
Chapter 2
Climate and Carbon Cycle

2.1 Climate: Definition and Prerequisites

Climate, as defined by IPCC (2001, 2007), is the ‘‘average weather’’ at a given
period of time and space. In a more statistical understanding, this period of time,
ranging in various reports from months to thousands of years, was eventually
adopted by the World Meteorological Organization (WMO) to be 30 years.

Temperature, precipitation, and wind are the most commonly used quantities to
describe climate and to classify it into specific categories assigned to different
parts of the world. There are three basic systems used to categorize weather: (1)
Thornthwaite’s system, based on the precipitation-to-vapour ratio varying for
different areas, (2) system based on air masses identification as the main com-
ponent forming climate system, (3) Köppen’s system (Peel et al. 2007; Martyn
2000; Kalkstein et al. 1996). The latter is most widely applied to describe the
world’s climate, based on average monthly values of temperature and precipita-
tion; their yearly patterns allowed to differentiate between the five basic climate
types:

Type A (tropical)—occurring in the equatorial zone, characterized by contin-
uously high temperatures (monthly averages above 18�C) and abundant, year-
round, precipitation;

Type B (dry)—distinctive for vast areas of North Africa, the Arabian Peninsula
and Australia, characterized by scarce precipitation and large temperature
amplitudes.

Type C (moderate)—characterized by mild winters, occurring in the mid-lati-
tude regions (e.g., Western Europe)

Type D (continental)—mid-latitude zone climate characterized by cool winters
(average temperatures of the warmest and the coolest month oscillate above and
below 10�C, respectively),

Type E (polar)—typical for high latitude regions, characterized by cool sum-
mers (average temperature of the warmest month below 10�C) and cold winters.
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All the types enumerated above are further divided into secondary and tertiary
classifications, that, more specifically, distinguish climate on regional and local
scales (Fig. 2.1).

2.1.1 Natural Factors Controlling the World’s Climate

Specific climate in different parts of the world is an outcome of many factors.
Apart from the human influence, that up to recently has been of no or little
importance, most of them are natural phenomena (Ko _zuchowski 1998). Extrater-
restrial sources, expressed by the amount of the solar energy reaching the Earth
surface and the factors of planetary origin, are directly related to the climate
forming processes taking place on the globe (Martyn 2000).

The Earth position in relation to the Sun, facilitating the amount of radiation
received from our star, is the basic climate-controlling force. The proximity to the
equator, occurrence of daily and yearly radiation cycles generated by the Earth’s
rotation and orbit, directly influence the Earth’s climate (Martyn 2000). Sun–Earth
interactions change during longer cycles—the shortest (11 years long) is related to
periodically occurring variations in the sunspot number that determine the amount
of radiation reaching the Earth surface and its temperature (Rind 2002). Addi-
tionally, sunspot cycle seems to be positively correlated with the ocean surface
water temperature within the tropical zone (White 2006). Cycles measured in
thousands of years are a consequence of the Earth’s orbit variability that includes:
the orbit precession leading to shifts in the equinox, changes in the tilt of the

Fig. 2.1 World climate zones distribution (Peel et al. 2007). Climate types: (a) tropical, (b) dry,
(c) moderate, (d) continental, (e) polar; letter abbreviations relate to secondary and tertiary
climate classifications
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Earth’s axis and transformations in the shape of the Earth’s orbit, lasting
approximately 23, 41, 100 thousand years, respectively.

The differences in a landscape is what determines climate at regional and local
scales, varying with height above the sea level, as well as with the distance of the
land from the major water bodies that make the transfer between seasons
smoother. Both of the above aspects, combined with latitude radiation changes, are
causing climate variability that depends on the location (Martyn 2000).

Another important factor controlling climate at the local and regional scales is the
relationship between high and low atmospheric pressure systems (Martyn 2000).
North Atlantic, for example, is dominated by the Icelandic Low and the Azores High,
which decides about the air masses circulation over Europe. Positioning and intensity
of both pressure systems change over years, and combined with accompanying
events is called North Atlantic Oscillation (NAO; Hurrell 1995). NAO explains
about 30 percent of the ocean winter temperatures dynamics north of 20�N (Great-
batch 2000). Similarly, El Niño-Southern Oscillation (ENSO) describes atmospheric
circulation over the Pacific Ocean equatorial zone (McPhaden et al. 2006). The range
of ENSO repercussions reach vast areas globe wide (Rosenzweig 1994).

Both circulation patterns are directly related to ocean currents pattern (ther-
mohaline circulation)—the World Ocean water circulation process, based on
deepwater formation at high latitude regions, mostly in the North Atlantic and
around the Antarctica (Fig. 2.2; Rahmstorf 2003). Thus, together with warm
surface currents, large amounts of heat are transported to the Arctic region. During
the process of gradual water cooling the heat is transferred to the atmosphere
(Trenberth and Caron 2001).

The results of a climate model presented by Stocker (2002), that does not
involve occurrence of the thermohaline circulation, demonstrated that in this
scenario the Southern Hemisphere would cool down insignificantly, whereas the
temperature for the Northern Hemisphere, especially in the North Atlantic region,
would decrease by several degrees Centigrade. Disruptions of the circulation could

Fig. 2.2 Scheme of the thermohaline circulation (Rahmstorf 2002)
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have been a possible cause of rapid climate changes during the last glaciations
(Ganopolski and Rahmstorf 2001; Rahmstorf 2002).

Aerosols—droplets and particles reflecting the solar radiation and limiting its
amount that reaches the surface, are another essential factor influencing the Earth’s
climate (Charlson et al. 1992). Aerosols, as the condensation nuclei in the course of
clouds formation, contribute to the increase of albedo (Twomey 1974; Roberts et al.
2008). However, due to the multiplicity and complexity of the aerosols interactions,
the estimates of climate transformations range due to the aerosols are still charged
with a significant error (IPCC 2001, 2007). Among natural constituents of aerosols,
those playing a key role are: sea salt, dust from the dry regions (e.g., Sahara), organic
substances of marine and terrestrial origin, and sulfur compounds (originating,
mainly, from sea water and volcanic eruptions; Andreae 2007). Paleoclimatic
reconstructions indicate the volcanic eruptions as the main cause of the climate
transformations in the Earth’s past (Robock 2000; Gao et al. 2008).

Climate is also determined by the atmosphere composition. To this end the
greenhouse gases play the most significant role (IPCC 2001, 2007). About 30
percent of solar radiation reaching the atmosphere is reflected back into the outer
space. The remaining 70 percent heats the lower atmosphere and the planetary
surface. In order to balance the heat that reaches the Earth, the planetary surface
emits infrared radiation (IR) back into the outer space. Part of the IR is absorbed
by the greenhouse gases causing the atmosphere temperature increase—the
mechanism called a greenhouse effect (Kiehl and Trenberth 1997).

This phenomenon allows to maintain the Earth’s temperature at a level that is
both high enough and stable to create habitable conditions on the Earth surface.
Among the most important greenhouse gases are: water vapour, CO2, CH4, N2O,
CO and CFCs. Due to its partial pressure and the absorption spectrum, water
vapour plays the key role in the atmosphere, contributing up to 95 percent of the
greenhouse effect (Le Treut et al. 2007), while the role of the remaining gases is, at
least, one order of magnitude smaller. Nonetheless, paleoclimate studies clearly
indicate that global temperature variations are largely related to CO2 and CH4

concentrations changes. This conclusion is based on the both gases concentrations
in the ice core collected in the Antarctic (Lake Vostok). The deepest layers of the
core are dated on 400,000 years BP (Petit et al. 1999), allowing to reconstruct
climate of the several glaciations (Monnin et al. 2001). Moreover, as demonstrated
by Clark and Mix (2000), significant change in CO2 concentration was accom-
panying glacier retreat about 19,000 years ago, strengthening the effect caused by
the Sun radiation increase.

2.1.2 Climate Change and Anthropogenic Influences

During the last few decades there has been increasing interest in the range and
intensity of anthropogenic activities influencing the environment. Worldwide
impact of socio-economic development resulting in the climate alteration has been
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the main concern of the major scientific projects, e.g., JGOFS (Karl et al. 2001),
IGBP (IGAC 2006), CARBOEUROPE, and CARBOOCEAN (Schulze et al.
2009), as well as a reason for the political concern (e.g., IPCC 2007).

The prerequisite for the initiation of climate change is a shift in the Earth’s
energy balance that may be a consequence of at least one of the following
mechanisms (Le Treut et al. 2007):

• Change in the amount of solar radiation reaching the Earth’s surface—mecha-
nism independent of anthropogenic activity, as described in Sect. 2.1.1.

• Change in the ratio of incident to reflected solar radiation (albedo)—mechanism
depending on both anthropogenic activity and naturally occurring events in the
environment.

• Change in the IR radiant flux being re-emitted by the surface—mechanism
depending on anthropogenic factors (greenhouse gases concentration in the
atmosphere).

The surface covered by ice (cryosphere) has a great impact on the Earth’s
albedo (Groisman et al. 1994). For example, solar radiation is much more effi-
ciently reflected from a surface of ice, characterized by albedo of 0.8, than from
other regions of the Earth, with albedo averaging at around 0.3.

