the holistic
approach to science as an alternative to the reductionism dominating so far. The
new methodology is based on, and leads to, a vision of the nature, society and

Roots and Stimuli to a New Perception of Informatics 187

virtual worlds as being written in the information processing terms, extending
by that Galileo’s view that nature is written in the mathematical language4.

The main components of this new methodology are: (“digital”) modelling
and simulation (both being of another dimension than before), visualisation,
virtualization, abstraction, algoritmization, complexity considerations, tools to
apply holistic approach to complex problems, mechanisation of reasoning and
deduction, design of systems beating intellectual performance of humans and so
on. For details and illustrations see [9].

Informatics is also quite specific in taking a very special care to facilitate its
applications by developing a variety of methods, tools and systems that allow to
use easily its application potential in a variety of ways and to use information pro-
cessing resources and tools by everyone, from everywhere and anytime, and often
in almost no-time. The design of a global Internet, Web and computer (network)
and of the “intelligent dust” are some of the extreme highlights in this direction.

For a more detailed description and analysis of the four main components
of “new Informatics” see [Gruska 2010], where also several grand challenges of
scientific and engineering Informatics have been listed and discussed.

2 Roots of a New Perception
At the heart of everything is the question,
not the answer.

John Archibald Wheeler

There are several main reasons why a new perception of Informatics, as presented
in [9], is badly needed. A perception that is much broader and deeper than the
current view of computer science - as of the science dealing with a broad range
of phenomena related to computers and their use. These reasons are actually
closely related to some of the most basic global problems of the current academic
disciplines and society.

1. It starts to be understood that in the foreseeable future, in the 21st century,
most, if not almost all, of the major technological innovations and big innovative
projects in science, economy, finances, health and environmental care and in al-
most all other areas of societal activities will require to use, and in an essential
way, more or less sophisticated Informatics paradigms, principles, methodologies
or/and information storing, structuring, processing, communication and presen-
tation tools5. The overall development of society, science, technology, health and
4 Observe that the use of Mathematics and deduction can be seen as a very old method-

ology for science. However, it has actually been only after the scientific revolution in
the 17th century, after a new and very powerful Mathematics has been developed,
especially through mathematical analysis, that Mathematics has indeed started to
play, as methodology, a really very important role.

5 By Bill Gates, see also [16], The percentage of college freshmen planning to major in
computer science dropped by 70% between 2000 and 2005. In an economy in which
computing has become central to innovation in nearly every sector, this decline poses
a serious threat to American competitiveness. Indeed, it would not be an exaggeration
to say that every significant technological innovation of the 21st century will require
new software to make it happen.

188 J. Gruska

environmental care, economy, finances, but also of politics, care for our cultural
heritage and art will therefore much depend on the character and pace of the
progress in Informatics, in all of its four components. This can hardly be achieved
unless Informatics develops with a very broad and deep view of the discipline,
and of its grand challenges, and to all this the research agendas, creation of the
institutional settings for research, as well as channeling of the research support
are fully adjusted.

2. Society starts to understand, or at least to believe, that one, perhaps the
main, of the ways to go in the coming future is to drive, and fast, toward so-called
knowledge society at which knowledge, its production, dissemination, and utili-
sation are peacemakers and remote dynamos of the progress. Informatics-based
tools and the Informatics-driven methodology clearly play at these knowledge
production, dissemination and application a very important and many sided role
and all that requires again a very broad and deep development of Informatics.

3. Informatics, its concepts, paradigms, methods and tools, are helping, more
and more, to bridge various areas of science and technology, as well as to cross-
fertilize them. It is therefore of large importance for society that Informatics
develops as broadly and deeply as possible.

Indeed, it starts to be understood that science and technology, as the main
producers and consumers of knowledge, are to play the key role in the transfor-
mation of our society to a knowledge society. However, it starts to be also un-
derstood that to achieve all that is far from trivial and a simple idea of putting
more money into science in order to get proportionally more practical dividends
out of it does not work well, see [6]. In order to achieve the above goals, a deeper
understanding and a better view of the relation between the fundamental (basic
or pure) or knowledge oriented science on one side, and the use or application
(national goals or grand-challenges) oriented science on the other side, is much
needed. A new understanding is also needed of the relation between the potential
of science and technology to produce new knowledge and to put this knowledge
to use. In addition, it starts to be also understood, and much emphasised, that
the goal of the basic research is not only (a) to produce knowledge, but also (b) to
disseminate knowledge and, what is quite a recent wisdom, (3) to put knowledge
into use. It also starts to be understood that the relations between the pure-
or basic- or fundamental-research on one side and the applied- or engineering-
or technology-oriented research on the other side, are very complex and strong
influences go in all directions, see also [15].

A closer look to the features of the Informatics-driven methodology reveals
that this methodology contains a variety of very important features to bridge,
in both directions, and very significantly, these two areas of research. The areas
that used to be seen, for good reasons, in the pre-modern-Informatics era, as
being far from each other and actually so far, and as so antagonistic, that one of
the most basic position of Vanevar Bush in his so immensely influential report
“Science, the endless frontiers”, from 1945, was that “applied research invariably
drives out pure” [4].

The old view of the relation between knowledge oriented pure and use ori-
ented applied science was much related to the well observed understanding,

Roots and Stimuli to a New Perception of Informatics 189

corresponding to the goals, methods and tools these two areas of science used, that
not only the goals of the pure and applied research, but also of science and engi-
neering, are so different, but that to work in these different areas requires actually
very different type of skills and therefore also of people. However, nowadays when
all these areas of science and technology are done by researcherswho starts to mas-
ter main features of the Informatics-driven methodology and the outcomes of sci-
ence and technology are to a significant degree and in the limit manifested through
various Informatics-oriented products,6 differences between these, seen as so dif-
ferent, or even antagonistic before, disciplines slowly start to blur out. That is a
phenomenon society has to be very pleased with. There are therefore nowadays
again, as many times in the history, good reasons to assume that there is only one
science, very closely related to technology, and that science should be divided only
to a good and a bad one. In order to support even much more this new phenomenon
in the development of science and technology - that makes also science to be engi-
neering driven, to a certain degree, and engineering to be science driven, again to
a certain scale - it is much needed that Informatics, as the basis of the Informatics-
driven methodology, develops really in full broadness and sufficient depth.

Moreover, the fundamental science, equipped, supported and guided by the
paradigms, concepts, systems and methodology of Informatics, has now many
new tools and know-how to put knowledge in use in the way that makes also the
fundamental science richer and can much profit out of it. For example, through
the design, analysis and optimization of algorithms and protocols, through the
design of models and their exploitation through the analysis, simulations, visu-
alisation, through an adoption of holistic approach and so on. On the other side,
the use-oriented and technology research can nowadays much faster and better
make use of the basic-research outcomes because they come in a more ready to
use form. Bridges, to a large extent due to the powerful Informatics concepts,
models and tools, play by that again the key role. All that implies that the
progress in the development of all basic branches of science and technology and
their mutual fertilisation and impacts, what seems to be of so large importance
for society, much depends on the overall progress in Informatics and on the depth
and broadness of its scope and aims.7

6 For example, results of science and technology are often presented through methods
transferred to algorithms that are implemented through software products. Moreover,
it is getting understood that the attempts to come with the best, for example the most
efficient, algorithms and software can bring a deeper understanding of the underlying
problems and therefore to have an important discovery value. In a similar way one can
illustrate the bridging role of other features of the Informatics-driven methodology.

7 At this point it is perhaps good to note that two big failures, in practically all major
documents of IT, are continuously made. (1) Too narrow views of the field, that is
seen as being driven mainly by the progress in technology, and that need later to be
replaced by new ones due to new developments that extend the scope and deepen
fundamentals of the discipline; (2) Underestimation of the problems related to the
efficient design of correct and efficient software - due to the old technology view of
new software “technology”.

190 J. Gruska

4. For an overall proper development of both individuals and the whole so-
ciety, it is much needed that education concerning Informatics thinking8 and
a permanent capability to master ever more sophisticated information process-
ing, communication and imaging technology and methodology, penetrates and
is embedded, in an adequate way, into all stages and orientations of the main
(life long) education processes. In order to introduce and to develop such a new
paradigm deeply and broadly into the education processes, requires that the
whole society sees convincingly the depth, scope, challenges, goals and tools of
Informatics in such an appropriate and challenging way that it will be broadly
believed that an introduction of such a new and fundamental features into the
education processes will stand the scrutiny of time. All that is hardly possible
unless Informatics is perceived as a discipline with highly comparable depth and
broadness.9

5. Two of the recent and closely related paradigms of the current science
and technology, which are believed/hoped to have magic impacts, are multidis-
ciplinarity and collaboration. It is getting strongly believed, and there are good
reasons for that, that one of the ways to increase the progress in science and
technology is through a better and faster transfer of concepts, models, ideas,
methods and tools from one academic discipline to another and to deal with
problems that require multidisciplinary expertise. These ideas are in some way
not really new, but only nowadays there are good ways and very powerful tools to
make these two paradigms to be the ones really to focus on. The main reason be-
hind is the fact that Informatics, as the area of science, technology and the basis
of the Informatics driven methodology, offers a variety of concepts, models, the-
ories, methods and especially powerful tools to facilitate much interdisciplinarity
and collaboration.

There are many reasons and ways modern Informatics should be seen as facili-
tating multidisciplinarity and collaboration in science and technology. These rea-
sons are as a whole such that much deeper and broader development of Informatics
is much desirable to support Informatics contributions to multidisciplinarity and
collaboration: (a) Information gathering, storing and processing processes are in
the heart of many important phenomena and problems of a variety of academic
disciplines and therefore similar, Informatics thinking motivated, approaches can
be a basis of their solutions; (b) Informatics thinking leads to asking a new type
of fundamental questions concerning fundamental phenomena of a variety of aca-
demic disciplines - questions that motivate approaches that lead to new and deeper

8 This is seen here and in [9] as a more proper platform for so-called Computational
thinking, [10].

9 A significant change in the whole educational process, that is conservative in principle
and have always been - for good reasons - can hardly get really through unless it
is fully understood by society that such a change will well meet societal needs and
that what is behind is of really lasting, broad and deep importance. This can hardly
be achieved with the computer-centered view of the field, but more likely in case
Informatics is seen as the leading discipline of sciences and technologies and even as
the discipline of broader and deeper importance.

Roots and Stimuli to a New Perception of Informatics 191

insights into the problems, or nontrivial, but answerable questions, which put old
puzzles in a new light even if they fall short of answering them. (c) Informatics con-
cepts, languages and reasoning create a common framework to express problems
and their (algorithmic) solutions from a variety disciplines in a way that allows to
see similarities between them and makes transfer of tools and outcomes from one
discipline to another much easier.

Concerning collaboration, an important additional fact is the existence of
powerful and global communication networks that allow to share and make use
of geographically distributed devices and to transfer almost in no time not only
information and knowledge, but also powerful information processing devices.
This makes feasible the task to create efficiently working and geographically
much distributed virtual collaboratories.

Let us observe, in this connection, that the founders of the modern science,
in the 17th century, used to be mostly multidisciplinary scientists par excel-
lence. One reason for that was their strong background in Mathematics and a
belief that the laws of nature are written in the language of Mathematics. Their
important methodology was to transfer problems from different sciences into a
common mathematical language and then to use a common pool of knowledge in
mathematics to solve them. That allowed them to work successfully in several ar-
eas of science. Such a situation was actually almost to the Second World War.10

Afterwards, the situation has started to change and specialisation has started to
dominate. Knowledge has started to accumulate and methodologies have started
to develop so fast and so far and their applications required so much of the key
resources, and not only of intellectual resources, but also computational, that it
was no longer in the competence even of the brightest minds to embrace sev-
eral areas of science. The existence of the Informatics-driven methodology and
mechanisation of various intellectual, creative and computational processes and
science making activities in general, have started again to change the situa-
tion. To bring this development to additional heights, with big impacts, requires
much progress in the overall understanding of the Informatics developments
and challenges in all their depth and breadth as well as of the Informatics-
driven methodology. At the same time, the progress in the development of the
Informatics-driven methodology requires progress in scientific and engineering
Informatics and in the development of tools to facilitate application of this
methodology.

6. It starts to be understood that information processing plays so important
role in nature, and especially in living beings, that we can say that one of the
ways to understand universe, evolution, life, brain, mind, intelligence, complexity
and so on is through the study of the underlying information processes, their
principles, laws and limitations, see also [8]. In short, one can say that natural,
earth, behavioral and social sciences are, in their fundamentals, information

10 At that period it was sufficient for a small group of the very top scientists to keep
close contacts in order to be almost fully informed about the key developments in
science and technology in general.

192 J. Gruska

processing driven.11 It starts to be also understood that information processing
is for living beings of such importance as eating and breathing.

For example, there are good reasons to consider Informatics and Physics as
two windows to see, explore and understand the world(s). Physics can be seen
as dealing with the laws, limitations, phenomena and processes of the physical
worlds - Informatics, in turn, as dealing with the laws, limitations, phenomena
and processes of the information processing worlds. To explore the relation be-
tween the physical worlds and the information processing worlds is one of the
grand challenges of science in general. The question which of these two types of
worlds is more basic may be one of those eternal questions that can give long
life to Philosophy as it is the mind versus matter puzzle.12

The existence of powerful information processing in nature, and also a nat-
ural idea to explore its primitives and fundamentals in order to develop new
information storing and processing technologies that could far overcome current
technologies, requires that Informatics takes a much broader view of the field
and see it also as the one that is very deep and fundamental.

7. History of science and technology teaches us that it is very important to
search for a proper perception and fundamentals of a scientific discipline and
that the outcomes of such a search lead often to a much broader view of the
discipline with far reaching consequences. History also teaches us that a discov-
ery/development of a new perception of a discipline, if correct, can change al-
most everything in the discipline. History of Physics is an excellent example how

11 This, of course, does not mean that by studying information driven processes one
can get the whole scientific truth. For example, in spite of the fact that on the most
basic level molecular Biology can be seen as the most fundamental one with the
largest potential for far reaching discoveries for life sciences, this does not mean that
it is not of importance, from a very different point of view, to explore other problems
of life sciences. As one of many examples, let us mention the study of the behaviour
of various species such as ants and whales, or species that are in the danger of
extinction. Moreover, incredibly intelligent behaviour and surprising cooperation of
some species can be much inspiring for both scientific and engineering Informatics.

12 In this context of interest are the following two quotations of famous physicists. The
first one is from W. Heisenberg, one of the founders of quantum mechanics:

– I think that modern Physics has definitely decided in favour of Plato. In fact the
smallest units of matter are not physical objects in the ordinary sense: they are
forms, ideas which can be expressed unambiguously only in mathematical language.

and second one from John Archibald Wheeler, one of the founders of modern
cosmology:

– I think of my lifetime in physics as divided into three periods. In the first pe-
riod I was in the grip of the idea that everything is particle. I call my second
period everything is field. Now I am in the grip of a new vision, that everything is
information.

who named black holes and created slogan It from bit summarizing his previous
thoughts, which has been later updated by David Deutsch as It from qubit.

Roots and Stimuli to a New Perception of Informatics 193

important it is to challenge the “obvious, or common sense, views of the field”.
Around the 17th century Physics was seen as a discipline that deals “with the
stuff one can put between fingers”. Quantum physics and the relativity theory are
some of the main examples of the developments that have changed Physics for ever
concerning its depth and scope, all with very important practical implications.

8. The possibility to formulate and try to deal with so grand challenges that
even a partial successes in dealing with them may be very important for the
development of a discipline and for its recognition by other academic disciplines
and society. If an area of science and technology does not have such indeed
grand challenges that need huge research force to deal with, then it can lose a
momentum and an interest of the brightest minds in science and technology as
well as potential students, as well as of society and research money providing
agencies13 Really grand challenges can hardly exist in a discipline that is not very
deep and has not very broad scope. Physics could hardly develop really grand
challenges when seeing its goal as to deal with things one can handle between
fingers. To understand the essence of time and space is really a grand challenge
for physics, as well as to develop a theory of everything.

9. Development of (meta)science and engineering of science making activities
can be seen as one of the grand challenges of Informatics. To meet this challenge
requires naturally to perceive and develop Informatics very broadly and deeply.

There have already been developments that justify consideration and formu-
lation of such a grand challenge. For example, results in artificial intelligence
have already indicated that the border line between creativity and mechanized
reasoning is much thinner that we have thought not very long time ago.

For example, theorem proving used to be seen as one of the highlights of
creative thinking and as a technical basis of the theoretical methodology. There
are already results in theorem proving that overcome human mind, and all that
with theorem provers that work in a very simple and general way. Once million
times faster computers are available, theorem proving could be, to a large extent
mechanized. At least to such an extent that it would reduce, to a significant
extent, the task of mathematicians to make hypothesis.

Also in the area of engineering numerous highly intellectual activities, at least
as we could see them not so many years ago, have been mechanized to a remark-
able degree and often the level was obtained that is hardly achievable by humans
in a reasonable time. Developing engineering of the science making activities, at
least to a remarkable degree, and, of the corresponding meta-science and engi-
neering is therefore a reasonable and really grand challenge that will sooner or
later be met by one or another way.

13 Mathematics seems to be currently in such a stage. One can see it from its grand
challenges, or big problems/challenges, as formulated by the Clay institute. This
is a list of very interesting and old problems that for years resisted all efforts to
solve them. However, at least some of them can be, potentially, solved in such a way
that this may not have actually too much impact on Mathematics and its potential
to come with grand discoveries. Moreover, some of them can hardly be even easily
explained to non-specialists.

194 J. Gruska

10. One can observe an increasing convergence of many academic disciplines
to Informatics and their mutual fertilization, for benefit of all sides. For this
process to be fully successful, it is desirable to have very broadly and deeply
developed Informatics to meet all needs and potentials.

The fact that natural, behavioural and social sciences are, in their fundamen-
tals, much information processing driven is far from the main reason why these ar-
eas of science, and not only they, start to be more and more (inter)connected with
Informatics. Another important facts are that Informatics concepts, paradigms,
methods, results and tools provide a new quality microscopes and also telescopes
for mind and lead to new deep questions and new ways of approaching deep old
questions, as well as to new ways of understanding of deep problems of these sci-
ences. Moreover, Informatics concepts, models and tools allow also to bring into
new heights the holistic approach for these sciences and in this new way to get
deep insights into their complex phenomena and to complement in this way the
reductionist approach to them as well as to overcome its limitations.

Because of strong impacts of Informatics, especially of its methodology, on
all academic disciplines, one can indeed talk about their convergence to and
increasingly strong relation with Informatics. As a consequence, a significantly
new perception of Informatics, of its wideness and depth, would likely have a
strong general impact on all academic disciplines, scholarship, art, technologies
concerning also their research agenda, on the creation of the institutional settings
for research and also for channeling of the research support, as well as on the
education at all its levels and targets. All that may lead to a new framing of the
science, technology and education policies.

3 Impulses of a New Perception

The only limits to our realization of tomorrow will be our doubts
of today. Let us move forward with strong and active faith.

Franklin D. Roosevelt

The first important impulse came from the observations that several areas of (com-
puter) science, which were to a large extent originally motivated by computer tech-
nology or computing methodology, started to liberate themselves from the role
of serving mainly computer and computing technologies, and that they actually
needed that liberalisation for their healthy and vigorous development and out-
comes of new quality and generality. For example, combinatorics on words; formal
languages, automata, computational, communication and descriptional complex-
ity theories, semantics, concurrency, various logical systems and so on. It started
also to be clear that the more powerful computing systems we have and the more
complex problems can be solved with them, the more general, deep and broad the-
ories are needed to help to develop useful concepts, insights and tools to deal with
the underlying problems of these systems and their applications.14

14 For example, the larger and more important software systems are being designed, the
much better, deeper and broader science of designing correct software and verifying
its correctness, as well as for analysing it deeply is needed.

Roots and Stimuli to a New Perception of Informatics 195

Moreover, rapid increase of the performance and decrease of the cost and
size of computing systems, as well as their increasing reliability and enormous
consequences of all that, are fully in accord with the old wisdom that a new
technology can develop rapidly only in the case an intellectual framework has
been already available for its development and that one of the major impacts
of the new technology is to bring the original intellectual framework to new
heights. This applies in this case especially to the development of formal and
logical systems, but actually to all other areas the origin of which can be traced
to the pre-computer era.

The second main impulse came from the three basic discoveries in natural
sciences.

The first one was the discovery, by Francis Crick and James Watson, in 1953,
of the twin-corkscrew structure of DNA and how genetic information is encoded
into DNA - followed by the demonstration, due to [1] at first, how DNA can be
used as a form of computation and that such DNA-computing has a potential for
a remarkable efficiency. All that created huge and important areas of research.

The second one was the discovery of quantum teleportation and of uncon-
ditionally secure quantum generation of shared random classical key, [2,3], fol-
lowed by the demonstration, by [11,12,13], that quantum computing could be
performed and has a potential for remarkable efficiency. That led also to a huge
increase of the research in quantum information processing and communication.

Both of these basic discoveries changed the views on physics and biology that
started to be seen and explored as being, to a significant extent at least, in their
fundamentals, information processing driven sciences. From that it has been only
a natural and logical step to see other natural sciences, especially chemistry, in
this way, as being, to an important degree again, information processing driven
- and a new revolution in the study of natural and also other, especially be-
havioural and social sciences, has emerged. All that, supported by an immense
development of the power and miniaturization of information processing technol-
ogy, has initiated various new attempts to deal with perhaps the main frontier
of science - mind - and the attempts to understand it through a “reverse en-
gineering of the brain” - what could, perhaps, lead also to dealing with such
phenomena as consciousness that have been so far considered as being out of the
reach of (current) science.

The third major discovery was that there are one or very few cells organisms,
as paramecium (from 50 to 350 μm in length), that do information processing par
excellence in order to find foods, to avoid predators, to learn to find a mate and to
have sex - and also without having any synapses. Cells are therefore information
processing devices par excellence. All that led to a deep observation that informa-
tion processing is extremely important for life in general. In this way it got clear
that in order to search for the beginning of the history of powerful information
processing systems we need to go to the very beginning of the history of life.

The third main impulse came from the emerging observations that a new, very
broadly applicable and successful methodology, based on the development of the
discipline, had been emerging and its proper essence, foundation and potential

196 J. Gruska

developments and applications started to be explored. All that led to the need
to back this new methodology by a proper development of the discipline.

Another impulse came from the observation that paradigms, theories and
technologies behind the field have applications practically in all fields and areas
of activities of the society and by that the need arose to find the “largest com-
mon denominator” of the field and to come with a perception of the field that
would match perceptions of the fundamental sciences in its deepness, clarity and
intellectual simplicity. A perception that would, likely, stand the scrutiny of time
and new developments and discoveries would likely only enforce its validity.

In particular, one should realize that the emrging discipline actually brings a
new dimension to the centuries old efforts to derive knowledge from information,
to formalize knowledge and to formalize as well as to mechanize reasoning. It
is also to bring a new dimension to the centuries old attempts to understand,
match and beat performance of bodies and minds of living beings.

Also on a more philosophical level, it started to be realized that information
processing superparadigm is the one that is to dominate in the current science
and technology, replacing the machine/clock paradigm that used to dominate
for a long time, since the 14th century. For such a new paradigm to be really
a superparadigm with big impacts, it needs the support of a science that keeps
being vigorously developed and is deeper and broader in scope than what has
been offered with the computer-centric view of the field.

It started to be also realized that the old vision of the field makes it in-
creasingly difficult to get proper financial support for the most of the attractive
visionary challenges. Other areas of science and technology started to be more
successful in “taking the cream” of the Informatics challenges, in spite of the
fact that they lack sufficient expertise for dealing with such challenges.

Finally, decreasing enrollment of students in computer science in some coun-
tries, see [van Leeuwen and Tanca, 2007], and continuing problems to embed
basics of the field in a proper form into the high school education, finally started
to force the computer science community “to open the eyes” and to start to
investigate why the field stopped to attract the best student minds and how to
deal with this problem.

4 What Can Informatics Learn from the Development of
Other Sciences?

Another way to justify such a new, deeper and broader in scope, perception of
Informatics is to analyse the development of other sciences and technology disci-
plines and to show that new steps suggested to be taken by this new perception
have already been taken in the past, very successfully and with big dividends,
by some other, actually all, major academic disciplines.

In this paper we will only very briefly discuss what Informatics can learn from
the development of the Physics. In more details such issues will be discussed in
the full version of the paper to be presented on the author’s site at the portal of
the Academia Europaea, Informatics section [9].

Roots and Stimuli to a New Perception of Informatics 197

4.1 What Can Informatics Learn from Physics?

Physics is a natural science par excellence. Deepness and broadness of its laws
and limitations; understanding of the phenomena and processes and impacts of
all that knowledge led a famous physicists, E. Rutherford, to say (in 1912) that
In Science there is only Physics: all the rest is stamps collecting. a well known
exaggeration having its deep point.

What is actually Physics about? Some say, Physics is about matter and en-
ergy; others that it is about space and time and the rest is stamps collecting.
Exaggerations that have again their points.

There have been, of course, other views of Physics. Originally, Physics used
to be developed within Natural philosophy. In the 17th century Physics was seen
as “dealing with the stuff one can handle between fingers”. At the end of the
19th century it was believed that the laws of Newton and Maxwell were correct
and complete laws of physics. That led lord Kalvin to claim “There is nothing
essentially new to be discovered in Physics”.

However, the discovery of quantum Physics and the relativity theories have
shown how deeply wrong previous views were and new discoveries changed the
Physics radically. Moreover, they put it into another depth and broadness - all
that with enormous impacts also on our understanding of the “stuff we can
handle between fingers”. For example, the quantum theory is nowadays needed
for understanding properties of superfluids, functioning of laser, the substance
of chemistry, the structure and function of DNA, the existence and behaviour of
solid bodies, color of stars,

In addition, Physics, as the fundamental science, started to explore space,
time, black holes, black matter and energy, and so on. It started to explore the
universe from the Big Bang to the ever expanding horizons and to see galaxies
that are more than 10 milliards of light years away. The Planck scale and su-
perstrings are some of the hot problems on the agenda. Large Hadron Collider
(LHC) is currently the main experimental tool to explore deep nature and re-
lated to that is the LCD grid network of more than 100 000 processors in 130
organizations across 34 countries.15 The idea of the Internet was also born from
the needs to improve communication in order to explore nature better in its
deepness.

By [14], five main problems (grand challenges) of the current Physics are:
– (Problem of the theory of everything.) To unify the general relativity theory

and the quantum theory into a single theory (that could be then seen as a
complete theory of nature).

– (Problem of the interpretation of quantum theory.) To solve the problem of
foundation of quantum theory either by finding a clear interpretation of the
current theory or by finding a new theory without current inconsistencies.

– (Problem of the unification of particles and forces.) To find out whether all
particles and forces could be described by a single theory that could explain
all of them as following from a single fundamental entity.

15 This network is now able to process 1.25GB of data produced by LHC detectors per
second.

198 J. Gruska

– (Problem of the constants.) To explain how nature chooses values of constants
in the standard model of nature.

– (Problem of the black matter and energy) Explain the nature of black matter
and black energy or, if they do not exist, explain how and why is gravitation
modified for huge sizes.

It is also of interest to look into the methodologies Physics has been used to deal
with its problems. In short, one can say that Physics has been using all available
methodologies that could promise to produce interesting/important results. Let
us mention two particular cases.