The low average albedo of the Earth’s surface is determined primarily by a
large surface area and low albedo (\0.1) of the ocean (Le Treut et al. 2007).
Recent studies demonstrate that the cryosphere surface has been reduced in size
with simultaneous weight loss of the ice, estimated at 7,000 Gt (Gt = 109 tons) in
the period 1960–2003. Clark et al. (1999) demonstrated that snow and ice melting
rates are significantly enhanced by positive feedback from the albedo decrease. An
additional factor lowering the cryosphere’s albedo, particularly in the Northern
Hemisphere region, is caused by the increasing amount of soot particles. Among
the important sources of these airborne contaminants are the fossil fuel and bio-
mass burning (Hansen and Nazarenko 2004; Jacobson 2004). On the other hand,
the Earth’s albedo is enhanced by aerosols produced by humans, mainly in
combustion processes (Fig. 2.3; Penner et al. 2001, 2003, 2004). A common
criterion used to differentiate between aerosols is their chemical composition
(Forster et al. 2007):

• Sulphate aerosols—originating mostly from fossil fuels combustion processes
(72%), while biomass combustion contributes merely 2% of the total. The other
important aerosols are: dimethyl sulfide (DMS) produced by phytoplankton,
amounting to 19% of the total; and sulphites formed during volcanic activity,
amounting to 7% of the total (Penner et al. 2001).

• Organic aerosols—formed during combustion processes of fossil fuel, biofuels,
and burning of forest areas. Ito and Penner (2005) estimated that about 2.2 Tg
(Tg = 1012 g) of particulate organic matter (POM) is emitted annually from
fossil fuels combustion and 7.5 Tg from biofuels combustion. The present-day
rates for organic aerosols emission are three orders of magnitude higher than in
1870.
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• Nitrate aerosols—their formation depends on substantial concentrations of
ammonia and nitric oxide in the atmosphere. The nitrate aerosols are of lesser
significance than sulphate aerosols (Schaap et al. 2004).

• Mineral dust—derived from naturally occurring processes (e.g., Sahara); 30–
50% of the dust originates from human activity such as agriculture, cement
production and melioration (Tegen and Fung 1995). Estimates regarding min-
eral dust contribution in the energy balance are contradictory (Forster et al.
2007).

• Carbon soot—unlike the aerosols described above, it is characterized by a
positive radiation forcing.

The overall effect of aerosols originating from the anthropogenic activity on the
Earth’s albedo is additionally strengthened by changes occurring on the land
(Fig. 2.3). Deforestation, forests burning and arable areas expansion are main
processes contributing to the changes (Forster et al. 2007). Increase in the Earth’s
albedo caused by development in agriculture is, on the other hand, especially
pronounced in mid-latitude regions, where during the winter period meadows and
arable areas are coved by snow more expansively than forest areas. Klein
Goldewijk (2001) suggest that the actual meadow and arable areas expanded from
7.9–9.2 mln km2 (6–7% of the total land area) in 1750 to 45.7–51.3 mln km2

(35–39%) in 1990, with simultaneous decrease in total forest areas by 11 mln km2.

Fig. 2.3 Global radiation forcing for specific constituents in 2005, in relation to the year 1750,
together with levels of scientific understanding (LOSU; IPCC 2007)
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However, the estimate of the effects of the above transformations and their influ-
ence on the Earth’s albedo is still charged with a considerable error (Fig. 2.3; IPCC
2007; Forster et al. 2007).

In contrast to aerosols, characterized by the greatest negative radiation forcing,
the greenhouse gases are a key element leading to an increase in global temper-
atures (Fig. 2.3; IPCC 2007). The impact of anthropogenic greenhouse gases
began around 8,000 years ago (Ruddiman 2005). Starting from then the natural
variability of CO2 concentration in the atmosphere has no longer correlated with
Milankovitch cycles (natural changes in the Earth’s surface insolation; Bates
1987). Assumed cause of this change, that occurred 8,000 years ago, is the
beginning of agricultural settlements in the Northern Hemisphere. Deforestation
had been leading to increased CO2 emission to the atmosphere, decreasing at the
same time the natural absorptive capacity of the biosphere in relation to CO2

(Ruddiman 2003). In the case of CH4, a similar divergence dates back to about
5,000 years ago, related to extensive agricultural practices, mainly rice production
in South-East Asia (Ruddiman 2003).

According to IPCC (2007) report, the major greenhouse gases entering the
atmosphere which result from human activity include: CO2, CH4, N2O and freons
(Fig. 2.3). In particular, concentration of freons increased significantly during the
1990s, as a result of widespread use of freons in refrigerators, cosmetics produc-
tion and pressurized polymers (Velders et al. 2005). Although the freon and related
compounds concentrations in the atmosphere are relatively small (approx. 106

times lower than CO2), their high capacity to absorb the infrared radiation con-
tributes significantly to the greenhouse effect (Fig. 2.3; Forster et al. 2007).

The relative increase in concentration of methane (CH4) in the atmosphere
began in 1750 (Fig. 2.4; Forster et al. 2007). This greenhouse gas is characterized
by the highest after CO2 radiation forcing. The most important anthropogenic
sources of CH4 in the atmosphere include agriculture, especially rice cultivation,
cattle breeding, landfills and leaks in systems extracting and transporting natural
gas (Forster et al. 2007).

Regular monitoring of methane concentrations in the atmosphere indicates
significantly reduced growth rate and stabilization of methane during recent years
(Dlugokencky et al. 2003). However, the mechanisms of these changes are not
fully understood (Forster et al. 2007).

Among all the greenhouse gases, CO2, that most significantly contributes to an
increase in the global temperature, deserves a special attention (IPCC 2007).
Radiative forcing of CO2 in 2005 compared to 1750 exceeds the sum of radiative
forcing of all the remaining greenhouse gases (Fig. 2.3). In addition to the natural
sources of CO2 in the atmosphere, that are associated mainly with the organic
matter cycle, human introduces even more CO2, which further disrupts the envi-
ronmental balance, leading to the climate warming. The main sources of the
anthropogenic CO2 include: the fossil fuels combustion (Forster et al. 2007),
cement production (Worrell et al. 2001), deforestation—especially tropical forests
(Houghton 2003; Strassmann et al. 2008), and—to a smaller extent—the biomass
combustion (Andreae and Merlet 2001).
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Intensification of these processes, especially in recent decades, in particular the
fossil fuels combustion, has led to a significant increase in the atmospheric CO2

concentration (Fig. 2.5; Keeling et al. 1995). The monitoring studies initiated in
the late 1950s (Fig. 2.5) suggest large seasonal variations of CO2 in the atmo-
sphere, caused by heterogeneous emission of anthropogenic CO2 during the year,

Fig. 2.4 Concentrations of
atmospheric CO2, CH4 and
N2O during the last
10,000 years, reconstructed
from ice cores. Different
colors indicate different
sources of data. Results of
recent measurements are in
red. Radiative forcing is
calculated in relation to the
year 1750 (IPCC 2007)
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as well as significant contribution of naturally occurring processes contributing to
the global carbon cycle. Therefore, research that leads to understanding of the
mechanisms controlling CO2 concentration in the atmosphere should be in the
center of today’s earth sciences interests. Uncertainty regarding the magnitude of
anthropogenic CO2 emission in the future, due to the socio-political and economic
interactions of a modern world, gives a further motivation to take actions (IPCC
2007).

2.1.3 Global Consequences of the Climate Change

It is assumed, with a high certainty, that human activity, primarily the greenhouse
gases emission, has led to a global temperature increase (IPCC 2007). It is also
believed, although with limited certainty, that these actions prevented a new ice
age to begin from 3,000 to 4,000 years ago (Ruddiman 2003; Ruddiman et al.
2005). According to the last IPCC report (IPCC 2007), the measurable increase of
the global temperature during the last fifty years is a direct evidence of human
interference with the atmosphere composition. Models that are taking into account
only natural radiative forcing indicated clearly the inevitability of cooling for this
period of time. Studies conducted by Trenberth et al. (2007) show that the average
global temperature for the period from 1906 to 2005 increased by 0.74 ± 0.18�C,
while the temperature increase during the last fifty years has been two times faster

Fig. 2.5 Changes of the atmospheric CO2 over decades; observatory Mauna Loa, Hawaii
(source: http://www.esrl.noaa.gov)
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than during the entire century and amounted to 0.013�C year-1. This value is
relatively small, mainly due to the heat exchange through vast ocean surface,
which moderates the temperature changes. Above the continents, the temperature
has been rising since 1979 at a rate of 0.027�C year-1. Furthermore, the tem-
perature increase varies in different parts of the world, and in some regions (Arctic
and Antarctic) is subject to large fluctuations during subsequent decades (IPCC
2007; Trenberth et al. 2007).

Rapid, from the viewpoint of geological time scale, temperature increase carries
numerous consequences, which not only disturb the environment as a whole and its
compartments, but also force changes in mankind development. One of the major
effects of the atmospheric temperature rise is melting of mountain glaciers, ice
sheets and a decrease of both the sea ice surface and volume (IPCC 2007). This is
due to impaired annual balance of ice growth and diminishing. High rates of this
phenomenon allow to track the process of an ice regression over time—as short as
one generation span (Georges 2004; Klein and Kincaid 2006; Gordon et al. 2008).
Drinking water resources shrinkage is one of the immediate results of melting
glaciers. Approximately 1/6 of the globe population live within or near river basins
supplied by water fed from melting glaciers and periodically occurring snow
(Kundzewicz et al. 2007). Diminishing glaciers have also their socio-economical
aspect due to employment rate of the local communities, often relying on tourism
and winter sports (Breiling and Charamza 1999). At a global scale, melting of
glaciers influences the air masses circulation, as demonstrated by changes taking
place in the Himalaya Mountains (Lemke et al. 2007), and, to some extent, sea
level (IPCC 2007).