In the 17th century Physics solved the long standing and key problem of un-
derstanding of the direct motion by geometrizing the problem. That is by going
into a (virtual) mathematical/geometrical friction-less space. In the process of
doing this, Physics was able to replace the mysterious concept of impetus, that
assumed to have some (mysterious) spirit behind each motion, by the modern
concept of inertia and to come this way to the modern theory of motion. By
achieving this Physics drove spirits out from scientific thoughts and opened the
door to see the universe as running as a piece of clockwork, [5].

Discovery of the quantum theory and attempts to understand its relation to
reality have brought another radically new view on the essence of the underly-
ing science and its methodologies. One of the key observations, much connected
with the peculiarities and randomness of quantum measurement, is that we un-
derstand nature only through information obtained via measurements. That re-
sulted in the views by Bohr that It is wrong to think that the task of Physics is
to find out how nature is. Physics concerns with what we can say about nature
and led to such slogans as It from bit due to Wheeler that was later modified
by Deutsch to It from qubit. That led to the view, not shared by all, of course,
that Everything is information and to the formulation of so-called principle of
quantization of information, [17]. Namely that An elementary [physical] system
is a manifestation of one bit of information.

Current highlight of Physics - superstrings theory - operates with objects in
10 dimensional space. This theory has very high standing, in spite of the fact
that it does not seem to be a testable theory - what used to be seen as a must
feature of any theory to be accepted as a physical theory.

There are many other things Informatics can and should learn from the de-
velopment of Physics. Here are some of them.

Physics, as the science, has had so far practical applications exceeding that of
any science before. In spite of that, the need to deal with immediate problems of
the practice can hardly be seen as the main, or as the only, driving force of its
development16. It has been rather curiosity and the need to extend our knowl-

16 In this connection of interest is the following position of J. Robert Oppenheimer, who
directed Los Alamos Scientific Laboratory [15], The things we learned [during the war]
are not very important. The real things were learned in 1890 and 1905 and 1920, in
every year leading up to the war, and we took this tree with a lot of ripe fruit on it and
shook it hard and out came radar and atomic bomb. . .

Roots and Stimuli to a New Perception of Informatics 199

edge and understanding of the physical world, far beyond the one our senses can
capture, that was behind Physics main discoveries and contributions.

Physics has made big progress even by exploring properties of particles that
are not sure to exist (in some reasonable sense) or in developing theories we see
no way to verify experimentally. Beauty, compactness, simplicity and surprising
conclusions have been often enough in case no conflict with experiments have
been recorded or predictable.

It has been to a very large extent due to the capability of Physics to keep
making its research space broader and broader, deeper and deeper and to look for
its most fundamental elements that made not only knowledge Physics produced,
but also the impacts this new knowledge had, so remarkable.

References
1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.

Science 206(11), 1021–1024 (1994)
2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and

coin tossing. In: Proceedings of IEEE Conference on Computers, Systems and
Signal processing, Bangalore, India, pp. 175–179 (1984)

3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical Review Letters 70, 1895–1899 (1993)

4. Bush, V.: Science - The Endless Frontiers; A report to the President on a Program
for Postwar Scientific Research. National Science Foundations (1945)

5. Butterfield, H.: The origin of modern science. The Free Press, New York (1997)
6. Griffiths, P.A. (Chair of the Committee). Science, technology and the Federal Gov-

ernment: national Goals for a new Era. National Academy Press, Report of Com-
mittee on Science, Engineering and Public Policy of the National Academy of
Sciences (1993)

7. Gruska, J.: Quantum computing. McGraw-Hill, New York (1999)
8. Gruska, J.: A broader view on limitations of information processing by nature.

Natural Computing 6, 75–112 (2007)
9. Gruska, J.: A perception of informatics (2010),

http://www.AE-Info.org/ae/User/Gruska.Jozef
10. Linn, M.(Committee chair): The scope and nature of computational thinking. Re-

port of a Workshop, national Research Council of the National Academies, USA
(2010)

11. Shor, P.W.: Algorithms for quantum computation: discrete log and factoring. In:
Proceedings of 36th IEEE FOCS, pp. 124–134 (1994)

12. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys-
ical Review A 52, 2493–2496 (1995)

13. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th IEEE
FOCS, pp. 56–65 (1996)

14. Smolin, L.: The trouble with physics. The rise of string theory, the fall of science
and what comes next. Spin Networks Ltd. (2006)

15. Stokes, D.E.: Pasteur’s quadrant. Basic science and technological innovation.
Brookings Institution Press, Washington (1997)

16. van Leeuwen, J., Tanca, L. (eds.): Student enrolment and image of the informatics
discipline. Tech. Rep. UU-CS-2007-024, Utrecht University (2007)

17. Zeilinger, A.: A foundational principle for quantum mechanics. Foundation of
Physics

http://www.AE-Info.org/ae/User/Gruska.Jozef

Towards a New Shape Description Paradigm
Using the Generative Modeling Language

Sven Havemann1 and Dieter W. Fellner1,2

1 Institute of ComputerGraphics and KnowledgeVisualization (CGV),
Graz University of Technology, Graz, Austria

s.havemann@cgv.tugraz.at

www.cgv.tugraz.at
2 Fraunhofer IGD and GRIS, Darmstadt University of Technology,

Darmstadt, Germany
d.fellner@igd.fraunhofer.de

www.igd.fraunhofer.de

Abstract. A procedural description of a three-dimensional shape has
undeniable advantages over conventional descriptions that are all based
on the exhaustive enumeration paradigm. Although it is a true general-
ization, a procedural description of a given shape class is not always easy
to obtain. The main problem is that procedural descriptions are typically
Turing-complete, which makes 3D shape design formally (and practi-
cally) a programming task. We describe an approach that circumvents
this problem, is efficient, extensible, and conceptually simple. We demon-
strate the broad applicability with a number of examples from different
domains and sketch possible future applications. But we also discuss
some practical and theoretical limitations of the generative paradigm.

Keywords: generative modeling, procedural shapes, programming
language, interactive shape design, 3D computer graphics.

1 What Is Generative Modeling?

It is not a trivial problem to find a good digital representation for describing
the shape of a three-dimensional object. Maybe the most basic approach is to
resort to sampling: The surface of the object is digitized, e.g., using a laser
scanner that quickly produces millions of sample points on the surface of the
object, as seen from a specific viewpoint. A 3D scanner acts very much like a
photographic camera that produces a bitmap containing not only color, but also
depth information. Consequently, the resulting depth image is called a range
map. For the purpose of this paper, we are concerned with the shape alone, not
with the color or material of a 3D object.

A range map faithfully captures all detail (as much as the sampling density
permits), but it is highly redundant: A scan of a flat surface produces points
that all lie in the same plane. So the next idea is to resort to tesselations: Every
manifold, e.g., a 2D surface embedded in 3D space, admits a simplicial decom-
position, in this case a triangulation. This solves the problem of flat surfaces,

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 200–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards a New Shape Description Paradigm 201

but curved surfaces still require a vast amount of triangles, depending on the
required error tolerance.

The search for more powerful shape descriptions has produced over the last
30 years a large variety of geometrical primitives, ranging from freeform surfaces
(parametric and iso-valued) over meshes (triangles, B-reps) to rather special ones
(union of spheres, moving least squares surfaces). With NURBS, the dominant
surface representation in industrial applications, it is only a matter of positioning
the control points in the right place to create a spoon, a chair, or a car wing. But
a spoon has an inner logic beyond control points, and this logic is not reflected
in any representation following the enumerative paradigm. They all share the
same problem, namely that there is no real reduction in complexity: n spoons
require n times the space of one spoon, as point cloud or as NURBS model.

1.1 The Generative Modeling Paradigm

One way out of this dilemma is a paradigm change towards procedural shape
descriptions. The idea of generative modeling is to understand a shape not as
a huge list of elementary geometric objects, but as a list of object generat-
ing operations. While enumerative shape representations encode the result of
a geometric construction process, a generative representation encodes the con-
struction process itself. Note that this is in fact a true generalization: a triangle
becomes a constant operation producing this triangle. So a generative description
always works in a layered fashion on top of a conventional shape description:

– L2: Shape programming language MEL, MaxScript, Python – or GML
– L1: Shape operators create triangle, move vertex, extrude
– L0: Shape data structure triangles, B-reps, NURBS, point clouds

Generative modeling works best for man-made objects since it can capture very
well regularites of all sorts. Man-made shapes exhibit regularities for a variety of
reasons, only to mention aesthetics and style, manufacturing constraints and cost
efficiency. Brick walls are less expensive when the bricks are equal. Consequently,
the number of shape design patterns is in fact rather limited [5].

Despite clear advantages of procedural modeling, enumerative representations
are still predominant. A major concern is robustness: When transmitting a gen-
erative model, the receiving system must behave identically as the sender to
obtain the identical result. And this identity must hold on all three levels lised
above. So the central question is: Considering all three levels L0, L1, L2, can
there ever be a general exchange standard for procedural models?

1.2 GML, the Generative Modeling Language

The Generative Modeling Language (GML) belongs to the simplest class of pro-
gramming languages, stack-based languages. The language core is identical to
that of Adobe’s PostScript [1]. PostScript is the ’invisible’ programming lan-
guage: When pressing the Print button, e.g., in Microsoft Word, the PostScript

202 S. Havemann and D.W. Fellner

printer driver generates a computer program that is executed by the printer.
PostScript has two outstanding advantages over other languages: It is designed
for automatic code generation and for execution on modest hardware.

GML ranges on the language level (L2), so it acts on top of certain shape oper-
ators to manipulate a certain low-level shape representation. These are detailed
in sections 3 and 4. But before, we need to look at possible alternatives.

2 Related Approaches

Procedural and generative modeling are gaining importance for several reasons.
First of all, there is a need for more dynamic computer applications. With in-
creasing computer power (Moore’s law), more and more data can be processed
on the fly. Advantages are that (a) a process description is typically tiny, and
(b) process parameters can be varied later on. There is an enthusiastic Gene-
rative Design community around the Processing framework from Casey Reas
and Ben Fry [13,12]. The majority of interactive art installations today are real-
ized with it. The Processing approach is to streamline the programming task so
that art-directed people can use it without too much frustration. Processing has
considerable success with this approach, and some of the results are stunning.

However, it is doubtful that the approach scales to industrial applications. Not
all artists are good coders. GML is not optimized for ease of coding; instead, like
PostScript, it shall be generated invisibly by an interactive 3D application.

Shape grammars are another flavor of procedural modeling. They have gained
considerable attention due the CityEngine [11] software that is based on the
grammar language CGA Shape from Müller et al. [9]. It follows the principle
of recursively splitting up a larger shape (box) into smaller shapes, each shape
carrying a symbol. The rules of a context-free split grammar determine the split
direction and size. Terminal boxes are filled with nice pre-modeled architectural
elements. This approach works extremely well for very regular classical buildings.

Grammar evaluation requires a stack, so it may not be surprising that GML
is well suited for the task. Section 5.2 shows some grammar-based GML models.

Maybe the most important class of procedural approaches are highend 3D
modeling systems. The mid-90s witnessed a silent revolution in industrial de-
sign. Pro/Engineer from Parametric Technologies was the first CAD software to
allow engineers constructing, e.g., a complete car rear axle as one parametric
model; whole product families could be generated by changing a few high-level
parameters. The approach was soon adopted by the other major CAD vendors.
Apparently, today more than 90% of all consumer goods are created paramet-
rically using software such as Pro/E, CATIA, SolidWorks, Unigraphics. But of
course, each vendor defends his proprietary approach, and the exchange of in-
telligent MCAD models is a huge problem [10]: A parametric model created in
Pro/E can usually be imported to CATIA only as a static model, i.e., as single
instance of the shape family. This is a comfortable situation for the vendors.

We think that GML is suitable as a general exchange format for intelligent
CAD models. Its versatility is demonstrated in sections 4 and 6. After all, the

Towards a New Shape Description Paradigm 203

big trend is towards more customizable CAD applications, since the big gain is
in the domains: Ship hull design, engine design, design of supermarkets or of
coffee machines. – Exactly this is the idea behind, e.g., GML for Maya (sec. 6).

3 GML Fundamentals

GML follows the simple and general stream of tokens approach: A stream of
individual tokens is processed, token after token. A token either contains data,
in which case it is put on a stack, or a processing instruction, an operator.
Operatorsuse the operand stack : Input parameters are poppsed, then processed,
and results are pushed. Many pure data formats can be trivially converted to a
stream of tokens: A string with a sequence of numbers separated by white spaces
is already a valid GML program. The GML parser does not build up a parse
tree, so it is actually only a tokenizer that treats each token independently.

GML provides only two compound data structures, (heterogenous) arrays and
dictionaries. When executing [”x” /a 5] the opening marker [is pushed just
like string, literal name, and integer. But the closing] is actually an operator.
It searches on the stack for the marker, pops the values in between to create
an array, and pushes an array token. Functions are created the same way using
curly braces; all tokens are considered literals (and are pushed) until the closing
} creates an executable array. So GML functions are in fact just ordinary token
arrays, and all array operations can be applied to them (concat, get/set).

Besides (a) syntactic simplicity and (b) token arrays as functions, code gen-
eration is facilitated by (c) the stack. Values are passed anonymously without
explicitly declared parameter lists (no signatures). All in all, 12 language rules
are completely sufficient to describe the language ([4], Fig. 5.5, p. 217).

A first GML example. The code in Fig. 1 works in an assembly-line fashion. The
quad operator (line 1) takes two corners of a rectangle and a mode flag and pushes
an array of 4 points. The 3D runtime engine renders objects on the stack, e.g.,
point arrays as open polygons. Line 2 converts the polygon to a mesh and pushes
a halfedge of the double-sided quad (rendered as half arrow). It is the consumed
by the extrude operator (line 3) together with a vector (w,h,m) describing width
w, height h and mode m of the extrusion. In line 4, (1,0,1) normalize 0 describes

1: (0,0,-2) (1,1,0) 2 quad

2: /cyan setcurrentmaterial 5 poly2doubleface

3: (0,1,1) extrude

4: (0,0,1) (1,0,1) normalize 0 project ringplane

5: (2,0,0) (0,1,-1) 2 quad

6: /yellow setcurrentmaterial 5 poly2doubleface

7: 0 bridgerings

Fig. 1. GML works in an assebmly line fashion: Each operation takes its input(s)
from the stack and leaves its result(s) on the stack for the next (Details: see text)

204 S. Havemann and D.W. Fellner

a plane by normal vector and distance from origin, onto which the extruded face
(halfedge from line 3) is projected in vertical direction (0,0,1). Lines 5 and 6
create another double-sided quad. Line 7 finds two halfedges on the stack, which
are then connected vertex-wise. bridgerings works only when both faces have the
same degree, in this case four. – So each line processes the results of one or more
previous lines; intermediate results wait on the stack until they are needed.

4 Procedural Shape Design with GML

It is straightforward to generalize a given parametric model like the one from
Fig. 1 by replacing concrete values by parameters. However, a shape family does
not come for free. It can be a challenging intellectual endeavour to determine the
similarity and the difference of a class of given shapes. The parametric car rim
model in Fig. 3 is the result of a baccalaureate thesis. We were given about 30
individual models of triangulated car rims from Volkswagen, which were manu-
ally partitioned into three different classes with distinctively different properties.
One parametric model was created for each class, sharing as much functional-
ity as possible. The main difference was the shape of the spokes. However, all
rim classes shared some parameters, e.g., the number of spokes. So some of the
parameters could be exposed as sliders in 3D, so that a new car rim within the
design space of a class can be generated within a fraction of a second.

A wealth of examples. The range of possible applications of the same principle
is shown in Fig. 2. The engine is a didactic model exposing a number of funda-
mental design parameters such as number of cylinders, piston height, and crank
shaft radius. Most importantly, the opening angle of the housing connects a con-
tinuum of V-engine, boxer engine and in-line engine. – Gothic architecture is a
prime example of parametric design from the 12th and 13th century [6]. Gothic
constructions use exclusively compass and ruler. The standard pointed arch has a
recursive structure with a circular rosette and two pointed sub-arches. Every pa-
rameter change requires a re-construction from scratch, the amount of geometry
generated is substantial. The Procedural Cathedral, a model of Cologne cathe-
dral, contains about 100 KB GML code.– The graph-like pipe structures (left)
are an example of a style library. All styles permit a hierarchical structure with
sub- and sub-sub-pipes that can be opened up. This is also a domain-specific
modeling tool, as it allows editing of pipe graphs [8]. – The CAVE configurator
is for planning a complex projection system (projector cones with arrows) in a
room with complex geometry. – Five points are sufficient to define the structure
of a chair, but a bed and a sofa have the same structure. This example hints at
the separation of structure from appearance. – Finally, the Castle Construction
Kit [3] enables also non-expert users to create complex geometry; its purpose is
to study whether GML technology is suitable for computer games.

4.1 Six Main Fields of Application for the GML Technology

– Enhance existing applications by 3D component. Since our reality
is three-dimensional, most software products should have a 3D module.

Towards a New Shape Description Paradigm 205

Fig. 2. GML examples. A concrete model can easily be generalized to a shape family.

206 S. Havemann and D.W. Fellner

Fig. 3. Three classes of car rims. The spokes of the three rims types are generated by
different ’overridding’ functions. Right image: Changing the number of spokes.

Fig. 4. Interactive high-quality surface reconstruction. A scanned triangle mesh is ana-
lyzed in order to guide the user-assisted creation of an as-regular-as-possible subdivision
control mesh (pcB-Rep, see section 5.1). Fully automatic approaches are not accepted.

Examples: Logistics, facility management, SAP. By integrating GML, full
parametric 3D modeling and viewing functionality becomes available.

– 3D Modeling for specialized domains. Each domain has its domain-
dependent shape building blocks. Examples: Bridges, buildings, street net-
works, pipe networks, car rims, furniture. Careful parametrization of building
blocks can efficiently yield a great variation in shape by combinations.

– Rapid mass instantiation. Model collections even with thousands of 3D
models (Google Warehouse) offer not too much variation in each category: 3
hands, 50 cars, 7 cupboards etc. Generative shape families can cover a whole
continuum of similar but different shapes, and avoid repetition.

– Systematic parameter variation. In order to optimize constructions in
engineerin, simulation software can automactically highlight problematic re-
gions in the model. If automatic analysis is complemented by automatic
model creation, the optimization feedback loop can hopefully be closed.

– Web-based 3D applications. As a modeling language, GML facilitates
updating the construction history on the server whenever a modeling opera-
tion is issued on the client (see [2]). Possible applications: Web-based product
configuration, collaborative 3D-editing, virtual worlds (a la SecondLife)

– General exchange format for intelligent 3D models. The great po-
tential of domain-dependent 3D modeling tools can not be leveraged today.
A new market could evolve if specialized engineering companies could sell
solutions to 3D modeling problems, instead of just 3D models and renderings.

Towards a New Shape Description Paradigm 207

5 Three Low-Level Shape Representations (L0/L1)

GML as such is only a programming language (level L2 from sec. 1.1). But
a shape description requires also a low-level shape representation (L0) and
operators to manipulate it (L1). The first representation used was the pcB-
Rep; but recently the concept was extended to Convex Polyhedra (CPs) and
Volumetric Bitmaps (VBs) for reasons described in the following.

5.1 Progressive Combined B-Reps (pcB-Reps)

The generative models shown in Figs. 1-5 all use progressive combined B-Rep
meshes, short pcB-Reps. The concept is shown in Fig. 5, where the coarse
control mesh is in the top right. Like any B-rep, the faces of a pcB-rep can
have any degree (e.g., octagons) but its edges carry an additional flag: they
are either sharp or smooth. If all edges are sharp, the pcB-rep is rendered as a
polygonal object, but faces with a smooth edge are rendered as Catmull/Clark
subdivision surface. The setup and render routine is highly optimized to allow
for progressive refinement over several frames, and adaptive level-of-detail; for
details see [4].

Since not everything must be recomputed at once, even very complex models
such as the Gothic window (Fig. 2) can be changed at interactive rates, i.e., with
a complete regeneration between two mouse ticks when dragging a slider.

On the conceptual level, the innovation was to use a well-defined operator
interface, the Euler operators, for mesh manipulation. They act as a middleware
for all higher modeling operations such as extrude or bridgerings, but are also
available as GML operators. GML therefore allows fine-grained mesh editing on
the halfedge level. A single new GML type, the halfedge token, was added as a
mesh reference. It uniquely idenifies one vertex/face combination of the mesh.

Fig. 5. Product mass customization. Concept study for customizable consumer prod-
ucts. Top: Organic network. Bottom: End-user customizable free-form lamp shade.

208 S. Havemann and D.W. Fellner

Fig. 6. Computing Convex Polyhedra. Plane intersection (top) and robustness test.

Meshes are great for local modifications, but their global consistency can be
a problem. Inserting a vertex into an edge splits up both respective halfedges.
This might break the repeatability of a subsequent mesh operation that uses
these halfedges as anchor. – Halfedges can be brittle references.

5.2 Convex Polyhedra (CPs)

Very robust with respect to split operations are convex polyhedra. Fig. 6 (top)
shows an oriented plane defined by three (ordered) points. It partitions 3-space
in two infinite half-spaces, ’interior’ and ’exterior’. A convex polyhedron (CP)
is the intersection of several such ’interiors’. The challenge is to compute its
corners, which can be done in a fast and robust way on the integer grid.

Fig. 7. CITYFIT examples. A GML shape grammar for Convex Polyhedra is generated
automatically from the results of an image analysis pass (images to the right).

Towards a New Shape Description Paradigm 209

With a robust CP evaluation method also CSG, i.e., Boolean set operations,
become possible. The robustness is demonstrated by moving inwards the planes
of all CPs by a fixed amount. This produces gaps, and many CPs correctly vanish
because the halfspace intersection is now empty.

CPs can be considered a generalization of rectangular boxes, so they can also
be used as primitive for shape grammars. Fig. 7 shows some facades created
by CP-split grammars. They allow greater expressiveness since architectural el-
ements like columns, rounded arches, rounded roofs etc. can now be expressed
within the grammar, rather than using pre-modeled geometry. Another challenge
is to use grammars also for building interiors. This was successfully demonstrated
with the compouter science building in Graz (Fig. 8, also see [7]). An important
advantage of such a procedural model is that different views can be generated on
the fly by re-defining the grammar rules; furthermore, default parameters can be
replaced anytime later by measured values to produce a more accurate model.

Another interesting implication is that CP-grammars can much better repre-
sent modern styles, e.g., deconstructivism, that use intersections and not classical
splits. The interactive building configurator in Fig. 9 runs on an Apple iPhone
and can be operated using touch gestures. Another step further goes the House-
Configurator software (Fig. 10), which allows the user to move walls, windows,
and doors etc., but also to specify constraints that need to be maintained.

Convex Polyhedra have also proven useful for CAD applications beyond ar-
chitecture. Fig. 11 shows the model of a mechanical device that is composed of
several moving parts. Optimizing the dimensions of the parts has proven diffi-
cult because of the many interdependencies. After a number of CAD drawings, a
GML model using CPs was created that allowed much shorter turnaround times
in optimization (cf. section 4.1).

5.3 Volumetric Bitmaps (VBs)

The latest addition to the set of GML supported shape representations is the Vo-
lumetric Bitmap (VB). The goal of the METADESIGNER project is to provide
(like Processing [13]) a tool for artists and shape designers to create parametric
procedural models. This requires a shape representation with really minimal
requirements in terms of data structure consistency.

A volumetric representation has the great advantage that in principle, each
individual voxel can be switched on or off. More efficient is to render whole

Fig. 8. Box grammar example. The computer science building of TU Graz is not as
regular as it seems. Parametric grammar rules are used, e.g., a corridor-wall-office split.

210 S. Havemann and D.W. Fellner

Fig. 9. Gandis project: Conceptual 3D modeling of office buildings as iPhone appli-
cation. Top: Intersections are faithfully computed using CSG, the curtain wall facade
follows the outline of the union of the three independent box-shaped parts. Bottom:
Touch-optimized user interaction and parametric non-standard residential building.

Fig. 10. Interactive Interiors. Left images: The user can fix distances (red portion of
slider). Right images: When dragging the wall, the fixed distances remain unchanged.

Mechanical−main−dict begin
/clearance 0.3 def
/p14−thick−t 1.3 def
/p11−radius 2.5 def
/p12−radius p11−radius def
/p12−thick p14−thick−t

clearance add def
...

end

Fig. 11. Optimizing assemblies. Left: Mechanical constructions have a long parameter
list. Some are free, others are computed (e.g., p12Thick = p14ThickT + clearance).
By convention, they are stored in a model dictionary, essentially a property list.

objects like a sphere to the volume. More complex shapes can simply be created
by moving a solid object through the volume, which is continuously rendered
into the volume. This reduces shape design to motion design, which is easier to
control for artists and designers than, e.g., mesh consistency.

Towards a New Shape Description Paradigm 211

Fig. 12. Volumetric Bitmaps. Left: Three intersecting chair models. Right: Self-inter-
sections are automatically removed when rendering the chairs to the volumetric grid.

6 The GML Technology Portfolio

GML comes in various flavors, Fig. 14 shows the range of applications and usage
scenarios. The reason for this versatility is that GML does not comes as GUI-
based application, but only as a C++ library (or DLL). Its size is very small
(2.5 MB); the minimal GUI-based application, TestGML, has less than 3 MB.
Another reason for the versatility is that the GML library can be operated
basically using three commands:

– GMLApplet::call(std::string command) to execute a GML command string;
– GMLApplet::render() for OpenGL output; and
– GMLApplet::handle(...) for mouse and keyboard input.

This API can easily be wrapped, e.g., to JavaScript for a web browser plugin; to
COM for an ActiveX control (ActiveGML); to Java for a Processing extension;
as well as to MEL for a plugin to the high-end 3D modeling software Maya,
which also uses OpenGL for rendering.

Using this API, GML can also easily be integrated with any GUI-based ap-
plication, using whichever GUI library is provided. Typically, the GUI callback
function, e.g., of a button or a manu item, triggers the GMLApplet::call method
with a fixed GML command that executes a function of a GML library that is

Fig. 13. Scriptable LEGO. The GML LEGO resource holds a hierarchy of transfor-
mations (a scene graph). It follows the move-and-drop approach; parts can be added,
removed, and translated. The grid semantics can be scripted on the GML level.

212 S. Havemann and D.W. Fellner

Fig. 14. GML technology portfolio. Top: GMLStudio IDE, GML for Processing, GML
for Maya. Middle: Castle Construction Kit as C# application, in a WPF/XAML can-
vas, with a plugin for height-sensitive walls. Bottom: GML on a Powerpoint slide, on
a web page, and steered by a WPF applet for pen-assisted drawing.

loaded in the beginning. Of course, the command string can be created dynam-
ically, e.g., to transmit a slider value to the GML applet.

A more sophisticated environment using Microsoft WPF/Silverlight is cur-
rently being developed. It supports also data binding, i.e., the value of a slider
in the 2D GUI can be bound to the value of a GML variable. This way, a
bi-directional connection between 2D GUI and GML can be realized, e.g., to
trigger a re-configuration of the 2D GUI in response to a selection event in the
3D view. This will enable a new generation of very dynamic applications with
tight integration of 2D and 3D content.

7 Fundamental Limitations and Future Work

There are three fundamental problems of the generative modeling approach,
which also apply to procedural modeling in general. Strategies to avoid or cir-
cumvent htem are among the difficult research problems of the future:

The Persistent Naming Problem. Whenever a modeling operation is executed,
it is applied with respect to a reference, sometimes called anchor. When the
anchor is moved or vanishes, the operation cannot be reliably performed any
more. In that case the reference (’name’) does not persist, hence the name. This

Towards a New Shape Description Paradigm 213

Fig. 15. GML from data. Left: To convert PDF to GML, the plan is printed to a
PostScript file. GML commands are inserted using text search/replace. Right: The
export of a GIS system in CSV format was also converted to GML using text tools.

is especially an obstacle for automating GUI-based operations. When the user
modifies a specific step of a stairway, a column of an arcade, a vertex of a mesh
– what was the reason for selecting this item? If the user does not provide a
selection rule, but only a mouse click, the action can not be retargeted, i.e.,
later re-used with a different stairway, arcade, or mesh. – The persistent naming
problem occurs in many different variants.

The Kolmogorov Complexity is uncomputable. GML programs are tiny com-
pared to the amount of data they produce. The Gothic window in full resolution
produces a 262 MB .obj file out of 44 KB GML code. So it is tempting to us it
as compression scheme. But this amounts to the question: Given a shape, which
(small/smallest) GML program can produce this shape? This is equivalent to
asking for the Kolmogorov complexity of a shape. The Kolmogorov complexity
of a bit sequence is the size (in bytes) of the smallest computer program (in a
given language) that produces exactly this sequence. Unfortunately, from infor-
mation theory it is known that the Kolmogorov complexity is uncomputable.

Generative Surface Reconstruction is an ill-posed problem. A weaker form of
the inverse problem is the question: Given a GML model of a chair with free
parameters, and a scanned model of a chair, what is the parameter set that fits
best the template to match the scan? Parameter fitting is an inverse problem,
and in general it cannot be decided either. Fitting often fails because the distance
measure is misguided by unimportant details since the fitting algorithm can a
priori not distinguish between imporant and unimportant feature.

8 Summary and Conclusion

– Generative 3D Modeling is a paradigm change in the description of 3D
objects: Not as lists of geometric primitives, but as sequence of operations.
Any GML model can immediately be parameterized to create a whole shape
family of similar shapes.

– Automatic code generation is the feature that makes the difference: Pro-
cedural modeling requires a file format that is a programming language. In
GML, literal manual programming is replaced by Lego-like plugging together
of code fragments in background.

214 S. Havemann and D.W. Fellner

– Full range from static to intelligent data: GML is very close to pure
data formats for non-procedural data, e.g., XML. Data refactoring by grad-
ually introducing loops and function calls allows exploiting regularities to
decrease data size and increase high-level control.

Acknowledgements

The authors gratefully acknowledge the generous support from the European
Commission for the FP7 IP 3D-COFORM (grant ICT 231809), and from the
Austrian Research Promotion Agency (FFG) for the Fit-IT VisualComputing
projects CITYFIT (grant 815971/14472), METADESIGNER (grant 820925/
18236), and GANDIS.

But and foremost we thank the GML group in Graz: René Berndt, Ulrich
Krispel, Wolfgang Thaller, Christoph Schinko, Volker Settgast, Torsten Ullrich,
Manfred Krieger, Martin Hecher, Alex Falkensteiner, Bernhard Hohmann, Björn
Gerth, Harald Csaszar.

References

1. Adobe Inc.: PostScript Language Reference Manual, 3rd edn. Addison-Wesley,
Reading (1999)

2. Berndt, R., Havemann, S., Fellner, D.: 3d modeling in a web browser to formu-
late content-based 3d queries. In: Proc. Web 3D 2009, pp. 111–118. ACM Press,
New York (2009)

3. Gerth, B., Berndt, R., Havemann, S., Fellner, D.W.: 3d modeling for non-expert
users with the castle construction kit v0.5. In: Proc. VAST 2005, pp. 49–57. Euro-
graphics/ACM Siggraph, Eurographics Press (November 2005)

4. Havemann, S.: Generative Mesh Modeling. Ph.D. thesis, Braunschweig Technical
University, Germany (November 2005)

5. Havemann, S., Fellner, D.: Patterns of shape design. In: Proc. I-Know 2009,
pp. 93–106. J. UCS Journal of Universal Computer Science, Graz (2009)

6. Havemann, S., Fellner, D.W.: Generative parametric design of gothic window trac-
ery. In: Proc. VAST 2004, pp. 193–201. Eurographics, Brussels (2004),
http://www.eg.org/EG/DL/WS/VAST/VAST04/193-201.pdf

7. Hohmann, B., Havemann, S., Krispel, U., Fellner, D.: A gml shape grammar for
semantically enriched 3d building models. Computers and Graphics 34, 322–334
(2010)

8. Mendez, E., Schall, G., Havemann, S., Junghanns, S., Fellner, D., Schmalstieg, D.:
Generating semantic 3d models of underground infrastructure. IEEE Computer
Graphics and Applications 28(3), 48–57 (2008)

9. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Gool, L.V.: Procedural modeling of
buildings. In: ACM SIGGRAPH, vol. 25, pp. 614–623 (2006)

10. Pratt, M.: Extension of iso 10303, the step standard, for the exchange of procedural
shape models. In: Proc. Intern. Conf. on Shape Modeling and Applications (SMI
2004), Genova, Italy, pp. 317–326 (June 2004)

11. Procedural Inc.: CityEngine (2009), http://www.procedural.com/
12. Processing website, www.processing.org
13. Reas, C., Fry, B.: Processing: A Programming Handbook for Visual Designers and

Artists. MIT Press, Cambridge (2007)

http://www.eg.org/EG/DL/WS/VAST/VAST04/193-201.pdf
http://www.procedural.com/
www.processing.org

Name Resolution by Rewriting in Dynamic
Networks of Mobile Entities�

Jan van Leeuwen1 and Jǐŕı Wiedermann2

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.vanleeuwen@cs.uu.nl
2 Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic
jiri.wiedermann@cs.cas.cz

Abstract. In link-free networks of communicating entities in motion
like mobile ad hoc networks there is no central authority for naming
and communications management. The set-up of new nodes is managed
by autoconfiguration, using so-called zero configuration protocols. These
protocols tend not to scale very easily and have difficulty with network
partitioning and merging. We propose a number of techniques for assign-
ing unique identifiers to entities in zero configuration protocols that are
more flexible and yet lead to name extensions of smallest possible length,
assuming that the entities in motion mix sufficiently. The methods use
simple rewrite rules, viewing names as words over a finite alphabet.

1 Introduction

In networks one distinguishes between the name of an entity and its address,
where the former identifies the entity and the latter is used in the lower-layer
routing protocols. We consider the problems of naming and name conflict reso-
lution in ‘on the fly’ networks of communicating entities where the entities travel
and randomly meet in some space, like mobile ad hoc networks (MANETs) and
dynamic multi-agent systems. In these networks, entities can only communi-
cate with neighbouring entities and there is no central control. The networks
require special protocols (cf. [3,4]) to provide and maintain a communications
infrastructure in which entities can enter and leave at arbitrary times.

In traditional IP networks, name and address assignment are handled by the
DHCP servers in the network. In the case of ad hoc networks of moving entities
we need autoconfiguration protocols that run in every node, like the so-called
‘zero configuration’ protocols [8,23]. In these protocols the naming problem is
non-trivial because all decision making is done locally. Given a decentralized
mechanism for assigning initial names, how can the network-wide uniqueness of
names be ensured? How can name conflicts be averted? Solutions in existing

� This research was partially supported by institutional research plan AV0Z10300504
and Czech National Science Foundation grant No. P202/10/1333.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 215–227, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 J. van Leeuwen and J. Wiedermann

autoconfiguration protocols tend not to scale easily and also have difficulty cop-
ing with network partitioning and merging. We will design some techniques for
name resolution that are attractively simple and yet give more flexibility. The
techniques use simple rewrite rules on names.

Although uniqueness of names is an ultimate goal of any decentralized naming
system, in certain applications the requirements are less stringent. For example,
it may be sufficient if names are unique in all sufficiently large neighbourhoods.
This is ensured by lazy protocols which only resolve name conflicts when they
arise and prevent the correct functioning of the (local) communications structure.
Also, entities may be part of different ‘subnets’ and one may only be interested
in uniquely naming entities within every subnet, allowing entities of the same
name to exist in different subnets simultaneously. All this can also happen under
a dynamic scenario in which entities enter and leave and subnets form and merge.
It is the scenario we adopt.

Autoconfiguration protocols should not be demanding on local memory. Fol-
lowing the design of Internet Protocol Version 6 [17], a common form of auto-
matic configuration is stateless autoconfiguration. Here it is immaterial which
names are assigned, as long as they are unique and of use for identification pur-
poses. (In stateful autoconfiguration some information is remembered and e.g.
a database of names and addresses may be employed.) Note that name resolu-
tion most likely leads to longer names ‘in the limit’. Thus we want to pack name
spaces as best as we can when resolving conflicts. We will be especially interested
in the size of names in large ad hoc networks. The simple methods we propose
are (nearly) stateless and keep names as short as possible, assuming that the
entities mix sufficiently. A complete lazy autoconfiguration protocol based on
these techniques is given in [21].

The paper is organized as follows. In Section 2 we describe some existing
approaches to name resolution in mobile ad hoc networks and dynamic networks
of mobile agents. In Section 3 we give a simple protocol which starts with an
unknown number of entities with initially given names, and which resolves name
conflicts whenever entities meet, i.e. come within each other’s transmission range.
In Section 4 the method is tuned to obtain a protocol which leads to ‘optimally
packed’ names of length bounded by H + $log n% for distinguishing among n
entities, where H is a bound on the size of the initial names. In this Section we
also consider the robustness of the protocol under the dynamic scenario.

2 Preliminaries

In ad hoc networks of communicating entities, the entities (devices, agents) must
collaborate in the absence of a supporting network infrastructure. Each network
node can directly communicate with the nodes within a certain radius only, given
by the reach of its communications hardware and possibly limited also by the
presence of obstacles. We assume that nodes do not know the entities in their
neighbourhood beforehand and that there are no implicit hierarchical orderings
or clusterings to be taken into account in the naming protocol (see e.g. [10]).

Name Resolution by Rewriting in Dynamic Networks of Mobile Entities 217

The problems of naming and name management are well-studied in networks
of communicating processes, e.g. in distributed operating systems ([7], Ch. 7).
Naming assigns to each process a unique label, which is generated algorithmi-
cally. Ensuring name uniqueness is complex when new processes can appear
arbitrarily, not one by one and without a unique server that could name them.
We study naming in the scenario in which entities keep joining or leaving, in-
dividually or in batches, without central control. We want methods that keep
names as short as possible, in the interest of memory efficiency.

While entity names are easily generated locally, one needs techniques for du-
plicate name detection (like ‘duplicate address detection’ or DAD [20]) and name
conflict resolution. As duplicate detection involves probing, the techniques are
often combined with neighbour discovery or even reconstruction of the entire
topology of the ad hoc network. (Known algorithms as in [1] or [6] are based on
network traversal.) Standard approaches to naming include (cf. [16]):

– assignment of (a unique range of) names by a global (or external) naming
authority [9,14],

– taking a unique ‘name’ stored in the hardware of the respective mobile entity
(e.g. the MAC number of the wireless access card) [20],

– generating a name randomly, using a (pseudo-)random number generator
with suitable ranges in the nodes [15,19,24].

The first approach is often not applicable or uses extra information, and the
second may not be in the interest of the entity. The third approach is most com-
monly used but does not guarantee unique names and thus needs conflict reso-
lution. When a conflict is detected, the entities involved must somehow choose
other names and hope that no new conflicts are introduced.

Autoconfiguration could require symmetry breaking between entities and thus,
as leader entities are neither available nor desired in our context, we assume that
entities possess a simple random number generator for choosing initial names
randomly and for coin-tossing when symmetry must be broken. In e.g. [2] a
good account is given of the available techniques and their shortcomings.

2.1 Interpreting Names as Words

In some models, randomly assigned names are long enough to practically exclude
the possibility of having doubles. We consider the case in which relatively short
initial names are generated e.g. randomly, and conflict resolution is used to scale
to a network of any size. Initial entity names can also be generated by hashing
unique but private entity identifiers to a small domain of (short) words.

Let an entity c have a current name h = hc. One can view h as the encoding
of a whole set of names owned by c. Most proposals for name resolution follow
this viewpoint. A typical example is the use of the buddy system from dynamic
storage allocation for dynamic name space allocation [11]. If a new but unnamed
entity x enters the network and finds a named entity c, then c assigns to x a
(unique) name from its name space and subsequently splits off half of it name
space and gives it to x. A similar approach using sets of integer intervals ⊆ [0, 2k]

218 J. van Leeuwen and J. Wiedermann

as subspaces was described in [24] and used also in [18]. Another version using
disjoint initial address spaces, is given in [9].

In this paper we interpret every name hc as a word in Σ� with Σ = {0, 1}.
A name hc represents the entire set hcΣ

� of potential names beginning with hc,
‘owned’ by c. In Section 3 we will show that this leads to a simple and flexible
method for name resolution, without the need for much administration. We will
prove that it gives a close to optimal solution for the naming problem, assuming
that nodes move around and mix suitably in each other’s ranges. In Section 4
we improve it further to a name-length optimal protocol.

3 A Simple Name Resolution Protocol

Consider an ad hoc network of mobile communicating entities which move
around. Every entity c that wants to join the network, is assumed to gener-
ate an initial name h = hc ∈ Σ� for itself when it joins, using e.g. the random
generator it possesses. We assume that all initial names are equally long, so no
initial name is a proper prefix of another name. This is reasonable, although
the validity of our protocols will not depend on it. Let |x| denote the length of
word x.

We assume that every initial h is small (e.g. |h| = 8). The initial choice of
hc implies that there are likely to be name conflicts (‘collisions’) and thus name
resolution may be required. We want a name resolution method that does not
depend on knowledge of N , the number of current or future nodes in the network,
and that allows the number of entities to grow and shrink freely.

For the analysis of our protocols we will adopt a suitable model for mobile
entities which we call the encounter model. In this model the entities mix in
each other’s ranges such that eventually all entities will encounter in pairs of
two and are able to check each other’s names. The entities are said to ‘mix well’
if they encounter uniformly at random. If entities mix well, any name resolution
method will use an expected number of at least Ω(N) encounters.

3.1 Basic Protocol

The basic version of the proposed name resolution method simply divides the
name spaces between entities of the same name, quite similar to the buddy
system in [11]. However, the chosen representation makes this easy to implement
and scalable to networks of any size.

Protocol A
1. (initialize) if entity c enters, then it generates an initial name h = hc.
2. (encounter) if two entities of equal name h meet, then one of them

is renamed to h0 and the other to h1.

Rule 2 in Protocol A clearly requires symmetry breaking between the two en-
tities, if they find themselves having the same name h. This can be done by
coin-tossing, using the random generators which the entities possess.

Name Resolution by Rewriting in Dynamic Networks of Mobile Entities 219

Note that every encounter of two equally named entities may lead to a further
name conflict: names h0 and h1 may already exist. Thus, by resolving one conflict
we may create two more. Protocol A may be seen as a form of distributed hashing
if the initial names are assigned by a hash function, with distributed collision
detection and conflict resolution. Assume that the set of entities in the network
stabilizes. We first show that Protocol A converges.

Proposition 1. On the assumption that entities mix well, Protocol A eventually
leads to unique names for all entities.

Proof. Entities with different names remain differently named, no matter how
their names are extended in later encounters. Two entities that have the same
name when they meet, resolve their name-conflict in the encounter and are thus
named differently forever from that moment on. The assumption implies that
all pairs will eventually meet and thus that all names become unique in the long
run. This happens with probability tending to 1 as time goes to infinity. �

Proposition 2. Suppose the number of entities with the same initial name h has
grown to some (unknown) number n. Then the unique names that will eventually
result for these entities using Protocol A will all have length ≤ |h|+ $log n%.

Proof. As the n entities mix, $n
2 % of them are named h0 and $n

2 % of them become
named h1, eventually. Precisely n− 2$n

2 % ≤ 1 entities will remain with name h,
which is then unique. The argument simply continues recursively. Let an entity
be in level i if it has obtained a name hα of length |h|+ i. To analyse the result,
write n = am2m + · · · + a121 + a0 in binary notation, with m = $log n%. The
protocol eventually resolves names level after level such that in the end:

ai = 0 → no word hα of length |h| + i is the name of an entity in the
network, and
ai = 1 → every word hα of length |h|+ i is the name of an entity, each
of precisely one entity that permanently resides in level i.

This implies that the longest names that result in Protocol A will be those
corresponding to the nodes in level m = $log n%. �

Proposition 3. Suppose the number of entities with the same initial name h
has grown to some (unknown) number n. The entities obtain their unique name
with Protocol A after a total of O(n log n) name changes.

Proof. If level i is full in the end, the 2i names in the level are all used and
account for 2i · i name-changes in the process. The total number is thus at most∑m

ai=1 i · 2i = O(m2m) = O(n log n). �

If n remains small, the protocol is simple and efficient. For larger n the proof
shows that in the long run a large number of extensions of length ≤ $log n% will
not be used, although they are used in intermediate stages. To be more precise,

220 J. van Leeuwen and J. Wiedermann

let n = bm2m+ · · ·+b121+b0 be the 1-complement of n, with bm = 0 and bi = ai.
Then precisely the extensions in the levels i with bi = ai = 1 (i.e. ai = 0) will
not be used in the end, if no new entities enter the network. In case n = 1 · 2m

this amounts to 1 + 2 + · · · + 2m−1 = 2m − 1 names, thus about 50% of the
available name space remains unused here.

3.2 Expected Number of Encounters

An entity c needs to undergo up to log n name changes to attain its unique
final name, with n as above. However, an entity needs the specific encounters to
make this happen. If entities are mobile and mixing arbitrarily, they encounter
randomly and thus many more than log n encounters may be needed before the
resolutions have the desired effect.

To estimate this properly, assume that we have a fixed set of N mobile entities
initially and that there are n = nc entities c with initial name h = hc. By the
assumption that entities mix well, entity c encounters other entities in the set
uniformly at random, step after step. We will say that entities mix aggressively
if the probability of meeting an equal-named counterpart is greater than 0 in
every step, as long as the name resolution process has not finished. Assume also
that n = 2m for some integer m ≥ 2. (For m = 0 there is no name conflict and
for m = 1 the expected number of encounters is precisely N − 1.)

Proposition 4. An entity c with initial name h = hc attains its unique final
name in Protocol A after an expected number of at least 10

9 (N − 1) and at most
(2n− logn)(N −1) encounters, the latter under the assumption that entities mix
aggressively.

Proof. Suppose entity c has reached the ith level in the name resolution process
and thus has just gotten a name hα with |α| = i, for some i with 0 ≤ i < m.
There will be ni = n

2i nodes in level i that eventually have name hα, and they
have to encounter with another entity of name hα (after they were named hα) in
order to resolve the name conflicts. This applies to entity c in particular. Because
the other entities with name hα only appear gradually and also disappear again
after their conflict is resolved, the probability of c to encounter another entity
of name hα may be much smaller than pi = ni−1

N−1 in every trial.
We model the name resolution process of entity c in level i by a Poisson

trial with success probabilities r1, r2, · · · . Here rk denotes the probability that c
encounters an entity of name hα in the kth try. (A Poisson trial is a Bernoulli
trial with varying probabilities of success, cf. [5].) We clearly have 0 ≤ rk ≤ pi.
The expected number of encounters before c can resolve its name conflict and
move to the next level, is equal to the expected number of trials to obtain a
success in the Poisson trial for the first time. We can bound this from below by
first omitting all steps with rk = 0 and then considering the resulting Poisson
trial, thus effective assuming that 1

N−1 ≤ rk ≤ pi. The expected number of trials
to reach a first success in this trial is at least

Name Resolution by Rewriting in Dynamic Networks of Mobile Entities 221

∞∑
k=1

k

k−1∏
j=1

(1− rj) rk ≥
1

N − 1

∞∑
k=1

k

k−1∏
j=1

(1− rj) ≥
1

N − 1

∞∑
k=1

k(1 − pi)k−1 =

=
1

N − 1
1
p2

i

=
N − 1

(ni − 1)2
.

With this bound we can estimate the expected number of encounters in order
for c to go from level 0 to level m, the level at which it will have finally resolved
all its name conflicts. By linearity of expectation and using that m ≥ 2, this
number is at least equal to

m−1∑
i=0

N − 1
(ni − 1)2

= (N − 1) +
1
9
(N − 1) +

m−3∑
i=0

N − 1
(ni − 1)2

≥ 10
9

(N − 1).

In order to derive an upper bound, we return to the original Poisson trial. Let us
assume that the entities mix aggressively, i.e. that rk > 0 and thus 1

N−1 ≤ rk ≤ pi

for all k ≥ 1. The expected number of trials to reach a first success in the trial
is then equal to

∞∑
k=1

k

k−1∏
j=1

(1− rj) rk ≤ pi

∞∑
k=1

k

k−1∏
j=1

(1 − rj) ≤

≤ pi

∞∑
k=1

k(1− 1
N − 1

)k−1 = pi(N − 1)2 = (ni − 1)(N − 1).

By linearity of expectation, the total expected number of encounters in order for
c to go from level 0 to level m and have its name fully resolved is then bounded
by

m−1∑
i=0

(ni − 1)(N − 1) = (
m−1∑
i=0

1
2i

n−m) (N − 1) ≤ (2n− log n)(N − 1)

which was to be shown. �

If all entities start with initial names that have at most n = O(1) conflicts, the
given argument shows that under reasonable assumptions the conflicts are all
resolved in an expected number of Θ(N) rounds of encounters. The basic protocol
thus satisfies the basic requirement of any name resolution protocol.

Under the same assumption on the mixing behaviour as above, the expected
number of encounters also has a limited deviation from its mean. Let Xi be the
random variable denoting the number of trials needed by entity c in order to
move from level i to level i + 1 according to the given model.

Proposition 5. Using protocol A and assuming that the entities mix aggres-
sively, we have for every t > 0

Prob(|Xi − E(Xi)| ≥ t
√

ni (N − 1)) ≤ 2
t2

.

222 J. van Leeuwen and J. Wiedermann

Proof. Model the random process for entity c in level i as before by a Poisson trial
with success probabilities r1, r2, · · · . Assuming that the entities mix aggressively
means that rk > 0 and thus 1

N−1 ≤ rk ≤ pi for all k ≥ 1. E(Xi) was estimated
in the proof of Proposition 4. The variance of Xi can be estimated as follows:

V ar(Xi) = E(X2
i)−E(Xi)2 ≤

∞∑
k=1

k2
k−1∏
j=1

(1−rj)rk ≤ pi

∞∑
k=1

k2(1− 1
N − 1

)k−1 =

= pi(2−
1

N − 1
)(N − 1)3 = (2 − 1

N − 1
)ni(N − 1)2 ≤ 2ni(N − 1)2,

where we use that
∑∞

k=1 k2xk−1 = 1+x
(1−x)3 . The estimate for Prob(|Xi−E(Xi)| ≥

t
√

ni (N − 1)) now follows from Chebyshev’s Inequality. �

If the set of entities in the network does not stabilize but continues to grow,
Protocol A works properly and all entities eventually become uniquely named if
they mix sufficiently well in the pool of entities.

4 Name Length-Optimal Resolution

Protocol A did not make optimal use of the available name space and could leave
up to 50% of the available names unused. This does not have a great effect on
the maximum name length, but it can be avoided. The key is not to destroy the
entity names in the encounter rule but keep all existing names in use.

One approach is to split rule ‘h h → h0 h1’ into two rules ‘h h → h h0’ and
‘h h → h h1’, and to let two entities of equal name h apply one of these rules at
random when they encounter. One can show that this leads to names of expected
length at most O(H + log n). To achieve it as a worst case and obtain balanced
name lengths, we must eliminate the randomness. Introduce a companion name
h† with every name h and change Protocol A as follows.

Protocol B
1. (initialize) if entity c enters, then it generates an initial name h = hc.
2. (encounter) if two entities of name h or h† meet, then the name

conflict is resolved according to the following rules:
h h → h† h0
h h† → h h1
h† h† → h† h1
(h† h is treated as h h†).

In all other encounters, names h† are treated as names h. (The name h† can
be implemented using a single indicator bit.) Rule 2 again requires that arising
symmetries are broken by coin-tossing, using the random generators that all
entities possess.

Names now carry up to one bit of extra semantics: names h stand for an equal
number of entities that were renamed to h0 and to h1, and names
h† stand for an equal number of entities that were renamed to h0 and to h1
plus one more entity that was renamed to h0. Assume that the number of enti-
ties in the network stabilizes. We first show that Protocol B converges.

Name Resolution by Rewriting in Dynamic Networks of Mobile Entities 223

Proposition 6. On the assumption that entities mix well, Protocol B eventually
leads to unique names for all entities.

Proof. Objects whose initial names differ, will have different names forever. We
thus consider an arbitrary initial name h and show that the name conflicts
between all entities with initial name h are resolved properly in the limit. As the
protocol leads to entities with names h0 and h1 (the latter only if there are more
than 2 entities with name h), the result then follows by induction. Define the
following counters for the entities that enter the network with name h, where we
assume their total number is eventually n:

a = the number of entities with name h,
b = the number of entities with name h†,
c = the number of entities with name h0,
d = the number of entities with name h1.

Protocol B can be seen to maintain the following invariants:

(I1) a + b + c + d = n,
(I2) c = b + d,
(I3) a + b decreases by 1 in each encounter of two entities named h or
h†.

The result now follows from invariant I3. With probability tending to 1 as time
goes to infinity, all entities with name h meet and we obtain that a + b = 1 and
thus either a = 1 and b = 0 or vice versa. Also c + d = n − 1 and, whatever c
and d are, they are < n. Thus the protocol converges by induction. �

Proposition 7. Suppose the number of entities with the same initial name h has
grown to some (unknown) number n. Then the unique names that will eventually
result for these entities using Protocol B will all have length ≤ |h|+ $log n%.

Proof. Observe the following additional invariant for the protocol. Let s count
the number of steps in the process of resolving a name conflict involving h or h†:

(I4) d = a + c− n + s.

Note that the resolution leads to a single name h in s = n − 1 name changes:
the result will be a name h without a † if n is odd and a name h† with a † if n
is even. From the invariant it follows that at this point the following occurs:

– if n is odd, then a = 1, b = 0, s = n− 1 and thus d = c = $n
2 %.

– if n is even, then a = 0, b = 1, s = n− 1 and thus d = c− 1 and c = $n
2 %.

Proceeding recursively we obtain a name tree Tn which has an entity named h or
h† in its root, T�n−1

2 � as its left subtree, and T�n−1
2 � as its right subtree, with the

subtrees filled recursively. Write n = (2m− 1)+ l for some 0 ≤ l < 2m− 1. Then
Tn is a binary tree with its first m levels completely filled and the (m+1)-st level
filled with l nodes. The bound on the name-lengths implied by using Protocol B
follows, as $log n% is the lowest level of Tn. �

224 J. van Leeuwen and J. Wiedermann

Proposition 8. Name resolution using Protocol B leads to names with exten-
sions of minimum possible length.

Proof. This follows because Tn is a minimum-depth binary tree with n nodes.
Names of length |h|+$logn% (in the bottom level) are only used insofar as names
in this level are needed. �

4.1 Joining, Leaving, and Migrating Entities

Joining a network is easy. A joining entity generates a name immediately and
it can communicate right away with the entities in the neighbourhood, even if
name conflicts are to be expected. This is similar to the protocols in [20] and
[13] where a joining entity must check immediately whether its randomly chosen
address is not used by another entity.

The advantage of Protocol B is the use of name extensions of minimum possi-
ble length, its scalability and its flexibility under the dynamic scenario. Entities
can join at any time and name conflicts are automatically resolved in due course,
in a reasonable number of steps. Entities that leave or fail do not obstruct the
protocol either.