The cryosphere melting is a direct cause of rising sea level (Hagen et al. 2003;
Alley et al. 2005). It is estimated that in the period from 1961 to 2004 the water
from melting glaciers has been increasing the sea level in a rate of
0.5 ± 0.18 mm year-1. During recent years this process has become even more
pronounced, and the rate of melting, expressed as the raising sea level, increased to
0.77 ± 0.22 mm year-1 (Lemke et al. 2007). In the case of ice sheets, diagram of
long term trends is less precise, because their volume is subjected to large fluc-
tuations over decades (IPCC 2007). However, recent studies (Lemke et al. 2007)
indicate that the melting ice sheet of Greenland contributed from 0.14 to
0.28 mm year-1 to a rate of sea level increase, during the period 1993–2003.
Estimates for Antarctica are less precise and oscillate, for the same period of time,
between 0.55 mm year-1 (increase in sea level) and -0.14 mm year-1 (decrease).

The total contribution of cryosphere to a global sea level increase for the years
1993–2003 is estimated at 1.2 ± 0.4 mm year-1 (Lemke et al. 2007). The risk
carried by the melting ice is stressed by the fact that the water volume stored in the
ice sheet of Greenland and Antarctica, expressed as an equivalent of sea level rise,
amounts to about 64 m (Lythe et al. 2001; Lemke et al. 2007). However, no one
expects that the sea level rise will exceed 1–2 m by the end of this century.

Thermal expansion of water also influences the sea level (Miller and Douglas
2004). Bindoff et al. (2007) estimate that in the period 1961–2003 the global
average temperature of the oceans increased by 0.1�C. This contributed to the sea
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level increase at a rate of 0.4 ± 0.1 mm year-1. Similarly to the rate of melting
glaciers, the influence of water thermal expansion on the sea level increase has
intensified over the past several decades. The value for the period from 1993 to
2003 has been estimated to be 1.6 ± 0.5 mm year-1. When summed up with the
cryosphere melting it gives the sea level increase rate of 2.8 ± 0.7 mm year-1

(IPCC 2007).
Results of paleoclimatic reconstructions suggest a natural oscillation of the sea

level reaching as much as 120 m (Fairbanks 1989). However, during the last
3,000 years or more, the sea level was stable. When the recent trends continue, a
risk of local, and regional, flooding of low-laying areas will materialize in the
nearest future (Bindoff et al. 2007; Nicholls et al. 2007).

Another consequence of elevated concentration of CO2 in the atmosphere,
related directly to the oceans, is sea water acidification (Fig. 2.6; Caldeira and
Wickett 2003; IPCC 2007). The sea water pH is determined primarily by the
so-called carbonate buffering system—the presence of ions and, simultaneously, of
dissolved CO2. The increase of CO2 in the atmosphere results in the increase of
partial pressures difference of the gas between the atmosphere and the ocean. This,
in turn, leads to the diffusion of CO2 into water (mechanism described in some
detail in Sect. 2.2.3.2). In this way, the present day carbonate equilibrium is
disturbed resulting in pH lowering. This is a particular threat for the marine
organisms that built their shells out of CaCO3, whose stability depends directly on
the pH of water (Feely et al. 2004; Orr et al. 2005). The gradual drop of the
seawater pH has amounted to 0.1 pH unit (Fig. 2.6). Direct measurements indicate
that the rate of pH drop increased in the last twenty years to 0.02 pH units per
decade (Bindoff et al. 2007).

The climatic changes bring also an increasing number of extreme events
(Kundzewicz et al. 2004; Trenberth et al. 2007) recognized as ‘low frequency of
occurrence events’. These are often characterized by high intensity, and pro-
nounced effects, e.g., erosion, material losses, storms and storm surges (BACC
Author Team 2008). Trenberth et al. (2007) indicate at the increase in intensity and
frequency of occurrence of tropical cyclones, hurricanes, typhoons, being related
directly to an increase of the surface water temperature in tropical regions.

An increase of the average global precipitation was also observed during the
20th century. At the same time, the frequency of intense rainfalls has increased
(Trenberth et al. 2007), resulting in numerous flooding events (Ulbrich et al. 2003)
and droughts, particularly since the 1970s (New et al. 1999; Kundzewicz 2009).
Extremely dry weather conditions are more often encountered in tropical and sub-
tropical, as well as mid-latitude regions, e.g., Western Europe. Droughts occur,
commonly, along with the unusually high temperatures (Trenberth et al. 2007).

Global material losses attributed to extreme events increased eight times during
the last 40 years (inflation included). Proportion of goods insured against the
natural disasters has also increased over the recent years. This situation is related
partly to the growing wealth and development of societies, but also largely to the
growing frequency of the extreme climate events occurrence (Mills 2005; Beniston
2007; Kundzewicz 2009).
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Climate changes exert pressure on the natural ecosystems. According to
Fischlin et al. (2007), approximately 20–30% of flora and fauna species will be
endangered before 2100. This is a consequence of rising temperature and the
atmospheric CO2 concentration to levels unpresented during the last 650,000 years
for CO2, and 740,000 years for temperature (Fischlin et al. 2007). Negative
changes will also affect marine ecosystems, mostly organisms built of CaCO3,
coral reefs being particularly threatened (Riebesell et al. 2007; Wei et al. 2009).
The projected increase in thermal stratification for the tropical and mid-latitude
ocean zones can lead to reduction of primary production in these regions (Doney
2006).

The transformations that are observed now and projected for the future, and their
consequences, provoke the society to act against these perturbations or, at least, to
adapt to them. Challenges, that the future generations will be facing include:

• Providing food and drinking water to a constantly growing population, affected
by more frequent and intense climate events and shifts of climatic zones
(Easterling et al. 2007; Bański 2009);

• Development of systems that warn and protect population against the extreme
climate events (Kundzewicz 2009);

• Evoking public awareness about the existing risks and adaptation means
(Kundzewicz 2009);

• Protection of the public health against harmful effects of the climate warming
(Confalonieri et al. 2007; Bła _zejczyk 2009);

• Protection of the endangered areas, primarily coastal and polar regions (Nicholls
et al. 2007; Anisimov et al. 2007);

• Deepening of the knowledge about mechanisms determining the magnitude of
anthropogenic factors influencing the Earth’s climate, particularly concerning
the global carbon cycle (IGBP 2002; IPCC 2007; Gutry-Korycka 2009; Schulze
et al. 2009).

Fig. 2.6 Predicted pH
changes in the ocean, based
on target values of CO2

emission and concentration in
the atmosphere (Caldeira and
Wickett 2003). The Y axis
represents alternately the
extend of CO2 emission to the
atmosphere (topmost
dependence), concentration
of CO2 in the atmosphere
(middle) and the pH drop
through the depth of the
ocean
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Assuming more conscious human actions and accepting the responsibility for
climate changes, preventing transformations becomes crucial, especially in the
field of greenhouse gases reduction in the atmosphere (IPCC 2007). This is pos-
sible to achieve by optimizing energy generating technologies and developing
alternative energy sources (IPCC 2007; Kintisch 2009).

All the above actions involve considerable costs, that very often exceed a single
country budget, in particular budgets of developing countries. Thus there is a need
for balanced responsibility, shared between the developed and developing coun-
tries (IPCC 2007; Kintisch 2009).

2.1.4 Climate Change Consequences in the Baltic Sea Region

The Baltic Sea climate is characterized by a large seasonal variability, typical of its
geographical location, topography of the catchment area, and the sea–land inter-
actions (HELCOM 2007). Characterized by western winds dominance, the south-
western part of the basin is under a strong influence of the North Atlantic and the
Gulf Stream. This effect weakens in the north-eastern direction, where the conti-
nental influences and polar air masses dominate. Winter season climate features,
for the Baltic, and most of the Europe are determined mainly by NAO (BACC
Author Team 2008).

Many of the conditions determining changes within the Baltic Sea region are
identical to those that control other parts of the world (BACC Author Team 2008).
Against a background of globally increasing temperature, estimated for the period
1861–2000 to raise by 0.05�C decade-1, the warming of the Baltic Sea region
seems to be actually greater, reaching up to 0.08�C decade-1 (HELCOM 2007).

Sea level is quite dynamic in the Baltic. An important factor contributing to the
Baltic basin bathymetry is related to isostatic movements of the Earth’s crust. It is
estimated that, as a result of these movements, the bottom of the Gulf of Bothnia
uplifts at a rate of 10 mm per year, whilst the southern part of the Baltic Sea
lowers by 0.5–2 mm per year (Wyrzykowski 1985; Harff et al. 2001; Johansson
et al. 2004). Changes occurring in the North Sea and the North Atlantic also
impact sea level in the Baltic (Pempkowiak et al. 2009). Models suggest that, by
the year 2100, the Baltic Sea level will rise in the range from 46 (Danish Straits) to
100 cm (Polish coastal zone), with simultaneous drop from several to several
dozen centimetres in the Gulf of Bothnia (Fenger et al. 2001; Miętus et al. 2004;
Schmidt-Thomé et al. 2006; Pempkowiak et al. 2009). Such a high increase of the
water level poses a threat, especially to low-laying areas, with Polish coast being
particularly exposed. Pempkowiak et al. (2009) estimate that as much as
1,800 km2 of the area along the sea shore could be covered with water (Fig. 2.7).
According to Schmidt-Thomé et al. (2006), significant losses could be also
observed in the City of Gdansk and within the Vistula Delta.