Clearly entities that leave take their name with them and thus make ‘holes’
in the name space. These holes are automatically filled up if the corresponding
names are generated again in a name resolution step. If they are not filled up,
the effect of leading to longer names is limited due to the smoothing log n term.
Thus, an explicit ‘name reclaiming protocol’ is not really necessary.

Migrating entities are easily handled as well. Assume that an entity migrates
from one subnetwork to another. Suppose that protocol B is used in both sub-
networks. Obviously, the appearance of a new entity with a given name is no
problem. There is no mechanism by which encountering entities can sense that
one of them is foreign, and the protocol just works. The minimality of names in
the networks can be disturbed, though.

Only when many entities join a network at the same time, a proliferation
of conflict resolutions can occur. This seems to happen in any decentralized,
leader-free protocol (cf. [16]). However, thanks to the lazy technique, there is no
message flooding when assigning names or resolving duplicates, in contrast to
protocols that are geared to detect all possible naming conflicts beforehand (cf.
[12]). The absence of leaders in our protocol has a further advantage in making it
more robust against the failure or temporary absence of nodes. Failing nodes are
accommodated in the same way as nodes that are leaving. Neighbouring entities
will eventually detect that the failed or migrated entity is no longer responding
and cease to communicate with it.

4.2 Network Partitioning and Merging

Suppose two subnetworks, of sizes n1 and n2 respectively, merge. Assume that
both subnetworks have been using Protocol B. As the entities of the two subnet-
works mix, the protocol simply continues to resolve the name conflicts without

Name Resolution by Rewriting in Dynamic Networks of Mobile Entities 225

change. The protocol works as if the entities belonged to the same subnetwork
but have not met until now.

Assume that names of maximal length have been used in each subnetwork,
i.e. of length H + $log n1% and H + $log n2%, respectively. Now observe that,
since max{$logn1%, $log n2%} ≤ $log(n1 +n2)%, the names in the subnetwork are
not too long at the moment of the merge and Protocol B will simply resolve
names with a minimal extension again. Clearly it does not matter how many
subnetworks merge.

Proposition 9. If Protocol B was used from the very beginning in the given
subnetworks, then it continues to yield name extensions of minimum possible
length after the subnetworks merge.

If the entities in an ad hoc network get partitioned, the entities can keep their
names and protocol B can continue to operate without intervention in each part.
However, it is clear that partitioning may lead to holes again in the set of names
in a subnetwork. On the positive side, when entities return they can use their
original names as if nothing happened, i.e. as if in the meantime they have not
encountered any entity.

5 Conclusion

The given name resolution methods can be incorporated into any automatic con-
figuration protocol, given a local naming algorithm that is used at the creation
of any entity. The techniques work in any dynamic scenario.

Name resolution protocols always seem prepared for the worst case, in which
every entity will communicate with every other entity. However, for local mes-
sage routing in ad hoc networks, short names that are locally unique are suffi-
cient. This is where lazy duplicate detection comes in. Our basic protocols offer a
smooth transition from the initial state when hardly any entity communicates, to
the intermediate but very probable state when groups of communicating entities
have more or less stabilized and changes occur only sporadically.

The protocols show that lazy autoconfiguration in dynamic, ad hoc networks
of communicating entities in motion is entirely feasible. Starting from a basic
lazy version which resolves name conflicts only when they arise in an encounter,
an optimization of this protocol lead to a version which uses name extensions of
minimum possible length. The protocol scheme easily scales and is resilient to
the joining, leaving (including failure), and migration of entities. Last but not
least, the protocol is completely decentralized, making use of no leader nodes
and no global information.

References

1. Beauquier, J., Gastin, P., Villain, V.: A linear fault-tolerant naming algorithm.
In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 57–70.
Springer, Heidelberg (1991)

226 J. van Leeuwen and J. Wiedermann

2. Bernardos, C., Calderon, M.: Survey of IP address autoconfiguration mech-
anisms for MANETs, internet draft, http://bgp.potaroo.net/ietf/idref/

draft-bernardos-manet-autoconf-survey/#ref-1

3. Fan, Z.: IPv6 Stateless Address Autoconfiguration in Ad Hoc Networks. In: Conti,
M., Giordano, S., Gregori, E., Olariu, S. (eds.) PWC 2003. LNCS, vol. 2775, pp.
665–678. Springer, Heidelberg (2003)

4. Fan, Z., Subramani, S.: An address autoconfiguration protocol for IPv6 hosts in a
mobile ad hoc network. Computer Comm. 28(4), 339–350 (2005)

5. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. 1. J. Wiley & Sons, New York (1968)

6. Fraigniaud, P., Pelc, A., Peleg, D., Pérennes, S.: Assigning labels in unknown
anonymous networks. Distrib. Computing 14, 163–183 (2001)

7. Goscinski, A.: Distributed operating systems: The logical design. Addison-Wesley
Publ. Comp., Sydney (1991)

8. Guttman, E.: Autoconfiguration for IP networking: enabling local communication.
IEEE Internet Computing, 81–86 (May-June 2001)

9. Indrasinghe, S., Pereira, R., Haggerty, J.: Conflict free address allocation
mechanism for mobile ad hoc networks. In: 21st Int. IEEE Conference on Advanced
Information Networking and Applications (AINA 2007), Workshops Proceedings,
pp. 852–857. IEEE Computer Society, Los Alamitos (2007)

10. Li, L., Cai, Y., Xu, X.: Cluster-based autoconfiguration for mobile ad hoc networks.
Wireless Personal Communications 49(4), 561–573 (2009)

11. Mohsin, M., Prakash, R.: IP address assignment in a mobile ad hoc network. In:
Proc. 2nd IEEE Military Comm. Conf., MILCOM 2002, pp. 856–861 (2002)

12. Nesargi, S., Prakash, R.: MANETconf: Configuration of hosts in a mobile ad hoc
network. In: Proc. 21st Joint IEEE Conf., INFOCOM 2002, IEEE, Los Alamitos
(2002)

13. Perkins, C.E., Malinen, J.T., Wakikawa, R., Belding-Royer, E.M., Sun, Y.: IP
address autoconfiguration for ad hoc networks, IETF Internet draft (November
2001)

14. Steenstrup, M.E.: Neighbor discovery among mobile nodes equipped with smart
antennas. In: 3rd Scandinavian Workshop on Wireless Ad-hoc Networks (ADHOC
2003), Proceedings (2003), http://www.wireless.kth.se/adhoc03

15. Sun, Y., Belding-Royer, E.M.: Dynamic address configuration in mobile ad hoc
networks, UCSB Tech. Rep. 2003-11, Dept. of Computer Science, University of
California at Santa Barbara (June 2003)

16. Sun, Y., Belding-Royer, E.M.: A study of dynamic addressing techniques in mobile
ad hoc networks. Wireless Communications and Mobile Computing 4, 315–329
(2004)

17. Thomson, S., Narten, T.: IPv6 stateless address autoconfiguration, RFC 2462,
Network Working Group (1998), http://www.faqs.org/rfcs/

18. Thoppian, M.R., Prakash, R.: A distributed protocol for dynamic address assign-
ment in mobile ad hoc networks. IEEE Trans. Mobile Computing 5, 4–19 (2006)

19. Toner, S., O’Mahony, D.: Self-Organising Node Address Management in Ad Hoc
Networks. In: Conti, M., Giordano, S., Gregori, E., Olariu, S. (eds.) PWC 2003.
LNCS, vol. 2775, pp. 476–483. Springer, Heidelberg (2003)

20. Vaidya, N.H.: Weak duplicate address detection in mobile ad hoc networks.
In: Third ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2002), pp. 206–216. ACM Press, New York (2002)

http://bgp.potaroo.net/ietf/idref/draft-bernardos-manet-autoconf-survey/#ref-1
http://bgp.potaroo.net/ietf/idref/draft-bernardos-manet-autoconf-survey/#ref-1
http://www.wireless.kth.se/adhoc03
http://www.faqs.org/rfcs/

Name Resolution by Rewriting in Dynamic Networks of Mobile Entities 227

21. van Leeuwen, J., Wiedermann, J.: Lazy autoconfiguration in mobile ad hoc net-
works and dynamic sets of mobile agents, Technical Report UU-CS-2006-018, De-
partment of Information and Computing Sciences, Utrecht University (2006)

22. Ye, F., Peng, R.: A survey of addressing algorithms for wireless sensor networks.
In: 5th Int. Conference on Wireless communications, networking and mobile com-
puting, pp. 3605–3611. IEEE, Los Alamitos (2009)

23. Zeroconf Working Group: Internet Engineering Task Force, IETF (1999), http://
www.zeroconf.org

24. Zhou, H., Ni, L.M., Mutka, M.W.: Prophet address allocation for large scale
MANETs. Ad Hoc Networks 1, 423–434 (2003)

http://www.zeroconf.org
http://www.zeroconf.org

Maintaining the Personal Style and Flair of
Handwriting in Presentation Recordings

Khaireel A. Mohamed and Thomas Ottmann

Institut für Informatik, Albert-Ludwigs-Universität Freiburg,
D-79110 Freiburg, Germany

{khaireel,ottmann}@informatik.uni-freiburg.de

Abstract. We present a new technique for approximating handwritten
traces sampled from a digital graphics tablet, via a digital pen, during
a computer presentation. Our goal is not only to maintain the personal
style and flair of the encoded handwriting, but also to provide an efficient
and practical approximation of the handwritten traces that does not
deteriorate when resized at arbitrary scales. We adopt known polyline
simplification algorithms and utilize second-order rational Bézier curves
in our “active” methodologies. The proposed active smoothing algorithm
solves its task while data is still being received.

1 Introduction

In systematic sciences like Mathematics, Physics, Informatics, Engineering dis-
ciplines, and others, ex-cathedra lectures held by an expert in the field still
comprise an essential part of any higher educational program. The lecturer and
students regularly meet in a lecture theatre and the lecturer may use the stan-
dard equipment like the blackboard and chalk to communicate his lesson. Or,
he may prepare (perhaps PPT or PDF) slides beforehand, which he then uses
to present, explain, and annotate using a computer and a large screen projector.
Already some 40 years ago, pioneers like Hermann Maurer tried to decouple the
time and space constraints inherently involved in this teaching method by video-
taping lectures and replaying them on demand. We will not, however, discuss
the well-known didactical problems associated with this method of teaching. In-
stead we will concentrate on the technical aspects involving the recording and
replaying of live lectures, which we think are essential for satisfying students and
lecturers alike. Nowadays there are a number of available tools that support the
seamless production and consumption of lecture recordings. Thus, it is by no
means a coincidence that many departments at institutes of higher learning rou-
tinely incorporate the so called “e-lecture services” as part of their programs to
record elaborate and content-rich presentations and then afterwards make them
available online. This in turn has led to the establishment of large repositories
which are used extensively by on-site as well as remote students [7,10].

We assume that the recording of a live lecture is done in such a way that some
or all data streams generated during the presentation are digitally recorded.

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 228–244, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Personal Style and Flair of Handwriting in Presentation Recordings 229

Fig. 1. A lectern with a Wacom Cintiq Interactive Pen Display tablet

These data streams comprise the presented slides, the handwritten annotations
or the text (when using a digital whiteboard, or a graphics tablet with a digital
pen), the audio and video streams of the lecturer and of the audience alike. The
streams also include any further related material like animations or simulations
running on the computer or web pages loaded into the presentation device. At
the Faculty of Engineering of the University of Freiburg, each lecture theatre
is equipped with a special lectern installed with a Wacom Cintiq Interactive
Pen Display (tablet) which the lecturer uses for presentations and annotations,
cf. Fig. 1. The lecturer can bring either his own laptop or load the slides for
his lecture to the local computer of the lectern. Both the whiteboard action
stream and the audio stream of the lecturer’s voice are then recorded using a
tool running on his own laptop or on the computer in the lectern. Sometimes
the video stream of the lecturer is also captured by a built-in CCD camera of
the presentation computer or by an external digital camera. At the end of the
lecture the recorded data streams are automatically bundled, transformed into
various replay formats, enriched with metadata (like lecture series, lecturer’s
name, date, length of recording, keywords, etc.), and included into the electures
portal of the department. In this way a comprehensive coverage of the lectures
comprising the educational program of the Faculty of Engineering in Freiburg
has been established [6].

Well aware of the risk of oversimplification and not taking into account that
there are hybrid forms, we distinguish three major categories of presentation
recording systems currently in use for producing electures.

1.1 Screen Grabbing Systems

The most prominent example for this category is the screen video capture pro-
gram Camtasia Studio [14]. The user can define an area of the screen or a window
that is to be captured by taking some 25 digital copies per second of the screen
pane and transforming this picture stream into a video which can be combined
with the audio stream of the lecturer and the stream of a video cam. Camtasia
uses a special codec tailored to screen capture videos which is more efficient and
produces more compact video streams than the ones produced by video cams

230 K.A. Mohamed and T. Ottmann

taking real world videos. The advantage of using a screen grabbing system is that
everything shown on the screen is captured and standard video output formats
can be produced which can be replayed by most computers even if the screen
grabbing software is not installed. However, the object-based source of the pre-
sentation is destroyed by the recording. Thus, structuring and editing of and
(text) retrieval in the recorded stream is difficult, if not impossible. Screen grab-
bing also implies that, sometimes, unwanted messages appearing on the screen
as well as commands for navigating through the presentation and other data
detracting from the content of the presentation are also recorded. Moreover, re-
sizing the video to adapt it to either larger or smaller displays may deteriorate
its quality considerably.

1.2 VCR Recording

The core idea behind this recording technology is to tab and record the data sent
from the presentation computer and to replay these data on demand. A number
of different tools have been developed following this general idea over the years.
Among the early ones is the MBone VCR - Video Conference Recording tool
developed at the University of Mannheim [4]. The MBone VCR allows to record
and play back teleconferences held over the Multicast Backbone (MBone) on the
Internet by capturing and recording all Mbone data packets (audio, video, and
whiteboard actions) generated during the presentation. The MBone VCR does
not need to know which particular application a data stream originates from or
what the exact content of the data stream is; it suffices that the data stream
conforms to one of the supported protocols. A similar idea is behind the Tele-
TASK kit developed at the HPI in Potsdam [2]. It basically consists of a box
jammed between the presentation computer and the data projector with further
input channels for the presenters audio and video. This allows for recording,
storing, and transforming the combined data, such that they can be replayed or
streamed over the internet on demand. The advantage is that the recording is
done completely in the background such that the presenter (and his computer) is
not affected in any way. He may not even notice that his presentation is recorded
at all! On the other hand, this mode of recording suffers from similar deficiencies
as the screen grabbing method. The symbolic representation of the source data
is lost. Though many of the desirable features may be reconstructed from the
captured data, the problems of fading out unwanted (system and control) infor-
mation appearing on the screen as well as deteriorating its quality when resizing
the replay screen remain.

1.3 Object-Based Recording

Here, all data streams, in particular the whiteboard action stream, are recorded
separately in the best possible quality without destroying their symbolic repre-
sentation. Eventually, this (visual) stream is merged with its base source, like
the PowerPoint or PDF file, in the final output. So far, the only example of this

Personal Style and Flair of Handwriting in Presentation Recordings 231

object-based recording method that is commercially available today is Lectur-
nity [5]. For replay, the recorded data streams are synchronized and rendered on
demand. The rendering (of the whiteboard action stream) is adapted to the size
of the replay screen. Object-based recording has a lot of further advantages. Edit-
ing and automatically structuring of the recording as well as full text retrieval
in the recorded data stream is possible. Recording unwanted information pop-
ping up on the screen can easily be avoided. Of course, replay requires installing
special replay software. However, the data stream can also be transformed to
common video and streaming formats and post processed such that it can be
optimally adapted even to unusual displays like handheld computers or mobile
phones and be replayed using standard tools.

A disadvantage not solved so far is the fact that the handwritten anno-
tations of the lecturer, produced during the presentation on the interactive
graphic display using the digital pen, are currently stored as a series of simplified
time-stamped pixels. This has the undesired effect that those recorded/replayed
annotations generally do not reflect the personal style of writing of its author.
They appear spidery and deteriorate when resized. On the other hand, an ad-
vantage of the object-based recording technique is that it is easy to record the
(time stamped) pixel trace of the pen separately from the other data streams.
Note that the problem of extracting handwritten annotations made on a tablet
PC or a graphics tablet used during the live presentation is more difficult, if not
infeasible, for the two modes of recording discussed in the previous sections. The
major part of this paper is devoted to bring forth a possible solution to overcome
the problem of improving the quality of handwriting both during presentation
as well as during replay.

2 Roadmap: From Discrete Traces to Smoothed Curves

The visible trails left behind by the handmade expressions of markings, strokes,
and lines created on the interactive display using a digital pen (a stylus) created
by the presenter during a live lecture should look smooth on the presentation
screen and should be stored compactly in such a way that they can be synchro-
nized with the other data streams and rendered without deterioration at any
resolution/size during replay. In order to allow for greater flexibility and appli-
cability we shall assume that a digital trail, or Trace, produced by the stylus
is made up of a series of time-stamped points with respect to its position on
the 2D screen. Other parameters such as tilt, pressure, pen-brush, and the likes
delivered as outputs by some digital tablets shall not be taken into account. The
Traces should be displayed, stored, and replayed in such a way that they look
“legibly desirable” and that they faithfully represent the personal style and flair
contained in the original handwriting.

Definition 1. [Trace] A Trace Ta = 〈pa1 , pa2 , . . . , pan〉 is a collection of n time-
ordered points, where two adjacent points pai , pai+1 ∈ Ta are joined by a single
Edge Eai = paipai+1 , for 1 ≤ i ≤ n − 1. The unique time-stamp of the starting
point at pa1 identifies Ta.

232 K.A. Mohamed and T. Ottmann

In other words, a Trace here refers to a single raw entity, sampled from a
transducer device, starting at a pen-down event and ending with a pen-up event.
These two pen-events coincide with pa1 and pan , respectively. If convenient, we
suppress the time stamps and simply refer to the ordered sequence of x- and
y-coordinates in the Trace. What concerns us the most is to discover how we
can properly represent Traces by continuous, smooth curves. The solution must

– be efficient in runtime,
– be within an acceptable error bound,
– ‘smooth’ out the uneven pixelated lines and any noise of the input data,
– maintain precise resolution in deep zoom levels, and above all,
– preserve the extraordinary features of the raw Trace that are the defining

style and flair contained in the original handwriting.

Forcing a single algebraic polynomial curve of order n to pass through all the n
points of the given Trace is certainly not a choice. If n is large, then this may
lead to unpredictable fluctuations of the polynomial curve approximating the
given Trace. Even breaking down the Trace into arbitrary smaller chunks is not
a feasible solution. For it is not clear where to break the Trace and how to glue
the piecewise approximations back together. We will instead approximate the
Traces by algebraic curves of low order, like second or third order spline curves,
Bezier curves, or ellipses which can be represented by a few parameters only. For
that purpose we have first to identify the crucial points of a given Trace that
are characteristic for the style and flair of any handwriting. We claim that it is
sufficient just to maintain sharp-edge vertices, inflection points, and a few tan-
gential points in a given Trace in order to have it symbolically represented. That
is, we throw away all the other points from the original Trace and approximate
the set of remaining points by second-order curves glued together appropriately.
Note, however, that this idea is subject to a number of inherent difficulties.

2.1 Analogues of Derivatives and Curvature for Traces

First, because Traces are just sequences of discrete points, notions like derivative,
curvature, inflection points, etc. are not well-defined. Secondly, how can we show
that second order-curves are sufficient to approximate and symbolically represent
Traces produced by a digital pen?

To solve both problems, we follow two plausible heuristics. First, we approx-
imate the first and second derivatives defined for algebraic curves by discrete
measurements taken from the input data only. And second, we give a “visual”
proof of our approach – the reader may convince himself that our approach of
identifying crucial points in the given Trace, then simplifying the Trace and
approximating the simplified Trace by a quadratic curve within certain error
bounds leads to an acceptable result.

Let us assume that the set of n points in a given Trace T is in the form
pi = (xi, yi) = (xi, f(xi)), for 1 ≤ i ≤ n, in which we take yi to be expressed
as a function of f(xi). Then in analogy to the standard definition of the first

Personal Style and Flair of Handwriting in Presentation Recordings 233

derivative for differentiable functions, we define the first derivative at the point
pi as dpi.

dpi = f ′(xi) ≈ f(xi+1)−f(xi−1)
hi+1+hi

, where hi = xi − xi−1 (1)

= yi+1−yi−1
xi+1−xi−1

, for 1 ≤ i ≤ n. (2)

Defining the derivatives at the endpoints p1 and pn of T can also be done in
analogy to differentiable functions defined over a closed interval.

By measuring the rate of change of the first derivative through applying the
same approximation method, we even out the estimates in the resultant mea-
sures of the second derivative. Recall the second-order (symmetrical) differential
approximation of a point p ≡ (x, f(x)),

f ′′(x) ≈ f ′(x + h)− f ′(x− h)
2h

. (3)

The above definition presupposes that the f(x) representation of T is twice
differentiable. This condition does not, of course, hold for a Trace of discrete
points sampled from the input device. However, using five consecutive neigh-
bouring points, we can similarly approximate the second derivative of the point
pi and denote it simply as d2pi.

d2pi = f ′′(xi) ≈ f ′(xi+1)−f ′(xi−1)
hi+1+hi

(4)

= 1
xi+1−xi−1

(
yi+2−yi

xi+2−xi
− yi−yi−2

xi−xi−2

)
, for 2 < i < n− 1. (5)

We can now use these values computed for every point on the Trace in order
to define an analogue of the curvature for Trace points. In the general sense,
curvature refers to the change of direction per unit length. The curvature of a
straight line is zero everywhere. A circle with radius r has constant curvature 1/r
on all of its points. In general, for arbitrary plain curves the curvature changes
from point to point. The computation of the curvature for plain curves depends
on the way in which the curve is given. Let us assume that the curve is given as
the graph of a function f . Then the curvature in a point px = (x, f(x)) can be
computed as follows:

k(px) =
f ′′(x)

(1 + (f ′(x))2)3/2 (6)

The expression above is applicable to proper continuous curves which are given
in explicit form and which are at least twice differentiable, see, e.g., p. 230 in [13].
In our approach with the indeterministic points in the trace T , we approximate
the curvature in each point of T by the approximations of the first and second
derivatives and add an additional step to further even out the curvature reading
at pi with its neighbour pi−1:

k̂i =
1
2
(ki + ki−1). (7)

234 K.A. Mohamed and T. Ottmann

By monitoring the curvature values computed at every point pi, we can de-
termine the characteristics of those points with respect to the underlying curve
of the Trace T . The curvature at a point tells us whether the curve is locally
convex, a circular arc, or a straight line.

2.2 Classification of Points in a Trace

Definition 2. [Inflection point] An inflection point on a well-defined curve f(x)
is a point pi ≡ (xi, f(xi)) ∈ f(x) at which the curvature k(pi) changes sign from
k(pi−1).

Definition 3. [Sharp-edge vertex] A sharp-edged vertex is detected at pi ∈ T
when the absolute difference between two consecutive curvature measurements
k(pi−1) and k(pi) is unusually high, with respect to the readings of the average
curvature differences of all other neighbouring points in T .

Our definitions on derivatives and curvature for Traces in Section 2.1 allow us to
apply Definition 2 directly to each point in a Trace. However, if we encounter a
huge jump in values (known as a “spike”) when tracking from k(pi−1) to k(pi),
then the curve we are travelling on has just made an abrupt sharp turn. That is,
we have just come across a sharp-edge vertex at the point pi, as per indicated
in Definition 3.

3 Polyline Simplification

The main goal of the polyline simplification problem is to reduce the line data
substantially, while still preserving its appearance with respect to the original.
In other words, we keep only the critical points in the input polygonal path that
are vital to the overall shape of the polyline. The rest of the points are removed
(or not) depending on the desired level of simplification. Note that the critical
points identified by a polyline simplification algorithm may be different from
the crucial points which are considered as being characteristic for handwritten
Traces. Classical polyline simplification is the selective removal of ‘unwanted’
points, based on a predefined tolerance value, that is made to serve two main
objectives, to reduce data volume, and to maintain the quality of polylines when
scale is reduced.

Quantifying the goodness of simplified polylines is not a straight-forward pre-
conception, if the polylines have characteristics of handwritten Traces. A good
approximation of a polyline is the simplified polyline where only the important
points in the original are kept. This suggests that we are measuring some sort
of an error signal. We look to the eliminated points of the original polyline
and calculate their euclidean distances with respect to the line-segments in the
simplified polyline that replaced those points.

Let T = {p1, . . . , pn} be a polyline containing n points. Also, for any elimi-
nated point pi ≡ (xi, yi) ∈ T , let p′i ≡ (x′

i, y
′
i) be a corresponding point on the

line-segment prps connecting two kept points pr, ps ∈ T , where r < i < s. Then,

Personal Style and Flair of Handwriting in Presentation Recordings 235

Fig. 2. Classifying discrete points from curvature readings. Top: Input Trace T ,
smoothed. Bottom: The Points index, running from 0 to N on the horizontal axis
coincides with the point p0 to pN on the Trace. For each point pi, its curvature k(pi)
is plotted on the graph.

the square of the error measure errT of the simplified polyline, with respect to
the original T , is computed as

err2T =
1
n

n∑
i=0

(xi − x′
i)

2 + (yi − y′
i)

2. (8)

This way, we obtain an error measurement that is independent of the length of
the polyline T , and is analogous to the standard deviation in probability theory.
It prevents a simplification from deviating too much from the original line in any
point (thus strengthening the choice of critical points), and secondly, it punishes
strong deviations in few points more severely than small deviations in many
points.

pi

p′i

pr

ps

Fig. 3. Measuring error of a simplified polyline

236 K.A. Mohamed and T. Ottmann

3.1 The Douglas-Peucker (DP) Algorithm

The Douglas-Peucker (DP) algorithm is the most popular among the many classi-
cal simplification routines in the literature [1]. It is, however, an offline algorithm
in the geometric sense. That is, the DP algorithm requires the full knowledge
of all the points in a given polyline in order for it to deduce the near-optimal
critical points’ positions. This is as opposed to the local routine algorithms that
we shall discuss in Reumann-Witkam’s [12] and Opheim’s [9] algorithms. Using
a ‘divide-refine-and-conquer’ approach, the DP algorithm begins by building a
very rough approximation of the original line, connecting the endpoints. Let us,
in general, term these two endpoints as pA and pB. Subsequently, all the in-
termediate points lying in the trajectory between pA and pB are tested until
a single point pi is found and marked as critical, if and only if it satisfies the
following two conditions:

1. that pi is the farthest point away from the line pApB; and
2. that the orthogonal distance between pi and pApB > ε, where ε is a prede-

termined corridor distance.

If such a pi exists, then the DP algorithm repeats the above step with two
divided segments with the new endpoints pA and pi, and pi and pB. Otherwise,
it terminates. The worst-case runtime of the näıve DP algorithm is O(n2), while
on average it takes O(n log n) time. Hershberger and Snoeyink [3] developed
a more sophisticated version of the DP algorithm that reduces the worst-case
runtime.

3.2 The Reumann-Witkam (RW) Algorithm

A Local Processing Routine technique, the intuitive Reumann-Witkam (RW)
algorithm [12] needs only a single pass to identify all points in a given polyline
that it deems critical. Starting at the critical endpoint p1, the RW algorithm
runs by recursively building a ‘tolerance’ corridor using the input width ε.

Let pi be the latest critical point identified by the RW algorithm. Then the
tolerance corridor is built on top of pi, based on the trend of the line at pi.

Typically, the trend at pi refers to the gradient (or the approximation of the
gradient) of the line at pi. The corridor itself is parallel to this trend and it
is pointed in the direction of pi+1. All points after pi lying inside the corridor
are eliminated, until the traversal reaches the first point pj where it no longer
follows the trend and subsequently lies outside the corridor. The point pj is
then identified as the next critical point, and the RW algorithm repeats again
from there. This process continues until all n points in the polyline are pro-
cessed. As evidenced from the example in Fig. 4, there is a special case when the
RW algorithm returns an incorrect simplification (when thinking of simplifying
handwriting Traces). Here, we see that an obvious critical point at the top of the
figure has been left out. This error only happens whenever there exists a sharp
turning point (or points) within the boundaries of the tolerance corridor. And
because those sharp-edge points did not violate the corridor condition stated
above, they were eliminated by the RW algorithm and deemed as non-critical.

Personal Style and Flair of Handwriting in Presentation Recordings 237

RW Simplification

ε: 5

RW Simplification

ε: 5
Error: 7.4858
Points kept: 6 of 21

Fig. 4. The Reumann-Witkam (RW) algorithm

3.3 Improving the Solutions of Reumann-Witkam’s

The problem of missing all sharp-edge points in the polyline can be avoided
by imposing an additional constraint which has been proposed by Opheim.
Opheim [9] used exactly the same routine as the RW algorithm, except that
his algorithm is constrained by an extra maximum distance check smax [9]. Af-
ter constructing the tolerance corridor at the latest critical point pi, all points
pk after pi are eliminated if and only if the following two conditions hold:

1. The point pk lies inside the tolerance corridor; and
2. the length of the chord pipk ≤ smax.

A critical point pj is found if it violates at least one of the two conditions, and
the Opheim algorithm repeats again from there. This process continues until all
n points in the polyline are processed.

3.4 The RW-DP Algorithm

The combined RW-DP, like the Opheim algorithm, also uses the original RW
routine to first locally identify the critical points. However, unlike Opheim’s
approach with the additional smax constraint, we apply the global DP subroutine
during the traversal on to every segment of the polyline identified between the
previous critical point pi and the newly identified critical point pj .

In essence, we only need to run once more through all m points in the segment
between pi and pj , before locating the elusive sharp-edge point, if one does exist.
Thus, we maintain the overall runtime of the RW-DP algorithm to stay within
O(n) bounds, while improving the quality of simplification if such erroneous
situations arise, as seen in the resultant Fig. 5 compared to the original RW
simplification in Fig. 4.

238 K.A. Mohamed and T. Ottmann

ε: 5

smax: 18

Opheim Simplification

ε: 5
smax: 18

Error: 4.1454
Points kept: 9 of 21

RW-DP Simplification

ε: 5
Error: 4.8446
Points kept: 7 of 21

Fig. 5. The Opheim and RW-DP algorithms. From top-left, clockwise: Tolerance corri-
dors (blue rectangles) and additional smax constraints (yellow cones); resultant Opheim
simplification; resultant RW-DP simplification.

3.5 The Optimal Polyline Simplification

Let T = {p1, . . . , pn} be a polyline containing n points. We may think of T
as the handwritten Trace produced by the pen input. Then, from the quality
measure we proposed in the beginning of this section, it is possible to compute an
optimal simplification of T for a given reduction rate. Suppose we want to have
a simplified T keeping only m points, where m < n. Then the näıve approach to
get the optimal simplification of T is to try out all possible point subsets of size
m, determine the error for each such approximation, and then select one that
minimizes this error. However, we can do this in a more elegant manner.

The problem of finding an approximation with minimal error exhibits the char-
acteristic of the “optimal substructure”, one where an optimal solution comprises
the optimal solutions to subproblems.

Personal Style and Flair of Handwriting in Presentation Recordings 239

Lemma 1. Let E[i, j, k] be the minimal error of a simplification that approxi-
mates T between pi and pj, using exactly k intermediate points. Then for k ≥ 1
and 1 < i < j < n,

E[i, j, k] = min
i<l<j−k

{ E[i, l, 0] + E[l, j, k − 1] }. (9)

Proof. Let pl be the first point after pi that we decide to keep. Then the total
error made by this approximation is the error made between pi and pl, plus the
error made between pl and pj. An optimal approximation must minimize this
sum, given that the two subsegments are also optimal. Thus, for all possible
choices of pl, we know the minimal errors E[i, l, 0] and E[l, j, k− 1], and we can
determine the point pl contributing to the minimal error and compute E[i, j, k]
using the equation above.
�

Let T ′ be the optimal simplified version of the original polyline T . If T ′ is to
retain only m points from T , then the optimal approximation of T will have an
error of E[1, n, m− 2] with T ′. A simplification routine always retains the two
original endpoints p1 and pn, and so we are only left to find m− 2 intermediate
points in T to keep. By Lemma 1, we need to compute E[1, l, 0] and E[l, n, m−3]
for all pl between p1 and pn−m−2. The first of the two terms is a straight-forward
computation, since there is only one way to approximate the line between p1 and
pl using zero intermediate points. The second term, on the other hand, requires
recursive computations, where in each recursion, the third parameter of the
second term is reduced by one – until it reaches zero, in which case the final
term can then be directly computed as above.

Clearly, from the recursion steps, one can see that the general singular terms
E[i, j, 0] need to be calculated O(n) times each. We can speed up this computa-
tion by avoiding to calculate the subproblems more than once using the scheme
of Dynamic Programming, where we only need to store calculated values once in
a table and look them up if we need them again. That is, we start by calculating
E[i, j, 0] for all possible values of i and j directly, and store them in the top row
of the table. From these, we compute the next row using the equation in Lemma
1; i.e. computing E[i, j, 1] for all possible values of i and j. We continue until all
k rows of the table are filled. We can then extract from the completed table an
approximation that yields the optimal error by tracing back which terms that
were summed to construct it.

The space requirement for this dynamic calculation is cubic in the number of
points n, because of the size of the table. The runtime is O(n4), since to compute
one table entry, we first have to minimize all entries in the row above. While this
is far better than the näıve runtime of n!

m!(n−m)! = O(n!), this algorithm is still
unacceptable for regular use. It does, however, become a very useful benchmark
for evaluating the quality of non-optimal algorithms.

3.6 Simplified Polylines for Smoothing Routines

Up until this juncture, we have maintained a strict distinction between the crit-
ical points identified and maintained by a polyline simplification algorithm and

240 K.A. Mohamed and T. Ottmann

Smoothed Simplification

Points kept: 6 of 21

Optimal Simplification

Error: 3.9528
Reduction rate: 71.4286%
Points kept: 6 of 21

DP Simplification

ε: 5
Error: 4.4635
Points kept: 6 of 21

Fig. 6. Smoothed simplification versus polyline simplifications

the crucial points characterising the personal style and flair of handwritings.
To better realise the significance of this distinction, let us look at the example
shown in Fig. 6. The figure depics the result of our smoothing algorithm to be
explained below alongside the results of two other polyline simplications that
we have discussed. We have purposely chosen the examples where there are ex-
actly six points kept from the original 21 for the purpose of our comparative
arguments.

The crucial points marked red in the smoothed simplification are the sharp-
edge vertices characterized by Definition 3, and they coincide with the critical
sharp-edge vertices identified by the Optimal and DP algorithms. The other
three crucial blue points are either tangent joints or inflection points, two of
which match the critical points from the optimal simplification. These crucial
points are the necessary proponents that approximate and define the (orange)
curve segments accurately. As a direct consequence of this, the smoothed sim-
plification correctly reveals a tiny loop at the top of the original trace, which
was an intended preconception of our example – an important feature which is
not evident in the two resultant simplified polylines.

4 Active Online Smoothing

Our online method to approximate the incoming Trace delivered by the pen in-
put from the transducer device can now be roughly described as follows. Looking
only a few points back, each incoming point is computer for its first and second
derivatives, as well as for its curvature. Then based on the curvature measure-
ments, the points are classified into one of the three categories: normal, inflection,
or sharp-edge.

At the same time the combined RW-DP line simplifacion algorithm is used
to eliminate the non-crucial normal points. That is, starting at the first point
of a Trace which is considered to be critical and, hence, kept for the subsequent
smooth approximation we proceed to find the next critical point, and while

Personal Style and Flair of Handwriting in Presentation Recordings 241

we are still in the process of sampling points from the transducer device, the
simplified Trace is approximated by a parametric curve between these critical
points. The next critical point may be the end of the Trace, an inflection point,
a sharp-edge vertex, or normal point enduring the polyline simplification. In
order to approximate the simplified Trace by segments of quadratic curves glued
together in such a way that the resulting curve is continuous and the left and
right tangents at the glued points are identical, we have, however, to break the
sequence of incoming points even further. We split the simplified Trace T into
segments, whose trajectory of internal points contains only a single extremum, so
that it is possible to approximate T evenly with a single second-order curve K.
For that purpose we consider the last chosen critical point PA as one point of a
proper contact triangle and the currently active incoming point PB as the other.
PA and PB form the baseline of the contact triangle ΔABC, and the intersection
point PC between the two tangent lines through the points PA and PB forms
its third vertex. If the interior of ΔABC contains all points between PA and
PB, then the Trace segment between these two points is convex and has at most
one local extremum. The segment can now be approximated by a second-order
rational Bézier curve. As far as the smoothing routine goes, we gather as many
points as possible, as we traverse from PA to PB until we come to the point
where the condition that the contact ΔABC containing all intermediate points
in its interior is violated.

Definition 4. A second order rational Bézier curve K(t) comprises the three
vertices of its contact triangle ΔABC and three weights w0, w1, and w2 that
correspond to the vertices PA, PC , and PB, respectively. The curve is completely
inscribed in ΔABC and is defined by its quadratic equation

K(t) =
(1− t)2w0PA + 2t(1− t)w1PC + t2w2PB

(1− t)2w0 + 2t(1− t)w1 + t2w2
. (10)

Let AB be the baseline of the constraint-triangle ΔABC. Let M be the midpoint
of the baseline AB. Then we determine the point pi = L ∈ T on the trace that lies
on CM . If no such point exists, then we pick the point L that is the intersection
of the line-segment pipi−1 and the line CM . We choose the weights w0 = 1 and
w2 = 1 and compute the weight w1 of the rational quadratic Bézier curve K(t)
as follows:

w1 =
‖ML‖
‖LC‖ (11)

In this way we generate an approximated curve K(t) for T . Of course, this
estimate may not necessarily be desirable, as the only thing that we can guarantee
from this exercise is that K(t) will pass through the three points PA, L, and PB

and the lines AC and BC are tangents to K(t) in the points PA and PB.
Let us now explain what we mean by a desirable approximation. Let K(t) as

depicted in Fig. 7 be the approximated curve for T obtained from computing the
weight w1 as explained above. Let p and q be the points on the edges AC and CB,
respectively, such that the line pq is parallel to AB and passes through the point

242 K.A. Mohamed and T. Ottmann

A
B

C

M

L
p

q

mp
mq

PθR

R

PθS

S

Fig. 7. Measuring error at the partition corridors

L. Let mp and mq be the midpoints of AL and LB, respectively. Also, let R be the
intersection between pmp and T , and let S be the intersection between qmq and
the trace T . Then, for PΘR = K(0.25) and PΘS = K(0.75), the partition error-
corridor at PΘR and PΘS are εR = ‖RPΘR‖ and εS = ‖SPΘS‖, respectively, and
that, for a predetermined tolerance corridor value ε, the curve K(t) is a desirable
approximation of T if and only if both the following conditions are met:

εR ≤ ε, and εS ≤ ε. (12)

Let us draw a similarity to the two split conditions in the DP algorithm discussed
in Section 3.1. If both εR and εS are within the bounds of the predetermined tol-
erance corridor value ε, then all other points in T are also within the bounds of ε
with respect to their corresponding points in K(t). The curve K is then consid-
ered a desirable estimate of the Trace segment T . Otherwise the trace segment
is split at the identified point L and the two parts are recursively approximated
in the same way until the error condition is met.

We do not need to physically instantiate the curve K(t) in order to perform
the error measurements. That is, once we have found the point L, we can im-
mediately deduce w1 based on the constraint-triangle ΔABC, and obtain our
expression for K(t). Identifying the points R and S is a straight-forward geo-
metrical computation on ΔABC and T , and that the points PΘR and PΘS are
the results of evaluating the curve’s expression by substituting t = 0.25 and
t = 0.75, respectively, into K(t). We can also show that identifying the point L
does not require traversing O(n) points in a trace segment T of n points – in fact,
we only need O(1) time to accomplish this. In summary, the approximation can
be computed very efficiently while data is still being received to produce output
renditions of high-quality smooth curves that do not deplete at any resolutions,
cf. [8] for further details.

Personal Style and Flair of Handwriting in Presentation Recordings 243

Fig. 8. Active-smoothing example output quality

Fig. 9. Active-smoothing example output quality

5 Conclusion

There are many ways of approximating discrete sets of points, i.e. traces obtained
from the pen input of a transducer device. We have utilized second order rational
Bézier curves in such a way that the approximation can already be computed
while input data is still beeing received. Other approaches may use quadratic
Bézier curves or elliptic arcs, see [8]. Our choice of second order rational Bézier
curves was motivated by the fact that the resulting active smoothing algorithm
can be implemented very efficiently. It preserves computational ressources and
leaves enough potential for other purposes like recording a presentation, animat-
ing an algorithm, or running a simulation while smoothing the Trace. At the end
we present a few examples to show the output quality of the active smoothing
routine. We illustrate them in Figures 8 and 9.

References

1. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization 10(2), 112–122
(1973)

2. Hasso Plattner Institut, Potsdam, Germany, http://www.tele-task.de/
3. Hershberger, J., Snoeyink, J.: Speeding up the douglas-peucker line simplification

algorithm. Tech. rep., University of British Columbia, Vancouver, BC, Canada,
Canada (1992)

4. Holfelder, W.: MBone VCR - Video Conference Recording on the MBone. In:
Proceedings of ACM Multimedia 1995, pp. 237–238. ACM, New York (1995)

5. IMC AG, Saarbrücken, Germany, http://www.lecturnity.de/de/lecturnity/

uebersicht/

http://www.tele-task.de/
http://www.lecturnity.de/de/lecturnity/uebersicht/
http://www.lecturnity.de/de/lecturnity/uebersicht/

244 K.A. Mohamed and T. Ottmann

6. Institut für Informatik, Technische Fakultät, Universität Freiburg, http://

electures.informatik.uni-freiburg.de/portal/web/guest/home

7. Lauer, T., Trahasch, S.: Begriffsbesprechung: Vorlesungsaufzeichnung. i-com –
Zeitschrift für interaktive und kooperative Medien 4, 61 (2005)

8. Mohamed, K.A.: Concepts and Solutions for Efficient Handling of the Digital
Ink, Ph.D. dissertation, Freiburg (2009), http://www.freidok.uni-freiburg.de/
volltexte/7361/

9. Opheim, H.: Smoothing a digitized curve by data reduction methods. In: En-
carnacao, J.L. (ed.) Proceedings of the International Conference and Exhibition,
Eurographics 1981, pp. 127–135. North-Holland Publishing Company, Amsterdam
(1981)

10. Ottmann, T.: Von Menschen und Computern: Über mehr als 10 Jahre Erfahrun-
gen mit Präsentationsaufzeichnungen an Universitäten. In: von Kortzfleisch, H.O.,
Bohl, O. (eds.) Wissen, Vernetzung, Virtualisierung, pp. 175–186. Eul Verlag, Köln
(2008)

11. Pottmann, H., Wallner, J.: Computational Line Geometry, 1st edn. Springer,
Heidelberg (2001)

12. Reumann, K., Witkam, A.P.M.: Optimizing curve segmentation in computer graph-
ics. In: Gunther, A., Levrat, B., Lipps, H. (eds.) Proceedings of the International
Computing Symosium, New York, NY, USA, pp. 467–472. Elsevier, Amsterdam
(1974)

13. Richter, M.: Grundwissen Mathematik für Ingenieure. Auflage, vol. 2. Vieweg und
Teubner, Wiesbaden (2009)

14. TechSmith Corporation, http://www.techsmith.com/

http://electures.informatik.uni-freiburg.de/portal/web/guest/home
http://electures.informatik.uni-freiburg.de/portal/web/guest/home
http://www.freidok.uni-freiburg.de/volltexte/7361/
http://www.freidok.uni-freiburg.de/volltexte/7361/
http://www.techsmith.com/

TGV-Fusion

Thomas Pock1, Lukas Zebedin2, and Horst Bischof1

1 Inst. for Computer Graphics and Vision,
Graz University of Technology
{pock,bischof}@icg.tugraz.at

2 Microsoft Photogrammetry
lucas.zebedin@microsoft.com

Abstract. Location awareness on the Internet and 3D models of our
habitat (as produced by Microsoft (Bing) or Google (Google Earth)) are
a major driving force for creating 3D models from image data. A key
factor for these models are highly accurate and fully automated stereo
matching pipelines producing highly accurate 3D point clouds that are
possible due to the fact that we can produce images with high redun-
dancy (i.e., a single point is projected in many images). Especially this
high redundancy makes fully automatic processing pipelines possible.
Highly overlapping images yield also highly redundant range images.
This paper proposes a novel method to fuse these range images. The
proposed method is based on the recently introduced total generalized
variation method (TGV). The second order variant of this functional is
ideally suited for piece-wise affine surfaces and therefore an ideal case for
buildings which can be well approximated by piece-wise planar surfaces.
In this paper we first present the functional consisting of a robust data
term based on the Huber-L1 norm and the TGV regularization term. We
derive a numerical algorithm based on a primal dual formulation that
can be efficiently implemented on the GPU . We present experimental
results on synthetic data as well as on a city scale data set, where we
compare the method to other methods.

1 Introduction

Recovery of realistic models of urban environments from aerial imagery has been
an important research topic in computer vision for more than 20 years. Recently,
large scale efforts from large enterprises like Microsoft are underway, aiming at
building a virtual equivalent of our planet including realistic models of thousands
of cities worldwide. The enormous scale of such a project, encompassing tens of
thousands of the largest cities worldwide, makes any manual attempt to solve
the arising problems prohibitively expensive. The only way to tackle such an
undertaking is by a fully automatic processing pipeline. Such a workflow would
start with the raw images collected by a digital aerial camera mounted on an
aircraft and would automatically produce a virtual, digital representation of the
covered area. For a recent overview on producing 3D models and other informa-
tion from aerial images see [1]. The other papers in this special issue cover other

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 245–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

246 T. Pock, L. Zebedin, and H. Bischof

aspects of producing 3D models of our virtual habitat. Using digital cameras,
we can produce highly overlapping and thus redundant images of no additional
cost. This high redundancy enables fully automatic methods for high quality
3D reconstruction (e.g. [2]). An important step towards the 3D reconstruction
is computing the range images. Due to the high redundancy in the input data,
also the range images are highly redundant. The robust fusion of several range
images to a single high quality range image - also called digital surface model
(DSM) - is the main topic of this paper.

Basically, the fusion can be done in full 3D (e.g. [3]) or in 2 1
2D (e.g. [4]).

Our target application is 3D modeling of buildings from very large aerial im-
ages where it is simply not possible (and also not necessary) to have a full 3D
representation of the buildings. Hence, we will consider the 2 1

2D case in this
paper.

The range image fusion approach we are going to present in this paper is
based on variational approaches for image regularization [5,6,7]. The basic idea
of the variational approach is that the solution of the model is given by the
minimizer of an energy-functional. The energy functional usually is composed of
two basic terms. A regularization term, which reflects the a-priori assumption
about the smoothness properties of the solution and a data term which forces
the solution to be similar to the input data. Clearly, different choices of the
regularization and data terms will lead to different solutions. Variational models
can be further divided into two fundamental classes: Convex and non-convex
problems. The obvious advantage of convex problems over non-convex problems
is that one has the guarantee to find a global optimum. This means that the
quality of the solution of a convex functional solely depends on the accuracy of
the variational model. On the other hand, for non-convex problems, the quality of
the solution is subject to both the model and the optimization algorithm, since
in general only a local minimizer can be computed. We will therefore restrict
ourselves to convex models in this paper.

State-of-the-art variational image regularization techniques [6,7] are typically
based on a first-order smoothness assumption. While this assumption might be
reasonable for general images, it is less useful for regularizing range images.
The reason is that first-order smoothness leads to a preference of piecewise con-
stant solutions (a.k.a. staircaseing effect), which is not appropriate to regu-
larize range images containing slanted surfaces such as roofs. Total generalized
variation (TGV) as recently introduced in [8] has some desired properties for
regularizing range images. The key property of TGV K regularization is, that it
favors piecewise polynomial signals of order k − 1 (e.g. TGV 2 favors piecewise
affine functions). Therefore, TGV 2 regularization is perfectly suited to regularize
range images. The main contributions of this paper are:

– A new convex variational model for robust fusion of range images, which
combines TGV 2 regularization with a robust Huber-L1 data term.

– A novel efficient numerical algorithm based on a new first-order primal-dual
algorithm which can be efficiently parallelized on graphics processing units.

TGV-Fusion 247

– The demonstration of the favorable properties of the proposed method on a
large scale city dataset.

The paper is organized as follows. In section 2 we review convex variational
methods for image regularization and highlight possible advantages and disad-
vantages. As most existing methods are formulated to deal with only one obser-
vation, we will also consider (straight-forward) generalizations of these models
to multiple observations. In section 3 we present the proposed TGV 2 model for
range image fusion. For minimization we present an efficient first-order primal-
dual algorithm, which will be detailed in section 4. In section 5 we show ex-
perimental results using synthetic and real images. In the last section we draw
conclusions and show directions for future research.

2 Related Work

In this section we review some basic variational image denosing models. While
in their original formulations, the models include a data term which takes only
one observation into account, we will already consider the case with multiple
observations.

2.1 Quadratic Model

The quadratic model (or Tikhonov model) [5] is one of the earliest - dating back
to 1943 - and simplest regularization method used for ill-posed problems. It is
defined as the quadratic variational problem

min
u

{
α

∫
Ω

|∇u|2dx +
K∑

l=1

∫
Ω

(u− fl)2dx

}
, (1)

where Ω ⊂ R2 is the image domain, K is the number of observed range images,
fl : Ω → R denotes a single observation, and u : Ω → R is the sought solution.
The free parameter α ≥ 0 is used to control the amount of smoothing in u. The
left term is the regularization term which reflects the smoothness assumption.
The right term measures the distance of the solution to the observed data. Note
that it is very common for range images that the number of observations may
vary over the image domain (e.g. invalid ranges due to occlusions). Since image
locations with a larger number of observations imply a higher confidence in the
input data, we do not normalize the data term with respect to the number of
observations in our models.

In view of our range image fusion problem, the quadratic model tries to find
a smooth solution u which minimizes the squared distance to the single observa-
tions fl. Being quadratic in u, the Tikhonov model poses a simple optimization
problem, but it does not perform very well for our purpose. The main reason is
that the quadratic regularization term leads to an oversmoothing of edges and
the quadratic data term is not robust against strong outliers in the observed
data.

248 T. Pock, L. Zebedin, and H. Bischof

2.2 ROF Model

L1 estimation procedures have shown to be an effective tool for many different
problems. The first who introduced L1 estimation methods for image restoration
were Rudin, Osher and Fatemi (ROF) in their seminal paper on edge preserving
image denoising [9]. In its unconstrained form, the ROF model is defined as the
variational model

min
u

{
α

∫
Ω

|∇u| dx +
1
2

K∑
l=1

∫
Ω

(u− fl)
2 dx

}
. (2)

The first term is the so called total variation semi-norm of u. We point out that
in this definition, the TV norm is only valid for sufficiently smooth function u
(e.g. u ∈ C1(Ω)). Fortunately, there exists also a duality based formulation of
the total variation which enables a valid definition for any integrable function
u ∈ L1(Ω).

TV α(u) = sup
{
−
∫

Ω

udiv ϕdx : ϕ ∈ C1
c (Ω, R2), ‖ϕ‖∞ ≤ α

}
, (3)

where C1
c (Ω, R2) is the space of continuously differentiable functions with com-

pact support in Ω. Note that this formulation also allows to overcome the non-
differantiability of the TV norm. Besides its convexity, the main advantage of the
ROF model of the quadratic model is, that it allows for sharp discontinuities in
the solution. This is an important feature, since we assume to have sharp depth
discontinuities in our range images. However, due to the quadratic data term the
ROF model is still very sensitive to strong outliers (e.g. caused by occlusion) in
the observed range images.

2.3 TV -L1 Model

The TV -L1 model [10,7,11] is obtained from the ROF model by replacing the
L2 norm in the data term with the L1 norm.

min
u

{
α

∫
Ω

|∇u|dx +
K∑

l=1

∫
Ω

|u− fl| dx

}
. (4)

Due to the L1 norm in the data term, it turns out that the TV -L1 model is
much more effective than the ROF model at removing strong outliers [7].

2.4 Huber Model

Although the TV -L1 model has the nice properties to preserve sharp disconti-
nuities in the solution and to be robust against outliers, it has two problems:
First, it suffers from the so-called staircasing effect - an effect which describes the
formation of artificial discontinuities in the solution [12]. Second, the L1 norm is

TGV-Fusion 249

not the optimal choice for the expected noise. In real range images the observed
noise is the sum of Gaussian noise and outliers.

It turns out that the Huber norm helps in reducing the staircasing effect and
also better reflects the noise model of real range images. The Huber norm [13]
is defined as

|x|γ =

{
|x|2
2γ if |x| ≤ γ

|x| − γ
2 if |x| > γ

, (5)

where γ is a free parameter that defines the threshold between quadratic and
L1 penalization. Using (5) for both the regularization term and the data term
in (4), we obtain the Huber model

min
u

{
α

∫
Ω

|∇u|ε dx +
K∑

l=1

∫
Ω

|u− fl|δ dx

}
, (6)

where ε, end δ are the parameters of the respective Huber norms. Note that by
appropriate choices of ε and δ, the Huber model unifies the quadratic model, the
ROF model and TV -L1 model into a single model. However, while the Huber
norm reduces the staircasing effect to some extent, it still favors flat solutions.
In the next section we will see that the incorporation of higher-order derivatives
plays a key role in obtaining a model which does not suffer from this problem.

3 Total Generalized Variation

In [8] Bredies, Kunisch and Pock proposed the mathematical model of total
generalized variation (TGV). The main property of TGV regularization is that it
allows to reconstruct piecewise polynomial functions of arbitrary order (piecewise
constant, piecewise affine, piecewise quadratic, ...) . As the TV regularizer, the
TGV regularizer has the nice property of being convex. This allows to compute
a globally optimal solution.

The TGV semi-norm of order k ≥ 1 with regularization parameters α =
(α0, ..., αk−1) > 0 is defined as

TGV α
k (u) = sup

{∫
Ω

udiv kϕdx : ϕ ∈ Ck
c (Ω, Symk(R2)),

‖div lϕ‖∞ ≤ αl, l = 0, .., k − 1
}

, (7)

where Ck
c (Ω, Symk(R2)) denotes the space of continuously differentiable sym-

metric k-tensors with compact support in Ω. It is obvious that for k = 1, (7)
corresponds to the dual definition of the total variation semi-norm (3), i.e. TGV
is indeed a generalization of the TV regularizer. The definition of the total gen-
eralized variation restricts the function v to be in a complicated convex set. This
leads to computationally complex minimization algorithms [8]. Using Legendre

250 T. Pock, L. Zebedin, and H. Bischof

- Fenchel duality, we can transform the dual problem (7) to a primal formula-
tion [8]:

TGV α
k (u) = inf

ul∈Ck−l
c (Ω,Syml(R2))

l=1,...,k−1 , u0=u , uk=0

k∑
l=1

αk−l

∫
Ω

|E(ul−1)− ul|dx , (8)

where E(u) denotes the symmetrized gradient operator

E(u) =
∇u +∇uT

2
.