The effect of rising water levels in the Baltic is enhanced by storms and storm
surges (Pempkowiak et al. 2009) and by predictably more frequent occurrence of
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extremely intensive rainfalls in this part of Europe (HELCOM 2007). These
factors pose a considerable threat to the regions situated in vicinity of estuaries;
an example may be the unexpected flood that struck Gdańsk, a port city on the
southern Baltic coast, in 2001 (Majewski 2003). Storm occurrence frequency is
expected to increase during the coming decades, while trends in wave height are not
demonstrated (Miętus 1999; Meier et al. 2004; Schmidt-Thomé et al. 2006). Rising
sea level, as well as storm events and storm surges escalation, can lead to an enhanced
erosion of sea shores. Redeposition coefficient—shore line regeneration to its erosion
ratio—is an often used measure to describe erosion intensity. The data compiled by
BACC Author Team (2008) suggest that the value of the coefficient for the Polish
coastline has been decreasing: for the period 1875–1979 the redeposition coefficient
amounted to 69%, between 1960 and 1983 it was reduced to 20%, to reach just 14%
during 1971–1983. The combination of the above-mentioned factors creates a risk
for the local infrastructure: residential areas, agricultural holdings, tourist resorts,
and ports (Liszewska 2004; Pempkowiak et al. 2009).

Fig. 2.7 Map of the Southern Baltic coast, threatened by inundation as a result of rising sea
level: a central and eastern coast; b Pomeranian Bay and the Szczecin Lagoon coasts. Colours
correspond to the elevation of coastal areas (source: www.globalwarmingart.com)
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Climate transformations carry important consequences for the Baltic Sea eco-
system (HELCOM 2007; BACC Author Team 2008). The atmosphere temperature
increase leads to reduction of convective mixing, followed by nutrients cycles
alterations and anoxic conditions in the water layers below the halocline. Anoxia
and hypoxia are of particular importance in the reproductive cycle of cod. Changes
in the population of this top Baltic predator result in transformations along the
entire food chain (Mackenzie et al. 2007). Temperature increase transforms also
the ecosystem structure, by favouring the warm water species over the cold water
ones (e.g., cyanobacteria vs. diatoms; Wasmund and Uhlig 2003). Impact of the
projected decrease in salinity and water acidification (Stigebrandt and Gustafsson
2003), caused by elevated CO2 concentration (Omstedt et al. 2009) will addi-
tionally accelerate the Baltic Sea ecosystem transformations (HELCOM 2007).

2.2 Global Carbon Cycle

2.2.1 Carbon Reservoirs

Carbon belongs to the most widespread chemical elements on Earth, yet consti-
tutes only 0.0012% ± 0.00036% of its total mass (Lécuyer et al. 2000). There are
three carbon isotopes occurring in nature: two stable isotopes, 12C and 13C, and
radioactive 14C (half-life about 5,730 years; Sulzman 2007). Despite its low
contribution to the earth mass, carbon is fundamental for life on Earth, being the
essential element present in all known life forms. Another story, but of great
significance, is the previously described greenhouse effect determined, to a great
proportion, by carbon compounds.

Data concerning reservoirs and carbon fluxes among the environment com-
partments have been cataloged and published in numerous recent studies (e.g.,
Doney et al. 2003; Sarmiento and Gruber 2006; Houghton 2007; Emerson and
Hedges 2008; Schulze et al. 2009). The majority of available reports are based on
the same source data, and present comparable estimates, with differences seldom
exceeding few percent. For the purpose of the present summary, the compilations
of data by Emerson and Hedges (2008) and by IPCC (2007) have been used (see
Fig. 2.8).

Carbon is present in all the three domains of the natural environment: land,
water and atmosphere. The smallest amount of carbon, mainly in the form of
CO2, is present in the atmosphere. It is estimated that the amount of atmospheric
carbon dioxide, during the pre-industrial period, was approximately 612 Pg
(Pg = 1015 g), compared to the current 784 Pg. A comparable amount, of roughly
600 Pg, is typically assigned to terrestrial organisms, with dominating proportion
(80%) of carbon occurring in the plants biomass. Additional 1,500 Pg of carbon is
gathered in soil. Another reservoir of carbon are the fossil fuels in the Earth’s
crust, which are currently the most widely used sources of energy. The greatest
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carbon amount occurs in rocks: coal, lignite, slate and oil shale. It is estimated that
these minerals contain up to a total of 3,440 Pg of carbon. Much less carbon is
present in oil deposits (about 90 Pg) and natural gas (about 44 Pg). However, the
dominant reservoir of carbon is the ocean. The amount of carbon accumulated
there is equal to 38,000 Pg, which represents 80% of the total carbon mass in the
Earth crust. Furthermore, 1,000 Pg of carbon is deposited in marine sediments.
Contribution of marine organisms is less significant (Fig. 2.8; Emerson and
Hedges 2008).

2.2.2 Scheme of the Global Carbon Cycle in the Environment

The carbon cycle is a part of the global matter cycle. The amount of carbon
comprised in individual reservoirs (Sect. 2.2.1) illustrates their potential impact on
the cycle. The principal matter carrier in the carbon cycle is CO2. In the absence of
human influence, carbon cycle is characterized by the steady state (Fig. 2.8).
Carbon exchange between individual reservoirs involves four fundamental pro-
cesses: photosynthesis, respiration, gas exchange through the water/atmosphere
interface and weathering.

Photosynthesis and respiration are the primary processes facilitating carbon
exchange between the land and the atmosphere. During the photosynthesis,
organisms capable of carbon assimilation, mostly plants and cynobacteria, absorb
CO2, and, with participation of H2O and solar energy, they synthesize organic
compounds forming the organisms’ biomass. Animals and microorganisms, as the
successive levels of a food chain, utilize the biomass, enabling further carbon
cycling. Most of the living organisms oxidize organic matter in order to generate
energy necessary for them to function. Besides energy, H2O and CO2 are the final
products of the oxidation. The resulting CO2 is most often released to the atmo-
sphere. Carbon dioxide exchange between land and the atmosphere is estimated at
120 Pg C year-1 (assuming complete respiration of organic matter on land,
without including erosion and, resulting from erosion, dissolved carbon species
runoff to the ocean; Fig. 2.8; Emerson and Hedges 2008). In a global scale, erosion
(approximately 0.4 Pg year-1) does not play a significant role (Schulze et al.
2009). Somewhat smaller amounts of carbon are subject to the exchange through
the water/atmosphere interface, estimated at 90 Pg C year-1 (Fig. 2.8; Emerson
and Hedges 2008). Processes of absorption/emission of CO2 by seas and oceans,
and carbon fluxes in the marine environment are described, in some details, in
Sects. 2.2.3 and 2.2.4.

Weathering involves physical and chemical processes. The latter, named
chemical weathering, is caused by the atmospheric CO2, that, combined with H2O,
reacts with carbonate and silicate rocks. The result of weathering are ions, which,
together with river water, are discharged to the ocean. It is estimated that two-
thirds of this load is represented by ions derived from carbonates, mostly CaCO3,
and the remaining one-third from silicates, weathering. The contribution of
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weathering processes to the global carbon fluxes is negligible, since the total
carbon flux related to weathering amounts to, roughly, 0.39 Pg C year-1 (Emerson
and Hedges 2008).

The steady state global carbon cycle had been disturbed by human activity
(Sect. 2.1.2). According to the 4th IPCC report (IPCC 2007), the anthropogenic
CO2 emission to the atmosphere has been increasing yearly. In 2004 it was esti-
mated at 10.4 Pg C year-1, being remarkably higher (by 80%) than the emission
recorded in 1970. This represents more than 8% of the natural CO2 exchange
between land and sea, and over 11% of exchange between the ocean and the
atmosphere (Emerson and Hedges 2008). Estimated that, in the period from 1800
to 1994, nearly 244 Pg C reached the atmosphere as a result of anthropogenic
activity. This is close to twice the amount of known carbon resources stored as
crude oil and natural gas, however less than 10% of carbon reserves deposited as
coal (Sect. 2.2.1).

Still, the existing fossil fuel deposits, and possible scenarios of the socio-
economic development, suggest that by 2030 the emission of anthropogenic CO2

to the atmosphere can amount to between 140% and 210% of the current levels.
Thus, the antrophogenic contribution is likely to be comparable to the natural
processes determining CO2 fluxes in the environment (IPCC 2007).

Quantitative assessment of the anthropogenic CO2 releases refers to the gas
emission during the 1990s (IPCC 2001, 2007). The data demonstrate that as a result
of combined fossil fuels combustion and cement production, 6.3 ± 0.4 Pg C year-1

reached the atmosphere, out of which close to 3.2 ± 0.1 Pg C year-1 (50%) had

Fig. 2.8 Scheme of the global carbon cycle (Emerson and Hedges 2008). Data expressed in Pg
[1015 g]. Carbon resources for individual components are marked by square brackets. Dashed
arrows indicate long-term fluxes, solid arrows—short term fluxes. Symbols: W weathering, GE
gas exchange through the water/atmosphere interface, P photosynthesis, R respiration (oxidation),
H hydrothermal processes, RW rock weathering
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been retained in the atmosphere. The remaining 3.1 Pg C year-1 had been absorbed
by the land plants (1.4 ± 0.7 Pg C year-1) and oceans (1.7 ± 0.5 Pg C year-1;
Sabine et al. 2004; Emerson and Hedges 2008). The smaller contribution of the
continents (despite greater natural CO2 exchange with the atmosphere compared to
the ocean; Fig. 2.8.) is explained by the shrinkage of intensive photosynthesis areas,
mainly tropical forests (Sect. 2.1.2). The shorter time of carbon residence on land
than that in the ocean, also plays a significant role (Schulze et al. 2009). Estimates by
other authors (Quay 2002; Takahashi et al. 2002; Canadell et al. 2007; Houghton
2007) of the anthropogenic CO2 fluxes in the environment are close to these
described above, while differences between the individual estimates fall within the
error limits.