Note that this representation has converted functional (7), which depends on
higher order derivatives to a functional of recursive expressions depending only
on first order derivatives. Using this representation one can intuitively assess
how the total generalized variation is working. Before measuring the L1 norm of
the expression E(ul−1) a vector field ul is subtracted which itself should have low
variation. That is, if low variations are present in some areas of ul−1 (e.g. smooth
gradients), the vector field ul will cover these areas, and therefore will decrease
the L1 norm of E(ul−1) in these areas. Hence, TGV α

k (u) automatically balances
the first and higher order derivatives instead of using any fixed combination.
For the application to range images from our habitat, it turns out that TGV
regularization of second order (k = 2) is sufficient since buildings can be well
approximated by piecewise planar surfaces.

3.1 The Proposed Model

We are now ready to state the proposed variational model for range image fusion.

min
u,v

{
α1

∫
Ω

|∇u − v|dx + α0

∫
Ω

|E(v)|dx +
K∑

l=1

∫
Ω

|u− fl|δ dx

}
. (9)

This model combines TGV regularization of second order (8) with the Huber-L1

norm in the data term. Note that it significantly differs from the TGV 2 denosing
model proposed in [8], where a quadratic data term is used. Therefore we can not
make use of the minimization algorithm proposed in [8]. In addition, the original
algorithm used in [8] is quite slow, since it is based on the dual formulation (7)
which requires an additional inner loop to project onto a very complex set. The
algorithm we are going to describe in the next section is based on the primal
formulation (8) which does not require such an inner loop.

4 Numerical Algorithm

In order to implement an algorithm to minimize (9) on a digital computer, we
have to introduce the discrete version of (9).

TGV-Fusion 251

4.1 Discretization

We consider a regular Cartesian grid of size M ×N :

Ωh = {(xi, yj) = (ih, jh) : 1 ≤ i ≤ N, 1 ≤ j ≤ M} ,

where h denotes the size of the spacing and (i, j) denote the indices of the
discrete locations (ih, jh) ∈ Ωh. From now on, we will denote the quantities of
the discrete setting by the superscript h. Let Uh = RMN and V h = R2MN be
finite dimensional vector spaces equipped with scalar products

ûh, ūh ∈ Uh :
〈
ûh, ūh

〉
=
∑
i,j

ûh
i,j ū

h
i,j ,

v̂h, v̄h ∈ V h :
〈
v̂h, v̄h

〉
=
∑
i,j

(v̂h
1)i,j(v̄h

1)i,j + (v̂h
2)i,j(v̄h

2)i,j .

Furthermore, let uh ∈ Uh and vh = (vh
1 , vh

2) ∈ V h be discrete versions of the
unknown functions u and v in (9) and let fh = (fh

1 , . . . , fh
K)T ∈ RKMN , l =

1 . . .K be the discrete observations. For discretization of the gradient operator
∇h we use standard finite differences with Neumann boundary conditions

(∇huh)i,j =
(

(δh
xuh)i,j

(δh
y uh)i,j

)
,

where

(δh
xuh)i,j =

⎧⎨⎩
uh

i+1,j − uh
i,j

h
if 0< i< M

0 if i = M
, (δh

y u)i,j =

⎧⎨⎩
uh

i,j+1 − uh
i,j

h
if 0< j < N

0 if j = N
,

are standard first order finite differences. Similarly, the discrete variant of the
symmetriced gradient operator is defined as

(Ehvh)i,j =

⎛⎜⎝ (δh
xvh

1)i,j

(δh
y vh

1)i,j + (δh
xvh

2)i,j

2
(δh

y vh
1)i,j + (δh

xvh
2)i,j

2
(δh

y vh
2)i,j

⎞⎟⎠ . (10)

The discrete variant of (9) can now be written as

min
uh,vh

⎧⎨⎩α1‖∇huh − vh‖1 + α0‖Ehvh‖1 +
K∑

l=1

∑
i,j

|uh
i,j − (fh

l)i,j |δ

⎫⎬⎭ . (11)

This minimization problem poses a large scale non-smooth optimization problem.
Hence one can not expect that any black box solver will find the solution in a
reasonable time. Instead we will make use of first-order primal-dual algorithms
which have been shown to be a good choice for large-scale convex optimization
problems [14] in imaging.

252 T. Pock, L. Zebedin, and H. Bischof

4.2 Primal-Dual Formulation

Let us rewrite minimization problem (11) as a convex-concave saddlepoint prob-
lem [14]. By applying the Legendre-Fenchel transform to (11) we obtain

min
uh,vh

max
ph,qh,rh

{〈
∇huh − vh, ph

〉
+
〈
Ehvh, qh

〉
+

K∑
l=1

〈
uh − fh

l , rh
l

〉
− δ

2
‖rh

l ‖2

}
subject to ‖ph‖∞ ≤ α1, ‖qh‖∞ ≤ α0, ‖rh

l ‖∞ ≤ 1, (12)

where ph, qh and rh
l are the dual variables. The obvious advantage of the

primal-dual formulation (12) over the primal formulation (11) is, that the non-
differentiable L1 terms have been transformed to linear terms with simple ball
constraints on the dual variables. Note that for clarity of the presentation, we
did not exploit the obvious symmetry in (10). In any practical implementation,
one can easily make use of the symmetry to reduce the memory footprint of the
algorithm.

4.3 Numerical Algorithm

Our algorithm is based on the first-order primal-dual algorithm introduced in [14],
where also convergence of the algorithm is proven. Before we start to describe the
algorithm, let us define some useful quantities. The convex sets P h, Qh and Rh

are defined as

P h = {ph ∈ R2MN : ‖ph‖∞ ≤ α1} ,

Qh = {qh ∈ R4MN : ‖qh‖∞ ≤ α0} ,

Rh = {rh ∈ RMN : ‖rh‖∞ ≤ 1} .

(13)

Furthermore, let the convex function F (rh
l) be defined as

F (rh
l) = IRh(rh

l) +
δ

2
‖rh

l ‖2 , IRh(rh
l) =

{
0 if rh

l ∈ Rh

∞ else .

The primal-dual algorithm is now as follows. We choose the primal and dual steps
widths τ > 0, σ > 0. We let (uh)0 ∈ Uh, (vh)0 ∈ V h, (ph)0 ∈ P h, (qh)0 ∈ Qh and
(rh

l)0 ∈ Rh
l , l = 1, . . . , K. Furthermore we let (ūh)0 = (uh)0 and (v̄h)0 = (vh)0.

Then for any n ≥ 0 the iterations are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ph)n+1 = PP h

(
(ph)n + σ∇h(ūh)n

)
(qh)n+1 = PQh

(
(qh)n + σEh(v̄h)n

)
(rh

l)n+1 = (I + σ∂F)−1
(
(rh

l)n + σ((ūh)n − fh
l)
)
, l = 1 . . .K

(uh)n+1 = (uh)n − τ
(
(∇h)T (ph)n+1 +

∑K
l=1(r

h
l)n+1

)
(vh)n+1 = (vh)n − τ

(
(Eh)T (qh)n+1

)
(ūh)n+1 = 2(uh)n+1 − (uh)n

(v̄h)n+1 = 2(vh)n+1 − (vh)n

(14)

TGV-Fusion 253

The Euclidean projectors PP h(p̂h) and PQh(q̂h) are given by

(
PP h(p̂h)

)
i,j

=
p̂h

i,j

max
{
1, ‖p̂h

i,j‖/α1
} ,

(
PQh(q̂h)

)
i,j

=
q̂h
i,j

max
{
1, ‖q̂h

i,j‖/α0
} .

The solution of the resolvent operator (I + σ∂F)−1(r̂h
l) is defined through the

minimization problem

(I + σ∂F)−1(r̂h
l) = arg min

ρh

‖ρh − r̂h
l |2

2σ
+ F (ρh) . (15)

This problem poses a simple quadratic problem with pointwise ball constraints.
The solution of (15) is given by

(
(I + σ∂F)−1(r̂h

l)
)
i,j

=
(r̂h

l)i,j/(1 + σδ)
max

{
1,
∣∣(r̂h

l)i,j/(1 + σδ)
∣∣} .

Note that the basic iterations of the algorithm are extremely simple. Indeed, the
main computational effort of each iteration consists of computing the discrete
gradient operations which are resembled by matrix vector products with very
sparse matrices. The algorithm is therefore easy to implement and can efficiently
be accelerated on parallel hardware such as graphics processing units. Finally,
note that by using K = 1 and δ large enough our model reduces to a TGV 2

model with quadratic data term and only one input image. Hence, the proposed
primal-dual algorithm can be used to efficiently minimize the original TGV 2-
based denoising model of [8].

5 Results

In this section we present experimental results for the proposed TGV 2-based
range image fusion model. The robustness of the method is evaluated on syn-
thetic data and its practical applicability is justified by applying the proposed
method to a large scale city dataset.

5.1 Synthetic Data

In our first experiment we apply the proposed fusion model to synthetically
generated data to study the effects of noise and in particular the impact of re-
dundancy. The synthetic dataset consists of an idealized building block with roof
shapes, fairly common in urban environments. On the left hand side there is a
gabled roof, whereas on the right hand side a hip roof is modeled. The dynamic
range of this synthetic signal is [50, 200], in the experiments this signal is sampled
on a regular grid of 256 × 256 pixels. Real world range images usually contain
a small amount of additive noise but contain a large number of gross outliers.
In order to simulate this noise characteristics we use the following procedure to
generate the degraded images. First, we add zero mean Gaussian noise with a

254 T. Pock, L. Zebedin, and H. Bischof

(a) (b) (c)

Fig. 1. Illustration of the synthetic dataset used to evaluate the performance of the
proposed TGV 2-based fusion model. Image (a) depicts the ground truth, (b) and (c)
show degraded observations samples by adding Gaussian noise of σ = 10 and 10% and
50% outliers, respectively.

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50
Signal−to−Noise Ratio with 10% Outliers

Number of Observations

S
N

R
 [

d
B

]

Average
Median
Huber
TGV

(a)

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50
Signal−to−Noise Ratio with 20% Outliers

Number of Observations

S
N

R
 [

d
B

]

Average
Median
Huber
TGV

(b)

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50
Signal−to−Noise Ratio with 30% Outliers

Number of Observations

S
N

R
 [

d
B

]

Average
Median
Huber
TGV

(c)

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50
Signal−to−Noise Ratio with 50% Outliers

Number of Observations

S
N

R
 [

d
B

]

Average
Median
Huber
TGV

(d)

Fig. 2. Signal-to-noise ratio (SNR) for different degrees of degradation and a different
number of observations. While for all methods the SNR increases with an increasing
number of observations, the proposed TGV 2 model performs best in all situations.

standard deviation of 10. Second, a certain amount of pixel groups with vari-
able sizes are replaced with outliers having an offset of ±50. Fig. 1 shows the
ground truth range image and the degraded versions with an increasing number
of outliers. Fig. 3 (a) shows a 3D rendering of the ground truth range image.

We compared our method against three methods: The first two methods are
two very simple methods - computing the point-wise average and computing the
point-wise median. The third method is the Huber model (6) which serves as the
baseline model. For minimization of the Huber model we use an adapted version
of the proposed primal-dual algorithm (14). For each method and experiment,
we determined the optimal parameter settings. Note that for the Huber model,
this implies that also the quadratic, ROF and TV -L1 models are included in the

TGV-Fusion 255

(a) Ground truth (b) Input image (c) Average

(d) Median (e) Huber (f) TGV 2

Fig. 3. 3D renderings of an experiment with 10% outliers and 5 observations. The
proposed TGV 2-based fusion model significantly outperforms the Huber model. It very
well captures the piecewise affine nature of the 3D model and hence leads to a natural
reconstruction of the 3D building. Also note that the simple methods (Average and
Median) completely fail to reconstruct the 3D building.

parameter optimization. Performance of each method is evaluated with respect
to both the degree of noise and the number of observations.

Fig. (2) shows the results of the performance evaluation. For evaluation pur-
pose, we computed the signal-to-noise ratio (SNR)

SNR = 10 log10

∥∥gh
∥∥2

‖uh − gh‖2
,

between the ground truth image gh and the solution of the method uh. Note
that the proposed TGV 2 model performs best in all situations. Interestingly, the
advantage of the TGV 2 model over the Huber model increases with an increasing
number of observations. From Fig. 3, one can further see that the TGV 2 model
captures the piecewise affine nature of the synthetic 3D building very well. On
the other hand, the Huber model inherently imposes a bias towards piecewise
constant solutions and hence exhibit small staircases on the roof.

5.2 Real Data

In our second experiment we apply the proposed TGV 2 model to a large real-
world dataset of Graz The data set consist of 155 aerial images each of 11500×
7500 pixels covering an area of 7.6 km2. The images have an average along-strip
overlap of 85% and across-strip overlap of 65% at a ground sampling distance of
8 cm which amounts to about twenty observations per ground pixel on average.
The input range images were produced by applying a state-of-the-art dense image
matching algorithm based on scanline optimization and backmatching similar
to [15]. For each image a pixel-synchronous range image is computed by stereo

256 T. Pock, L. Zebedin, and H. Bischof

Church

Hall

Fig. 4. Large aerial data set of Graz (a) shows a sparse reconstruction together with
the camera positions. (b) shows the final digital surface model. The black circles mark
two buildings for which detailed views are presented in Fig. 6 and Fig. 5.

(a) (b)

(c) (d)

Fig. 5. Hall: (a) shows one input image, (b) shows one corresponding range image
(black pixels denote invalid ranges), (c) shows the result of range image fusion using
the Huber model and (d) shows the result using the TGV 2 model

matching of two adjacent images. See Fig. 6 (a)-(b) and Fig. 5 (a)-(b) for some
sample images. The range images are then converted into a point cloud, which
is projected onto the ground plane, thus giving multiple observations per pixel
on the ground. Fig. 4 (a) shows a sparse reconstruction of the city together with
the regular pattern, the images have been taken from the plane.

TGV-Fusion 257

(a) (b)

(c) (d)
Fig. 6. Church: (a) shows one input image, (b) shows one corresponding range image
(black pixels denote invalid ranges), (c) shows the result of range image fusion using
the Huber model and (d) shows the result using the TGV 2 model

We applied the proposed TGV 2-based range image fusion method to compute
one single digital surface model (DSM) out of the range images. Clearly, the
complete data does not fit the memory of any graphics card. Thus we divided
the complete image domain into 282 tiles each of 2048× 2048 pixels and applied
the algorithm to each of the tiles. In order to eliminate boundary effects we used
a sufficiently large overlap between the tiles. Thanks to a GPU-implementation
of the primal-dual algorithm and a workstation equipped with 4 Nvidia Tesla
GPUs, we were able to process 4 tiles at once. The overall processing time for
the city data set was about 45 minutes for the stereo matching and 18 minutes
for the fusion.

Fig. 4 (b) depicts the final DSM model. The black circles mark two interesting
buildings, for which we provide detailed 3D renderings. Fig. 5 shows a large
hall with a roof that consist of a regular pattern of planes. Note that due to
reflections, the range images are very sparse in these areas. The proposed TGV 2

model leads to much smoother results and keeps the details of the 3D building.
Fig. 6 shows a detailed 3D view of a church with very steep roofs. One can
see that the TGV 2 model leads to much smoother results while keeping the
important details in the reconstruction. On the other hand, the Huber model
exhibits strong staircasing on slanted surfaces such as the roof.

258 T. Pock, L. Zebedin, and H. Bischof

6 Conclusion

In this paper we proposed a convex variational approach for the fusion of sev-
eral range images to a single high quality digital surface model. The variational
model is based on total generalized variation regularization of second order and a
robust Huber-L1 data term. For minimization we proposed an simple first-order
primal-dual algorithm, which can be efficiently parallelized on graphics process-
ing units. In experimental results on synthetic data we showed the robustness
of the method against noise and - most importantly - showed that the method
efficiently exploits redundancy in the data. Results on real data, showed that
the proposed method can be applied to large scale data sets. Future work will
concentrate on studying total generalized variation of an order larger than two.
The proposed solution is another step towards realistic 3D models of our habitat.

References

1. Leberl, F., Bischof, H., Pock, T., Irschara, A., Kluckner, S.: Aerial computer vision
for a 3d virtual habitat. Computer 43, 24–31 (2010)

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a
day. In: International Conference on Computer Vision, ICCV (2009)

3. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1

range image integration. In: Proceedings of the 11th International Conference Com-
puter Vision, Rio de Janeiro, Brazil, pp. 1–8 (2007)

4. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: Proceedings of SIGGRAPH 1996, pp. 303–312 (1996)

5. Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 5,
195–198 (1943)

6. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D 60, 259–268 (1992)

7. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math.
Imaging and Vision 20, 99–120 (2004)

8. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. Technical report,
Institute for Computer Graphics and Vision (2010)

9. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D 60, 259–268 (1992)

10. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image
decomposition–modeling, algorithms, and parameter selection. Int. J. Comp. Vi-
sion 67, 111–136 (2006)

11. Chan, T., Esedoglu, S.: Aspects of total variation regularized L1 function approx-
imation. SIAM J. Appl. Math. 65, 1817–1837 (2004)

12. Chan, T., Esedoglu, S., Park, F., Yip, A.: Total Variation Image Restoration:
Overview and Recent Developments. In: Mathematical Models in Computer Vision.
Springer, Heidelberg (2005)

13. Huber, P.: Robust Statistics. Wiley, New York (1981)
14. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems

with applications to imaging (2010),
http://hal.archives-ouvertes.fr/hal-00490826

15. Hirschmüller, H.: Stereo vision in structured environments by consistent semi-
global matching. In: Conference on Computer Vision and Pattern Recognition,
pp. 328–341 (2006)

http://hal.archives-ouvertes.fr/hal-00490826

Secure and Privacy-Preserving
eGovernment—Best Practice Austria

Karl Christian Posch, Reinhard Posch, Arne Tauber, Thomas Zefferer,
and Bernd Zwattendorfer

Institute for Applied Information Processing and Communications,
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Abstract. In the past, contact with public authorities often appeared as
winding way for citizens. Enabled by the tremendous success of the Inter-
net, public authorities aimed to react on that shortcoming by providing
various governmental services online. Due to these services, citizens are
not forced to visit public authorities during office hours only but have
now the possibility to manage their concerns everywhere and anytime.
Additionally, this user friendly approach also decreases costs for public
authorities.

Austria was one of the first countries that seized this trend by setting
up a nation-wide eGovernment infrastructure. The infrastructure builds
upon a solid legal framework supported by various technical concepts
preserving security and privacy for citizens. These efforts have already
been awarded in several international benchmarks that have reported a
100% online availability of eGovernment services in Austria.

In this paper we present best practices that have been followed by the
Austrian eGovernment and that have paved the way for its success. By
virtually following a traditional governmental procedure and mapping its
key stages to corresponding online processes, we provide an insight into
Austria’s comprehensive eGovernment infrastructure and its key con-
cepts and implementations. This paper introduces the most important
elements of the Austrian eGovernment and shows how these components
act in concert in order to realize secure and reliable eGovernment solu-
tions for Austrian citizens.

1 Introduction

The Austrian eGovernment has been awarded with top ranks in several European-
level eGovernment studies during the past couple of years. Among the key con-
cepts for this success were the solid treatment of the citizen’s right for privacy and
data protection, together with best-practice procedures for identification when
necessary. It is thus no surprise that Austria’s eGovernment has influenced the Eu-
ropean development to a significant extent. The advances with the Digital Agenda
prove that this avenue was rightly taken. eID and electronic signature play an out-
standing role within this new European Commission effort now.

In this paper, we look at the overall scope of Austria’s eGovernment services.
We will virtually follow an eGovernment process from the application stage to-
wards back-office processing and final delivery. Moreover, we will also point out

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 259–269, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

260 K.C. Posch et al.

typical potential security risks and measures taken to counter these risks to guar-
antee a secure and reliable eGovernment process. It becomes apparent that the
quality of administrative services can be significantly improved with eGovern-
ment processes while, at the same time, these services can also be delivered at
a much lower cost than with traditional procedures.

Most often in the past, contact with public authorities has typically been
tedious for citizens. People were often forced to spend hours queuing in front
of counters or filling complex forms without helping assistance. More recently,
public authorities have been positively influenced by the private sector, where
customer friendliness is key for success. By improving traditional procedures
in terms of efficiency and customer orientation, citizens have developed from
pure suppliants to emancipated customers. In this context, public authorities
have evolved to customer-oriented service providers satisfying the needs of their
customers.

In parallel to this development we could observe significant advances in in-
formation technology. Especially the success story of the Internet has had a
significant impact on various areas of life during the past decades. Public au-
thorities reacted to this trend and started to offer different online services for
citizens too. Driven by the aspiration to continuously improve existing proce-
dures in terms of efficiency and customer friendliness, public authorities aimed
to employ the Internet in order to spare citizens personal visits at administrative
offices.

The online processing of procedures involving citizens and public authorities
has the potential to improve common paper-based procedures significantly. Aus-
tria was one of the first countries that recognized this potential and started to
build a comprehensive eGovernment infrastructure early on. Nevertheless, the
new electronic approach also raised many new challenges. Considering the fact
that various procedures are potentially dealing with data which are sensitive with
respect to privacy and security, it is crucial that they are at least as reliable and
as secure as their traditional non-electronic pendants. In order to guarantee the
integrity and security of eGovernment infrastructures, these aspects need to be
defined not only on technical level, but also on legal level. Therefore, in Austria
the E-Government Act [7], which has come into effect in 2004 and has been
amended in 2008, defines the legal framework for all eGovernment procedures in
Austria.

Basing on the given legal framework, Austria has taken the challenge to de-
velop a comprehensive and future-proof eGovernment framework. Austria’s early
investments in eGovernment and future technologies have already paid off: In
the past years, several international benchmark [5] [4] [3] have reported a 100%
online availability of eGovernment services in Austria.

In this article, we describe key components of the Austrian eGovernment.
We present best practices which have contributed to its success. The article
guides the reader through a typical eGovernment procedure and introduces basic
concepts and building blocks of the Austrian eGovernment infrastructure. By

Secure and Privacy-Preserving eGovernment—Best Practice Austria 261

reading this paper, the reader will get an understanding of the overall technical
setup that has paved the way for the success of the Austrian eGovernment.

In section 2 we describe an exemplary procedure and identify its three basic
stages. With this we briefly introduce a typical administrative procedure. In
subsequent sections we provide details on these three fundamental stages and
show how their different requirements have been met. In this way, we provide
the reader with an overview of the Austrian eGovernment with its relevant core
components and basic concepts, as well as concrete implementations. Finally,
we draw conclusions and give a brief outlook towards future developments and
trends.

2 Common Structure of Administrative Procedures

Procedures at public administrative offices have been purely paper-based for cen-
turies. Those procedures involving citizens and public authorities can generally
be subdivided into three basic stages, as illustrated in Figure 1. These stages
are Application, Back-office processing and Delivery. In this section we identify
these main stages by looking in some detail at the issuance of a criminal-record
certificate.

Administrative procedures are guided by legal requirements. When mapping
traditional paper-based administrative procedures to electronic web-based ser-
vices, basically the same requirements as for paper-based approaches hold true.
In the remainder of this section we identify some key requirements relevant for
each of these three stages.

In order to request the issuance of a criminal-record certificate, a citizen has to
formally apply in order to trigger the adequate administrative procedure. Thus,
Application is the initial phase of many governmental processes. In traditional
governmental processes, usually a paper-based application form has to be filled
by the applicant. This is quite often only possible during office hours of the
responsible public authority. The case officer in charge verifies the provided ap-
plication data and the citizen’s identity by checking an ID document presented
by the citizen. Authentication of the applicant and verification of the citizen’s
application data are thus the key elements of this first stage.

Fig. 1. Three stages of administrative procedures

262 K.C. Posch et al.

Then follows Back-office processing. In this phase, case officers manage all
necessary processes for responding to the applicant’s request. In order to issue a
criminal-record certificate, for instance, the case officer has to examine whether
there are any crimes registered for the particular citizen. When all required
data has been collected, an appropriate paper-based criminal-record certificate
is finally generated. In order to prove the authenticity of this certificate, the
document is signed by the public authority. The key elements of this second
stage are thus the efficient and reliable processing of internal files and data
records, and the signing of documents by the public authority.

In the final phase, Delivery, the case officer in charge delivers the requested
certificate to the applying citizen. In traditional paper-based procedures, the
certificate is usually delivered either directly to the citizen during office hours
or via registered mail. Thus, reliable and evidential delivery of documents is of
major importance in order to close the electronic process in a proper manner.

Depending on the service and the degree of user interaction, eGovernment
services are usually subdivided according to a maturity model consisting of five
classes: Information, one-way interaction, two-way interaction, transaction, and
targetisation/automation. This model has also been applied by Capgemini for
the eGovernment benchmark reports [5]. The example procedure discussed in
this paper—Issuance of a Criminal-Record Certificate—is a fully transactional
service, and thus falls into the class transaction.

In the following sections, we show how the three phases of classical admin-
istrative procedures have been implemented within the Austrian eGovernment.
In doing so, we describe the core elements, the key concepts, and some methods
of the awarded Austrian eGovernment.

3 Electronic Application

Similar to traditional governmental processes, identification, authentication and
signatures play an important role within electronic government, too. When ap-
plying for certain services, for instance, a citizen often needs to be uniquely
identified. This holds true for traditional paper-based procedures as well as for
their electronic equivalents. Austria’s eGovernment solution for mapping iden-
tification, authentication, and signatures into the digital world is the so-called
Austrian citizen-card concept [8]. The idea behind this concept is to provide
both, citizens as well as administrative online-service providers, secure and re-
liable means for identification and authentication in online eGovernment pro-
cesses. Generally, this concept is independent from technology and platform,
and supports various functions such as the creation and verification of electronic
signatures or the encryption and decryption of electronic documents.

Figure 2 illustrates the Austrian citizen-card concept. Basically, three parties
are involved in this concept: The citizen who wants to use a certain service,
the relying party and—acting as intermediary—the so-called citizen-card en-
vironment (CCE). The citizen-card environment decouples all security-related
functions from the underlying citizen-card technology. For example, the citi-
zen card can be a smartcard, e.g. bank card, student card or health-insurance

Secure and Privacy-Preserving eGovernment—Best Practice Austria 263

Fig. 2. The Austrian Citizen Card Concept [1]

card1 or also a mobile phone. Thus, applications that want to access a certain
functionality of the citizen card just need to communicate with the citizen-card
environment. The citizen-card environment handles all technology-specific oper-
ations, e.g. secure smartcard communication. The communication between the
application and the citizen-card environment is based on a defined interface, the
so-called security-layer interface [1]. This interface is XML-based and its protocol
messages can be transported over HTTP or TCP.

According to the citizen-card concept, the citizen-card environment can ei-
ther run on the citizen’s local computer or on a remote server accessible via the
Internet. Currently, several proprietary and open-source implementations for a
local citizen-card environment exist. An open-source implementation based on
Java-Applet technology for a server-based citizen-card environment has been
discussed in [6]. In this case, only a minimal piece of software needs to be in-
stalled on the local system to handle the communication with the smartcard –
namely the Java Applet in the user’s web browser. An alternative for server-side
signature creation uses mobile phones as secure devices for authentication. This
option has been discussed in [11]. In this latter approach, security functions are
implemented by a server-side hardware security module, but authorized via a
mobile transaction number (mobile TAN) sent via SMS to the user.

In 1999 the European Union has published the so-called EU Signature Direc-
tive [12] which focuses on qualified electronic signatures. Such qualified electronic
signatures are legally equivalent to hand-written signatures. Thus, almost any

1 Currently, each Austrian citizen possesses such a health-insurance card where the
citizen-card functionality can be simply activated.

264 K.C. Posch et al.

governmental process where a citizen’s signature is required can also be pro-
cessed online. Qualified signatures according to this directive can be generated
by an Austrian citizen card. However, qualified electronic signatures can also
be used for secure authentication in eGovernment processes. Authentication is
an important process to verify that a citizen is the certain person she claims
to be. To simplify the authentication process for online-service providers, an
open-source module for identification and authentication has been developed. A
server-side middleware named MOA-ID (Module for Online Applications – Iden-
tification) [10] acts as intermediary between the citizen-card environment and
the actual online application. In this way, the online application does not need to
communicate directly with the citizen-card environment, but instead receives all
data required for identification and authentication via a standardized interface
(SAML [15]). Initially, MOA-ID reads the citizen’s identification data via the
citizen-card environment from the citizen’s smartcard or another equivalent de-
vice. This identification data is stored within an XML data structure. After this
first step, i.e. identification, the citizen is asked to sign an appropriate text to
confirm her authentication request towards the online application. Finally, the
citizen’s signature is verified and an authentication token containing relevant
identification and authentication information is assembled and transmitted to
the online application.

An fundamental aspect of authentication in administrative processes is del-
egation. Austria is the only country in Europe having automated mechanisms
for delegation. In paper-based procedures, mandates are used to attest that a
person is empowered to represent another person. We can find the application of
mandates in several scenarios, e.g. in court proceedings. Other examples are the
procuration in commercial transactions when acting on behalf of a company, or
a postal mandate when receiving deliveries on someone else’s behalf. Electronic
mandates belong to the core of the Austrian eGovernment strategy. Empower-
ment is established through electronic mandates based on XML structures stored
on the citizen card. This approach has been discussed in detail in [14]. In the
course of an identification process based on MOA-ID, electronic mandates are
read out and validated together with the citizen’s electronic signature.

After completion of the Application, the citizen-related information that has
been collected in this first step is handed over to appropriate Back-office
processes.

4 Back-Office Processes

Citizens trigger administrative procedures by making a formal application. In
Austrian eGovernment services, this is usually done by means of appropriate
web forms in connection with the citizen card. The applicant’s citizen card al-
lows a secure and reliable remote user authentication and it allows the citizen to
sign applications online. As soon as the electronic application form is transmit-
ted to the responsible public authority, related back-office processes are started.
The objective of these processes is the appropriate processing of the applicant’s

Secure and Privacy-Preserving eGovernment—Best Practice Austria 265

request. In case of our example process here, i.e. issuance of a criminal-record cer-
tificate, back-office processes involve the collection of the particular applicant’s
criminal records and the preparation of an electronically signed criminal-record
certificate.

The efficient processing of back-office processes is an important requirement
for public authorities not only in Austria, but in the entire European Union.
According to the Services Directive [13], which has been published by the Eu-
ropean Parliament and the Council on 12 December 2006, and which had to be
implemented by EU Member States by 28 December 2009, procedures and for-
malities need to be simplified. In this way, the establishment of businesses and
the provision of services within the European Union is aimed to be facilitated
for both, natural and legal persons.

In the remainder of this section, we show how efficient back-office processing
according to the requirements defined by the EU Service Directive is accom-
plished within the Austrian eGovernment. Thereby, we put the focus on the
internal processing of electronic files and data records, and the application of
electronic signatures by public authorities.

The internal processing of files and data records is one of the key challenges of
administrative back-office processes. While paper-based files have built the basis
of such processes until now, information technologies have significantly enhanced
theses processes in terms of efficiency during the past decades. In Austria, public
authorities make use of the so-called electronic file system (Elektronischer Akt,
ELAK) that allows for processing of electronic records free of media breaks. The
ELAK is a key element of the Austrian eGovernment strategy. As a workflow
management system for internal work processes, it supports a seamless coop-
eration free of media breaks between different administrations and enables a
one-stop administration for citizens. All Austrian ministries are connected to
the electronic file system of the federal administration (ELAK im Bund, EiB).
The EiB is operated by the Federal Data Processing Center and, since its start in
2001, about 9500 workstations have been connected to this system. Both, public
administrations and citizens, benefit from the electronic file system. Besides the
benefits mentioned, case officers can easily access, search for, and timely edit
documents. Since all documents are digital, there are no unnecessary delivery
delays when sharing or disseminating them. Citizens can thus receive documents
and notifications 24 hours a day, 7 days a week.

Besides the efficient internal processing of files and data records, the prepa-
ration of electronic documents is the second key requirement for back-office
processes in the Austrian eGovernment. In order to ensure data-origin authen-
tication, for example in official notifications, documents being issued by public
authorities need to be signed. Signatures applied by public authorities are usually
referred to as official signatures.

The Austrian solution for electronic official signatures has been discussed in
[9] and addresses two basic objectives. First, Austrian official signatures allow
citizens to reliably verify that the signer actually is a public authority or a public
official. This has been achieved by defining an registered X.509 object identifier

266 K.C. Posch et al.

(OID) as extension to the signature certificate. The OID reliably identifies sig-
natures being applied by public authorities, and allows citizens to verify whether
or not obtained documents originate from public authorities.

The second objective that has been addressed by the Austrian solution for
official signatures is resistance against media breaks. This means that the elec-
tronic signature of digital documents remains verifiable even if this document
has been printed to paper. This objective has been achieved by relying on pure
text-based electronic signatures. This means that all signed content needs to be
based on text and must be visible on the document in order to allow a manual
reconstruction from printouts. Furthermore, all information covered by the ap-
plied electronic signature must be printed out on the document as well. Amongst
others, this includes the signature value, information about the signatory, and a
link to a signature verification service that can be used to verify the document’s
signature.

Another key benefit of the Austrian official signature is its technology inde-
pendence. The method used is applicable to various document formats includ-
ing XML, PDF, and Microsoft Office documents. This allows for a widespread
and flexible use of official signatures according to the needs of the particular
application.

The electronic file system and official signatures represent the basic building
blocks of back-office processes in the Austrian eGovernment. By guaranteeing an
efficient processing of digital data records and allowing for reliable data-origin
authentication, these two concepts contribute to the awarded quality of Austrian
eGovernment.

5 Electronic Delivery

Governments and public administrations deliver important documents (e.g. sub-
poenas) in a reliable and evidential way. Registered and certified mail are useful
vehicles serving this purpose in the postal world. Registered mail gives senders
extended tracking possibilities and evidence of having submitted a particular de-
livery at a certain point in time. Certified mail provides a further proof of receipt
signed by the recipient or a delegate. Document delivery is usual the last phase
of an administrative procedure. Within eGovernment, an electronic equivalent
is required to ensure a process free of media breaks. Standard mailing systems
like e-mail have a poor evidential quality. They can rather be compared to send-
ing a postcard, which lacks integrity, confidentiality, sender-identity information,
authenticity, and non-repudiation.

In the Austrian eGovernment a certified mail system (CMS) is being used.
As one of the first systems, the Austrian document delivery system (DDS) has
been established in 2004 to facilitate reliable and evidential communications
with public bodies over the Internet. The legal basis of this system is laid down
by the Law on the Delivery of Official Documents [2]. The Austrian DDS de-
fines four types of participants: Senders, recipients, delivery agents, and a central
lookup service (CLS). Delivery agents operate certified mail services by provid-
ing the following two mail handling functionalities: Mail delivery agents (MDA)

Secure and Privacy-Preserving eGovernment—Best Practice Austria 267

for senders, and mail transfer agents (MTA) for recipients. Delivery agents must
be approved by the Federal Chancellery for compliance with technical, organiza-
tional and legal requirements. So far, three providers have been approved. Two
private sector companies2 and the Federal Data Processing Center3. The sys-
tem is free of charge for all recipients. Recipients can register with any delivery
agent, even with multiple. Registration is based on the Austrian citizen card.
This ensures qualified authentication and identification procedures in order to
provide a high service quality for senders. A hallmark of the Austrian DDS is its
communication architecture. In contrast to e-mail-based architectures, senders
are not required to register with delivery agents. They must register with the
central lookup service (CLS) instead. The CLS is a register, operated by the
Federal Chancellery, holding the data of all recipients registered with any de-
livery agent. This is necessary because the Austrian DDS has no domain-based
communication architecture like e-mail. It is not possible to determine a recip-
ient’s delivery agent just on the basis of the recipient’s address data. The main
delivery process steps are as follows:

1. Senders query the CLS to find out with which delivery agent a recipient
is registered with. Due to data privacy protection the CLS returns only a
minimalistic set of data sufficient to correctly address a recipient: an en-
crypted delivery token holding the recipient’s unique identifier, the URLs of
recipient’s delivery agent(s), supported MIME types by the sender and an
optional encryption certificate.

2. Senders directly transmit a delivery to the recipient’s delivery agent. The
communication protocol is based on web-services technology using the simple
object access protocol (SOAP).

3. The delivery agent informs the recipient that a delivery is ready for pick-up.
4. The recipient authenticates at the delivery agent and confirms the reception

of a new delivery by creating a qualified electronic signature (QES) using
her citizen card.

5. As a result, the delivery agent returns this non-repudiation of receipt (NRR)
evidence back to the sender.

The Platform Digital Austria has developed an open-source module called MOA-
ZS (Modules for Online Applications – ZuStellung) to facilitate the integration
of the certified-mail functionality into senders’ back-office applications. MOA-
ZS defines a middleware implementing the four key functionalities required for
using the Austrian DDS: CLS query, payload encryption, document delivery,
and reception of returning NRR evidences. The module is provided as an open-
source module to foster the take-up by public administrations and the adoption
and extension by private businesses. With some minor restrictions, the Austrian
DDS can also be used by private businesses to deliver documents with the quality
of certified mail. Security and privacy for recipients have been strengthened in
the case of private senders to ensure a high level of trust in this system. With
2 https://www.meinbrief.at, https://zustellung.telekom.at
3 https://www.brz-zustelldienst.at

268 K.C. Posch et al.

this public-private sector shared system, the Austrian DDS has demonstrated its
abilities on a national level to be deployable on the large scale. A next challenge
for the Austrian DDS, especially within the context of the European service,
is interoperability on the European level. The use of open standards, interfaces
and technologies is a key factor for a sustainable system and facilitates upcoming
interoperability efforts. Due to its openness and flexibility, the Austrian DDS is
well prepared to face this challenge.

6 Conclusions and Outlook

In the past years, information technologies have increasingly made their way
into traditional adminstrative procedures. Favored by the success of the Internet,
eGovernment has improved many of these procedures in terms of efficiency and
usability. In this paper we have introduced the Austrian way to overcome the
various challenges of eGovernment. We have introduced the basic building blocks
of the Austrian eGovernment infrastructure that are used to build up secure and
reliable solutions for both, citizens and public administrations.

While this paper has primarly focused on Austrian approaches, similar at-
tempts to enhance eGovernment have been made in other EU Member States as
well. Since these solutions are most often specific to the particular Member State,
they are usually able to satisfy the needs of the particular country only. Thus,
interoperability between these systems is often an issue. To bear this challenge,
several international research projects have been launched in order to support
the ecosystem of key policy areas like eID, eHealth, eProcurement, and the Ser-
vices Directive. Austria participates in several of these large scale pilots and
contributes its experiences in design and implementation of secure and reliable
eGovernment infrastructures to the development of cross-border solutions on an
European level.

References

1. Federal Chancellery Austria. The Austrian Citizen Card (May 2004), http://www.
buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/index.en.

html

2. Bundesgesetz. Bundesgesetz über die Zustellung behördlicher Doku-
mente (April 1982), http://www.ris.bka.gv.at/GeltendeFassung.wxe?

Abfrage=Bundesnormen&Gesetzesnummer=10005522

3. Capgemini. EU eGovernment-Studie 2006 (2006)
4. Capgemini. EU eGovernment Report 2007 (2007)
5. Capgemini. eGovernment Benchmark 2009 (2009)
6. Centner, M., Orthacker, C., Bauer, W.: Minimal-Footprint Middleware for the

Creation of Qualified Signatures. In: INSTICC Institute for Systems, and Portugal
Communication Control Technologies of Information (eds.) Proceedings of the 6th
International Conference on Web Information Systems and Technologies, pp. 64–
69. INSTICC - Institute for Systems and Technologies of Information, Control and
Communication, Portugal (2010)

http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/index.en.html
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/index.en.html
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/index.en.html
http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10005522
http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10005522

Secure and Privacy-Preserving eGovernment—Best Practice Austria 269

7. Bundesgesetzblatt für die Republik Österreich BGBl. I Nr. 10/2004. The Austrian
E-Government Act (2004)

8. Leitold, H., Hollosi, A., Posch, R.: Security Architecture of the Austrian
Citizen Card Concept. In: ACSAC 2002: Proceedings of the 18th Annual Computer
Security Applications Conference, Washington, DC, USA, p. 391. IEEE Computer
Society, Los Alamitos (2002)

9. Leitold, H., Posch, R., Rössler, T.: Media-break resistant eSignatures in eGov-
ernment: an Austrian experience. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009.
IFIP-AICT, vol. 297, pp. 109–118. Springer, Heidelberg (2009)

10. ARGE Spezifikation MOA: Spezifikation Module für Online Applikationen - ID
(August 2007), http://egovlabs.gv.at/projects/moa-idspss

11. Orthacker, C., Centner, M., Kittl, C.: Qualified Mobile Server Signature. In:
Hinchey, M., Meyer, B., Turner, J.A., et al. (eds.). IFIP-AICT. Springer,
Heidelberg (2010) (in press)

12. European Parliament and the Council: Directive 1999/93/ec on a community
framework for electronic signatures (December 1999)

13. The European Parliament and the Council of the European Union: Directive
2006/123/EC of the Eurpean Parliament and of the Council on services in the
internal market (2006)

14. Rössler, T.: Empowerment through Electronic Mandates – Best Practice Austria.
In: Godart, C., Gronau, N., Sharma, S., Canals, G. (eds.) I3E 2009. IFIP-AICT,
vol. 305, pp. 148–159. Springer, Heidelberg (2009)

15. OASIS Security Services (SAML) TC. Security Assertion Markup
Language (SAML), http://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=security

http://egovlabs.gv.at/projects/moa-idspss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

The Quest for Uncertainty

Jörg Zimmermann and Armin B. Cremers

Institute of Computer Science,
University of Bonn, Germany
{jz,abc}@iai.uni-bonn.de

Abstract. The question of how to represent and process uncertainty is
of fundamental importance to the scientific process, but also in everyday
life. Currently there exist a lot of different calculi for managing uncer-
tainty, each having its own advantages and disadvantages. Especially,
almost all are defining the domain and structure of uncertainty values a
priori, e.g., one real number, two real numbers, a finite domain, and so
on, but maybe uncertainty is best measured by complex numbers, ma-
trices or still another mathematical structure. Here we investigate the
notion of uncertainty from a foundational point of view, provide an on-
tology and axiomatic core system for uncertainty, derive and not define
the structure of uncertainty, and review the historical development of
approaches to uncertainty which have led to the results presented here.

1 Introduction

The quest for a theory of inductive logic, i.e., a logic defining the relationship
between observations and hypotheses, lies at the heart of the scientific pro-
cess. Accordingly, there is a plethora of research aiming at the clarification of
this relationship (probability theory as Bayesian theory [9], possibility theory
[3], Dempster-Shafer theory [16], revision theory [4], ranking theory [19], non-
monotonic logic [5], ...). The application of probability theory to the problem
of inductive logic is known as Bayesian inference. Despite its intuitive appeal
and many successful applications, it was never considered as a solution to the
problem of induction because of technical and philosophical problems. In fact,
the 20th century witnessed a strong rejection of probability theory as a the-
ory for induction. Probability theory was developed to describe the randomness
of observable events, not the plausibility of unobservable hypotheses. The ran-
domness of events can be seen as an objective property of a physical system,
whereas the plausibility of hypotheses is intrinsically subjective, depending on
the knowledge of an “observer”. A first attempt to directly axiomatize the intu-
ition of reasoning under uncertainty was made by Richard T. Cox in 1946 [2], but
despite its important role as a starting point for a new branch of mathematical,
subjective uncertainty theory, Cox’s axiom system has drawbacks which have
prevented it from becoming a generally accepted axiomatization of uncertainty
measures, most notably its assumption that uncertainty values must be mea-
sured by real numbers. Addressing this issue, it is an important goal to define

C.S. Calude, G. Rozenberg, A. Salomaa (Eds.): Maurer Festschrift, LNCS 6570, pp. 270–283, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Quest for Uncertainty 271

alternative axiom systems with a reduced number of controversial assumptions
and investigate their implications. One important contribution to this endeavor
is the axiom system by S. Arnborg and G. Sjödin [1], which has inspired the
axiom system introduced in this article.

2 An Ontology of Uncertainty

In the realm of empirical knowledge, uncertainty is unavoidable. A piece of in-
formation is in general not known to be true or false, but must be annotated
by shades of certainty. But what exactly is the structure of these “shades of
certainty”? Are there ontologically different types of uncertainty, and, after all,
how to assess, process and communicate uncertainty? One early distinction of
types of uncertainty was introduced by Frank Knight in his seminal book ”Risk,
Uncertainty, and Profit” [10] on page 19:

“Uncertainty must be taken in a sense radically distinct from the familiar
notion of risk, from which it has never been properly separated.... The essential
fact is that ’risk’ means in some cases a quantity susceptible of measurement,
while at other times it is something distinctly not of this character; and there are
far-reaching and crucial differences in the bearings of the phenomena depending
on which of the two is really present and operating.... It will appear that a mea-
surable uncertainty, or ’risk’ proper, as we shall use the term, is so far different
from an unmeasurable one that it is not in effect an uncertainty at all.”

In today’s language one would describe “risk” as the uncertainty about the
occurrence of events within a fully specified stochastic model. The “Knightian
Uncertainty” is the uncertainty with regard to the correct model, what is today
sometimes called model risk, especially in financial mathematics.

In the next paragraph we introduce an ontology of uncertainty, and, even more
general, an ontology of indefiniteness, accompanied by a suitable terminology.

2.1 Indefiniteness

The advance of research in artificial intelligence, knowledge representation and
expert systems has led to a plethora of new approaches to represent and process
information: for example possibility theory, certainty factors, and non-monotonic
logics. This has led to confusion about the exact differences and commonalities
between the different calculi, and where they are competing approaches and
where they are complementary. One striking example is fuzzy logic, which is still
regarded as an alternative calculus for processing uncertain information, where
in fact it is a generalization of the notion of an event. This is clearly stated by
Judea Pearl in [14]: “Fuzzyness is orthogonal to probability theory - it focuses
on the ambiguities in describing events, rather than the uncertainty about the
occurrence or non-occurrence of events.” Classical events are called crisp, in order
to express that they are definitely defined: in a specific situation the event has
occurred or not – there are no “degrees of occurrence”. The standard approach
to represent a set of crisp events is a Boolean algebra. In this sense, one can say
that a crisp event is an element of a Boolean algebra.

272 J. Zimmermann and A.B. Cremers

Fig. 1. Ontology of Indefiniteness

We suggest the notion “indefiniteness” for describing all sorts of non-certain,
non-crisp information. This leads to the following ontology of indefiniteness:

2.2 Types of Uncertainty

Here we propose three types of uncertainty, extending the Knightian ontology:

1. Event Uncertainty (quantitatively known unknowns)
2. Model Uncertainty (qualitatively known unknowns)
3. Severe Uncertainty (unknown unknowns)

We want to illustrate these three types of uncertainty – and their principal
differences – with an example taken from Bernoulli processes:

Event Uncertainty: Consider the coin model with p = 1
2 . The question what

will be the next outcome of an observation can be answered by a definite prob-
ability. In this case the probability is 1

2 , meaning that we are maximally unsure
what will happen next, even under a specific, complete stochastic model, but
other questions can be answered with more certainty by the coin model. For ex-
ample, the probability that we will observe 450 to 550 heads out of 1000 tosses
of the coin is greater than 0.998. So, for this specific question the coin model
delivers an answer with near certainty.

Model Uncertainty: Here we assume that the observations are generated by a
Bernoulli process, but with unknown success probability p. Without introducing
a prior distribution for the model parameter, this implies that we only can infer
probability intervals for events, for example the probability that we will observe
between 45 and 55 successes out of 100 experiments is in the interval [0, .71],
regardless of the value of p.

Severe Uncertainty: This is the “black swan” case, the possibility, that the
true model is not even approximately in the set of considered models. An example
would be that the true process is a deterministic switch between successes and
failures, leading to a probability of 1 for the above example.

The Quest for Uncertainty 273

The case of severe uncertainty leads to the question of how to describe all
possible models. If one requires that a model has to be an algorithmic object,
the answer to this question is the set of all programs, also called program space.
R. Solomonoff pioneered learning in program space in the 1960s, employing a
Bayesian framework for describing model uncertainty and a prior distribution
on programs inspired by Occam’s razor [17,18]. Unfortunately, despite the fact
that all models have to be represented by programs, the learning process devised
by Solomonoff for the whole program space is not computable. The question of
how to essentially retain the generality of Solomonoff’s approach, but render the
learning process computable has spawned a research area of its own, which is
today called universal induction or algorithmic probability [8,15].

3 Formalizing Uncertainty

First we have to discuss a subtle issue of terminology. Above we have used the
notion “uncertainty values” to denote generalized truth values. Unfortunately,
there is the following problem when using this term in a formalized context:
no uncertainty about a proposition can be identified with sure knowledge, but
maximal uncertainty about a proposition is not certainty with regard to the
negation of the proposition. The domains of truth values we want to axiomatize
contain a greatest and a least element, where the greatest element should rep-
resent certainty and the least element impossibility, i.e. certainty of the negated
proposition. For this reason, we adopt the notion “confidence measure” instead
of uncertainty measure in the following definitions and axioms.

3.1 The Algebra of Truth Bearers

Before delving into the structure of uncertainty, we have to define the objects
and their relations which are capable to take on truth values, the truth bearers. In
a context of crisp events, i.e., after the fact it is unambiguously decidable if the
event has occurred or not, the algebra of truth bearers is normally considered to
be a Boolean algebra, but when truth bearers are not crisp, then another algebra
has to be used, i.e., a fuzzy algebra where the law of the excluded middle is not
valid: x ∨ ¬x = 1.

However, for the purpose of the present article we focus on Boolean algebras
as the structure of propositions. The investigation of uncertainty measures for
non-Boolean proposition algebras is open to future research.

3.2 Uncertainty: The Boolean Case

A conditional confidence measure for a Boolean Algebra U and a domain of
confidence values C is a mapping Γ : U × U \ {⊥} → C. Let A, B ∈ U, then
the expression Γ (A|B) reads: “the confidence value of A given B (wrt. Γ)”. The
domain of confidence values is partially ordered and has a greatest ('') and a
least (⊥⊥) element. A confidence space is a triple (U, Γ, C). One of the follow-
ing axioms (Extensibility) for confidence measures deals with relations between

274 J. Zimmermann and A.B. Cremers

confidence spaces defined over different Boolean algebras. Thus it is necessary to
introduce a set of confidence spaces all sharing the same domain of confidence
values. Such a set of confidence spaces we will call a confidence universe, and
the following axiom system is concerned with such confidence universes, and not
single confidence spaces. This seemingly technical shift in perspective is essential
for the formalization of natural properties like extensibility, which plays a crucial
role as an intuitive axiom complementing Cox’s assumptions (see section 5).

We now state seven axioms, which can be grouped in three “connective ax-
ioms” and four “infrastructure axioms”, where the connective axioms concern
properties of the logical connectives and the infrastructure axioms deal with ba-
sic properties of the order relations, the combinability of confidence spaces and
a closure property.

3.3 The Core of Uncertainty

In the following, we use Γ (A) as an abbreviation for Γ (A|').

(Not) For all (U1, Γ1, C) and (U2, Γ2, C):

If Γ1(A1) = Γ2(A2), then Γ1(Ā1) = Γ2(Ā2).

The axiom Not expresses that the information in the confidence value of a
statement A is sufficient to determine the confidence value of Ā. This is justified
by the requirement that every piece of information which is relevant for the
confidence value of A is relevant for the confidence value of Ā and vice versa.

(And1) For all (U1, Γ1, C) and (U2, Γ2, C):

If Γ1(A1|B1) = Γ2(A2|B2) and Γ1(B1) = Γ2(B2),

then Γ1(A1B1) = Γ2(A2B2).

The axiom And1 states that the information in the confidence values of the
partial propositions determine the confidence value of the conjunction. Otherwise
the confidence value of the conjunction would contain information which is not
reflected in the partial propositions, although this information would be clearly
relevant for at least one of them.

(And2) For all (U1, Γ1, C) and (U2, Γ2, C):

If Γ1(A1B1) = Γ2(A2B2) and Γ1(B1) = Γ2(B2) = ⊥⊥,

then Γ1(A1|B1) = Γ2(A2|B2).

The axiom And2 ensures that all the information contained in a conditional
confidence value Γ (A|B) will be preserved in the confidence value of the con-
junction Γ (AB) when combined with the confidence Γ (B) (unless Γ (B) = ⊥⊥,
in which case the value of Γ (A|B) is irrelevant). Otherwise relevant information
about the partial propositions would not be contained in the confidence value of
the conjunction.

The Quest for Uncertainty 275

(Order1) For all (U, Γ, C) and all A, B ∈ U: If A ≤ B, then Γ (A) ≤ Γ (B).

(Order2) For all confidence values v, w ∈ C with v ≤ w there is a confidence
space (U, Γ, C) with A, B ∈ U and A ≤ B, Γ (A) = v, Γ (B) = w.

These two axioms connect the natural ordering of the Boolean algebra (A ≤ B
iff A ∧ B = A) with the ordering on the confidence domain, where Order1
specifies the forward direction and Order2 specifies the backward direction
(figure 2).

(Extensibility) For all (U1, Γ1, C) and (U2, Γ2, C) there is a confidence space
(U3, Γ3, C), so that U3 ∼= U1 ⊗U2, and for all A1, B1 ∈ U1, A2, B2 ∈ U2:

Γ3(A1⊗'2 |B1⊗B2) = Γ1(A1|B1) and Γ3('1⊗A2 |B1⊗B2) = Γ2(A2|B2).

This axiom requires the extensibility of domains of discourse, i.e., two indepen-
dently defined confidence spaces shall be embeddable into one frame of reference.

(Background) For all (U, Γ1, C) and all C ∈ U there is a confidence space
(U, Γ2, C), so that for all A, B ∈ U:

Γ1(A|BC) = Γ2(A|B) .

This closedness under conditioning assures that for every conditional confidence
measure Γ1 which is specialized by conditioning on some “background knowl-
edge” C, there is a conditional confidence measure Γ2 yielding the same valua-
tions without explicitly mentioning C.

For the justification of the axioms it is important to interpret the expression
Γ (A|B) as: “all that can be said about the confidence of A given B (wrt. Γ).”
Given this interpretation, the common justification of the connective axioms is
that a violation of these axioms will necessarily lead to a loss of relevant in-
formation. Note that the axioms use only equations and inequalities between

Fig. 2. Ordered confidence values v and w with corresponding propositions in a suitably
chosen confidence space (U, Γ, C)

276 J. Zimmermann and A.B. Cremers

confidence values, because there are no algebraic operations defined on the do-
main of confidence values yet.