2.2.3 Carbon Cycle in the Marine Environment

Significant accumulation of carbon loads in the ocean (Sect. 2.2.1) and the ocean
significant contribution to the anthropogenic CO2 absorption (Takahashi et al. 2002)
intensified studies that led to advances in the marine environment carbon cycle,
especially during the last decade (Sarmiento et al. 1998; Stein and Macdonald 2004;
Sarmiento and Gruber 2006; Emerson and Hedges 2008). In order to access the role
of the seas and oceans in the global carbon cycle, complex biogeochemical models
are designed that are supposed to reflect mathematically the processes occurring in
marine systems (Maier-Reimer and Hasselmann 1987; Siegenthaler and Joos 1992;
Doney et al. 2003; Sasai and Ikeda 2003; Watson and Orr 2003; IPCC 2007). The
models are largely based on the experimental studies conducted during cruises of
research vessels, and data collected using semi-automated instruments installed on
different types of buoys, platforms and commercial vessels (Bates et al. 2000; Sayles
and Eck 2009).

2.2.3.1 Carbon Concentration and Forms in Seas and Oceans

Carbon in the marine environment occurs in a variety of forms, from ions char-
acterized by a small molecular weight to large particles suspended in water col-
umn. Filtration is the method commonly used to separate the suspended fraction
from the dissolved carbon. In the oceanographical studies, the most commonly
used are glass fiber filters and cellulose membranes with the pore size ranging from
0.2 to 1 lm, while the commonly adopted boundary between dissolved and par-
ticulate species is 0.45 lm. This allows for separation of zooplankton, phyto-
plankton, majority of bacteria and detritus as particulate matter. The filtrate
comprises: viruses, colloids, and dissolved substances (Fig. 2.9; Hedges 2002;
Emerson and Hedges 2008).

The criterion used to differentiate carbon species in seawater is the division into
organic and inorganic carbon fractions. These in turn are divided according to their
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properties, origin and function in the environment. There are four basic forms of
carbon in seawater:

• Dissolved inorganic carbon (DIC).
• Particulate inorganic carbon (PIC).
• Dissolved organic carbon (DOC).
• Particulate organic carbon (POC).

In the marine environment, DIC, as the most abundant carbon species, plays the
dominant role in the carbon cycle. Moreover, estimated at 98% of the total carbon
that occurs in water, DIC represents the largest resource of carbon globally
(Emerson and Hedges 2008). In surface waters, DIC concentrations are subjected
to seasonal and spatial oscillations as a result of assimilation and respiration by
living organism and CO2 transport through the water/atmosphere interface.
Average DIC concentrations in the surface water layer range from
25–27 mg dm-3 for ocean water, to 16–18 mg dm-3 for some low salinity estu-
aries (Thomas and Schneider 1999; Key et al. 2004). The DIC forms include:
dissolved CO2, present in equilibrium with unstable H2CO3 that, in turn, is in
equilibrium with bicarbonate and carbonate ions: HCO3

- and CO3
2. These com-

ponents form the so-called carbonate buffer (weak acid and its salts with strong
bases). Carbonate buffer balance is described with dissociation and decay con-
stants of H2CO3 (Sarmiento and Gruber 2006). Quantitative ratio of the buffer
components concentrations determines pH of sea water, establishing its value at
8.2 at 35 PSU, temperature 20�C and CO2 partial pressure equal to 360 ppm
(Emerson and Hedges 2008).

PIC consist primarily of shells and skeletons of organisms built of CaCO3. After
decay of organic matter derived from the dead organisms, settling shells constitue
a primary inorganic carbon carrier to the sediments (Godoi et al. 2009). However,
the PIC contribution to the marine carbon pool is negligible, and its fraction is
rarely distinguished for the purpose of geochemical studies (Milliman 1993;
Emerson and Hedges 2008).

Fig. 2.9 Size of carbon
containing components of
seawater and methods used to
separate and differentiate
between the components
(Emerson and Hedges 2008)
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DOC is the measure of dissolved organic matter, and also the biggest reservoir
of organic carbon on Earth (Hedges 2002). DOC consists of organic carbon in
organic substances, e.g., amino acids, carbohydrates, nucleic fatty acid derivatives,
humic acids, and lignin derivatives (Benner 2002). The last two groups of com-
pounds are found particularly often in estuaries and land locked seas (Pempkowiak
and Pocklington 1983; Pocklington and Pempkowiak 1984; Hedges et al. 1997).
In the deep ocean, DOC concentrations remain at stable levels ranging from
0.4 mg dm-3 in the Pacific Ocean to about 0.6 mg dm-3 in the North Atlantic.
The ocean surface water layer is characterized by larger variability of DOC
concentrations: 0.6–1.2 mg dm-3 in the open ocean and 1–6 mg dm-3 in shelf
seas (Hansell 2002; Kuliński and Pempkowiak 2008).

POC is the basic carbon carrier to the sediments (de Haas et al. 2002; Emerson
and Hedges 2008). Concentrations of POC are determined mainly by the occur-
rence of phytoplankton and detritus, representing the largest input to the suspended
organic matter. Zooplankton and bacteria contribution is much less significant
(Andersson and Rudehäll 1993; Stein and Macdonald 2004). POC concentrations
in sea water are some 10–20 times lower than DOC concentrations (Hansell 2002;
Gardner et al. 2006), and are subject to a large spatial and seasonal variability.
Concentrations, in surface waters, range from 0.03 mg dm-3 for oligotrophic
conditions during winter season, to 0.2–0.8 mg dm-3 during summer season in
shelf seas, characterized by high primary productivity (Gardner et al. 2006).

2.2.3.2 Factors Determining Carbon Cycle in the Marine Environment

The carbon cycle in the marine environment is determined by a number of
physical, chemical, and biological factors that are cross-related. To a large extent,
the cycle is controlled by phytoplankton activity (Dzierzbicka-Głowacka et al.
2010; Kuliński et al. 2011). Absorption and assimilation of dissolved CO2 by
phytoplankton leads to disequilibria in the gas partial pressures between seawater
(lower) and the atmosphere (higher), causing CO2 flux into water. On the other
hand, in the course of respiration, organic substances of dead biota are oxidized to
CO2. Following the organisms death, the organic matter becomes partially min-
eralized in the water column and sediments, in effect balancing the loss of CO2 due
to photosynthesis. The so-called biological pump refers to a series of processes
including the atmospheric CO2 absorption by water, CO2 assimilation leading to
organic substances that form biomass, POC mineralization in deeper water layers,
and deposition of PIC and non-mineralized POC to the sediments (Fig. 2.10;
Longhurst and Harrison 1989; Chisholm 2000; Honjo et al. 2008). In some
regions, biological pump is strengthened by upwellings, thermohaline circulation
and deep water formation. As a result of these processes, dissolved CO2 is
transported to deeper layers of the water column. Because solubility of CO2

increases with decreasing temperature, while CO2 partial pressure in water
decreases due to high biological productivity, the North Atlantic becomes the
World Ocean region that absorbs the atmospheric CO2 most efficiently (Takahashi
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et al. 2002; Schuster et al. 2009). In a situation when CO2 partial pressure is higher
in seawater than in the atmosphere, a reverse process takes place, in which the gas
flows from water to the atmosphere. Such a situation is observed when respiration
(CO2 production) dominate over the photosynthesis (CO2 assimilation). Upwelling
zones are an example where deep water is brought up to the surface with simul-
taneous CO2 degassing to the atmosphere (Torres and Ampuero 2009).

An effectiveness of the biological pump depends largely on physical factors.
Since solubility of the majority of gases decreases with increasing water tem-
perature, the CO2 exchange between water and the atmosphere is determined by
the water temperature (Takahashi et al. 2002). It has been demonstrated that the
velocity of CO2 transport through the seawater/atmosphere interface is propor-
tional to the cube of the wind speed (Wanninkhof and McGillis 1999).

The primary productivity—process influencing, at the same time, CO2 and DIC
concentrations in a sea water—also determines organic carbon concentrations.
Suspended organic matter concentrations (POC) depend directly on primary pro-
ductivity (Hedges 2002). On the other hand, the intensity of primary productivity is
conditioned by microelements and macronutrients dissolved in water, e.g., nutrients
and iron, that are essential for organisms to function. Other factors limiting the
phytoplankton growth are solar radiation and water temperature (Moore et al. 2002;
Colijn and Cadée 2003; Hiscock and Millero 2002; Noiri et al. 2005). After
organisms death, lyses of cells occurs and the resulting suspended organic matter

Fig. 2.10 Scheme of the biological pump processes (Chisholm 2000)
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undergoes sedimentation under the influence of gravity. Its vast majority is being
immediately mineralized or decomposed in the surface water layer. Hensen et al.
(2006) estimated that less than 5% of the oceanic POC reaches the depth of
1,000 m. This part of POC that is actually delivered to, and deposited in the sed-
iments participates in digenetic processes, conditioned largely by redox potential
(Frudenthal et al. 2001, Rullkötter 2006).

As a result of cells lyses, dissolved organic substances (DOC) are released to
the water column. Other sources of DOC in water include its excretion by living
organism, release during zooplankton sloppy feeding or during bacterial and viral
infections (Carlson 2002). Most of the DOC introduced to water is biochemically
unstable, and thus subjected to microbial mineralization within minutes/hours. A
portion, approximately 17% of global primary productivity, is semi-stable or stable
(Hansell and Carlson 1998; Lønborg et al. 2009), with residence time in the
environment estimated, respectively, at weeks/years and decades/millenniums.
Decomposition induced by the UV radiation, followed by the bacteria mediated
mineralization and adsorption on suspended particles followed by deposition to the
sediments are the primary processes that lead to DOC removal from the envi-
ronment (Carlson 2002). DOC concentrations in water are also influenced by
mixing processes occurring in zones where two water masses characterized by
different chemical and/or biological compositions meet. The previously described
upwelling and deep water formation are examples of vertical mixing as compared
with horizontal mixing that includes events like wind currents, inflow of river
water or water exchange between the ocean and shelf seas (Rachold et al. 2004;
Thomas et al. 2005; Huertas et al. 2009).

2.2.4 Role of Shelf Seas in the Atmospheric
Carbon Dioxide Absorption

Shelf seas are coastal waters connecting the land, the atmosphere and the open
ocean; their extent is usually limited to water shallower than 200 m (Thomas et al.
2009). Although the shelf seas represent about 7% of the total surface of seas and
oceans, and only 0.5% of their total water volume (Chen and Borges 2009), they
play an important role in the global carbon cycle. It is assumed that 20% of total
organic matter originating in the marine environment is produced within shelf
seas, while 80% of the total organic matter load deposited to the World Ocean
sediments is deposited in the shelf seas (Borges 2005).

Significant primary production in the shelf seas is induced by high concentra-
tions of nutrients that reach the sea with rivers draining urbanized or agricultural
areas (Gattuso et al. 1998). That is why the shallower seas are believed to be
regions where the biological pump processes absorbing the atmospheric CO2 are
more efficient than in the open ocean (Sect. 2.2.3.2; Chen and Borges 2009).
Nonetheless, shelf seas are often neglected in the global biogeochemical models
that estimate the role of marine environment in the anthropogenic CO2 cycling
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(Sabine et al. 2004). This is due to a large variability of biological, chemical and
hydrological properties differentiating not only individual basins, but single shelf
sea ecosystems as well. One of the examples is a difference in CO2 partial pressure
of water and air. Its seasonal variation oscillates from about 40 ppm in oceanic
regions to 400 ppm in shelf seas of comparable latitude (Thomas and Schneider
1999; Takahashi et al. 2002; Thomas et al. 2004). Assessment of the shelf seas role
of in global CO2 cycling is a serious problem due to a limited spatial resolution of
mathematical models (Bozec et al. 2006).

Tsunogai et al. (1999) presented the first available estimate for the role of shelf
seas in the global cycle of anthropogenic CO2. The authors assumed the same,
as for the South China Sea, absorption capacity value for all shelf seas. Results
proved that shelf seas absorb a total of 1.0 Pg C year-1. Similar estimation
technique was used by Thomas et al. (2004), who treated the North Sea as the
global standard of CO2 transport through the seawater/atmosphere interface. The
obtained net CO2 absorption was equal to 0.4 Pg C year-1. The above values
emphasize the importance of shelf seas, regardless of their relatively small areas,
as regions absorbing carbon dioxide to the extent comparable to the ocean:
1.6 Pg C year-1 (Takahashi et al. 2002), 1.7 Pg C year-1 (Sabine et al. 2004),
1.9 Pg C year -1 (Sarmiento and Gruber 2006).

However, in recent years there have been expressed numerous skeptical opin-
ions regarding the role that shelf seas actually play in the anthropogenic CO2

absorption (Andersson and Mackenzie 2004; Cai and Dai 2004; Borges 2005;
Borges et al. 2005; Borges et al. 2006; Cai et al. 2006; Chen and Borges 2009).
The results demonstrate that, in fact, the open water of shelf seas effectively
absorbs CO2 in the amount of 0.2–0.4 Pg C year-1 (Borges et al. 2006; Chen and
Borges 2009). However, these estimates have not included specific coastal eco-
systems: estuaries, upwelling zones, mangrove forests (Chen and Borges 2009). In
the meantime, scientific reports from 40 years ago demonstrated that these eco-
systems emit CO2 to the atmosphere (Park et al. 1969; Kelley and Hood 1971).
Chen and Borges (2009) estimated this emission at 0.5 Pg C year-1. This load
equalizes the CO2 absorption through the open water of shelf seas. Despite the fact
that this result is charged with significant error, it gives a quite new meaning to
shelf sea contribution levels in reaching the global balance of the anthropogenic
CO2. The complexity of mechanisms determining functioning of the shelf sea
ecosystems results in significant errors of the estimates regarding CO2 absorption/
emission. Insufficient knowledge regarding the matter cycle in shelf seas has been
manifested in subsequent data reports, that significantly vary between each other,
even if they concern the same areas (Chen et al. 2003; Borges et al. 2005; Chen
and Borges 2009).

In the context of the examples cited above, it should be assumed that the Baltic
Sea, characterized by intensive phytoplankton activity occurring from spring to
fall, additionally supplied by a significant load of nutrients (HELCOM 2009), is a
basin that effectively absorbs CO2. On the other hand, extensive mineralization of
organic matter generated during primary production as well as transported by river
run off, will contribute significantly to CO2 production. There is a wide range of
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literature data available, focusing on the CO2 exchange between the Baltic and the
atmosphere (Thomas and Schneider 1999; Algesten et al. 2004; Kuss et al. 2006;
Omstedt et al. 2009). However, all these estimates, reporting local scale studies,
still do not provide a clear answer to the question whether the Baltic Sea (as a
water body) acts as a CO2 emitter or absorber, and what is the magnitude of these
processes?

2.3 Carbon Cycling in the Baltic Sea

2.3.1 Baltic Sea Characteristics

The Baltic Sea is an inland shelf sea located in Northern Europe, stretching from
53 to 66�N in latitude and from 20 to 26�E in longitude. The basin occupies an
area of 3.85�105 km2 (without the Kattegat) and contains a total water volume
equal to 22�103 km3 (Fig. 2.11; Gudelis and Jemielianow 1982; HELCOM 2002;
BACC Author Team 2008; Lass and Matthäus 2008).

Narrow and shallow Danish Straits (the Great Belt, Little Belt, Oresund—
extending through the Skagerrak, and the Kattegat) are the only connection of the
Baltic Sea with the North Sea. In a consequence, only infrequent incidents of hori-
zontal water exchange of considerable volume (100–250 km3) are reported. The
water inflows from the North Sea are the cause of density stratification, as well as
salinity gradient occurring from the southwest to the northeast. Surface water salinity
ranges from 7–8 PSU in the Arkona Deep (south-western part of the Baltic) to 2–3
PSU in the northern part of the Baltic (the Bothnian Bay). The Baltic Sea is con-
sidered to be one of the largest brackish water basins in the world. Regardless of its
shallowness, inflows of saline and dense seawater from the North Sea is one of the
main causes of permanent stratification in regions of the Baltic with water depth
exceeding 60–80 m. The halocline, occurring at a depth of 60–80 m, separates the
brackish (6–8 PSU) surface water from deeper water layers (11–15 PSU). Limited
vertical mixing leads to oxygen deficits and occurrence of hydrogen sulphide.
In summer this is enhanced by the thermocline present at 25–30 m and infrequent
inflows of the North Sea water, rich in oxygen (Voipio 1981; HELCOM 2002;
Stigebrandt 2001; Omstedt et al. 2004; Meier 2007; BACC Author Team 2008; Lass
and Matthäus 2008; Matthäus et al. 2008). Significant river runoff estimated at
428 km3 year-1 is the largest source of fresh water in the Baltic, contributing to its
brackish character. The volume of precipitation is nearly two times smaller
(237 km3 year-1) and compensated mainly by evaporation estimated at
184 km3 year-1. The largest river runoff is delivered to the Gulf of Bothnia, the Gulf
of Finland, and the Gulf of Riga. Combined the discharges are estimated at 70% of the
total volume of fresh water delivered to the sea. The Baltic drainage area is over four
times greater than the sea area itself, and covers the territories of fourteen countries.
The catchment area is rather diverse geographically—from the mountains and forests
of the Scandinavian Peninsula, characterized by a numerous small basins—to
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lowland mainland areas, transformed agriculturally. The lowland regions, covering
the eastern and southern part of the Baltic drainage area, are characterized by large
river basins, such as the Neva River, the Vistula River, or the Odra River (Fig. 2.11;
Bergström et al. 2001; Omstedt and Axell 2003; Omstedt et al. 2004; HELCOM
2007; Meier 2007; Lass and Matthäus 2008).

The Baltic Sea is characterized by a low salinity that, coupled with the osmotic
stress, leads to the ecosystem biodiversity loss expressed in decreasing number of
species and the size of individual organisms. On the other hand, Baltic as a
transitional area between sub-arctic conditions prevailing in the Gulf of Bothnia
and boreal conditions in the southern part of the basin, is a site habitable for
species characteristic for both climatic zones. Another factor that significantly
shapes the Baltic Sea ecosystem is the human impact. Besides the contaminants
introduced to the basin, eutrophication driven by extensive nutrient loads, origi-
nating especially from urbanized and agricultural areas, is of particular impor-
tance. It is mainly the phosphorus and nitrogen delivered with river runoff that
promote the increased ecosystem productivity. In a consequence, intensive min-
eralization of organic matter occurs, which contributes to a spread out of anaerobic
conditions, especially in the deeper water layers of the Baltic. The process of
eutrophication greatly promotes the phytoplankton blooms, including toxic cya-
nobacteria, which additionally becomes a public health concern, especially in the

Fig. 2.11 The Baltic Sea
drainage area with the
highlighted rivers catchments
(HELCOM 2007)
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near-shore areas. A separate issue resulting from human activity is a problem of
ballast water and invasive species that do influence biodiversity in various ways
(Voipio 1981; Hagström et al. 2001; BACC Author Team 2008; HELCOM 2009).