In order to designate this and similar axiom systems, we propose a nomencla-
ture based on the connnective axioms. Extensionality of negation, conjunction,
and disjunction is denoted as axiom N, C1, and D1, respectively. The recon-
structibility of the confidence value of an argument of a conjunction or a dis-
junction, given the compositional confidence value and the confidence value of
the other argument, is denoted as axiom C2 and D2, respectively. Using this
terminology, the above introduced axiom system can be referenced as NC12.

4 The Structure of Uncertainty

A first important implication of the NC12 axioms is stated in the following
theorem.

SFG-Theorem: There exist functions S : C → C, F : C2 → C and
G : {(x, y) ∈ C2|x ≤ S(y)} → C with:

Γ (Ā) = S(Γ (A)) , (1)

Γ (A ∧B) = F (Γ (A|B), Γ (B)) , (2)

Γ (A ∨B) = G(Γ (A), Γ (B)), if AB = ⊥ . (3)

Proof: First we prove a lemma stating that for every pair of confidence values
there is a confidence measure and two independent propositions such that the
confidence measure assigns the given confidence values to these propositions.

Independence Lemma: For all v, w ∈ C there is a confidence space (U, Γ, C)
with A, B ∈ U, such that:

Γ (A|B) = Γ (A) = v and Γ (B|A) = Γ (B) = w .

Proof: According to Order2, there are confidence spaces (U1, Γ1C), (U2, Γ2, C)
and propositions A ∈ U1 and B ∈ U2 with Γ1(A) = v and Γ2(B) = w.
Then axiom Extensibility guarantees the existence of a confidence space (U1⊗
U2, Γ3, C) with:

Γ3(A|B) = Γ1(A) = v and Γ3(B|A) = Γ2(B) = w .

�
Next we show that axioms Not and And1 imply the existence of the functions
S and F .

Let v ∈ C be a confidence value, so that there is a confidence space (U1, Γ1, C)
and A1 ∈ U1 with Γ1(A1) = v. Then define:

S(v) = Γ1(Ā1) .

The Quest for Uncertainty 277

This function is well-defined, because whenever there is another confidence
space (U2,Γ2,C) having v as value of the confidence measure Γ2, say Γ2(A2|B2) =
v, then axiom Not assures that Γ2(Ā2|B2) = Γ1(Ā1). That is, the value of S
does not depend on the specific choice of confidence space having v as a value.
The totality of S follows from axiom Order2, which enforces that for every
v ∈ C there is at least one confidence space taking v as a value. Additionally,
one can show that S is an antitone function, i.e., x ≤ y ⇒ S(x) ≥ S(y), and
that S('') = ⊥⊥ and S(⊥⊥) = ''.

The analog will be proved for conjunction by introducing a binary function F .
Note that a proposition B and a conditional proposition A|B are related by F .

According to the independence lemma, for all v, w ∈ C there is a confidence
space (U1, Γ1) with Γ1(A1|B1) = Γ1(A1) = v and Γ1(B1) = w. Define F as
follows:

F (v, w) = Γ1(A1B1) .

The well-definedness is implied by axiom And1, the value of F (v, w) does not
depend on the confidence space and events having v and w as confidence values.
The totality of F is assured by the independence lemma, too, which is valid for
all v, w ∈ C.

Lemma: F is associative.

Proof: Let x, y, z ∈ C and (U, Γ, C) a confidence space with A, B, C ∈ U and
Γ (A|BC) = Γ (A) = x, Γ (B|C) = Γ (B) = y and Γ (C) = z. Such a confidence
space always exists according to the independence lemma. Then it follows:

F (F (x, y), z)=F (F (Γ (A),Γ (B)),Γ (C))= F (F (Γ (A|BC), Γ (B|C)), Γ (C)) =
= F (Γ (AB|C), Γ (C)) = Γ (ABC) = F (Γ (A|BC), Γ (BC)) =
= F (Γ (A), F (Γ (B|C), Γ (C))) = F (Γ (A), F (Γ (B), Γ (C))) = F (x, F (y, z)) .

�
In the same way, by using the independence lemma to construct the appropriate
confidence spaces, one can show that F is commutative and has '' as a neutral
element. Next we derive the cancellation property for F on C+ = C \ {⊥⊥}.
Lemma: F is cancellative on C+, i.e., F (x, z) = F (y, z) implies x = y.

Proof: Let x, y, z ∈ C+ and (U, Γ, C) be a confidence space with A, B, C, D ∈ U
and Γ (A|C) = Γ (A) = x, Γ (B|D) = Γ (B) = y, and Γ (C) = Γ (D) = z, again
using the independence lemma to show the existence of such a confidence space.
Then we have F (x, z) = Γ (AC) and F (y, z) = Γ (BD). Thus, F (x, z) = F (y, z)
implies Γ (AC) = Γ (BD). Invoking And2 (without worrying about the case
z = ⊥⊥, because we are talking about C+), we get Γ (A|C) = Γ (B|D), i.e., x = y.

�
The next step is the extension of the monoid (C+, F) to a group. This can be done
analogously to the classical algebraic construction of Z from N, a construction
which works for all cancellative commutative monoids.

Using S, F , and F−1, the partial function G on {(x, y) ∈ C2|x ≤ S(y) is
defined as follows:

278 J. Zimmermann and A.B. Cremers

G(x, y) = S(F (S(F (x, F−1(S(y)))), S(y))) , if y = '',
G(⊥⊥,'') = '' , else.

In order to illustrate this definition, we note that G can be seen as a solution of
the problem to represent addition with the functions x∗y, 1−x, and 1/x. Using
these functions, G translates into:

1− (1− x
1−y)(1 − y) ,

which reduces to addition.
First we have to show that this is a well-defined function. For this, we have to

establish that on the domain of G the expression F (x, F−1(S(y))) is in C, because
the S-function is still only defined on C, and not on the group extension.

Lemma: ∀x, y ∈ C, y = '' : x ≤ S(y) ⇒ F (x, F−1(S(y))) ∈ C.

Proof: With Order2 and x ≤ S(y) it follows that there is a confidence space
(U, Γ, C) with A, B ∈ U, A ≤ B, Γ (A) = x, and Γ (B) = S(y). Now, because
of A ≤ B, it holds that Γ (AB) = Γ (A) = x. Let Γ (A|B) = z, which is uniqely
determined according to And2. z satisfies the equation x = F (z, S(y)), which is
equivalent to z = F (x, F−1(S(y))). Because z is, by definition, in the range of a
confidence measure, we have z ∈ C and hence F (x, F−1(S(y)) ∈ C.
�
Having the well-definedness of G established, it is easy to show that G has the
desired property. Let Γ (B) = '' and AB = ⊥:

Γ (A ∨B) = S(Γ (Ā ∧ B̄)) = S(F (S(Γ (A|B̄)), S(Γ (B))))) =
= S(F (S(F (Γ (A ∧ B̄), F−1(S(Γ (B))))), S(Γ (B)))) .

Now A∧ B̄ is equal to A, because we assumed AB = ⊥. Hence G has the stated
property for Γ (B) = ''. In the case of Γ (B) = '', we invoke Order1 to show
that Γ (A ∨ B) = '', too. Furthermore, because AB = ⊥ implies A ≤ B̄, we
have, again by Order1, Γ (A) ≤ Γ (B̄) = S(Γ (B)) = ⊥⊥. Hence Γ (A) = ⊥⊥, and
we can apply the second part of the definition of G, which yields Γ (A ∨ B) =
G(Γ (A), Γ (B)) = G(⊥⊥,'') = ''. This finishes the proof of the SFG-theorem.

�
Arnborg and Sjödin proved in [1] a theorem clarifying the algebraic structure
of C resulting from their axioms: it is the [0, 1]-interval of a totally ordered
field. Analyzing their proof, we find that the construction of a field from a ring
will fail if one does not assume a total order on C. In lemma 13 of [1] they
state that the ring they have constructed is a totally ordered integral domain,
i.e. a ring without zero divisors. Then they use a theorem from S. MacLane
and G. Birkhoff in [12] which states that every totally ordered integral domain
can be embedded in a totally ordered field. But this will not work in the case
of partial order because without the total order assumption one cannot prove
that the constructed ring will not contain zero divisors. So, lemma 13 of [1]
cannot be transferred to the partial order case, which blocks the application of
the MacLane-Birkhoff theorem. This is an interesting example of the interplay
between order properties and algebraic properties: a total order assumption has
strong algebraic implications, while partial order has not. Accordingly, order

The Quest for Uncertainty 279

properties and algebraic properties cannot, as one might have hoped, treated
separately. Based on these observations we formulate the following conjecture:

Ring Conjecture: The domain of confidence values C of a confidence universe
satisfying the axiom system NC12 can be embedded in a partially ordered ring
(Ĉ, 0, 1,⊕,�,≤). Let ·̂ : C → Ĉ be the embedding map, then the following holds:

⊥̂⊥ = 0 , '̂' = 1 , ∀v, w ∈ C : v ≤ w ⇔ v̂ ≤ ŵ .

Furthermore, all confidence measures Γ of the confidence universe satisfy:

Γ̂ (') = 1 , (4)

Γ̂ (A ∨B) = Γ̂ (A) ⊕ Γ̂ (B) , if AB = ⊥ , (5)

Γ̂ (A ∧B) = Γ̂ (A|B) � Γ̂ (B) . (6)

We state this as a conjecture, because a full proof is beyond the scope of this
article. A proof outline can be found in [20], which documents work in progress.
If it can be confirmed, it will yield an algebraic characterization of uncertainty
based on NC12: Uncertainty can be represented by elements of the [0, 1]-interval
of partially ordered rings.

Furthermore, with regard to the ring operations, the uncertainty measures
satisfy the same axioms as probability measures satisfy with regard to the real
numbers. But in contrast to the real numbers, a ring may be only partially
ordered or may contain infinitesimal elements, like the hyperreal numbers. Pos-
sible applications of the above results to other uncertainty calculi are discussed
in section 6.

5 The Lineage of NC12

Our approach of axiomatizing uncertainty measures extends a line of thinking
started by R. T. Cox in 1946. In [2], based on axioms which should hold for all
uncertainty measures, Cox derived a theorem stating that uncertainty measures
are essentially probability measures, although his axioms are very different from
the axioms of probability theory. A recent exposition of his result can be found
in [9].

The approach used by Cox was one of the first attempts to justify the use
of probabilities as a representation of uncertainty by directly axiomatizing the
intuition on uncertainty measures and then deriving that uncertainty measures
have the same mathematical structure as probability measures. This was a sur-
prising result, given the fact that Cox’s axioms look totally different from the
Kolmogorov axioms of probability theory. But despite its new and far reaching
conclusions, Cox’s theorem was not widely acknowledged. This can be attributed
to at least two factors: first, it became clear that Cox’s derivation of his theorem

280 J. Zimmermann and A.B. Cremers

was not complete. The assumptions he made were not sufficient to reach the
conclusion in its full generality. This was noted by several authors, and J. Halpern
showed in detail where Cox’s proof failed by constructing a counterexample in
[6]. It was not before 1994 that J.B. Paris completed Cox’s proof by introducing
a new axiom [13]. This axiom closes the loopholes in Cox’s proof, but is very
technical in nature. Thus it is not acceptable as an axiom which should hold for
all reasonable uncertainty measures. This leads to the second factor contributing
to the slow adoption of Cox’s result: there is at least one axiom which is too
strong to be considered as a general property of uncertainty measures, yet is
inherently necessary for the proof approach adopted by Cox. This axiom is the
assumption that uncertainty can be measured by one real number. This is a
strong structural assumption, implying that the uncertainty values are totally
ordered. This prevents, for example, the applicability of Cox’s theorem to calculi
like Dempster-Shafer theory, which uses two real numbers for the representation
of uncertainty.

The remaining question after the result of J. B. Paris is the following: are
there extensions or modifications of the Cox axioms, which are justifiable as
general properties of uncertainty measures and which imply a result essentially
similar to Cox’s theorem? One important step in this direction was taken by S.
Arnborg and G. Sjödin. They replaced the axiom introduced by J.B. Paris by a
more intuitive statement which they called “Refinability axiom”. Furthermore,
they dropped the requirement that uncertainty values are real numbers. By
this step, they transformed the Cox approach to a genuine algebraic approach,
constructing the structure of the domain of uncertainty values and not assuming
it. But in order to get the result they want, they introduced a total of 16 axioms
(when one counts every discernible requirement they formulate as a separate
axiom, as we do for our core system), with different degrees of foundational
justifiability. Additionally, at a crucial step in their proof they introduce a total
order assumption for the domain of uncertainty values, thus restricting the range
of their result in a fundamental way.

This was the situation when we entered the development, seeing that Arnborg
and Sjödin made a crucial step in the amelioration of the original Cox’s approach,
but still leaving some major issues open, which have blocked the general appli-
cability of their result. Accordingly, our goal was the following: to devise an
axiom system as minimal as possible, with as weak and as general properties as
possible, especially to drop the total order assumption, but still be able to derive
a Cox-style result.

6 Relations to Existing Uncertainty Calculi

Today, there exist many approaches for dealing with uncertainty, for example
lower probabilities, which have only partially ordered uncertainty values or non-
monotonic logic, which can be interpreted as using infinitesimal probabilities. In
the following, we try to analyse these calculi in the light of our results.

The Quest for Uncertainty 281

6.1 Lower Probabilities

The problem of dealing with “imprecise” probabilities has led to the develop-
ment of calculi known under the common name “lower probabilities”. The main
distinction from the probability calculus is that the uncertainty of a proposition
is judged by two numbers instead of one. Accordingly, there are two functions
mapping the elements of a proposition algebra to [0, 1], the lower probability P∗
and the upper probability P ∗. The most general notion of a lower probability is
defined wrt. a set of probability distributions P (see, for example, [7]):

P ∗(A) = sup
P∈P

P (A) and P∗(A) = inf
P∈P

P (A) .

One can show that lower and upper probabilities satisfy the following inequalities
if A and B are disjoint:

P∗(A ∪B) ≥ P∗(A) + P∗(B) and P ∗(A ∪B) ≤ P ∗(A) + P ∗(B) .

These properties are called super-additivity and sub-additivity, respectively. Fur-
thermore, lower and upper probability are connected via the following relations:

P∗(A) ≤ P ∗(A) and P ∗(A) = 1− P∗(Ā) .

The inequality says that lower and upper probabilities can be seen as defining
an interval, thus making lower and upper probabilities an uncertainty calculus
having a partially ordered domain of uncertainty values. The equation implies
that from both uncertainty values, upper and lower probability, of a proposition
one can derive the upper and lower probabilities of its negation. Hence lower
and upper probabilities together satisfy axiom Not.

An application of our results to the analysis of lower probabilities is now the
following: even if the domain of uncertainty values is only partially ordered,
which is possible according to NC12, there exists a function G which relates the
uncertainty value of a disjunction of disjoint propositions and the uncertainty
values of the single propositions by an equation, and not only by an inequality. If
no such function G exists for an uncertainty calculus, it must violate at least one
of the axioms Not, And1, or And2 (we assume that the infrastructure axioms are
satisfied). Now, because lower probabilities satisfy axiom Not, they must violate
And1 or And2. This implies that there cannot be any definition of conditioning
for lower probabilities which satisfies And1 and And2. Seeing And1 and And2 as
essential conditions for not loosing relevant information, this may explain why
the definiton of conditioning for lower probabilities has turned out to be such a
hard problem, which is still the topic of ongoing research.

This conclusion is also valid for Dempster-Shafer theory, which can be seen
as lower and upper probabilities satisfying additional constraints. Accordingly,
there are several proposals for conditioning in DS-theory, each having its own
advantages and disadvantages. By the above analysis, this is not a transitory
state until the “right” conditioning rule has been found, but a fundamental
obstacle which cannot be resolved within the frame of DS-theory.

282 J. Zimmermann and A.B. Cremers

6.2 Non-monotonic Logic

A non-monotonic logic extends classical logic with a framework of “belief revi-
sion”, i.e. conclusions derived at one point can be retracted at a later point. Non-
monotonic logic can be seen as defining a hierarchy of “default assumptions”,
which are assumed valid until observed evidence directly contradicts them. If
this happens, a revision process is executed, which incorporates the new evi-
dence and eliminates contradictions while trying to preserve as much as possible
from the old knowledge state. Now, as for example Lehman and Magidor have
observed in [11], one can formalize default expressions of the type “if A then
typically B” as “the probability of B given A is very high”, where “very high”
is equated to 1 − ε, for infinitesimal ε. This can be modeled by a generalized
probability algebra using the [0, 1]-interval of hyperreal numbers as a domain of
uncertainty values.

7 Conclusion

Despite many attempts, there is still no consensus on basic questions concerning
uncertainty and the foundations of inductive logic. In [1], Arnborg and Sjödin
note that reaching a consensus is not only a foundational issue but is also impor-
tant outside the ivory tower: designers of complex systems struggle with difficult
compatibility problems when they plan to integrate system components which
happen to use different ways to describe uncertainty.

In this article, we have tried to contribute to the debate on uncertainty by dis-
cerning ontologically different types of uncertainty and introducing an axiomatic
core system for uncertainty measures with the explicit aim not to prejudice struc-
tural properties of the domain of uncertainty values, but to derive them from
basic assumptions.

References

1. Arnborg, S., Sjödin, G.: What is the plausibility of probability? Preprint, Nada,
KTH (2001)

2. Cox, R.T.: Probability, frequency, and reasonable expectation. Am. Jour. Phys. 14,
1–13 (1946)

3. Dubois, D.: Possibility theory and statistical reasoning. Computational Statistics
& Data Analysis 51(1), 47–69 (2006)

4. Gärdenfors, P. (ed.): Belief Revision. Cambridge University Press, Cambridge
(1992)

5. Ginsberg, M. (ed.): Readings in Nonmonotonic Reasoning. Morgan Kaufmann, Los
Altos (1987)

6. Halpern, J.: A counterexample to theorems of Cox and Fine. Journal of A.I.
Research 10, 76–85 (1999)

7. Halpern, J.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
8. Hutter, M.: Universal Artificial Intelligence. Springer, Heidelberg (2005)
9. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University

Press, Cambridge (2003)

The Quest for Uncertainty 283

10. Knight, F.: Risk, Uncertainty, and Profit. Houghton Mifflin (1921)
11. Lehman, D., Magidor, M.: What does a conditional knowledge base entail? Artifi-

cial Intelligence 55(1), 1–60 (1992)
12. MacLane, S., Birkhoff, G.: Algebra. The MacMillan Company, Basingstoke (1967)
13. Paris, J.B.: The Uncertain Reasoner’s Companion. Cambridge University Press,

Cambridge (1994)
14. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University

Press, Cambridge (2000)
15. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–

193 (2009)
16. Shafer, G.: Mathematical Theory of Evidence. Princeton University Press, Prince-

ton (1976)
17. Solomonoff, R.: A formal theory of inductive inference, part I. Information and

Control 7(1), 1–22 (1964)
18. Solomonoff, R.: A formal theory of inductive inference, part II. Information and

Control 7(2), 224–254 (1964)
19. Spohn, W.: A survey of ranking theory. In: Huber, F., Schmidt-Petri, C. (eds.)

Degrees of Belief. Springer, Heidelberg (2009)
20. Zimmermann, J.: A proof outline for the ring conjecture (2010),

http://www.iai.uni-bonn.de/~jz/ring_conjecture.pdf

http://www.iai.uni-bonn.de/~jz/ring_conjecture.pdf

Author Index

Albert, Jürgen 49

Bischof, Horst 245
Bjørner, Dines 167
Böckenhauer, Hans-Joachim 3

Cremers, Armin B. 270

Domaratzki, Michael 63
Domik, Gitta 129
Duval, Erik 144

Edelsbrunner, Herbert 20
Ésik, Zoltán 76

Fellner, Dieter W. 200
Fischer, Gerhard 129

Gruska, Jozef 184

Havemann, Sven 200
Hromkovič, Juraj 3
Huova, Mari 90

Karhumäki, Juhani 90
Kerber, Michael 20
Klerkx, Joris 144
Kuich, Werner 76
Kulathuramaiyer, Narayanan 157

Maurer, Hermann 157
Mohamed, Khaireel A. 228
Mömke, Tobias 3

Ottmann, Thomas 228

Păun, Gheorghe 102
Pérez-Jiménez, Mario J. 102
Pock, Thomas 245
Posch, Karl Christian 259
Posch, Reinhard 259

Razen, Andreas 36

Saarela, Aleksi 90
Saari, Kalle 90
Salomaa, Kai 63
Sauer, N.W. 116

Tauber, Arne 259
Tischler, German 49

van Leeuwen, Jan 215
Verbert, Katrien 144

Welzl, Emo 36
Wiedermann, Jǐŕı 215

Zebedin, Lukas 245
Zefferer, Thomas 259
Zimmermann, Jörg 270
Zwattendorfer, Bernd 259

	Title
	Preface
	Table of Contents
	Algorithmics
	Improved Approximations for Hard Optimization Problems via Problem Instance Classification
	Introduction
	Basic Definitions
	Parameterized Approximation Algorithms
	Efficient Polynomial-Time Approximation Schemes
	Structural Parameterizations
	Solution-Size Parameterizations

	Stable Approximation Algorithms
	Hybrid Algorithms and Win/Win Approximations
	Conclusion
	References

	Covering and Packing with Spheres by Diagonal Distortion in Rn
	Introduction
	Decomposing the n-Cube
	Lattices
	Covering
	Packing
	Discussion
	References

	Counting Plane Graphs with Exponential Speed-Up
	Introduction
	Counting with Exponential Speed-Up
	Expected Number of Non-flippable Edges
	A Simple Charging Scheme
	A More Elaborate Charging Scheme

	References

	Formal Languages and Automata
	Ancient Typefaces and Parametric Weighted Finite Automata
	Introduction
	Definitions
	Bézier Curves
	Spline Applications
	Scalable Vector Graphics Path Outlines
	Fonts

	References

	On Language Decompositions and Primality
	Introduction
	Language Primality and Prime Decompositions
	Orthogonal Concatenation

	Trajectory-Based Operations
	Shuffle on Trajectories
	Deletion along Trajectories
	Language Decomposition Involving Trajectories
	Unary Languages
	Undecidability of Decomposition Problems
	Open Problems

	References

	A Unifying Kleene Theorem for Weighted Finite Automata
	Introduction
	Preliminaries
	Finite Automata
	A Unifying Kleene Theorem
	References

	Local Squares, Periodicity and Finite Automata
	Introduction
	Preliminaries
	Local Squares vs. Periodicity
	k-Abelian Equivalence: Observations and Open Problems
	References

	P and dP Automata: A Survey
	Introduction
	dP Automata
	On the Power of P Automata
	On the Power of dP Automata
	Further Research Topics
	References

	On the General Coloring Problem
	Introduction
	Heyting Categories and Heyting Algebras
	Examples
	Labelling with Elements of a Heyting Algebra
	Meet Irreducible Elements
	Gaps, Dualities and Trees
	References

	Learning
	Transdisciplinary Collaboration and Lifelong Learning: Fostering and Supporting New Learning Opportunities
	Introduction
	Transdisciplinary Collaboration
	Lifelong Learning
	Innovative Teaching and Learning Strategies: Breadth-First and Long Tail
	Teaching Different Disciplines Out of the CS Department
	Breadth-First: Finding a Common Language between Disciplines
	Long Tail: Passion-Based and Self-motivated Learning

	Implementation and Assessment of our Framework in a Graduate Course
	Implications and Future Opportunities
	References

	Towards an Open Learning Infrastructure for Open Educational Resources: Abundance as a Platform for Innovation
	Introduction
	Background: Towards an Open Learning Infrastructure
	Introduction
	The ARIADNE Infrastructure
	Adding New Repositories
	From ARIADNE to the Rest of the World
	Search and Find

	Abundance as a Platform for Innovation
	Introduction
	Integration
	Visualization
	Analytics

	Conclusion
	References

	Why E-Learning as It Stands Is Not Enough
	Introduction
	Challenges to E-Learning
	Short Spanned Focus
	Collective Intelligence or Consensus on Ignorance
	Poor Information, Poor Minds
	Emerging Models of Dominance that Influence E-Learning

	Scenario for Future
	Conclusion
	References

	The Practice of Informatics
	Domains: Their Simulation, Monitoring and Control—A Divertimento of Ideas and Suggestions
	Introduction
	Domain Descriptions
	Interpretations
	What Is a Domain-Based Demo?
	Simulations
	Monitoring and Control
	Machine Development
	Verifiable Software Development

	Conclusion
	Discussion

	References

	Roots and Stimuli to a New Perception of Informatics
	A New Perception of Informatics
	Roots of a New Perception
	Impulses of a New Perception
	What Can Informatics Learn from the Development of Other Sciences?
	What Can Informatics Learn from Physics?

	References

	Towards a New Shape Description Paradigm Using the Generative Modeling Language
	What Is Generative Modeling?
	The Generative Modeling Paradigm
	GML, the Generative Modeling Language

	Related Approaches
	GML Fundamentals
	Procedural Shape Design with GML
	Six Main Fields of Application for the GML Technology

	Three Low-Level Shape Representations (L0/L1)
	Progressive Combined B-Reps (pcB-Reps)
	Convex Polyhedra (CPs)
	Volumetric Bitmaps (VBs)

	The GML Technology Portfolio
	Fundamental Limitations and Future Work
	Summary and Conclusion
	References

	Name Resolution by Rewriting in Dynamic Networks of Mobile Entities
	Introduction
	Preliminaries
	Interpreting Names as Words

	A Simple Name Resolution Protocol
	Basic Protocol
	Expected Number of Encounters

	Name Length-Optimal Resolution
	Joining, Leaving, and Migrating Entities
	Network Partitioning and Merging

	Conclusion
	References

	Maintaining the Personal Style and Flair of Handwriting in Presentation Recordings
	Introduction
	Screen Grabbing Systems
	VCR Recording
	Object-Based Recording

	Roadmap: From Discrete Traces to Smoothed Curves
	Analogues of Derivatives and Curvature for Traces
	Classification of Points in a Trace

	Polyline Simplification
	The Douglas-Peucker (DP) Algorithm
	The Reumann-Witkam (RW) Algorithm
	Improving the Solutions of Reumann-Witkam’s
	The RW-DP Algorithm
	The Optimal Polyline Simplification
	Simplified Polylines for Smoothing Routines

	Active Online Smoothing
	Conclusion
	References

	TGV-Fusion
	Introduction
	Related Work
	Quadratic Model
	ROF Model
	TV -L1 Model
	Huber Model

	Total Generalized Variation
	The Proposed Model

	Numerical Algorithm
	Discretization
	Primal-Dual Formulation
	Numerical Algorithm

	Results
	Synthetic Data
	Real Data

	Conclusion
	References

	Secure and Privacy-Preserving eGovernment—Best Practice Austria
	Introduction
	Common Structure of Administrative Procedures
	Electronic Application
	Back-Office Processes
	Electronic Delivery
	Conclusions and Outlook
	References

	The Quest for Uncertainty
	Introduction
	An Ontology of Uncertainty
	Indefiniteness
	Types of Uncertainty

	Formalizing Uncertainty
	The Algebra of Truth Bearers
	Uncertainty: The Boolean Case
	The Core of Uncertainty

	The Structure of Uncertainty
	The Lineage of NC12
	Relations to Existing Uncertainty Calculi
	Lower Probabilities
	Non-monotonic Logic

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