2.3.2 Carbon Reservoirs in the Baltic Sea

Carbon resources estimates for the Baltic Sea are obtained by multiplying the
water volume and concentration of various forms of carbon. In a situation when
water volume is a relatively stable measure, carbon resources are dependent on
concentrations that, in turn, are conditioned by a number of processes analogous to
those observed for other basins, as described in Sect. 2.2.3.2 (e.g., Vichi et al.
2004; Omstedt et al. 2009).

Similarly to the oceans, the largest carbon resources in the Baltic are present in
the form of DIC. In the northern part of the basin, DIC concentrations are subject
to greater seasonal oscillations than in the open ocean or typical shelf seas
(Thomas and Schneider 1999; Bozec et al. 2006; Prowe et al. 2009). DIC con-
centrations in the Baltic Sea surface waters range from 18–21 mg dm-3 in the
southwestern parts to 16–18 mg dm-3 in the northern Gulf of Bothnia (Thomas
and Schneider 1999).

DOC is the second largest carbon reservoir in the Baltic. Its concentrations in
the surface water vary from 3.0–4.3 mg dm-3 for the open waters of the Gulf of
Bothnia and the southwestern parts of the Baltic to 3.5–6.5 mg dm-3 for the
vicinity of estuaries. The concentrations are 3–4 times higher than those reported
for the open ocean water (Voipio 1981; Pempkowiak et al. 1984; Ferrari et al.
1996; Hagström et al. 2001; Algesten et al. 2006; Kuliński and Pempkowiak 2008).
POC exhibits the largest relative seasonal oscillations of concentrations. This is
caused primarily by intensive phytoplankton bloom events, when the POC con-
centration exceeds 1.0 mg dm-3. During the winter season, POC concentrations in
the Baltic open water, that do not exceed 0.1 mg dm-3, are controlled mainly by
the amount of slowly sinking detritus (Pempkowiak et al. 1984; Burska et al. 2005;
Dzierzbicka-Glowacka et al. 2010).

2.3.3 Carbon Sources and Losses in the Baltic Sea

As a result of processes occurring in the water column (e.g., photosynthesis,
respiration, sorption), carbon species transform into one another without changing
the total carbon concentration. There are additional external factors that also
influence carbon reservoirs in the Baltic ecosystem compartments. Depending on
the resulting flux direction, the factors are classified as sources—causing the
concentration increase, and losses—reducing carbon concentrations within the
basin. Overview of carbon major sources and sinks in the Baltic Sea is presented in
the following sections.
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2.3.3.1 Carbon Exchange Between the Baltic and the North Sea

The Danish Straits are the only route of water exchange between the Baltic Sea
and the North Sea, and further with the Atlantic Ocean. Along with the sea water
masses, dissolved and suspended substances, including carbon species, are trans-
ported. The amount of carbon that is exported from, and imported to, the Baltic
depends mainly on the volume of flowing water. According to various sources,
as reviewed and summarized by Omstedt et al. (2004), it has been demonstrated
that, on average, 1,100–2,520 km3 of water is yearly discharged from the Baltic to
the North Sea, while 600–1,350 km3 year-1 is transported in the opposite direc-
tion. These significant data differences result from a high variability of the
direction and volume of flowing water masses, that are dependent on wind velocity
and direction, and are often changing in a short time intervals (BACC Author
Team 2008). Döös et al. (2004) estimate that only 6% of water flowing through the
Great Belt resides in the Baltic for longer than a year, compared to 32% for the
Oresund. Therefore, the BACC Author Team (2008) recommends the salinity to be
used as an indicator allowing for water masses distinction and determination of the
magnitude of flow through the Danish Straits. Despite their significant variability,
the above-mentioned values indicate that the water exchange between the two
basins is a decisive factor determining the Baltic Sea water balance. At the same
time, the carbon exchange through the Danish Straits becomes an important aspect
of the Baltic Sea carbon cycle. Based on calculations of water mass flows and their
patterns (Wulff et al. 2001), coupled with an assumption of constant DIC and DOC
annual concentrations in the Baltic and the North Sea water, Thomas et al. (2003)
estimated that Baltic exports yearly 20 Tg C, in contrast to the yearly import
amounting to just 6 Tg C. Based on these data, Thomas et al. (2005) suggested the
Baltic Sea to be the largest net source of carbon for the North Sea. Moreover, both
basins, combined, play the essential role in the mechanism of carbon transfer from
the atmosphere and land to the deeper water of the North Atlantic.

2.3.3.2 Carbon Supplied With the River Runoff

Rivers are considered to be an essential element of the water balance of the Baltic
Sea and important source of carbon. Pempkowiak and Kupryszewski (1980)
estimated that, at least, 25% of organic matter present in the Baltic Sea has a
terrestrial origin, out of which 50% is represented by humic substances, resistant to
biochemical degradation (Pempkowiak and Pocklington 1983). Despite this, only
few studies have focused on this group of compounds, in contrast to detailed
investigations concerning nutrients (e.g., Petterson et al. 1997; Wulff et al. 2001;
Granskog et al. 2005a).

River waters discharged into the Baltic are characterized by high concentrations
of organic carbon (Granskog et al. 2005b). Pempkowiak (1985) has shown that
DOC concentration in the lower stretch of the Vistula River ranges from
7.2 mg dm-3 in winter to 9.4 mg dm-3 in summer. Assuming the same DOC
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concentrations for all the remaining rivers flowing into the Baltic, it was estimated
that rivers bring annually a total of 3.35 Tg of organic carbon, which represents
approximately 3.3% of the total DOC pool in the Baltic. Similar DOC concentra-
tions (9.5 mg dm-3) were observed for the Svartan River and Öre River flowing
into the Gulf of Bothnia (Langenheder et al. 2003; Granskog et al. 2005b). In a
contrary, Granskog et al. (2005a) recorded DOC concentrations reaching as much
as 14 mg dm-3 for the Siikajoki River, also flowing into the Gulf of Bothnia, which
situates this river among watercourses characterized by the highest DOC concen-
trations in the world (Cauwet 2002; Dittmar and Kattner 2003). High concentra-
tions of organic carbon in rivers flowing into the Gulf of Bothnia make them the
source of a significant carbon load for the Baltic Sea. Algesten et al. (2006) esti-
mated that the rivers escaping into the Baltic within Finland and Sweden deliver,
respectively, 0.65 and 0.85 Tg of organic carbon annually.

In contrast to numerous reports on organic carbon, the data concerning inor-
ganic carbon in the Baltic rivers are rather limited (Pempkowiak 1985; Thomas
and Schneider 1999). Alkalinity is the parameter used in river monitoring pro-
grams, that allows to estimate DIC concentration in the most accurate manner.
Alkalinity is a measure of the ability of a solution to neutralize hydrogen ions,
expressed in equivalent mass per unit volume. In the surface water, it is deter-
mined mainly by the presence and concentration of CO3

2- and HCO3
- ions. In the

rivers escaping to the Baltic, due to pH ranging from 7.0 to 7.5, the HCO3
- ions

play the dominant role.
The Scandinavian rivers are characterized by relatively low DIC concentra-

tions, and at the same time low alkalinity. Brink et al. (2007) determined an
average alkalinity for the Kalix and Lule rivers during 1985–2003 at 0.22 and
0.15 meq dm-3 respectively. When assuming that alkalinity is driven by the
presence of HCO3

- the value is equal to DIC concentrations corresponding to 2.6
and 1.8 mg dm-3 for Kalix and Lule, respectively. The DIC present in the rivers
originates mostly from the organic matter mineralization, and to a smaller extent
from weathering and erosion. The authors estimate that 1.9 and 1.2 mg DIC dm-3,
respectively, for the Kalix and the Lule, come from mineralization of organic
matter.

Thomas and Schneider (1999) obtained similar DIC concentration values
(approximately 2 mg dm-3) for river discharges flowing into the Gulf of Bothnia.
Relationship of DIC concentrations and salinity was determined for different parts of
the open Baltic Sea water, and the correlations obtained for each zone were
extrapolated to 0 PSU, giving DIC concentration in river water. For the Gulf of
Finland and the Gulf of Riga, higher DIC concentrations have been estimated,
amounting to 7 and 33 mg dm-3, respectively. Water of the river mouth in the
southern Baltic is also characterized by high DIC concentrations. Unpublished data
(Beldowski, personal communication) indicate relatively constant DIC concentra-
tions for the Świna (24–27 mg dm-3) and well pronounced seasonal dynamics of
DIC in the Vistula (32–45 mg dm-3). Based on extrapolation method described by
Thomas and Schneider (1999), and DOC average concentration of 4.3 mg dm-3,
it has been estimated (Thomas et al. 2003) that continental rivers supply the Baltic
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Sea with 4.9 Tg C per annum. This value represents approximately 35-fold higher
carbon load than that estimated for the Scandinavian rivers (0.12 Tg C year-1;
Thomas et al. 2003).

2.3.3.3 Carbon Deposition to the Sediments

POC plays a dominant role in carbon transport to the sea floor, while it is assumed
that the role of PIC is minimal and falls within the error limits (Zsolnay 1973;
Schneider et al. 2000; Struck et al. 2004). Carbon deposition depends on a number
of processes taking place in a water column and sediments. The amount and
quality of the material that can, potentially, sink to the bottom is the most sig-
nificant factor. The main sources of organic matter containing particles suspended
in the water column are the primary productivity and fluvial processes. As a result
of mineralization and decomposition, only a small fraction of the suspended matter
reaches the sediments, and the actual deposition location is determined by
hydrological factors (Voipio 1981; Blomqvist and Heiskanen 2001).

The primary productivity magnitude in the Baltic changes spatially and tem-
porarily. Nutrients are the driving force for primary productivity: the Gulf of
Bothnia is the least active basin in this respect, while the greatest primary pro-
ductivity is observed for the Gulf of Riga and the south-western part of the Baltic
(Table 2.1;. Voipio 1981; Wasmund et al. 2001; HELCOM 2009).

The comparison of data on the primary productivity, as summarized by
Wasmund and Siegel (2008), revealed the significant increase in the last decades in
the southern parts of the Baltic and in the Gulf of Riga, while no significant
changes have been reported for the Gulf of Bothnia (Table 2.1). The largest
increase (nearly threefold) was observed in the Gulf of Riga, somewhat smaller
(approximately twofold) in the Danish Straits and the so-called Baltic Proper.
Changes in the magnitude of primary productivity for the entire basin lead to its
overall increase from 84 g m-2 year-1 in the late 1970s and 1980s to 150 g m-2

year-1 presently.

Table 2.1 Primary productivity in the Baltic Sea (Wasmund and Siegel 2008 based on Kaiser
et al. 1981 and Wasmund et al. 2001)

Region Primary productivity (g C m-2 year-1)

Kaiser et al. (1981) Wasmund et al. (2001)

Kattegat/Danish straits 90–120 190
Proper Baltic 90–125 200
Gulf of Riga 80–100 261
Gulf of Finland 70 82
Bothnian Sea 70 52
Gulf of Bothnia 18 17
Baltic Sea—average 84 150
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Organic carbon is deposited mainly in areas of fine-grained sediments
(mud-clay) covering 32% of the Baltic Sea bottom (Fig. 2.12; Emeis et al. 2000;
Al-Hamdani and Reker 2007). This type of sediments is characterized by high
organic carbon concentrations, reaching 10–11% in the uppermost sediment lay-
ers. Such high concentrations result from sedimentation of material that is rich in
organic matter, and the permanent oxygen deficit in the sediments. The absence of
oxygen slows down the mineralization rate of organic matter. The regions char-
acterized by oxygen deficit and substantial sedimentation include: the Gotland
Deep, the Gdansk Deep and the Bornholm Deep, where more than 50% of the
Baltic total organic matter is deposited (Emeis et al. 2000). Areas of sea bottom

Fig. 2.12 The Baltic Sea sediment types (Al-Hamdani and Reker 2007)
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covered by other sediment types play a minor role as accumulation areas of
sedimentary material in the Baltic, and the majority of organic matter reaching
their surface is subjected to rapid mineralization or resuspension and relocation to
the depositional areas. This is best indicated by low concentrations of organic
carbon within the uppermost sediment layers: 0.05–0.5% of dry weight (d.w.;
Maksymowska 1998).

Studies involving sediment traps conducted in the Gotland Deep (Struck
et al. 2004) revealed that POC transport to the sediments at a depth of 140 m
amounts to 6.0 g m-2 year-1. Summer and autumn carbon fluxes contribute most
significantly to the annual POC flux: 31.9% and 34.6%, respectively. Slightly
higher levels of POC transport to the sediments (also assessed using sediment
traps) obtained by Schneider et al. (2000) were calculated to be 7.9 g m-2 year-1.
Based on this value, assumed to be the same for the Baltic Proper, the Gulf of
Finland and the Gulf of Riga, Schneider et al. (2000) estimated that 1.7 Tg C is
deposited in these regions every year.

The total organic carbon (TOC) accumulation rate in the bottom sediments is
calculated based on the designated sedimentation rate, usually assessed using a
method based on 210Pb activity, as well as organic carbon concentration levels in
the sediments. Algesten et al. (2006) estimated, based on the accumulation rate of
TOC for the uppermost sediment layers, that 1.1 Tg C is deposited in the Gulf of
Bothnia annually. On the other hand, Emeis et al. (2000) indicate that TOC
accumulation rates in the Bornholm Deep, Gdansk Deep, and Gotland Deep
increased two- to three-fold during the several last decades, while current values
amount to 60 g C m-2 year-1, 60–65 g C m-2 year-1 and 40 g C m-2 year-1,
respectively. Only in the vicinity of Arkona Deep, organic carbon accumulation
rates remain at a constant level ranging from 20 to 25 g C m-2 year-1. The
suggested increase of TOC accumulation rates is attributed to a greater organic
matter influx to the sediments and transformations of environmental conditions
determining organic matter degradation processes (Emeis et al. 2000; Struck et al.
2000, Szczepanska et al. 2011). This opinion is also confirmed by Jonsson and
Carman’s (1994) studies that estimated close to twofold increase of TOC accu-
mulation rates in the Gulf of Bothnia in the 1980s, compared to the 1920s. For the
Baltic Proper, this increase has been estimated to be five to ten times higher than
the historical one.

2.3.3.4 Carbon Dioxide Exchange at the Water/Atmosphere Interface

The Baltic Sea is a diverse ecosystem. The basin consists of regions characterized by
a low primary productivity and large terrestrial organic matter inflow (the Gulf of
Bothnia), through highly productive areas, located in the central and southern part of
the basin, to highly eutrophic regions specific for the main rivers mouths
(Voipio 1981; Hagström et al. 2001; Nausch et al. 2008; Wasmund and Siegel 2008).
This situation is reflected in the direction and rate of CO2 exchange through the
water/atmosphere interface.
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The Gulf of Bothnia is considered to be a source of CO2 to the atmosphere, which
is attributed to intensive mineralization of organic matter supplied to the Gulf with
the river runoff and limited, especially when compared with the southern Baltic,
phytoplankton activity (Algesten et al. 2004 and Algesten et al. 2006). It has been
estimated (Algesten et al. 2004) that the Gulf of Bothnia annually releases 3.79 Tg C
in the form of CO2, which corresponds to 37.2 g C m-2. Subsequent estimates
concerning CO2 cycling in the Gulf of Bothnia were similar. Algesten et al. (2006)
calculated carbon emission for the entire Gulf at the level of 3.61 Tg C year-1,
which corresponds to specific emissions of 35.4 g C m-2 year-1.

In contrast to the Gulf of Bothnia, the remaining portion of the Baltic Sea is
considered to absorb atmospheric CO2 (Ohlson 1990; Thomas and Schneider
1999; Kuss et al. 2006). Ohlson (1990) estimated the average atmospheric CO2

uptake at 13.2 g C m-2 year-1. Thomas and Schneider (1999) obtained compa-
rable results, and based on biogeochemical model the authors calculated that the
so-called Baltic Proper (Baltic without the major gulfs: Bothnia, Finland, Riga and
Danish Straits) absorbs 10.8 ± 1.1 g C m-2 year-1. In the southern Baltic, the
Arkona Deep is of special interest; buoy-based measurements of partial pressure of
dissolved CO2 in water are available for this location (Kuss et al. 2006). The
results indicate that this region is characterized by carbon dioxide absorption
amounting to 36.0 g C m-2 year-1.

2.3.3.5 Other Sources and Losses of Carbon in the Baltic Sea

Additional sources of carbon in the Baltic Sea include precipitation and the so-
called point sources (HELCOM 2004; Algesten et al. 2006). These consist of all
terrestrial carbon inflows, other than river runoff. Wastewater treatment plants
located along the shoreline are the main source (70%) here (HELCOM 2004). The
data indicate that annually 3.6 km3 of treated sewage is discharged to the Baltic.
Organic carbon load delivered from the point sources is frequently expressed as
the seven-day biochemical oxygen demand (BOD7). This, for the entire Baltic Sea,
is calculated to be 88.7 Gg O2. Converted to the carbon load, using a BOD7/Corg

ratio of 2.28 (HELCOM 1983), this corresponds to 39 Gg C, half of which is
delivered to the Gulf of Bothnia. Industrial plants, associated mainly with paper
and timber industry, contribute 65% of the total organic carbon inflow from the
point sources. To a smaller extent, supply from point sources includes municipal
wastewater (33%) and fish farms (2%).

Precipitation constitutes an important freshwater source for the Baltic Sea.
However, the literature data lack concentrations of organic and inorganic carbon in
the rainwater within the Baltic. Based on the data presented by Anttila et al. (1995)
and Algesten et al. (2006) the estimated amount of organic carbon reaching the
Gulf of Bothnia with rainwater at 0.11 Tg year-1.

On the other hand, fisheries cause carbon depletion in the Baltic. Since fish tissue
comprise significant amounts of organic carbon, it can be regarded as a reservoir of
carbon. Herring (Clupea harengus membras) and sprat (Sprattus sprattus) are the
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most commonly harvested species—presently contributing over 80% of the total
catch. Fish harvested to a smaller extent include cod, flounder, salmon and freshwater
species (Hammer et al. 2008; ICES 2008). According to the ICES report
(ICES 2008), the catch magnitude in the period 1974–1984 oscillated at a level of
850–990 103 ton year-1, increasing during 1996–1998, primarily due to cod catch,
to 1,100 103 tons year-1. ICES (2008) estimates the current Baltic Sea annual catch
to be 700 103 ton fish year-1. Assuming 8.2% as an average carbon concentration in
a wet fish tissue (Crabtree 1995), this corresponds to carbon extraction from the
Baltic equal to 57 Gg C year-1.
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